1 /*-------------------------------------------------------------------------
2  *
3  * dependency.c
4  *	  Routines to support inter-object dependencies.
5  *
6  *
7  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * IDENTIFICATION
11  *	  src/backend/catalog/dependency.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/genam.h"
18 #include "access/htup_details.h"
19 #include "access/table.h"
20 #include "access/xact.h"
21 #include "catalog/dependency.h"
22 #include "catalog/heap.h"
23 #include "catalog/index.h"
24 #include "catalog/objectaccess.h"
25 #include "catalog/pg_am.h"
26 #include "catalog/pg_amop.h"
27 #include "catalog/pg_amproc.h"
28 #include "catalog/pg_attrdef.h"
29 #include "catalog/pg_authid.h"
30 #include "catalog/pg_cast.h"
31 #include "catalog/pg_collation.h"
32 #include "catalog/pg_constraint.h"
33 #include "catalog/pg_conversion.h"
34 #include "catalog/pg_database.h"
35 #include "catalog/pg_default_acl.h"
36 #include "catalog/pg_depend.h"
37 #include "catalog/pg_event_trigger.h"
38 #include "catalog/pg_extension.h"
39 #include "catalog/pg_foreign_data_wrapper.h"
40 #include "catalog/pg_foreign_server.h"
41 #include "catalog/pg_init_privs.h"
42 #include "catalog/pg_language.h"
43 #include "catalog/pg_largeobject.h"
44 #include "catalog/pg_namespace.h"
45 #include "catalog/pg_opclass.h"
46 #include "catalog/pg_operator.h"
47 #include "catalog/pg_opfamily.h"
48 #include "catalog/pg_policy.h"
49 #include "catalog/pg_proc.h"
50 #include "catalog/pg_publication.h"
51 #include "catalog/pg_publication_rel.h"
52 #include "catalog/pg_rewrite.h"
53 #include "catalog/pg_statistic_ext.h"
54 #include "catalog/pg_subscription.h"
55 #include "catalog/pg_tablespace.h"
56 #include "catalog/pg_transform.h"
57 #include "catalog/pg_trigger.h"
58 #include "catalog/pg_ts_config.h"
59 #include "catalog/pg_ts_dict.h"
60 #include "catalog/pg_ts_parser.h"
61 #include "catalog/pg_ts_template.h"
62 #include "catalog/pg_type.h"
63 #include "catalog/pg_user_mapping.h"
64 #include "commands/comment.h"
65 #include "commands/defrem.h"
66 #include "commands/event_trigger.h"
67 #include "commands/extension.h"
68 #include "commands/policy.h"
69 #include "commands/publicationcmds.h"
70 #include "commands/seclabel.h"
71 #include "commands/sequence.h"
72 #include "commands/trigger.h"
73 #include "commands/typecmds.h"
74 #include "nodes/nodeFuncs.h"
75 #include "parser/parsetree.h"
76 #include "rewrite/rewriteRemove.h"
77 #include "storage/lmgr.h"
78 #include "utils/acl.h"
79 #include "utils/fmgroids.h"
80 #include "utils/guc.h"
81 #include "utils/lsyscache.h"
82 #include "utils/syscache.h"
83 
84 
85 /*
86  * Deletion processing requires additional state for each ObjectAddress that
87  * it's planning to delete.  For simplicity and code-sharing we make the
88  * ObjectAddresses code support arrays with or without this extra state.
89  */
90 typedef struct
91 {
92 	int			flags;			/* bitmask, see bit definitions below */
93 	ObjectAddress dependee;		/* object whose deletion forced this one */
94 } ObjectAddressExtra;
95 
96 /* ObjectAddressExtra flag bits */
97 #define DEPFLAG_ORIGINAL	0x0001	/* an original deletion target */
98 #define DEPFLAG_NORMAL		0x0002	/* reached via normal dependency */
99 #define DEPFLAG_AUTO		0x0004	/* reached via auto dependency */
100 #define DEPFLAG_INTERNAL	0x0008	/* reached via internal dependency */
101 #define DEPFLAG_PARTITION	0x0010	/* reached via partition dependency */
102 #define DEPFLAG_EXTENSION	0x0020	/* reached via extension dependency */
103 #define DEPFLAG_REVERSE		0x0040	/* reverse internal/extension link */
104 #define DEPFLAG_IS_PART		0x0080	/* has a partition dependency */
105 #define DEPFLAG_SUBOBJECT	0x0100	/* subobject of another deletable object */
106 
107 
108 /* expansible list of ObjectAddresses */
109 struct ObjectAddresses
110 {
111 	ObjectAddress *refs;		/* => palloc'd array */
112 	ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
113 	int			numrefs;		/* current number of references */
114 	int			maxrefs;		/* current size of palloc'd array(s) */
115 };
116 
117 /* typedef ObjectAddresses appears in dependency.h */
118 
119 /* threaded list of ObjectAddresses, for recursion detection */
120 typedef struct ObjectAddressStack
121 {
122 	const ObjectAddress *object;	/* object being visited */
123 	int			flags;			/* its current flag bits */
124 	struct ObjectAddressStack *next;	/* next outer stack level */
125 } ObjectAddressStack;
126 
127 /* temporary storage in findDependentObjects */
128 typedef struct
129 {
130 	ObjectAddress obj;			/* object to be deleted --- MUST BE FIRST */
131 	int			subflags;		/* flags to pass down when recursing to obj */
132 } ObjectAddressAndFlags;
133 
134 /* for find_expr_references_walker */
135 typedef struct
136 {
137 	ObjectAddresses *addrs;		/* addresses being accumulated */
138 	List	   *rtables;		/* list of rangetables to resolve Vars */
139 } find_expr_references_context;
140 
141 /*
142  * This constant table maps ObjectClasses to the corresponding catalog OIDs.
143  * See also getObjectClass().
144  */
145 static const Oid object_classes[] = {
146 	RelationRelationId,			/* OCLASS_CLASS */
147 	ProcedureRelationId,		/* OCLASS_PROC */
148 	TypeRelationId,				/* OCLASS_TYPE */
149 	CastRelationId,				/* OCLASS_CAST */
150 	CollationRelationId,		/* OCLASS_COLLATION */
151 	ConstraintRelationId,		/* OCLASS_CONSTRAINT */
152 	ConversionRelationId,		/* OCLASS_CONVERSION */
153 	AttrDefaultRelationId,		/* OCLASS_DEFAULT */
154 	LanguageRelationId,			/* OCLASS_LANGUAGE */
155 	LargeObjectRelationId,		/* OCLASS_LARGEOBJECT */
156 	OperatorRelationId,			/* OCLASS_OPERATOR */
157 	OperatorClassRelationId,	/* OCLASS_OPCLASS */
158 	OperatorFamilyRelationId,	/* OCLASS_OPFAMILY */
159 	AccessMethodRelationId,		/* OCLASS_AM */
160 	AccessMethodOperatorRelationId, /* OCLASS_AMOP */
161 	AccessMethodProcedureRelationId,	/* OCLASS_AMPROC */
162 	RewriteRelationId,			/* OCLASS_REWRITE */
163 	TriggerRelationId,			/* OCLASS_TRIGGER */
164 	NamespaceRelationId,		/* OCLASS_SCHEMA */
165 	StatisticExtRelationId,		/* OCLASS_STATISTIC_EXT */
166 	TSParserRelationId,			/* OCLASS_TSPARSER */
167 	TSDictionaryRelationId,		/* OCLASS_TSDICT */
168 	TSTemplateRelationId,		/* OCLASS_TSTEMPLATE */
169 	TSConfigRelationId,			/* OCLASS_TSCONFIG */
170 	AuthIdRelationId,			/* OCLASS_ROLE */
171 	DatabaseRelationId,			/* OCLASS_DATABASE */
172 	TableSpaceRelationId,		/* OCLASS_TBLSPACE */
173 	ForeignDataWrapperRelationId,	/* OCLASS_FDW */
174 	ForeignServerRelationId,	/* OCLASS_FOREIGN_SERVER */
175 	UserMappingRelationId,		/* OCLASS_USER_MAPPING */
176 	DefaultAclRelationId,		/* OCLASS_DEFACL */
177 	ExtensionRelationId,		/* OCLASS_EXTENSION */
178 	EventTriggerRelationId,		/* OCLASS_EVENT_TRIGGER */
179 	PolicyRelationId,			/* OCLASS_POLICY */
180 	PublicationRelationId,		/* OCLASS_PUBLICATION */
181 	PublicationRelRelationId,	/* OCLASS_PUBLICATION_REL */
182 	SubscriptionRelationId,		/* OCLASS_SUBSCRIPTION */
183 	TransformRelationId			/* OCLASS_TRANSFORM */
184 };
185 
186 
187 static void findDependentObjects(const ObjectAddress *object,
188 								 int objflags,
189 								 int flags,
190 								 ObjectAddressStack *stack,
191 								 ObjectAddresses *targetObjects,
192 								 const ObjectAddresses *pendingObjects,
193 								 Relation *depRel);
194 static void reportDependentObjects(const ObjectAddresses *targetObjects,
195 								   DropBehavior behavior,
196 								   int flags,
197 								   const ObjectAddress *origObject);
198 static void deleteOneObject(const ObjectAddress *object,
199 							Relation *depRel, int32 flags);
200 static void doDeletion(const ObjectAddress *object, int flags);
201 static bool find_expr_references_walker(Node *node,
202 										find_expr_references_context *context);
203 static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
204 static int	object_address_comparator(const void *a, const void *b);
205 static void add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
206 							   ObjectAddresses *addrs);
207 static void add_exact_object_address_extra(const ObjectAddress *object,
208 										   const ObjectAddressExtra *extra,
209 										   ObjectAddresses *addrs);
210 static bool object_address_present_add_flags(const ObjectAddress *object,
211 											 int flags,
212 											 ObjectAddresses *addrs);
213 static bool stack_address_present_add_flags(const ObjectAddress *object,
214 											int flags,
215 											ObjectAddressStack *stack);
216 static void DeleteInitPrivs(const ObjectAddress *object);
217 
218 
219 /*
220  * Go through the objects given running the final actions on them, and execute
221  * the actual deletion.
222  */
223 static void
deleteObjectsInList(ObjectAddresses * targetObjects,Relation * depRel,int flags)224 deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
225 					int flags)
226 {
227 	int			i;
228 
229 	/*
230 	 * Keep track of objects for event triggers, if necessary.
231 	 */
232 	if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
233 	{
234 		for (i = 0; i < targetObjects->numrefs; i++)
235 		{
236 			const ObjectAddress *thisobj = &targetObjects->refs[i];
237 			const ObjectAddressExtra *extra = &targetObjects->extras[i];
238 			bool		original = false;
239 			bool		normal = false;
240 
241 			if (extra->flags & DEPFLAG_ORIGINAL)
242 				original = true;
243 			if (extra->flags & DEPFLAG_NORMAL)
244 				normal = true;
245 			if (extra->flags & DEPFLAG_REVERSE)
246 				normal = true;
247 
248 			if (EventTriggerSupportsObjectClass(getObjectClass(thisobj)))
249 			{
250 				EventTriggerSQLDropAddObject(thisobj, original, normal);
251 			}
252 		}
253 	}
254 
255 	/*
256 	 * Delete all the objects in the proper order, except that if told to, we
257 	 * should skip the original object(s).
258 	 */
259 	for (i = 0; i < targetObjects->numrefs; i++)
260 	{
261 		ObjectAddress *thisobj = targetObjects->refs + i;
262 		ObjectAddressExtra *thisextra = targetObjects->extras + i;
263 
264 		if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
265 			(thisextra->flags & DEPFLAG_ORIGINAL))
266 			continue;
267 
268 		deleteOneObject(thisobj, depRel, flags);
269 	}
270 }
271 
272 /*
273  * performDeletion: attempt to drop the specified object.  If CASCADE
274  * behavior is specified, also drop any dependent objects (recursively).
275  * If RESTRICT behavior is specified, error out if there are any dependent
276  * objects, except for those that should be implicitly dropped anyway
277  * according to the dependency type.
278  *
279  * This is the outer control routine for all forms of DROP that drop objects
280  * that can participate in dependencies.  Note that performMultipleDeletions
281  * is a variant on the same theme; if you change anything here you'll likely
282  * need to fix that too.
283  *
284  * Bits in the flags argument can include:
285  *
286  * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
287  * direct result of a user-initiated action.  For example, when a temporary
288  * schema is cleaned out so that a new backend can use it, or when a column
289  * default is dropped as an intermediate step while adding a new one, that's
290  * an internal operation.  On the other hand, when we drop something because
291  * the user issued a DROP statement against it, that's not internal. Currently
292  * this suppresses calling event triggers and making some permissions checks.
293  *
294  * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently.  This does
295  * not currently work for anything except dropping indexes; don't set it for
296  * other object types or you may get strange results.
297  *
298  * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
299  *
300  * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
301  * but only what depends on it/them.
302  *
303  * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
304  * deleting objects that are part of an extension.  This should generally
305  * be used only when dropping temporary objects.
306  *
307  * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
308  * as if it were concurrent.  This is used by REINDEX CONCURRENTLY.
309  *
310  */
311 void
performDeletion(const ObjectAddress * object,DropBehavior behavior,int flags)312 performDeletion(const ObjectAddress *object,
313 				DropBehavior behavior, int flags)
314 {
315 	Relation	depRel;
316 	ObjectAddresses *targetObjects;
317 
318 	/*
319 	 * We save some cycles by opening pg_depend just once and passing the
320 	 * Relation pointer down to all the recursive deletion steps.
321 	 */
322 	depRel = table_open(DependRelationId, RowExclusiveLock);
323 
324 	/*
325 	 * Acquire deletion lock on the target object.  (Ideally the caller has
326 	 * done this already, but many places are sloppy about it.)
327 	 */
328 	AcquireDeletionLock(object, 0);
329 
330 	/*
331 	 * Construct a list of objects to delete (ie, the given object plus
332 	 * everything directly or indirectly dependent on it).
333 	 */
334 	targetObjects = new_object_addresses();
335 
336 	findDependentObjects(object,
337 						 DEPFLAG_ORIGINAL,
338 						 flags,
339 						 NULL,	/* empty stack */
340 						 targetObjects,
341 						 NULL,	/* no pendingObjects */
342 						 &depRel);
343 
344 	/*
345 	 * Check if deletion is allowed, and report about cascaded deletes.
346 	 */
347 	reportDependentObjects(targetObjects,
348 						   behavior,
349 						   flags,
350 						   object);
351 
352 	/* do the deed */
353 	deleteObjectsInList(targetObjects, &depRel, flags);
354 
355 	/* And clean up */
356 	free_object_addresses(targetObjects);
357 
358 	table_close(depRel, RowExclusiveLock);
359 }
360 
361 /*
362  * performMultipleDeletions: Similar to performDeletion, but act on multiple
363  * objects at once.
364  *
365  * The main difference from issuing multiple performDeletion calls is that the
366  * list of objects that would be implicitly dropped, for each object to be
367  * dropped, is the union of the implicit-object list for all objects.  This
368  * makes each check be more relaxed.
369  */
370 void
performMultipleDeletions(const ObjectAddresses * objects,DropBehavior behavior,int flags)371 performMultipleDeletions(const ObjectAddresses *objects,
372 						 DropBehavior behavior, int flags)
373 {
374 	Relation	depRel;
375 	ObjectAddresses *targetObjects;
376 	int			i;
377 
378 	/* No work if no objects... */
379 	if (objects->numrefs <= 0)
380 		return;
381 
382 	/*
383 	 * We save some cycles by opening pg_depend just once and passing the
384 	 * Relation pointer down to all the recursive deletion steps.
385 	 */
386 	depRel = table_open(DependRelationId, RowExclusiveLock);
387 
388 	/*
389 	 * Construct a list of objects to delete (ie, the given objects plus
390 	 * everything directly or indirectly dependent on them).  Note that
391 	 * because we pass the whole objects list as pendingObjects context, we
392 	 * won't get a failure from trying to delete an object that is internally
393 	 * dependent on another one in the list; we'll just skip that object and
394 	 * delete it when we reach its owner.
395 	 */
396 	targetObjects = new_object_addresses();
397 
398 	for (i = 0; i < objects->numrefs; i++)
399 	{
400 		const ObjectAddress *thisobj = objects->refs + i;
401 
402 		/*
403 		 * Acquire deletion lock on each target object.  (Ideally the caller
404 		 * has done this already, but many places are sloppy about it.)
405 		 */
406 		AcquireDeletionLock(thisobj, flags);
407 
408 		findDependentObjects(thisobj,
409 							 DEPFLAG_ORIGINAL,
410 							 flags,
411 							 NULL,	/* empty stack */
412 							 targetObjects,
413 							 objects,
414 							 &depRel);
415 	}
416 
417 	/*
418 	 * Check if deletion is allowed, and report about cascaded deletes.
419 	 *
420 	 * If there's exactly one object being deleted, report it the same way as
421 	 * in performDeletion(), else we have to be vaguer.
422 	 */
423 	reportDependentObjects(targetObjects,
424 						   behavior,
425 						   flags,
426 						   (objects->numrefs == 1 ? objects->refs : NULL));
427 
428 	/* do the deed */
429 	deleteObjectsInList(targetObjects, &depRel, flags);
430 
431 	/* And clean up */
432 	free_object_addresses(targetObjects);
433 
434 	table_close(depRel, RowExclusiveLock);
435 }
436 
437 /*
438  * findDependentObjects - find all objects that depend on 'object'
439  *
440  * For every object that depends on the starting object, acquire a deletion
441  * lock on the object, add it to targetObjects (if not already there),
442  * and recursively find objects that depend on it.  An object's dependencies
443  * will be placed into targetObjects before the object itself; this means
444  * that the finished list's order represents a safe deletion order.
445  *
446  * The caller must already have a deletion lock on 'object' itself,
447  * but must not have added it to targetObjects.  (Note: there are corner
448  * cases where we won't add the object either, and will also release the
449  * caller-taken lock.  This is a bit ugly, but the API is set up this way
450  * to allow easy rechecking of an object's liveness after we lock it.  See
451  * notes within the function.)
452  *
453  * When dropping a whole object (subId = 0), we find dependencies for
454  * its sub-objects too.
455  *
456  *	object: the object to add to targetObjects and find dependencies on
457  *	objflags: flags to be ORed into the object's targetObjects entry
458  *	flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
459  *	stack: list of objects being visited in current recursion; topmost item
460  *			is the object that we recursed from (NULL for external callers)
461  *	targetObjects: list of objects that are scheduled to be deleted
462  *	pendingObjects: list of other objects slated for destruction, but
463  *			not necessarily in targetObjects yet (can be NULL if none)
464  *	*depRel: already opened pg_depend relation
465  *
466  * Note: objflags describes the reason for visiting this particular object
467  * at this time, and is not passed down when recursing.  The flags argument
468  * is passed down, since it describes what we're doing overall.
469  */
470 static void
findDependentObjects(const ObjectAddress * object,int objflags,int flags,ObjectAddressStack * stack,ObjectAddresses * targetObjects,const ObjectAddresses * pendingObjects,Relation * depRel)471 findDependentObjects(const ObjectAddress *object,
472 					 int objflags,
473 					 int flags,
474 					 ObjectAddressStack *stack,
475 					 ObjectAddresses *targetObjects,
476 					 const ObjectAddresses *pendingObjects,
477 					 Relation *depRel)
478 {
479 	ScanKeyData key[3];
480 	int			nkeys;
481 	SysScanDesc scan;
482 	HeapTuple	tup;
483 	ObjectAddress otherObject;
484 	ObjectAddress owningObject;
485 	ObjectAddress partitionObject;
486 	ObjectAddressAndFlags *dependentObjects;
487 	int			numDependentObjects;
488 	int			maxDependentObjects;
489 	ObjectAddressStack mystack;
490 	ObjectAddressExtra extra;
491 
492 	/*
493 	 * If the target object is already being visited in an outer recursion
494 	 * level, just report the current objflags back to that level and exit.
495 	 * This is needed to avoid infinite recursion in the face of circular
496 	 * dependencies.
497 	 *
498 	 * The stack check alone would result in dependency loops being broken at
499 	 * an arbitrary point, ie, the first member object of the loop to be
500 	 * visited is the last one to be deleted.  This is obviously unworkable.
501 	 * However, the check for internal dependency below guarantees that we
502 	 * will not break a loop at an internal dependency: if we enter the loop
503 	 * at an "owned" object we will switch and start at the "owning" object
504 	 * instead.  We could probably hack something up to avoid breaking at an
505 	 * auto dependency, too, if we had to.  However there are no known cases
506 	 * where that would be necessary.
507 	 */
508 	if (stack_address_present_add_flags(object, objflags, stack))
509 		return;
510 
511 	/*
512 	 * It's also possible that the target object has already been completely
513 	 * processed and put into targetObjects.  If so, again we just add the
514 	 * specified objflags to its entry and return.
515 	 *
516 	 * (Note: in these early-exit cases we could release the caller-taken
517 	 * lock, since the object is presumably now locked multiple times; but it
518 	 * seems not worth the cycles.)
519 	 */
520 	if (object_address_present_add_flags(object, objflags, targetObjects))
521 		return;
522 
523 	/*
524 	 * The target object might be internally dependent on some other object
525 	 * (its "owner"), and/or be a member of an extension (also considered its
526 	 * owner).  If so, and if we aren't recursing from the owning object, we
527 	 * have to transform this deletion request into a deletion request of the
528 	 * owning object.  (We'll eventually recurse back to this object, but the
529 	 * owning object has to be visited first so it will be deleted after.) The
530 	 * way to find out about this is to scan the pg_depend entries that show
531 	 * what this object depends on.
532 	 */
533 	ScanKeyInit(&key[0],
534 				Anum_pg_depend_classid,
535 				BTEqualStrategyNumber, F_OIDEQ,
536 				ObjectIdGetDatum(object->classId));
537 	ScanKeyInit(&key[1],
538 				Anum_pg_depend_objid,
539 				BTEqualStrategyNumber, F_OIDEQ,
540 				ObjectIdGetDatum(object->objectId));
541 	if (object->objectSubId != 0)
542 	{
543 		/* Consider only dependencies of this sub-object */
544 		ScanKeyInit(&key[2],
545 					Anum_pg_depend_objsubid,
546 					BTEqualStrategyNumber, F_INT4EQ,
547 					Int32GetDatum(object->objectSubId));
548 		nkeys = 3;
549 	}
550 	else
551 	{
552 		/* Consider dependencies of this object and any sub-objects it has */
553 		nkeys = 2;
554 	}
555 
556 	scan = systable_beginscan(*depRel, DependDependerIndexId, true,
557 							  NULL, nkeys, key);
558 
559 	/* initialize variables that loop may fill */
560 	memset(&owningObject, 0, sizeof(owningObject));
561 	memset(&partitionObject, 0, sizeof(partitionObject));
562 
563 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
564 	{
565 		Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
566 
567 		otherObject.classId = foundDep->refclassid;
568 		otherObject.objectId = foundDep->refobjid;
569 		otherObject.objectSubId = foundDep->refobjsubid;
570 
571 		/*
572 		 * When scanning dependencies of a whole object, we may find rows
573 		 * linking sub-objects of the object to the object itself.  (Normally,
574 		 * such a dependency is implicit, but we must make explicit ones in
575 		 * some cases involving partitioning.)  We must ignore such rows to
576 		 * avoid infinite recursion.
577 		 */
578 		if (otherObject.classId == object->classId &&
579 			otherObject.objectId == object->objectId &&
580 			object->objectSubId == 0)
581 			continue;
582 
583 		switch (foundDep->deptype)
584 		{
585 			case DEPENDENCY_NORMAL:
586 			case DEPENDENCY_AUTO:
587 			case DEPENDENCY_AUTO_EXTENSION:
588 				/* no problem */
589 				break;
590 
591 			case DEPENDENCY_EXTENSION:
592 
593 				/*
594 				 * If told to, ignore EXTENSION dependencies altogether.  This
595 				 * flag is normally used to prevent dropping extensions during
596 				 * temporary-object cleanup, even if a temp object was created
597 				 * during an extension script.
598 				 */
599 				if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
600 					break;
601 
602 				/*
603 				 * If the other object is the extension currently being
604 				 * created/altered, ignore this dependency and continue with
605 				 * the deletion.  This allows dropping of an extension's
606 				 * objects within the extension's scripts, as well as corner
607 				 * cases such as dropping a transient object created within
608 				 * such a script.
609 				 */
610 				if (creating_extension &&
611 					otherObject.classId == ExtensionRelationId &&
612 					otherObject.objectId == CurrentExtensionObject)
613 					break;
614 
615 				/* Otherwise, treat this like an internal dependency */
616 				/* FALL THRU */
617 
618 			case DEPENDENCY_INTERNAL:
619 
620 				/*
621 				 * This object is part of the internal implementation of
622 				 * another object, or is part of the extension that is the
623 				 * other object.  We have three cases:
624 				 *
625 				 * 1. At the outermost recursion level, we must disallow the
626 				 * DROP.  However, if the owning object is listed in
627 				 * pendingObjects, just release the caller's lock and return;
628 				 * we'll eventually complete the DROP when we reach that entry
629 				 * in the pending list.
630 				 *
631 				 * Note: the above statement is true only if this pg_depend
632 				 * entry still exists by then; in principle, therefore, we
633 				 * could miss deleting an item the user told us to delete.
634 				 * However, no inconsistency can result: since we're at outer
635 				 * level, there is no object depending on this one.
636 				 */
637 				if (stack == NULL)
638 				{
639 					if (pendingObjects &&
640 						object_address_present(&otherObject, pendingObjects))
641 					{
642 						systable_endscan(scan);
643 						/* need to release caller's lock; see notes below */
644 						ReleaseDeletionLock(object);
645 						return;
646 					}
647 
648 					/*
649 					 * We postpone actually issuing the error message until
650 					 * after this loop, so that we can make the behavior
651 					 * independent of the ordering of pg_depend entries, at
652 					 * least if there's not more than one INTERNAL and one
653 					 * EXTENSION dependency.  (If there's more, we'll complain
654 					 * about a random one of them.)  Prefer to complain about
655 					 * EXTENSION, since that's generally a more important
656 					 * dependency.
657 					 */
658 					if (!OidIsValid(owningObject.classId) ||
659 						foundDep->deptype == DEPENDENCY_EXTENSION)
660 						owningObject = otherObject;
661 					break;
662 				}
663 
664 				/*
665 				 * 2. When recursing from the other end of this dependency,
666 				 * it's okay to continue with the deletion.  This holds when
667 				 * recursing from a whole object that includes the nominal
668 				 * other end as a component, too.  Since there can be more
669 				 * than one "owning" object, we have to allow matches that are
670 				 * more than one level down in the stack.
671 				 */
672 				if (stack_address_present_add_flags(&otherObject, 0, stack))
673 					break;
674 
675 				/*
676 				 * 3. Not all the owning objects have been visited, so
677 				 * transform this deletion request into a delete of this
678 				 * owning object.
679 				 *
680 				 * First, release caller's lock on this object and get
681 				 * deletion lock on the owning object.  (We must release
682 				 * caller's lock to avoid deadlock against a concurrent
683 				 * deletion of the owning object.)
684 				 */
685 				ReleaseDeletionLock(object);
686 				AcquireDeletionLock(&otherObject, 0);
687 
688 				/*
689 				 * The owning object might have been deleted while we waited
690 				 * to lock it; if so, neither it nor the current object are
691 				 * interesting anymore.  We test this by checking the
692 				 * pg_depend entry (see notes below).
693 				 */
694 				if (!systable_recheck_tuple(scan, tup))
695 				{
696 					systable_endscan(scan);
697 					ReleaseDeletionLock(&otherObject);
698 					return;
699 				}
700 
701 				/*
702 				 * One way or the other, we're done with the scan; might as
703 				 * well close it down before recursing, to reduce peak
704 				 * resource consumption.
705 				 */
706 				systable_endscan(scan);
707 
708 				/*
709 				 * Okay, recurse to the owning object instead of proceeding.
710 				 *
711 				 * We do not need to stack the current object; we want the
712 				 * traversal order to be as if the original reference had
713 				 * linked to the owning object instead of this one.
714 				 *
715 				 * The dependency type is a "reverse" dependency: we need to
716 				 * delete the owning object if this one is to be deleted, but
717 				 * this linkage is never a reason for an automatic deletion.
718 				 */
719 				findDependentObjects(&otherObject,
720 									 DEPFLAG_REVERSE,
721 									 flags,
722 									 stack,
723 									 targetObjects,
724 									 pendingObjects,
725 									 depRel);
726 
727 				/*
728 				 * The current target object should have been added to
729 				 * targetObjects while processing the owning object; but it
730 				 * probably got only the flag bits associated with the
731 				 * dependency we're looking at.  We need to add the objflags
732 				 * that were passed to this recursion level, too, else we may
733 				 * get a bogus failure in reportDependentObjects (if, for
734 				 * example, we were called due to a partition dependency).
735 				 *
736 				 * If somehow the current object didn't get scheduled for
737 				 * deletion, bleat.  (That would imply that somebody deleted
738 				 * this dependency record before the recursion got to it.)
739 				 * Another idea would be to reacquire lock on the current
740 				 * object and resume trying to delete it, but it seems not
741 				 * worth dealing with the race conditions inherent in that.
742 				 */
743 				if (!object_address_present_add_flags(object, objflags,
744 													  targetObjects))
745 					elog(ERROR, "deletion of owning object %s failed to delete %s",
746 						 getObjectDescription(&otherObject, false),
747 						 getObjectDescription(object, false));
748 
749 				/* And we're done here. */
750 				return;
751 
752 			case DEPENDENCY_PARTITION_PRI:
753 
754 				/*
755 				 * Remember that this object has a partition-type dependency.
756 				 * After the dependency scan, we'll complain if we didn't find
757 				 * a reason to delete one of its partition dependencies.
758 				 */
759 				objflags |= DEPFLAG_IS_PART;
760 
761 				/*
762 				 * Also remember the primary partition owner, for error
763 				 * messages.  If there are multiple primary owners (which
764 				 * there should not be), we'll report a random one of them.
765 				 */
766 				partitionObject = otherObject;
767 				break;
768 
769 			case DEPENDENCY_PARTITION_SEC:
770 
771 				/*
772 				 * Only use secondary partition owners in error messages if we
773 				 * find no primary owner (which probably shouldn't happen).
774 				 */
775 				if (!(objflags & DEPFLAG_IS_PART))
776 					partitionObject = otherObject;
777 
778 				/*
779 				 * Remember that this object has a partition-type dependency.
780 				 * After the dependency scan, we'll complain if we didn't find
781 				 * a reason to delete one of its partition dependencies.
782 				 */
783 				objflags |= DEPFLAG_IS_PART;
784 				break;
785 
786 			case DEPENDENCY_PIN:
787 
788 				/*
789 				 * Should not happen; PIN dependencies should have zeroes in
790 				 * the depender fields...
791 				 */
792 				elog(ERROR, "incorrect use of PIN dependency with %s",
793 					 getObjectDescription(object, false));
794 				break;
795 			default:
796 				elog(ERROR, "unrecognized dependency type '%c' for %s",
797 					 foundDep->deptype, getObjectDescription(object, false));
798 				break;
799 		}
800 	}
801 
802 	systable_endscan(scan);
803 
804 	/*
805 	 * If we found an INTERNAL or EXTENSION dependency when we're at outer
806 	 * level, complain about it now.  If we also found a PARTITION dependency,
807 	 * we prefer to report the PARTITION dependency.  This is arbitrary but
808 	 * seems to be more useful in practice.
809 	 */
810 	if (OidIsValid(owningObject.classId))
811 	{
812 		char	   *otherObjDesc;
813 
814 		if (OidIsValid(partitionObject.classId))
815 			otherObjDesc = getObjectDescription(&partitionObject, false);
816 		else
817 			otherObjDesc = getObjectDescription(&owningObject, false);
818 
819 		ereport(ERROR,
820 				(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
821 				 errmsg("cannot drop %s because %s requires it",
822 						getObjectDescription(object, false), otherObjDesc),
823 				 errhint("You can drop %s instead.", otherObjDesc)));
824 	}
825 
826 	/*
827 	 * Next, identify all objects that directly depend on the current object.
828 	 * To ensure predictable deletion order, we collect them up in
829 	 * dependentObjects and sort the list before actually recursing.  (The
830 	 * deletion order would be valid in any case, but doing this ensures
831 	 * consistent output from DROP CASCADE commands, which is helpful for
832 	 * regression testing.)
833 	 */
834 	maxDependentObjects = 128;	/* arbitrary initial allocation */
835 	dependentObjects = (ObjectAddressAndFlags *)
836 		palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
837 	numDependentObjects = 0;
838 
839 	ScanKeyInit(&key[0],
840 				Anum_pg_depend_refclassid,
841 				BTEqualStrategyNumber, F_OIDEQ,
842 				ObjectIdGetDatum(object->classId));
843 	ScanKeyInit(&key[1],
844 				Anum_pg_depend_refobjid,
845 				BTEqualStrategyNumber, F_OIDEQ,
846 				ObjectIdGetDatum(object->objectId));
847 	if (object->objectSubId != 0)
848 	{
849 		ScanKeyInit(&key[2],
850 					Anum_pg_depend_refobjsubid,
851 					BTEqualStrategyNumber, F_INT4EQ,
852 					Int32GetDatum(object->objectSubId));
853 		nkeys = 3;
854 	}
855 	else
856 		nkeys = 2;
857 
858 	scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
859 							  NULL, nkeys, key);
860 
861 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
862 	{
863 		Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
864 		int			subflags;
865 
866 		otherObject.classId = foundDep->classid;
867 		otherObject.objectId = foundDep->objid;
868 		otherObject.objectSubId = foundDep->objsubid;
869 
870 		/*
871 		 * If what we found is a sub-object of the current object, just ignore
872 		 * it.  (Normally, such a dependency is implicit, but we must make
873 		 * explicit ones in some cases involving partitioning.)
874 		 */
875 		if (otherObject.classId == object->classId &&
876 			otherObject.objectId == object->objectId &&
877 			object->objectSubId == 0)
878 			continue;
879 
880 		/*
881 		 * Must lock the dependent object before recursing to it.
882 		 */
883 		AcquireDeletionLock(&otherObject, 0);
884 
885 		/*
886 		 * The dependent object might have been deleted while we waited to
887 		 * lock it; if so, we don't need to do anything more with it. We can
888 		 * test this cheaply and independently of the object's type by seeing
889 		 * if the pg_depend tuple we are looking at is still live. (If the
890 		 * object got deleted, the tuple would have been deleted too.)
891 		 */
892 		if (!systable_recheck_tuple(scan, tup))
893 		{
894 			/* release the now-useless lock */
895 			ReleaseDeletionLock(&otherObject);
896 			/* and continue scanning for dependencies */
897 			continue;
898 		}
899 
900 		/*
901 		 * We do need to delete it, so identify objflags to be passed down,
902 		 * which depend on the dependency type.
903 		 */
904 		switch (foundDep->deptype)
905 		{
906 			case DEPENDENCY_NORMAL:
907 				subflags = DEPFLAG_NORMAL;
908 				break;
909 			case DEPENDENCY_AUTO:
910 			case DEPENDENCY_AUTO_EXTENSION:
911 				subflags = DEPFLAG_AUTO;
912 				break;
913 			case DEPENDENCY_INTERNAL:
914 				subflags = DEPFLAG_INTERNAL;
915 				break;
916 			case DEPENDENCY_PARTITION_PRI:
917 			case DEPENDENCY_PARTITION_SEC:
918 				subflags = DEPFLAG_PARTITION;
919 				break;
920 			case DEPENDENCY_EXTENSION:
921 				subflags = DEPFLAG_EXTENSION;
922 				break;
923 			case DEPENDENCY_PIN:
924 
925 				/*
926 				 * For a PIN dependency we just ereport immediately; there
927 				 * won't be any others to report.
928 				 */
929 				ereport(ERROR,
930 						(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
931 						 errmsg("cannot drop %s because it is required by the database system",
932 								getObjectDescription(object, false))));
933 				subflags = 0;	/* keep compiler quiet */
934 				break;
935 			default:
936 				elog(ERROR, "unrecognized dependency type '%c' for %s",
937 					 foundDep->deptype, getObjectDescription(object, false));
938 				subflags = 0;	/* keep compiler quiet */
939 				break;
940 		}
941 
942 		/* And add it to the pending-objects list */
943 		if (numDependentObjects >= maxDependentObjects)
944 		{
945 			/* enlarge array if needed */
946 			maxDependentObjects *= 2;
947 			dependentObjects = (ObjectAddressAndFlags *)
948 				repalloc(dependentObjects,
949 						 maxDependentObjects * sizeof(ObjectAddressAndFlags));
950 		}
951 
952 		dependentObjects[numDependentObjects].obj = otherObject;
953 		dependentObjects[numDependentObjects].subflags = subflags;
954 		numDependentObjects++;
955 	}
956 
957 	systable_endscan(scan);
958 
959 	/*
960 	 * Now we can sort the dependent objects into a stable visitation order.
961 	 * It's safe to use object_address_comparator here since the obj field is
962 	 * first within ObjectAddressAndFlags.
963 	 */
964 	if (numDependentObjects > 1)
965 		qsort((void *) dependentObjects, numDependentObjects,
966 			  sizeof(ObjectAddressAndFlags),
967 			  object_address_comparator);
968 
969 	/*
970 	 * Now recurse to the dependent objects.  We must visit them first since
971 	 * they have to be deleted before the current object.
972 	 */
973 	mystack.object = object;	/* set up a new stack level */
974 	mystack.flags = objflags;
975 	mystack.next = stack;
976 
977 	for (int i = 0; i < numDependentObjects; i++)
978 	{
979 		ObjectAddressAndFlags *depObj = dependentObjects + i;
980 
981 		findDependentObjects(&depObj->obj,
982 							 depObj->subflags,
983 							 flags,
984 							 &mystack,
985 							 targetObjects,
986 							 pendingObjects,
987 							 depRel);
988 	}
989 
990 	pfree(dependentObjects);
991 
992 	/*
993 	 * Finally, we can add the target object to targetObjects.  Be careful to
994 	 * include any flags that were passed back down to us from inner recursion
995 	 * levels.  Record the "dependee" as being either the most important
996 	 * partition owner if there is one, else the object we recursed from, if
997 	 * any.  (The logic in reportDependentObjects() is such that it can only
998 	 * need one of those objects.)
999 	 */
1000 	extra.flags = mystack.flags;
1001 	if (extra.flags & DEPFLAG_IS_PART)
1002 		extra.dependee = partitionObject;
1003 	else if (stack)
1004 		extra.dependee = *stack->object;
1005 	else
1006 		memset(&extra.dependee, 0, sizeof(extra.dependee));
1007 	add_exact_object_address_extra(object, &extra, targetObjects);
1008 }
1009 
1010 /*
1011  * reportDependentObjects - report about dependencies, and fail if RESTRICT
1012  *
1013  * Tell the user about dependent objects that we are going to delete
1014  * (or would need to delete, but are prevented by RESTRICT mode);
1015  * then error out if there are any and it's not CASCADE mode.
1016  *
1017  *	targetObjects: list of objects that are scheduled to be deleted
1018  *	behavior: RESTRICT or CASCADE
1019  *	flags: other flags for the deletion operation
1020  *	origObject: base object of deletion, or NULL if not available
1021  *		(the latter case occurs in DROP OWNED)
1022  */
1023 static void
reportDependentObjects(const ObjectAddresses * targetObjects,DropBehavior behavior,int flags,const ObjectAddress * origObject)1024 reportDependentObjects(const ObjectAddresses *targetObjects,
1025 					   DropBehavior behavior,
1026 					   int flags,
1027 					   const ObjectAddress *origObject)
1028 {
1029 	int			msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
1030 	bool		ok = true;
1031 	StringInfoData clientdetail;
1032 	StringInfoData logdetail;
1033 	int			numReportedClient = 0;
1034 	int			numNotReportedClient = 0;
1035 	int			i;
1036 
1037 	/*
1038 	 * If we need to delete any partition-dependent objects, make sure that
1039 	 * we're deleting at least one of their partition dependencies, too. That
1040 	 * can be detected by checking that we reached them by a PARTITION
1041 	 * dependency at some point.
1042 	 *
1043 	 * We just report the first such object, as in most cases the only way to
1044 	 * trigger this complaint is to explicitly try to delete one partition of
1045 	 * a partitioned object.
1046 	 */
1047 	for (i = 0; i < targetObjects->numrefs; i++)
1048 	{
1049 		const ObjectAddressExtra *extra = &targetObjects->extras[i];
1050 
1051 		if ((extra->flags & DEPFLAG_IS_PART) &&
1052 			!(extra->flags & DEPFLAG_PARTITION))
1053 		{
1054 			const ObjectAddress *object = &targetObjects->refs[i];
1055 			char	   *otherObjDesc = getObjectDescription(&extra->dependee,
1056 															false);
1057 
1058 			ereport(ERROR,
1059 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1060 					 errmsg("cannot drop %s because %s requires it",
1061 							getObjectDescription(object, false), otherObjDesc),
1062 					 errhint("You can drop %s instead.", otherObjDesc)));
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * If no error is to be thrown, and the msglevel is too low to be shown to
1068 	 * either client or server log, there's no need to do any of the rest of
1069 	 * the work.
1070 	 */
1071 	if (behavior == DROP_CASCADE &&
1072 		!message_level_is_interesting(msglevel))
1073 		return;
1074 
1075 	/*
1076 	 * We limit the number of dependencies reported to the client to
1077 	 * MAX_REPORTED_DEPS, since client software may not deal well with
1078 	 * enormous error strings.  The server log always gets a full report.
1079 	 */
1080 #define MAX_REPORTED_DEPS 100
1081 
1082 	initStringInfo(&clientdetail);
1083 	initStringInfo(&logdetail);
1084 
1085 	/*
1086 	 * We process the list back to front (ie, in dependency order not deletion
1087 	 * order), since this makes for a more understandable display.
1088 	 */
1089 	for (i = targetObjects->numrefs - 1; i >= 0; i--)
1090 	{
1091 		const ObjectAddress *obj = &targetObjects->refs[i];
1092 		const ObjectAddressExtra *extra = &targetObjects->extras[i];
1093 		char	   *objDesc;
1094 
1095 		/* Ignore the original deletion target(s) */
1096 		if (extra->flags & DEPFLAG_ORIGINAL)
1097 			continue;
1098 
1099 		/* Also ignore sub-objects; we'll report the whole object elsewhere */
1100 		if (extra->flags & DEPFLAG_SUBOBJECT)
1101 			continue;
1102 
1103 		objDesc = getObjectDescription(obj, false);
1104 
1105 		/* An object being dropped concurrently doesn't need to be reported */
1106 		if (objDesc == NULL)
1107 			continue;
1108 
1109 		/*
1110 		 * If, at any stage of the recursive search, we reached the object via
1111 		 * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1112 		 * okay to delete it even in RESTRICT mode.
1113 		 */
1114 		if (extra->flags & (DEPFLAG_AUTO |
1115 							DEPFLAG_INTERNAL |
1116 							DEPFLAG_PARTITION |
1117 							DEPFLAG_EXTENSION))
1118 		{
1119 			/*
1120 			 * auto-cascades are reported at DEBUG2, not msglevel.  We don't
1121 			 * try to combine them with the regular message because the
1122 			 * results are too confusing when client_min_messages and
1123 			 * log_min_messages are different.
1124 			 */
1125 			ereport(DEBUG2,
1126 					(errmsg_internal("drop auto-cascades to %s",
1127 									 objDesc)));
1128 		}
1129 		else if (behavior == DROP_RESTRICT)
1130 		{
1131 			char	   *otherDesc = getObjectDescription(&extra->dependee,
1132 														 false);
1133 
1134 			if (otherDesc)
1135 			{
1136 				if (numReportedClient < MAX_REPORTED_DEPS)
1137 				{
1138 					/* separate entries with a newline */
1139 					if (clientdetail.len != 0)
1140 						appendStringInfoChar(&clientdetail, '\n');
1141 					appendStringInfo(&clientdetail, _("%s depends on %s"),
1142 									 objDesc, otherDesc);
1143 					numReportedClient++;
1144 				}
1145 				else
1146 					numNotReportedClient++;
1147 				/* separate entries with a newline */
1148 				if (logdetail.len != 0)
1149 					appendStringInfoChar(&logdetail, '\n');
1150 				appendStringInfo(&logdetail, _("%s depends on %s"),
1151 								 objDesc, otherDesc);
1152 				pfree(otherDesc);
1153 			}
1154 			else
1155 				numNotReportedClient++;
1156 			ok = false;
1157 		}
1158 		else
1159 		{
1160 			if (numReportedClient < MAX_REPORTED_DEPS)
1161 			{
1162 				/* separate entries with a newline */
1163 				if (clientdetail.len != 0)
1164 					appendStringInfoChar(&clientdetail, '\n');
1165 				appendStringInfo(&clientdetail, _("drop cascades to %s"),
1166 								 objDesc);
1167 				numReportedClient++;
1168 			}
1169 			else
1170 				numNotReportedClient++;
1171 			/* separate entries with a newline */
1172 			if (logdetail.len != 0)
1173 				appendStringInfoChar(&logdetail, '\n');
1174 			appendStringInfo(&logdetail, _("drop cascades to %s"),
1175 							 objDesc);
1176 		}
1177 
1178 		pfree(objDesc);
1179 	}
1180 
1181 	if (numNotReportedClient > 0)
1182 		appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1183 												 "(see server log for list)",
1184 												 "\nand %d other objects "
1185 												 "(see server log for list)",
1186 												 numNotReportedClient),
1187 						 numNotReportedClient);
1188 
1189 	if (!ok)
1190 	{
1191 		if (origObject)
1192 			ereport(ERROR,
1193 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1194 					 errmsg("cannot drop %s because other objects depend on it",
1195 							getObjectDescription(origObject, false)),
1196 					 errdetail("%s", clientdetail.data),
1197 					 errdetail_log("%s", logdetail.data),
1198 					 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1199 		else
1200 			ereport(ERROR,
1201 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1202 					 errmsg("cannot drop desired object(s) because other objects depend on them"),
1203 					 errdetail("%s", clientdetail.data),
1204 					 errdetail_log("%s", logdetail.data),
1205 					 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1206 	}
1207 	else if (numReportedClient > 1)
1208 	{
1209 		ereport(msglevel,
1210 		/* translator: %d always has a value larger than 1 */
1211 				(errmsg_plural("drop cascades to %d other object",
1212 							   "drop cascades to %d other objects",
1213 							   numReportedClient + numNotReportedClient,
1214 							   numReportedClient + numNotReportedClient),
1215 				 errdetail("%s", clientdetail.data),
1216 				 errdetail_log("%s", logdetail.data)));
1217 	}
1218 	else if (numReportedClient == 1)
1219 	{
1220 		/* we just use the single item as-is */
1221 		ereport(msglevel,
1222 				(errmsg_internal("%s", clientdetail.data)));
1223 	}
1224 
1225 	pfree(clientdetail.data);
1226 	pfree(logdetail.data);
1227 }
1228 
1229 /*
1230  * Drop an object by OID.  Works for most catalogs, if no special processing
1231  * is needed.
1232  */
1233 static void
DropObjectById(const ObjectAddress * object)1234 DropObjectById(const ObjectAddress *object)
1235 {
1236 	int			cacheId;
1237 	Relation	rel;
1238 	HeapTuple	tup;
1239 
1240 	cacheId = get_object_catcache_oid(object->classId);
1241 
1242 	rel = table_open(object->classId, RowExclusiveLock);
1243 
1244 	/*
1245 	 * Use the system cache for the oid column, if one exists.
1246 	 */
1247 	if (cacheId >= 0)
1248 	{
1249 		tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1250 		if (!HeapTupleIsValid(tup))
1251 			elog(ERROR, "cache lookup failed for %s %u",
1252 				 get_object_class_descr(object->classId), object->objectId);
1253 
1254 		CatalogTupleDelete(rel, &tup->t_self);
1255 
1256 		ReleaseSysCache(tup);
1257 	}
1258 	else
1259 	{
1260 		ScanKeyData skey[1];
1261 		SysScanDesc scan;
1262 
1263 		ScanKeyInit(&skey[0],
1264 					get_object_attnum_oid(object->classId),
1265 					BTEqualStrategyNumber, F_OIDEQ,
1266 					ObjectIdGetDatum(object->objectId));
1267 
1268 		scan = systable_beginscan(rel, get_object_oid_index(object->classId), true,
1269 								  NULL, 1, skey);
1270 
1271 		/* we expect exactly one match */
1272 		tup = systable_getnext(scan);
1273 		if (!HeapTupleIsValid(tup))
1274 			elog(ERROR, "could not find tuple for %s %u",
1275 				 get_object_class_descr(object->classId), object->objectId);
1276 
1277 		CatalogTupleDelete(rel, &tup->t_self);
1278 
1279 		systable_endscan(scan);
1280 	}
1281 
1282 	table_close(rel, RowExclusiveLock);
1283 }
1284 
1285 /*
1286  * deleteOneObject: delete a single object for performDeletion.
1287  *
1288  * *depRel is the already-open pg_depend relation.
1289  */
1290 static void
deleteOneObject(const ObjectAddress * object,Relation * depRel,int flags)1291 deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1292 {
1293 	ScanKeyData key[3];
1294 	int			nkeys;
1295 	SysScanDesc scan;
1296 	HeapTuple	tup;
1297 
1298 	/* DROP hook of the objects being removed */
1299 	InvokeObjectDropHookArg(object->classId, object->objectId,
1300 							object->objectSubId, flags);
1301 
1302 	/*
1303 	 * Close depRel if we are doing a drop concurrently.  The object deletion
1304 	 * subroutine will commit the current transaction, so we can't keep the
1305 	 * relation open across doDeletion().
1306 	 */
1307 	if (flags & PERFORM_DELETION_CONCURRENTLY)
1308 		table_close(*depRel, RowExclusiveLock);
1309 
1310 	/*
1311 	 * Delete the object itself, in an object-type-dependent way.
1312 	 *
1313 	 * We used to do this after removing the outgoing dependency links, but it
1314 	 * seems just as reasonable to do it beforehand.  In the concurrent case
1315 	 * we *must* do it in this order, because we can't make any transactional
1316 	 * updates before calling doDeletion() --- they'd get committed right
1317 	 * away, which is not cool if the deletion then fails.
1318 	 */
1319 	doDeletion(object, flags);
1320 
1321 	/*
1322 	 * Reopen depRel if we closed it above
1323 	 */
1324 	if (flags & PERFORM_DELETION_CONCURRENTLY)
1325 		*depRel = table_open(DependRelationId, RowExclusiveLock);
1326 
1327 	/*
1328 	 * Now remove any pg_depend records that link from this object to others.
1329 	 * (Any records linking to this object should be gone already.)
1330 	 *
1331 	 * When dropping a whole object (subId = 0), remove all pg_depend records
1332 	 * for its sub-objects too.
1333 	 */
1334 	ScanKeyInit(&key[0],
1335 				Anum_pg_depend_classid,
1336 				BTEqualStrategyNumber, F_OIDEQ,
1337 				ObjectIdGetDatum(object->classId));
1338 	ScanKeyInit(&key[1],
1339 				Anum_pg_depend_objid,
1340 				BTEqualStrategyNumber, F_OIDEQ,
1341 				ObjectIdGetDatum(object->objectId));
1342 	if (object->objectSubId != 0)
1343 	{
1344 		ScanKeyInit(&key[2],
1345 					Anum_pg_depend_objsubid,
1346 					BTEqualStrategyNumber, F_INT4EQ,
1347 					Int32GetDatum(object->objectSubId));
1348 		nkeys = 3;
1349 	}
1350 	else
1351 		nkeys = 2;
1352 
1353 	scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1354 							  NULL, nkeys, key);
1355 
1356 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
1357 	{
1358 		CatalogTupleDelete(*depRel, &tup->t_self);
1359 	}
1360 
1361 	systable_endscan(scan);
1362 
1363 	/*
1364 	 * Delete shared dependency references related to this object.  Again, if
1365 	 * subId = 0, remove records for sub-objects too.
1366 	 */
1367 	deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1368 									 object->objectSubId);
1369 
1370 
1371 	/*
1372 	 * Delete any comments, security labels, or initial privileges associated
1373 	 * with this object.  (This is a convenient place to do these things,
1374 	 * rather than having every object type know to do it.)
1375 	 */
1376 	DeleteComments(object->objectId, object->classId, object->objectSubId);
1377 	DeleteSecurityLabel(object);
1378 	DeleteInitPrivs(object);
1379 
1380 	/*
1381 	 * CommandCounterIncrement here to ensure that preceding changes are all
1382 	 * visible to the next deletion step.
1383 	 */
1384 	CommandCounterIncrement();
1385 
1386 	/*
1387 	 * And we're done!
1388 	 */
1389 }
1390 
1391 /*
1392  * doDeletion: actually delete a single object
1393  */
1394 static void
doDeletion(const ObjectAddress * object,int flags)1395 doDeletion(const ObjectAddress *object, int flags)
1396 {
1397 	switch (getObjectClass(object))
1398 	{
1399 		case OCLASS_CLASS:
1400 			{
1401 				char		relKind = get_rel_relkind(object->objectId);
1402 
1403 				if (relKind == RELKIND_INDEX ||
1404 					relKind == RELKIND_PARTITIONED_INDEX)
1405 				{
1406 					bool		concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1407 					bool		concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1408 
1409 					Assert(object->objectSubId == 0);
1410 					index_drop(object->objectId, concurrent, concurrent_lock_mode);
1411 				}
1412 				else
1413 				{
1414 					if (object->objectSubId != 0)
1415 						RemoveAttributeById(object->objectId,
1416 											object->objectSubId);
1417 					else
1418 						heap_drop_with_catalog(object->objectId);
1419 				}
1420 
1421 				/*
1422 				 * for a sequence, in addition to dropping the heap, also
1423 				 * delete pg_sequence tuple
1424 				 */
1425 				if (relKind == RELKIND_SEQUENCE)
1426 					DeleteSequenceTuple(object->objectId);
1427 				break;
1428 			}
1429 
1430 		case OCLASS_PROC:
1431 			RemoveFunctionById(object->objectId);
1432 			break;
1433 
1434 		case OCLASS_TYPE:
1435 			RemoveTypeById(object->objectId);
1436 			break;
1437 
1438 		case OCLASS_CONSTRAINT:
1439 			RemoveConstraintById(object->objectId);
1440 			break;
1441 
1442 		case OCLASS_DEFAULT:
1443 			RemoveAttrDefaultById(object->objectId);
1444 			break;
1445 
1446 		case OCLASS_LARGEOBJECT:
1447 			LargeObjectDrop(object->objectId);
1448 			break;
1449 
1450 		case OCLASS_OPERATOR:
1451 			RemoveOperatorById(object->objectId);
1452 			break;
1453 
1454 		case OCLASS_REWRITE:
1455 			RemoveRewriteRuleById(object->objectId);
1456 			break;
1457 
1458 		case OCLASS_TRIGGER:
1459 			RemoveTriggerById(object->objectId);
1460 			break;
1461 
1462 		case OCLASS_STATISTIC_EXT:
1463 			RemoveStatisticsById(object->objectId);
1464 			break;
1465 
1466 		case OCLASS_TSCONFIG:
1467 			RemoveTSConfigurationById(object->objectId);
1468 			break;
1469 
1470 		case OCLASS_EXTENSION:
1471 			RemoveExtensionById(object->objectId);
1472 			break;
1473 
1474 		case OCLASS_POLICY:
1475 			RemovePolicyById(object->objectId);
1476 			break;
1477 
1478 		case OCLASS_PUBLICATION_REL:
1479 			RemovePublicationRelById(object->objectId);
1480 			break;
1481 
1482 		case OCLASS_PUBLICATION:
1483 			RemovePublicationById(object->objectId);
1484 			break;
1485 
1486 		case OCLASS_CAST:
1487 		case OCLASS_COLLATION:
1488 		case OCLASS_CONVERSION:
1489 		case OCLASS_LANGUAGE:
1490 		case OCLASS_OPCLASS:
1491 		case OCLASS_OPFAMILY:
1492 		case OCLASS_AM:
1493 		case OCLASS_AMOP:
1494 		case OCLASS_AMPROC:
1495 		case OCLASS_SCHEMA:
1496 		case OCLASS_TSPARSER:
1497 		case OCLASS_TSDICT:
1498 		case OCLASS_TSTEMPLATE:
1499 		case OCLASS_FDW:
1500 		case OCLASS_FOREIGN_SERVER:
1501 		case OCLASS_USER_MAPPING:
1502 		case OCLASS_DEFACL:
1503 		case OCLASS_EVENT_TRIGGER:
1504 		case OCLASS_TRANSFORM:
1505 			DropObjectById(object);
1506 			break;
1507 
1508 			/*
1509 			 * These global object types are not supported here.
1510 			 */
1511 		case OCLASS_ROLE:
1512 		case OCLASS_DATABASE:
1513 		case OCLASS_TBLSPACE:
1514 		case OCLASS_SUBSCRIPTION:
1515 			elog(ERROR, "global objects cannot be deleted by doDeletion");
1516 			break;
1517 
1518 			/*
1519 			 * There's intentionally no default: case here; we want the
1520 			 * compiler to warn if a new OCLASS hasn't been handled above.
1521 			 */
1522 	}
1523 }
1524 
1525 /*
1526  * AcquireDeletionLock - acquire a suitable lock for deleting an object
1527  *
1528  * Accepts the same flags as performDeletion (though currently only
1529  * PERFORM_DELETION_CONCURRENTLY does anything).
1530  *
1531  * We use LockRelation for relations, LockDatabaseObject for everything
1532  * else.  Shared-across-databases objects are not currently supported
1533  * because no caller cares, but could be modified to use LockSharedObject.
1534  */
1535 void
AcquireDeletionLock(const ObjectAddress * object,int flags)1536 AcquireDeletionLock(const ObjectAddress *object, int flags)
1537 {
1538 	if (object->classId == RelationRelationId)
1539 	{
1540 		/*
1541 		 * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1542 		 * the index for the moment.  index_drop() will promote the lock once
1543 		 * it's safe to do so.  In all other cases we need full exclusive
1544 		 * lock.
1545 		 */
1546 		if (flags & PERFORM_DELETION_CONCURRENTLY)
1547 			LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1548 		else
1549 			LockRelationOid(object->objectId, AccessExclusiveLock);
1550 	}
1551 	else
1552 	{
1553 		/* assume we should lock the whole object not a sub-object */
1554 		LockDatabaseObject(object->classId, object->objectId, 0,
1555 						   AccessExclusiveLock);
1556 	}
1557 }
1558 
1559 /*
1560  * ReleaseDeletionLock - release an object deletion lock
1561  *
1562  * Companion to AcquireDeletionLock.
1563  */
1564 void
ReleaseDeletionLock(const ObjectAddress * object)1565 ReleaseDeletionLock(const ObjectAddress *object)
1566 {
1567 	if (object->classId == RelationRelationId)
1568 		UnlockRelationOid(object->objectId, AccessExclusiveLock);
1569 	else
1570 		/* assume we should lock the whole object not a sub-object */
1571 		UnlockDatabaseObject(object->classId, object->objectId, 0,
1572 							 AccessExclusiveLock);
1573 }
1574 
1575 /*
1576  * recordDependencyOnExpr - find expression dependencies
1577  *
1578  * This is used to find the dependencies of rules, constraint expressions,
1579  * etc.
1580  *
1581  * Given an expression or query in node-tree form, find all the objects
1582  * it refers to (tables, columns, operators, functions, etc).  Record
1583  * a dependency of the specified type from the given depender object
1584  * to each object mentioned in the expression.
1585  *
1586  * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1587  * It can be NIL if no such variables are expected.
1588  */
1589 void
recordDependencyOnExpr(const ObjectAddress * depender,Node * expr,List * rtable,DependencyType behavior)1590 recordDependencyOnExpr(const ObjectAddress *depender,
1591 					   Node *expr, List *rtable,
1592 					   DependencyType behavior)
1593 {
1594 	find_expr_references_context context;
1595 
1596 	context.addrs = new_object_addresses();
1597 
1598 	/* Set up interpretation for Vars at varlevelsup = 0 */
1599 	context.rtables = list_make1(rtable);
1600 
1601 	/* Scan the expression tree for referenceable objects */
1602 	find_expr_references_walker(expr, &context);
1603 
1604 	/* Remove any duplicates */
1605 	eliminate_duplicate_dependencies(context.addrs);
1606 
1607 	/* And record 'em */
1608 	recordMultipleDependencies(depender,
1609 							   context.addrs->refs, context.addrs->numrefs,
1610 							   behavior);
1611 
1612 	free_object_addresses(context.addrs);
1613 }
1614 
1615 /*
1616  * recordDependencyOnSingleRelExpr - find expression dependencies
1617  *
1618  * As above, but only one relation is expected to be referenced (with
1619  * varno = 1 and varlevelsup = 0).  Pass the relation OID instead of a
1620  * range table.  An additional frammish is that dependencies on that
1621  * relation's component columns will be marked with 'self_behavior',
1622  * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1623  * is true, those dependencies are reversed so that the columns are made
1624  * to depend on the table not vice versa.
1625  *
1626  * NOTE: the caller should ensure that a whole-table dependency on the
1627  * specified relation is created separately, if one is needed.  In particular,
1628  * a whole-row Var "relation.*" will not cause this routine to emit any
1629  * dependency item.  This is appropriate behavior for subexpressions of an
1630  * ordinary query, so other cases need to cope as necessary.
1631  */
1632 void
recordDependencyOnSingleRelExpr(const ObjectAddress * depender,Node * expr,Oid relId,DependencyType behavior,DependencyType self_behavior,bool reverse_self)1633 recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1634 								Node *expr, Oid relId,
1635 								DependencyType behavior,
1636 								DependencyType self_behavior,
1637 								bool reverse_self)
1638 {
1639 	find_expr_references_context context;
1640 	RangeTblEntry rte;
1641 
1642 	context.addrs = new_object_addresses();
1643 
1644 	/* We gin up a rather bogus rangetable list to handle Vars */
1645 	MemSet(&rte, 0, sizeof(rte));
1646 	rte.type = T_RangeTblEntry;
1647 	rte.rtekind = RTE_RELATION;
1648 	rte.relid = relId;
1649 	rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1650 	rte.rellockmode = AccessShareLock;
1651 
1652 	context.rtables = list_make1(list_make1(&rte));
1653 
1654 	/* Scan the expression tree for referenceable objects */
1655 	find_expr_references_walker(expr, &context);
1656 
1657 	/* Remove any duplicates */
1658 	eliminate_duplicate_dependencies(context.addrs);
1659 
1660 	/* Separate self-dependencies if necessary */
1661 	if ((behavior != self_behavior || reverse_self) &&
1662 		context.addrs->numrefs > 0)
1663 	{
1664 		ObjectAddresses *self_addrs;
1665 		ObjectAddress *outobj;
1666 		int			oldref,
1667 					outrefs;
1668 
1669 		self_addrs = new_object_addresses();
1670 
1671 		outobj = context.addrs->refs;
1672 		outrefs = 0;
1673 		for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1674 		{
1675 			ObjectAddress *thisobj = context.addrs->refs + oldref;
1676 
1677 			if (thisobj->classId == RelationRelationId &&
1678 				thisobj->objectId == relId)
1679 			{
1680 				/* Move this ref into self_addrs */
1681 				add_exact_object_address(thisobj, self_addrs);
1682 			}
1683 			else
1684 			{
1685 				/* Keep it in context.addrs */
1686 				*outobj = *thisobj;
1687 				outobj++;
1688 				outrefs++;
1689 			}
1690 		}
1691 		context.addrs->numrefs = outrefs;
1692 
1693 		/* Record the self-dependencies with the appropriate direction */
1694 		if (!reverse_self)
1695 			recordMultipleDependencies(depender,
1696 									   self_addrs->refs, self_addrs->numrefs,
1697 									   self_behavior);
1698 		else
1699 		{
1700 			/* Can't use recordMultipleDependencies, so do it the hard way */
1701 			int			selfref;
1702 
1703 			for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1704 			{
1705 				ObjectAddress *thisobj = self_addrs->refs + selfref;
1706 
1707 				recordDependencyOn(thisobj, depender, self_behavior);
1708 			}
1709 		}
1710 
1711 		free_object_addresses(self_addrs);
1712 	}
1713 
1714 	/* Record the external dependencies */
1715 	recordMultipleDependencies(depender,
1716 							   context.addrs->refs, context.addrs->numrefs,
1717 							   behavior);
1718 
1719 	free_object_addresses(context.addrs);
1720 }
1721 
1722 /*
1723  * Recursively search an expression tree for object references.
1724  *
1725  * Note: in many cases we do not need to create dependencies on the datatypes
1726  * involved in an expression, because we'll have an indirect dependency via
1727  * some other object.  For instance Var nodes depend on a column which depends
1728  * on the datatype, and OpExpr nodes depend on the operator which depends on
1729  * the datatype.  However we do need a type dependency if there is no such
1730  * indirect dependency, as for example in Const and CoerceToDomain nodes.
1731  *
1732  * Similarly, we don't need to create dependencies on collations except where
1733  * the collation is being freshly introduced to the expression.
1734  */
1735 static bool
find_expr_references_walker(Node * node,find_expr_references_context * context)1736 find_expr_references_walker(Node *node,
1737 							find_expr_references_context *context)
1738 {
1739 	if (node == NULL)
1740 		return false;
1741 	if (IsA(node, Var))
1742 	{
1743 		Var		   *var = (Var *) node;
1744 		List	   *rtable;
1745 		RangeTblEntry *rte;
1746 
1747 		/* Find matching rtable entry, or complain if not found */
1748 		if (var->varlevelsup >= list_length(context->rtables))
1749 			elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1750 		rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1751 		if (var->varno <= 0 || var->varno > list_length(rtable))
1752 			elog(ERROR, "invalid varno %d", var->varno);
1753 		rte = rt_fetch(var->varno, rtable);
1754 
1755 		/*
1756 		 * A whole-row Var references no specific columns, so adds no new
1757 		 * dependency.  (We assume that there is a whole-table dependency
1758 		 * arising from each underlying rangetable entry.  While we could
1759 		 * record such a dependency when finding a whole-row Var that
1760 		 * references a relation directly, it's quite unclear how to extend
1761 		 * that to whole-row Vars for JOINs, so it seems better to leave the
1762 		 * responsibility with the range table.  Note that this poses some
1763 		 * risks for identifying dependencies of stand-alone expressions:
1764 		 * whole-table references may need to be created separately.)
1765 		 */
1766 		if (var->varattno == InvalidAttrNumber)
1767 			return false;
1768 		if (rte->rtekind == RTE_RELATION)
1769 		{
1770 			/* If it's a plain relation, reference this column */
1771 			add_object_address(OCLASS_CLASS, rte->relid, var->varattno,
1772 							   context->addrs);
1773 		}
1774 
1775 		/*
1776 		 * Vars referencing other RTE types require no additional work.  In
1777 		 * particular, a join alias Var can be ignored, because it must
1778 		 * reference a merged USING column.  The relevant join input columns
1779 		 * will also be referenced in the join qual, and any type coercion
1780 		 * functions involved in the alias expression will be dealt with when
1781 		 * we scan the RTE itself.
1782 		 */
1783 		return false;
1784 	}
1785 	else if (IsA(node, Const))
1786 	{
1787 		Const	   *con = (Const *) node;
1788 		Oid			objoid;
1789 
1790 		/* A constant must depend on the constant's datatype */
1791 		add_object_address(OCLASS_TYPE, con->consttype, 0,
1792 						   context->addrs);
1793 
1794 		/*
1795 		 * We must also depend on the constant's collation: it could be
1796 		 * different from the datatype's, if a CollateExpr was const-folded to
1797 		 * a simple constant.  However we can save work in the most common
1798 		 * case where the collation is "default", since we know that's pinned.
1799 		 */
1800 		if (OidIsValid(con->constcollid) &&
1801 			con->constcollid != DEFAULT_COLLATION_OID)
1802 			add_object_address(OCLASS_COLLATION, con->constcollid, 0,
1803 							   context->addrs);
1804 
1805 		/*
1806 		 * If it's a regclass or similar literal referring to an existing
1807 		 * object, add a reference to that object.  (Currently, only the
1808 		 * regclass and regconfig cases have any likely use, but we may as
1809 		 * well handle all the OID-alias datatypes consistently.)
1810 		 */
1811 		if (!con->constisnull)
1812 		{
1813 			switch (con->consttype)
1814 			{
1815 				case REGPROCOID:
1816 				case REGPROCEDUREOID:
1817 					objoid = DatumGetObjectId(con->constvalue);
1818 					if (SearchSysCacheExists1(PROCOID,
1819 											  ObjectIdGetDatum(objoid)))
1820 						add_object_address(OCLASS_PROC, objoid, 0,
1821 										   context->addrs);
1822 					break;
1823 				case REGOPEROID:
1824 				case REGOPERATOROID:
1825 					objoid = DatumGetObjectId(con->constvalue);
1826 					if (SearchSysCacheExists1(OPEROID,
1827 											  ObjectIdGetDatum(objoid)))
1828 						add_object_address(OCLASS_OPERATOR, objoid, 0,
1829 										   context->addrs);
1830 					break;
1831 				case REGCLASSOID:
1832 					objoid = DatumGetObjectId(con->constvalue);
1833 					if (SearchSysCacheExists1(RELOID,
1834 											  ObjectIdGetDatum(objoid)))
1835 						add_object_address(OCLASS_CLASS, objoid, 0,
1836 										   context->addrs);
1837 					break;
1838 				case REGTYPEOID:
1839 					objoid = DatumGetObjectId(con->constvalue);
1840 					if (SearchSysCacheExists1(TYPEOID,
1841 											  ObjectIdGetDatum(objoid)))
1842 						add_object_address(OCLASS_TYPE, objoid, 0,
1843 										   context->addrs);
1844 					break;
1845 				case REGCONFIGOID:
1846 					objoid = DatumGetObjectId(con->constvalue);
1847 					if (SearchSysCacheExists1(TSCONFIGOID,
1848 											  ObjectIdGetDatum(objoid)))
1849 						add_object_address(OCLASS_TSCONFIG, objoid, 0,
1850 										   context->addrs);
1851 					break;
1852 				case REGDICTIONARYOID:
1853 					objoid = DatumGetObjectId(con->constvalue);
1854 					if (SearchSysCacheExists1(TSDICTOID,
1855 											  ObjectIdGetDatum(objoid)))
1856 						add_object_address(OCLASS_TSDICT, objoid, 0,
1857 										   context->addrs);
1858 					break;
1859 
1860 				case REGNAMESPACEOID:
1861 					objoid = DatumGetObjectId(con->constvalue);
1862 					if (SearchSysCacheExists1(NAMESPACEOID,
1863 											  ObjectIdGetDatum(objoid)))
1864 						add_object_address(OCLASS_SCHEMA, objoid, 0,
1865 										   context->addrs);
1866 					break;
1867 
1868 					/*
1869 					 * Dependencies for regrole should be shared among all
1870 					 * databases, so explicitly inhibit to have dependencies.
1871 					 */
1872 				case REGROLEOID:
1873 					ereport(ERROR,
1874 							(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1875 							 errmsg("constant of the type %s cannot be used here",
1876 									"regrole")));
1877 					break;
1878 			}
1879 		}
1880 		return false;
1881 	}
1882 	else if (IsA(node, Param))
1883 	{
1884 		Param	   *param = (Param *) node;
1885 
1886 		/* A parameter must depend on the parameter's datatype */
1887 		add_object_address(OCLASS_TYPE, param->paramtype, 0,
1888 						   context->addrs);
1889 		/* and its collation, just as for Consts */
1890 		if (OidIsValid(param->paramcollid) &&
1891 			param->paramcollid != DEFAULT_COLLATION_OID)
1892 			add_object_address(OCLASS_COLLATION, param->paramcollid, 0,
1893 							   context->addrs);
1894 	}
1895 	else if (IsA(node, FuncExpr))
1896 	{
1897 		FuncExpr   *funcexpr = (FuncExpr *) node;
1898 
1899 		add_object_address(OCLASS_PROC, funcexpr->funcid, 0,
1900 						   context->addrs);
1901 		/* fall through to examine arguments */
1902 	}
1903 	else if (IsA(node, OpExpr))
1904 	{
1905 		OpExpr	   *opexpr = (OpExpr *) node;
1906 
1907 		add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1908 						   context->addrs);
1909 		/* fall through to examine arguments */
1910 	}
1911 	else if (IsA(node, DistinctExpr))
1912 	{
1913 		DistinctExpr *distinctexpr = (DistinctExpr *) node;
1914 
1915 		add_object_address(OCLASS_OPERATOR, distinctexpr->opno, 0,
1916 						   context->addrs);
1917 		/* fall through to examine arguments */
1918 	}
1919 	else if (IsA(node, NullIfExpr))
1920 	{
1921 		NullIfExpr *nullifexpr = (NullIfExpr *) node;
1922 
1923 		add_object_address(OCLASS_OPERATOR, nullifexpr->opno, 0,
1924 						   context->addrs);
1925 		/* fall through to examine arguments */
1926 	}
1927 	else if (IsA(node, ScalarArrayOpExpr))
1928 	{
1929 		ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1930 
1931 		add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1932 						   context->addrs);
1933 		/* fall through to examine arguments */
1934 	}
1935 	else if (IsA(node, Aggref))
1936 	{
1937 		Aggref	   *aggref = (Aggref *) node;
1938 
1939 		add_object_address(OCLASS_PROC, aggref->aggfnoid, 0,
1940 						   context->addrs);
1941 		/* fall through to examine arguments */
1942 	}
1943 	else if (IsA(node, WindowFunc))
1944 	{
1945 		WindowFunc *wfunc = (WindowFunc *) node;
1946 
1947 		add_object_address(OCLASS_PROC, wfunc->winfnoid, 0,
1948 						   context->addrs);
1949 		/* fall through to examine arguments */
1950 	}
1951 	else if (IsA(node, SubscriptingRef))
1952 	{
1953 		SubscriptingRef *sbsref = (SubscriptingRef *) node;
1954 
1955 		/*
1956 		 * The refexpr should provide adequate dependency on refcontainertype,
1957 		 * and that type in turn depends on refelemtype.  However, a custom
1958 		 * subscripting handler might set refrestype to something different
1959 		 * from either of those, in which case we'd better record it.
1960 		 */
1961 		if (sbsref->refrestype != sbsref->refcontainertype &&
1962 			sbsref->refrestype != sbsref->refelemtype)
1963 			add_object_address(OCLASS_TYPE, sbsref->refrestype, 0,
1964 							   context->addrs);
1965 		/* fall through to examine arguments */
1966 	}
1967 	else if (IsA(node, SubPlan))
1968 	{
1969 		/* Extra work needed here if we ever need this case */
1970 		elog(ERROR, "already-planned subqueries not supported");
1971 	}
1972 	else if (IsA(node, FieldSelect))
1973 	{
1974 		FieldSelect *fselect = (FieldSelect *) node;
1975 		Oid			argtype = getBaseType(exprType((Node *) fselect->arg));
1976 		Oid			reltype = get_typ_typrelid(argtype);
1977 
1978 		/*
1979 		 * We need a dependency on the specific column named in FieldSelect,
1980 		 * assuming we can identify the pg_class OID for it.  (Probably we
1981 		 * always can at the moment, but in future it might be possible for
1982 		 * argtype to be RECORDOID.)  If we can make a column dependency then
1983 		 * we shouldn't need a dependency on the column's type; but if we
1984 		 * can't, make a dependency on the type, as it might not appear
1985 		 * anywhere else in the expression.
1986 		 */
1987 		if (OidIsValid(reltype))
1988 			add_object_address(OCLASS_CLASS, reltype, fselect->fieldnum,
1989 							   context->addrs);
1990 		else
1991 			add_object_address(OCLASS_TYPE, fselect->resulttype, 0,
1992 							   context->addrs);
1993 		/* the collation might not be referenced anywhere else, either */
1994 		if (OidIsValid(fselect->resultcollid) &&
1995 			fselect->resultcollid != DEFAULT_COLLATION_OID)
1996 			add_object_address(OCLASS_COLLATION, fselect->resultcollid, 0,
1997 							   context->addrs);
1998 	}
1999 	else if (IsA(node, FieldStore))
2000 	{
2001 		FieldStore *fstore = (FieldStore *) node;
2002 		Oid			reltype = get_typ_typrelid(fstore->resulttype);
2003 
2004 		/* similar considerations to FieldSelect, but multiple column(s) */
2005 		if (OidIsValid(reltype))
2006 		{
2007 			ListCell   *l;
2008 
2009 			foreach(l, fstore->fieldnums)
2010 				add_object_address(OCLASS_CLASS, reltype, lfirst_int(l),
2011 								   context->addrs);
2012 		}
2013 		else
2014 			add_object_address(OCLASS_TYPE, fstore->resulttype, 0,
2015 							   context->addrs);
2016 	}
2017 	else if (IsA(node, RelabelType))
2018 	{
2019 		RelabelType *relab = (RelabelType *) node;
2020 
2021 		/* since there is no function dependency, need to depend on type */
2022 		add_object_address(OCLASS_TYPE, relab->resulttype, 0,
2023 						   context->addrs);
2024 		/* the collation might not be referenced anywhere else, either */
2025 		if (OidIsValid(relab->resultcollid) &&
2026 			relab->resultcollid != DEFAULT_COLLATION_OID)
2027 			add_object_address(OCLASS_COLLATION, relab->resultcollid, 0,
2028 							   context->addrs);
2029 	}
2030 	else if (IsA(node, CoerceViaIO))
2031 	{
2032 		CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2033 
2034 		/* since there is no exposed function, need to depend on type */
2035 		add_object_address(OCLASS_TYPE, iocoerce->resulttype, 0,
2036 						   context->addrs);
2037 		/* the collation might not be referenced anywhere else, either */
2038 		if (OidIsValid(iocoerce->resultcollid) &&
2039 			iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2040 			add_object_address(OCLASS_COLLATION, iocoerce->resultcollid, 0,
2041 							   context->addrs);
2042 	}
2043 	else if (IsA(node, ArrayCoerceExpr))
2044 	{
2045 		ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2046 
2047 		/* as above, depend on type */
2048 		add_object_address(OCLASS_TYPE, acoerce->resulttype, 0,
2049 						   context->addrs);
2050 		/* the collation might not be referenced anywhere else, either */
2051 		if (OidIsValid(acoerce->resultcollid) &&
2052 			acoerce->resultcollid != DEFAULT_COLLATION_OID)
2053 			add_object_address(OCLASS_COLLATION, acoerce->resultcollid, 0,
2054 							   context->addrs);
2055 		/* fall through to examine arguments */
2056 	}
2057 	else if (IsA(node, ConvertRowtypeExpr))
2058 	{
2059 		ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2060 
2061 		/* since there is no function dependency, need to depend on type */
2062 		add_object_address(OCLASS_TYPE, cvt->resulttype, 0,
2063 						   context->addrs);
2064 	}
2065 	else if (IsA(node, CollateExpr))
2066 	{
2067 		CollateExpr *coll = (CollateExpr *) node;
2068 
2069 		add_object_address(OCLASS_COLLATION, coll->collOid, 0,
2070 						   context->addrs);
2071 	}
2072 	else if (IsA(node, RowExpr))
2073 	{
2074 		RowExpr    *rowexpr = (RowExpr *) node;
2075 
2076 		add_object_address(OCLASS_TYPE, rowexpr->row_typeid, 0,
2077 						   context->addrs);
2078 	}
2079 	else if (IsA(node, RowCompareExpr))
2080 	{
2081 		RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2082 		ListCell   *l;
2083 
2084 		foreach(l, rcexpr->opnos)
2085 		{
2086 			add_object_address(OCLASS_OPERATOR, lfirst_oid(l), 0,
2087 							   context->addrs);
2088 		}
2089 		foreach(l, rcexpr->opfamilies)
2090 		{
2091 			add_object_address(OCLASS_OPFAMILY, lfirst_oid(l), 0,
2092 							   context->addrs);
2093 		}
2094 		/* fall through to examine arguments */
2095 	}
2096 	else if (IsA(node, CoerceToDomain))
2097 	{
2098 		CoerceToDomain *cd = (CoerceToDomain *) node;
2099 
2100 		add_object_address(OCLASS_TYPE, cd->resulttype, 0,
2101 						   context->addrs);
2102 	}
2103 	else if (IsA(node, NextValueExpr))
2104 	{
2105 		NextValueExpr *nve = (NextValueExpr *) node;
2106 
2107 		add_object_address(OCLASS_CLASS, nve->seqid, 0,
2108 						   context->addrs);
2109 	}
2110 	else if (IsA(node, OnConflictExpr))
2111 	{
2112 		OnConflictExpr *onconflict = (OnConflictExpr *) node;
2113 
2114 		if (OidIsValid(onconflict->constraint))
2115 			add_object_address(OCLASS_CONSTRAINT, onconflict->constraint, 0,
2116 							   context->addrs);
2117 		/* fall through to examine arguments */
2118 	}
2119 	else if (IsA(node, SortGroupClause))
2120 	{
2121 		SortGroupClause *sgc = (SortGroupClause *) node;
2122 
2123 		add_object_address(OCLASS_OPERATOR, sgc->eqop, 0,
2124 						   context->addrs);
2125 		if (OidIsValid(sgc->sortop))
2126 			add_object_address(OCLASS_OPERATOR, sgc->sortop, 0,
2127 							   context->addrs);
2128 		return false;
2129 	}
2130 	else if (IsA(node, WindowClause))
2131 	{
2132 		WindowClause *wc = (WindowClause *) node;
2133 
2134 		if (OidIsValid(wc->startInRangeFunc))
2135 			add_object_address(OCLASS_PROC, wc->startInRangeFunc, 0,
2136 							   context->addrs);
2137 		if (OidIsValid(wc->endInRangeFunc))
2138 			add_object_address(OCLASS_PROC, wc->endInRangeFunc, 0,
2139 							   context->addrs);
2140 		if (OidIsValid(wc->inRangeColl) &&
2141 			wc->inRangeColl != DEFAULT_COLLATION_OID)
2142 			add_object_address(OCLASS_COLLATION, wc->inRangeColl, 0,
2143 							   context->addrs);
2144 		/* fall through to examine substructure */
2145 	}
2146 	else if (IsA(node, CTECycleClause))
2147 	{
2148 		CTECycleClause *cc = (CTECycleClause *) node;
2149 
2150 		if (OidIsValid(cc->cycle_mark_type))
2151 			add_object_address(OCLASS_TYPE, cc->cycle_mark_type, 0,
2152 							   context->addrs);
2153 		if (OidIsValid(cc->cycle_mark_collation))
2154 			add_object_address(OCLASS_COLLATION, cc->cycle_mark_collation, 0,
2155 							   context->addrs);
2156 		if (OidIsValid(cc->cycle_mark_neop))
2157 			add_object_address(OCLASS_OPERATOR, cc->cycle_mark_neop, 0,
2158 							   context->addrs);
2159 		/* fall through to examine substructure */
2160 	}
2161 	else if (IsA(node, Query))
2162 	{
2163 		/* Recurse into RTE subquery or not-yet-planned sublink subquery */
2164 		Query	   *query = (Query *) node;
2165 		ListCell   *lc;
2166 		bool		result;
2167 
2168 		/*
2169 		 * Add whole-relation refs for each plain relation mentioned in the
2170 		 * subquery's rtable, and ensure we add refs for any type-coercion
2171 		 * functions used in join alias lists.
2172 		 *
2173 		 * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2174 		 * RTEs, subqueries, etc, so no need to do that here.  But we must
2175 		 * tell it not to visit join alias lists, or we'll add refs for join
2176 		 * input columns whether or not they are actually used in our query.
2177 		 *
2178 		 * Note: we don't need to worry about collations mentioned in
2179 		 * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2180 		 * collations referenced in other parts of the Query.  We do have to
2181 		 * worry about collations mentioned in RTE_FUNCTION, but we take care
2182 		 * of those when we recurse to the RangeTblFunction node(s).
2183 		 */
2184 		foreach(lc, query->rtable)
2185 		{
2186 			RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2187 
2188 			switch (rte->rtekind)
2189 			{
2190 				case RTE_RELATION:
2191 					add_object_address(OCLASS_CLASS, rte->relid, 0,
2192 									   context->addrs);
2193 					break;
2194 				case RTE_JOIN:
2195 
2196 					/*
2197 					 * Examine joinaliasvars entries only for merged JOIN
2198 					 * USING columns.  Only those entries could contain
2199 					 * type-coercion functions.  Also, their join input
2200 					 * columns must be referenced in the join quals, so this
2201 					 * won't accidentally add refs to otherwise-unused join
2202 					 * input columns.  (We want to ref the type coercion
2203 					 * functions even if the merged column isn't explicitly
2204 					 * used anywhere, to protect possible expansion of the
2205 					 * join RTE as a whole-row var, and because it seems like
2206 					 * a bad idea to allow dropping a function that's present
2207 					 * in our query tree, whether or not it could get called.)
2208 					 */
2209 					context->rtables = lcons(query->rtable, context->rtables);
2210 					for (int i = 0; i < rte->joinmergedcols; i++)
2211 					{
2212 						Node	   *aliasvar = list_nth(rte->joinaliasvars, i);
2213 
2214 						if (!IsA(aliasvar, Var))
2215 							find_expr_references_walker(aliasvar, context);
2216 					}
2217 					context->rtables = list_delete_first(context->rtables);
2218 					break;
2219 				default:
2220 					break;
2221 			}
2222 		}
2223 
2224 		/*
2225 		 * If the query is an INSERT or UPDATE, we should create a dependency
2226 		 * on each target column, to prevent the specific target column from
2227 		 * being dropped.  Although we will visit the TargetEntry nodes again
2228 		 * during query_tree_walker, we won't have enough context to do this
2229 		 * conveniently, so do it here.
2230 		 */
2231 		if (query->commandType == CMD_INSERT ||
2232 			query->commandType == CMD_UPDATE)
2233 		{
2234 			RangeTblEntry *rte;
2235 
2236 			if (query->resultRelation <= 0 ||
2237 				query->resultRelation > list_length(query->rtable))
2238 				elog(ERROR, "invalid resultRelation %d",
2239 					 query->resultRelation);
2240 			rte = rt_fetch(query->resultRelation, query->rtable);
2241 			if (rte->rtekind == RTE_RELATION)
2242 			{
2243 				foreach(lc, query->targetList)
2244 				{
2245 					TargetEntry *tle = (TargetEntry *) lfirst(lc);
2246 
2247 					if (tle->resjunk)
2248 						continue;	/* ignore junk tlist items */
2249 					add_object_address(OCLASS_CLASS, rte->relid, tle->resno,
2250 									   context->addrs);
2251 				}
2252 			}
2253 		}
2254 
2255 		/*
2256 		 * Add dependencies on constraints listed in query's constraintDeps
2257 		 */
2258 		foreach(lc, query->constraintDeps)
2259 		{
2260 			add_object_address(OCLASS_CONSTRAINT, lfirst_oid(lc), 0,
2261 							   context->addrs);
2262 		}
2263 
2264 		/* Examine substructure of query */
2265 		context->rtables = lcons(query->rtable, context->rtables);
2266 		result = query_tree_walker(query,
2267 								   find_expr_references_walker,
2268 								   (void *) context,
2269 								   QTW_IGNORE_JOINALIASES |
2270 								   QTW_EXAMINE_SORTGROUP);
2271 		context->rtables = list_delete_first(context->rtables);
2272 		return result;
2273 	}
2274 	else if (IsA(node, SetOperationStmt))
2275 	{
2276 		SetOperationStmt *setop = (SetOperationStmt *) node;
2277 
2278 		/* we need to look at the groupClauses for operator references */
2279 		find_expr_references_walker((Node *) setop->groupClauses, context);
2280 		/* fall through to examine child nodes */
2281 	}
2282 	else if (IsA(node, RangeTblFunction))
2283 	{
2284 		RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2285 		ListCell   *ct;
2286 
2287 		/*
2288 		 * Add refs for any datatypes and collations used in a column
2289 		 * definition list for a RECORD function.  (For other cases, it should
2290 		 * be enough to depend on the function itself.)
2291 		 */
2292 		foreach(ct, rtfunc->funccoltypes)
2293 		{
2294 			add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
2295 							   context->addrs);
2296 		}
2297 		foreach(ct, rtfunc->funccolcollations)
2298 		{
2299 			Oid			collid = lfirst_oid(ct);
2300 
2301 			if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2302 				add_object_address(OCLASS_COLLATION, collid, 0,
2303 								   context->addrs);
2304 		}
2305 	}
2306 	else if (IsA(node, TableFunc))
2307 	{
2308 		TableFunc  *tf = (TableFunc *) node;
2309 		ListCell   *ct;
2310 
2311 		/*
2312 		 * Add refs for the datatypes and collations used in the TableFunc.
2313 		 */
2314 		foreach(ct, tf->coltypes)
2315 		{
2316 			add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
2317 							   context->addrs);
2318 		}
2319 		foreach(ct, tf->colcollations)
2320 		{
2321 			Oid			collid = lfirst_oid(ct);
2322 
2323 			if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2324 				add_object_address(OCLASS_COLLATION, collid, 0,
2325 								   context->addrs);
2326 		}
2327 	}
2328 	else if (IsA(node, TableSampleClause))
2329 	{
2330 		TableSampleClause *tsc = (TableSampleClause *) node;
2331 
2332 		add_object_address(OCLASS_PROC, tsc->tsmhandler, 0,
2333 						   context->addrs);
2334 		/* fall through to examine arguments */
2335 	}
2336 
2337 	return expression_tree_walker(node, find_expr_references_walker,
2338 								  (void *) context);
2339 }
2340 
2341 /*
2342  * Given an array of dependency references, eliminate any duplicates.
2343  */
2344 static void
eliminate_duplicate_dependencies(ObjectAddresses * addrs)2345 eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2346 {
2347 	ObjectAddress *priorobj;
2348 	int			oldref,
2349 				newrefs;
2350 
2351 	/*
2352 	 * We can't sort if the array has "extra" data, because there's no way to
2353 	 * keep it in sync.  Fortunately that combination of features is not
2354 	 * needed.
2355 	 */
2356 	Assert(!addrs->extras);
2357 
2358 	if (addrs->numrefs <= 1)
2359 		return;					/* nothing to do */
2360 
2361 	/* Sort the refs so that duplicates are adjacent */
2362 	qsort((void *) addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2363 		  object_address_comparator);
2364 
2365 	/* Remove dups */
2366 	priorobj = addrs->refs;
2367 	newrefs = 1;
2368 	for (oldref = 1; oldref < addrs->numrefs; oldref++)
2369 	{
2370 		ObjectAddress *thisobj = addrs->refs + oldref;
2371 
2372 		if (priorobj->classId == thisobj->classId &&
2373 			priorobj->objectId == thisobj->objectId)
2374 		{
2375 			if (priorobj->objectSubId == thisobj->objectSubId)
2376 				continue;		/* identical, so drop thisobj */
2377 
2378 			/*
2379 			 * If we have a whole-object reference and a reference to a part
2380 			 * of the same object, we don't need the whole-object reference
2381 			 * (for example, we don't need to reference both table foo and
2382 			 * column foo.bar).  The whole-object reference will always appear
2383 			 * first in the sorted list.
2384 			 */
2385 			if (priorobj->objectSubId == 0)
2386 			{
2387 				/* replace whole ref with partial */
2388 				priorobj->objectSubId = thisobj->objectSubId;
2389 				continue;
2390 			}
2391 		}
2392 		/* Not identical, so add thisobj to output set */
2393 		priorobj++;
2394 		*priorobj = *thisobj;
2395 		newrefs++;
2396 	}
2397 
2398 	addrs->numrefs = newrefs;
2399 }
2400 
2401 /*
2402  * qsort comparator for ObjectAddress items
2403  */
2404 static int
object_address_comparator(const void * a,const void * b)2405 object_address_comparator(const void *a, const void *b)
2406 {
2407 	const ObjectAddress *obja = (const ObjectAddress *) a;
2408 	const ObjectAddress *objb = (const ObjectAddress *) b;
2409 
2410 	/*
2411 	 * Primary sort key is OID descending.  Most of the time, this will result
2412 	 * in putting newer objects before older ones, which is likely to be the
2413 	 * right order to delete in.
2414 	 */
2415 	if (obja->objectId > objb->objectId)
2416 		return -1;
2417 	if (obja->objectId < objb->objectId)
2418 		return 1;
2419 
2420 	/*
2421 	 * Next sort on catalog ID, in case identical OIDs appear in different
2422 	 * catalogs.  Sort direction is pretty arbitrary here.
2423 	 */
2424 	if (obja->classId < objb->classId)
2425 		return -1;
2426 	if (obja->classId > objb->classId)
2427 		return 1;
2428 
2429 	/*
2430 	 * Last, sort on object subId.
2431 	 *
2432 	 * We sort the subId as an unsigned int so that 0 (the whole object) will
2433 	 * come first.  This is essential for eliminate_duplicate_dependencies,
2434 	 * and is also the best order for findDependentObjects.
2435 	 */
2436 	if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2437 		return -1;
2438 	if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2439 		return 1;
2440 	return 0;
2441 }
2442 
2443 /*
2444  * Routines for handling an expansible array of ObjectAddress items.
2445  *
2446  * new_object_addresses: create a new ObjectAddresses array.
2447  */
2448 ObjectAddresses *
new_object_addresses(void)2449 new_object_addresses(void)
2450 {
2451 	ObjectAddresses *addrs;
2452 
2453 	addrs = palloc(sizeof(ObjectAddresses));
2454 
2455 	addrs->numrefs = 0;
2456 	addrs->maxrefs = 32;
2457 	addrs->refs = (ObjectAddress *)
2458 		palloc(addrs->maxrefs * sizeof(ObjectAddress));
2459 	addrs->extras = NULL;		/* until/unless needed */
2460 
2461 	return addrs;
2462 }
2463 
2464 /*
2465  * Add an entry to an ObjectAddresses array.
2466  *
2467  * It is convenient to specify the class by ObjectClass rather than directly
2468  * by catalog OID.
2469  */
2470 static void
add_object_address(ObjectClass oclass,Oid objectId,int32 subId,ObjectAddresses * addrs)2471 add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
2472 				   ObjectAddresses *addrs)
2473 {
2474 	ObjectAddress *item;
2475 
2476 	/*
2477 	 * Make sure object_classes is kept up to date with the ObjectClass enum.
2478 	 */
2479 	StaticAssertStmt(lengthof(object_classes) == LAST_OCLASS + 1,
2480 					 "object_classes[] must cover all ObjectClasses");
2481 
2482 	/* enlarge array if needed */
2483 	if (addrs->numrefs >= addrs->maxrefs)
2484 	{
2485 		addrs->maxrefs *= 2;
2486 		addrs->refs = (ObjectAddress *)
2487 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2488 		Assert(!addrs->extras);
2489 	}
2490 	/* record this item */
2491 	item = addrs->refs + addrs->numrefs;
2492 	item->classId = object_classes[oclass];
2493 	item->objectId = objectId;
2494 	item->objectSubId = subId;
2495 	addrs->numrefs++;
2496 }
2497 
2498 /*
2499  * Add an entry to an ObjectAddresses array.
2500  *
2501  * As above, but specify entry exactly.
2502  */
2503 void
add_exact_object_address(const ObjectAddress * object,ObjectAddresses * addrs)2504 add_exact_object_address(const ObjectAddress *object,
2505 						 ObjectAddresses *addrs)
2506 {
2507 	ObjectAddress *item;
2508 
2509 	/* enlarge array if needed */
2510 	if (addrs->numrefs >= addrs->maxrefs)
2511 	{
2512 		addrs->maxrefs *= 2;
2513 		addrs->refs = (ObjectAddress *)
2514 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2515 		Assert(!addrs->extras);
2516 	}
2517 	/* record this item */
2518 	item = addrs->refs + addrs->numrefs;
2519 	*item = *object;
2520 	addrs->numrefs++;
2521 }
2522 
2523 /*
2524  * Add an entry to an ObjectAddresses array.
2525  *
2526  * As above, but specify entry exactly and provide some "extra" data too.
2527  */
2528 static void
add_exact_object_address_extra(const ObjectAddress * object,const ObjectAddressExtra * extra,ObjectAddresses * addrs)2529 add_exact_object_address_extra(const ObjectAddress *object,
2530 							   const ObjectAddressExtra *extra,
2531 							   ObjectAddresses *addrs)
2532 {
2533 	ObjectAddress *item;
2534 	ObjectAddressExtra *itemextra;
2535 
2536 	/* allocate extra space if first time */
2537 	if (!addrs->extras)
2538 		addrs->extras = (ObjectAddressExtra *)
2539 			palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2540 
2541 	/* enlarge array if needed */
2542 	if (addrs->numrefs >= addrs->maxrefs)
2543 	{
2544 		addrs->maxrefs *= 2;
2545 		addrs->refs = (ObjectAddress *)
2546 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2547 		addrs->extras = (ObjectAddressExtra *)
2548 			repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2549 	}
2550 	/* record this item */
2551 	item = addrs->refs + addrs->numrefs;
2552 	*item = *object;
2553 	itemextra = addrs->extras + addrs->numrefs;
2554 	*itemextra = *extra;
2555 	addrs->numrefs++;
2556 }
2557 
2558 /*
2559  * Test whether an object is present in an ObjectAddresses array.
2560  *
2561  * We return "true" if object is a subobject of something in the array, too.
2562  */
2563 bool
object_address_present(const ObjectAddress * object,const ObjectAddresses * addrs)2564 object_address_present(const ObjectAddress *object,
2565 					   const ObjectAddresses *addrs)
2566 {
2567 	int			i;
2568 
2569 	for (i = addrs->numrefs - 1; i >= 0; i--)
2570 	{
2571 		const ObjectAddress *thisobj = addrs->refs + i;
2572 
2573 		if (object->classId == thisobj->classId &&
2574 			object->objectId == thisobj->objectId)
2575 		{
2576 			if (object->objectSubId == thisobj->objectSubId ||
2577 				thisobj->objectSubId == 0)
2578 				return true;
2579 		}
2580 	}
2581 
2582 	return false;
2583 }
2584 
2585 /*
2586  * As above, except that if the object is present then also OR the given
2587  * flags into its associated extra data (which must exist).
2588  */
2589 static bool
object_address_present_add_flags(const ObjectAddress * object,int flags,ObjectAddresses * addrs)2590 object_address_present_add_flags(const ObjectAddress *object,
2591 								 int flags,
2592 								 ObjectAddresses *addrs)
2593 {
2594 	bool		result = false;
2595 	int			i;
2596 
2597 	for (i = addrs->numrefs - 1; i >= 0; i--)
2598 	{
2599 		ObjectAddress *thisobj = addrs->refs + i;
2600 
2601 		if (object->classId == thisobj->classId &&
2602 			object->objectId == thisobj->objectId)
2603 		{
2604 			if (object->objectSubId == thisobj->objectSubId)
2605 			{
2606 				ObjectAddressExtra *thisextra = addrs->extras + i;
2607 
2608 				thisextra->flags |= flags;
2609 				result = true;
2610 			}
2611 			else if (thisobj->objectSubId == 0)
2612 			{
2613 				/*
2614 				 * We get here if we find a need to delete a column after
2615 				 * having already decided to drop its whole table.  Obviously
2616 				 * we no longer need to drop the subobject, so report that we
2617 				 * found the subobject in the array.  But don't plaster its
2618 				 * flags on the whole object.
2619 				 */
2620 				result = true;
2621 			}
2622 			else if (object->objectSubId == 0)
2623 			{
2624 				/*
2625 				 * We get here if we find a need to delete a whole table after
2626 				 * having already decided to drop one of its columns.  We
2627 				 * can't report that the whole object is in the array, but we
2628 				 * should mark the subobject with the whole object's flags.
2629 				 *
2630 				 * It might seem attractive to physically delete the column's
2631 				 * array entry, or at least mark it as no longer needing
2632 				 * separate deletion.  But that could lead to, e.g., dropping
2633 				 * the column's datatype before we drop the table, which does
2634 				 * not seem like a good idea.  This is a very rare situation
2635 				 * in practice, so we just take the hit of doing a separate
2636 				 * DROP COLUMN action even though we know we're gonna delete
2637 				 * the table later.
2638 				 *
2639 				 * What we can do, though, is mark this as a subobject so that
2640 				 * we don't report it separately, which is confusing because
2641 				 * it's unpredictable whether it happens or not.  But do so
2642 				 * only if flags != 0 (flags == 0 is a read-only probe).
2643 				 *
2644 				 * Because there could be other subobjects of this object in
2645 				 * the array, this case means we always have to loop through
2646 				 * the whole array; we cannot exit early on a match.
2647 				 */
2648 				ObjectAddressExtra *thisextra = addrs->extras + i;
2649 
2650 				if (flags)
2651 					thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2652 			}
2653 		}
2654 	}
2655 
2656 	return result;
2657 }
2658 
2659 /*
2660  * Similar to above, except we search an ObjectAddressStack.
2661  */
2662 static bool
stack_address_present_add_flags(const ObjectAddress * object,int flags,ObjectAddressStack * stack)2663 stack_address_present_add_flags(const ObjectAddress *object,
2664 								int flags,
2665 								ObjectAddressStack *stack)
2666 {
2667 	bool		result = false;
2668 	ObjectAddressStack *stackptr;
2669 
2670 	for (stackptr = stack; stackptr; stackptr = stackptr->next)
2671 	{
2672 		const ObjectAddress *thisobj = stackptr->object;
2673 
2674 		if (object->classId == thisobj->classId &&
2675 			object->objectId == thisobj->objectId)
2676 		{
2677 			if (object->objectSubId == thisobj->objectSubId)
2678 			{
2679 				stackptr->flags |= flags;
2680 				result = true;
2681 			}
2682 			else if (thisobj->objectSubId == 0)
2683 			{
2684 				/*
2685 				 * We're visiting a column with whole table already on stack.
2686 				 * As in object_address_present_add_flags(), we can skip
2687 				 * further processing of the subobject, but we don't want to
2688 				 * propagate flags for the subobject to the whole object.
2689 				 */
2690 				result = true;
2691 			}
2692 			else if (object->objectSubId == 0)
2693 			{
2694 				/*
2695 				 * We're visiting a table with column already on stack.  As in
2696 				 * object_address_present_add_flags(), we should propagate
2697 				 * flags for the whole object to each of its subobjects.
2698 				 */
2699 				if (flags)
2700 					stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2701 			}
2702 		}
2703 	}
2704 
2705 	return result;
2706 }
2707 
2708 /*
2709  * Record multiple dependencies from an ObjectAddresses array, after first
2710  * removing any duplicates.
2711  */
2712 void
record_object_address_dependencies(const ObjectAddress * depender,ObjectAddresses * referenced,DependencyType behavior)2713 record_object_address_dependencies(const ObjectAddress *depender,
2714 								   ObjectAddresses *referenced,
2715 								   DependencyType behavior)
2716 {
2717 	eliminate_duplicate_dependencies(referenced);
2718 	recordMultipleDependencies(depender,
2719 							   referenced->refs, referenced->numrefs,
2720 							   behavior);
2721 }
2722 
2723 /*
2724  * Sort the items in an ObjectAddresses array.
2725  *
2726  * The major sort key is OID-descending, so that newer objects will be listed
2727  * first in most cases.  This is primarily useful for ensuring stable outputs
2728  * from regression tests; it's not recommended if the order of the objects is
2729  * determined by user input, such as the order of targets in a DROP command.
2730  */
2731 void
sort_object_addresses(ObjectAddresses * addrs)2732 sort_object_addresses(ObjectAddresses *addrs)
2733 {
2734 	if (addrs->numrefs > 1)
2735 		qsort((void *) addrs->refs, addrs->numrefs,
2736 			  sizeof(ObjectAddress),
2737 			  object_address_comparator);
2738 }
2739 
2740 /*
2741  * Clean up when done with an ObjectAddresses array.
2742  */
2743 void
free_object_addresses(ObjectAddresses * addrs)2744 free_object_addresses(ObjectAddresses *addrs)
2745 {
2746 	pfree(addrs->refs);
2747 	if (addrs->extras)
2748 		pfree(addrs->extras);
2749 	pfree(addrs);
2750 }
2751 
2752 /*
2753  * Determine the class of a given object identified by objectAddress.
2754  *
2755  * This function is essentially the reverse mapping for the object_classes[]
2756  * table.  We implement it as a function because the OIDs aren't consecutive.
2757  */
2758 ObjectClass
getObjectClass(const ObjectAddress * object)2759 getObjectClass(const ObjectAddress *object)
2760 {
2761 	/* only pg_class entries can have nonzero objectSubId */
2762 	if (object->classId != RelationRelationId &&
2763 		object->objectSubId != 0)
2764 		elog(ERROR, "invalid non-zero objectSubId for object class %u",
2765 			 object->classId);
2766 
2767 	switch (object->classId)
2768 	{
2769 		case RelationRelationId:
2770 			/* caller must check objectSubId */
2771 			return OCLASS_CLASS;
2772 
2773 		case ProcedureRelationId:
2774 			return OCLASS_PROC;
2775 
2776 		case TypeRelationId:
2777 			return OCLASS_TYPE;
2778 
2779 		case CastRelationId:
2780 			return OCLASS_CAST;
2781 
2782 		case CollationRelationId:
2783 			return OCLASS_COLLATION;
2784 
2785 		case ConstraintRelationId:
2786 			return OCLASS_CONSTRAINT;
2787 
2788 		case ConversionRelationId:
2789 			return OCLASS_CONVERSION;
2790 
2791 		case AttrDefaultRelationId:
2792 			return OCLASS_DEFAULT;
2793 
2794 		case LanguageRelationId:
2795 			return OCLASS_LANGUAGE;
2796 
2797 		case LargeObjectRelationId:
2798 			return OCLASS_LARGEOBJECT;
2799 
2800 		case OperatorRelationId:
2801 			return OCLASS_OPERATOR;
2802 
2803 		case OperatorClassRelationId:
2804 			return OCLASS_OPCLASS;
2805 
2806 		case OperatorFamilyRelationId:
2807 			return OCLASS_OPFAMILY;
2808 
2809 		case AccessMethodRelationId:
2810 			return OCLASS_AM;
2811 
2812 		case AccessMethodOperatorRelationId:
2813 			return OCLASS_AMOP;
2814 
2815 		case AccessMethodProcedureRelationId:
2816 			return OCLASS_AMPROC;
2817 
2818 		case RewriteRelationId:
2819 			return OCLASS_REWRITE;
2820 
2821 		case TriggerRelationId:
2822 			return OCLASS_TRIGGER;
2823 
2824 		case NamespaceRelationId:
2825 			return OCLASS_SCHEMA;
2826 
2827 		case StatisticExtRelationId:
2828 			return OCLASS_STATISTIC_EXT;
2829 
2830 		case TSParserRelationId:
2831 			return OCLASS_TSPARSER;
2832 
2833 		case TSDictionaryRelationId:
2834 			return OCLASS_TSDICT;
2835 
2836 		case TSTemplateRelationId:
2837 			return OCLASS_TSTEMPLATE;
2838 
2839 		case TSConfigRelationId:
2840 			return OCLASS_TSCONFIG;
2841 
2842 		case AuthIdRelationId:
2843 			return OCLASS_ROLE;
2844 
2845 		case DatabaseRelationId:
2846 			return OCLASS_DATABASE;
2847 
2848 		case TableSpaceRelationId:
2849 			return OCLASS_TBLSPACE;
2850 
2851 		case ForeignDataWrapperRelationId:
2852 			return OCLASS_FDW;
2853 
2854 		case ForeignServerRelationId:
2855 			return OCLASS_FOREIGN_SERVER;
2856 
2857 		case UserMappingRelationId:
2858 			return OCLASS_USER_MAPPING;
2859 
2860 		case DefaultAclRelationId:
2861 			return OCLASS_DEFACL;
2862 
2863 		case ExtensionRelationId:
2864 			return OCLASS_EXTENSION;
2865 
2866 		case EventTriggerRelationId:
2867 			return OCLASS_EVENT_TRIGGER;
2868 
2869 		case PolicyRelationId:
2870 			return OCLASS_POLICY;
2871 
2872 		case PublicationRelationId:
2873 			return OCLASS_PUBLICATION;
2874 
2875 		case PublicationRelRelationId:
2876 			return OCLASS_PUBLICATION_REL;
2877 
2878 		case SubscriptionRelationId:
2879 			return OCLASS_SUBSCRIPTION;
2880 
2881 		case TransformRelationId:
2882 			return OCLASS_TRANSFORM;
2883 	}
2884 
2885 	/* shouldn't get here */
2886 	elog(ERROR, "unrecognized object class: %u", object->classId);
2887 	return OCLASS_CLASS;		/* keep compiler quiet */
2888 }
2889 
2890 /*
2891  * delete initial ACL for extension objects
2892  */
2893 static void
DeleteInitPrivs(const ObjectAddress * object)2894 DeleteInitPrivs(const ObjectAddress *object)
2895 {
2896 	Relation	relation;
2897 	ScanKeyData key[3];
2898 	SysScanDesc scan;
2899 	HeapTuple	oldtuple;
2900 
2901 	relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2902 
2903 	ScanKeyInit(&key[0],
2904 				Anum_pg_init_privs_objoid,
2905 				BTEqualStrategyNumber, F_OIDEQ,
2906 				ObjectIdGetDatum(object->objectId));
2907 	ScanKeyInit(&key[1],
2908 				Anum_pg_init_privs_classoid,
2909 				BTEqualStrategyNumber, F_OIDEQ,
2910 				ObjectIdGetDatum(object->classId));
2911 	ScanKeyInit(&key[2],
2912 				Anum_pg_init_privs_objsubid,
2913 				BTEqualStrategyNumber, F_INT4EQ,
2914 				Int32GetDatum(object->objectSubId));
2915 
2916 	scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2917 							  NULL, 3, key);
2918 
2919 	while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2920 		CatalogTupleDelete(relation, &oldtuple->t_self);
2921 
2922 	systable_endscan(scan);
2923 
2924 	table_close(relation, RowExclusiveLock);
2925 }
2926