1 /*-------------------------------------------------------------------------
2  *
3  * multixact.c
4  *		PostgreSQL multi-transaction-log manager
5  *
6  * The pg_multixact manager is a pg_xact-like manager that stores an array of
7  * MultiXactMember for each MultiXactId.  It is a fundamental part of the
8  * shared-row-lock implementation.  Each MultiXactMember is comprised of a
9  * TransactionId and a set of flag bits.  The name is a bit historical:
10  * originally, a MultiXactId consisted of more than one TransactionId (except
11  * in rare corner cases), hence "multi".  Nowadays, however, it's perfectly
12  * legitimate to have MultiXactIds that only include a single Xid.
13  *
14  * The meaning of the flag bits is opaque to this module, but they are mostly
15  * used in heapam.c to identify lock modes that each of the member transactions
16  * is holding on any given tuple.  This module just contains support to store
17  * and retrieve the arrays.
18  *
19  * We use two SLRU areas, one for storing the offsets at which the data
20  * starts for each MultiXactId in the other one.  This trick allows us to
21  * store variable length arrays of TransactionIds.  (We could alternatively
22  * use one area containing counts and TransactionIds, with valid MultiXactId
23  * values pointing at slots containing counts; but that way seems less robust
24  * since it would get completely confused if someone inquired about a bogus
25  * MultiXactId that pointed to an intermediate slot containing an XID.)
26  *
27  * XLOG interactions: this module generates a record whenever a new OFFSETs or
28  * MEMBERs page is initialized to zeroes, as well as an
29  * XLOG_MULTIXACT_CREATE_ID record whenever a new MultiXactId is defined.
30  * This module ignores the WAL rule "write xlog before data," because it
31  * suffices that actions recording a MultiXactId in a heap xmax do follow that
32  * rule.  The only way for the MXID to be referenced from any data page is for
33  * heap_lock_tuple() or heap_update() to have put it there, and each generates
34  * an XLOG record that must follow ours.  The normal LSN interlock between the
35  * data page and that XLOG record will ensure that our XLOG record reaches
36  * disk first.  If the SLRU members/offsets data reaches disk sooner than the
37  * XLOG records, we do not care; after recovery, no xmax will refer to it.  On
38  * the flip side, to ensure that all referenced entries _do_ reach disk, this
39  * module's XLOG records completely rebuild the data entered since the last
40  * checkpoint.  We flush and sync all dirty OFFSETs and MEMBERs pages to disk
41  * before each checkpoint is considered complete.
42  *
43  * Like clog.c, and unlike subtrans.c, we have to preserve state across
44  * crashes and ensure that MXID and offset numbering increases monotonically
45  * across a crash.  We do this in the same way as it's done for transaction
46  * IDs: the WAL record is guaranteed to contain evidence of every MXID we
47  * could need to worry about, and we just make sure that at the end of
48  * replay, the next-MXID and next-offset counters are at least as large as
49  * anything we saw during replay.
50  *
51  * We are able to remove segments no longer necessary by carefully tracking
52  * each table's used values: during vacuum, any multixact older than a certain
53  * value is removed; the cutoff value is stored in pg_class.  The minimum value
54  * across all tables in each database is stored in pg_database, and the global
55  * minimum across all databases is part of pg_control and is kept in shared
56  * memory.  Whenever that minimum is advanced, the SLRUs are truncated.
57  *
58  * When new multixactid values are to be created, care is taken that the
59  * counter does not fall within the wraparound horizon considering the global
60  * minimum value.
61  *
62  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
63  * Portions Copyright (c) 1994, Regents of the University of California
64  *
65  * src/backend/access/transam/multixact.c
66  *
67  *-------------------------------------------------------------------------
68  */
69 #include "postgres.h"
70 
71 #include "access/multixact.h"
72 #include "access/slru.h"
73 #include "access/transam.h"
74 #include "access/twophase.h"
75 #include "access/twophase_rmgr.h"
76 #include "access/xact.h"
77 #include "access/xlog.h"
78 #include "access/xloginsert.h"
79 #include "catalog/pg_type.h"
80 #include "commands/dbcommands.h"
81 #include "funcapi.h"
82 #include "lib/ilist.h"
83 #include "miscadmin.h"
84 #include "pg_trace.h"
85 #include "postmaster/autovacuum.h"
86 #include "storage/lmgr.h"
87 #include "storage/pmsignal.h"
88 #include "storage/proc.h"
89 #include "storage/procarray.h"
90 #include "utils/builtins.h"
91 #include "utils/memutils.h"
92 #include "utils/snapmgr.h"
93 
94 
95 /*
96  * Defines for MultiXactOffset page sizes.  A page is the same BLCKSZ as is
97  * used everywhere else in Postgres.
98  *
99  * Note: because MultiXactOffsets are 32 bits and wrap around at 0xFFFFFFFF,
100  * MultiXact page numbering also wraps around at
101  * 0xFFFFFFFF/MULTIXACT_OFFSETS_PER_PAGE, and segment numbering at
102  * 0xFFFFFFFF/MULTIXACT_OFFSETS_PER_PAGE/SLRU_PAGES_PER_SEGMENT.  We need
103  * take no explicit notice of that fact in this module, except when comparing
104  * segment and page numbers in TruncateMultiXact (see
105  * MultiXactOffsetPagePrecedes).
106  */
107 
108 /* We need four bytes per offset */
109 #define MULTIXACT_OFFSETS_PER_PAGE (BLCKSZ / sizeof(MultiXactOffset))
110 
111 #define MultiXactIdToOffsetPage(xid) \
112 	((xid) / (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
113 #define MultiXactIdToOffsetEntry(xid) \
114 	((xid) % (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
115 #define MultiXactIdToOffsetSegment(xid) (MultiXactIdToOffsetPage(xid) / SLRU_PAGES_PER_SEGMENT)
116 
117 /*
118  * The situation for members is a bit more complex: we store one byte of
119  * additional flag bits for each TransactionId.  To do this without getting
120  * into alignment issues, we store four bytes of flags, and then the
121  * corresponding 4 Xids.  Each such 5-word (20-byte) set we call a "group", and
122  * are stored as a whole in pages.  Thus, with 8kB BLCKSZ, we keep 409 groups
123  * per page.  This wastes 12 bytes per page, but that's OK -- simplicity (and
124  * performance) trumps space efficiency here.
125  *
126  * Note that the "offset" macros work with byte offset, not array indexes, so
127  * arithmetic must be done using "char *" pointers.
128  */
129 /* We need eight bits per xact, so one xact fits in a byte */
130 #define MXACT_MEMBER_BITS_PER_XACT			8
131 #define MXACT_MEMBER_FLAGS_PER_BYTE			1
132 #define MXACT_MEMBER_XACT_BITMASK	((1 << MXACT_MEMBER_BITS_PER_XACT) - 1)
133 
134 /* how many full bytes of flags are there in a group? */
135 #define MULTIXACT_FLAGBYTES_PER_GROUP		4
136 #define MULTIXACT_MEMBERS_PER_MEMBERGROUP	\
137 	(MULTIXACT_FLAGBYTES_PER_GROUP * MXACT_MEMBER_FLAGS_PER_BYTE)
138 /* size in bytes of a complete group */
139 #define MULTIXACT_MEMBERGROUP_SIZE \
140 	(sizeof(TransactionId) * MULTIXACT_MEMBERS_PER_MEMBERGROUP + MULTIXACT_FLAGBYTES_PER_GROUP)
141 #define MULTIXACT_MEMBERGROUPS_PER_PAGE (BLCKSZ / MULTIXACT_MEMBERGROUP_SIZE)
142 #define MULTIXACT_MEMBERS_PER_PAGE	\
143 	(MULTIXACT_MEMBERGROUPS_PER_PAGE * MULTIXACT_MEMBERS_PER_MEMBERGROUP)
144 
145 /*
146  * Because the number of items per page is not a divisor of the last item
147  * number (member 0xFFFFFFFF), the last segment does not use the maximum number
148  * of pages, and moreover the last used page therein does not use the same
149  * number of items as previous pages.  (Another way to say it is that the
150  * 0xFFFFFFFF member is somewhere in the middle of the last page, so the page
151  * has some empty space after that item.)
152  *
153  * This constant is the number of members in the last page of the last segment.
154  */
155 #define MAX_MEMBERS_IN_LAST_MEMBERS_PAGE \
156 		((uint32) ((0xFFFFFFFF % MULTIXACT_MEMBERS_PER_PAGE) + 1))
157 
158 /* page in which a member is to be found */
159 #define MXOffsetToMemberPage(xid) ((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
160 #define MXOffsetToMemberSegment(xid) (MXOffsetToMemberPage(xid) / SLRU_PAGES_PER_SEGMENT)
161 
162 /* Location (byte offset within page) of flag word for a given member */
163 #define MXOffsetToFlagsOffset(xid) \
164 	((((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_MEMBERGROUP) % \
165 	  (TransactionId) MULTIXACT_MEMBERGROUPS_PER_PAGE) * \
166 	 (TransactionId) MULTIXACT_MEMBERGROUP_SIZE)
167 #define MXOffsetToFlagsBitShift(xid) \
168 	(((xid) % (TransactionId) MULTIXACT_MEMBERS_PER_MEMBERGROUP) * \
169 	 MXACT_MEMBER_BITS_PER_XACT)
170 
171 /* Location (byte offset within page) of TransactionId of given member */
172 #define MXOffsetToMemberOffset(xid) \
173 	(MXOffsetToFlagsOffset(xid) + MULTIXACT_FLAGBYTES_PER_GROUP + \
174 	 ((xid) % MULTIXACT_MEMBERS_PER_MEMBERGROUP) * sizeof(TransactionId))
175 
176 /* Multixact members wraparound thresholds. */
177 #define MULTIXACT_MEMBER_SAFE_THRESHOLD		(MaxMultiXactOffset / 2)
178 #define MULTIXACT_MEMBER_DANGER_THRESHOLD	\
179 	(MaxMultiXactOffset - MaxMultiXactOffset / 4)
180 
181 #define PreviousMultiXactId(xid) \
182 	((xid) == FirstMultiXactId ? MaxMultiXactId : (xid) - 1)
183 
184 /*
185  * Links to shared-memory data structures for MultiXact control
186  */
187 static SlruCtlData MultiXactOffsetCtlData;
188 static SlruCtlData MultiXactMemberCtlData;
189 
190 #define MultiXactOffsetCtl	(&MultiXactOffsetCtlData)
191 #define MultiXactMemberCtl	(&MultiXactMemberCtlData)
192 
193 /*
194  * MultiXact state shared across all backends.  All this state is protected
195  * by MultiXactGenLock.  (We also use MultiXactOffsetSLRULock and
196  * MultiXactMemberSLRULock to guard accesses to the two sets of SLRU
197  * buffers.  For concurrency's sake, we avoid holding more than one of these
198  * locks at a time.)
199  */
200 typedef struct MultiXactStateData
201 {
202 	/* next-to-be-assigned MultiXactId */
203 	MultiXactId nextMXact;
204 
205 	/* next-to-be-assigned offset */
206 	MultiXactOffset nextOffset;
207 
208 	/* Have we completed multixact startup? */
209 	bool		finishedStartup;
210 
211 	/*
212 	 * Oldest multixact that is still potentially referenced by a relation.
213 	 * Anything older than this should not be consulted.  These values are
214 	 * updated by vacuum.
215 	 */
216 	MultiXactId oldestMultiXactId;
217 	Oid			oldestMultiXactDB;
218 
219 	/*
220 	 * Oldest multixact offset that is potentially referenced by a multixact
221 	 * referenced by a relation.  We don't always know this value, so there's
222 	 * a flag here to indicate whether or not we currently do.
223 	 */
224 	MultiXactOffset oldestOffset;
225 	bool		oldestOffsetKnown;
226 
227 	/* support for anti-wraparound measures */
228 	MultiXactId multiVacLimit;
229 	MultiXactId multiWarnLimit;
230 	MultiXactId multiStopLimit;
231 	MultiXactId multiWrapLimit;
232 
233 	/* support for members anti-wraparound measures */
234 	MultiXactOffset offsetStopLimit;	/* known if oldestOffsetKnown */
235 
236 	/*
237 	 * Per-backend data starts here.  We have two arrays stored in the area
238 	 * immediately following the MultiXactStateData struct. Each is indexed by
239 	 * BackendId.
240 	 *
241 	 * In both arrays, there's a slot for all normal backends (1..MaxBackends)
242 	 * followed by a slot for max_prepared_xacts prepared transactions. Valid
243 	 * BackendIds start from 1; element zero of each array is never used.
244 	 *
245 	 * OldestMemberMXactId[k] is the oldest MultiXactId each backend's current
246 	 * transaction(s) could possibly be a member of, or InvalidMultiXactId
247 	 * when the backend has no live transaction that could possibly be a
248 	 * member of a MultiXact.  Each backend sets its entry to the current
249 	 * nextMXact counter just before first acquiring a shared lock in a given
250 	 * transaction, and clears it at transaction end. (This works because only
251 	 * during or after acquiring a shared lock could an XID possibly become a
252 	 * member of a MultiXact, and that MultiXact would have to be created
253 	 * during or after the lock acquisition.)
254 	 *
255 	 * OldestVisibleMXactId[k] is the oldest MultiXactId each backend's
256 	 * current transaction(s) think is potentially live, or InvalidMultiXactId
257 	 * when not in a transaction or not in a transaction that's paid any
258 	 * attention to MultiXacts yet.  This is computed when first needed in a
259 	 * given transaction, and cleared at transaction end.  We can compute it
260 	 * as the minimum of the valid OldestMemberMXactId[] entries at the time
261 	 * we compute it (using nextMXact if none are valid).  Each backend is
262 	 * required not to attempt to access any SLRU data for MultiXactIds older
263 	 * than its own OldestVisibleMXactId[] setting; this is necessary because
264 	 * the checkpointer could truncate away such data at any instant.
265 	 *
266 	 * The oldest valid value among all of the OldestMemberMXactId[] and
267 	 * OldestVisibleMXactId[] entries is considered by vacuum as the earliest
268 	 * possible value still having any live member transaction.  Subtracting
269 	 * vacuum_multixact_freeze_min_age from that value we obtain the freezing
270 	 * point for multixacts for that table.  Any value older than that is
271 	 * removed from tuple headers (or "frozen"; see FreezeMultiXactId.  Note
272 	 * that multis that have member xids that are older than the cutoff point
273 	 * for xids must also be frozen, even if the multis themselves are newer
274 	 * than the multixid cutoff point).  Whenever a full table vacuum happens,
275 	 * the freezing point so computed is used as the new pg_class.relminmxid
276 	 * value.  The minimum of all those values in a database is stored as
277 	 * pg_database.datminmxid.  In turn, the minimum of all of those values is
278 	 * stored in pg_control and used as truncation point for pg_multixact.  At
279 	 * checkpoint or restartpoint, unneeded segments are removed.
280 	 */
281 	MultiXactId perBackendXactIds[FLEXIBLE_ARRAY_MEMBER];
282 } MultiXactStateData;
283 
284 /*
285  * Last element of OldestMemberMXactId and OldestVisibleMXactId arrays.
286  * Valid elements are (1..MaxOldestSlot); element 0 is never used.
287  */
288 #define MaxOldestSlot	(MaxBackends + max_prepared_xacts)
289 
290 /* Pointers to the state data in shared memory */
291 static MultiXactStateData *MultiXactState;
292 static MultiXactId *OldestMemberMXactId;
293 static MultiXactId *OldestVisibleMXactId;
294 
295 
296 /*
297  * Definitions for the backend-local MultiXactId cache.
298  *
299  * We use this cache to store known MultiXacts, so we don't need to go to
300  * SLRU areas every time.
301  *
302  * The cache lasts for the duration of a single transaction, the rationale
303  * for this being that most entries will contain our own TransactionId and
304  * so they will be uninteresting by the time our next transaction starts.
305  * (XXX not clear that this is correct --- other members of the MultiXact
306  * could hang around longer than we did.  However, it's not clear what a
307  * better policy for flushing old cache entries would be.)	FIXME actually
308  * this is plain wrong now that multixact's may contain update Xids.
309  *
310  * We allocate the cache entries in a memory context that is deleted at
311  * transaction end, so we don't need to do retail freeing of entries.
312  */
313 typedef struct mXactCacheEnt
314 {
315 	MultiXactId multi;
316 	int			nmembers;
317 	dlist_node	node;
318 	MultiXactMember members[FLEXIBLE_ARRAY_MEMBER];
319 } mXactCacheEnt;
320 
321 #define MAX_CACHE_ENTRIES	256
322 static dlist_head MXactCache = DLIST_STATIC_INIT(MXactCache);
323 static int	MXactCacheMembers = 0;
324 static MemoryContext MXactContext = NULL;
325 
326 #ifdef MULTIXACT_DEBUG
327 #define debug_elog2(a,b) elog(a,b)
328 #define debug_elog3(a,b,c) elog(a,b,c)
329 #define debug_elog4(a,b,c,d) elog(a,b,c,d)
330 #define debug_elog5(a,b,c,d,e) elog(a,b,c,d,e)
331 #define debug_elog6(a,b,c,d,e,f) elog(a,b,c,d,e,f)
332 #else
333 #define debug_elog2(a,b)
334 #define debug_elog3(a,b,c)
335 #define debug_elog4(a,b,c,d)
336 #define debug_elog5(a,b,c,d,e)
337 #define debug_elog6(a,b,c,d,e,f)
338 #endif
339 
340 /* internal MultiXactId management */
341 static void MultiXactIdSetOldestVisible(void);
342 static void RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
343 							   int nmembers, MultiXactMember *members);
344 static MultiXactId GetNewMultiXactId(int nmembers, MultiXactOffset *offset);
345 
346 /* MultiXact cache management */
347 static int	mxactMemberComparator(const void *arg1, const void *arg2);
348 static MultiXactId mXactCacheGetBySet(int nmembers, MultiXactMember *members);
349 static int	mXactCacheGetById(MultiXactId multi, MultiXactMember **members);
350 static void mXactCachePut(MultiXactId multi, int nmembers,
351 						  MultiXactMember *members);
352 
353 static char *mxstatus_to_string(MultiXactStatus status);
354 
355 /* management of SLRU infrastructure */
356 static int	ZeroMultiXactOffsetPage(int pageno, bool writeXlog);
357 static int	ZeroMultiXactMemberPage(int pageno, bool writeXlog);
358 static bool MultiXactOffsetPagePrecedes(int page1, int page2);
359 static bool MultiXactMemberPagePrecedes(int page1, int page2);
360 static bool MultiXactOffsetPrecedes(MultiXactOffset offset1,
361 									MultiXactOffset offset2);
362 static void ExtendMultiXactOffset(MultiXactId multi);
363 static void ExtendMultiXactMember(MultiXactOffset offset, int nmembers);
364 static bool MultiXactOffsetWouldWrap(MultiXactOffset boundary,
365 									 MultiXactOffset start, uint32 distance);
366 static bool SetOffsetVacuumLimit(bool is_startup);
367 static bool find_multixact_start(MultiXactId multi, MultiXactOffset *result);
368 static void WriteMZeroPageXlogRec(int pageno, uint8 info);
369 static void WriteMTruncateXlogRec(Oid oldestMultiDB,
370 								  MultiXactId startTruncOff,
371 								  MultiXactId endTruncOff,
372 								  MultiXactOffset startTruncMemb,
373 								  MultiXactOffset endTruncMemb);
374 
375 
376 /*
377  * MultiXactIdCreate
378  *		Construct a MultiXactId representing two TransactionIds.
379  *
380  * The two XIDs must be different, or be requesting different statuses.
381  *
382  * NB - we don't worry about our local MultiXactId cache here, because that
383  * is handled by the lower-level routines.
384  */
385 MultiXactId
MultiXactIdCreate(TransactionId xid1,MultiXactStatus status1,TransactionId xid2,MultiXactStatus status2)386 MultiXactIdCreate(TransactionId xid1, MultiXactStatus status1,
387 				  TransactionId xid2, MultiXactStatus status2)
388 {
389 	MultiXactId newMulti;
390 	MultiXactMember members[2];
391 
392 	AssertArg(TransactionIdIsValid(xid1));
393 	AssertArg(TransactionIdIsValid(xid2));
394 
395 	Assert(!TransactionIdEquals(xid1, xid2) || (status1 != status2));
396 
397 	/* MultiXactIdSetOldestMember() must have been called already. */
398 	Assert(MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]));
399 
400 	/*
401 	 * Note: unlike MultiXactIdExpand, we don't bother to check that both XIDs
402 	 * are still running.  In typical usage, xid2 will be our own XID and the
403 	 * caller just did a check on xid1, so it'd be wasted effort.
404 	 */
405 
406 	members[0].xid = xid1;
407 	members[0].status = status1;
408 	members[1].xid = xid2;
409 	members[1].status = status2;
410 
411 	newMulti = MultiXactIdCreateFromMembers(2, members);
412 
413 	debug_elog3(DEBUG2, "Create: %s",
414 				mxid_to_string(newMulti, 2, members));
415 
416 	return newMulti;
417 }
418 
419 /*
420  * MultiXactIdExpand
421  *		Add a TransactionId to a pre-existing MultiXactId.
422  *
423  * If the TransactionId is already a member of the passed MultiXactId with the
424  * same status, just return it as-is.
425  *
426  * Note that we do NOT actually modify the membership of a pre-existing
427  * MultiXactId; instead we create a new one.  This is necessary to avoid
428  * a race condition against code trying to wait for one MultiXactId to finish;
429  * see notes in heapam.c.
430  *
431  * NB - we don't worry about our local MultiXactId cache here, because that
432  * is handled by the lower-level routines.
433  *
434  * Note: It is critical that MultiXactIds that come from an old cluster (i.e.
435  * one upgraded by pg_upgrade from a cluster older than this feature) are not
436  * passed in.
437  */
438 MultiXactId
MultiXactIdExpand(MultiXactId multi,TransactionId xid,MultiXactStatus status)439 MultiXactIdExpand(MultiXactId multi, TransactionId xid, MultiXactStatus status)
440 {
441 	MultiXactId newMulti;
442 	MultiXactMember *members;
443 	MultiXactMember *newMembers;
444 	int			nmembers;
445 	int			i;
446 	int			j;
447 
448 	AssertArg(MultiXactIdIsValid(multi));
449 	AssertArg(TransactionIdIsValid(xid));
450 
451 	/* MultiXactIdSetOldestMember() must have been called already. */
452 	Assert(MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]));
453 
454 	debug_elog5(DEBUG2, "Expand: received multi %u, xid %u status %s",
455 				multi, xid, mxstatus_to_string(status));
456 
457 	/*
458 	 * Note: we don't allow for old multis here.  The reason is that the only
459 	 * caller of this function does a check that the multixact is no longer
460 	 * running.
461 	 */
462 	nmembers = GetMultiXactIdMembers(multi, &members, false, false);
463 
464 	if (nmembers < 0)
465 	{
466 		MultiXactMember member;
467 
468 		/*
469 		 * The MultiXactId is obsolete.  This can only happen if all the
470 		 * MultiXactId members stop running between the caller checking and
471 		 * passing it to us.  It would be better to return that fact to the
472 		 * caller, but it would complicate the API and it's unlikely to happen
473 		 * too often, so just deal with it by creating a singleton MultiXact.
474 		 */
475 		member.xid = xid;
476 		member.status = status;
477 		newMulti = MultiXactIdCreateFromMembers(1, &member);
478 
479 		debug_elog4(DEBUG2, "Expand: %u has no members, create singleton %u",
480 					multi, newMulti);
481 		return newMulti;
482 	}
483 
484 	/*
485 	 * If the TransactionId is already a member of the MultiXactId with the
486 	 * same status, just return the existing MultiXactId.
487 	 */
488 	for (i = 0; i < nmembers; i++)
489 	{
490 		if (TransactionIdEquals(members[i].xid, xid) &&
491 			(members[i].status == status))
492 		{
493 			debug_elog4(DEBUG2, "Expand: %u is already a member of %u",
494 						xid, multi);
495 			pfree(members);
496 			return multi;
497 		}
498 	}
499 
500 	/*
501 	 * Determine which of the members of the MultiXactId are still of
502 	 * interest. This is any running transaction, and also any transaction
503 	 * that grabbed something stronger than just a lock and was committed. (An
504 	 * update that aborted is of no interest here; and having more than one
505 	 * update Xid in a multixact would cause errors elsewhere.)
506 	 *
507 	 * Removing dead members is not just an optimization: freezing of tuples
508 	 * whose Xmax are multis depends on this behavior.
509 	 *
510 	 * Note we have the same race condition here as above: j could be 0 at the
511 	 * end of the loop.
512 	 */
513 	newMembers = (MultiXactMember *)
514 		palloc(sizeof(MultiXactMember) * (nmembers + 1));
515 
516 	for (i = 0, j = 0; i < nmembers; i++)
517 	{
518 		if (TransactionIdIsInProgress(members[i].xid) ||
519 			(ISUPDATE_from_mxstatus(members[i].status) &&
520 			 TransactionIdDidCommit(members[i].xid)))
521 		{
522 			newMembers[j].xid = members[i].xid;
523 			newMembers[j++].status = members[i].status;
524 		}
525 	}
526 
527 	newMembers[j].xid = xid;
528 	newMembers[j++].status = status;
529 	newMulti = MultiXactIdCreateFromMembers(j, newMembers);
530 
531 	pfree(members);
532 	pfree(newMembers);
533 
534 	debug_elog3(DEBUG2, "Expand: returning new multi %u", newMulti);
535 
536 	return newMulti;
537 }
538 
539 /*
540  * MultiXactIdIsRunning
541  *		Returns whether a MultiXactId is "running".
542  *
543  * We return true if at least one member of the given MultiXactId is still
544  * running.  Note that a "false" result is certain not to change,
545  * because it is not legal to add members to an existing MultiXactId.
546  *
547  * Caller is expected to have verified that the multixact does not come from
548  * a pg_upgraded share-locked tuple.
549  */
550 bool
MultiXactIdIsRunning(MultiXactId multi,bool isLockOnly)551 MultiXactIdIsRunning(MultiXactId multi, bool isLockOnly)
552 {
553 	MultiXactMember *members;
554 	int			nmembers;
555 	int			i;
556 
557 	debug_elog3(DEBUG2, "IsRunning %u?", multi);
558 
559 	/*
560 	 * "false" here means we assume our callers have checked that the given
561 	 * multi cannot possibly come from a pg_upgraded database.
562 	 */
563 	nmembers = GetMultiXactIdMembers(multi, &members, false, isLockOnly);
564 
565 	if (nmembers <= 0)
566 	{
567 		debug_elog2(DEBUG2, "IsRunning: no members");
568 		return false;
569 	}
570 
571 	/*
572 	 * Checking for myself is cheap compared to looking in shared memory;
573 	 * return true if any live subtransaction of the current top-level
574 	 * transaction is a member.
575 	 *
576 	 * This is not needed for correctness, it's just a fast path.
577 	 */
578 	for (i = 0; i < nmembers; i++)
579 	{
580 		if (TransactionIdIsCurrentTransactionId(members[i].xid))
581 		{
582 			debug_elog3(DEBUG2, "IsRunning: I (%d) am running!", i);
583 			pfree(members);
584 			return true;
585 		}
586 	}
587 
588 	/*
589 	 * This could be made faster by having another entry point in procarray.c,
590 	 * walking the PGPROC array only once for all the members.  But in most
591 	 * cases nmembers should be small enough that it doesn't much matter.
592 	 */
593 	for (i = 0; i < nmembers; i++)
594 	{
595 		if (TransactionIdIsInProgress(members[i].xid))
596 		{
597 			debug_elog4(DEBUG2, "IsRunning: member %d (%u) is running",
598 						i, members[i].xid);
599 			pfree(members);
600 			return true;
601 		}
602 	}
603 
604 	pfree(members);
605 
606 	debug_elog3(DEBUG2, "IsRunning: %u is not running", multi);
607 
608 	return false;
609 }
610 
611 /*
612  * MultiXactIdSetOldestMember
613  *		Save the oldest MultiXactId this transaction could be a member of.
614  *
615  * We set the OldestMemberMXactId for a given transaction the first time it's
616  * going to do some operation that might require a MultiXactId (tuple lock,
617  * update or delete).  We need to do this even if we end up using a
618  * TransactionId instead of a MultiXactId, because there is a chance that
619  * another transaction would add our XID to a MultiXactId.
620  *
621  * The value to set is the next-to-be-assigned MultiXactId, so this is meant to
622  * be called just before doing any such possibly-MultiXactId-able operation.
623  */
624 void
MultiXactIdSetOldestMember(void)625 MultiXactIdSetOldestMember(void)
626 {
627 	if (!MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]))
628 	{
629 		MultiXactId nextMXact;
630 
631 		/*
632 		 * You might think we don't need to acquire a lock here, since
633 		 * fetching and storing of TransactionIds is probably atomic, but in
634 		 * fact we do: suppose we pick up nextMXact and then lose the CPU for
635 		 * a long time.  Someone else could advance nextMXact, and then
636 		 * another someone else could compute an OldestVisibleMXactId that
637 		 * would be after the value we are going to store when we get control
638 		 * back.  Which would be wrong.
639 		 *
640 		 * Note that a shared lock is sufficient, because it's enough to stop
641 		 * someone from advancing nextMXact; and nobody else could be trying
642 		 * to write to our OldestMember entry, only reading (and we assume
643 		 * storing it is atomic.)
644 		 */
645 		LWLockAcquire(MultiXactGenLock, LW_SHARED);
646 
647 		/*
648 		 * We have to beware of the possibility that nextMXact is in the
649 		 * wrapped-around state.  We don't fix the counter itself here, but we
650 		 * must be sure to store a valid value in our array entry.
651 		 */
652 		nextMXact = MultiXactState->nextMXact;
653 		if (nextMXact < FirstMultiXactId)
654 			nextMXact = FirstMultiXactId;
655 
656 		OldestMemberMXactId[MyBackendId] = nextMXact;
657 
658 		LWLockRelease(MultiXactGenLock);
659 
660 		debug_elog4(DEBUG2, "MultiXact: setting OldestMember[%d] = %u",
661 					MyBackendId, nextMXact);
662 	}
663 }
664 
665 /*
666  * MultiXactIdSetOldestVisible
667  *		Save the oldest MultiXactId this transaction considers possibly live.
668  *
669  * We set the OldestVisibleMXactId for a given transaction the first time
670  * it's going to inspect any MultiXactId.  Once we have set this, we are
671  * guaranteed that the checkpointer won't truncate off SLRU data for
672  * MultiXactIds at or after our OldestVisibleMXactId.
673  *
674  * The value to set is the oldest of nextMXact and all the valid per-backend
675  * OldestMemberMXactId[] entries.  Because of the locking we do, we can be
676  * certain that no subsequent call to MultiXactIdSetOldestMember can set
677  * an OldestMemberMXactId[] entry older than what we compute here.  Therefore
678  * there is no live transaction, now or later, that can be a member of any
679  * MultiXactId older than the OldestVisibleMXactId we compute here.
680  */
681 static void
MultiXactIdSetOldestVisible(void)682 MultiXactIdSetOldestVisible(void)
683 {
684 	if (!MultiXactIdIsValid(OldestVisibleMXactId[MyBackendId]))
685 	{
686 		MultiXactId oldestMXact;
687 		int			i;
688 
689 		LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
690 
691 		/*
692 		 * We have to beware of the possibility that nextMXact is in the
693 		 * wrapped-around state.  We don't fix the counter itself here, but we
694 		 * must be sure to store a valid value in our array entry.
695 		 */
696 		oldestMXact = MultiXactState->nextMXact;
697 		if (oldestMXact < FirstMultiXactId)
698 			oldestMXact = FirstMultiXactId;
699 
700 		for (i = 1; i <= MaxOldestSlot; i++)
701 		{
702 			MultiXactId thisoldest = OldestMemberMXactId[i];
703 
704 			if (MultiXactIdIsValid(thisoldest) &&
705 				MultiXactIdPrecedes(thisoldest, oldestMXact))
706 				oldestMXact = thisoldest;
707 		}
708 
709 		OldestVisibleMXactId[MyBackendId] = oldestMXact;
710 
711 		LWLockRelease(MultiXactGenLock);
712 
713 		debug_elog4(DEBUG2, "MultiXact: setting OldestVisible[%d] = %u",
714 					MyBackendId, oldestMXact);
715 	}
716 }
717 
718 /*
719  * ReadNextMultiXactId
720  *		Return the next MultiXactId to be assigned, but don't allocate it
721  */
722 MultiXactId
ReadNextMultiXactId(void)723 ReadNextMultiXactId(void)
724 {
725 	MultiXactId mxid;
726 
727 	/* XXX we could presumably do this without a lock. */
728 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
729 	mxid = MultiXactState->nextMXact;
730 	LWLockRelease(MultiXactGenLock);
731 
732 	if (mxid < FirstMultiXactId)
733 		mxid = FirstMultiXactId;
734 
735 	return mxid;
736 }
737 
738 /*
739  * ReadMultiXactIdRange
740  *		Get the range of IDs that may still be referenced by a relation.
741  */
742 void
ReadMultiXactIdRange(MultiXactId * oldest,MultiXactId * next)743 ReadMultiXactIdRange(MultiXactId *oldest, MultiXactId *next)
744 {
745 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
746 	*oldest = MultiXactState->oldestMultiXactId;
747 	*next = MultiXactState->nextMXact;
748 	LWLockRelease(MultiXactGenLock);
749 
750 	if (*oldest < FirstMultiXactId)
751 		*oldest = FirstMultiXactId;
752 	if (*next < FirstMultiXactId)
753 		*next = FirstMultiXactId;
754 }
755 
756 
757 /*
758  * MultiXactIdCreateFromMembers
759  *		Make a new MultiXactId from the specified set of members
760  *
761  * Make XLOG, SLRU and cache entries for a new MultiXactId, recording the
762  * given TransactionIds as members.  Returns the newly created MultiXactId.
763  *
764  * NB: the passed members[] array will be sorted in-place.
765  */
766 MultiXactId
MultiXactIdCreateFromMembers(int nmembers,MultiXactMember * members)767 MultiXactIdCreateFromMembers(int nmembers, MultiXactMember *members)
768 {
769 	MultiXactId multi;
770 	MultiXactOffset offset;
771 	xl_multixact_create xlrec;
772 
773 	debug_elog3(DEBUG2, "Create: %s",
774 				mxid_to_string(InvalidMultiXactId, nmembers, members));
775 
776 	/*
777 	 * See if the same set of members already exists in our cache; if so, just
778 	 * re-use that MultiXactId.  (Note: it might seem that looking in our
779 	 * cache is insufficient, and we ought to search disk to see if a
780 	 * duplicate definition already exists.  But since we only ever create
781 	 * MultiXacts containing our own XID, in most cases any such MultiXacts
782 	 * were in fact created by us, and so will be in our cache.  There are
783 	 * corner cases where someone else added us to a MultiXact without our
784 	 * knowledge, but it's not worth checking for.)
785 	 */
786 	multi = mXactCacheGetBySet(nmembers, members);
787 	if (MultiXactIdIsValid(multi))
788 	{
789 		debug_elog2(DEBUG2, "Create: in cache!");
790 		return multi;
791 	}
792 
793 	/* Verify that there is a single update Xid among the given members. */
794 	{
795 		int			i;
796 		bool		has_update = false;
797 
798 		for (i = 0; i < nmembers; i++)
799 		{
800 			if (ISUPDATE_from_mxstatus(members[i].status))
801 			{
802 				if (has_update)
803 					elog(ERROR, "new multixact has more than one updating member");
804 				has_update = true;
805 			}
806 		}
807 	}
808 
809 	/*
810 	 * Assign the MXID and offsets range to use, and make sure there is space
811 	 * in the OFFSETs and MEMBERs files.  NB: this routine does
812 	 * START_CRIT_SECTION().
813 	 *
814 	 * Note: unlike MultiXactIdCreate and MultiXactIdExpand, we do not check
815 	 * that we've called MultiXactIdSetOldestMember here.  This is because
816 	 * this routine is used in some places to create new MultiXactIds of which
817 	 * the current backend is not a member, notably during freezing of multis
818 	 * in vacuum.  During vacuum, in particular, it would be unacceptable to
819 	 * keep OldestMulti set, in case it runs for long.
820 	 */
821 	multi = GetNewMultiXactId(nmembers, &offset);
822 
823 	/* Make an XLOG entry describing the new MXID. */
824 	xlrec.mid = multi;
825 	xlrec.moff = offset;
826 	xlrec.nmembers = nmembers;
827 
828 	/*
829 	 * XXX Note: there's a lot of padding space in MultiXactMember.  We could
830 	 * find a more compact representation of this Xlog record -- perhaps all
831 	 * the status flags in one XLogRecData, then all the xids in another one?
832 	 * Not clear that it's worth the trouble though.
833 	 */
834 	XLogBeginInsert();
835 	XLogRegisterData((char *) (&xlrec), SizeOfMultiXactCreate);
836 	XLogRegisterData((char *) members, nmembers * sizeof(MultiXactMember));
837 
838 	(void) XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_CREATE_ID);
839 
840 	/* Now enter the information into the OFFSETs and MEMBERs logs */
841 	RecordNewMultiXact(multi, offset, nmembers, members);
842 
843 	/* Done with critical section */
844 	END_CRIT_SECTION();
845 
846 	/* Store the new MultiXactId in the local cache, too */
847 	mXactCachePut(multi, nmembers, members);
848 
849 	debug_elog2(DEBUG2, "Create: all done");
850 
851 	return multi;
852 }
853 
854 /*
855  * RecordNewMultiXact
856  *		Write info about a new multixact into the offsets and members files
857  *
858  * This is broken out of MultiXactIdCreateFromMembers so that xlog replay can
859  * use it.
860  */
861 static void
RecordNewMultiXact(MultiXactId multi,MultiXactOffset offset,int nmembers,MultiXactMember * members)862 RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
863 				   int nmembers, MultiXactMember *members)
864 {
865 	int			pageno;
866 	int			prev_pageno;
867 	int			entryno;
868 	int			slotno;
869 	MultiXactOffset *offptr;
870 	int			i;
871 
872 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
873 
874 	pageno = MultiXactIdToOffsetPage(multi);
875 	entryno = MultiXactIdToOffsetEntry(multi);
876 
877 	/*
878 	 * Note: we pass the MultiXactId to SimpleLruReadPage as the "transaction"
879 	 * to complain about if there's any I/O error.  This is kinda bogus, but
880 	 * since the errors will always give the full pathname, it should be clear
881 	 * enough that a MultiXactId is really involved.  Perhaps someday we'll
882 	 * take the trouble to generalize the slru.c error reporting code.
883 	 */
884 	slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
885 	offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
886 	offptr += entryno;
887 
888 	*offptr = offset;
889 
890 	MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
891 
892 	/* Exchange our lock */
893 	LWLockRelease(MultiXactOffsetSLRULock);
894 
895 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
896 
897 	prev_pageno = -1;
898 
899 	for (i = 0; i < nmembers; i++, offset++)
900 	{
901 		TransactionId *memberptr;
902 		uint32	   *flagsptr;
903 		uint32		flagsval;
904 		int			bshift;
905 		int			flagsoff;
906 		int			memberoff;
907 
908 		Assert(members[i].status <= MultiXactStatusUpdate);
909 
910 		pageno = MXOffsetToMemberPage(offset);
911 		memberoff = MXOffsetToMemberOffset(offset);
912 		flagsoff = MXOffsetToFlagsOffset(offset);
913 		bshift = MXOffsetToFlagsBitShift(offset);
914 
915 		if (pageno != prev_pageno)
916 		{
917 			slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
918 			prev_pageno = pageno;
919 		}
920 
921 		memberptr = (TransactionId *)
922 			(MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
923 
924 		*memberptr = members[i].xid;
925 
926 		flagsptr = (uint32 *)
927 			(MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
928 
929 		flagsval = *flagsptr;
930 		flagsval &= ~(((1 << MXACT_MEMBER_BITS_PER_XACT) - 1) << bshift);
931 		flagsval |= (members[i].status << bshift);
932 		*flagsptr = flagsval;
933 
934 		MultiXactMemberCtl->shared->page_dirty[slotno] = true;
935 	}
936 
937 	LWLockRelease(MultiXactMemberSLRULock);
938 }
939 
940 /*
941  * GetNewMultiXactId
942  *		Get the next MultiXactId.
943  *
944  * Also, reserve the needed amount of space in the "members" area.  The
945  * starting offset of the reserved space is returned in *offset.
946  *
947  * This may generate XLOG records for expansion of the offsets and/or members
948  * files.  Unfortunately, we have to do that while holding MultiXactGenLock
949  * to avoid race conditions --- the XLOG record for zeroing a page must appear
950  * before any backend can possibly try to store data in that page!
951  *
952  * We start a critical section before advancing the shared counters.  The
953  * caller must end the critical section after writing SLRU data.
954  */
955 static MultiXactId
GetNewMultiXactId(int nmembers,MultiXactOffset * offset)956 GetNewMultiXactId(int nmembers, MultiXactOffset *offset)
957 {
958 	MultiXactId result;
959 	MultiXactOffset nextOffset;
960 
961 	debug_elog3(DEBUG2, "GetNew: for %d xids", nmembers);
962 
963 	/* safety check, we should never get this far in a HS standby */
964 	if (RecoveryInProgress())
965 		elog(ERROR, "cannot assign MultiXactIds during recovery");
966 
967 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
968 
969 	/* Handle wraparound of the nextMXact counter */
970 	if (MultiXactState->nextMXact < FirstMultiXactId)
971 		MultiXactState->nextMXact = FirstMultiXactId;
972 
973 	/* Assign the MXID */
974 	result = MultiXactState->nextMXact;
975 
976 	/*----------
977 	 * Check to see if it's safe to assign another MultiXactId.  This protects
978 	 * against catastrophic data loss due to multixact wraparound.  The basic
979 	 * rules are:
980 	 *
981 	 * If we're past multiVacLimit or the safe threshold for member storage
982 	 * space, or we don't know what the safe threshold for member storage is,
983 	 * start trying to force autovacuum cycles.
984 	 * If we're past multiWarnLimit, start issuing warnings.
985 	 * If we're past multiStopLimit, refuse to create new MultiXactIds.
986 	 *
987 	 * Note these are pretty much the same protections in GetNewTransactionId.
988 	 *----------
989 	 */
990 	if (!MultiXactIdPrecedes(result, MultiXactState->multiVacLimit))
991 	{
992 		/*
993 		 * For safety's sake, we release MultiXactGenLock while sending
994 		 * signals, warnings, etc.  This is not so much because we care about
995 		 * preserving concurrency in this situation, as to avoid any
996 		 * possibility of deadlock while doing get_database_name(). First,
997 		 * copy all the shared values we'll need in this path.
998 		 */
999 		MultiXactId multiWarnLimit = MultiXactState->multiWarnLimit;
1000 		MultiXactId multiStopLimit = MultiXactState->multiStopLimit;
1001 		MultiXactId multiWrapLimit = MultiXactState->multiWrapLimit;
1002 		Oid			oldest_datoid = MultiXactState->oldestMultiXactDB;
1003 
1004 		LWLockRelease(MultiXactGenLock);
1005 
1006 		if (IsUnderPostmaster &&
1007 			!MultiXactIdPrecedes(result, multiStopLimit))
1008 		{
1009 			char	   *oldest_datname = get_database_name(oldest_datoid);
1010 
1011 			/*
1012 			 * Immediately kick autovacuum into action as we're already in
1013 			 * ERROR territory.
1014 			 */
1015 			SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1016 
1017 			/* complain even if that DB has disappeared */
1018 			if (oldest_datname)
1019 				ereport(ERROR,
1020 						(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1021 						 errmsg("database is not accepting commands that generate new MultiXactIds to avoid wraparound data loss in database \"%s\"",
1022 								oldest_datname),
1023 						 errhint("Execute a database-wide VACUUM in that database.\n"
1024 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1025 			else
1026 				ereport(ERROR,
1027 						(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1028 						 errmsg("database is not accepting commands that generate new MultiXactIds to avoid wraparound data loss in database with OID %u",
1029 								oldest_datoid),
1030 						 errhint("Execute a database-wide VACUUM in that database.\n"
1031 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1032 		}
1033 
1034 		/*
1035 		 * To avoid swamping the postmaster with signals, we issue the autovac
1036 		 * request only once per 64K multis generated.  This still gives
1037 		 * plenty of chances before we get into real trouble.
1038 		 */
1039 		if (IsUnderPostmaster && (result % 65536) == 0)
1040 			SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1041 
1042 		if (!MultiXactIdPrecedes(result, multiWarnLimit))
1043 		{
1044 			char	   *oldest_datname = get_database_name(oldest_datoid);
1045 
1046 			/* complain even if that DB has disappeared */
1047 			if (oldest_datname)
1048 				ereport(WARNING,
1049 						(errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
1050 									   "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
1051 									   multiWrapLimit - result,
1052 									   oldest_datname,
1053 									   multiWrapLimit - result),
1054 						 errhint("Execute a database-wide VACUUM in that database.\n"
1055 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1056 			else
1057 				ereport(WARNING,
1058 						(errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
1059 									   "database with OID %u must be vacuumed before %u more MultiXactIds are used",
1060 									   multiWrapLimit - result,
1061 									   oldest_datoid,
1062 									   multiWrapLimit - result),
1063 						 errhint("Execute a database-wide VACUUM in that database.\n"
1064 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1065 		}
1066 
1067 		/* Re-acquire lock and start over */
1068 		LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1069 		result = MultiXactState->nextMXact;
1070 		if (result < FirstMultiXactId)
1071 			result = FirstMultiXactId;
1072 	}
1073 
1074 	/* Make sure there is room for the MXID in the file.  */
1075 	ExtendMultiXactOffset(result);
1076 
1077 	/*
1078 	 * Reserve the members space, similarly to above.  Also, be careful not to
1079 	 * return zero as the starting offset for any multixact. See
1080 	 * GetMultiXactIdMembers() for motivation.
1081 	 */
1082 	nextOffset = MultiXactState->nextOffset;
1083 	if (nextOffset == 0)
1084 	{
1085 		*offset = 1;
1086 		nmembers++;				/* allocate member slot 0 too */
1087 	}
1088 	else
1089 		*offset = nextOffset;
1090 
1091 	/*----------
1092 	 * Protect against overrun of the members space as well, with the
1093 	 * following rules:
1094 	 *
1095 	 * If we're past offsetStopLimit, refuse to generate more multis.
1096 	 * If we're close to offsetStopLimit, emit a warning.
1097 	 *
1098 	 * Arbitrarily, we start emitting warnings when we're 20 segments or less
1099 	 * from offsetStopLimit.
1100 	 *
1101 	 * Note we haven't updated the shared state yet, so if we fail at this
1102 	 * point, the multixact ID we grabbed can still be used by the next guy.
1103 	 *
1104 	 * Note that there is no point in forcing autovacuum runs here: the
1105 	 * multixact freeze settings would have to be reduced for that to have any
1106 	 * effect.
1107 	 *----------
1108 	 */
1109 #define OFFSET_WARN_SEGMENTS	20
1110 	if (MultiXactState->oldestOffsetKnown &&
1111 		MultiXactOffsetWouldWrap(MultiXactState->offsetStopLimit, nextOffset,
1112 								 nmembers))
1113 	{
1114 		/* see comment in the corresponding offsets wraparound case */
1115 		SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1116 
1117 		ereport(ERROR,
1118 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1119 				 errmsg("multixact \"members\" limit exceeded"),
1120 				 errdetail_plural("This command would create a multixact with %u members, but the remaining space is only enough for %u member.",
1121 								  "This command would create a multixact with %u members, but the remaining space is only enough for %u members.",
1122 								  MultiXactState->offsetStopLimit - nextOffset - 1,
1123 								  nmembers,
1124 								  MultiXactState->offsetStopLimit - nextOffset - 1),
1125 				 errhint("Execute a database-wide VACUUM in database with OID %u with reduced vacuum_multixact_freeze_min_age and vacuum_multixact_freeze_table_age settings.",
1126 						 MultiXactState->oldestMultiXactDB)));
1127 	}
1128 
1129 	/*
1130 	 * Check whether we should kick autovacuum into action, to prevent members
1131 	 * wraparound. NB we use a much larger window to trigger autovacuum than
1132 	 * just the warning limit. The warning is just a measure of last resort -
1133 	 * this is in line with GetNewTransactionId's behaviour.
1134 	 */
1135 	if (!MultiXactState->oldestOffsetKnown ||
1136 		(MultiXactState->nextOffset - MultiXactState->oldestOffset
1137 		 > MULTIXACT_MEMBER_SAFE_THRESHOLD))
1138 	{
1139 		/*
1140 		 * To avoid swamping the postmaster with signals, we issue the autovac
1141 		 * request only when crossing a segment boundary. With default
1142 		 * compilation settings that's roughly after 50k members.  This still
1143 		 * gives plenty of chances before we get into real trouble.
1144 		 */
1145 		if ((MXOffsetToMemberPage(nextOffset) / SLRU_PAGES_PER_SEGMENT) !=
1146 			(MXOffsetToMemberPage(nextOffset + nmembers) / SLRU_PAGES_PER_SEGMENT))
1147 			SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1148 	}
1149 
1150 	if (MultiXactState->oldestOffsetKnown &&
1151 		MultiXactOffsetWouldWrap(MultiXactState->offsetStopLimit,
1152 								 nextOffset,
1153 								 nmembers + MULTIXACT_MEMBERS_PER_PAGE * SLRU_PAGES_PER_SEGMENT * OFFSET_WARN_SEGMENTS))
1154 		ereport(WARNING,
1155 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1156 				 errmsg_plural("database with OID %u must be vacuumed before %d more multixact member is used",
1157 							   "database with OID %u must be vacuumed before %d more multixact members are used",
1158 							   MultiXactState->offsetStopLimit - nextOffset + nmembers,
1159 							   MultiXactState->oldestMultiXactDB,
1160 							   MultiXactState->offsetStopLimit - nextOffset + nmembers),
1161 				 errhint("Execute a database-wide VACUUM in that database with reduced vacuum_multixact_freeze_min_age and vacuum_multixact_freeze_table_age settings.")));
1162 
1163 	ExtendMultiXactMember(nextOffset, nmembers);
1164 
1165 	/*
1166 	 * Critical section from here until caller has written the data into the
1167 	 * just-reserved SLRU space; we don't want to error out with a partly
1168 	 * written MultiXact structure.  (In particular, failing to write our
1169 	 * start offset after advancing nextMXact would effectively corrupt the
1170 	 * previous MultiXact.)
1171 	 */
1172 	START_CRIT_SECTION();
1173 
1174 	/*
1175 	 * Advance counters.  As in GetNewTransactionId(), this must not happen
1176 	 * until after file extension has succeeded!
1177 	 *
1178 	 * We don't care about MultiXactId wraparound here; it will be handled by
1179 	 * the next iteration.  But note that nextMXact may be InvalidMultiXactId
1180 	 * or the first value on a segment-beginning page after this routine
1181 	 * exits, so anyone else looking at the variable must be prepared to deal
1182 	 * with either case.  Similarly, nextOffset may be zero, but we won't use
1183 	 * that as the actual start offset of the next multixact.
1184 	 */
1185 	(MultiXactState->nextMXact)++;
1186 
1187 	MultiXactState->nextOffset += nmembers;
1188 
1189 	LWLockRelease(MultiXactGenLock);
1190 
1191 	debug_elog4(DEBUG2, "GetNew: returning %u offset %u", result, *offset);
1192 	return result;
1193 }
1194 
1195 /*
1196  * GetMultiXactIdMembers
1197  *		Return the set of MultiXactMembers that make up a MultiXactId
1198  *
1199  * Return value is the number of members found, or -1 if there are none,
1200  * and *members is set to a newly palloc'ed array of members.  It's the
1201  * caller's responsibility to free it when done with it.
1202  *
1203  * from_pgupgrade must be passed as true if and only if only the multixact
1204  * corresponds to a value from a tuple that was locked in a 9.2-or-older
1205  * installation and later pg_upgrade'd (that is, the infomask is
1206  * HEAP_LOCKED_UPGRADED).  In this case, we know for certain that no members
1207  * can still be running, so we return -1 just like for an empty multixact
1208  * without any further checking.  It would be wrong to try to resolve such a
1209  * multixact: either the multixact is within the current valid multixact
1210  * range, in which case the returned result would be bogus, or outside that
1211  * range, in which case an error would be raised.
1212  *
1213  * In all other cases, the passed multixact must be within the known valid
1214  * range, that is, greater to or equal than oldestMultiXactId, and less than
1215  * nextMXact.  Otherwise, an error is raised.
1216  *
1217  * onlyLock must be set to true if caller is certain that the given multi
1218  * is used only to lock tuples; can be false without loss of correctness,
1219  * but passing a true means we can return quickly without checking for
1220  * old updates.
1221  */
1222 int
GetMultiXactIdMembers(MultiXactId multi,MultiXactMember ** members,bool from_pgupgrade,bool onlyLock)1223 GetMultiXactIdMembers(MultiXactId multi, MultiXactMember **members,
1224 					  bool from_pgupgrade, bool onlyLock)
1225 {
1226 	int			pageno;
1227 	int			prev_pageno;
1228 	int			entryno;
1229 	int			slotno;
1230 	MultiXactOffset *offptr;
1231 	MultiXactOffset offset;
1232 	int			length;
1233 	int			truelength;
1234 	int			i;
1235 	MultiXactId oldestMXact;
1236 	MultiXactId nextMXact;
1237 	MultiXactId tmpMXact;
1238 	MultiXactOffset nextOffset;
1239 	MultiXactMember *ptr;
1240 
1241 	debug_elog3(DEBUG2, "GetMembers: asked for %u", multi);
1242 
1243 	if (!MultiXactIdIsValid(multi) || from_pgupgrade)
1244 	{
1245 		*members = NULL;
1246 		return -1;
1247 	}
1248 
1249 	/* See if the MultiXactId is in the local cache */
1250 	length = mXactCacheGetById(multi, members);
1251 	if (length >= 0)
1252 	{
1253 		debug_elog3(DEBUG2, "GetMembers: found %s in the cache",
1254 					mxid_to_string(multi, length, *members));
1255 		return length;
1256 	}
1257 
1258 	/* Set our OldestVisibleMXactId[] entry if we didn't already */
1259 	MultiXactIdSetOldestVisible();
1260 
1261 	/*
1262 	 * If we know the multi is used only for locking and not for updates, then
1263 	 * we can skip checking if the value is older than our oldest visible
1264 	 * multi.  It cannot possibly still be running.
1265 	 */
1266 	if (onlyLock &&
1267 		MultiXactIdPrecedes(multi, OldestVisibleMXactId[MyBackendId]))
1268 	{
1269 		debug_elog2(DEBUG2, "GetMembers: a locker-only multi is too old");
1270 		*members = NULL;
1271 		return -1;
1272 	}
1273 
1274 	/*
1275 	 * We check known limits on MultiXact before resorting to the SLRU area.
1276 	 *
1277 	 * An ID older than MultiXactState->oldestMultiXactId cannot possibly be
1278 	 * useful; it has already been removed, or will be removed shortly, by
1279 	 * truncation.  If one is passed, an error is raised.
1280 	 *
1281 	 * Also, an ID >= nextMXact shouldn't ever be seen here; if it is seen, it
1282 	 * implies undetected ID wraparound has occurred.  This raises a hard
1283 	 * error.
1284 	 *
1285 	 * Shared lock is enough here since we aren't modifying any global state.
1286 	 * Acquire it just long enough to grab the current counter values.  We may
1287 	 * need both nextMXact and nextOffset; see below.
1288 	 */
1289 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
1290 
1291 	oldestMXact = MultiXactState->oldestMultiXactId;
1292 	nextMXact = MultiXactState->nextMXact;
1293 	nextOffset = MultiXactState->nextOffset;
1294 
1295 	LWLockRelease(MultiXactGenLock);
1296 
1297 	if (MultiXactIdPrecedes(multi, oldestMXact))
1298 		ereport(ERROR,
1299 				(errcode(ERRCODE_INTERNAL_ERROR),
1300 				 errmsg("MultiXactId %u does no longer exist -- apparent wraparound",
1301 						multi)));
1302 
1303 	if (!MultiXactIdPrecedes(multi, nextMXact))
1304 		ereport(ERROR,
1305 				(errcode(ERRCODE_INTERNAL_ERROR),
1306 				 errmsg("MultiXactId %u has not been created yet -- apparent wraparound",
1307 						multi)));
1308 
1309 	/*
1310 	 * Find out the offset at which we need to start reading MultiXactMembers
1311 	 * and the number of members in the multixact.  We determine the latter as
1312 	 * the difference between this multixact's starting offset and the next
1313 	 * one's.  However, there are some corner cases to worry about:
1314 	 *
1315 	 * 1. This multixact may be the latest one created, in which case there is
1316 	 * no next one to look at.  In this case the nextOffset value we just
1317 	 * saved is the correct endpoint.
1318 	 *
1319 	 * 2. The next multixact may still be in process of being filled in: that
1320 	 * is, another process may have done GetNewMultiXactId but not yet written
1321 	 * the offset entry for that ID.  In that scenario, it is guaranteed that
1322 	 * the offset entry for that multixact exists (because GetNewMultiXactId
1323 	 * won't release MultiXactGenLock until it does) but contains zero
1324 	 * (because we are careful to pre-zero offset pages). Because
1325 	 * GetNewMultiXactId will never return zero as the starting offset for a
1326 	 * multixact, when we read zero as the next multixact's offset, we know we
1327 	 * have this case.  We sleep for a bit and try again.
1328 	 *
1329 	 * 3. Because GetNewMultiXactId increments offset zero to offset one to
1330 	 * handle case #2, there is an ambiguity near the point of offset
1331 	 * wraparound.  If we see next multixact's offset is one, is that our
1332 	 * multixact's actual endpoint, or did it end at zero with a subsequent
1333 	 * increment?  We handle this using the knowledge that if the zero'th
1334 	 * member slot wasn't filled, it'll contain zero, and zero isn't a valid
1335 	 * transaction ID so it can't be a multixact member.  Therefore, if we
1336 	 * read a zero from the members array, just ignore it.
1337 	 *
1338 	 * This is all pretty messy, but the mess occurs only in infrequent corner
1339 	 * cases, so it seems better than holding the MultiXactGenLock for a long
1340 	 * time on every multixact creation.
1341 	 */
1342 retry:
1343 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
1344 
1345 	pageno = MultiXactIdToOffsetPage(multi);
1346 	entryno = MultiXactIdToOffsetEntry(multi);
1347 
1348 	slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
1349 	offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1350 	offptr += entryno;
1351 	offset = *offptr;
1352 
1353 	Assert(offset != 0);
1354 
1355 	/*
1356 	 * Use the same increment rule as GetNewMultiXactId(), that is, don't
1357 	 * handle wraparound explicitly until needed.
1358 	 */
1359 	tmpMXact = multi + 1;
1360 
1361 	if (nextMXact == tmpMXact)
1362 	{
1363 		/* Corner case 1: there is no next multixact */
1364 		length = nextOffset - offset;
1365 	}
1366 	else
1367 	{
1368 		MultiXactOffset nextMXOffset;
1369 
1370 		/* handle wraparound if needed */
1371 		if (tmpMXact < FirstMultiXactId)
1372 			tmpMXact = FirstMultiXactId;
1373 
1374 		prev_pageno = pageno;
1375 
1376 		pageno = MultiXactIdToOffsetPage(tmpMXact);
1377 		entryno = MultiXactIdToOffsetEntry(tmpMXact);
1378 
1379 		if (pageno != prev_pageno)
1380 			slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, tmpMXact);
1381 
1382 		offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1383 		offptr += entryno;
1384 		nextMXOffset = *offptr;
1385 
1386 		if (nextMXOffset == 0)
1387 		{
1388 			/* Corner case 2: next multixact is still being filled in */
1389 			LWLockRelease(MultiXactOffsetSLRULock);
1390 			CHECK_FOR_INTERRUPTS();
1391 			pg_usleep(1000L);
1392 			goto retry;
1393 		}
1394 
1395 		length = nextMXOffset - offset;
1396 	}
1397 
1398 	LWLockRelease(MultiXactOffsetSLRULock);
1399 
1400 	ptr = (MultiXactMember *) palloc(length * sizeof(MultiXactMember));
1401 
1402 	/* Now get the members themselves. */
1403 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
1404 
1405 	truelength = 0;
1406 	prev_pageno = -1;
1407 	for (i = 0; i < length; i++, offset++)
1408 	{
1409 		TransactionId *xactptr;
1410 		uint32	   *flagsptr;
1411 		int			flagsoff;
1412 		int			bshift;
1413 		int			memberoff;
1414 
1415 		pageno = MXOffsetToMemberPage(offset);
1416 		memberoff = MXOffsetToMemberOffset(offset);
1417 
1418 		if (pageno != prev_pageno)
1419 		{
1420 			slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
1421 			prev_pageno = pageno;
1422 		}
1423 
1424 		xactptr = (TransactionId *)
1425 			(MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
1426 
1427 		if (!TransactionIdIsValid(*xactptr))
1428 		{
1429 			/* Corner case 3: we must be looking at unused slot zero */
1430 			Assert(offset == 0);
1431 			continue;
1432 		}
1433 
1434 		flagsoff = MXOffsetToFlagsOffset(offset);
1435 		bshift = MXOffsetToFlagsBitShift(offset);
1436 		flagsptr = (uint32 *) (MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
1437 
1438 		ptr[truelength].xid = *xactptr;
1439 		ptr[truelength].status = (*flagsptr >> bshift) & MXACT_MEMBER_XACT_BITMASK;
1440 		truelength++;
1441 	}
1442 
1443 	LWLockRelease(MultiXactMemberSLRULock);
1444 
1445 	/* A multixid with zero members should not happen */
1446 	Assert(truelength > 0);
1447 
1448 	/*
1449 	 * Copy the result into the local cache.
1450 	 */
1451 	mXactCachePut(multi, truelength, ptr);
1452 
1453 	debug_elog3(DEBUG2, "GetMembers: no cache for %s",
1454 				mxid_to_string(multi, truelength, ptr));
1455 	*members = ptr;
1456 	return truelength;
1457 }
1458 
1459 /*
1460  * mxactMemberComparator
1461  *		qsort comparison function for MultiXactMember
1462  *
1463  * We can't use wraparound comparison for XIDs because that does not respect
1464  * the triangle inequality!  Any old sort order will do.
1465  */
1466 static int
mxactMemberComparator(const void * arg1,const void * arg2)1467 mxactMemberComparator(const void *arg1, const void *arg2)
1468 {
1469 	MultiXactMember member1 = *(const MultiXactMember *) arg1;
1470 	MultiXactMember member2 = *(const MultiXactMember *) arg2;
1471 
1472 	if (member1.xid > member2.xid)
1473 		return 1;
1474 	if (member1.xid < member2.xid)
1475 		return -1;
1476 	if (member1.status > member2.status)
1477 		return 1;
1478 	if (member1.status < member2.status)
1479 		return -1;
1480 	return 0;
1481 }
1482 
1483 /*
1484  * mXactCacheGetBySet
1485  *		returns a MultiXactId from the cache based on the set of
1486  *		TransactionIds that compose it, or InvalidMultiXactId if
1487  *		none matches.
1488  *
1489  * This is helpful, for example, if two transactions want to lock a huge
1490  * table.  By using the cache, the second will use the same MultiXactId
1491  * for the majority of tuples, thus keeping MultiXactId usage low (saving
1492  * both I/O and wraparound issues).
1493  *
1494  * NB: the passed members array will be sorted in-place.
1495  */
1496 static MultiXactId
mXactCacheGetBySet(int nmembers,MultiXactMember * members)1497 mXactCacheGetBySet(int nmembers, MultiXactMember *members)
1498 {
1499 	dlist_iter	iter;
1500 
1501 	debug_elog3(DEBUG2, "CacheGet: looking for %s",
1502 				mxid_to_string(InvalidMultiXactId, nmembers, members));
1503 
1504 	/* sort the array so comparison is easy */
1505 	qsort(members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1506 
1507 	dlist_foreach(iter, &MXactCache)
1508 	{
1509 		mXactCacheEnt *entry = dlist_container(mXactCacheEnt, node, iter.cur);
1510 
1511 		if (entry->nmembers != nmembers)
1512 			continue;
1513 
1514 		/*
1515 		 * We assume the cache entries are sorted, and that the unused bits in
1516 		 * "status" are zeroed.
1517 		 */
1518 		if (memcmp(members, entry->members, nmembers * sizeof(MultiXactMember)) == 0)
1519 		{
1520 			debug_elog3(DEBUG2, "CacheGet: found %u", entry->multi);
1521 			dlist_move_head(&MXactCache, iter.cur);
1522 			return entry->multi;
1523 		}
1524 	}
1525 
1526 	debug_elog2(DEBUG2, "CacheGet: not found :-(");
1527 	return InvalidMultiXactId;
1528 }
1529 
1530 /*
1531  * mXactCacheGetById
1532  *		returns the composing MultiXactMember set from the cache for a
1533  *		given MultiXactId, if present.
1534  *
1535  * If successful, *xids is set to the address of a palloc'd copy of the
1536  * MultiXactMember set.  Return value is number of members, or -1 on failure.
1537  */
1538 static int
mXactCacheGetById(MultiXactId multi,MultiXactMember ** members)1539 mXactCacheGetById(MultiXactId multi, MultiXactMember **members)
1540 {
1541 	dlist_iter	iter;
1542 
1543 	debug_elog3(DEBUG2, "CacheGet: looking for %u", multi);
1544 
1545 	dlist_foreach(iter, &MXactCache)
1546 	{
1547 		mXactCacheEnt *entry = dlist_container(mXactCacheEnt, node, iter.cur);
1548 
1549 		if (entry->multi == multi)
1550 		{
1551 			MultiXactMember *ptr;
1552 			Size		size;
1553 
1554 			size = sizeof(MultiXactMember) * entry->nmembers;
1555 			ptr = (MultiXactMember *) palloc(size);
1556 
1557 			memcpy(ptr, entry->members, size);
1558 
1559 			debug_elog3(DEBUG2, "CacheGet: found %s",
1560 						mxid_to_string(multi,
1561 									   entry->nmembers,
1562 									   entry->members));
1563 
1564 			/*
1565 			 * Note we modify the list while not using a modifiable iterator.
1566 			 * This is acceptable only because we exit the iteration
1567 			 * immediately afterwards.
1568 			 */
1569 			dlist_move_head(&MXactCache, iter.cur);
1570 
1571 			*members = ptr;
1572 			return entry->nmembers;
1573 		}
1574 	}
1575 
1576 	debug_elog2(DEBUG2, "CacheGet: not found");
1577 	return -1;
1578 }
1579 
1580 /*
1581  * mXactCachePut
1582  *		Add a new MultiXactId and its composing set into the local cache.
1583  */
1584 static void
mXactCachePut(MultiXactId multi,int nmembers,MultiXactMember * members)1585 mXactCachePut(MultiXactId multi, int nmembers, MultiXactMember *members)
1586 {
1587 	mXactCacheEnt *entry;
1588 
1589 	debug_elog3(DEBUG2, "CachePut: storing %s",
1590 				mxid_to_string(multi, nmembers, members));
1591 
1592 	if (MXactContext == NULL)
1593 	{
1594 		/* The cache only lives as long as the current transaction */
1595 		debug_elog2(DEBUG2, "CachePut: initializing memory context");
1596 		MXactContext = AllocSetContextCreate(TopTransactionContext,
1597 											 "MultiXact cache context",
1598 											 ALLOCSET_SMALL_SIZES);
1599 	}
1600 
1601 	entry = (mXactCacheEnt *)
1602 		MemoryContextAlloc(MXactContext,
1603 						   offsetof(mXactCacheEnt, members) +
1604 						   nmembers * sizeof(MultiXactMember));
1605 
1606 	entry->multi = multi;
1607 	entry->nmembers = nmembers;
1608 	memcpy(entry->members, members, nmembers * sizeof(MultiXactMember));
1609 
1610 	/* mXactCacheGetBySet assumes the entries are sorted, so sort them */
1611 	qsort(entry->members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1612 
1613 	dlist_push_head(&MXactCache, &entry->node);
1614 	if (MXactCacheMembers++ >= MAX_CACHE_ENTRIES)
1615 	{
1616 		dlist_node *node;
1617 		mXactCacheEnt *entry;
1618 
1619 		node = dlist_tail_node(&MXactCache);
1620 		dlist_delete(node);
1621 		MXactCacheMembers--;
1622 
1623 		entry = dlist_container(mXactCacheEnt, node, node);
1624 		debug_elog3(DEBUG2, "CachePut: pruning cached multi %u",
1625 					entry->multi);
1626 
1627 		pfree(entry);
1628 	}
1629 }
1630 
1631 static char *
mxstatus_to_string(MultiXactStatus status)1632 mxstatus_to_string(MultiXactStatus status)
1633 {
1634 	switch (status)
1635 	{
1636 		case MultiXactStatusForKeyShare:
1637 			return "keysh";
1638 		case MultiXactStatusForShare:
1639 			return "sh";
1640 		case MultiXactStatusForNoKeyUpdate:
1641 			return "fornokeyupd";
1642 		case MultiXactStatusForUpdate:
1643 			return "forupd";
1644 		case MultiXactStatusNoKeyUpdate:
1645 			return "nokeyupd";
1646 		case MultiXactStatusUpdate:
1647 			return "upd";
1648 		default:
1649 			elog(ERROR, "unrecognized multixact status %d", status);
1650 			return "";
1651 	}
1652 }
1653 
1654 char *
mxid_to_string(MultiXactId multi,int nmembers,MultiXactMember * members)1655 mxid_to_string(MultiXactId multi, int nmembers, MultiXactMember *members)
1656 {
1657 	static char *str = NULL;
1658 	StringInfoData buf;
1659 	int			i;
1660 
1661 	if (str != NULL)
1662 		pfree(str);
1663 
1664 	initStringInfo(&buf);
1665 
1666 	appendStringInfo(&buf, "%u %d[%u (%s)", multi, nmembers, members[0].xid,
1667 					 mxstatus_to_string(members[0].status));
1668 
1669 	for (i = 1; i < nmembers; i++)
1670 		appendStringInfo(&buf, ", %u (%s)", members[i].xid,
1671 						 mxstatus_to_string(members[i].status));
1672 
1673 	appendStringInfoChar(&buf, ']');
1674 	str = MemoryContextStrdup(TopMemoryContext, buf.data);
1675 	pfree(buf.data);
1676 	return str;
1677 }
1678 
1679 /*
1680  * AtEOXact_MultiXact
1681  *		Handle transaction end for MultiXact
1682  *
1683  * This is called at top transaction commit or abort (we don't care which).
1684  */
1685 void
AtEOXact_MultiXact(void)1686 AtEOXact_MultiXact(void)
1687 {
1688 	/*
1689 	 * Reset our OldestMemberMXactId and OldestVisibleMXactId values, both of
1690 	 * which should only be valid while within a transaction.
1691 	 *
1692 	 * We assume that storing a MultiXactId is atomic and so we need not take
1693 	 * MultiXactGenLock to do this.
1694 	 */
1695 	OldestMemberMXactId[MyBackendId] = InvalidMultiXactId;
1696 	OldestVisibleMXactId[MyBackendId] = InvalidMultiXactId;
1697 
1698 	/*
1699 	 * Discard the local MultiXactId cache.  Since MXactContext was created as
1700 	 * a child of TopTransactionContext, we needn't delete it explicitly.
1701 	 */
1702 	MXactContext = NULL;
1703 	dlist_init(&MXactCache);
1704 	MXactCacheMembers = 0;
1705 }
1706 
1707 /*
1708  * AtPrepare_MultiXact
1709  *		Save multixact state at 2PC transaction prepare
1710  *
1711  * In this phase, we only store our OldestMemberMXactId value in the two-phase
1712  * state file.
1713  */
1714 void
AtPrepare_MultiXact(void)1715 AtPrepare_MultiXact(void)
1716 {
1717 	MultiXactId myOldestMember = OldestMemberMXactId[MyBackendId];
1718 
1719 	if (MultiXactIdIsValid(myOldestMember))
1720 		RegisterTwoPhaseRecord(TWOPHASE_RM_MULTIXACT_ID, 0,
1721 							   &myOldestMember, sizeof(MultiXactId));
1722 }
1723 
1724 /*
1725  * PostPrepare_MultiXact
1726  *		Clean up after successful PREPARE TRANSACTION
1727  */
1728 void
PostPrepare_MultiXact(TransactionId xid)1729 PostPrepare_MultiXact(TransactionId xid)
1730 {
1731 	MultiXactId myOldestMember;
1732 
1733 	/*
1734 	 * Transfer our OldestMemberMXactId value to the slot reserved for the
1735 	 * prepared transaction.
1736 	 */
1737 	myOldestMember = OldestMemberMXactId[MyBackendId];
1738 	if (MultiXactIdIsValid(myOldestMember))
1739 	{
1740 		BackendId	dummyBackendId = TwoPhaseGetDummyBackendId(xid, false);
1741 
1742 		/*
1743 		 * Even though storing MultiXactId is atomic, acquire lock to make
1744 		 * sure others see both changes, not just the reset of the slot of the
1745 		 * current backend. Using a volatile pointer might suffice, but this
1746 		 * isn't a hot spot.
1747 		 */
1748 		LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1749 
1750 		OldestMemberMXactId[dummyBackendId] = myOldestMember;
1751 		OldestMemberMXactId[MyBackendId] = InvalidMultiXactId;
1752 
1753 		LWLockRelease(MultiXactGenLock);
1754 	}
1755 
1756 	/*
1757 	 * We don't need to transfer OldestVisibleMXactId value, because the
1758 	 * transaction is not going to be looking at any more multixacts once it's
1759 	 * prepared.
1760 	 *
1761 	 * We assume that storing a MultiXactId is atomic and so we need not take
1762 	 * MultiXactGenLock to do this.
1763 	 */
1764 	OldestVisibleMXactId[MyBackendId] = InvalidMultiXactId;
1765 
1766 	/*
1767 	 * Discard the local MultiXactId cache like in AtEOXact_MultiXact.
1768 	 */
1769 	MXactContext = NULL;
1770 	dlist_init(&MXactCache);
1771 	MXactCacheMembers = 0;
1772 }
1773 
1774 /*
1775  * multixact_twophase_recover
1776  *		Recover the state of a prepared transaction at startup
1777  */
1778 void
multixact_twophase_recover(TransactionId xid,uint16 info,void * recdata,uint32 len)1779 multixact_twophase_recover(TransactionId xid, uint16 info,
1780 						   void *recdata, uint32 len)
1781 {
1782 	BackendId	dummyBackendId = TwoPhaseGetDummyBackendId(xid, false);
1783 	MultiXactId oldestMember;
1784 
1785 	/*
1786 	 * Get the oldest member XID from the state file record, and set it in the
1787 	 * OldestMemberMXactId slot reserved for this prepared transaction.
1788 	 */
1789 	Assert(len == sizeof(MultiXactId));
1790 	oldestMember = *((MultiXactId *) recdata);
1791 
1792 	OldestMemberMXactId[dummyBackendId] = oldestMember;
1793 }
1794 
1795 /*
1796  * multixact_twophase_postcommit
1797  *		Similar to AtEOXact_MultiXact but for COMMIT PREPARED
1798  */
1799 void
multixact_twophase_postcommit(TransactionId xid,uint16 info,void * recdata,uint32 len)1800 multixact_twophase_postcommit(TransactionId xid, uint16 info,
1801 							  void *recdata, uint32 len)
1802 {
1803 	BackendId	dummyBackendId = TwoPhaseGetDummyBackendId(xid, true);
1804 
1805 	Assert(len == sizeof(MultiXactId));
1806 
1807 	OldestMemberMXactId[dummyBackendId] = InvalidMultiXactId;
1808 }
1809 
1810 /*
1811  * multixact_twophase_postabort
1812  *		This is actually just the same as the COMMIT case.
1813  */
1814 void
multixact_twophase_postabort(TransactionId xid,uint16 info,void * recdata,uint32 len)1815 multixact_twophase_postabort(TransactionId xid, uint16 info,
1816 							 void *recdata, uint32 len)
1817 {
1818 	multixact_twophase_postcommit(xid, info, recdata, len);
1819 }
1820 
1821 /*
1822  * Initialization of shared memory for MultiXact.  We use two SLRU areas,
1823  * thus double memory.  Also, reserve space for the shared MultiXactState
1824  * struct and the per-backend MultiXactId arrays (two of those, too).
1825  */
1826 Size
MultiXactShmemSize(void)1827 MultiXactShmemSize(void)
1828 {
1829 	Size		size;
1830 
1831 	/* We need 2*MaxOldestSlot + 1 perBackendXactIds[] entries */
1832 #define SHARED_MULTIXACT_STATE_SIZE \
1833 	add_size(offsetof(MultiXactStateData, perBackendXactIds) + sizeof(MultiXactId), \
1834 			 mul_size(sizeof(MultiXactId) * 2, MaxOldestSlot))
1835 
1836 	size = SHARED_MULTIXACT_STATE_SIZE;
1837 	size = add_size(size, SimpleLruShmemSize(NUM_MULTIXACTOFFSET_BUFFERS, 0));
1838 	size = add_size(size, SimpleLruShmemSize(NUM_MULTIXACTMEMBER_BUFFERS, 0));
1839 
1840 	return size;
1841 }
1842 
1843 void
MultiXactShmemInit(void)1844 MultiXactShmemInit(void)
1845 {
1846 	bool		found;
1847 
1848 	debug_elog2(DEBUG2, "Shared Memory Init for MultiXact");
1849 
1850 	MultiXactOffsetCtl->PagePrecedes = MultiXactOffsetPagePrecedes;
1851 	MultiXactMemberCtl->PagePrecedes = MultiXactMemberPagePrecedes;
1852 
1853 	SimpleLruInit(MultiXactOffsetCtl,
1854 				  "MultiXactOffset", NUM_MULTIXACTOFFSET_BUFFERS, 0,
1855 				  MultiXactOffsetSLRULock, "pg_multixact/offsets",
1856 				  LWTRANCHE_MULTIXACTOFFSET_BUFFER,
1857 				  SYNC_HANDLER_MULTIXACT_OFFSET);
1858 	SlruPagePrecedesUnitTests(MultiXactOffsetCtl, MULTIXACT_OFFSETS_PER_PAGE);
1859 	SimpleLruInit(MultiXactMemberCtl,
1860 				  "MultiXactMember", NUM_MULTIXACTMEMBER_BUFFERS, 0,
1861 				  MultiXactMemberSLRULock, "pg_multixact/members",
1862 				  LWTRANCHE_MULTIXACTMEMBER_BUFFER,
1863 				  SYNC_HANDLER_MULTIXACT_MEMBER);
1864 	/* doesn't call SimpleLruTruncate() or meet criteria for unit tests */
1865 
1866 	/* Initialize our shared state struct */
1867 	MultiXactState = ShmemInitStruct("Shared MultiXact State",
1868 									 SHARED_MULTIXACT_STATE_SIZE,
1869 									 &found);
1870 	if (!IsUnderPostmaster)
1871 	{
1872 		Assert(!found);
1873 
1874 		/* Make sure we zero out the per-backend state */
1875 		MemSet(MultiXactState, 0, SHARED_MULTIXACT_STATE_SIZE);
1876 	}
1877 	else
1878 		Assert(found);
1879 
1880 	/*
1881 	 * Set up array pointers.  Note that perBackendXactIds[0] is wasted space
1882 	 * since we only use indexes 1..MaxOldestSlot in each array.
1883 	 */
1884 	OldestMemberMXactId = MultiXactState->perBackendXactIds;
1885 	OldestVisibleMXactId = OldestMemberMXactId + MaxOldestSlot;
1886 }
1887 
1888 /*
1889  * This func must be called ONCE on system install.  It creates the initial
1890  * MultiXact segments.  (The MultiXacts directories are assumed to have been
1891  * created by initdb, and MultiXactShmemInit must have been called already.)
1892  */
1893 void
BootStrapMultiXact(void)1894 BootStrapMultiXact(void)
1895 {
1896 	int			slotno;
1897 
1898 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
1899 
1900 	/* Create and zero the first page of the offsets log */
1901 	slotno = ZeroMultiXactOffsetPage(0, false);
1902 
1903 	/* Make sure it's written out */
1904 	SimpleLruWritePage(MultiXactOffsetCtl, slotno);
1905 	Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
1906 
1907 	LWLockRelease(MultiXactOffsetSLRULock);
1908 
1909 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
1910 
1911 	/* Create and zero the first page of the members log */
1912 	slotno = ZeroMultiXactMemberPage(0, false);
1913 
1914 	/* Make sure it's written out */
1915 	SimpleLruWritePage(MultiXactMemberCtl, slotno);
1916 	Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
1917 
1918 	LWLockRelease(MultiXactMemberSLRULock);
1919 }
1920 
1921 /*
1922  * Initialize (or reinitialize) a page of MultiXactOffset to zeroes.
1923  * If writeXlog is true, also emit an XLOG record saying we did this.
1924  *
1925  * The page is not actually written, just set up in shared memory.
1926  * The slot number of the new page is returned.
1927  *
1928  * Control lock must be held at entry, and will be held at exit.
1929  */
1930 static int
ZeroMultiXactOffsetPage(int pageno,bool writeXlog)1931 ZeroMultiXactOffsetPage(int pageno, bool writeXlog)
1932 {
1933 	int			slotno;
1934 
1935 	slotno = SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
1936 
1937 	if (writeXlog)
1938 		WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_OFF_PAGE);
1939 
1940 	return slotno;
1941 }
1942 
1943 /*
1944  * Ditto, for MultiXactMember
1945  */
1946 static int
ZeroMultiXactMemberPage(int pageno,bool writeXlog)1947 ZeroMultiXactMemberPage(int pageno, bool writeXlog)
1948 {
1949 	int			slotno;
1950 
1951 	slotno = SimpleLruZeroPage(MultiXactMemberCtl, pageno);
1952 
1953 	if (writeXlog)
1954 		WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_MEM_PAGE);
1955 
1956 	return slotno;
1957 }
1958 
1959 /*
1960  * MaybeExtendOffsetSlru
1961  *		Extend the offsets SLRU area, if necessary
1962  *
1963  * After a binary upgrade from <= 9.2, the pg_multixact/offsets SLRU area might
1964  * contain files that are shorter than necessary; this would occur if the old
1965  * installation had used multixacts beyond the first page (files cannot be
1966  * copied, because the on-disk representation is different).  pg_upgrade would
1967  * update pg_control to set the next offset value to be at that position, so
1968  * that tuples marked as locked by such MultiXacts would be seen as visible
1969  * without having to consult multixact.  However, trying to create and use a
1970  * new MultiXactId would result in an error because the page on which the new
1971  * value would reside does not exist.  This routine is in charge of creating
1972  * such pages.
1973  */
1974 static void
MaybeExtendOffsetSlru(void)1975 MaybeExtendOffsetSlru(void)
1976 {
1977 	int			pageno;
1978 
1979 	pageno = MultiXactIdToOffsetPage(MultiXactState->nextMXact);
1980 
1981 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
1982 
1983 	if (!SimpleLruDoesPhysicalPageExist(MultiXactOffsetCtl, pageno))
1984 	{
1985 		int			slotno;
1986 
1987 		/*
1988 		 * Fortunately for us, SimpleLruWritePage is already prepared to deal
1989 		 * with creating a new segment file even if the page we're writing is
1990 		 * not the first in it, so this is enough.
1991 		 */
1992 		slotno = ZeroMultiXactOffsetPage(pageno, false);
1993 		SimpleLruWritePage(MultiXactOffsetCtl, slotno);
1994 	}
1995 
1996 	LWLockRelease(MultiXactOffsetSLRULock);
1997 }
1998 
1999 /*
2000  * This must be called ONCE during postmaster or standalone-backend startup.
2001  *
2002  * StartupXLOG has already established nextMXact/nextOffset by calling
2003  * MultiXactSetNextMXact and/or MultiXactAdvanceNextMXact, and the oldestMulti
2004  * info from pg_control and/or MultiXactAdvanceOldest, but we haven't yet
2005  * replayed WAL.
2006  */
2007 void
StartupMultiXact(void)2008 StartupMultiXact(void)
2009 {
2010 	MultiXactId multi = MultiXactState->nextMXact;
2011 	MultiXactOffset offset = MultiXactState->nextOffset;
2012 	int			pageno;
2013 
2014 	/*
2015 	 * Initialize offset's idea of the latest page number.
2016 	 */
2017 	pageno = MultiXactIdToOffsetPage(multi);
2018 	MultiXactOffsetCtl->shared->latest_page_number = pageno;
2019 
2020 	/*
2021 	 * Initialize member's idea of the latest page number.
2022 	 */
2023 	pageno = MXOffsetToMemberPage(offset);
2024 	MultiXactMemberCtl->shared->latest_page_number = pageno;
2025 }
2026 
2027 /*
2028  * This must be called ONCE at the end of startup/recovery.
2029  */
2030 void
TrimMultiXact(void)2031 TrimMultiXact(void)
2032 {
2033 	MultiXactId nextMXact;
2034 	MultiXactOffset offset;
2035 	MultiXactId oldestMXact;
2036 	Oid			oldestMXactDB;
2037 	int			pageno;
2038 	int			entryno;
2039 	int			flagsoff;
2040 
2041 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2042 	nextMXact = MultiXactState->nextMXact;
2043 	offset = MultiXactState->nextOffset;
2044 	oldestMXact = MultiXactState->oldestMultiXactId;
2045 	oldestMXactDB = MultiXactState->oldestMultiXactDB;
2046 	LWLockRelease(MultiXactGenLock);
2047 
2048 	/* Clean up offsets state */
2049 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
2050 
2051 	/*
2052 	 * (Re-)Initialize our idea of the latest page number for offsets.
2053 	 */
2054 	pageno = MultiXactIdToOffsetPage(nextMXact);
2055 	MultiXactOffsetCtl->shared->latest_page_number = pageno;
2056 
2057 	/*
2058 	 * Zero out the remainder of the current offsets page.  See notes in
2059 	 * TrimCLOG() for background.  Unlike CLOG, some WAL record covers every
2060 	 * pg_multixact SLRU mutation.  Since, also unlike CLOG, we ignore the WAL
2061 	 * rule "write xlog before data," nextMXact successors may carry obsolete,
2062 	 * nonzero offset values.  Zero those so case 2 of GetMultiXactIdMembers()
2063 	 * operates normally.
2064 	 */
2065 	entryno = MultiXactIdToOffsetEntry(nextMXact);
2066 	if (entryno != 0)
2067 	{
2068 		int			slotno;
2069 		MultiXactOffset *offptr;
2070 
2071 		slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, nextMXact);
2072 		offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
2073 		offptr += entryno;
2074 
2075 		MemSet(offptr, 0, BLCKSZ - (entryno * sizeof(MultiXactOffset)));
2076 
2077 		MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
2078 	}
2079 
2080 	LWLockRelease(MultiXactOffsetSLRULock);
2081 
2082 	/* And the same for members */
2083 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
2084 
2085 	/*
2086 	 * (Re-)Initialize our idea of the latest page number for members.
2087 	 */
2088 	pageno = MXOffsetToMemberPage(offset);
2089 	MultiXactMemberCtl->shared->latest_page_number = pageno;
2090 
2091 	/*
2092 	 * Zero out the remainder of the current members page.  See notes in
2093 	 * TrimCLOG() for motivation.
2094 	 */
2095 	flagsoff = MXOffsetToFlagsOffset(offset);
2096 	if (flagsoff != 0)
2097 	{
2098 		int			slotno;
2099 		TransactionId *xidptr;
2100 		int			memberoff;
2101 
2102 		memberoff = MXOffsetToMemberOffset(offset);
2103 		slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, offset);
2104 		xidptr = (TransactionId *)
2105 			(MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
2106 
2107 		MemSet(xidptr, 0, BLCKSZ - memberoff);
2108 
2109 		/*
2110 		 * Note: we don't need to zero out the flag bits in the remaining
2111 		 * members of the current group, because they are always reset before
2112 		 * writing.
2113 		 */
2114 
2115 		MultiXactMemberCtl->shared->page_dirty[slotno] = true;
2116 	}
2117 
2118 	LWLockRelease(MultiXactMemberSLRULock);
2119 
2120 	/* signal that we're officially up */
2121 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2122 	MultiXactState->finishedStartup = true;
2123 	LWLockRelease(MultiXactGenLock);
2124 
2125 	/* Now compute how far away the next members wraparound is. */
2126 	SetMultiXactIdLimit(oldestMXact, oldestMXactDB, true);
2127 }
2128 
2129 /*
2130  * Get the MultiXact data to save in a checkpoint record
2131  */
2132 void
MultiXactGetCheckptMulti(bool is_shutdown,MultiXactId * nextMulti,MultiXactOffset * nextMultiOffset,MultiXactId * oldestMulti,Oid * oldestMultiDB)2133 MultiXactGetCheckptMulti(bool is_shutdown,
2134 						 MultiXactId *nextMulti,
2135 						 MultiXactOffset *nextMultiOffset,
2136 						 MultiXactId *oldestMulti,
2137 						 Oid *oldestMultiDB)
2138 {
2139 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2140 	*nextMulti = MultiXactState->nextMXact;
2141 	*nextMultiOffset = MultiXactState->nextOffset;
2142 	*oldestMulti = MultiXactState->oldestMultiXactId;
2143 	*oldestMultiDB = MultiXactState->oldestMultiXactDB;
2144 	LWLockRelease(MultiXactGenLock);
2145 
2146 	debug_elog6(DEBUG2,
2147 				"MultiXact: checkpoint is nextMulti %u, nextOffset %u, oldestMulti %u in DB %u",
2148 				*nextMulti, *nextMultiOffset, *oldestMulti, *oldestMultiDB);
2149 }
2150 
2151 /*
2152  * Perform a checkpoint --- either during shutdown, or on-the-fly
2153  */
2154 void
CheckPointMultiXact(void)2155 CheckPointMultiXact(void)
2156 {
2157 	TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_START(true);
2158 
2159 	/*
2160 	 * Write dirty MultiXact pages to disk.  This may result in sync requests
2161 	 * queued for later handling by ProcessSyncRequests(), as part of the
2162 	 * checkpoint.
2163 	 */
2164 	SimpleLruWriteAll(MultiXactOffsetCtl, true);
2165 	SimpleLruWriteAll(MultiXactMemberCtl, true);
2166 
2167 	TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_DONE(true);
2168 }
2169 
2170 /*
2171  * Set the next-to-be-assigned MultiXactId and offset
2172  *
2173  * This is used when we can determine the correct next ID/offset exactly
2174  * from a checkpoint record.  Although this is only called during bootstrap
2175  * and XLog replay, we take the lock in case any hot-standby backends are
2176  * examining the values.
2177  */
2178 void
MultiXactSetNextMXact(MultiXactId nextMulti,MultiXactOffset nextMultiOffset)2179 MultiXactSetNextMXact(MultiXactId nextMulti,
2180 					  MultiXactOffset nextMultiOffset)
2181 {
2182 	debug_elog4(DEBUG2, "MultiXact: setting next multi to %u offset %u",
2183 				nextMulti, nextMultiOffset);
2184 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2185 	MultiXactState->nextMXact = nextMulti;
2186 	MultiXactState->nextOffset = nextMultiOffset;
2187 	LWLockRelease(MultiXactGenLock);
2188 
2189 	/*
2190 	 * During a binary upgrade, make sure that the offsets SLRU is large
2191 	 * enough to contain the next value that would be created.
2192 	 *
2193 	 * We need to do this pretty early during the first startup in binary
2194 	 * upgrade mode: before StartupMultiXact() in fact, because this routine
2195 	 * is called even before that by StartupXLOG().  And we can't do it
2196 	 * earlier than at this point, because during that first call of this
2197 	 * routine we determine the MultiXactState->nextMXact value that
2198 	 * MaybeExtendOffsetSlru needs.
2199 	 */
2200 	if (IsBinaryUpgrade)
2201 		MaybeExtendOffsetSlru();
2202 }
2203 
2204 /*
2205  * Determine the last safe MultiXactId to allocate given the currently oldest
2206  * datminmxid (ie, the oldest MultiXactId that might exist in any database
2207  * of our cluster), and the OID of the (or a) database with that value.
2208  *
2209  * is_startup is true when we are just starting the cluster, false when we
2210  * are updating state in a running cluster.  This only affects log messages.
2211  */
2212 void
SetMultiXactIdLimit(MultiXactId oldest_datminmxid,Oid oldest_datoid,bool is_startup)2213 SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid,
2214 					bool is_startup)
2215 {
2216 	MultiXactId multiVacLimit;
2217 	MultiXactId multiWarnLimit;
2218 	MultiXactId multiStopLimit;
2219 	MultiXactId multiWrapLimit;
2220 	MultiXactId curMulti;
2221 	bool		needs_offset_vacuum;
2222 
2223 	Assert(MultiXactIdIsValid(oldest_datminmxid));
2224 
2225 	/*
2226 	 * We pretend that a wrap will happen halfway through the multixact ID
2227 	 * space, but that's not really true, because multixacts wrap differently
2228 	 * from transaction IDs.  Note that, separately from any concern about
2229 	 * multixact IDs wrapping, we must ensure that multixact members do not
2230 	 * wrap.  Limits for that are set in SetOffsetVacuumLimit, not here.
2231 	 */
2232 	multiWrapLimit = oldest_datminmxid + (MaxMultiXactId >> 1);
2233 	if (multiWrapLimit < FirstMultiXactId)
2234 		multiWrapLimit += FirstMultiXactId;
2235 
2236 	/*
2237 	 * We'll refuse to continue assigning MultiXactIds once we get within 3M
2238 	 * multi of data loss.  See SetTransactionIdLimit.
2239 	 */
2240 	multiStopLimit = multiWrapLimit - 3000000;
2241 	if (multiStopLimit < FirstMultiXactId)
2242 		multiStopLimit -= FirstMultiXactId;
2243 
2244 	/*
2245 	 * We'll start complaining loudly when we get within 40M multis of data
2246 	 * loss.  This is kind of arbitrary, but if you let your gas gauge get
2247 	 * down to 2% of full, would you be looking for the next gas station?  We
2248 	 * need to be fairly liberal about this number because there are lots of
2249 	 * scenarios where most transactions are done by automatic clients that
2250 	 * won't pay attention to warnings.  (No, we're not gonna make this
2251 	 * configurable.  If you know enough to configure it, you know enough to
2252 	 * not get in this kind of trouble in the first place.)
2253 	 */
2254 	multiWarnLimit = multiWrapLimit - 40000000;
2255 	if (multiWarnLimit < FirstMultiXactId)
2256 		multiWarnLimit -= FirstMultiXactId;
2257 
2258 	/*
2259 	 * We'll start trying to force autovacuums when oldest_datminmxid gets to
2260 	 * be more than autovacuum_multixact_freeze_max_age mxids old.
2261 	 *
2262 	 * Note: autovacuum_multixact_freeze_max_age is a PGC_POSTMASTER parameter
2263 	 * so that we don't have to worry about dealing with on-the-fly changes in
2264 	 * its value.  See SetTransactionIdLimit.
2265 	 */
2266 	multiVacLimit = oldest_datminmxid + autovacuum_multixact_freeze_max_age;
2267 	if (multiVacLimit < FirstMultiXactId)
2268 		multiVacLimit += FirstMultiXactId;
2269 
2270 	/* Grab lock for just long enough to set the new limit values */
2271 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2272 	MultiXactState->oldestMultiXactId = oldest_datminmxid;
2273 	MultiXactState->oldestMultiXactDB = oldest_datoid;
2274 	MultiXactState->multiVacLimit = multiVacLimit;
2275 	MultiXactState->multiWarnLimit = multiWarnLimit;
2276 	MultiXactState->multiStopLimit = multiStopLimit;
2277 	MultiXactState->multiWrapLimit = multiWrapLimit;
2278 	curMulti = MultiXactState->nextMXact;
2279 	LWLockRelease(MultiXactGenLock);
2280 
2281 	/* Log the info */
2282 	ereport(DEBUG1,
2283 			(errmsg_internal("MultiXactId wrap limit is %u, limited by database with OID %u",
2284 							 multiWrapLimit, oldest_datoid)));
2285 
2286 	/*
2287 	 * Computing the actual limits is only possible once the data directory is
2288 	 * in a consistent state. There's no need to compute the limits while
2289 	 * still replaying WAL - no decisions about new multis are made even
2290 	 * though multixact creations might be replayed. So we'll only do further
2291 	 * checks after TrimMultiXact() has been called.
2292 	 */
2293 	if (!MultiXactState->finishedStartup)
2294 		return;
2295 
2296 	Assert(!InRecovery);
2297 
2298 	/* Set limits for offset vacuum. */
2299 	needs_offset_vacuum = SetOffsetVacuumLimit(is_startup);
2300 
2301 	/*
2302 	 * If past the autovacuum force point, immediately signal an autovac
2303 	 * request.  The reason for this is that autovac only processes one
2304 	 * database per invocation.  Once it's finished cleaning up the oldest
2305 	 * database, it'll call here, and we'll signal the postmaster to start
2306 	 * another iteration immediately if there are still any old databases.
2307 	 */
2308 	if ((MultiXactIdPrecedes(multiVacLimit, curMulti) ||
2309 		 needs_offset_vacuum) && IsUnderPostmaster)
2310 		SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
2311 
2312 	/* Give an immediate warning if past the wrap warn point */
2313 	if (MultiXactIdPrecedes(multiWarnLimit, curMulti))
2314 	{
2315 		char	   *oldest_datname;
2316 
2317 		/*
2318 		 * We can be called when not inside a transaction, for example during
2319 		 * StartupXLOG().  In such a case we cannot do database access, so we
2320 		 * must just report the oldest DB's OID.
2321 		 *
2322 		 * Note: it's also possible that get_database_name fails and returns
2323 		 * NULL, for example because the database just got dropped.  We'll
2324 		 * still warn, even though the warning might now be unnecessary.
2325 		 */
2326 		if (IsTransactionState())
2327 			oldest_datname = get_database_name(oldest_datoid);
2328 		else
2329 			oldest_datname = NULL;
2330 
2331 		if (oldest_datname)
2332 			ereport(WARNING,
2333 					(errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
2334 								   "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
2335 								   multiWrapLimit - curMulti,
2336 								   oldest_datname,
2337 								   multiWrapLimit - curMulti),
2338 					 errhint("To avoid a database shutdown, execute a database-wide VACUUM in that database.\n"
2339 							 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2340 		else
2341 			ereport(WARNING,
2342 					(errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
2343 								   "database with OID %u must be vacuumed before %u more MultiXactIds are used",
2344 								   multiWrapLimit - curMulti,
2345 								   oldest_datoid,
2346 								   multiWrapLimit - curMulti),
2347 					 errhint("To avoid a database shutdown, execute a database-wide VACUUM in that database.\n"
2348 							 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2349 	}
2350 }
2351 
2352 /*
2353  * Ensure the next-to-be-assigned MultiXactId is at least minMulti,
2354  * and similarly nextOffset is at least minMultiOffset.
2355  *
2356  * This is used when we can determine minimum safe values from an XLog
2357  * record (either an on-line checkpoint or an mxact creation log entry).
2358  * Although this is only called during XLog replay, we take the lock in case
2359  * any hot-standby backends are examining the values.
2360  */
2361 void
MultiXactAdvanceNextMXact(MultiXactId minMulti,MultiXactOffset minMultiOffset)2362 MultiXactAdvanceNextMXact(MultiXactId minMulti,
2363 						  MultiXactOffset minMultiOffset)
2364 {
2365 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2366 	if (MultiXactIdPrecedes(MultiXactState->nextMXact, minMulti))
2367 	{
2368 		debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", minMulti);
2369 		MultiXactState->nextMXact = minMulti;
2370 	}
2371 	if (MultiXactOffsetPrecedes(MultiXactState->nextOffset, minMultiOffset))
2372 	{
2373 		debug_elog3(DEBUG2, "MultiXact: setting next offset to %u",
2374 					minMultiOffset);
2375 		MultiXactState->nextOffset = minMultiOffset;
2376 	}
2377 	LWLockRelease(MultiXactGenLock);
2378 }
2379 
2380 /*
2381  * Update our oldestMultiXactId value, but only if it's more recent than what
2382  * we had.
2383  *
2384  * This may only be called during WAL replay.
2385  */
2386 void
MultiXactAdvanceOldest(MultiXactId oldestMulti,Oid oldestMultiDB)2387 MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
2388 {
2389 	Assert(InRecovery);
2390 
2391 	if (MultiXactIdPrecedes(MultiXactState->oldestMultiXactId, oldestMulti))
2392 		SetMultiXactIdLimit(oldestMulti, oldestMultiDB, false);
2393 }
2394 
2395 /*
2396  * Make sure that MultiXactOffset has room for a newly-allocated MultiXactId.
2397  *
2398  * NB: this is called while holding MultiXactGenLock.  We want it to be very
2399  * fast most of the time; even when it's not so fast, no actual I/O need
2400  * happen unless we're forced to write out a dirty log or xlog page to make
2401  * room in shared memory.
2402  */
2403 static void
ExtendMultiXactOffset(MultiXactId multi)2404 ExtendMultiXactOffset(MultiXactId multi)
2405 {
2406 	int			pageno;
2407 
2408 	/*
2409 	 * No work except at first MultiXactId of a page.  But beware: just after
2410 	 * wraparound, the first MultiXactId of page zero is FirstMultiXactId.
2411 	 */
2412 	if (MultiXactIdToOffsetEntry(multi) != 0 &&
2413 		multi != FirstMultiXactId)
2414 		return;
2415 
2416 	pageno = MultiXactIdToOffsetPage(multi);
2417 
2418 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
2419 
2420 	/* Zero the page and make an XLOG entry about it */
2421 	ZeroMultiXactOffsetPage(pageno, true);
2422 
2423 	LWLockRelease(MultiXactOffsetSLRULock);
2424 }
2425 
2426 /*
2427  * Make sure that MultiXactMember has room for the members of a newly-
2428  * allocated MultiXactId.
2429  *
2430  * Like the above routine, this is called while holding MultiXactGenLock;
2431  * same comments apply.
2432  */
2433 static void
ExtendMultiXactMember(MultiXactOffset offset,int nmembers)2434 ExtendMultiXactMember(MultiXactOffset offset, int nmembers)
2435 {
2436 	/*
2437 	 * It's possible that the members span more than one page of the members
2438 	 * file, so we loop to ensure we consider each page.  The coding is not
2439 	 * optimal if the members span several pages, but that seems unusual
2440 	 * enough to not worry much about.
2441 	 */
2442 	while (nmembers > 0)
2443 	{
2444 		int			flagsoff;
2445 		int			flagsbit;
2446 		uint32		difference;
2447 
2448 		/*
2449 		 * Only zero when at first entry of a page.
2450 		 */
2451 		flagsoff = MXOffsetToFlagsOffset(offset);
2452 		flagsbit = MXOffsetToFlagsBitShift(offset);
2453 		if (flagsoff == 0 && flagsbit == 0)
2454 		{
2455 			int			pageno;
2456 
2457 			pageno = MXOffsetToMemberPage(offset);
2458 
2459 			LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
2460 
2461 			/* Zero the page and make an XLOG entry about it */
2462 			ZeroMultiXactMemberPage(pageno, true);
2463 
2464 			LWLockRelease(MultiXactMemberSLRULock);
2465 		}
2466 
2467 		/*
2468 		 * Compute the number of items till end of current page.  Careful: if
2469 		 * addition of unsigned ints wraps around, we're at the last page of
2470 		 * the last segment; since that page holds a different number of items
2471 		 * than other pages, we need to do it differently.
2472 		 */
2473 		if (offset + MAX_MEMBERS_IN_LAST_MEMBERS_PAGE < offset)
2474 		{
2475 			/*
2476 			 * This is the last page of the last segment; we can compute the
2477 			 * number of items left to allocate in it without modulo
2478 			 * arithmetic.
2479 			 */
2480 			difference = MaxMultiXactOffset - offset + 1;
2481 		}
2482 		else
2483 			difference = MULTIXACT_MEMBERS_PER_PAGE - offset % MULTIXACT_MEMBERS_PER_PAGE;
2484 
2485 		/*
2486 		 * Advance to next page, taking care to properly handle the wraparound
2487 		 * case.  OK if nmembers goes negative.
2488 		 */
2489 		nmembers -= difference;
2490 		offset += difference;
2491 	}
2492 }
2493 
2494 /*
2495  * GetOldestMultiXactId
2496  *
2497  * Return the oldest MultiXactId that's still possibly still seen as live by
2498  * any running transaction.  Older ones might still exist on disk, but they no
2499  * longer have any running member transaction.
2500  *
2501  * It's not safe to truncate MultiXact SLRU segments on the value returned by
2502  * this function; however, it can be used by a full-table vacuum to set the
2503  * point at which it will be possible to truncate SLRU for that table.
2504  */
2505 MultiXactId
GetOldestMultiXactId(void)2506 GetOldestMultiXactId(void)
2507 {
2508 	MultiXactId oldestMXact;
2509 	MultiXactId nextMXact;
2510 	int			i;
2511 
2512 	/*
2513 	 * This is the oldest valid value among all the OldestMemberMXactId[] and
2514 	 * OldestVisibleMXactId[] entries, or nextMXact if none are valid.
2515 	 */
2516 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2517 
2518 	/*
2519 	 * We have to beware of the possibility that nextMXact is in the
2520 	 * wrapped-around state.  We don't fix the counter itself here, but we
2521 	 * must be sure to use a valid value in our calculation.
2522 	 */
2523 	nextMXact = MultiXactState->nextMXact;
2524 	if (nextMXact < FirstMultiXactId)
2525 		nextMXact = FirstMultiXactId;
2526 
2527 	oldestMXact = nextMXact;
2528 	for (i = 1; i <= MaxOldestSlot; i++)
2529 	{
2530 		MultiXactId thisoldest;
2531 
2532 		thisoldest = OldestMemberMXactId[i];
2533 		if (MultiXactIdIsValid(thisoldest) &&
2534 			MultiXactIdPrecedes(thisoldest, oldestMXact))
2535 			oldestMXact = thisoldest;
2536 		thisoldest = OldestVisibleMXactId[i];
2537 		if (MultiXactIdIsValid(thisoldest) &&
2538 			MultiXactIdPrecedes(thisoldest, oldestMXact))
2539 			oldestMXact = thisoldest;
2540 	}
2541 
2542 	LWLockRelease(MultiXactGenLock);
2543 
2544 	return oldestMXact;
2545 }
2546 
2547 /*
2548  * Determine how aggressively we need to vacuum in order to prevent member
2549  * wraparound.
2550  *
2551  * To do so determine what's the oldest member offset and install the limit
2552  * info in MultiXactState, where it can be used to prevent overrun of old data
2553  * in the members SLRU area.
2554  *
2555  * The return value is true if emergency autovacuum is required and false
2556  * otherwise.
2557  */
2558 static bool
SetOffsetVacuumLimit(bool is_startup)2559 SetOffsetVacuumLimit(bool is_startup)
2560 {
2561 	MultiXactId oldestMultiXactId;
2562 	MultiXactId nextMXact;
2563 	MultiXactOffset oldestOffset = 0;	/* placate compiler */
2564 	MultiXactOffset prevOldestOffset;
2565 	MultiXactOffset nextOffset;
2566 	bool		oldestOffsetKnown = false;
2567 	bool		prevOldestOffsetKnown;
2568 	MultiXactOffset offsetStopLimit = 0;
2569 	MultiXactOffset prevOffsetStopLimit;
2570 
2571 	/*
2572 	 * NB: Have to prevent concurrent truncation, we might otherwise try to
2573 	 * lookup an oldestMulti that's concurrently getting truncated away.
2574 	 */
2575 	LWLockAcquire(MultiXactTruncationLock, LW_SHARED);
2576 
2577 	/* Read relevant fields from shared memory. */
2578 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2579 	oldestMultiXactId = MultiXactState->oldestMultiXactId;
2580 	nextMXact = MultiXactState->nextMXact;
2581 	nextOffset = MultiXactState->nextOffset;
2582 	prevOldestOffsetKnown = MultiXactState->oldestOffsetKnown;
2583 	prevOldestOffset = MultiXactState->oldestOffset;
2584 	prevOffsetStopLimit = MultiXactState->offsetStopLimit;
2585 	Assert(MultiXactState->finishedStartup);
2586 	LWLockRelease(MultiXactGenLock);
2587 
2588 	/*
2589 	 * Determine the offset of the oldest multixact.  Normally, we can read
2590 	 * the offset from the multixact itself, but there's an important special
2591 	 * case: if there are no multixacts in existence at all, oldestMXact
2592 	 * obviously can't point to one.  It will instead point to the multixact
2593 	 * ID that will be assigned the next time one is needed.
2594 	 */
2595 	if (oldestMultiXactId == nextMXact)
2596 	{
2597 		/*
2598 		 * When the next multixact gets created, it will be stored at the next
2599 		 * offset.
2600 		 */
2601 		oldestOffset = nextOffset;
2602 		oldestOffsetKnown = true;
2603 	}
2604 	else
2605 	{
2606 		/*
2607 		 * Figure out where the oldest existing multixact's offsets are
2608 		 * stored. Due to bugs in early release of PostgreSQL 9.3.X and 9.4.X,
2609 		 * the supposedly-earliest multixact might not really exist.  We are
2610 		 * careful not to fail in that case.
2611 		 */
2612 		oldestOffsetKnown =
2613 			find_multixact_start(oldestMultiXactId, &oldestOffset);
2614 
2615 		if (oldestOffsetKnown)
2616 			ereport(DEBUG1,
2617 					(errmsg_internal("oldest MultiXactId member is at offset %u",
2618 									 oldestOffset)));
2619 		else
2620 			ereport(LOG,
2621 					(errmsg("MultiXact member wraparound protections are disabled because oldest checkpointed MultiXact %u does not exist on disk",
2622 							oldestMultiXactId)));
2623 	}
2624 
2625 	LWLockRelease(MultiXactTruncationLock);
2626 
2627 	/*
2628 	 * If we can, compute limits (and install them MultiXactState) to prevent
2629 	 * overrun of old data in the members SLRU area. We can only do so if the
2630 	 * oldest offset is known though.
2631 	 */
2632 	if (oldestOffsetKnown)
2633 	{
2634 		/* move back to start of the corresponding segment */
2635 		offsetStopLimit = oldestOffset - (oldestOffset %
2636 										  (MULTIXACT_MEMBERS_PER_PAGE * SLRU_PAGES_PER_SEGMENT));
2637 
2638 		/* always leave one segment before the wraparound point */
2639 		offsetStopLimit -= (MULTIXACT_MEMBERS_PER_PAGE * SLRU_PAGES_PER_SEGMENT);
2640 
2641 		if (!prevOldestOffsetKnown && !is_startup)
2642 			ereport(LOG,
2643 					(errmsg("MultiXact member wraparound protections are now enabled")));
2644 
2645 		ereport(DEBUG1,
2646 				(errmsg_internal("MultiXact member stop limit is now %u based on MultiXact %u",
2647 								 offsetStopLimit, oldestMultiXactId)));
2648 	}
2649 	else if (prevOldestOffsetKnown)
2650 	{
2651 		/*
2652 		 * If we failed to get the oldest offset this time, but we have a
2653 		 * value from a previous pass through this function, use the old
2654 		 * values rather than automatically forcing an emergency autovacuum
2655 		 * cycle again.
2656 		 */
2657 		oldestOffset = prevOldestOffset;
2658 		oldestOffsetKnown = true;
2659 		offsetStopLimit = prevOffsetStopLimit;
2660 	}
2661 
2662 	/* Install the computed values */
2663 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2664 	MultiXactState->oldestOffset = oldestOffset;
2665 	MultiXactState->oldestOffsetKnown = oldestOffsetKnown;
2666 	MultiXactState->offsetStopLimit = offsetStopLimit;
2667 	LWLockRelease(MultiXactGenLock);
2668 
2669 	/*
2670 	 * Do we need an emergency autovacuum?	If we're not sure, assume yes.
2671 	 */
2672 	return !oldestOffsetKnown ||
2673 		(nextOffset - oldestOffset > MULTIXACT_MEMBER_SAFE_THRESHOLD);
2674 }
2675 
2676 /*
2677  * Return whether adding "distance" to "start" would move past "boundary".
2678  *
2679  * We use this to determine whether the addition is "wrapping around" the
2680  * boundary point, hence the name.  The reason we don't want to use the regular
2681  * 2^31-modulo arithmetic here is that we want to be able to use the whole of
2682  * the 2^32-1 space here, allowing for more multixacts than would fit
2683  * otherwise.
2684  */
2685 static bool
MultiXactOffsetWouldWrap(MultiXactOffset boundary,MultiXactOffset start,uint32 distance)2686 MultiXactOffsetWouldWrap(MultiXactOffset boundary, MultiXactOffset start,
2687 						 uint32 distance)
2688 {
2689 	MultiXactOffset finish;
2690 
2691 	/*
2692 	 * Note that offset number 0 is not used (see GetMultiXactIdMembers), so
2693 	 * if the addition wraps around the UINT_MAX boundary, skip that value.
2694 	 */
2695 	finish = start + distance;
2696 	if (finish < start)
2697 		finish++;
2698 
2699 	/*-----------------------------------------------------------------------
2700 	 * When the boundary is numerically greater than the starting point, any
2701 	 * value numerically between the two is not wrapped:
2702 	 *
2703 	 *	<----S----B---->
2704 	 *	[---)			 = F wrapped past B (and UINT_MAX)
2705 	 *		 [---)		 = F not wrapped
2706 	 *			  [----] = F wrapped past B
2707 	 *
2708 	 * When the boundary is numerically less than the starting point (i.e. the
2709 	 * UINT_MAX wraparound occurs somewhere in between) then all values in
2710 	 * between are wrapped:
2711 	 *
2712 	 *	<----B----S---->
2713 	 *	[---)			 = F not wrapped past B (but wrapped past UINT_MAX)
2714 	 *		 [---)		 = F wrapped past B (and UINT_MAX)
2715 	 *			  [----] = F not wrapped
2716 	 *-----------------------------------------------------------------------
2717 	 */
2718 	if (start < boundary)
2719 		return finish >= boundary || finish < start;
2720 	else
2721 		return finish >= boundary && finish < start;
2722 }
2723 
2724 /*
2725  * Find the starting offset of the given MultiXactId.
2726  *
2727  * Returns false if the file containing the multi does not exist on disk.
2728  * Otherwise, returns true and sets *result to the starting member offset.
2729  *
2730  * This function does not prevent concurrent truncation, so if that's
2731  * required, the caller has to protect against that.
2732  */
2733 static bool
find_multixact_start(MultiXactId multi,MultiXactOffset * result)2734 find_multixact_start(MultiXactId multi, MultiXactOffset *result)
2735 {
2736 	MultiXactOffset offset;
2737 	int			pageno;
2738 	int			entryno;
2739 	int			slotno;
2740 	MultiXactOffset *offptr;
2741 
2742 	Assert(MultiXactState->finishedStartup);
2743 
2744 	pageno = MultiXactIdToOffsetPage(multi);
2745 	entryno = MultiXactIdToOffsetEntry(multi);
2746 
2747 	/*
2748 	 * Write out dirty data, so PhysicalPageExists can work correctly.
2749 	 */
2750 	SimpleLruWriteAll(MultiXactOffsetCtl, true);
2751 	SimpleLruWriteAll(MultiXactMemberCtl, true);
2752 
2753 	if (!SimpleLruDoesPhysicalPageExist(MultiXactOffsetCtl, pageno))
2754 		return false;
2755 
2756 	/* lock is acquired by SimpleLruReadPage_ReadOnly */
2757 	slotno = SimpleLruReadPage_ReadOnly(MultiXactOffsetCtl, pageno, multi);
2758 	offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
2759 	offptr += entryno;
2760 	offset = *offptr;
2761 	LWLockRelease(MultiXactOffsetSLRULock);
2762 
2763 	*result = offset;
2764 	return true;
2765 }
2766 
2767 /*
2768  * Determine how many multixacts, and how many multixact members, currently
2769  * exist.  Return false if unable to determine.
2770  */
2771 static bool
ReadMultiXactCounts(uint32 * multixacts,MultiXactOffset * members)2772 ReadMultiXactCounts(uint32 *multixacts, MultiXactOffset *members)
2773 {
2774 	MultiXactOffset nextOffset;
2775 	MultiXactOffset oldestOffset;
2776 	MultiXactId oldestMultiXactId;
2777 	MultiXactId nextMultiXactId;
2778 	bool		oldestOffsetKnown;
2779 
2780 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2781 	nextOffset = MultiXactState->nextOffset;
2782 	oldestMultiXactId = MultiXactState->oldestMultiXactId;
2783 	nextMultiXactId = MultiXactState->nextMXact;
2784 	oldestOffset = MultiXactState->oldestOffset;
2785 	oldestOffsetKnown = MultiXactState->oldestOffsetKnown;
2786 	LWLockRelease(MultiXactGenLock);
2787 
2788 	if (!oldestOffsetKnown)
2789 		return false;
2790 
2791 	*members = nextOffset - oldestOffset;
2792 	*multixacts = nextMultiXactId - oldestMultiXactId;
2793 	return true;
2794 }
2795 
2796 /*
2797  * Multixact members can be removed once the multixacts that refer to them
2798  * are older than every datminmxid.  autovacuum_multixact_freeze_max_age and
2799  * vacuum_multixact_freeze_table_age work together to make sure we never have
2800  * too many multixacts; we hope that, at least under normal circumstances,
2801  * this will also be sufficient to keep us from using too many offsets.
2802  * However, if the average multixact has many members, we might exhaust the
2803  * members space while still using few enough members that these limits fail
2804  * to trigger full table scans for relminmxid advancement.  At that point,
2805  * we'd have no choice but to start failing multixact-creating operations
2806  * with an error.
2807  *
2808  * To prevent that, if more than a threshold portion of the members space is
2809  * used, we effectively reduce autovacuum_multixact_freeze_max_age and
2810  * to a value just less than the number of multixacts in use.  We hope that
2811  * this will quickly trigger autovacuuming on the table or tables with the
2812  * oldest relminmxid, thus allowing datminmxid values to advance and removing
2813  * some members.
2814  *
2815  * As the fraction of the member space currently in use grows, we become
2816  * more aggressive in clamping this value.  That not only causes autovacuum
2817  * to ramp up, but also makes any manual vacuums the user issues more
2818  * aggressive.  This happens because vacuum_set_xid_limits() clamps the
2819  * freeze table and the minimum freeze age based on the effective
2820  * autovacuum_multixact_freeze_max_age this function returns.  In the worst
2821  * case, we'll claim the freeze_max_age to zero, and every vacuum of any
2822  * table will try to freeze every multixact.
2823  *
2824  * It's possible that these thresholds should be user-tunable, but for now
2825  * we keep it simple.
2826  */
2827 int
MultiXactMemberFreezeThreshold(void)2828 MultiXactMemberFreezeThreshold(void)
2829 {
2830 	MultiXactOffset members;
2831 	uint32		multixacts;
2832 	uint32		victim_multixacts;
2833 	double		fraction;
2834 
2835 	/* If we can't determine member space utilization, assume the worst. */
2836 	if (!ReadMultiXactCounts(&multixacts, &members))
2837 		return 0;
2838 
2839 	/* If member space utilization is low, no special action is required. */
2840 	if (members <= MULTIXACT_MEMBER_SAFE_THRESHOLD)
2841 		return autovacuum_multixact_freeze_max_age;
2842 
2843 	/*
2844 	 * Compute a target for relminmxid advancement.  The number of multixacts
2845 	 * we try to eliminate from the system is based on how far we are past
2846 	 * MULTIXACT_MEMBER_SAFE_THRESHOLD.
2847 	 */
2848 	fraction = (double) (members - MULTIXACT_MEMBER_SAFE_THRESHOLD) /
2849 		(MULTIXACT_MEMBER_DANGER_THRESHOLD - MULTIXACT_MEMBER_SAFE_THRESHOLD);
2850 	victim_multixacts = multixacts * fraction;
2851 
2852 	/* fraction could be > 1.0, but lowest possible freeze age is zero */
2853 	if (victim_multixacts > multixacts)
2854 		return 0;
2855 	return multixacts - victim_multixacts;
2856 }
2857 
2858 typedef struct mxtruncinfo
2859 {
2860 	int			earliestExistingPage;
2861 } mxtruncinfo;
2862 
2863 /*
2864  * SlruScanDirectory callback
2865  *		This callback determines the earliest existing page number.
2866  */
2867 static bool
SlruScanDirCbFindEarliest(SlruCtl ctl,char * filename,int segpage,void * data)2868 SlruScanDirCbFindEarliest(SlruCtl ctl, char *filename, int segpage, void *data)
2869 {
2870 	mxtruncinfo *trunc = (mxtruncinfo *) data;
2871 
2872 	if (trunc->earliestExistingPage == -1 ||
2873 		ctl->PagePrecedes(segpage, trunc->earliestExistingPage))
2874 	{
2875 		trunc->earliestExistingPage = segpage;
2876 	}
2877 
2878 	return false;				/* keep going */
2879 }
2880 
2881 
2882 /*
2883  * Delete members segments [oldest, newOldest)
2884  *
2885  * The members SLRU can, in contrast to the offsets one, be filled to almost
2886  * the full range at once. This means SimpleLruTruncate() can't trivially be
2887  * used - instead the to-be-deleted range is computed using the offsets
2888  * SLRU. C.f. TruncateMultiXact().
2889  */
2890 static void
PerformMembersTruncation(MultiXactOffset oldestOffset,MultiXactOffset newOldestOffset)2891 PerformMembersTruncation(MultiXactOffset oldestOffset, MultiXactOffset newOldestOffset)
2892 {
2893 	const int	maxsegment = MXOffsetToMemberSegment(MaxMultiXactOffset);
2894 	int			startsegment = MXOffsetToMemberSegment(oldestOffset);
2895 	int			endsegment = MXOffsetToMemberSegment(newOldestOffset);
2896 	int			segment = startsegment;
2897 
2898 	/*
2899 	 * Delete all the segments but the last one. The last segment can still
2900 	 * contain, possibly partially, valid data.
2901 	 */
2902 	while (segment != endsegment)
2903 	{
2904 		elog(DEBUG2, "truncating multixact members segment %x", segment);
2905 		SlruDeleteSegment(MultiXactMemberCtl, segment);
2906 
2907 		/* move to next segment, handling wraparound correctly */
2908 		if (segment == maxsegment)
2909 			segment = 0;
2910 		else
2911 			segment += 1;
2912 	}
2913 }
2914 
2915 /*
2916  * Delete offsets segments [oldest, newOldest)
2917  */
2918 static void
PerformOffsetsTruncation(MultiXactId oldestMulti,MultiXactId newOldestMulti)2919 PerformOffsetsTruncation(MultiXactId oldestMulti, MultiXactId newOldestMulti)
2920 {
2921 	/*
2922 	 * We step back one multixact to avoid passing a cutoff page that hasn't
2923 	 * been created yet in the rare case that oldestMulti would be the first
2924 	 * item on a page and oldestMulti == nextMulti.  In that case, if we
2925 	 * didn't subtract one, we'd trigger SimpleLruTruncate's wraparound
2926 	 * detection.
2927 	 */
2928 	SimpleLruTruncate(MultiXactOffsetCtl,
2929 					  MultiXactIdToOffsetPage(PreviousMultiXactId(newOldestMulti)));
2930 }
2931 
2932 /*
2933  * Remove all MultiXactOffset and MultiXactMember segments before the oldest
2934  * ones still of interest.
2935  *
2936  * This is only called on a primary as part of vacuum (via
2937  * vac_truncate_clog()). During recovery truncation is done by replaying
2938  * truncation WAL records logged here.
2939  *
2940  * newOldestMulti is the oldest currently required multixact, newOldestMultiDB
2941  * is one of the databases preventing newOldestMulti from increasing.
2942  */
2943 void
TruncateMultiXact(MultiXactId newOldestMulti,Oid newOldestMultiDB)2944 TruncateMultiXact(MultiXactId newOldestMulti, Oid newOldestMultiDB)
2945 {
2946 	MultiXactId oldestMulti;
2947 	MultiXactId nextMulti;
2948 	MultiXactOffset newOldestOffset;
2949 	MultiXactOffset oldestOffset;
2950 	MultiXactOffset nextOffset;
2951 	mxtruncinfo trunc;
2952 	MultiXactId earliest;
2953 
2954 	Assert(!RecoveryInProgress());
2955 	Assert(MultiXactState->finishedStartup);
2956 
2957 	/*
2958 	 * We can only allow one truncation to happen at once. Otherwise parts of
2959 	 * members might vanish while we're doing lookups or similar. There's no
2960 	 * need to have an interlock with creating new multis or such, since those
2961 	 * are constrained by the limits (which only grow, never shrink).
2962 	 */
2963 	LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
2964 
2965 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2966 	nextMulti = MultiXactState->nextMXact;
2967 	nextOffset = MultiXactState->nextOffset;
2968 	oldestMulti = MultiXactState->oldestMultiXactId;
2969 	LWLockRelease(MultiXactGenLock);
2970 	Assert(MultiXactIdIsValid(oldestMulti));
2971 
2972 	/*
2973 	 * Make sure to only attempt truncation if there's values to truncate
2974 	 * away. In normal processing values shouldn't go backwards, but there's
2975 	 * some corner cases (due to bugs) where that's possible.
2976 	 */
2977 	if (MultiXactIdPrecedesOrEquals(newOldestMulti, oldestMulti))
2978 	{
2979 		LWLockRelease(MultiXactTruncationLock);
2980 		return;
2981 	}
2982 
2983 	/*
2984 	 * Note we can't just plow ahead with the truncation; it's possible that
2985 	 * there are no segments to truncate, which is a problem because we are
2986 	 * going to attempt to read the offsets page to determine where to
2987 	 * truncate the members SLRU.  So we first scan the directory to determine
2988 	 * the earliest offsets page number that we can read without error.
2989 	 *
2990 	 * When nextMXact is less than one segment away from multiWrapLimit,
2991 	 * SlruScanDirCbFindEarliest can find some early segment other than the
2992 	 * actual earliest.  (MultiXactOffsetPagePrecedes(EARLIEST, LATEST)
2993 	 * returns false, because not all pairs of entries have the same answer.)
2994 	 * That can also arise when an earlier truncation attempt failed unlink()
2995 	 * or returned early from this function.  The only consequence is
2996 	 * returning early, which wastes space that we could have liberated.
2997 	 *
2998 	 * NB: It's also possible that the page that oldestMulti is on has already
2999 	 * been truncated away, and we crashed before updating oldestMulti.
3000 	 */
3001 	trunc.earliestExistingPage = -1;
3002 	SlruScanDirectory(MultiXactOffsetCtl, SlruScanDirCbFindEarliest, &trunc);
3003 	earliest = trunc.earliestExistingPage * MULTIXACT_OFFSETS_PER_PAGE;
3004 	if (earliest < FirstMultiXactId)
3005 		earliest = FirstMultiXactId;
3006 
3007 	/* If there's nothing to remove, we can bail out early. */
3008 	if (MultiXactIdPrecedes(oldestMulti, earliest))
3009 	{
3010 		LWLockRelease(MultiXactTruncationLock);
3011 		return;
3012 	}
3013 
3014 	/*
3015 	 * First, compute the safe truncation point for MultiXactMember. This is
3016 	 * the starting offset of the oldest multixact.
3017 	 *
3018 	 * Hopefully, find_multixact_start will always work here, because we've
3019 	 * already checked that it doesn't precede the earliest MultiXact on disk.
3020 	 * But if it fails, don't truncate anything, and log a message.
3021 	 */
3022 	if (oldestMulti == nextMulti)
3023 	{
3024 		/* there are NO MultiXacts */
3025 		oldestOffset = nextOffset;
3026 	}
3027 	else if (!find_multixact_start(oldestMulti, &oldestOffset))
3028 	{
3029 		ereport(LOG,
3030 				(errmsg("oldest MultiXact %u not found, earliest MultiXact %u, skipping truncation",
3031 						oldestMulti, earliest)));
3032 		LWLockRelease(MultiXactTruncationLock);
3033 		return;
3034 	}
3035 
3036 	/*
3037 	 * Secondly compute up to where to truncate. Lookup the corresponding
3038 	 * member offset for newOldestMulti for that.
3039 	 */
3040 	if (newOldestMulti == nextMulti)
3041 	{
3042 		/* there are NO MultiXacts */
3043 		newOldestOffset = nextOffset;
3044 	}
3045 	else if (!find_multixact_start(newOldestMulti, &newOldestOffset))
3046 	{
3047 		ereport(LOG,
3048 				(errmsg("cannot truncate up to MultiXact %u because it does not exist on disk, skipping truncation",
3049 						newOldestMulti)));
3050 		LWLockRelease(MultiXactTruncationLock);
3051 		return;
3052 	}
3053 
3054 	elog(DEBUG1, "performing multixact truncation: "
3055 		 "offsets [%u, %u), offsets segments [%x, %x), "
3056 		 "members [%u, %u), members segments [%x, %x)",
3057 		 oldestMulti, newOldestMulti,
3058 		 MultiXactIdToOffsetSegment(oldestMulti),
3059 		 MultiXactIdToOffsetSegment(newOldestMulti),
3060 		 oldestOffset, newOldestOffset,
3061 		 MXOffsetToMemberSegment(oldestOffset),
3062 		 MXOffsetToMemberSegment(newOldestOffset));
3063 
3064 	/*
3065 	 * Do truncation, and the WAL logging of the truncation, in a critical
3066 	 * section. That way offsets/members cannot get out of sync anymore, i.e.
3067 	 * once consistent the newOldestMulti will always exist in members, even
3068 	 * if we crashed in the wrong moment.
3069 	 */
3070 	START_CRIT_SECTION();
3071 
3072 	/*
3073 	 * Prevent checkpoints from being scheduled concurrently. This is critical
3074 	 * because otherwise a truncation record might not be replayed after a
3075 	 * crash/basebackup, even though the state of the data directory would
3076 	 * require it.
3077 	 */
3078 	Assert(!MyProc->delayChkpt);
3079 	MyProc->delayChkpt = true;
3080 
3081 	/* WAL log truncation */
3082 	WriteMTruncateXlogRec(newOldestMultiDB,
3083 						  oldestMulti, newOldestMulti,
3084 						  oldestOffset, newOldestOffset);
3085 
3086 	/*
3087 	 * Update in-memory limits before performing the truncation, while inside
3088 	 * the critical section: Have to do it before truncation, to prevent
3089 	 * concurrent lookups of those values. Has to be inside the critical
3090 	 * section as otherwise a future call to this function would error out,
3091 	 * while looking up the oldest member in offsets, if our caller crashes
3092 	 * before updating the limits.
3093 	 */
3094 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
3095 	MultiXactState->oldestMultiXactId = newOldestMulti;
3096 	MultiXactState->oldestMultiXactDB = newOldestMultiDB;
3097 	LWLockRelease(MultiXactGenLock);
3098 
3099 	/* First truncate members */
3100 	PerformMembersTruncation(oldestOffset, newOldestOffset);
3101 
3102 	/* Then offsets */
3103 	PerformOffsetsTruncation(oldestMulti, newOldestMulti);
3104 
3105 	MyProc->delayChkpt = false;
3106 
3107 	END_CRIT_SECTION();
3108 	LWLockRelease(MultiXactTruncationLock);
3109 }
3110 
3111 /*
3112  * Decide whether a MultiXactOffset page number is "older" for truncation
3113  * purposes.  Analogous to CLOGPagePrecedes().
3114  *
3115  * Offsetting the values is optional, because MultiXactIdPrecedes() has
3116  * translational symmetry.
3117  */
3118 static bool
MultiXactOffsetPagePrecedes(int page1,int page2)3119 MultiXactOffsetPagePrecedes(int page1, int page2)
3120 {
3121 	MultiXactId multi1;
3122 	MultiXactId multi2;
3123 
3124 	multi1 = ((MultiXactId) page1) * MULTIXACT_OFFSETS_PER_PAGE;
3125 	multi1 += FirstMultiXactId + 1;
3126 	multi2 = ((MultiXactId) page2) * MULTIXACT_OFFSETS_PER_PAGE;
3127 	multi2 += FirstMultiXactId + 1;
3128 
3129 	return (MultiXactIdPrecedes(multi1, multi2) &&
3130 			MultiXactIdPrecedes(multi1,
3131 								multi2 + MULTIXACT_OFFSETS_PER_PAGE - 1));
3132 }
3133 
3134 /*
3135  * Decide whether a MultiXactMember page number is "older" for truncation
3136  * purposes.  There is no "invalid offset number" so use the numbers verbatim.
3137  */
3138 static bool
MultiXactMemberPagePrecedes(int page1,int page2)3139 MultiXactMemberPagePrecedes(int page1, int page2)
3140 {
3141 	MultiXactOffset offset1;
3142 	MultiXactOffset offset2;
3143 
3144 	offset1 = ((MultiXactOffset) page1) * MULTIXACT_MEMBERS_PER_PAGE;
3145 	offset2 = ((MultiXactOffset) page2) * MULTIXACT_MEMBERS_PER_PAGE;
3146 
3147 	return (MultiXactOffsetPrecedes(offset1, offset2) &&
3148 			MultiXactOffsetPrecedes(offset1,
3149 									offset2 + MULTIXACT_MEMBERS_PER_PAGE - 1));
3150 }
3151 
3152 /*
3153  * Decide which of two MultiXactIds is earlier.
3154  *
3155  * XXX do we need to do something special for InvalidMultiXactId?
3156  * (Doesn't look like it.)
3157  */
3158 bool
MultiXactIdPrecedes(MultiXactId multi1,MultiXactId multi2)3159 MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
3160 {
3161 	int32		diff = (int32) (multi1 - multi2);
3162 
3163 	return (diff < 0);
3164 }
3165 
3166 /*
3167  * MultiXactIdPrecedesOrEquals -- is multi1 logically <= multi2?
3168  *
3169  * XXX do we need to do something special for InvalidMultiXactId?
3170  * (Doesn't look like it.)
3171  */
3172 bool
MultiXactIdPrecedesOrEquals(MultiXactId multi1,MultiXactId multi2)3173 MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
3174 {
3175 	int32		diff = (int32) (multi1 - multi2);
3176 
3177 	return (diff <= 0);
3178 }
3179 
3180 
3181 /*
3182  * Decide which of two offsets is earlier.
3183  */
3184 static bool
MultiXactOffsetPrecedes(MultiXactOffset offset1,MultiXactOffset offset2)3185 MultiXactOffsetPrecedes(MultiXactOffset offset1, MultiXactOffset offset2)
3186 {
3187 	int32		diff = (int32) (offset1 - offset2);
3188 
3189 	return (diff < 0);
3190 }
3191 
3192 /*
3193  * Write an xlog record reflecting the zeroing of either a MEMBERs or
3194  * OFFSETs page (info shows which)
3195  */
3196 static void
WriteMZeroPageXlogRec(int pageno,uint8 info)3197 WriteMZeroPageXlogRec(int pageno, uint8 info)
3198 {
3199 	XLogBeginInsert();
3200 	XLogRegisterData((char *) (&pageno), sizeof(int));
3201 	(void) XLogInsert(RM_MULTIXACT_ID, info);
3202 }
3203 
3204 /*
3205  * Write a TRUNCATE xlog record
3206  *
3207  * We must flush the xlog record to disk before returning --- see notes in
3208  * TruncateCLOG().
3209  */
3210 static void
WriteMTruncateXlogRec(Oid oldestMultiDB,MultiXactId startTruncOff,MultiXactId endTruncOff,MultiXactOffset startTruncMemb,MultiXactOffset endTruncMemb)3211 WriteMTruncateXlogRec(Oid oldestMultiDB,
3212 					  MultiXactId startTruncOff, MultiXactId endTruncOff,
3213 					  MultiXactOffset startTruncMemb, MultiXactOffset endTruncMemb)
3214 {
3215 	XLogRecPtr	recptr;
3216 	xl_multixact_truncate xlrec;
3217 
3218 	xlrec.oldestMultiDB = oldestMultiDB;
3219 
3220 	xlrec.startTruncOff = startTruncOff;
3221 	xlrec.endTruncOff = endTruncOff;
3222 
3223 	xlrec.startTruncMemb = startTruncMemb;
3224 	xlrec.endTruncMemb = endTruncMemb;
3225 
3226 	XLogBeginInsert();
3227 	XLogRegisterData((char *) (&xlrec), SizeOfMultiXactTruncate);
3228 	recptr = XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_TRUNCATE_ID);
3229 	XLogFlush(recptr);
3230 }
3231 
3232 /*
3233  * MULTIXACT resource manager's routines
3234  */
3235 void
multixact_redo(XLogReaderState * record)3236 multixact_redo(XLogReaderState *record)
3237 {
3238 	uint8		info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
3239 
3240 	/* Backup blocks are not used in multixact records */
3241 	Assert(!XLogRecHasAnyBlockRefs(record));
3242 
3243 	if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
3244 	{
3245 		int			pageno;
3246 		int			slotno;
3247 
3248 		memcpy(&pageno, XLogRecGetData(record), sizeof(int));
3249 
3250 		LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
3251 
3252 		slotno = ZeroMultiXactOffsetPage(pageno, false);
3253 		SimpleLruWritePage(MultiXactOffsetCtl, slotno);
3254 		Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
3255 
3256 		LWLockRelease(MultiXactOffsetSLRULock);
3257 	}
3258 	else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
3259 	{
3260 		int			pageno;
3261 		int			slotno;
3262 
3263 		memcpy(&pageno, XLogRecGetData(record), sizeof(int));
3264 
3265 		LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
3266 
3267 		slotno = ZeroMultiXactMemberPage(pageno, false);
3268 		SimpleLruWritePage(MultiXactMemberCtl, slotno);
3269 		Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
3270 
3271 		LWLockRelease(MultiXactMemberSLRULock);
3272 	}
3273 	else if (info == XLOG_MULTIXACT_CREATE_ID)
3274 	{
3275 		xl_multixact_create *xlrec =
3276 		(xl_multixact_create *) XLogRecGetData(record);
3277 		TransactionId max_xid;
3278 		int			i;
3279 
3280 		/* Store the data back into the SLRU files */
3281 		RecordNewMultiXact(xlrec->mid, xlrec->moff, xlrec->nmembers,
3282 						   xlrec->members);
3283 
3284 		/* Make sure nextMXact/nextOffset are beyond what this record has */
3285 		MultiXactAdvanceNextMXact(xlrec->mid + 1,
3286 								  xlrec->moff + xlrec->nmembers);
3287 
3288 		/*
3289 		 * Make sure nextXid is beyond any XID mentioned in the record. This
3290 		 * should be unnecessary, since any XID found here ought to have other
3291 		 * evidence in the XLOG, but let's be safe.
3292 		 */
3293 		max_xid = XLogRecGetXid(record);
3294 		for (i = 0; i < xlrec->nmembers; i++)
3295 		{
3296 			if (TransactionIdPrecedes(max_xid, xlrec->members[i].xid))
3297 				max_xid = xlrec->members[i].xid;
3298 		}
3299 
3300 		AdvanceNextFullTransactionIdPastXid(max_xid);
3301 	}
3302 	else if (info == XLOG_MULTIXACT_TRUNCATE_ID)
3303 	{
3304 		xl_multixact_truncate xlrec;
3305 		int			pageno;
3306 
3307 		memcpy(&xlrec, XLogRecGetData(record),
3308 			   SizeOfMultiXactTruncate);
3309 
3310 		elog(DEBUG1, "replaying multixact truncation: "
3311 			 "offsets [%u, %u), offsets segments [%x, %x), "
3312 			 "members [%u, %u), members segments [%x, %x)",
3313 			 xlrec.startTruncOff, xlrec.endTruncOff,
3314 			 MultiXactIdToOffsetSegment(xlrec.startTruncOff),
3315 			 MultiXactIdToOffsetSegment(xlrec.endTruncOff),
3316 			 xlrec.startTruncMemb, xlrec.endTruncMemb,
3317 			 MXOffsetToMemberSegment(xlrec.startTruncMemb),
3318 			 MXOffsetToMemberSegment(xlrec.endTruncMemb));
3319 
3320 		/* should not be required, but more than cheap enough */
3321 		LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
3322 
3323 		/*
3324 		 * Advance the horizon values, so they're current at the end of
3325 		 * recovery.
3326 		 */
3327 		SetMultiXactIdLimit(xlrec.endTruncOff, xlrec.oldestMultiDB, false);
3328 
3329 		PerformMembersTruncation(xlrec.startTruncMemb, xlrec.endTruncMemb);
3330 
3331 		/*
3332 		 * During XLOG replay, latest_page_number isn't necessarily set up
3333 		 * yet; insert a suitable value to bypass the sanity test in
3334 		 * SimpleLruTruncate.
3335 		 */
3336 		pageno = MultiXactIdToOffsetPage(xlrec.endTruncOff);
3337 		MultiXactOffsetCtl->shared->latest_page_number = pageno;
3338 		PerformOffsetsTruncation(xlrec.startTruncOff, xlrec.endTruncOff);
3339 
3340 		LWLockRelease(MultiXactTruncationLock);
3341 	}
3342 	else
3343 		elog(PANIC, "multixact_redo: unknown op code %u", info);
3344 }
3345 
3346 Datum
pg_get_multixact_members(PG_FUNCTION_ARGS)3347 pg_get_multixact_members(PG_FUNCTION_ARGS)
3348 {
3349 	typedef struct
3350 	{
3351 		MultiXactMember *members;
3352 		int			nmembers;
3353 		int			iter;
3354 	} mxact;
3355 	MultiXactId mxid = PG_GETARG_TRANSACTIONID(0);
3356 	mxact	   *multi;
3357 	FuncCallContext *funccxt;
3358 
3359 	if (mxid < FirstMultiXactId)
3360 		ereport(ERROR,
3361 				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3362 				 errmsg("invalid MultiXactId: %u", mxid)));
3363 
3364 	if (SRF_IS_FIRSTCALL())
3365 	{
3366 		MemoryContext oldcxt;
3367 		TupleDesc	tupdesc;
3368 
3369 		funccxt = SRF_FIRSTCALL_INIT();
3370 		oldcxt = MemoryContextSwitchTo(funccxt->multi_call_memory_ctx);
3371 
3372 		multi = palloc(sizeof(mxact));
3373 		/* no need to allow for old values here */
3374 		multi->nmembers = GetMultiXactIdMembers(mxid, &multi->members, false,
3375 												false);
3376 		multi->iter = 0;
3377 
3378 		tupdesc = CreateTemplateTupleDesc(2);
3379 		TupleDescInitEntry(tupdesc, (AttrNumber) 1, "xid",
3380 						   XIDOID, -1, 0);
3381 		TupleDescInitEntry(tupdesc, (AttrNumber) 2, "mode",
3382 						   TEXTOID, -1, 0);
3383 
3384 		funccxt->attinmeta = TupleDescGetAttInMetadata(tupdesc);
3385 		funccxt->user_fctx = multi;
3386 
3387 		MemoryContextSwitchTo(oldcxt);
3388 	}
3389 
3390 	funccxt = SRF_PERCALL_SETUP();
3391 	multi = (mxact *) funccxt->user_fctx;
3392 
3393 	while (multi->iter < multi->nmembers)
3394 	{
3395 		HeapTuple	tuple;
3396 		char	   *values[2];
3397 
3398 		values[0] = psprintf("%u", multi->members[multi->iter].xid);
3399 		values[1] = mxstatus_to_string(multi->members[multi->iter].status);
3400 
3401 		tuple = BuildTupleFromCStrings(funccxt->attinmeta, values);
3402 
3403 		multi->iter++;
3404 		pfree(values[0]);
3405 		SRF_RETURN_NEXT(funccxt, HeapTupleGetDatum(tuple));
3406 	}
3407 
3408 	SRF_RETURN_DONE(funccxt);
3409 }
3410 
3411 /*
3412  * Entrypoint for sync.c to sync offsets files.
3413  */
3414 int
multixactoffsetssyncfiletag(const FileTag * ftag,char * path)3415 multixactoffsetssyncfiletag(const FileTag *ftag, char *path)
3416 {
3417 	return SlruSyncFileTag(MultiXactOffsetCtl, ftag, path);
3418 }
3419 
3420 /*
3421  * Entrypoint for sync.c to sync members files.
3422  */
3423 int
multixactmemberssyncfiletag(const FileTag * ftag,char * path)3424 multixactmemberssyncfiletag(const FileTag *ftag, char *path)
3425 {
3426 	return SlruSyncFileTag(MultiXactMemberCtl, ftag, path);
3427 }
3428