1 /*-------------------------------------------------------------------------
2  *
3  * pathnodes.h
4  *	  Definitions for planner's internal data structures, especially Paths.
5  *
6  *
7  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/nodes/pathnodes.h
11  *
12  *-------------------------------------------------------------------------
13  */
14 #ifndef PATHNODES_H
15 #define PATHNODES_H
16 
17 #include "access/sdir.h"
18 #include "lib/stringinfo.h"
19 #include "nodes/params.h"
20 #include "nodes/parsenodes.h"
21 #include "storage/block.h"
22 
23 
24 /*
25  * Relids
26  *		Set of relation identifiers (indexes into the rangetable).
27  */
28 typedef Bitmapset *Relids;
29 
30 /*
31  * When looking for a "cheapest path", this enum specifies whether we want
32  * cheapest startup cost or cheapest total cost.
33  */
34 typedef enum CostSelector
35 {
36 	STARTUP_COST, TOTAL_COST
37 } CostSelector;
38 
39 /*
40  * The cost estimate produced by cost_qual_eval() includes both a one-time
41  * (startup) cost, and a per-tuple cost.
42  */
43 typedef struct QualCost
44 {
45 	Cost		startup;		/* one-time cost */
46 	Cost		per_tuple;		/* per-evaluation cost */
47 } QualCost;
48 
49 /*
50  * Costing aggregate function execution requires these statistics about
51  * the aggregates to be executed by a given Agg node.  Note that the costs
52  * include the execution costs of the aggregates' argument expressions as
53  * well as the aggregate functions themselves.  Also, the fields must be
54  * defined so that initializing the struct to zeroes with memset is correct.
55  */
56 typedef struct AggClauseCosts
57 {
58 	QualCost	transCost;		/* total per-input-row execution costs */
59 	QualCost	finalCost;		/* total per-aggregated-row costs */
60 	Size		transitionSpace;	/* space for pass-by-ref transition data */
61 } AggClauseCosts;
62 
63 /*
64  * This enum identifies the different types of "upper" (post-scan/join)
65  * relations that we might deal with during planning.
66  */
67 typedef enum UpperRelationKind
68 {
69 	UPPERREL_SETOP,				/* result of UNION/INTERSECT/EXCEPT, if any */
70 	UPPERREL_PARTIAL_GROUP_AGG, /* result of partial grouping/aggregation, if
71 								 * any */
72 	UPPERREL_GROUP_AGG,			/* result of grouping/aggregation, if any */
73 	UPPERREL_WINDOW,			/* result of window functions, if any */
74 	UPPERREL_DISTINCT,			/* result of "SELECT DISTINCT", if any */
75 	UPPERREL_ORDERED,			/* result of ORDER BY, if any */
76 	UPPERREL_FINAL				/* result of any remaining top-level actions */
77 	/* NB: UPPERREL_FINAL must be last enum entry; it's used to size arrays */
78 } UpperRelationKind;
79 
80 /*----------
81  * PlannerGlobal
82  *		Global information for planning/optimization
83  *
84  * PlannerGlobal holds state for an entire planner invocation; this state
85  * is shared across all levels of sub-Queries that exist in the command being
86  * planned.
87  *----------
88  */
89 typedef struct PlannerGlobal
90 {
91 	NodeTag		type;
92 
93 	ParamListInfo boundParams;	/* Param values provided to planner() */
94 
95 	List	   *subplans;		/* Plans for SubPlan nodes */
96 
97 	List	   *subroots;		/* PlannerInfos for SubPlan nodes */
98 
99 	Bitmapset  *rewindPlanIDs;	/* indices of subplans that require REWIND */
100 
101 	List	   *finalrtable;	/* "flat" rangetable for executor */
102 
103 	List	   *finalrowmarks;	/* "flat" list of PlanRowMarks */
104 
105 	List	   *resultRelations;	/* "flat" list of integer RT indexes */
106 
107 	List	   *appendRelations;	/* "flat" list of AppendRelInfos */
108 
109 	List	   *relationOids;	/* OIDs of relations the plan depends on */
110 
111 	List	   *invalItems;		/* other dependencies, as PlanInvalItems */
112 
113 	List	   *paramExecTypes; /* type OIDs for PARAM_EXEC Params */
114 
115 	Index		lastPHId;		/* highest PlaceHolderVar ID assigned */
116 
117 	Index		lastRowMarkId;	/* highest PlanRowMark ID assigned */
118 
119 	int			lastPlanNodeId; /* highest plan node ID assigned */
120 
121 	bool		transientPlan;	/* redo plan when TransactionXmin changes? */
122 
123 	bool		dependsOnRole;	/* is plan specific to current role? */
124 
125 	bool		parallelModeOK; /* parallel mode potentially OK? */
126 
127 	bool		parallelModeNeeded; /* parallel mode actually required? */
128 
129 	char		maxParallelHazard;	/* worst PROPARALLEL hazard level */
130 
131 	PartitionDirectory partition_directory; /* partition descriptors */
132 } PlannerGlobal;
133 
134 /* macro for fetching the Plan associated with a SubPlan node */
135 #define planner_subplan_get_plan(root, subplan) \
136 	((Plan *) list_nth((root)->glob->subplans, (subplan)->plan_id - 1))
137 
138 
139 /*----------
140  * PlannerInfo
141  *		Per-query information for planning/optimization
142  *
143  * This struct is conventionally called "root" in all the planner routines.
144  * It holds links to all of the planner's working state, in addition to the
145  * original Query.  Note that at present the planner extensively modifies
146  * the passed-in Query data structure; someday that should stop.
147  *
148  * For reasons explained in optimizer/optimizer.h, we define the typedef
149  * either here or in that header, whichever is read first.
150  *----------
151  */
152 #ifndef HAVE_PLANNERINFO_TYPEDEF
153 typedef struct PlannerInfo PlannerInfo;
154 #define HAVE_PLANNERINFO_TYPEDEF 1
155 #endif
156 
157 struct PlannerInfo
158 {
159 	NodeTag		type;
160 
161 	Query	   *parse;			/* the Query being planned */
162 
163 	PlannerGlobal *glob;		/* global info for current planner run */
164 
165 	Index		query_level;	/* 1 at the outermost Query */
166 
167 	PlannerInfo *parent_root;	/* NULL at outermost Query */
168 
169 	/*
170 	 * plan_params contains the expressions that this query level needs to
171 	 * make available to a lower query level that is currently being planned.
172 	 * outer_params contains the paramIds of PARAM_EXEC Params that outer
173 	 * query levels will make available to this query level.
174 	 */
175 	List	   *plan_params;	/* list of PlannerParamItems, see below */
176 	Bitmapset  *outer_params;
177 
178 	/*
179 	 * simple_rel_array holds pointers to "base rels" and "other rels" (see
180 	 * comments for RelOptInfo for more info).  It is indexed by rangetable
181 	 * index (so entry 0 is always wasted).  Entries can be NULL when an RTE
182 	 * does not correspond to a base relation, such as a join RTE or an
183 	 * unreferenced view RTE; or if the RelOptInfo hasn't been made yet.
184 	 */
185 	struct RelOptInfo **simple_rel_array;	/* All 1-rel RelOptInfos */
186 	int			simple_rel_array_size;	/* allocated size of array */
187 
188 	/*
189 	 * simple_rte_array is the same length as simple_rel_array and holds
190 	 * pointers to the associated rangetable entries.  Using this is a shade
191 	 * faster than using rt_fetch(), mostly due to fewer indirections.
192 	 */
193 	RangeTblEntry **simple_rte_array;	/* rangetable as an array */
194 
195 	/*
196 	 * append_rel_array is the same length as the above arrays, and holds
197 	 * pointers to the corresponding AppendRelInfo entry indexed by
198 	 * child_relid, or NULL if the rel is not an appendrel child.  The array
199 	 * itself is not allocated if append_rel_list is empty.
200 	 */
201 	struct AppendRelInfo **append_rel_array;
202 
203 	/*
204 	 * all_baserels is a Relids set of all base relids (but not "other"
205 	 * relids) in the query; that is, the Relids identifier of the final join
206 	 * we need to form.  This is computed in make_one_rel, just before we
207 	 * start making Paths.
208 	 */
209 	Relids		all_baserels;
210 
211 	/*
212 	 * nullable_baserels is a Relids set of base relids that are nullable by
213 	 * some outer join in the jointree; these are rels that are potentially
214 	 * nullable below the WHERE clause, SELECT targetlist, etc.  This is
215 	 * computed in deconstruct_jointree.
216 	 */
217 	Relids		nullable_baserels;
218 
219 	/*
220 	 * join_rel_list is a list of all join-relation RelOptInfos we have
221 	 * considered in this planning run.  For small problems we just scan the
222 	 * list to do lookups, but when there are many join relations we build a
223 	 * hash table for faster lookups.  The hash table is present and valid
224 	 * when join_rel_hash is not NULL.  Note that we still maintain the list
225 	 * even when using the hash table for lookups; this simplifies life for
226 	 * GEQO.
227 	 */
228 	List	   *join_rel_list;	/* list of join-relation RelOptInfos */
229 	struct HTAB *join_rel_hash; /* optional hashtable for join relations */
230 
231 	/*
232 	 * When doing a dynamic-programming-style join search, join_rel_level[k]
233 	 * is a list of all join-relation RelOptInfos of level k, and
234 	 * join_cur_level is the current level.  New join-relation RelOptInfos are
235 	 * automatically added to the join_rel_level[join_cur_level] list.
236 	 * join_rel_level is NULL if not in use.
237 	 */
238 	List	  **join_rel_level; /* lists of join-relation RelOptInfos */
239 	int			join_cur_level; /* index of list being extended */
240 
241 	List	   *init_plans;		/* init SubPlans for query */
242 
243 	List	   *cte_plan_ids;	/* per-CTE-item list of subplan IDs */
244 
245 	List	   *multiexpr_params;	/* List of Lists of Params for MULTIEXPR
246 									 * subquery outputs */
247 
248 	List	   *eq_classes;		/* list of active EquivalenceClasses */
249 
250 	bool		ec_merging_done;	/* set true once ECs are canonical */
251 
252 	List	   *canon_pathkeys; /* list of "canonical" PathKeys */
253 
254 	List	   *left_join_clauses;	/* list of RestrictInfos for mergejoinable
255 									 * outer join clauses w/nonnullable var on
256 									 * left */
257 
258 	List	   *right_join_clauses; /* list of RestrictInfos for mergejoinable
259 									 * outer join clauses w/nonnullable var on
260 									 * right */
261 
262 	List	   *full_join_clauses;	/* list of RestrictInfos for mergejoinable
263 									 * full join clauses */
264 
265 	List	   *join_info_list; /* list of SpecialJoinInfos */
266 
267 	/*
268 	 * all_result_relids is empty for SELECT, otherwise it contains at least
269 	 * parse->resultRelation.  For UPDATE/DELETE across an inheritance or
270 	 * partitioning tree, the result rel's child relids are added.  When using
271 	 * multi-level partitioning, intermediate partitioned rels are included.
272 	 * leaf_result_relids is similar except that only actual result tables,
273 	 * not partitioned tables, are included in it.
274 	 */
275 	Relids		all_result_relids;	/* set of all result relids */
276 	Relids		leaf_result_relids; /* set of all leaf relids */
277 
278 	/*
279 	 * Note: for AppendRelInfos describing partitions of a partitioned table,
280 	 * we guarantee that partitions that come earlier in the partitioned
281 	 * table's PartitionDesc will appear earlier in append_rel_list.
282 	 */
283 	List	   *append_rel_list;	/* list of AppendRelInfos */
284 
285 	List	   *row_identity_vars;	/* list of RowIdentityVarInfos */
286 
287 	List	   *rowMarks;		/* list of PlanRowMarks */
288 
289 	List	   *placeholder_list;	/* list of PlaceHolderInfos */
290 
291 	List	   *fkey_list;		/* list of ForeignKeyOptInfos */
292 
293 	List	   *query_pathkeys; /* desired pathkeys for query_planner() */
294 
295 	List	   *group_pathkeys; /* groupClause pathkeys, if any */
296 	List	   *window_pathkeys;	/* pathkeys of bottom window, if any */
297 	List	   *distinct_pathkeys;	/* distinctClause pathkeys, if any */
298 	List	   *sort_pathkeys;	/* sortClause pathkeys, if any */
299 
300 	List	   *part_schemes;	/* Canonicalised partition schemes used in the
301 								 * query. */
302 
303 	List	   *initial_rels;	/* RelOptInfos we are now trying to join */
304 
305 	/* Use fetch_upper_rel() to get any particular upper rel */
306 	List	   *upper_rels[UPPERREL_FINAL + 1]; /* upper-rel RelOptInfos */
307 
308 	/* Result tlists chosen by grouping_planner for upper-stage processing */
309 	struct PathTarget *upper_targets[UPPERREL_FINAL + 1];
310 
311 	/*
312 	 * The fully-processed targetlist is kept here.  It differs from
313 	 * parse->targetList in that (for INSERT) it's been reordered to match the
314 	 * target table, and defaults have been filled in.  Also, additional
315 	 * resjunk targets may be present.  preprocess_targetlist() does most of
316 	 * that work, but note that more resjunk targets can get added during
317 	 * appendrel expansion.  (Hence, upper_targets mustn't get set up till
318 	 * after that.)
319 	 */
320 	List	   *processed_tlist;
321 
322 	/*
323 	 * For UPDATE, this list contains the target table's attribute numbers to
324 	 * which the first N entries of processed_tlist are to be assigned.  (Any
325 	 * additional entries in processed_tlist must be resjunk.)  DO NOT use the
326 	 * resnos in processed_tlist to identify the UPDATE target columns.
327 	 */
328 	List	   *update_colnos;
329 
330 	/* Fields filled during create_plan() for use in setrefs.c */
331 	AttrNumber *grouping_map;	/* for GroupingFunc fixup */
332 	List	   *minmax_aggs;	/* List of MinMaxAggInfos */
333 
334 	MemoryContext planner_cxt;	/* context holding PlannerInfo */
335 
336 	double		total_table_pages;	/* # of pages in all non-dummy tables of
337 									 * query */
338 
339 	double		tuple_fraction; /* tuple_fraction passed to query_planner */
340 	double		limit_tuples;	/* limit_tuples passed to query_planner */
341 
342 	Index		qual_security_level;	/* minimum security_level for quals */
343 	/* Note: qual_security_level is zero if there are no securityQuals */
344 
345 	bool		hasJoinRTEs;	/* true if any RTEs are RTE_JOIN kind */
346 	bool		hasLateralRTEs; /* true if any RTEs are marked LATERAL */
347 	bool		hasHavingQual;	/* true if havingQual was non-null */
348 	bool		hasPseudoConstantQuals; /* true if any RestrictInfo has
349 										 * pseudoconstant = true */
350 	bool		hasAlternativeSubPlans; /* true if we've made any of those */
351 	bool		hasRecursion;	/* true if planning a recursive WITH item */
352 
353 	/*
354 	 * Information about aggregates. Filled by preprocess_aggrefs().
355 	 */
356 	List	   *agginfos;		/* AggInfo structs */
357 	List	   *aggtransinfos;	/* AggTransInfo structs */
358 	int			numOrderedAggs; /* number w/ DISTINCT/ORDER BY/WITHIN GROUP */
359 	bool		hasNonPartialAggs;	/* does any agg not support partial mode? */
360 	bool		hasNonSerialAggs;	/* is any partial agg non-serializable? */
361 
362 	/* These fields are used only when hasRecursion is true: */
363 	int			wt_param_id;	/* PARAM_EXEC ID for the work table */
364 	struct Path *non_recursive_path;	/* a path for non-recursive term */
365 
366 	/* These fields are workspace for createplan.c */
367 	Relids		curOuterRels;	/* outer rels above current node */
368 	List	   *curOuterParams; /* not-yet-assigned NestLoopParams */
369 
370 	/* These fields are workspace for setrefs.c */
371 	bool	   *isAltSubplan;	/* array corresponding to glob->subplans */
372 	bool	   *isUsedSubplan;	/* array corresponding to glob->subplans */
373 
374 	/* optional private data for join_search_hook, e.g., GEQO */
375 	void	   *join_search_private;
376 
377 	/* Does this query modify any partition key columns? */
378 	bool		partColsUpdated;
379 };
380 
381 
382 /*
383  * In places where it's known that simple_rte_array[] must have been prepared
384  * already, we just index into it to fetch RTEs.  In code that might be
385  * executed before or after entering query_planner(), use this macro.
386  */
387 #define planner_rt_fetch(rti, root) \
388 	((root)->simple_rte_array ? (root)->simple_rte_array[rti] : \
389 	 rt_fetch(rti, (root)->parse->rtable))
390 
391 /*
392  * If multiple relations are partitioned the same way, all such partitions
393  * will have a pointer to the same PartitionScheme.  A list of PartitionScheme
394  * objects is attached to the PlannerInfo.  By design, the partition scheme
395  * incorporates only the general properties of the partition method (LIST vs.
396  * RANGE, number of partitioning columns and the type information for each)
397  * and not the specific bounds.
398  *
399  * We store the opclass-declared input data types instead of the partition key
400  * datatypes since the former rather than the latter are used to compare
401  * partition bounds. Since partition key data types and the opclass declared
402  * input data types are expected to be binary compatible (per ResolveOpClass),
403  * both of those should have same byval and length properties.
404  */
405 typedef struct PartitionSchemeData
406 {
407 	char		strategy;		/* partition strategy */
408 	int16		partnatts;		/* number of partition attributes */
409 	Oid		   *partopfamily;	/* OIDs of operator families */
410 	Oid		   *partopcintype;	/* OIDs of opclass declared input data types */
411 	Oid		   *partcollation;	/* OIDs of partitioning collations */
412 
413 	/* Cached information about partition key data types. */
414 	int16	   *parttyplen;
415 	bool	   *parttypbyval;
416 
417 	/* Cached information about partition comparison functions. */
418 	struct FmgrInfo *partsupfunc;
419 }			PartitionSchemeData;
420 
421 typedef struct PartitionSchemeData *PartitionScheme;
422 
423 /*----------
424  * RelOptInfo
425  *		Per-relation information for planning/optimization
426  *
427  * For planning purposes, a "base rel" is either a plain relation (a table)
428  * or the output of a sub-SELECT or function that appears in the range table.
429  * In either case it is uniquely identified by an RT index.  A "joinrel"
430  * is the joining of two or more base rels.  A joinrel is identified by
431  * the set of RT indexes for its component baserels.  We create RelOptInfo
432  * nodes for each baserel and joinrel, and store them in the PlannerInfo's
433  * simple_rel_array and join_rel_list respectively.
434  *
435  * Note that there is only one joinrel for any given set of component
436  * baserels, no matter what order we assemble them in; so an unordered
437  * set is the right datatype to identify it with.
438  *
439  * We also have "other rels", which are like base rels in that they refer to
440  * single RT indexes; but they are not part of the join tree, and are given
441  * a different RelOptKind to identify them.
442  * Currently the only kind of otherrels are those made for member relations
443  * of an "append relation", that is an inheritance set or UNION ALL subquery.
444  * An append relation has a parent RTE that is a base rel, which represents
445  * the entire append relation.  The member RTEs are otherrels.  The parent
446  * is present in the query join tree but the members are not.  The member
447  * RTEs and otherrels are used to plan the scans of the individual tables or
448  * subqueries of the append set; then the parent baserel is given Append
449  * and/or MergeAppend paths comprising the best paths for the individual
450  * member rels.  (See comments for AppendRelInfo for more information.)
451  *
452  * At one time we also made otherrels to represent join RTEs, for use in
453  * handling join alias Vars.  Currently this is not needed because all join
454  * alias Vars are expanded to non-aliased form during preprocess_expression.
455  *
456  * We also have relations representing joins between child relations of
457  * different partitioned tables. These relations are not added to
458  * join_rel_level lists as they are not joined directly by the dynamic
459  * programming algorithm.
460  *
461  * There is also a RelOptKind for "upper" relations, which are RelOptInfos
462  * that describe post-scan/join processing steps, such as aggregation.
463  * Many of the fields in these RelOptInfos are meaningless, but their Path
464  * fields always hold Paths showing ways to do that processing step.
465  *
466  * Lastly, there is a RelOptKind for "dead" relations, which are base rels
467  * that we have proven we don't need to join after all.
468  *
469  * Parts of this data structure are specific to various scan and join
470  * mechanisms.  It didn't seem worth creating new node types for them.
471  *
472  *		relids - Set of base-relation identifiers; it is a base relation
473  *				if there is just one, a join relation if more than one
474  *		rows - estimated number of tuples in the relation after restriction
475  *			   clauses have been applied (ie, output rows of a plan for it)
476  *		consider_startup - true if there is any value in keeping plain paths for
477  *						   this rel on the basis of having cheap startup cost
478  *		consider_param_startup - the same for parameterized paths
479  *		reltarget - Default Path output tlist for this rel; normally contains
480  *					Var and PlaceHolderVar nodes for the values we need to
481  *					output from this relation.
482  *					List is in no particular order, but all rels of an
483  *					appendrel set must use corresponding orders.
484  *					NOTE: in an appendrel child relation, may contain
485  *					arbitrary expressions pulled up from a subquery!
486  *		pathlist - List of Path nodes, one for each potentially useful
487  *				   method of generating the relation
488  *		ppilist - ParamPathInfo nodes for parameterized Paths, if any
489  *		cheapest_startup_path - the pathlist member with lowest startup cost
490  *			(regardless of ordering) among the unparameterized paths;
491  *			or NULL if there is no unparameterized path
492  *		cheapest_total_path - the pathlist member with lowest total cost
493  *			(regardless of ordering) among the unparameterized paths;
494  *			or if there is no unparameterized path, the path with lowest
495  *			total cost among the paths with minimum parameterization
496  *		cheapest_unique_path - for caching cheapest path to produce unique
497  *			(no duplicates) output from relation; NULL if not yet requested
498  *		cheapest_parameterized_paths - best paths for their parameterizations;
499  *			always includes cheapest_total_path, even if that's unparameterized
500  *		direct_lateral_relids - rels this rel has direct LATERAL references to
501  *		lateral_relids - required outer rels for LATERAL, as a Relids set
502  *			(includes both direct and indirect lateral references)
503  *
504  * If the relation is a base relation it will have these fields set:
505  *
506  *		relid - RTE index (this is redundant with the relids field, but
507  *				is provided for convenience of access)
508  *		rtekind - copy of RTE's rtekind field
509  *		min_attr, max_attr - range of valid AttrNumbers for rel
510  *		attr_needed - array of bitmapsets indicating the highest joinrel
511  *				in which each attribute is needed; if bit 0 is set then
512  *				the attribute is needed as part of final targetlist
513  *		attr_widths - cache space for per-attribute width estimates;
514  *					  zero means not computed yet
515  *		lateral_vars - lateral cross-references of rel, if any (list of
516  *					   Vars and PlaceHolderVars)
517  *		lateral_referencers - relids of rels that reference this one laterally
518  *				(includes both direct and indirect lateral references)
519  *		indexlist - list of IndexOptInfo nodes for relation's indexes
520  *					(always NIL if it's not a table)
521  *		pages - number of disk pages in relation (zero if not a table)
522  *		tuples - number of tuples in relation (not considering restrictions)
523  *		allvisfrac - fraction of disk pages that are marked all-visible
524  *		eclass_indexes - EquivalenceClasses that mention this rel (filled
525  *						 only after EC merging is complete)
526  *		subroot - PlannerInfo for subquery (NULL if it's not a subquery)
527  *		subplan_params - list of PlannerParamItems to be passed to subquery
528  *
529  *		Note: for a subquery, tuples and subroot are not set immediately
530  *		upon creation of the RelOptInfo object; they are filled in when
531  *		set_subquery_pathlist processes the object.
532  *
533  *		For otherrels that are appendrel members, these fields are filled
534  *		in just as for a baserel, except we don't bother with lateral_vars.
535  *
536  * If the relation is either a foreign table or a join of foreign tables that
537  * all belong to the same foreign server and are assigned to the same user to
538  * check access permissions as (cf checkAsUser), these fields will be set:
539  *
540  *		serverid - OID of foreign server, if foreign table (else InvalidOid)
541  *		userid - OID of user to check access as (InvalidOid means current user)
542  *		useridiscurrent - we've assumed that userid equals current user
543  *		fdwroutine - function hooks for FDW, if foreign table (else NULL)
544  *		fdw_private - private state for FDW, if foreign table (else NULL)
545  *
546  * Two fields are used to cache knowledge acquired during the join search
547  * about whether this rel is provably unique when being joined to given other
548  * relation(s), ie, it can have at most one row matching any given row from
549  * that join relation.  Currently we only attempt such proofs, and thus only
550  * populate these fields, for base rels; but someday they might be used for
551  * join rels too:
552  *
553  *		unique_for_rels - list of Relid sets, each one being a set of other
554  *					rels for which this one has been proven unique
555  *		non_unique_for_rels - list of Relid sets, each one being a set of
556  *					other rels for which we have tried and failed to prove
557  *					this one unique
558  *
559  * The presence of the following fields depends on the restrictions
560  * and joins that the relation participates in:
561  *
562  *		baserestrictinfo - List of RestrictInfo nodes, containing info about
563  *					each non-join qualification clause in which this relation
564  *					participates (only used for base rels)
565  *		baserestrictcost - Estimated cost of evaluating the baserestrictinfo
566  *					clauses at a single tuple (only used for base rels)
567  *		baserestrict_min_security - Smallest security_level found among
568  *					clauses in baserestrictinfo
569  *		joininfo  - List of RestrictInfo nodes, containing info about each
570  *					join clause in which this relation participates (but
571  *					note this excludes clauses that might be derivable from
572  *					EquivalenceClasses)
573  *		has_eclass_joins - flag that EquivalenceClass joins are possible
574  *
575  * Note: Keeping a restrictinfo list in the RelOptInfo is useful only for
576  * base rels, because for a join rel the set of clauses that are treated as
577  * restrict clauses varies depending on which sub-relations we choose to join.
578  * (For example, in a 3-base-rel join, a clause relating rels 1 and 2 must be
579  * treated as a restrictclause if we join {1} and {2 3} to make {1 2 3}; but
580  * if we join {1 2} and {3} then that clause will be a restrictclause in {1 2}
581  * and should not be processed again at the level of {1 2 3}.)	Therefore,
582  * the restrictinfo list in the join case appears in individual JoinPaths
583  * (field joinrestrictinfo), not in the parent relation.  But it's OK for
584  * the RelOptInfo to store the joininfo list, because that is the same
585  * for a given rel no matter how we form it.
586  *
587  * We store baserestrictcost in the RelOptInfo (for base relations) because
588  * we know we will need it at least once (to price the sequential scan)
589  * and may need it multiple times to price index scans.
590  *
591  * A join relation is considered to be partitioned if it is formed from a
592  * join of two relations that are partitioned, have matching partitioning
593  * schemes, and are joined on an equijoin of the partitioning columns.
594  * Under those conditions we can consider the join relation to be partitioned
595  * by either relation's partitioning keys, though some care is needed if
596  * either relation can be forced to null by outer-joining.  For example, an
597  * outer join like (A LEFT JOIN B ON A.a = B.b) may produce rows with B.b
598  * NULL.  These rows may not fit the partitioning conditions imposed on B.
599  * Hence, strictly speaking, the join is not partitioned by B.b and thus
600  * partition keys of an outer join should include partition key expressions
601  * from the non-nullable side only.  However, if a subsequent join uses
602  * strict comparison operators (and all commonly-used equijoin operators are
603  * strict), the presence of nulls doesn't cause a problem: such rows couldn't
604  * match anything on the other side and thus they don't create a need to do
605  * any cross-partition sub-joins.  Hence we can treat such values as still
606  * partitioning the join output for the purpose of additional partitionwise
607  * joining, so long as a strict join operator is used by the next join.
608  *
609  * If the relation is partitioned, these fields will be set:
610  *
611  *		part_scheme - Partitioning scheme of the relation
612  *		nparts - Number of partitions
613  *		boundinfo - Partition bounds
614  *		partbounds_merged - true if partition bounds are merged ones
615  *		partition_qual - Partition constraint if not the root
616  *		part_rels - RelOptInfos for each partition
617  *		all_partrels - Relids set of all partition relids
618  *		partexprs, nullable_partexprs - Partition key expressions
619  *
620  * The partexprs and nullable_partexprs arrays each contain
621  * part_scheme->partnatts elements.  Each of the elements is a list of
622  * partition key expressions.  For partitioned base relations, there is one
623  * expression in each partexprs element, and nullable_partexprs is empty.
624  * For partitioned join relations, each base relation within the join
625  * contributes one partition key expression per partitioning column;
626  * that expression goes in the partexprs[i] list if the base relation
627  * is not nullable by this join or any lower outer join, or in the
628  * nullable_partexprs[i] list if the base relation is nullable.
629  * Furthermore, FULL JOINs add extra nullable_partexprs expressions
630  * corresponding to COALESCE expressions of the left and right join columns,
631  * to simplify matching join clauses to those lists.
632  *----------
633  */
634 
635 /* Bitmask of flags supported by table AMs */
636 #define AMFLAG_HAS_TID_RANGE (1 << 0)
637 
638 typedef enum RelOptKind
639 {
640 	RELOPT_BASEREL,
641 	RELOPT_JOINREL,
642 	RELOPT_OTHER_MEMBER_REL,
643 	RELOPT_OTHER_JOINREL,
644 	RELOPT_UPPER_REL,
645 	RELOPT_OTHER_UPPER_REL,
646 	RELOPT_DEADREL
647 } RelOptKind;
648 
649 /*
650  * Is the given relation a simple relation i.e a base or "other" member
651  * relation?
652  */
653 #define IS_SIMPLE_REL(rel) \
654 	((rel)->reloptkind == RELOPT_BASEREL || \
655 	 (rel)->reloptkind == RELOPT_OTHER_MEMBER_REL)
656 
657 /* Is the given relation a join relation? */
658 #define IS_JOIN_REL(rel)	\
659 	((rel)->reloptkind == RELOPT_JOINREL || \
660 	 (rel)->reloptkind == RELOPT_OTHER_JOINREL)
661 
662 /* Is the given relation an upper relation? */
663 #define IS_UPPER_REL(rel)	\
664 	((rel)->reloptkind == RELOPT_UPPER_REL || \
665 	 (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)
666 
667 /* Is the given relation an "other" relation? */
668 #define IS_OTHER_REL(rel) \
669 	((rel)->reloptkind == RELOPT_OTHER_MEMBER_REL || \
670 	 (rel)->reloptkind == RELOPT_OTHER_JOINREL || \
671 	 (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)
672 
673 typedef struct RelOptInfo
674 {
675 	NodeTag		type;
676 
677 	RelOptKind	reloptkind;
678 
679 	/* all relations included in this RelOptInfo */
680 	Relids		relids;			/* set of base relids (rangetable indexes) */
681 
682 	/* size estimates generated by planner */
683 	double		rows;			/* estimated number of result tuples */
684 
685 	/* per-relation planner control flags */
686 	bool		consider_startup;	/* keep cheap-startup-cost paths? */
687 	bool		consider_param_startup; /* ditto, for parameterized paths? */
688 	bool		consider_parallel;	/* consider parallel paths? */
689 
690 	/* default result targetlist for Paths scanning this relation */
691 	struct PathTarget *reltarget;	/* list of Vars/Exprs, cost, width */
692 
693 	/* materialization information */
694 	List	   *pathlist;		/* Path structures */
695 	List	   *ppilist;		/* ParamPathInfos used in pathlist */
696 	List	   *partial_pathlist;	/* partial Paths */
697 	struct Path *cheapest_startup_path;
698 	struct Path *cheapest_total_path;
699 	struct Path *cheapest_unique_path;
700 	List	   *cheapest_parameterized_paths;
701 
702 	/* parameterization information needed for both base rels and join rels */
703 	/* (see also lateral_vars and lateral_referencers) */
704 	Relids		direct_lateral_relids;	/* rels directly laterally referenced */
705 	Relids		lateral_relids; /* minimum parameterization of rel */
706 
707 	/* information about a base rel (not set for join rels!) */
708 	Index		relid;
709 	Oid			reltablespace;	/* containing tablespace */
710 	RTEKind		rtekind;		/* RELATION, SUBQUERY, FUNCTION, etc */
711 	AttrNumber	min_attr;		/* smallest attrno of rel (often <0) */
712 	AttrNumber	max_attr;		/* largest attrno of rel */
713 	Relids	   *attr_needed;	/* array indexed [min_attr .. max_attr] */
714 	int32	   *attr_widths;	/* array indexed [min_attr .. max_attr] */
715 	List	   *lateral_vars;	/* LATERAL Vars and PHVs referenced by rel */
716 	Relids		lateral_referencers;	/* rels that reference me laterally */
717 	List	   *indexlist;		/* list of IndexOptInfo */
718 	List	   *statlist;		/* list of StatisticExtInfo */
719 	BlockNumber pages;			/* size estimates derived from pg_class */
720 	double		tuples;
721 	double		allvisfrac;
722 	Bitmapset  *eclass_indexes; /* Indexes in PlannerInfo's eq_classes list of
723 								 * ECs that mention this rel */
724 	PlannerInfo *subroot;		/* if subquery */
725 	List	   *subplan_params; /* if subquery */
726 	int			rel_parallel_workers;	/* wanted number of parallel workers */
727 	uint32		amflags;		/* Bitmask of optional features supported by
728 								 * the table AM */
729 
730 	/* Information about foreign tables and foreign joins */
731 	Oid			serverid;		/* identifies server for the table or join */
732 	Oid			userid;			/* identifies user to check access as */
733 	bool		useridiscurrent;	/* join is only valid for current user */
734 	/* use "struct FdwRoutine" to avoid including fdwapi.h here */
735 	struct FdwRoutine *fdwroutine;
736 	void	   *fdw_private;
737 
738 	/* cache space for remembering if we have proven this relation unique */
739 	List	   *unique_for_rels;	/* known unique for these other relid
740 									 * set(s) */
741 	List	   *non_unique_for_rels;	/* known not unique for these set(s) */
742 
743 	/* used by various scans and joins: */
744 	List	   *baserestrictinfo;	/* RestrictInfo structures (if base rel) */
745 	QualCost	baserestrictcost;	/* cost of evaluating the above */
746 	Index		baserestrict_min_security;	/* min security_level found in
747 											 * baserestrictinfo */
748 	List	   *joininfo;		/* RestrictInfo structures for join clauses
749 								 * involving this rel */
750 	bool		has_eclass_joins;	/* T means joininfo is incomplete */
751 
752 	/* used by partitionwise joins: */
753 	bool		consider_partitionwise_join;	/* consider partitionwise join
754 												 * paths? (if partitioned rel) */
755 	Relids		top_parent_relids;	/* Relids of topmost parents (if "other"
756 									 * rel) */
757 
758 	/* used for partitioned relations: */
759 	PartitionScheme part_scheme;	/* Partitioning scheme */
760 	int			nparts;			/* Number of partitions; -1 if not yet set; in
761 								 * case of a join relation 0 means it's
762 								 * considered unpartitioned */
763 	struct PartitionBoundInfoData *boundinfo;	/* Partition bounds */
764 	bool		partbounds_merged;	/* True if partition bounds were created
765 									 * by partition_bounds_merge() */
766 	List	   *partition_qual; /* Partition constraint, if not the root */
767 	struct RelOptInfo **part_rels;	/* Array of RelOptInfos of partitions,
768 									 * stored in the same order as bounds */
769 	Relids		all_partrels;	/* Relids set of all partition relids */
770 	List	  **partexprs;		/* Non-nullable partition key expressions */
771 	List	  **nullable_partexprs; /* Nullable partition key expressions */
772 } RelOptInfo;
773 
774 /*
775  * Is given relation partitioned?
776  *
777  * It's not enough to test whether rel->part_scheme is set, because it might
778  * be that the basic partitioning properties of the input relations matched
779  * but the partition bounds did not.  Also, if we are able to prove a rel
780  * dummy (empty), we should henceforth treat it as unpartitioned.
781  */
782 #define IS_PARTITIONED_REL(rel) \
783 	((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
784 	 (rel)->part_rels && !IS_DUMMY_REL(rel))
785 
786 /*
787  * Convenience macro to make sure that a partitioned relation has all the
788  * required members set.
789  */
790 #define REL_HAS_ALL_PART_PROPS(rel)	\
791 	((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
792 	 (rel)->part_rels && (rel)->partexprs && (rel)->nullable_partexprs)
793 
794 /*
795  * IndexOptInfo
796  *		Per-index information for planning/optimization
797  *
798  *		indexkeys[], indexcollations[] each have ncolumns entries.
799  *		opfamily[], and opcintype[]	each have nkeycolumns entries. They do
800  *		not contain any information about included attributes.
801  *
802  *		sortopfamily[], reverse_sort[], and nulls_first[] have
803  *		nkeycolumns entries, if the index is ordered; but if it is unordered,
804  *		those pointers are NULL.
805  *
806  *		Zeroes in the indexkeys[] array indicate index columns that are
807  *		expressions; there is one element in indexprs for each such column.
808  *
809  *		For an ordered index, reverse_sort[] and nulls_first[] describe the
810  *		sort ordering of a forward indexscan; we can also consider a backward
811  *		indexscan, which will generate the reverse ordering.
812  *
813  *		The indexprs and indpred expressions have been run through
814  *		prepqual.c and eval_const_expressions() for ease of matching to
815  *		WHERE clauses. indpred is in implicit-AND form.
816  *
817  *		indextlist is a TargetEntry list representing the index columns.
818  *		It provides an equivalent base-relation Var for each simple column,
819  *		and links to the matching indexprs element for each expression column.
820  *
821  *		While most of these fields are filled when the IndexOptInfo is created
822  *		(by plancat.c), indrestrictinfo and predOK are set later, in
823  *		check_index_predicates().
824  */
825 #ifndef HAVE_INDEXOPTINFO_TYPEDEF
826 typedef struct IndexOptInfo IndexOptInfo;
827 #define HAVE_INDEXOPTINFO_TYPEDEF 1
828 #endif
829 
830 struct IndexOptInfo
831 {
832 	NodeTag		type;
833 
834 	Oid			indexoid;		/* OID of the index relation */
835 	Oid			reltablespace;	/* tablespace of index (not table) */
836 	RelOptInfo *rel;			/* back-link to index's table */
837 
838 	/* index-size statistics (from pg_class and elsewhere) */
839 	BlockNumber pages;			/* number of disk pages in index */
840 	double		tuples;			/* number of index tuples in index */
841 	int			tree_height;	/* index tree height, or -1 if unknown */
842 
843 	/* index descriptor information */
844 	int			ncolumns;		/* number of columns in index */
845 	int			nkeycolumns;	/* number of key columns in index */
846 	int		   *indexkeys;		/* column numbers of index's attributes both
847 								 * key and included columns, or 0 */
848 	Oid		   *indexcollations;	/* OIDs of collations of index columns */
849 	Oid		   *opfamily;		/* OIDs of operator families for columns */
850 	Oid		   *opcintype;		/* OIDs of opclass declared input data types */
851 	Oid		   *sortopfamily;	/* OIDs of btree opfamilies, if orderable */
852 	bool	   *reverse_sort;	/* is sort order descending? */
853 	bool	   *nulls_first;	/* do NULLs come first in the sort order? */
854 	bytea	  **opclassoptions; /* opclass-specific options for columns */
855 	bool	   *canreturn;		/* which index cols can be returned in an
856 								 * index-only scan? */
857 	Oid			relam;			/* OID of the access method (in pg_am) */
858 
859 	List	   *indexprs;		/* expressions for non-simple index columns */
860 	List	   *indpred;		/* predicate if a partial index, else NIL */
861 
862 	List	   *indextlist;		/* targetlist representing index columns */
863 
864 	List	   *indrestrictinfo;	/* parent relation's baserestrictinfo
865 									 * list, less any conditions implied by
866 									 * the index's predicate (unless it's a
867 									 * target rel, see comments in
868 									 * check_index_predicates()) */
869 
870 	bool		predOK;			/* true if index predicate matches query */
871 	bool		unique;			/* true if a unique index */
872 	bool		immediate;		/* is uniqueness enforced immediately? */
873 	bool		hypothetical;	/* true if index doesn't really exist */
874 
875 	/* Remaining fields are copied from the index AM's API struct: */
876 	bool		amcanorderbyop; /* does AM support order by operator result? */
877 	bool		amoptionalkey;	/* can query omit key for the first column? */
878 	bool		amsearcharray;	/* can AM handle ScalarArrayOpExpr quals? */
879 	bool		amsearchnulls;	/* can AM search for NULL/NOT NULL entries? */
880 	bool		amhasgettuple;	/* does AM have amgettuple interface? */
881 	bool		amhasgetbitmap; /* does AM have amgetbitmap interface? */
882 	bool		amcanparallel;	/* does AM support parallel scan? */
883 	bool		amcanmarkpos;	/* does AM support mark/restore? */
884 	/* Rather than include amapi.h here, we declare amcostestimate like this */
885 	void		(*amcostestimate) ();	/* AM's cost estimator */
886 };
887 
888 /*
889  * ForeignKeyOptInfo
890  *		Per-foreign-key information for planning/optimization
891  *
892  * The per-FK-column arrays can be fixed-size because we allow at most
893  * INDEX_MAX_KEYS columns in a foreign key constraint.  Each array has
894  * nkeys valid entries.
895  */
896 typedef struct ForeignKeyOptInfo
897 {
898 	NodeTag		type;
899 
900 	/* Basic data about the foreign key (fetched from catalogs): */
901 	Index		con_relid;		/* RT index of the referencing table */
902 	Index		ref_relid;		/* RT index of the referenced table */
903 	int			nkeys;			/* number of columns in the foreign key */
904 	AttrNumber	conkey[INDEX_MAX_KEYS]; /* cols in referencing table */
905 	AttrNumber	confkey[INDEX_MAX_KEYS];	/* cols in referenced table */
906 	Oid			conpfeqop[INDEX_MAX_KEYS];	/* PK = FK operator OIDs */
907 
908 	/* Derived info about whether FK's equality conditions match the query: */
909 	int			nmatched_ec;	/* # of FK cols matched by ECs */
910 	int			nconst_ec;		/* # of these ECs that are ec_has_const */
911 	int			nmatched_rcols; /* # of FK cols matched by non-EC rinfos */
912 	int			nmatched_ri;	/* total # of non-EC rinfos matched to FK */
913 	/* Pointer to eclass matching each column's condition, if there is one */
914 	struct EquivalenceClass *eclass[INDEX_MAX_KEYS];
915 	/* Pointer to eclass member for the referencing Var, if there is one */
916 	struct EquivalenceMember *fk_eclass_member[INDEX_MAX_KEYS];
917 	/* List of non-EC RestrictInfos matching each column's condition */
918 	List	   *rinfos[INDEX_MAX_KEYS];
919 } ForeignKeyOptInfo;
920 
921 /*
922  * StatisticExtInfo
923  *		Information about extended statistics for planning/optimization
924  *
925  * Each pg_statistic_ext row is represented by one or more nodes of this
926  * type, or even zero if ANALYZE has not computed them.
927  */
928 typedef struct StatisticExtInfo
929 {
930 	NodeTag		type;
931 
932 	Oid			statOid;		/* OID of the statistics row */
933 	RelOptInfo *rel;			/* back-link to statistic's table */
934 	char		kind;			/* statistics kind of this entry */
935 	Bitmapset  *keys;			/* attnums of the columns covered */
936 	List	   *exprs;			/* expressions */
937 } StatisticExtInfo;
938 
939 /*
940  * EquivalenceClasses
941  *
942  * Whenever we can determine that a mergejoinable equality clause A = B is
943  * not delayed by any outer join, we create an EquivalenceClass containing
944  * the expressions A and B to record this knowledge.  If we later find another
945  * equivalence B = C, we add C to the existing EquivalenceClass; this may
946  * require merging two existing EquivalenceClasses.  At the end of the qual
947  * distribution process, we have sets of values that are known all transitively
948  * equal to each other, where "equal" is according to the rules of the btree
949  * operator family(s) shown in ec_opfamilies, as well as the collation shown
950  * by ec_collation.  (We restrict an EC to contain only equalities whose
951  * operators belong to the same set of opfamilies.  This could probably be
952  * relaxed, but for now it's not worth the trouble, since nearly all equality
953  * operators belong to only one btree opclass anyway.  Similarly, we suppose
954  * that all or none of the input datatypes are collatable, so that a single
955  * collation value is sufficient.)
956  *
957  * We also use EquivalenceClasses as the base structure for PathKeys, letting
958  * us represent knowledge about different sort orderings being equivalent.
959  * Since every PathKey must reference an EquivalenceClass, we will end up
960  * with single-member EquivalenceClasses whenever a sort key expression has
961  * not been equivalenced to anything else.  It is also possible that such an
962  * EquivalenceClass will contain a volatile expression ("ORDER BY random()"),
963  * which is a case that can't arise otherwise since clauses containing
964  * volatile functions are never considered mergejoinable.  We mark such
965  * EquivalenceClasses specially to prevent them from being merged with
966  * ordinary EquivalenceClasses.  Also, for volatile expressions we have
967  * to be careful to match the EquivalenceClass to the correct targetlist
968  * entry: consider SELECT random() AS a, random() AS b ... ORDER BY b,a.
969  * So we record the SortGroupRef of the originating sort clause.
970  *
971  * We allow equality clauses appearing below the nullable side of an outer join
972  * to form EquivalenceClasses, but these have a slightly different meaning:
973  * the included values might be all NULL rather than all the same non-null
974  * values.  See src/backend/optimizer/README for more on that point.
975  *
976  * NB: if ec_merged isn't NULL, this class has been merged into another, and
977  * should be ignored in favor of using the pointed-to class.
978  */
979 typedef struct EquivalenceClass
980 {
981 	NodeTag		type;
982 
983 	List	   *ec_opfamilies;	/* btree operator family OIDs */
984 	Oid			ec_collation;	/* collation, if datatypes are collatable */
985 	List	   *ec_members;		/* list of EquivalenceMembers */
986 	List	   *ec_sources;		/* list of generating RestrictInfos */
987 	List	   *ec_derives;		/* list of derived RestrictInfos */
988 	Relids		ec_relids;		/* all relids appearing in ec_members, except
989 								 * for child members (see below) */
990 	bool		ec_has_const;	/* any pseudoconstants in ec_members? */
991 	bool		ec_has_volatile;	/* the (sole) member is a volatile expr */
992 	bool		ec_below_outer_join;	/* equivalence applies below an OJ */
993 	bool		ec_broken;		/* failed to generate needed clauses? */
994 	Index		ec_sortref;		/* originating sortclause label, or 0 */
995 	Index		ec_min_security;	/* minimum security_level in ec_sources */
996 	Index		ec_max_security;	/* maximum security_level in ec_sources */
997 	struct EquivalenceClass *ec_merged; /* set if merged into another EC */
998 } EquivalenceClass;
999 
1000 /*
1001  * If an EC contains a const and isn't below-outer-join, any PathKey depending
1002  * on it must be redundant, since there's only one possible value of the key.
1003  */
1004 #define EC_MUST_BE_REDUNDANT(eclass)  \
1005 	((eclass)->ec_has_const && !(eclass)->ec_below_outer_join)
1006 
1007 /*
1008  * EquivalenceMember - one member expression of an EquivalenceClass
1009  *
1010  * em_is_child signifies that this element was built by transposing a member
1011  * for an appendrel parent relation to represent the corresponding expression
1012  * for an appendrel child.  These members are used for determining the
1013  * pathkeys of scans on the child relation and for explicitly sorting the
1014  * child when necessary to build a MergeAppend path for the whole appendrel
1015  * tree.  An em_is_child member has no impact on the properties of the EC as a
1016  * whole; in particular the EC's ec_relids field does NOT include the child
1017  * relation.  An em_is_child member should never be marked em_is_const nor
1018  * cause ec_has_const or ec_has_volatile to be set, either.  Thus, em_is_child
1019  * members are not really full-fledged members of the EC, but just reflections
1020  * or doppelgangers of real members.  Most operations on EquivalenceClasses
1021  * should ignore em_is_child members, and those that don't should test
1022  * em_relids to make sure they only consider relevant members.
1023  *
1024  * em_datatype is usually the same as exprType(em_expr), but can be
1025  * different when dealing with a binary-compatible opfamily; in particular
1026  * anyarray_ops would never work without this.  Use em_datatype when
1027  * looking up a specific btree operator to work with this expression.
1028  */
1029 typedef struct EquivalenceMember
1030 {
1031 	NodeTag		type;
1032 
1033 	Expr	   *em_expr;		/* the expression represented */
1034 	Relids		em_relids;		/* all relids appearing in em_expr */
1035 	Relids		em_nullable_relids; /* nullable by lower outer joins */
1036 	bool		em_is_const;	/* expression is pseudoconstant? */
1037 	bool		em_is_child;	/* derived version for a child relation? */
1038 	Oid			em_datatype;	/* the "nominal type" used by the opfamily */
1039 } EquivalenceMember;
1040 
1041 /*
1042  * PathKeys
1043  *
1044  * The sort ordering of a path is represented by a list of PathKey nodes.
1045  * An empty list implies no known ordering.  Otherwise the first item
1046  * represents the primary sort key, the second the first secondary sort key,
1047  * etc.  The value being sorted is represented by linking to an
1048  * EquivalenceClass containing that value and including pk_opfamily among its
1049  * ec_opfamilies.  The EquivalenceClass tells which collation to use, too.
1050  * This is a convenient method because it makes it trivial to detect
1051  * equivalent and closely-related orderings. (See optimizer/README for more
1052  * information.)
1053  *
1054  * Note: pk_strategy is either BTLessStrategyNumber (for ASC) or
1055  * BTGreaterStrategyNumber (for DESC).  We assume that all ordering-capable
1056  * index types will use btree-compatible strategy numbers.
1057  */
1058 typedef struct PathKey
1059 {
1060 	NodeTag		type;
1061 
1062 	EquivalenceClass *pk_eclass;	/* the value that is ordered */
1063 	Oid			pk_opfamily;	/* btree opfamily defining the ordering */
1064 	int			pk_strategy;	/* sort direction (ASC or DESC) */
1065 	bool		pk_nulls_first; /* do NULLs come before normal values? */
1066 } PathKey;
1067 
1068 /*
1069  * VolatileFunctionStatus -- allows nodes to cache their
1070  * contain_volatile_functions properties. VOLATILITY_UNKNOWN means not yet
1071  * determined.
1072  */
1073 typedef enum VolatileFunctionStatus
1074 {
1075 	VOLATILITY_UNKNOWN = 0,
1076 	VOLATILITY_VOLATILE,
1077 	VOLATILITY_NOVOLATILE
1078 } VolatileFunctionStatus;
1079 
1080 /*
1081  * PathTarget
1082  *
1083  * This struct contains what we need to know during planning about the
1084  * targetlist (output columns) that a Path will compute.  Each RelOptInfo
1085  * includes a default PathTarget, which its individual Paths may simply
1086  * reference.  However, in some cases a Path may compute outputs different
1087  * from other Paths, and in that case we make a custom PathTarget for it.
1088  * For example, an indexscan might return index expressions that would
1089  * otherwise need to be explicitly calculated.  (Note also that "upper"
1090  * relations generally don't have useful default PathTargets.)
1091  *
1092  * exprs contains bare expressions; they do not have TargetEntry nodes on top,
1093  * though those will appear in finished Plans.
1094  *
1095  * sortgrouprefs[] is an array of the same length as exprs, containing the
1096  * corresponding sort/group refnos, or zeroes for expressions not referenced
1097  * by sort/group clauses.  If sortgrouprefs is NULL (which it generally is in
1098  * RelOptInfo.reltarget targets; only upper-level Paths contain this info),
1099  * we have not identified sort/group columns in this tlist.  This allows us to
1100  * deal with sort/group refnos when needed with less expense than including
1101  * TargetEntry nodes in the exprs list.
1102  */
1103 typedef struct PathTarget
1104 {
1105 	NodeTag		type;
1106 	List	   *exprs;			/* list of expressions to be computed */
1107 	Index	   *sortgrouprefs;	/* corresponding sort/group refnos, or 0 */
1108 	QualCost	cost;			/* cost of evaluating the expressions */
1109 	int			width;			/* estimated avg width of result tuples */
1110 	VolatileFunctionStatus has_volatile_expr;	/* indicates if exprs contain
1111 												 * any volatile functions. */
1112 } PathTarget;
1113 
1114 /* Convenience macro to get a sort/group refno from a PathTarget */
1115 #define get_pathtarget_sortgroupref(target, colno) \
1116 	((target)->sortgrouprefs ? (target)->sortgrouprefs[colno] : (Index) 0)
1117 
1118 
1119 /*
1120  * ParamPathInfo
1121  *
1122  * All parameterized paths for a given relation with given required outer rels
1123  * link to a single ParamPathInfo, which stores common information such as
1124  * the estimated rowcount for this parameterization.  We do this partly to
1125  * avoid recalculations, but mostly to ensure that the estimated rowcount
1126  * is in fact the same for every such path.
1127  *
1128  * Note: ppi_clauses is only used in ParamPathInfos for base relation paths;
1129  * in join cases it's NIL because the set of relevant clauses varies depending
1130  * on how the join is formed.  The relevant clauses will appear in each
1131  * parameterized join path's joinrestrictinfo list, instead.
1132  */
1133 typedef struct ParamPathInfo
1134 {
1135 	NodeTag		type;
1136 
1137 	Relids		ppi_req_outer;	/* rels supplying parameters used by path */
1138 	double		ppi_rows;		/* estimated number of result tuples */
1139 	List	   *ppi_clauses;	/* join clauses available from outer rels */
1140 } ParamPathInfo;
1141 
1142 
1143 /*
1144  * Type "Path" is used as-is for sequential-scan paths, as well as some other
1145  * simple plan types that we don't need any extra information in the path for.
1146  * For other path types it is the first component of a larger struct.
1147  *
1148  * "pathtype" is the NodeTag of the Plan node we could build from this Path.
1149  * It is partially redundant with the Path's NodeTag, but allows us to use
1150  * the same Path type for multiple Plan types when there is no need to
1151  * distinguish the Plan type during path processing.
1152  *
1153  * "parent" identifies the relation this Path scans, and "pathtarget"
1154  * describes the precise set of output columns the Path would compute.
1155  * In simple cases all Paths for a given rel share the same targetlist,
1156  * which we represent by having path->pathtarget equal to parent->reltarget.
1157  *
1158  * "param_info", if not NULL, links to a ParamPathInfo that identifies outer
1159  * relation(s) that provide parameter values to each scan of this path.
1160  * That means this path can only be joined to those rels by means of nestloop
1161  * joins with this path on the inside.  Also note that a parameterized path
1162  * is responsible for testing all "movable" joinclauses involving this rel
1163  * and the specified outer rel(s).
1164  *
1165  * "rows" is the same as parent->rows in simple paths, but in parameterized
1166  * paths and UniquePaths it can be less than parent->rows, reflecting the
1167  * fact that we've filtered by extra join conditions or removed duplicates.
1168  *
1169  * "pathkeys" is a List of PathKey nodes (see above), describing the sort
1170  * ordering of the path's output rows.
1171  */
1172 typedef struct Path
1173 {
1174 	NodeTag		type;
1175 
1176 	NodeTag		pathtype;		/* tag identifying scan/join method */
1177 
1178 	RelOptInfo *parent;			/* the relation this path can build */
1179 	PathTarget *pathtarget;		/* list of Vars/Exprs, cost, width */
1180 
1181 	ParamPathInfo *param_info;	/* parameterization info, or NULL if none */
1182 
1183 	bool		parallel_aware; /* engage parallel-aware logic? */
1184 	bool		parallel_safe;	/* OK to use as part of parallel plan? */
1185 	int			parallel_workers;	/* desired # of workers; 0 = not parallel */
1186 
1187 	/* estimated size/costs for path (see costsize.c for more info) */
1188 	double		rows;			/* estimated number of result tuples */
1189 	Cost		startup_cost;	/* cost expended before fetching any tuples */
1190 	Cost		total_cost;		/* total cost (assuming all tuples fetched) */
1191 
1192 	List	   *pathkeys;		/* sort ordering of path's output */
1193 	/* pathkeys is a List of PathKey nodes; see above */
1194 } Path;
1195 
1196 /* Macro for extracting a path's parameterization relids; beware double eval */
1197 #define PATH_REQ_OUTER(path)  \
1198 	((path)->param_info ? (path)->param_info->ppi_req_outer : (Relids) NULL)
1199 
1200 /*----------
1201  * IndexPath represents an index scan over a single index.
1202  *
1203  * This struct is used for both regular indexscans and index-only scans;
1204  * path.pathtype is T_IndexScan or T_IndexOnlyScan to show which is meant.
1205  *
1206  * 'indexinfo' is the index to be scanned.
1207  *
1208  * 'indexclauses' is a list of IndexClause nodes, each representing one
1209  * index-checkable restriction, with implicit AND semantics across the list.
1210  * An empty list implies a full index scan.
1211  *
1212  * 'indexorderbys', if not NIL, is a list of ORDER BY expressions that have
1213  * been found to be usable as ordering operators for an amcanorderbyop index.
1214  * The list must match the path's pathkeys, ie, one expression per pathkey
1215  * in the same order.  These are not RestrictInfos, just bare expressions,
1216  * since they generally won't yield booleans.  It's guaranteed that each
1217  * expression has the index key on the left side of the operator.
1218  *
1219  * 'indexorderbycols' is an integer list of index column numbers (zero-based)
1220  * of the same length as 'indexorderbys', showing which index column each
1221  * ORDER BY expression is meant to be used with.  (There is no restriction
1222  * on which index column each ORDER BY can be used with.)
1223  *
1224  * 'indexscandir' is one of:
1225  *		ForwardScanDirection: forward scan of an ordered index
1226  *		BackwardScanDirection: backward scan of an ordered index
1227  *		NoMovementScanDirection: scan of an unordered index, or don't care
1228  * (The executor doesn't care whether it gets ForwardScanDirection or
1229  * NoMovementScanDirection for an indexscan, but the planner wants to
1230  * distinguish ordered from unordered indexes for building pathkeys.)
1231  *
1232  * 'indextotalcost' and 'indexselectivity' are saved in the IndexPath so that
1233  * we need not recompute them when considering using the same index in a
1234  * bitmap index/heap scan (see BitmapHeapPath).  The costs of the IndexPath
1235  * itself represent the costs of an IndexScan or IndexOnlyScan plan type.
1236  *----------
1237  */
1238 typedef struct IndexPath
1239 {
1240 	Path		path;
1241 	IndexOptInfo *indexinfo;
1242 	List	   *indexclauses;
1243 	List	   *indexorderbys;
1244 	List	   *indexorderbycols;
1245 	ScanDirection indexscandir;
1246 	Cost		indextotalcost;
1247 	Selectivity indexselectivity;
1248 } IndexPath;
1249 
1250 /*
1251  * Each IndexClause references a RestrictInfo node from the query's WHERE
1252  * or JOIN conditions, and shows how that restriction can be applied to
1253  * the particular index.  We support both indexclauses that are directly
1254  * usable by the index machinery, which are typically of the form
1255  * "indexcol OP pseudoconstant", and those from which an indexable qual
1256  * can be derived.  The simplest such transformation is that a clause
1257  * of the form "pseudoconstant OP indexcol" can be commuted to produce an
1258  * indexable qual (the index machinery expects the indexcol to be on the
1259  * left always).  Another example is that we might be able to extract an
1260  * indexable range condition from a LIKE condition, as in "x LIKE 'foo%bar'"
1261  * giving rise to "x >= 'foo' AND x < 'fop'".  Derivation of such lossy
1262  * conditions is done by a planner support function attached to the
1263  * indexclause's top-level function or operator.
1264  *
1265  * indexquals is a list of RestrictInfos for the directly-usable index
1266  * conditions associated with this IndexClause.  In the simplest case
1267  * it's a one-element list whose member is iclause->rinfo.  Otherwise,
1268  * it contains one or more directly-usable indexqual conditions extracted
1269  * from the given clause.  The 'lossy' flag indicates whether the
1270  * indexquals are semantically equivalent to the original clause, or
1271  * represent a weaker condition.
1272  *
1273  * Normally, indexcol is the index of the single index column the clause
1274  * works on, and indexcols is NIL.  But if the clause is a RowCompareExpr,
1275  * indexcol is the index of the leading column, and indexcols is a list of
1276  * all the affected columns.  (Note that indexcols matches up with the
1277  * columns of the actual indexable RowCompareExpr in indexquals, which
1278  * might be different from the original in rinfo.)
1279  *
1280  * An IndexPath's IndexClause list is required to be ordered by index
1281  * column, i.e. the indexcol values must form a nondecreasing sequence.
1282  * (The order of multiple clauses for the same index column is unspecified.)
1283  */
1284 typedef struct IndexClause
1285 {
1286 	NodeTag		type;
1287 	struct RestrictInfo *rinfo; /* original restriction or join clause */
1288 	List	   *indexquals;		/* indexqual(s) derived from it */
1289 	bool		lossy;			/* are indexquals a lossy version of clause? */
1290 	AttrNumber	indexcol;		/* index column the clause uses (zero-based) */
1291 	List	   *indexcols;		/* multiple index columns, if RowCompare */
1292 } IndexClause;
1293 
1294 /*
1295  * BitmapHeapPath represents one or more indexscans that generate TID bitmaps
1296  * instead of directly accessing the heap, followed by AND/OR combinations
1297  * to produce a single bitmap, followed by a heap scan that uses the bitmap.
1298  * Note that the output is always considered unordered, since it will come
1299  * out in physical heap order no matter what the underlying indexes did.
1300  *
1301  * The individual indexscans are represented by IndexPath nodes, and any
1302  * logic on top of them is represented by a tree of BitmapAndPath and
1303  * BitmapOrPath nodes.  Notice that we can use the same IndexPath node both
1304  * to represent a regular (or index-only) index scan plan, and as the child
1305  * of a BitmapHeapPath that represents scanning the same index using a
1306  * BitmapIndexScan.  The startup_cost and total_cost figures of an IndexPath
1307  * always represent the costs to use it as a regular (or index-only)
1308  * IndexScan.  The costs of a BitmapIndexScan can be computed using the
1309  * IndexPath's indextotalcost and indexselectivity.
1310  */
1311 typedef struct BitmapHeapPath
1312 {
1313 	Path		path;
1314 	Path	   *bitmapqual;		/* IndexPath, BitmapAndPath, BitmapOrPath */
1315 } BitmapHeapPath;
1316 
1317 /*
1318  * BitmapAndPath represents a BitmapAnd plan node; it can only appear as
1319  * part of the substructure of a BitmapHeapPath.  The Path structure is
1320  * a bit more heavyweight than we really need for this, but for simplicity
1321  * we make it a derivative of Path anyway.
1322  */
1323 typedef struct BitmapAndPath
1324 {
1325 	Path		path;
1326 	List	   *bitmapquals;	/* IndexPaths and BitmapOrPaths */
1327 	Selectivity bitmapselectivity;
1328 } BitmapAndPath;
1329 
1330 /*
1331  * BitmapOrPath represents a BitmapOr plan node; it can only appear as
1332  * part of the substructure of a BitmapHeapPath.  The Path structure is
1333  * a bit more heavyweight than we really need for this, but for simplicity
1334  * we make it a derivative of Path anyway.
1335  */
1336 typedef struct BitmapOrPath
1337 {
1338 	Path		path;
1339 	List	   *bitmapquals;	/* IndexPaths and BitmapAndPaths */
1340 	Selectivity bitmapselectivity;
1341 } BitmapOrPath;
1342 
1343 /*
1344  * TidPath represents a scan by TID
1345  *
1346  * tidquals is an implicitly OR'ed list of qual expressions of the form
1347  * "CTID = pseudoconstant", or "CTID = ANY(pseudoconstant_array)",
1348  * or a CurrentOfExpr for the relation.
1349  */
1350 typedef struct TidPath
1351 {
1352 	Path		path;
1353 	List	   *tidquals;		/* qual(s) involving CTID = something */
1354 } TidPath;
1355 
1356 /*
1357  * TidRangePath represents a scan by a continguous range of TIDs
1358  *
1359  * tidrangequals is an implicitly AND'ed list of qual expressions of the form
1360  * "CTID relop pseudoconstant", where relop is one of >,>=,<,<=.
1361  */
1362 typedef struct TidRangePath
1363 {
1364 	Path		path;
1365 	List	   *tidrangequals;
1366 } TidRangePath;
1367 
1368 /*
1369  * SubqueryScanPath represents a scan of an unflattened subquery-in-FROM
1370  *
1371  * Note that the subpath comes from a different planning domain; for example
1372  * RTE indexes within it mean something different from those known to the
1373  * SubqueryScanPath.  path.parent->subroot is the planning context needed to
1374  * interpret the subpath.
1375  */
1376 typedef struct SubqueryScanPath
1377 {
1378 	Path		path;
1379 	Path	   *subpath;		/* path representing subquery execution */
1380 } SubqueryScanPath;
1381 
1382 /*
1383  * ForeignPath represents a potential scan of a foreign table, foreign join
1384  * or foreign upper-relation.
1385  *
1386  * fdw_private stores FDW private data about the scan.  While fdw_private is
1387  * not actually touched by the core code during normal operations, it's
1388  * generally a good idea to use a representation that can be dumped by
1389  * nodeToString(), so that you can examine the structure during debugging
1390  * with tools like pprint().
1391  */
1392 typedef struct ForeignPath
1393 {
1394 	Path		path;
1395 	Path	   *fdw_outerpath;
1396 	List	   *fdw_private;
1397 } ForeignPath;
1398 
1399 /*
1400  * CustomPath represents a table scan done by some out-of-core extension.
1401  *
1402  * We provide a set of hooks here - which the provider must take care to set
1403  * up correctly - to allow extensions to supply their own methods of scanning
1404  * a relation.  For example, a provider might provide GPU acceleration, a
1405  * cache-based scan, or some other kind of logic we haven't dreamed up yet.
1406  *
1407  * CustomPaths can be injected into the planning process for a relation by
1408  * set_rel_pathlist_hook functions.
1409  *
1410  * Core code must avoid assuming that the CustomPath is only as large as
1411  * the structure declared here; providers are allowed to make it the first
1412  * element in a larger structure.  (Since the planner never copies Paths,
1413  * this doesn't add any complication.)  However, for consistency with the
1414  * FDW case, we provide a "custom_private" field in CustomPath; providers
1415  * may prefer to use that rather than define another struct type.
1416  */
1417 
1418 struct CustomPathMethods;
1419 
1420 typedef struct CustomPath
1421 {
1422 	Path		path;
1423 	uint32		flags;			/* mask of CUSTOMPATH_* flags, see
1424 								 * nodes/extensible.h */
1425 	List	   *custom_paths;	/* list of child Path nodes, if any */
1426 	List	   *custom_private;
1427 	const struct CustomPathMethods *methods;
1428 } CustomPath;
1429 
1430 /*
1431  * AppendPath represents an Append plan, ie, successive execution of
1432  * several member plans.
1433  *
1434  * For partial Append, 'subpaths' contains non-partial subpaths followed by
1435  * partial subpaths.
1436  *
1437  * Note: it is possible for "subpaths" to contain only one, or even no,
1438  * elements.  These cases are optimized during create_append_plan.
1439  * In particular, an AppendPath with no subpaths is a "dummy" path that
1440  * is created to represent the case that a relation is provably empty.
1441  * (This is a convenient representation because it means that when we build
1442  * an appendrel and find that all its children have been excluded, no extra
1443  * action is needed to recognize the relation as dummy.)
1444  */
1445 typedef struct AppendPath
1446 {
1447 	Path		path;
1448 	List	   *subpaths;		/* list of component Paths */
1449 	/* Index of first partial path in subpaths; list_length(subpaths) if none */
1450 	int			first_partial_path;
1451 	double		limit_tuples;	/* hard limit on output tuples, or -1 */
1452 } AppendPath;
1453 
1454 #define IS_DUMMY_APPEND(p) \
1455 	(IsA((p), AppendPath) && ((AppendPath *) (p))->subpaths == NIL)
1456 
1457 /*
1458  * A relation that's been proven empty will have one path that is dummy
1459  * (but might have projection paths on top).  For historical reasons,
1460  * this is provided as a macro that wraps is_dummy_rel().
1461  */
1462 #define IS_DUMMY_REL(r) is_dummy_rel(r)
1463 extern bool is_dummy_rel(RelOptInfo *rel);
1464 
1465 /*
1466  * MergeAppendPath represents a MergeAppend plan, ie, the merging of sorted
1467  * results from several member plans to produce similarly-sorted output.
1468  */
1469 typedef struct MergeAppendPath
1470 {
1471 	Path		path;
1472 	List	   *subpaths;		/* list of component Paths */
1473 	double		limit_tuples;	/* hard limit on output tuples, or -1 */
1474 } MergeAppendPath;
1475 
1476 /*
1477  * GroupResultPath represents use of a Result plan node to compute the
1478  * output of a degenerate GROUP BY case, wherein we know we should produce
1479  * exactly one row, which might then be filtered by a HAVING qual.
1480  *
1481  * Note that quals is a list of bare clauses, not RestrictInfos.
1482  */
1483 typedef struct GroupResultPath
1484 {
1485 	Path		path;
1486 	List	   *quals;
1487 } GroupResultPath;
1488 
1489 /*
1490  * MaterialPath represents use of a Material plan node, i.e., caching of
1491  * the output of its subpath.  This is used when the subpath is expensive
1492  * and needs to be scanned repeatedly, or when we need mark/restore ability
1493  * and the subpath doesn't have it.
1494  */
1495 typedef struct MaterialPath
1496 {
1497 	Path		path;
1498 	Path	   *subpath;
1499 } MaterialPath;
1500 
1501 /*
1502  * MemoizePath represents a Memoize plan node, i.e., a cache that caches
1503  * tuples from parameterized paths to save the underlying node from having to
1504  * be rescanned for parameter values which are already cached.
1505  */
1506 typedef struct MemoizePath
1507 {
1508 	Path		path;
1509 	Path	   *subpath;		/* outerpath to cache tuples from */
1510 	List	   *hash_operators; /* hash operators for each key */
1511 	List	   *param_exprs;	/* cache keys */
1512 	bool		singlerow;		/* true if the cache entry is to be marked as
1513 								 * complete after caching the first record. */
1514 	double		calls;			/* expected number of rescans */
1515 	uint32		est_entries;	/* The maximum number of entries that the
1516 								 * planner expects will fit in the cache, or 0
1517 								 * if unknown */
1518 } MemoizePath;
1519 
1520 /*
1521  * UniquePath represents elimination of distinct rows from the output of
1522  * its subpath.
1523  *
1524  * This can represent significantly different plans: either hash-based or
1525  * sort-based implementation, or a no-op if the input path can be proven
1526  * distinct already.  The decision is sufficiently localized that it's not
1527  * worth having separate Path node types.  (Note: in the no-op case, we could
1528  * eliminate the UniquePath node entirely and just return the subpath; but
1529  * it's convenient to have a UniquePath in the path tree to signal upper-level
1530  * routines that the input is known distinct.)
1531  */
1532 typedef enum
1533 {
1534 	UNIQUE_PATH_NOOP,			/* input is known unique already */
1535 	UNIQUE_PATH_HASH,			/* use hashing */
1536 	UNIQUE_PATH_SORT			/* use sorting */
1537 } UniquePathMethod;
1538 
1539 typedef struct UniquePath
1540 {
1541 	Path		path;
1542 	Path	   *subpath;
1543 	UniquePathMethod umethod;
1544 	List	   *in_operators;	/* equality operators of the IN clause */
1545 	List	   *uniq_exprs;		/* expressions to be made unique */
1546 } UniquePath;
1547 
1548 /*
1549  * GatherPath runs several copies of a plan in parallel and collects the
1550  * results.  The parallel leader may also execute the plan, unless the
1551  * single_copy flag is set.
1552  */
1553 typedef struct GatherPath
1554 {
1555 	Path		path;
1556 	Path	   *subpath;		/* path for each worker */
1557 	bool		single_copy;	/* don't execute path more than once */
1558 	int			num_workers;	/* number of workers sought to help */
1559 } GatherPath;
1560 
1561 /*
1562  * GatherMergePath runs several copies of a plan in parallel and collects
1563  * the results, preserving their common sort order.
1564  */
1565 typedef struct GatherMergePath
1566 {
1567 	Path		path;
1568 	Path	   *subpath;		/* path for each worker */
1569 	int			num_workers;	/* number of workers sought to help */
1570 } GatherMergePath;
1571 
1572 
1573 /*
1574  * All join-type paths share these fields.
1575  */
1576 
1577 typedef struct JoinPath
1578 {
1579 	Path		path;
1580 
1581 	JoinType	jointype;
1582 
1583 	bool		inner_unique;	/* each outer tuple provably matches no more
1584 								 * than one inner tuple */
1585 
1586 	Path	   *outerjoinpath;	/* path for the outer side of the join */
1587 	Path	   *innerjoinpath;	/* path for the inner side of the join */
1588 
1589 	List	   *joinrestrictinfo;	/* RestrictInfos to apply to join */
1590 
1591 	/*
1592 	 * See the notes for RelOptInfo and ParamPathInfo to understand why
1593 	 * joinrestrictinfo is needed in JoinPath, and can't be merged into the
1594 	 * parent RelOptInfo.
1595 	 */
1596 } JoinPath;
1597 
1598 /*
1599  * A nested-loop path needs no special fields.
1600  */
1601 
1602 typedef JoinPath NestPath;
1603 
1604 /*
1605  * A mergejoin path has these fields.
1606  *
1607  * Unlike other path types, a MergePath node doesn't represent just a single
1608  * run-time plan node: it can represent up to four.  Aside from the MergeJoin
1609  * node itself, there can be a Sort node for the outer input, a Sort node
1610  * for the inner input, and/or a Material node for the inner input.  We could
1611  * represent these nodes by separate path nodes, but considering how many
1612  * different merge paths are investigated during a complex join problem,
1613  * it seems better to avoid unnecessary palloc overhead.
1614  *
1615  * path_mergeclauses lists the clauses (in the form of RestrictInfos)
1616  * that will be used in the merge.
1617  *
1618  * Note that the mergeclauses are a subset of the parent relation's
1619  * restriction-clause list.  Any join clauses that are not mergejoinable
1620  * appear only in the parent's restrict list, and must be checked by a
1621  * qpqual at execution time.
1622  *
1623  * outersortkeys (resp. innersortkeys) is NIL if the outer path
1624  * (resp. inner path) is already ordered appropriately for the
1625  * mergejoin.  If it is not NIL then it is a PathKeys list describing
1626  * the ordering that must be created by an explicit Sort node.
1627  *
1628  * skip_mark_restore is true if the executor need not do mark/restore calls.
1629  * Mark/restore overhead is usually required, but can be skipped if we know
1630  * that the executor need find only one match per outer tuple, and that the
1631  * mergeclauses are sufficient to identify a match.  In such cases the
1632  * executor can immediately advance the outer relation after processing a
1633  * match, and therefore it need never back up the inner relation.
1634  *
1635  * materialize_inner is true if a Material node should be placed atop the
1636  * inner input.  This may appear with or without an inner Sort step.
1637  */
1638 
1639 typedef struct MergePath
1640 {
1641 	JoinPath	jpath;
1642 	List	   *path_mergeclauses;	/* join clauses to be used for merge */
1643 	List	   *outersortkeys;	/* keys for explicit sort, if any */
1644 	List	   *innersortkeys;	/* keys for explicit sort, if any */
1645 	bool		skip_mark_restore;	/* can executor skip mark/restore? */
1646 	bool		materialize_inner;	/* add Materialize to inner? */
1647 } MergePath;
1648 
1649 /*
1650  * A hashjoin path has these fields.
1651  *
1652  * The remarks above for mergeclauses apply for hashclauses as well.
1653  *
1654  * Hashjoin does not care what order its inputs appear in, so we have
1655  * no need for sortkeys.
1656  */
1657 
1658 typedef struct HashPath
1659 {
1660 	JoinPath	jpath;
1661 	List	   *path_hashclauses;	/* join clauses used for hashing */
1662 	int			num_batches;	/* number of batches expected */
1663 	double		inner_rows_total;	/* total inner rows expected */
1664 } HashPath;
1665 
1666 /*
1667  * ProjectionPath represents a projection (that is, targetlist computation)
1668  *
1669  * Nominally, this path node represents using a Result plan node to do a
1670  * projection step.  However, if the input plan node supports projection,
1671  * we can just modify its output targetlist to do the required calculations
1672  * directly, and not need a Result.  In some places in the planner we can just
1673  * jam the desired PathTarget into the input path node (and adjust its cost
1674  * accordingly), so we don't need a ProjectionPath.  But in other places
1675  * it's necessary to not modify the input path node, so we need a separate
1676  * ProjectionPath node, which is marked dummy to indicate that we intend to
1677  * assign the work to the input plan node.  The estimated cost for the
1678  * ProjectionPath node will account for whether a Result will be used or not.
1679  */
1680 typedef struct ProjectionPath
1681 {
1682 	Path		path;
1683 	Path	   *subpath;		/* path representing input source */
1684 	bool		dummypp;		/* true if no separate Result is needed */
1685 } ProjectionPath;
1686 
1687 /*
1688  * ProjectSetPath represents evaluation of a targetlist that includes
1689  * set-returning function(s), which will need to be implemented by a
1690  * ProjectSet plan node.
1691  */
1692 typedef struct ProjectSetPath
1693 {
1694 	Path		path;
1695 	Path	   *subpath;		/* path representing input source */
1696 } ProjectSetPath;
1697 
1698 /*
1699  * SortPath represents an explicit sort step
1700  *
1701  * The sort keys are, by definition, the same as path.pathkeys.
1702  *
1703  * Note: the Sort plan node cannot project, so path.pathtarget must be the
1704  * same as the input's pathtarget.
1705  */
1706 typedef struct SortPath
1707 {
1708 	Path		path;
1709 	Path	   *subpath;		/* path representing input source */
1710 } SortPath;
1711 
1712 /*
1713  * IncrementalSortPath represents an incremental sort step
1714  *
1715  * This is like a regular sort, except some leading key columns are assumed
1716  * to be ordered already.
1717  */
1718 typedef struct IncrementalSortPath
1719 {
1720 	SortPath	spath;
1721 	int			nPresortedCols; /* number of presorted columns */
1722 } IncrementalSortPath;
1723 
1724 /*
1725  * GroupPath represents grouping (of presorted input)
1726  *
1727  * groupClause represents the columns to be grouped on; the input path
1728  * must be at least that well sorted.
1729  *
1730  * We can also apply a qual to the grouped rows (equivalent of HAVING)
1731  */
1732 typedef struct GroupPath
1733 {
1734 	Path		path;
1735 	Path	   *subpath;		/* path representing input source */
1736 	List	   *groupClause;	/* a list of SortGroupClause's */
1737 	List	   *qual;			/* quals (HAVING quals), if any */
1738 } GroupPath;
1739 
1740 /*
1741  * UpperUniquePath represents adjacent-duplicate removal (in presorted input)
1742  *
1743  * The columns to be compared are the first numkeys columns of the path's
1744  * pathkeys.  The input is presumed already sorted that way.
1745  */
1746 typedef struct UpperUniquePath
1747 {
1748 	Path		path;
1749 	Path	   *subpath;		/* path representing input source */
1750 	int			numkeys;		/* number of pathkey columns to compare */
1751 } UpperUniquePath;
1752 
1753 /*
1754  * AggPath represents generic computation of aggregate functions
1755  *
1756  * This may involve plain grouping (but not grouping sets), using either
1757  * sorted or hashed grouping; for the AGG_SORTED case, the input must be
1758  * appropriately presorted.
1759  */
1760 typedef struct AggPath
1761 {
1762 	Path		path;
1763 	Path	   *subpath;		/* path representing input source */
1764 	AggStrategy aggstrategy;	/* basic strategy, see nodes.h */
1765 	AggSplit	aggsplit;		/* agg-splitting mode, see nodes.h */
1766 	double		numGroups;		/* estimated number of groups in input */
1767 	uint64		transitionSpace;	/* for pass-by-ref transition data */
1768 	List	   *groupClause;	/* a list of SortGroupClause's */
1769 	List	   *qual;			/* quals (HAVING quals), if any */
1770 } AggPath;
1771 
1772 /*
1773  * Various annotations used for grouping sets in the planner.
1774  */
1775 
1776 typedef struct GroupingSetData
1777 {
1778 	NodeTag		type;
1779 	List	   *set;			/* grouping set as list of sortgrouprefs */
1780 	double		numGroups;		/* est. number of result groups */
1781 } GroupingSetData;
1782 
1783 typedef struct RollupData
1784 {
1785 	NodeTag		type;
1786 	List	   *groupClause;	/* applicable subset of parse->groupClause */
1787 	List	   *gsets;			/* lists of integer indexes into groupClause */
1788 	List	   *gsets_data;		/* list of GroupingSetData */
1789 	double		numGroups;		/* est. number of result groups */
1790 	bool		hashable;		/* can be hashed */
1791 	bool		is_hashed;		/* to be implemented as a hashagg */
1792 } RollupData;
1793 
1794 /*
1795  * GroupingSetsPath represents a GROUPING SETS aggregation
1796  */
1797 
1798 typedef struct GroupingSetsPath
1799 {
1800 	Path		path;
1801 	Path	   *subpath;		/* path representing input source */
1802 	AggStrategy aggstrategy;	/* basic strategy */
1803 	List	   *rollups;		/* list of RollupData */
1804 	List	   *qual;			/* quals (HAVING quals), if any */
1805 	uint64		transitionSpace;	/* for pass-by-ref transition data */
1806 } GroupingSetsPath;
1807 
1808 /*
1809  * MinMaxAggPath represents computation of MIN/MAX aggregates from indexes
1810  */
1811 typedef struct MinMaxAggPath
1812 {
1813 	Path		path;
1814 	List	   *mmaggregates;	/* list of MinMaxAggInfo */
1815 	List	   *quals;			/* HAVING quals, if any */
1816 } MinMaxAggPath;
1817 
1818 /*
1819  * WindowAggPath represents generic computation of window functions
1820  */
1821 typedef struct WindowAggPath
1822 {
1823 	Path		path;
1824 	Path	   *subpath;		/* path representing input source */
1825 	WindowClause *winclause;	/* WindowClause we'll be using */
1826 } WindowAggPath;
1827 
1828 /*
1829  * SetOpPath represents a set-operation, that is INTERSECT or EXCEPT
1830  */
1831 typedef struct SetOpPath
1832 {
1833 	Path		path;
1834 	Path	   *subpath;		/* path representing input source */
1835 	SetOpCmd	cmd;			/* what to do, see nodes.h */
1836 	SetOpStrategy strategy;		/* how to do it, see nodes.h */
1837 	List	   *distinctList;	/* SortGroupClauses identifying target cols */
1838 	AttrNumber	flagColIdx;		/* where is the flag column, if any */
1839 	int			firstFlag;		/* flag value for first input relation */
1840 	double		numGroups;		/* estimated number of groups in input */
1841 } SetOpPath;
1842 
1843 /*
1844  * RecursiveUnionPath represents a recursive UNION node
1845  */
1846 typedef struct RecursiveUnionPath
1847 {
1848 	Path		path;
1849 	Path	   *leftpath;		/* paths representing input sources */
1850 	Path	   *rightpath;
1851 	List	   *distinctList;	/* SortGroupClauses identifying target cols */
1852 	int			wtParam;		/* ID of Param representing work table */
1853 	double		numGroups;		/* estimated number of groups in input */
1854 } RecursiveUnionPath;
1855 
1856 /*
1857  * LockRowsPath represents acquiring row locks for SELECT FOR UPDATE/SHARE
1858  */
1859 typedef struct LockRowsPath
1860 {
1861 	Path		path;
1862 	Path	   *subpath;		/* path representing input source */
1863 	List	   *rowMarks;		/* a list of PlanRowMark's */
1864 	int			epqParam;		/* ID of Param for EvalPlanQual re-eval */
1865 } LockRowsPath;
1866 
1867 /*
1868  * ModifyTablePath represents performing INSERT/UPDATE/DELETE modifications
1869  *
1870  * We represent most things that will be in the ModifyTable plan node
1871  * literally, except we have a child Path not Plan.  But analysis of the
1872  * OnConflictExpr is deferred to createplan.c, as is collection of FDW data.
1873  */
1874 typedef struct ModifyTablePath
1875 {
1876 	Path		path;
1877 	Path	   *subpath;		/* Path producing source data */
1878 	CmdType		operation;		/* INSERT, UPDATE, or DELETE */
1879 	bool		canSetTag;		/* do we set the command tag/es_processed? */
1880 	Index		nominalRelation;	/* Parent RT index for use of EXPLAIN */
1881 	Index		rootRelation;	/* Root RT index, if target is partitioned */
1882 	bool		partColsUpdated;	/* some part key in hierarchy updated? */
1883 	List	   *resultRelations;	/* integer list of RT indexes */
1884 	List	   *updateColnosLists;	/* per-target-table update_colnos lists */
1885 	List	   *withCheckOptionLists;	/* per-target-table WCO lists */
1886 	List	   *returningLists; /* per-target-table RETURNING tlists */
1887 	List	   *rowMarks;		/* PlanRowMarks (non-locking only) */
1888 	OnConflictExpr *onconflict; /* ON CONFLICT clause, or NULL */
1889 	int			epqParam;		/* ID of Param for EvalPlanQual re-eval */
1890 } ModifyTablePath;
1891 
1892 /*
1893  * LimitPath represents applying LIMIT/OFFSET restrictions
1894  */
1895 typedef struct LimitPath
1896 {
1897 	Path		path;
1898 	Path	   *subpath;		/* path representing input source */
1899 	Node	   *limitOffset;	/* OFFSET parameter, or NULL if none */
1900 	Node	   *limitCount;		/* COUNT parameter, or NULL if none */
1901 	LimitOption limitOption;	/* FETCH FIRST with ties or exact number */
1902 } LimitPath;
1903 
1904 
1905 /*
1906  * Restriction clause info.
1907  *
1908  * We create one of these for each AND sub-clause of a restriction condition
1909  * (WHERE or JOIN/ON clause).  Since the restriction clauses are logically
1910  * ANDed, we can use any one of them or any subset of them to filter out
1911  * tuples, without having to evaluate the rest.  The RestrictInfo node itself
1912  * stores data used by the optimizer while choosing the best query plan.
1913  *
1914  * If a restriction clause references a single base relation, it will appear
1915  * in the baserestrictinfo list of the RelOptInfo for that base rel.
1916  *
1917  * If a restriction clause references more than one base rel, it will
1918  * appear in the joininfo list of every RelOptInfo that describes a strict
1919  * subset of the base rels mentioned in the clause.  The joininfo lists are
1920  * used to drive join tree building by selecting plausible join candidates.
1921  * The clause cannot actually be applied until we have built a join rel
1922  * containing all the base rels it references, however.
1923  *
1924  * When we construct a join rel that includes all the base rels referenced
1925  * in a multi-relation restriction clause, we place that clause into the
1926  * joinrestrictinfo lists of paths for the join rel, if neither left nor
1927  * right sub-path includes all base rels referenced in the clause.  The clause
1928  * will be applied at that join level, and will not propagate any further up
1929  * the join tree.  (Note: the "predicate migration" code was once intended to
1930  * push restriction clauses up and down the plan tree based on evaluation
1931  * costs, but it's dead code and is unlikely to be resurrected in the
1932  * foreseeable future.)
1933  *
1934  * Note that in the presence of more than two rels, a multi-rel restriction
1935  * might reach different heights in the join tree depending on the join
1936  * sequence we use.  So, these clauses cannot be associated directly with
1937  * the join RelOptInfo, but must be kept track of on a per-join-path basis.
1938  *
1939  * RestrictInfos that represent equivalence conditions (i.e., mergejoinable
1940  * equalities that are not outerjoin-delayed) are handled a bit differently.
1941  * Initially we attach them to the EquivalenceClasses that are derived from
1942  * them.  When we construct a scan or join path, we look through all the
1943  * EquivalenceClasses and generate derived RestrictInfos representing the
1944  * minimal set of conditions that need to be checked for this particular scan
1945  * or join to enforce that all members of each EquivalenceClass are in fact
1946  * equal in all rows emitted by the scan or join.
1947  *
1948  * When dealing with outer joins we have to be very careful about pushing qual
1949  * clauses up and down the tree.  An outer join's own JOIN/ON conditions must
1950  * be evaluated exactly at that join node, unless they are "degenerate"
1951  * conditions that reference only Vars from the nullable side of the join.
1952  * Quals appearing in WHERE or in a JOIN above the outer join cannot be pushed
1953  * down below the outer join, if they reference any nullable Vars.
1954  * RestrictInfo nodes contain a flag to indicate whether a qual has been
1955  * pushed down to a lower level than its original syntactic placement in the
1956  * join tree would suggest.  If an outer join prevents us from pushing a qual
1957  * down to its "natural" semantic level (the level associated with just the
1958  * base rels used in the qual) then we mark the qual with a "required_relids"
1959  * value including more than just the base rels it actually uses.  By
1960  * pretending that the qual references all the rels required to form the outer
1961  * join, we prevent it from being evaluated below the outer join's joinrel.
1962  * When we do form the outer join's joinrel, we still need to distinguish
1963  * those quals that are actually in that join's JOIN/ON condition from those
1964  * that appeared elsewhere in the tree and were pushed down to the join rel
1965  * because they used no other rels.  That's what the is_pushed_down flag is
1966  * for; it tells us that a qual is not an OUTER JOIN qual for the set of base
1967  * rels listed in required_relids.  A clause that originally came from WHERE
1968  * or an INNER JOIN condition will *always* have its is_pushed_down flag set.
1969  * It's possible for an OUTER JOIN clause to be marked is_pushed_down too,
1970  * if we decide that it can be pushed down into the nullable side of the join.
1971  * In that case it acts as a plain filter qual for wherever it gets evaluated.
1972  * (In short, is_pushed_down is only false for non-degenerate outer join
1973  * conditions.  Possibly we should rename it to reflect that meaning?  But
1974  * see also the comments for RINFO_IS_PUSHED_DOWN, below.)
1975  *
1976  * RestrictInfo nodes also contain an outerjoin_delayed flag, which is true
1977  * if the clause's applicability must be delayed due to any outer joins
1978  * appearing below it (ie, it has to be postponed to some join level higher
1979  * than the set of relations it actually references).
1980  *
1981  * There is also an outer_relids field, which is NULL except for outer join
1982  * clauses; for those, it is the set of relids on the outer side of the
1983  * clause's outer join.  (These are rels that the clause cannot be applied to
1984  * in parameterized scans, since pushing it into the join's outer side would
1985  * lead to wrong answers.)
1986  *
1987  * There is also a nullable_relids field, which is the set of rels the clause
1988  * references that can be forced null by some outer join below the clause.
1989  *
1990  * outerjoin_delayed = true is subtly different from nullable_relids != NULL:
1991  * a clause might reference some nullable rels and yet not be
1992  * outerjoin_delayed because it also references all the other rels of the
1993  * outer join(s). A clause that is not outerjoin_delayed can be enforced
1994  * anywhere it is computable.
1995  *
1996  * To handle security-barrier conditions efficiently, we mark RestrictInfo
1997  * nodes with a security_level field, in which higher values identify clauses
1998  * coming from less-trusted sources.  The exact semantics are that a clause
1999  * cannot be evaluated before another clause with a lower security_level value
2000  * unless the first clause is leakproof.  As with outer-join clauses, this
2001  * creates a reason for clauses to sometimes need to be evaluated higher in
2002  * the join tree than their contents would suggest; and even at a single plan
2003  * node, this rule constrains the order of application of clauses.
2004  *
2005  * In general, the referenced clause might be arbitrarily complex.  The
2006  * kinds of clauses we can handle as indexscan quals, mergejoin clauses,
2007  * or hashjoin clauses are limited (e.g., no volatile functions).  The code
2008  * for each kind of path is responsible for identifying the restrict clauses
2009  * it can use and ignoring the rest.  Clauses not implemented by an indexscan,
2010  * mergejoin, or hashjoin will be placed in the plan qual or joinqual field
2011  * of the finished Plan node, where they will be enforced by general-purpose
2012  * qual-expression-evaluation code.  (But we are still entitled to count
2013  * their selectivity when estimating the result tuple count, if we
2014  * can guess what it is...)
2015  *
2016  * When the referenced clause is an OR clause, we generate a modified copy
2017  * in which additional RestrictInfo nodes are inserted below the top-level
2018  * OR/AND structure.  This is a convenience for OR indexscan processing:
2019  * indexquals taken from either the top level or an OR subclause will have
2020  * associated RestrictInfo nodes.
2021  *
2022  * The can_join flag is set true if the clause looks potentially useful as
2023  * a merge or hash join clause, that is if it is a binary opclause with
2024  * nonoverlapping sets of relids referenced in the left and right sides.
2025  * (Whether the operator is actually merge or hash joinable isn't checked,
2026  * however.)
2027  *
2028  * The pseudoconstant flag is set true if the clause contains no Vars of
2029  * the current query level and no volatile functions.  Such a clause can be
2030  * pulled out and used as a one-time qual in a gating Result node.  We keep
2031  * pseudoconstant clauses in the same lists as other RestrictInfos so that
2032  * the regular clause-pushing machinery can assign them to the correct join
2033  * level, but they need to be treated specially for cost and selectivity
2034  * estimates.  Note that a pseudoconstant clause can never be an indexqual
2035  * or merge or hash join clause, so it's of no interest to large parts of
2036  * the planner.
2037  *
2038  * When join clauses are generated from EquivalenceClasses, there may be
2039  * several equally valid ways to enforce join equivalence, of which we need
2040  * apply only one.  We mark clauses of this kind by setting parent_ec to
2041  * point to the generating EquivalenceClass.  Multiple clauses with the same
2042  * parent_ec in the same join are redundant.
2043  */
2044 
2045 typedef struct RestrictInfo
2046 {
2047 	NodeTag		type;
2048 
2049 	Expr	   *clause;			/* the represented clause of WHERE or JOIN */
2050 
2051 	bool		is_pushed_down; /* true if clause was pushed down in level */
2052 
2053 	bool		outerjoin_delayed;	/* true if delayed by lower outer join */
2054 
2055 	bool		can_join;		/* see comment above */
2056 
2057 	bool		pseudoconstant; /* see comment above */
2058 
2059 	bool		leakproof;		/* true if known to contain no leaked Vars */
2060 
2061 	VolatileFunctionStatus has_volatile;	/* to indicate if clause contains
2062 											 * any volatile functions. */
2063 
2064 	Index		security_level; /* see comment above */
2065 
2066 	/* The set of relids (varnos) actually referenced in the clause: */
2067 	Relids		clause_relids;
2068 
2069 	/* The set of relids required to evaluate the clause: */
2070 	Relids		required_relids;
2071 
2072 	/* If an outer-join clause, the outer-side relations, else NULL: */
2073 	Relids		outer_relids;
2074 
2075 	/* The relids used in the clause that are nullable by lower outer joins: */
2076 	Relids		nullable_relids;
2077 
2078 	/* These fields are set for any binary opclause: */
2079 	Relids		left_relids;	/* relids in left side of clause */
2080 	Relids		right_relids;	/* relids in right side of clause */
2081 
2082 	/* This field is NULL unless clause is an OR clause: */
2083 	Expr	   *orclause;		/* modified clause with RestrictInfos */
2084 
2085 	/* This field is NULL unless clause is potentially redundant: */
2086 	EquivalenceClass *parent_ec;	/* generating EquivalenceClass */
2087 
2088 	/* cache space for cost and selectivity */
2089 	QualCost	eval_cost;		/* eval cost of clause; -1 if not yet set */
2090 	Selectivity norm_selec;		/* selectivity for "normal" (JOIN_INNER)
2091 								 * semantics; -1 if not yet set; >1 means a
2092 								 * redundant clause */
2093 	Selectivity outer_selec;	/* selectivity for outer join semantics; -1 if
2094 								 * not yet set */
2095 
2096 	/* valid if clause is mergejoinable, else NIL */
2097 	List	   *mergeopfamilies;	/* opfamilies containing clause operator */
2098 
2099 	/* cache space for mergeclause processing; NULL if not yet set */
2100 	EquivalenceClass *left_ec;	/* EquivalenceClass containing lefthand */
2101 	EquivalenceClass *right_ec; /* EquivalenceClass containing righthand */
2102 	EquivalenceMember *left_em; /* EquivalenceMember for lefthand */
2103 	EquivalenceMember *right_em;	/* EquivalenceMember for righthand */
2104 	List	   *scansel_cache;	/* list of MergeScanSelCache structs */
2105 
2106 	/* transient workspace for use while considering a specific join path */
2107 	bool		outer_is_left;	/* T = outer var on left, F = on right */
2108 
2109 	/* valid if clause is hashjoinable, else InvalidOid: */
2110 	Oid			hashjoinoperator;	/* copy of clause operator */
2111 
2112 	/* cache space for hashclause processing; -1 if not yet set */
2113 	Selectivity left_bucketsize;	/* avg bucketsize of left side */
2114 	Selectivity right_bucketsize;	/* avg bucketsize of right side */
2115 	Selectivity left_mcvfreq;	/* left side's most common val's freq */
2116 	Selectivity right_mcvfreq;	/* right side's most common val's freq */
2117 
2118 	/* hash equality operator used for memoize nodes, else InvalidOid */
2119 	Oid			hasheqoperator;
2120 } RestrictInfo;
2121 
2122 /*
2123  * This macro embodies the correct way to test whether a RestrictInfo is
2124  * "pushed down" to a given outer join, that is, should be treated as a filter
2125  * clause rather than a join clause at that outer join.  This is certainly so
2126  * if is_pushed_down is true; but examining that is not sufficient anymore,
2127  * because outer-join clauses will get pushed down to lower outer joins when
2128  * we generate a path for the lower outer join that is parameterized by the
2129  * LHS of the upper one.  We can detect such a clause by noting that its
2130  * required_relids exceed the scope of the join.
2131  */
2132 #define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids) \
2133 	((rinfo)->is_pushed_down || \
2134 	 !bms_is_subset((rinfo)->required_relids, joinrelids))
2135 
2136 /*
2137  * Since mergejoinscansel() is a relatively expensive function, and would
2138  * otherwise be invoked many times while planning a large join tree,
2139  * we go out of our way to cache its results.  Each mergejoinable
2140  * RestrictInfo carries a list of the specific sort orderings that have
2141  * been considered for use with it, and the resulting selectivities.
2142  */
2143 typedef struct MergeScanSelCache
2144 {
2145 	/* Ordering details (cache lookup key) */
2146 	Oid			opfamily;		/* btree opfamily defining the ordering */
2147 	Oid			collation;		/* collation for the ordering */
2148 	int			strategy;		/* sort direction (ASC or DESC) */
2149 	bool		nulls_first;	/* do NULLs come before normal values? */
2150 	/* Results */
2151 	Selectivity leftstartsel;	/* first-join fraction for clause left side */
2152 	Selectivity leftendsel;		/* last-join fraction for clause left side */
2153 	Selectivity rightstartsel;	/* first-join fraction for clause right side */
2154 	Selectivity rightendsel;	/* last-join fraction for clause right side */
2155 } MergeScanSelCache;
2156 
2157 /*
2158  * Placeholder node for an expression to be evaluated below the top level
2159  * of a plan tree.  This is used during planning to represent the contained
2160  * expression.  At the end of the planning process it is replaced by either
2161  * the contained expression or a Var referring to a lower-level evaluation of
2162  * the contained expression.  Typically the evaluation occurs below an outer
2163  * join, and Var references above the outer join might thereby yield NULL
2164  * instead of the expression value.
2165  *
2166  * Although the planner treats this as an expression node type, it is not
2167  * recognized by the parser or executor, so we declare it here rather than
2168  * in primnodes.h.
2169  */
2170 
2171 typedef struct PlaceHolderVar
2172 {
2173 	Expr		xpr;
2174 	Expr	   *phexpr;			/* the represented expression */
2175 	Relids		phrels;			/* base relids syntactically within expr src */
2176 	Index		phid;			/* ID for PHV (unique within planner run) */
2177 	Index		phlevelsup;		/* > 0 if PHV belongs to outer query */
2178 } PlaceHolderVar;
2179 
2180 /*
2181  * "Special join" info.
2182  *
2183  * One-sided outer joins constrain the order of joining partially but not
2184  * completely.  We flatten such joins into the planner's top-level list of
2185  * relations to join, but record information about each outer join in a
2186  * SpecialJoinInfo struct.  These structs are kept in the PlannerInfo node's
2187  * join_info_list.
2188  *
2189  * Similarly, semijoins and antijoins created by flattening IN (subselect)
2190  * and EXISTS(subselect) clauses create partial constraints on join order.
2191  * These are likewise recorded in SpecialJoinInfo structs.
2192  *
2193  * We make SpecialJoinInfos for FULL JOINs even though there is no flexibility
2194  * of planning for them, because this simplifies make_join_rel()'s API.
2195  *
2196  * min_lefthand and min_righthand are the sets of base relids that must be
2197  * available on each side when performing the special join.  lhs_strict is
2198  * true if the special join's condition cannot succeed when the LHS variables
2199  * are all NULL (this means that an outer join can commute with upper-level
2200  * outer joins even if it appears in their RHS).  We don't bother to set
2201  * lhs_strict for FULL JOINs, however.
2202  *
2203  * It is not valid for either min_lefthand or min_righthand to be empty sets;
2204  * if they were, this would break the logic that enforces join order.
2205  *
2206  * syn_lefthand and syn_righthand are the sets of base relids that are
2207  * syntactically below this special join.  (These are needed to help compute
2208  * min_lefthand and min_righthand for higher joins.)
2209  *
2210  * delay_upper_joins is set true if we detect a pushed-down clause that has
2211  * to be evaluated after this join is formed (because it references the RHS).
2212  * Any outer joins that have such a clause and this join in their RHS cannot
2213  * commute with this join, because that would leave noplace to check the
2214  * pushed-down clause.  (We don't track this for FULL JOINs, either.)
2215  *
2216  * For a semijoin, we also extract the join operators and their RHS arguments
2217  * and set semi_operators, semi_rhs_exprs, semi_can_btree, and semi_can_hash.
2218  * This is done in support of possibly unique-ifying the RHS, so we don't
2219  * bother unless at least one of semi_can_btree and semi_can_hash can be set
2220  * true.  (You might expect that this information would be computed during
2221  * join planning; but it's helpful to have it available during planning of
2222  * parameterized table scans, so we store it in the SpecialJoinInfo structs.)
2223  *
2224  * jointype is never JOIN_RIGHT; a RIGHT JOIN is handled by switching
2225  * the inputs to make it a LEFT JOIN.  So the allowed values of jointype
2226  * in a join_info_list member are only LEFT, FULL, SEMI, or ANTI.
2227  *
2228  * For purposes of join selectivity estimation, we create transient
2229  * SpecialJoinInfo structures for regular inner joins; so it is possible
2230  * to have jointype == JOIN_INNER in such a structure, even though this is
2231  * not allowed within join_info_list.  We also create transient
2232  * SpecialJoinInfos with jointype == JOIN_INNER for outer joins, since for
2233  * cost estimation purposes it is sometimes useful to know the join size under
2234  * plain innerjoin semantics.  Note that lhs_strict, delay_upper_joins, and
2235  * of course the semi_xxx fields are not set meaningfully within such structs.
2236  */
2237 #ifndef HAVE_SPECIALJOININFO_TYPEDEF
2238 typedef struct SpecialJoinInfo SpecialJoinInfo;
2239 #define HAVE_SPECIALJOININFO_TYPEDEF 1
2240 #endif
2241 
2242 struct SpecialJoinInfo
2243 {
2244 	NodeTag		type;
2245 	Relids		min_lefthand;	/* base relids in minimum LHS for join */
2246 	Relids		min_righthand;	/* base relids in minimum RHS for join */
2247 	Relids		syn_lefthand;	/* base relids syntactically within LHS */
2248 	Relids		syn_righthand;	/* base relids syntactically within RHS */
2249 	JoinType	jointype;		/* always INNER, LEFT, FULL, SEMI, or ANTI */
2250 	bool		lhs_strict;		/* joinclause is strict for some LHS rel */
2251 	bool		delay_upper_joins;	/* can't commute with upper RHS */
2252 	/* Remaining fields are set only for JOIN_SEMI jointype: */
2253 	bool		semi_can_btree; /* true if semi_operators are all btree */
2254 	bool		semi_can_hash;	/* true if semi_operators are all hash */
2255 	List	   *semi_operators; /* OIDs of equality join operators */
2256 	List	   *semi_rhs_exprs; /* righthand-side expressions of these ops */
2257 };
2258 
2259 /*
2260  * Append-relation info.
2261  *
2262  * When we expand an inheritable table or a UNION-ALL subselect into an
2263  * "append relation" (essentially, a list of child RTEs), we build an
2264  * AppendRelInfo for each child RTE.  The list of AppendRelInfos indicates
2265  * which child RTEs must be included when expanding the parent, and each node
2266  * carries information needed to translate between columns of the parent and
2267  * columns of the child.
2268  *
2269  * These structs are kept in the PlannerInfo node's append_rel_list, with
2270  * append_rel_array[] providing a convenient lookup method for the struct
2271  * associated with a particular child relid (there can be only one, though
2272  * parent rels may have many entries in append_rel_list).
2273  *
2274  * Note: after completion of the planner prep phase, any given RTE is an
2275  * append parent having entries in append_rel_list if and only if its
2276  * "inh" flag is set.  We clear "inh" for plain tables that turn out not
2277  * to have inheritance children, and (in an abuse of the original meaning
2278  * of the flag) we set "inh" for subquery RTEs that turn out to be
2279  * flattenable UNION ALL queries.  This lets us avoid useless searches
2280  * of append_rel_list.
2281  *
2282  * Note: the data structure assumes that append-rel members are single
2283  * baserels.  This is OK for inheritance, but it prevents us from pulling
2284  * up a UNION ALL member subquery if it contains a join.  While that could
2285  * be fixed with a more complex data structure, at present there's not much
2286  * point because no improvement in the plan could result.
2287  */
2288 
2289 typedef struct AppendRelInfo
2290 {
2291 	NodeTag		type;
2292 
2293 	/*
2294 	 * These fields uniquely identify this append relationship.  There can be
2295 	 * (in fact, always should be) multiple AppendRelInfos for the same
2296 	 * parent_relid, but never more than one per child_relid, since a given
2297 	 * RTE cannot be a child of more than one append parent.
2298 	 */
2299 	Index		parent_relid;	/* RT index of append parent rel */
2300 	Index		child_relid;	/* RT index of append child rel */
2301 
2302 	/*
2303 	 * For an inheritance appendrel, the parent and child are both regular
2304 	 * relations, and we store their rowtype OIDs here for use in translating
2305 	 * whole-row Vars.  For a UNION-ALL appendrel, the parent and child are
2306 	 * both subqueries with no named rowtype, and we store InvalidOid here.
2307 	 */
2308 	Oid			parent_reltype; /* OID of parent's composite type */
2309 	Oid			child_reltype;	/* OID of child's composite type */
2310 
2311 	/*
2312 	 * The N'th element of this list is a Var or expression representing the
2313 	 * child column corresponding to the N'th column of the parent. This is
2314 	 * used to translate Vars referencing the parent rel into references to
2315 	 * the child.  A list element is NULL if it corresponds to a dropped
2316 	 * column of the parent (this is only possible for inheritance cases, not
2317 	 * UNION ALL).  The list elements are always simple Vars for inheritance
2318 	 * cases, but can be arbitrary expressions in UNION ALL cases.
2319 	 *
2320 	 * Notice we only store entries for user columns (attno > 0).  Whole-row
2321 	 * Vars are special-cased, and system columns (attno < 0) need no special
2322 	 * translation since their attnos are the same for all tables.
2323 	 *
2324 	 * Caution: the Vars have varlevelsup = 0.  Be careful to adjust as needed
2325 	 * when copying into a subquery.
2326 	 */
2327 	List	   *translated_vars;	/* Expressions in the child's Vars */
2328 
2329 	/*
2330 	 * This array simplifies translations in the reverse direction, from
2331 	 * child's column numbers to parent's.  The entry at [ccolno - 1] is the
2332 	 * 1-based parent column number for child column ccolno, or zero if that
2333 	 * child column is dropped or doesn't exist in the parent.
2334 	 */
2335 	int			num_child_cols; /* length of array */
2336 	AttrNumber *parent_colnos;	/* array of parent attnos, or zeroes */
2337 
2338 	/*
2339 	 * We store the parent table's OID here for inheritance, or InvalidOid for
2340 	 * UNION ALL.  This is only needed to help in generating error messages if
2341 	 * an attempt is made to reference a dropped parent column.
2342 	 */
2343 	Oid			parent_reloid;	/* OID of parent relation */
2344 } AppendRelInfo;
2345 
2346 /*
2347  * Information about a row-identity "resjunk" column in UPDATE/DELETE.
2348  *
2349  * In partitioned UPDATE/DELETE it's important for child partitions to share
2350  * row-identity columns whenever possible, so as not to chew up too many
2351  * targetlist columns.  We use these structs to track which identity columns
2352  * have been requested.  In the finished plan, each of these will give rise
2353  * to one resjunk entry in the targetlist of the ModifyTable's subplan node.
2354  *
2355  * All the Vars stored in RowIdentityVarInfos must have varno ROWID_VAR, for
2356  * convenience of detecting duplicate requests.  We'll replace that, in the
2357  * final plan, with the varno of the generating rel.
2358  *
2359  * Outside this list, a Var with varno ROWID_VAR and varattno k is a reference
2360  * to the k-th element of the row_identity_vars list (k counting from 1).
2361  * We add such a reference to root->processed_tlist when creating the entry,
2362  * and it propagates into the plan tree from there.
2363  */
2364 typedef struct RowIdentityVarInfo
2365 {
2366 	NodeTag		type;
2367 
2368 	Var		   *rowidvar;		/* Var to be evaluated (but varno=ROWID_VAR) */
2369 	int32		rowidwidth;		/* estimated average width */
2370 	char	   *rowidname;		/* name of the resjunk column */
2371 	Relids		rowidrels;		/* RTE indexes of target rels using this */
2372 } RowIdentityVarInfo;
2373 
2374 /*
2375  * For each distinct placeholder expression generated during planning, we
2376  * store a PlaceHolderInfo node in the PlannerInfo node's placeholder_list.
2377  * This stores info that is needed centrally rather than in each copy of the
2378  * PlaceHolderVar.  The phid fields identify which PlaceHolderInfo goes with
2379  * each PlaceHolderVar.  Note that phid is unique throughout a planner run,
2380  * not just within a query level --- this is so that we need not reassign ID's
2381  * when pulling a subquery into its parent.
2382  *
2383  * The idea is to evaluate the expression at (only) the ph_eval_at join level,
2384  * then allow it to bubble up like a Var until the ph_needed join level.
2385  * ph_needed has the same definition as attr_needed for a regular Var.
2386  *
2387  * The PlaceHolderVar's expression might contain LATERAL references to vars
2388  * coming from outside its syntactic scope.  If so, those rels are *not*
2389  * included in ph_eval_at, but they are recorded in ph_lateral.
2390  *
2391  * Notice that when ph_eval_at is a join rather than a single baserel, the
2392  * PlaceHolderInfo may create constraints on join order: the ph_eval_at join
2393  * has to be formed below any outer joins that should null the PlaceHolderVar.
2394  *
2395  * We create a PlaceHolderInfo only after determining that the PlaceHolderVar
2396  * is actually referenced in the plan tree, so that unreferenced placeholders
2397  * don't result in unnecessary constraints on join order.
2398  */
2399 
2400 typedef struct PlaceHolderInfo
2401 {
2402 	NodeTag		type;
2403 
2404 	Index		phid;			/* ID for PH (unique within planner run) */
2405 	PlaceHolderVar *ph_var;		/* copy of PlaceHolderVar tree */
2406 	Relids		ph_eval_at;		/* lowest level we can evaluate value at */
2407 	Relids		ph_lateral;		/* relids of contained lateral refs, if any */
2408 	Relids		ph_needed;		/* highest level the value is needed at */
2409 	int32		ph_width;		/* estimated attribute width */
2410 } PlaceHolderInfo;
2411 
2412 /*
2413  * This struct describes one potentially index-optimizable MIN/MAX aggregate
2414  * function.  MinMaxAggPath contains a list of these, and if we accept that
2415  * path, the list is stored into root->minmax_aggs for use during setrefs.c.
2416  */
2417 typedef struct MinMaxAggInfo
2418 {
2419 	NodeTag		type;
2420 
2421 	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
2422 	Oid			aggsortop;		/* Oid of its sort operator */
2423 	Expr	   *target;			/* expression we are aggregating on */
2424 	PlannerInfo *subroot;		/* modified "root" for planning the subquery */
2425 	Path	   *path;			/* access path for subquery */
2426 	Cost		pathcost;		/* estimated cost to fetch first row */
2427 	Param	   *param;			/* param for subplan's output */
2428 } MinMaxAggInfo;
2429 
2430 /*
2431  * At runtime, PARAM_EXEC slots are used to pass values around from one plan
2432  * node to another.  They can be used to pass values down into subqueries (for
2433  * outer references in subqueries), or up out of subqueries (for the results
2434  * of a subplan), or from a NestLoop plan node into its inner relation (when
2435  * the inner scan is parameterized with values from the outer relation).
2436  * The planner is responsible for assigning nonconflicting PARAM_EXEC IDs to
2437  * the PARAM_EXEC Params it generates.
2438  *
2439  * Outer references are managed via root->plan_params, which is a list of
2440  * PlannerParamItems.  While planning a subquery, each parent query level's
2441  * plan_params contains the values required from it by the current subquery.
2442  * During create_plan(), we use plan_params to track values that must be
2443  * passed from outer to inner sides of NestLoop plan nodes.
2444  *
2445  * The item a PlannerParamItem represents can be one of three kinds:
2446  *
2447  * A Var: the slot represents a variable of this level that must be passed
2448  * down because subqueries have outer references to it, or must be passed
2449  * from a NestLoop node to its inner scan.  The varlevelsup value in the Var
2450  * will always be zero.
2451  *
2452  * A PlaceHolderVar: this works much like the Var case, except that the
2453  * entry is a PlaceHolderVar node with a contained expression.  The PHV
2454  * will have phlevelsup = 0, and the contained expression is adjusted
2455  * to match in level.
2456  *
2457  * An Aggref (with an expression tree representing its argument): the slot
2458  * represents an aggregate expression that is an outer reference for some
2459  * subquery.  The Aggref itself has agglevelsup = 0, and its argument tree
2460  * is adjusted to match in level.
2461  *
2462  * Note: we detect duplicate Var and PlaceHolderVar parameters and coalesce
2463  * them into one slot, but we do not bother to do that for Aggrefs.
2464  * The scope of duplicate-elimination only extends across the set of
2465  * parameters passed from one query level into a single subquery, or for
2466  * nestloop parameters across the set of nestloop parameters used in a single
2467  * query level.  So there is no possibility of a PARAM_EXEC slot being used
2468  * for conflicting purposes.
2469  *
2470  * In addition, PARAM_EXEC slots are assigned for Params representing outputs
2471  * from subplans (values that are setParam items for those subplans).  These
2472  * IDs need not be tracked via PlannerParamItems, since we do not need any
2473  * duplicate-elimination nor later processing of the represented expressions.
2474  * Instead, we just record the assignment of the slot number by appending to
2475  * root->glob->paramExecTypes.
2476  */
2477 typedef struct PlannerParamItem
2478 {
2479 	NodeTag		type;
2480 
2481 	Node	   *item;			/* the Var, PlaceHolderVar, or Aggref */
2482 	int			paramId;		/* its assigned PARAM_EXEC slot number */
2483 } PlannerParamItem;
2484 
2485 /*
2486  * When making cost estimates for a SEMI/ANTI/inner_unique join, there are
2487  * some correction factors that are needed in both nestloop and hash joins
2488  * to account for the fact that the executor can stop scanning inner rows
2489  * as soon as it finds a match to the current outer row.  These numbers
2490  * depend only on the selected outer and inner join relations, not on the
2491  * particular paths used for them, so it's worthwhile to calculate them
2492  * just once per relation pair not once per considered path.  This struct
2493  * is filled by compute_semi_anti_join_factors and must be passed along
2494  * to the join cost estimation functions.
2495  *
2496  * outer_match_frac is the fraction of the outer tuples that are
2497  *		expected to have at least one match.
2498  * match_count is the average number of matches expected for
2499  *		outer tuples that have at least one match.
2500  */
2501 typedef struct SemiAntiJoinFactors
2502 {
2503 	Selectivity outer_match_frac;
2504 	Selectivity match_count;
2505 } SemiAntiJoinFactors;
2506 
2507 /*
2508  * Struct for extra information passed to subroutines of add_paths_to_joinrel
2509  *
2510  * restrictlist contains all of the RestrictInfo nodes for restriction
2511  *		clauses that apply to this join
2512  * mergeclause_list is a list of RestrictInfo nodes for available
2513  *		mergejoin clauses in this join
2514  * inner_unique is true if each outer tuple provably matches no more
2515  *		than one inner tuple
2516  * sjinfo is extra info about special joins for selectivity estimation
2517  * semifactors is as shown above (only valid for SEMI/ANTI/inner_unique joins)
2518  * param_source_rels are OK targets for parameterization of result paths
2519  */
2520 typedef struct JoinPathExtraData
2521 {
2522 	List	   *restrictlist;
2523 	List	   *mergeclause_list;
2524 	bool		inner_unique;
2525 	SpecialJoinInfo *sjinfo;
2526 	SemiAntiJoinFactors semifactors;
2527 	Relids		param_source_rels;
2528 } JoinPathExtraData;
2529 
2530 /*
2531  * Various flags indicating what kinds of grouping are possible.
2532  *
2533  * GROUPING_CAN_USE_SORT should be set if it's possible to perform
2534  * sort-based implementations of grouping.  When grouping sets are in use,
2535  * this will be true if sorting is potentially usable for any of the grouping
2536  * sets, even if it's not usable for all of them.
2537  *
2538  * GROUPING_CAN_USE_HASH should be set if it's possible to perform
2539  * hash-based implementations of grouping.
2540  *
2541  * GROUPING_CAN_PARTIAL_AGG should be set if the aggregation is of a type
2542  * for which we support partial aggregation (not, for example, grouping sets).
2543  * It says nothing about parallel-safety or the availability of suitable paths.
2544  */
2545 #define GROUPING_CAN_USE_SORT       0x0001
2546 #define GROUPING_CAN_USE_HASH       0x0002
2547 #define GROUPING_CAN_PARTIAL_AGG	0x0004
2548 
2549 /*
2550  * What kind of partitionwise aggregation is in use?
2551  *
2552  * PARTITIONWISE_AGGREGATE_NONE: Not used.
2553  *
2554  * PARTITIONWISE_AGGREGATE_FULL: Aggregate each partition separately, and
2555  * append the results.
2556  *
2557  * PARTITIONWISE_AGGREGATE_PARTIAL: Partially aggregate each partition
2558  * separately, append the results, and then finalize aggregation.
2559  */
2560 typedef enum
2561 {
2562 	PARTITIONWISE_AGGREGATE_NONE,
2563 	PARTITIONWISE_AGGREGATE_FULL,
2564 	PARTITIONWISE_AGGREGATE_PARTIAL
2565 } PartitionwiseAggregateType;
2566 
2567 /*
2568  * Struct for extra information passed to subroutines of create_grouping_paths
2569  *
2570  * flags indicating what kinds of grouping are possible.
2571  * partial_costs_set is true if the agg_partial_costs and agg_final_costs
2572  * 		have been initialized.
2573  * agg_partial_costs gives partial aggregation costs.
2574  * agg_final_costs gives finalization costs.
2575  * target_parallel_safe is true if target is parallel safe.
2576  * havingQual gives list of quals to be applied after aggregation.
2577  * targetList gives list of columns to be projected.
2578  * patype is the type of partitionwise aggregation that is being performed.
2579  */
2580 typedef struct
2581 {
2582 	/* Data which remains constant once set. */
2583 	int			flags;
2584 	bool		partial_costs_set;
2585 	AggClauseCosts agg_partial_costs;
2586 	AggClauseCosts agg_final_costs;
2587 
2588 	/* Data which may differ across partitions. */
2589 	bool		target_parallel_safe;
2590 	Node	   *havingQual;
2591 	List	   *targetList;
2592 	PartitionwiseAggregateType patype;
2593 } GroupPathExtraData;
2594 
2595 /*
2596  * Struct for extra information passed to subroutines of grouping_planner
2597  *
2598  * limit_needed is true if we actually need a Limit plan node.
2599  * limit_tuples is an estimated bound on the number of output tuples,
2600  *		or -1 if no LIMIT or couldn't estimate.
2601  * count_est and offset_est are the estimated values of the LIMIT and OFFSET
2602  * 		expressions computed by preprocess_limit() (see comments for
2603  * 		preprocess_limit() for more information).
2604  */
2605 typedef struct
2606 {
2607 	bool		limit_needed;
2608 	double		limit_tuples;
2609 	int64		count_est;
2610 	int64		offset_est;
2611 } FinalPathExtraData;
2612 
2613 /*
2614  * For speed reasons, cost estimation for join paths is performed in two
2615  * phases: the first phase tries to quickly derive a lower bound for the
2616  * join cost, and then we check if that's sufficient to reject the path.
2617  * If not, we come back for a more refined cost estimate.  The first phase
2618  * fills a JoinCostWorkspace struct with its preliminary cost estimates
2619  * and possibly additional intermediate values.  The second phase takes
2620  * these values as inputs to avoid repeating work.
2621  *
2622  * (Ideally we'd declare this in cost.h, but it's also needed in pathnode.h,
2623  * so seems best to put it here.)
2624  */
2625 typedef struct JoinCostWorkspace
2626 {
2627 	/* Preliminary cost estimates --- must not be larger than final ones! */
2628 	Cost		startup_cost;	/* cost expended before fetching any tuples */
2629 	Cost		total_cost;		/* total cost (assuming all tuples fetched) */
2630 
2631 	/* Fields below here should be treated as private to costsize.c */
2632 	Cost		run_cost;		/* non-startup cost components */
2633 
2634 	/* private for cost_nestloop code */
2635 	Cost		inner_run_cost; /* also used by cost_mergejoin code */
2636 	Cost		inner_rescan_run_cost;
2637 
2638 	/* private for cost_mergejoin code */
2639 	double		outer_rows;
2640 	double		inner_rows;
2641 	double		outer_skip_rows;
2642 	double		inner_skip_rows;
2643 
2644 	/* private for cost_hashjoin code */
2645 	int			numbuckets;
2646 	int			numbatches;
2647 	double		inner_rows_total;
2648 } JoinCostWorkspace;
2649 
2650 /*
2651  * AggInfo holds information about an aggregate that needs to be computed.
2652  * Multiple Aggrefs in a query can refer to the same AggInfo by having the
2653  * same 'aggno' value, so that the aggregate is computed only once.
2654  */
2655 typedef struct AggInfo
2656 {
2657 	/*
2658 	 * Link to an Aggref expr this state value is for.
2659 	 *
2660 	 * There can be multiple identical Aggref's sharing the same per-agg. This
2661 	 * points to the first one of them.
2662 	 */
2663 	Aggref	   *representative_aggref;
2664 
2665 	int			transno;
2666 
2667 	/*
2668 	 * "shareable" is false if this agg cannot share state values with other
2669 	 * aggregates because the final function is read-write.
2670 	 */
2671 	bool		shareable;
2672 
2673 	/* Oid of the final function or InvalidOid */
2674 	Oid			finalfn_oid;
2675 
2676 } AggInfo;
2677 
2678 /*
2679  * AggTransInfo holds information about transition state that is used by one
2680  * or more aggregates in the query.  Multiple aggregates can share the same
2681  * transition state, if they have the same inputs and the same transition
2682  * function.  Aggrefs that share the same transition info have the same
2683  * 'aggtransno' value.
2684  */
2685 typedef struct AggTransInfo
2686 {
2687 	List	   *args;
2688 	Expr	   *aggfilter;
2689 
2690 	/* Oid of the state transition function */
2691 	Oid			transfn_oid;
2692 
2693 	/* Oid of the serialization function or InvalidOid */
2694 	Oid			serialfn_oid;
2695 
2696 	/* Oid of the deserialization function or InvalidOid */
2697 	Oid			deserialfn_oid;
2698 
2699 	/* Oid of the combine function or InvalidOid */
2700 	Oid			combinefn_oid;
2701 
2702 	/* Oid of state value's datatype */
2703 	Oid			aggtranstype;
2704 	int32		aggtranstypmod;
2705 	int			transtypeLen;
2706 	bool		transtypeByVal;
2707 	int32		aggtransspace;
2708 
2709 	/*
2710 	 * initial value from pg_aggregate entry
2711 	 */
2712 	Datum		initValue;
2713 	bool		initValueIsNull;
2714 
2715 } AggTransInfo;
2716 
2717 #endif							/* PATHNODES_H */
2718