1 /* The ziplist is a specially encoded dually linked list that is designed
2  * to be very memory efficient. It stores both strings and integer values,
3  * where integers are encoded as actual integers instead of a series of
4  * characters. It allows push and pop operations on either side of the list
5  * in O(1) time. However, because every operation requires a reallocation of
6  * the memory used by the ziplist, the actual complexity is related to the
7  * amount of memory used by the ziplist.
8  *
9  * ----------------------------------------------------------------------------
10  *
11  * ZIPLIST OVERALL LAYOUT
12  * ======================
13  *
14  * The general layout of the ziplist is as follows:
15  *
16  * <zlbytes> <zltail> <zllen> <entry> <entry> ... <entry> <zlend>
17  *
18  * NOTE: all fields are stored in little endian, if not specified otherwise.
19  *
20  * <uint32_t zlbytes> is an unsigned integer to hold the number of bytes that
21  * the ziplist occupies, including the four bytes of the zlbytes field itself.
22  * This value needs to be stored to be able to resize the entire structure
23  * without the need to traverse it first.
24  *
25  * <uint32_t zltail> is the offset to the last entry in the list. This allows
26  * a pop operation on the far side of the list without the need for full
27  * traversal.
28  *
29  * <uint16_t zllen> is the number of entries. When there are more than
30  * 2^16-2 entries, this value is set to 2^16-1 and we need to traverse the
31  * entire list to know how many items it holds.
32  *
33  * <uint8_t zlend> is a special entry representing the end of the ziplist.
34  * Is encoded as a single byte equal to 255. No other normal entry starts
35  * with a byte set to the value of 255.
36  *
37  * ZIPLIST ENTRIES
38  * ===============
39  *
40  * Every entry in the ziplist is prefixed by metadata that contains two pieces
41  * of information. First, the length of the previous entry is stored to be
42  * able to traverse the list from back to front. Second, the entry encoding is
43  * provided. It represents the entry type, integer or string, and in the case
44  * of strings it also represents the length of the string payload.
45  * So a complete entry is stored like this:
46  *
47  * <prevlen> <encoding> <entry-data>
48  *
49  * Sometimes the encoding represents the entry itself, like for small integers
50  * as we'll see later. In such a case the <entry-data> part is missing, and we
51  * could have just:
52  *
53  * <prevlen> <encoding>
54  *
55  * The length of the previous entry, <prevlen>, is encoded in the following way:
56  * If this length is smaller than 254 bytes, it will only consume a single
57  * byte representing the length as an unsinged 8 bit integer. When the length
58  * is greater than or equal to 254, it will consume 5 bytes. The first byte is
59  * set to 254 (FE) to indicate a larger value is following. The remaining 4
60  * bytes take the length of the previous entry as value.
61  *
62  * So practically an entry is encoded in the following way:
63  *
64  * <prevlen from 0 to 253> <encoding> <entry>
65  *
66  * Or alternatively if the previous entry length is greater than 253 bytes
67  * the following encoding is used:
68  *
69  * 0xFE <4 bytes unsigned little endian prevlen> <encoding> <entry>
70  *
71  * The encoding field of the entry depends on the content of the
72  * entry. When the entry is a string, the first 2 bits of the encoding first
73  * byte will hold the type of encoding used to store the length of the string,
74  * followed by the actual length of the string. When the entry is an integer
75  * the first 2 bits are both set to 1. The following 2 bits are used to specify
76  * what kind of integer will be stored after this header. An overview of the
77  * different types and encodings is as follows. The first byte is always enough
78  * to determine the kind of entry.
79  *
80  * |00pppppp| - 1 byte
81  *      String value with length less than or equal to 63 bytes (6 bits).
82  *      "pppppp" represents the unsigned 6 bit length.
83  * |01pppppp|qqqqqqqq| - 2 bytes
84  *      String value with length less than or equal to 16383 bytes (14 bits).
85  *      IMPORTANT: The 14 bit number is stored in big endian.
86  * |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
87  *      String value with length greater than or equal to 16384 bytes.
88  *      Only the 4 bytes following the first byte represents the length
89  *      up to 32^2-1. The 6 lower bits of the first byte are not used and
90  *      are set to zero.
91  *      IMPORTANT: The 32 bit number is stored in big endian.
92  * |11000000| - 3 bytes
93  *      Integer encoded as int16_t (2 bytes).
94  * |11010000| - 5 bytes
95  *      Integer encoded as int32_t (4 bytes).
96  * |11100000| - 9 bytes
97  *      Integer encoded as int64_t (8 bytes).
98  * |11110000| - 4 bytes
99  *      Integer encoded as 24 bit signed (3 bytes).
100  * |11111110| - 2 bytes
101  *      Integer encoded as 8 bit signed (1 byte).
102  * |1111xxxx| - (with xxxx between 0000 and 1101) immediate 4 bit integer.
103  *      Unsigned integer from 0 to 12. The encoded value is actually from
104  *      1 to 13 because 0000 and 1111 can not be used, so 1 should be
105  *      subtracted from the encoded 4 bit value to obtain the right value.
106  * |11111111| - End of ziplist special entry.
107  *
108  * Like for the ziplist header, all the integers are represented in little
109  * endian byte order, even when this code is compiled in big endian systems.
110  *
111  * EXAMPLES OF ACTUAL ZIPLISTS
112  * ===========================
113  *
114  * The following is a ziplist containing the two elements representing
115  * the strings "2" and "5". It is composed of 15 bytes, that we visually
116  * split into sections:
117  *
118  *  [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
119  *        |             |          |       |       |     |
120  *     zlbytes        zltail    entries   "2"     "5"   end
121  *
122  * The first 4 bytes represent the number 15, that is the number of bytes
123  * the whole ziplist is composed of. The second 4 bytes are the offset
124  * at which the last ziplist entry is found, that is 12, in fact the
125  * last entry, that is "5", is at offset 12 inside the ziplist.
126  * The next 16 bit integer represents the number of elements inside the
127  * ziplist, its value is 2 since there are just two elements inside.
128  * Finally "00 f3" is the first entry representing the number 2. It is
129  * composed of the previous entry length, which is zero because this is
130  * our first entry, and the byte F3 which corresponds to the encoding
131  * |1111xxxx| with xxxx between 0001 and 1101. We need to remove the "F"
132  * higher order bits 1111, and subtract 1 from the "3", so the entry value
133  * is "2". The next entry has a prevlen of 02, since the first entry is
134  * composed of exactly two bytes. The entry itself, F6, is encoded exactly
135  * like the first entry, and 6-1 = 5, so the value of the entry is 5.
136  * Finally the special entry FF signals the end of the ziplist.
137  *
138  * Adding another element to the above string with the value "Hello World"
139  * allows us to show how the ziplist encodes small strings. We'll just show
140  * the hex dump of the entry itself. Imagine the bytes as following the
141  * entry that stores "5" in the ziplist above:
142  *
143  * [02] [0b] [48 65 6c 6c 6f 20 57 6f 72 6c 64]
144  *
145  * The first byte, 02, is the length of the previous entry. The next
146  * byte represents the encoding in the pattern |00pppppp| that means
147  * that the entry is a string of length <pppppp>, so 0B means that
148  * an 11 bytes string follows. From the third byte (48) to the last (64)
149  * there are just the ASCII characters for "Hello World".
150  *
151  * ----------------------------------------------------------------------------
152  *
153  * Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
154  * Copyright (c) 2009-2017, Salvatore Sanfilippo <antirez at gmail dot com>
155  * All rights reserved.
156  *
157  * Redistribution and use in source and binary forms, with or without
158  * modification, are permitted provided that the following conditions are met:
159  *
160  *   * Redistributions of source code must retain the above copyright notice,
161  *     this list of conditions and the following disclaimer.
162  *   * Redistributions in binary form must reproduce the above copyright
163  *     notice, this list of conditions and the following disclaimer in the
164  *     documentation and/or other materials provided with the distribution.
165  *   * Neither the name of Redis nor the names of its contributors may be used
166  *     to endorse or promote products derived from this software without
167  *     specific prior written permission.
168  *
169  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
170  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
171  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
172  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
173  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
174  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
175  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
176  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
177  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
178  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
179  * POSSIBILITY OF SUCH DAMAGE.
180  */
181 
182 #include <stdio.h>
183 #include <stdlib.h>
184 #include <string.h>
185 #include <stdint.h>
186 #include <limits.h>
187 #include "zmalloc.h"
188 #include "util.h"
189 #include "ziplist.h"
190 #include "endianconv.h"
191 #include "redisassert.h"
192 
193 #define ZIP_END 255         /* Special "end of ziplist" entry. */
194 #define ZIP_BIG_PREVLEN 254 /* Max number of bytes of the previous entry, for
195                                the "prevlen" field prefixing each entry, to be
196                                represented with just a single byte. Otherwise
197                                it is represented as FF AA BB CC DD, where
198                                AA BB CC DD are a 4 bytes unsigned integer
199                                representing the previous entry len. */
200 
201 /* Different encoding/length possibilities */
202 #define ZIP_STR_MASK 0xc0
203 #define ZIP_INT_MASK 0x30
204 #define ZIP_STR_06B (0 << 6)
205 #define ZIP_STR_14B (1 << 6)
206 #define ZIP_STR_32B (2 << 6)
207 #define ZIP_INT_16B (0xc0 | 0<<4)
208 #define ZIP_INT_32B (0xc0 | 1<<4)
209 #define ZIP_INT_64B (0xc0 | 2<<4)
210 #define ZIP_INT_24B (0xc0 | 3<<4)
211 #define ZIP_INT_8B 0xfe
212 
213 /* 4 bit integer immediate encoding |1111xxxx| with xxxx between
214  * 0001 and 1101. */
215 #define ZIP_INT_IMM_MASK 0x0f   /* Mask to extract the 4 bits value. To add
216                                    one is needed to reconstruct the value. */
217 #define ZIP_INT_IMM_MIN 0xf1    /* 11110001 */
218 #define ZIP_INT_IMM_MAX 0xfd    /* 11111101 */
219 
220 #define INT24_MAX 0x7fffff
221 #define INT24_MIN (-INT24_MAX - 1)
222 
223 /* Macro to determine if the entry is a string. String entries never start
224  * with "11" as most significant bits of the first byte. */
225 #define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK)
226 
227 /* Utility macros.*/
228 
229 /* Return total bytes a ziplist is composed of. */
230 #define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl)))
231 
232 /* Return the offset of the last item inside the ziplist. */
233 #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
234 
235 /* Return the length of a ziplist, or UINT16_MAX if the length cannot be
236  * determined without scanning the whole ziplist. */
237 #define ZIPLIST_LENGTH(zl)      (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
238 
239 /* The size of a ziplist header: two 32 bit integers for the total
240  * bytes count and last item offset. One 16 bit integer for the number
241  * of items field. */
242 #define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
243 
244 /* Size of the "end of ziplist" entry. Just one byte. */
245 #define ZIPLIST_END_SIZE        (sizeof(uint8_t))
246 
247 /* Return the pointer to the first entry of a ziplist. */
248 #define ZIPLIST_ENTRY_HEAD(zl)  ((zl)+ZIPLIST_HEADER_SIZE)
249 
250 /* Return the pointer to the last entry of a ziplist, using the
251  * last entry offset inside the ziplist header. */
252 #define ZIPLIST_ENTRY_TAIL(zl)  ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
253 
254 /* Return the pointer to the last byte of a ziplist, which is, the
255  * end of ziplist FF entry. */
256 #define ZIPLIST_ENTRY_END(zl)   ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
257 
258 /* Increment the number of items field in the ziplist header. Note that this
259  * macro should never overflow the unsigned 16 bit integer, since entries are
260  * always pushed one at a time. When UINT16_MAX is reached we want the count
261  * to stay there to signal that a full scan is needed to get the number of
262  * items inside the ziplist. */
263 #define ZIPLIST_INCR_LENGTH(zl,incr) { \
264     if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) \
265         ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
266 }
267 
268 /* Don't let ziplists grow over 1GB in any case, don't wanna risk overflow in
269  * zlbytes*/
270 #define ZIPLIST_MAX_SAFETY_SIZE (1<<30)
ziplistSafeToAdd(unsigned char * zl,size_t add)271 int ziplistSafeToAdd(unsigned char* zl, size_t add) {
272     size_t len = zl? ziplistBlobLen(zl): 0;
273     if (len + add > ZIPLIST_MAX_SAFETY_SIZE)
274         return 0;
275     return 1;
276 }
277 
278 
279 /* We use this function to receive information about a ziplist entry.
280  * Note that this is not how the data is actually encoded, is just what we
281  * get filled by a function in order to operate more easily. */
282 typedef struct zlentry {
283     unsigned int prevrawlensize; /* Bytes used to encode the previous entry len*/
284     unsigned int prevrawlen;     /* Previous entry len. */
285     unsigned int lensize;        /* Bytes used to encode this entry type/len.
286                                     For example strings have a 1, 2 or 5 bytes
287                                     header. Integers always use a single byte.*/
288     unsigned int len;            /* Bytes used to represent the actual entry.
289                                     For strings this is just the string length
290                                     while for integers it is 1, 2, 3, 4, 8 or
291                                     0 (for 4 bit immediate) depending on the
292                                     number range. */
293     unsigned int headersize;     /* prevrawlensize + lensize. */
294     unsigned char encoding;      /* Set to ZIP_STR_* or ZIP_INT_* depending on
295                                     the entry encoding. However for 4 bits
296                                     immediate integers this can assume a range
297                                     of values and must be range-checked. */
298     unsigned char *p;            /* Pointer to the very start of the entry, that
299                                     is, this points to prev-entry-len field. */
300 } zlentry;
301 
302 #define ZIPLIST_ENTRY_ZERO(zle) { \
303     (zle)->prevrawlensize = (zle)->prevrawlen = 0; \
304     (zle)->lensize = (zle)->len = (zle)->headersize = 0; \
305     (zle)->encoding = 0; \
306     (zle)->p = NULL; \
307 }
308 
309 /* Extract the encoding from the byte pointed by 'ptr' and set it into
310  * 'encoding' field of the zlentry structure. */
311 #define ZIP_ENTRY_ENCODING(ptr, encoding) do {  \
312     (encoding) = (ptr[0]); \
313     if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
314 } while(0)
315 
316 /* Return bytes needed to store integer encoded by 'encoding'. */
zipIntSize(unsigned char encoding)317 unsigned int zipIntSize(unsigned char encoding) {
318     switch(encoding) {
319     case ZIP_INT_8B:  return 1;
320     case ZIP_INT_16B: return 2;
321     case ZIP_INT_24B: return 3;
322     case ZIP_INT_32B: return 4;
323     case ZIP_INT_64B: return 8;
324     }
325     if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX)
326         return 0; /* 4 bit immediate */
327     panic("Invalid integer encoding 0x%02X", encoding);
328     return 0;
329 }
330 
331 /* Write the encoidng header of the entry in 'p'. If p is NULL it just returns
332  * the amount of bytes required to encode such a length. Arguments:
333  *
334  * 'encoding' is the encoding we are using for the entry. It could be
335  * ZIP_INT_* or ZIP_STR_* or between ZIP_INT_IMM_MIN and ZIP_INT_IMM_MAX
336  * for single-byte small immediate integers.
337  *
338  * 'rawlen' is only used for ZIP_STR_* encodings and is the length of the
339  * srting that this entry represents.
340  *
341  * The function returns the number of bytes used by the encoding/length
342  * header stored in 'p'. */
zipStoreEntryEncoding(unsigned char * p,unsigned char encoding,unsigned int rawlen)343 unsigned int zipStoreEntryEncoding(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
344     unsigned char len = 1, buf[5];
345 
346     if (ZIP_IS_STR(encoding)) {
347         /* Although encoding is given it may not be set for strings,
348          * so we determine it here using the raw length. */
349         if (rawlen <= 0x3f) {
350             if (!p) return len;
351             buf[0] = ZIP_STR_06B | rawlen;
352         } else if (rawlen <= 0x3fff) {
353             len += 1;
354             if (!p) return len;
355             buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
356             buf[1] = rawlen & 0xff;
357         } else {
358             len += 4;
359             if (!p) return len;
360             buf[0] = ZIP_STR_32B;
361             buf[1] = (rawlen >> 24) & 0xff;
362             buf[2] = (rawlen >> 16) & 0xff;
363             buf[3] = (rawlen >> 8) & 0xff;
364             buf[4] = rawlen & 0xff;
365         }
366     } else {
367         /* Implies integer encoding, so length is always 1. */
368         if (!p) return len;
369         buf[0] = encoding;
370     }
371 
372     /* Store this length at p. */
373     memcpy(p,buf,len);
374     return len;
375 }
376 
377 /* Decode the entry encoding type and data length (string length for strings,
378  * number of bytes used for the integer for integer entries) encoded in 'ptr'.
379  * The 'encoding' variable will hold the entry encoding, the 'lensize'
380  * variable will hold the number of bytes required to encode the entry
381  * length, and the 'len' variable will hold the entry length. */
382 #define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do {                    \
383     ZIP_ENTRY_ENCODING((ptr), (encoding));                                     \
384     if ((encoding) < ZIP_STR_MASK) {                                           \
385         if ((encoding) == ZIP_STR_06B) {                                       \
386             (lensize) = 1;                                                     \
387             (len) = (ptr)[0] & 0x3f;                                           \
388         } else if ((encoding) == ZIP_STR_14B) {                                \
389             (lensize) = 2;                                                     \
390             (len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1];                       \
391         } else if ((encoding) == ZIP_STR_32B) {                                \
392             (lensize) = 5;                                                     \
393             (len) = ((ptr)[1] << 24) |                                         \
394                     ((ptr)[2] << 16) |                                         \
395                     ((ptr)[3] <<  8) |                                         \
396                     ((ptr)[4]);                                                \
397         } else {                                                               \
398             panic("Invalid string encoding 0x%02X", (encoding));               \
399         }                                                                      \
400     } else {                                                                   \
401         (lensize) = 1;                                                         \
402         (len) = zipIntSize(encoding);                                          \
403     }                                                                          \
404 } while(0);
405 
406 /* Encode the length of the previous entry and write it to "p". This only
407  * uses the larger encoding (required in __ziplistCascadeUpdate). */
zipStorePrevEntryLengthLarge(unsigned char * p,unsigned int len)408 int zipStorePrevEntryLengthLarge(unsigned char *p, unsigned int len) {
409     if (p != NULL) {
410         p[0] = ZIP_BIG_PREVLEN;
411         memcpy(p+1,&len,sizeof(len));
412         memrev32ifbe(p+1);
413     }
414     return 1+sizeof(len);
415 }
416 
417 /* Encode the length of the previous entry and write it to "p". Return the
418  * number of bytes needed to encode this length if "p" is NULL. */
zipStorePrevEntryLength(unsigned char * p,unsigned int len)419 unsigned int zipStorePrevEntryLength(unsigned char *p, unsigned int len) {
420     if (p == NULL) {
421         return (len < ZIP_BIG_PREVLEN) ? 1 : sizeof(len)+1;
422     } else {
423         if (len < ZIP_BIG_PREVLEN) {
424             p[0] = len;
425             return 1;
426         } else {
427             return zipStorePrevEntryLengthLarge(p,len);
428         }
429     }
430 }
431 
432 /* Return the number of bytes used to encode the length of the previous
433  * entry. The length is returned by setting the var 'prevlensize'. */
434 #define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do {                          \
435     if ((ptr)[0] < ZIP_BIG_PREVLEN) {                                          \
436         (prevlensize) = 1;                                                     \
437     } else {                                                                   \
438         (prevlensize) = 5;                                                     \
439     }                                                                          \
440 } while(0);
441 
442 /* Return the length of the previous element, and the number of bytes that
443  * are used in order to encode the previous element length.
444  * 'ptr' must point to the prevlen prefix of an entry (that encodes the
445  * length of the previous entry in order to navigate the elements backward).
446  * The length of the previous entry is stored in 'prevlen', the number of
447  * bytes needed to encode the previous entry length are stored in
448  * 'prevlensize'. */
449 #define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do {                     \
450     ZIP_DECODE_PREVLENSIZE(ptr, prevlensize);                                  \
451     if ((prevlensize) == 1) {                                                  \
452         (prevlen) = (ptr)[0];                                                  \
453     } else if ((prevlensize) == 5) {                                           \
454         assert(sizeof((prevlen)) == 4);                                    \
455         memcpy(&(prevlen), ((char*)(ptr)) + 1, 4);                             \
456         memrev32ifbe(&prevlen);                                                \
457     }                                                                          \
458 } while(0);
459 
460 /* Given a pointer 'p' to the prevlen info that prefixes an entry, this
461  * function returns the difference in number of bytes needed to encode
462  * the prevlen if the previous entry changes of size.
463  *
464  * So if A is the number of bytes used right now to encode the 'prevlen'
465  * field.
466  *
467  * And B is the number of bytes that are needed in order to encode the
468  * 'prevlen' if the previous element will be updated to one of size 'len'.
469  *
470  * Then the function returns B - A
471  *
472  * So the function returns a positive number if more space is needed,
473  * a negative number if less space is needed, or zero if the same space
474  * is needed. */
zipPrevLenByteDiff(unsigned char * p,unsigned int len)475 int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
476     unsigned int prevlensize;
477     ZIP_DECODE_PREVLENSIZE(p, prevlensize);
478     return zipStorePrevEntryLength(NULL, len) - prevlensize;
479 }
480 
481 /* Return the total number of bytes used by the entry pointed to by 'p'. */
zipRawEntryLength(unsigned char * p)482 unsigned int zipRawEntryLength(unsigned char *p) {
483     unsigned int prevlensize, encoding, lensize, len;
484     ZIP_DECODE_PREVLENSIZE(p, prevlensize);
485     ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
486     return prevlensize + lensize + len;
487 }
488 
489 /* Check if string pointed to by 'entry' can be encoded as an integer.
490  * Stores the integer value in 'v' and its encoding in 'encoding'. */
zipTryEncoding(unsigned char * entry,unsigned int entrylen,long long * v,unsigned char * encoding)491 int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
492     long long value;
493 
494     if (entrylen >= 32 || entrylen == 0) return 0;
495     if (string2ll((char*)entry,entrylen,&value)) {
496         /* Great, the string can be encoded. Check what's the smallest
497          * of our encoding types that can hold this value. */
498         if (value >= 0 && value <= 12) {
499             *encoding = ZIP_INT_IMM_MIN+value;
500         } else if (value >= INT8_MIN && value <= INT8_MAX) {
501             *encoding = ZIP_INT_8B;
502         } else if (value >= INT16_MIN && value <= INT16_MAX) {
503             *encoding = ZIP_INT_16B;
504         } else if (value >= INT24_MIN && value <= INT24_MAX) {
505             *encoding = ZIP_INT_24B;
506         } else if (value >= INT32_MIN && value <= INT32_MAX) {
507             *encoding = ZIP_INT_32B;
508         } else {
509             *encoding = ZIP_INT_64B;
510         }
511         *v = value;
512         return 1;
513     }
514     return 0;
515 }
516 
517 /* Store integer 'value' at 'p', encoded as 'encoding' */
zipSaveInteger(unsigned char * p,int64_t value,unsigned char encoding)518 void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
519     int16_t i16;
520     int32_t i32;
521     int64_t i64;
522     if (encoding == ZIP_INT_8B) {
523         ((int8_t*)p)[0] = (int8_t)value;
524     } else if (encoding == ZIP_INT_16B) {
525         i16 = value;
526         memcpy(p,&i16,sizeof(i16));
527         memrev16ifbe(p);
528     } else if (encoding == ZIP_INT_24B) {
529         i32 = value<<8;
530         memrev32ifbe(&i32);
531         memcpy(p,((uint8_t*)&i32)+1,sizeof(i32)-sizeof(uint8_t));
532     } else if (encoding == ZIP_INT_32B) {
533         i32 = value;
534         memcpy(p,&i32,sizeof(i32));
535         memrev32ifbe(p);
536     } else if (encoding == ZIP_INT_64B) {
537         i64 = value;
538         memcpy(p,&i64,sizeof(i64));
539         memrev64ifbe(p);
540     } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
541         /* Nothing to do, the value is stored in the encoding itself. */
542     } else {
543         assert(NULL);
544     }
545 }
546 
547 /* Read integer encoded as 'encoding' from 'p' */
zipLoadInteger(unsigned char * p,unsigned char encoding)548 int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
549     int16_t i16;
550     int32_t i32;
551     int64_t i64, ret = 0;
552     if (encoding == ZIP_INT_8B) {
553         ret = ((int8_t*)p)[0];
554     } else if (encoding == ZIP_INT_16B) {
555         memcpy(&i16,p,sizeof(i16));
556         memrev16ifbe(&i16);
557         ret = i16;
558     } else if (encoding == ZIP_INT_32B) {
559         memcpy(&i32,p,sizeof(i32));
560         memrev32ifbe(&i32);
561         ret = i32;
562     } else if (encoding == ZIP_INT_24B) {
563         i32 = 0;
564         memcpy(((uint8_t*)&i32)+1,p,sizeof(i32)-sizeof(uint8_t));
565         memrev32ifbe(&i32);
566         ret = i32>>8;
567     } else if (encoding == ZIP_INT_64B) {
568         memcpy(&i64,p,sizeof(i64));
569         memrev64ifbe(&i64);
570         ret = i64;
571     } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
572         ret = (encoding & ZIP_INT_IMM_MASK)-1;
573     } else {
574         assert(NULL);
575     }
576     return ret;
577 }
578 
579 /* Return a struct with all information about an entry. */
zipEntry(unsigned char * p,zlentry * e)580 void zipEntry(unsigned char *p, zlentry *e) {
581 
582     ZIP_DECODE_PREVLEN(p, e->prevrawlensize, e->prevrawlen);
583     ZIP_DECODE_LENGTH(p + e->prevrawlensize, e->encoding, e->lensize, e->len);
584     e->headersize = e->prevrawlensize + e->lensize;
585     e->p = p;
586 }
587 
588 /* Create a new empty ziplist. */
ziplistNew(void)589 unsigned char *ziplistNew(void) {
590     unsigned int bytes = ZIPLIST_HEADER_SIZE+ZIPLIST_END_SIZE;
591     unsigned char *zl = zmalloc(bytes);
592     ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
593     ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
594     ZIPLIST_LENGTH(zl) = 0;
595     zl[bytes-1] = ZIP_END;
596     return zl;
597 }
598 
599 /* Resize the ziplist. */
ziplistResize(unsigned char * zl,size_t len)600 unsigned char *ziplistResize(unsigned char *zl, size_t len) {
601     assert(len < UINT32_MAX);
602     zl = zrealloc(zl,len);
603     ZIPLIST_BYTES(zl) = intrev32ifbe(len);
604     zl[len-1] = ZIP_END;
605     return zl;
606 }
607 
608 /* When an entry is inserted, we need to set the prevlen field of the next
609  * entry to equal the length of the inserted entry. It can occur that this
610  * length cannot be encoded in 1 byte and the next entry needs to be grow
611  * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
612  * because this only happens when an entry is already being inserted (which
613  * causes a realloc and memmove). However, encoding the prevlen may require
614  * that this entry is grown as well. This effect may cascade throughout
615  * the ziplist when there are consecutive entries with a size close to
616  * ZIP_BIG_PREVLEN, so we need to check that the prevlen can be encoded in
617  * every consecutive entry.
618  *
619  * Note that this effect can also happen in reverse, where the bytes required
620  * to encode the prevlen field can shrink. This effect is deliberately ignored,
621  * because it can cause a "flapping" effect where a chain prevlen fields is
622  * first grown and then shrunk again after consecutive inserts. Rather, the
623  * field is allowed to stay larger than necessary, because a large prevlen
624  * field implies the ziplist is holding large entries anyway.
625  *
626  * The pointer "p" points to the first entry that does NOT need to be
627  * updated, i.e. consecutive fields MAY need an update. */
__ziplistCascadeUpdate(unsigned char * zl,unsigned char * p)628 unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
629     size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
630     size_t offset, noffset, extra;
631     unsigned char *np;
632     zlentry cur, next;
633 
634     while (p[0] != ZIP_END) {
635         zipEntry(p, &cur);
636         rawlen = cur.headersize + cur.len;
637         rawlensize = zipStorePrevEntryLength(NULL,rawlen);
638 
639         /* Abort if there is no next entry. */
640         if (p[rawlen] == ZIP_END) break;
641         zipEntry(p+rawlen, &next);
642 
643         /* Abort when "prevlen" has not changed. */
644         if (next.prevrawlen == rawlen) break;
645 
646         if (next.prevrawlensize < rawlensize) {
647             /* The "prevlen" field of "next" needs more bytes to hold
648              * the raw length of "cur". */
649             offset = p-zl;
650             extra = rawlensize-next.prevrawlensize;
651             zl = ziplistResize(zl,curlen+extra);
652             p = zl+offset;
653 
654             /* Current pointer and offset for next element. */
655             np = p+rawlen;
656             noffset = np-zl;
657 
658             /* Update tail offset when next element is not the tail element. */
659             if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
660                 ZIPLIST_TAIL_OFFSET(zl) =
661                     intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
662             }
663 
664             /* Move the tail to the back. */
665             memmove(np+rawlensize,
666                 np+next.prevrawlensize,
667                 curlen-noffset-next.prevrawlensize-1);
668             zipStorePrevEntryLength(np,rawlen);
669 
670             /* Advance the cursor */
671             p += rawlen;
672             curlen += extra;
673         } else {
674             if (next.prevrawlensize > rawlensize) {
675                 /* This would result in shrinking, which we want to avoid.
676                  * So, set "rawlen" in the available bytes. */
677                 zipStorePrevEntryLengthLarge(p+rawlen,rawlen);
678             } else {
679                 zipStorePrevEntryLength(p+rawlen,rawlen);
680             }
681 
682             /* Stop here, as the raw length of "next" has not changed. */
683             break;
684         }
685     }
686     return zl;
687 }
688 
689 /* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
__ziplistDelete(unsigned char * zl,unsigned char * p,unsigned int num)690 unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
691     unsigned int i, totlen, deleted = 0;
692     size_t offset;
693     int nextdiff = 0;
694     zlentry first, tail;
695 
696     zipEntry(p, &first);
697     for (i = 0; p[0] != ZIP_END && i < num; i++) {
698         p += zipRawEntryLength(p);
699         deleted++;
700     }
701 
702     totlen = p-first.p; /* Bytes taken by the element(s) to delete. */
703     if (totlen > 0) {
704         if (p[0] != ZIP_END) {
705             /* Storing `prevrawlen` in this entry may increase or decrease the
706              * number of bytes required compare to the current `prevrawlen`.
707              * There always is room to store this, because it was previously
708              * stored by an entry that is now being deleted. */
709             nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
710 
711             /* Note that there is always space when p jumps backward: if
712              * the new previous entry is large, one of the deleted elements
713              * had a 5 bytes prevlen header, so there is for sure at least
714              * 5 bytes free and we need just 4. */
715             p -= nextdiff;
716             zipStorePrevEntryLength(p,first.prevrawlen);
717 
718             /* Update offset for tail */
719             ZIPLIST_TAIL_OFFSET(zl) =
720                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
721 
722             /* When the tail contains more than one entry, we need to take
723              * "nextdiff" in account as well. Otherwise, a change in the
724              * size of prevlen doesn't have an effect on the *tail* offset. */
725             zipEntry(p, &tail);
726             if (p[tail.headersize+tail.len] != ZIP_END) {
727                 ZIPLIST_TAIL_OFFSET(zl) =
728                    intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
729             }
730 
731             /* Move tail to the front of the ziplist */
732             memmove(first.p,p,
733                 intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
734         } else {
735             /* The entire tail was deleted. No need to move memory. */
736             ZIPLIST_TAIL_OFFSET(zl) =
737                 intrev32ifbe((first.p-zl)-first.prevrawlen);
738         }
739 
740         /* Resize and update length */
741         offset = first.p-zl;
742         zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
743         ZIPLIST_INCR_LENGTH(zl,-deleted);
744         p = zl+offset;
745 
746         /* When nextdiff != 0, the raw length of the next entry has changed, so
747          * we need to cascade the update throughout the ziplist */
748         if (nextdiff != 0)
749             zl = __ziplistCascadeUpdate(zl,p);
750     }
751     return zl;
752 }
753 
754 /* Insert item at "p". */
__ziplistInsert(unsigned char * zl,unsigned char * p,unsigned char * s,unsigned int slen)755 unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
756     size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
757     unsigned int prevlensize, prevlen = 0;
758     size_t offset;
759     int nextdiff = 0;
760     unsigned char encoding = 0;
761     long long value = 123456789; /* initialized to avoid warning. Using a value
762                                     that is easy to see if for some reason
763                                     we use it uninitialized. */
764     zlentry tail;
765 
766     /* Find out prevlen for the entry that is inserted. */
767     if (p[0] != ZIP_END) {
768         ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
769     } else {
770         unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
771         if (ptail[0] != ZIP_END) {
772             prevlen = zipRawEntryLength(ptail);
773         }
774     }
775 
776     /* See if the entry can be encoded */
777     if (zipTryEncoding(s,slen,&value,&encoding)) {
778         /* 'encoding' is set to the appropriate integer encoding */
779         reqlen = zipIntSize(encoding);
780     } else {
781         /* 'encoding' is untouched, however zipStoreEntryEncoding will use the
782          * string length to figure out how to encode it. */
783         reqlen = slen;
784     }
785     /* We need space for both the length of the previous entry and
786      * the length of the payload. */
787     reqlen += zipStorePrevEntryLength(NULL,prevlen);
788     reqlen += zipStoreEntryEncoding(NULL,encoding,slen);
789 
790     /* When the insert position is not equal to the tail, we need to
791      * make sure that the next entry can hold this entry's length in
792      * its prevlen field. */
793     int forcelarge = 0;
794     nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
795     if (nextdiff == -4 && reqlen < 4) {
796         nextdiff = 0;
797         forcelarge = 1;
798     }
799 
800     /* Store offset because a realloc may change the address of zl. */
801     offset = p-zl;
802     zl = ziplistResize(zl,curlen+reqlen+nextdiff);
803     p = zl+offset;
804 
805     /* Apply memory move when necessary and update tail offset. */
806     if (p[0] != ZIP_END) {
807         /* Subtract one because of the ZIP_END bytes */
808         memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
809 
810         /* Encode this entry's raw length in the next entry. */
811         if (forcelarge)
812             zipStorePrevEntryLengthLarge(p+reqlen,reqlen);
813         else
814             zipStorePrevEntryLength(p+reqlen,reqlen);
815 
816         /* Update offset for tail */
817         ZIPLIST_TAIL_OFFSET(zl) =
818             intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
819 
820         /* When the tail contains more than one entry, we need to take
821          * "nextdiff" in account as well. Otherwise, a change in the
822          * size of prevlen doesn't have an effect on the *tail* offset. */
823         zipEntry(p+reqlen, &tail);
824         if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
825             ZIPLIST_TAIL_OFFSET(zl) =
826                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
827         }
828     } else {
829         /* This element will be the new tail. */
830         ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
831     }
832 
833     /* When nextdiff != 0, the raw length of the next entry has changed, so
834      * we need to cascade the update throughout the ziplist */
835     if (nextdiff != 0) {
836         offset = p-zl;
837         zl = __ziplistCascadeUpdate(zl,p+reqlen);
838         p = zl+offset;
839     }
840 
841     /* Write the entry */
842     p += zipStorePrevEntryLength(p,prevlen);
843     p += zipStoreEntryEncoding(p,encoding,slen);
844     if (ZIP_IS_STR(encoding)) {
845         memcpy(p,s,slen);
846     } else {
847         zipSaveInteger(p,value,encoding);
848     }
849     ZIPLIST_INCR_LENGTH(zl,1);
850     return zl;
851 }
852 
853 /* Merge ziplists 'first' and 'second' by appending 'second' to 'first'.
854  *
855  * NOTE: The larger ziplist is reallocated to contain the new merged ziplist.
856  * Either 'first' or 'second' can be used for the result.  The parameter not
857  * used will be free'd and set to NULL.
858  *
859  * After calling this function, the input parameters are no longer valid since
860  * they are changed and free'd in-place.
861  *
862  * The result ziplist is the contents of 'first' followed by 'second'.
863  *
864  * On failure: returns NULL if the merge is impossible.
865  * On success: returns the merged ziplist (which is expanded version of either
866  * 'first' or 'second', also frees the other unused input ziplist, and sets the
867  * input ziplist argument equal to newly reallocated ziplist return value. */
ziplistMerge(unsigned char ** first,unsigned char ** second)868 unsigned char *ziplistMerge(unsigned char **first, unsigned char **second) {
869     /* If any params are null, we can't merge, so NULL. */
870     if (first == NULL || *first == NULL || second == NULL || *second == NULL)
871         return NULL;
872 
873     /* Can't merge same list into itself. */
874     if (*first == *second)
875         return NULL;
876 
877     size_t first_bytes = intrev32ifbe(ZIPLIST_BYTES(*first));
878     size_t first_len = intrev16ifbe(ZIPLIST_LENGTH(*first));
879 
880     size_t second_bytes = intrev32ifbe(ZIPLIST_BYTES(*second));
881     size_t second_len = intrev16ifbe(ZIPLIST_LENGTH(*second));
882 
883     int append;
884     unsigned char *source, *target;
885     size_t target_bytes, source_bytes;
886     /* Pick the largest ziplist so we can resize easily in-place.
887      * We must also track if we are now appending or prepending to
888      * the target ziplist. */
889     if (first_len >= second_len) {
890         /* retain first, append second to first. */
891         target = *first;
892         target_bytes = first_bytes;
893         source = *second;
894         source_bytes = second_bytes;
895         append = 1;
896     } else {
897         /* else, retain second, prepend first to second. */
898         target = *second;
899         target_bytes = second_bytes;
900         source = *first;
901         source_bytes = first_bytes;
902         append = 0;
903     }
904 
905     /* Calculate final bytes (subtract one pair of metadata) */
906     size_t zlbytes = first_bytes + second_bytes -
907                      ZIPLIST_HEADER_SIZE - ZIPLIST_END_SIZE;
908     size_t zllength = first_len + second_len;
909 
910     /* Combined zl length should be limited within UINT16_MAX */
911     zllength = zllength < UINT16_MAX ? zllength : UINT16_MAX;
912 
913     /* larger values can't be stored into ZIPLIST_BYTES */
914     assert(zlbytes < UINT32_MAX);
915 
916     /* Save offset positions before we start ripping memory apart. */
917     size_t first_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*first));
918     size_t second_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*second));
919 
920     /* Extend target to new zlbytes then append or prepend source. */
921     target = zrealloc(target, zlbytes);
922     if (append) {
923         /* append == appending to target */
924         /* Copy source after target (copying over original [END]):
925          *   [TARGET - END, SOURCE - HEADER] */
926         memcpy(target + target_bytes - ZIPLIST_END_SIZE,
927                source + ZIPLIST_HEADER_SIZE,
928                source_bytes - ZIPLIST_HEADER_SIZE);
929     } else {
930         /* !append == prepending to target */
931         /* Move target *contents* exactly size of (source - [END]),
932          * then copy source into vacataed space (source - [END]):
933          *   [SOURCE - END, TARGET - HEADER] */
934         memmove(target + source_bytes - ZIPLIST_END_SIZE,
935                 target + ZIPLIST_HEADER_SIZE,
936                 target_bytes - ZIPLIST_HEADER_SIZE);
937         memcpy(target, source, source_bytes - ZIPLIST_END_SIZE);
938     }
939 
940     /* Update header metadata. */
941     ZIPLIST_BYTES(target) = intrev32ifbe(zlbytes);
942     ZIPLIST_LENGTH(target) = intrev16ifbe(zllength);
943     /* New tail offset is:
944      *   + N bytes of first ziplist
945      *   - 1 byte for [END] of first ziplist
946      *   + M bytes for the offset of the original tail of the second ziplist
947      *   - J bytes for HEADER because second_offset keeps no header. */
948     ZIPLIST_TAIL_OFFSET(target) = intrev32ifbe(
949                                    (first_bytes - ZIPLIST_END_SIZE) +
950                                    (second_offset - ZIPLIST_HEADER_SIZE));
951 
952     /* __ziplistCascadeUpdate just fixes the prev length values until it finds a
953      * correct prev length value (then it assumes the rest of the list is okay).
954      * We tell CascadeUpdate to start at the first ziplist's tail element to fix
955      * the merge seam. */
956     target = __ziplistCascadeUpdate(target, target+first_offset);
957 
958     /* Now free and NULL out what we didn't realloc */
959     if (append) {
960         zfree(*second);
961         *second = NULL;
962         *first = target;
963     } else {
964         zfree(*first);
965         *first = NULL;
966         *second = target;
967     }
968     return target;
969 }
970 
ziplistPush(unsigned char * zl,unsigned char * s,unsigned int slen,int where)971 unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
972     unsigned char *p;
973     p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
974     return __ziplistInsert(zl,p,s,slen);
975 }
976 
977 /* Returns an offset to use for iterating with ziplistNext. When the given
978  * index is negative, the list is traversed back to front. When the list
979  * doesn't contain an element at the provided index, NULL is returned. */
ziplistIndex(unsigned char * zl,int index)980 unsigned char *ziplistIndex(unsigned char *zl, int index) {
981     unsigned char *p;
982     unsigned int prevlensize, prevlen = 0;
983     if (index < 0) {
984         index = (-index)-1;
985         p = ZIPLIST_ENTRY_TAIL(zl);
986         if (p[0] != ZIP_END) {
987             ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
988             while (prevlen > 0 && index--) {
989                 p -= prevlen;
990                 ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
991             }
992         }
993     } else {
994         p = ZIPLIST_ENTRY_HEAD(zl);
995         while (p[0] != ZIP_END && index--) {
996             p += zipRawEntryLength(p);
997         }
998     }
999     return (p[0] == ZIP_END || index > 0) ? NULL : p;
1000 }
1001 
1002 /* Return pointer to next entry in ziplist.
1003  *
1004  * zl is the pointer to the ziplist
1005  * p is the pointer to the current element
1006  *
1007  * The element after 'p' is returned, otherwise NULL if we are at the end. */
ziplistNext(unsigned char * zl,unsigned char * p)1008 unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
1009     ((void) zl);
1010 
1011     /* "p" could be equal to ZIP_END, caused by ziplistDelete,
1012      * and we should return NULL. Otherwise, we should return NULL
1013      * when the *next* element is ZIP_END (there is no next entry). */
1014     if (p[0] == ZIP_END) {
1015         return NULL;
1016     }
1017 
1018     p += zipRawEntryLength(p);
1019     if (p[0] == ZIP_END) {
1020         return NULL;
1021     }
1022 
1023     return p;
1024 }
1025 
1026 /* Return pointer to previous entry in ziplist. */
ziplistPrev(unsigned char * zl,unsigned char * p)1027 unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
1028     unsigned int prevlensize, prevlen = 0;
1029 
1030     /* Iterating backwards from ZIP_END should return the tail. When "p" is
1031      * equal to the first element of the list, we're already at the head,
1032      * and should return NULL. */
1033     if (p[0] == ZIP_END) {
1034         p = ZIPLIST_ENTRY_TAIL(zl);
1035         return (p[0] == ZIP_END) ? NULL : p;
1036     } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
1037         return NULL;
1038     } else {
1039         ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
1040         assert(prevlen > 0);
1041         return p-prevlen;
1042     }
1043 }
1044 
1045 /* Get entry pointed to by 'p' and store in either '*sstr' or 'sval' depending
1046  * on the encoding of the entry. '*sstr' is always set to NULL to be able
1047  * to find out whether the string pointer or the integer value was set.
1048  * Return 0 if 'p' points to the end of the ziplist, 1 otherwise. */
ziplistGet(unsigned char * p,unsigned char ** sstr,unsigned int * slen,long long * sval)1049 unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
1050     zlentry entry;
1051     if (p == NULL || p[0] == ZIP_END) return 0;
1052     if (sstr) *sstr = NULL;
1053 
1054     zipEntry(p, &entry);
1055     if (ZIP_IS_STR(entry.encoding)) {
1056         if (sstr) {
1057             *slen = entry.len;
1058             *sstr = p+entry.headersize;
1059         }
1060     } else {
1061         if (sval) {
1062             *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
1063         }
1064     }
1065     return 1;
1066 }
1067 
1068 /* Insert an entry at "p". */
ziplistInsert(unsigned char * zl,unsigned char * p,unsigned char * s,unsigned int slen)1069 unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
1070     return __ziplistInsert(zl,p,s,slen);
1071 }
1072 
1073 /* Delete a single entry from the ziplist, pointed to by *p.
1074  * Also update *p in place, to be able to iterate over the
1075  * ziplist, while deleting entries. */
ziplistDelete(unsigned char * zl,unsigned char ** p)1076 unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
1077     size_t offset = *p-zl;
1078     zl = __ziplistDelete(zl,*p,1);
1079 
1080     /* Store pointer to current element in p, because ziplistDelete will
1081      * do a realloc which might result in a different "zl"-pointer.
1082      * When the delete direction is back to front, we might delete the last
1083      * entry and end up with "p" pointing to ZIP_END, so check this. */
1084     *p = zl+offset;
1085     return zl;
1086 }
1087 
1088 /* Delete a range of entries from the ziplist. */
ziplistDeleteRange(unsigned char * zl,int index,unsigned int num)1089 unsigned char *ziplistDeleteRange(unsigned char *zl, int index, unsigned int num) {
1090     unsigned char *p = ziplistIndex(zl,index);
1091     return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
1092 }
1093 
1094 /* Compare entry pointer to by 'p' with 'sstr' of length 'slen'. */
1095 /* Return 1 if equal. */
ziplistCompare(unsigned char * p,unsigned char * sstr,unsigned int slen)1096 unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
1097     zlentry entry;
1098     unsigned char sencoding;
1099     long long zval, sval;
1100     if (p[0] == ZIP_END) return 0;
1101 
1102     zipEntry(p, &entry);
1103     if (ZIP_IS_STR(entry.encoding)) {
1104         /* Raw compare */
1105         if (entry.len == slen) {
1106             return memcmp(p+entry.headersize,sstr,slen) == 0;
1107         } else {
1108             return 0;
1109         }
1110     } else {
1111         /* Try to compare encoded values. Don't compare encoding because
1112          * different implementations may encoded integers differently. */
1113         if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
1114           zval = zipLoadInteger(p+entry.headersize,entry.encoding);
1115           return zval == sval;
1116         }
1117     }
1118     return 0;
1119 }
1120 
1121 /* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
1122  * between every comparison. Returns NULL when the field could not be found. */
ziplistFind(unsigned char * p,unsigned char * vstr,unsigned int vlen,unsigned int skip)1123 unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
1124     int skipcnt = 0;
1125     unsigned char vencoding = 0;
1126     long long vll = 0;
1127 
1128     while (p[0] != ZIP_END) {
1129         unsigned int prevlensize, encoding, lensize, len;
1130         unsigned char *q;
1131 
1132         ZIP_DECODE_PREVLENSIZE(p, prevlensize);
1133         ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
1134         q = p + prevlensize + lensize;
1135 
1136         if (skipcnt == 0) {
1137             /* Compare current entry with specified entry */
1138             if (ZIP_IS_STR(encoding)) {
1139                 if (len == vlen && memcmp(q, vstr, vlen) == 0) {
1140                     return p;
1141                 }
1142             } else {
1143                 /* Find out if the searched field can be encoded. Note that
1144                  * we do it only the first time, once done vencoding is set
1145                  * to non-zero and vll is set to the integer value. */
1146                 if (vencoding == 0) {
1147                     if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
1148                         /* If the entry can't be encoded we set it to
1149                          * UCHAR_MAX so that we don't retry again the next
1150                          * time. */
1151                         vencoding = UCHAR_MAX;
1152                     }
1153                     /* Must be non-zero by now */
1154                     assert(vencoding);
1155                 }
1156 
1157                 /* Compare current entry with specified entry, do it only
1158                  * if vencoding != UCHAR_MAX because if there is no encoding
1159                  * possible for the field it can't be a valid integer. */
1160                 if (vencoding != UCHAR_MAX) {
1161                     long long ll = zipLoadInteger(q, encoding);
1162                     if (ll == vll) {
1163                         return p;
1164                     }
1165                 }
1166             }
1167 
1168             /* Reset skip count */
1169             skipcnt = skip;
1170         } else {
1171             /* Skip entry */
1172             skipcnt--;
1173         }
1174 
1175         /* Move to next entry */
1176         p = q + len;
1177     }
1178 
1179     return NULL;
1180 }
1181 
1182 /* Return length of ziplist. */
ziplistLen(unsigned char * zl)1183 unsigned int ziplistLen(unsigned char *zl) {
1184     unsigned int len = 0;
1185     if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
1186         len = intrev16ifbe(ZIPLIST_LENGTH(zl));
1187     } else {
1188         unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
1189         while (*p != ZIP_END) {
1190             p += zipRawEntryLength(p);
1191             len++;
1192         }
1193 
1194         /* Re-store length if small enough */
1195         if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
1196     }
1197     return len;
1198 }
1199 
1200 /* Return ziplist blob size in bytes. */
ziplistBlobLen(unsigned char * zl)1201 size_t ziplistBlobLen(unsigned char *zl) {
1202     return intrev32ifbe(ZIPLIST_BYTES(zl));
1203 }
1204 
ziplistRepr(unsigned char * zl)1205 void ziplistRepr(unsigned char *zl) {
1206     unsigned char *p;
1207     int index = 0;
1208     zlentry entry;
1209 
1210     printf(
1211         "{total bytes %d} "
1212         "{num entries %u}\n"
1213         "{tail offset %u}\n",
1214         intrev32ifbe(ZIPLIST_BYTES(zl)),
1215         intrev16ifbe(ZIPLIST_LENGTH(zl)),
1216         intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)));
1217     p = ZIPLIST_ENTRY_HEAD(zl);
1218     while(*p != ZIP_END) {
1219         zipEntry(p, &entry);
1220         printf(
1221             "{\n"
1222                 "\taddr 0x%08lx,\n"
1223                 "\tindex %2d,\n"
1224                 "\toffset %5ld,\n"
1225                 "\thdr+entry len: %5u,\n"
1226                 "\thdr len%2u,\n"
1227                 "\tprevrawlen: %5u,\n"
1228                 "\tprevrawlensize: %2u,\n"
1229                 "\tpayload %5u\n",
1230             (long unsigned)p,
1231             index,
1232             (unsigned long) (p-zl),
1233             entry.headersize+entry.len,
1234             entry.headersize,
1235             entry.prevrawlen,
1236             entry.prevrawlensize,
1237             entry.len);
1238         printf("\tbytes: ");
1239         for (unsigned int i = 0; i < entry.headersize+entry.len; i++) {
1240             printf("%02x|",p[i]);
1241         }
1242         printf("\n");
1243         p += entry.headersize;
1244         if (ZIP_IS_STR(entry.encoding)) {
1245             printf("\t[str]");
1246             if (entry.len > 40) {
1247                 if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
1248                 printf("...");
1249             } else {
1250                 if (entry.len &&
1251                     fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
1252             }
1253         } else {
1254             printf("\t[int]%lld", (long long) zipLoadInteger(p,entry.encoding));
1255         }
1256         printf("\n}\n");
1257         p += entry.len;
1258         index++;
1259     }
1260     printf("{end}\n\n");
1261 }
1262 
1263 #ifdef REDIS_TEST
1264 #include <sys/time.h>
1265 #include "adlist.h"
1266 #include "sds.h"
1267 
1268 #define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }
1269 
createList()1270 static unsigned char *createList() {
1271     unsigned char *zl = ziplistNew();
1272     zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
1273     zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
1274     zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
1275     zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
1276     return zl;
1277 }
1278 
createIntList()1279 static unsigned char *createIntList() {
1280     unsigned char *zl = ziplistNew();
1281     char buf[32];
1282 
1283     sprintf(buf, "100");
1284     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1285     sprintf(buf, "128000");
1286     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1287     sprintf(buf, "-100");
1288     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
1289     sprintf(buf, "4294967296");
1290     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
1291     sprintf(buf, "non integer");
1292     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1293     sprintf(buf, "much much longer non integer");
1294     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1295     return zl;
1296 }
1297 
usec(void)1298 static long long usec(void) {
1299     struct timeval tv;
1300     gettimeofday(&tv,NULL);
1301     return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
1302 }
1303 
stress(int pos,int num,int maxsize,int dnum)1304 static void stress(int pos, int num, int maxsize, int dnum) {
1305     int i,j,k;
1306     unsigned char *zl;
1307     char posstr[2][5] = { "HEAD", "TAIL" };
1308     long long start;
1309     for (i = 0; i < maxsize; i+=dnum) {
1310         zl = ziplistNew();
1311         for (j = 0; j < i; j++) {
1312             zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
1313         }
1314 
1315         /* Do num times a push+pop from pos */
1316         start = usec();
1317         for (k = 0; k < num; k++) {
1318             zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
1319             zl = ziplistDeleteRange(zl,0,1);
1320         }
1321         printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
1322             i,intrev32ifbe(ZIPLIST_BYTES(zl)),num,posstr[pos],usec()-start);
1323         zfree(zl);
1324     }
1325 }
1326 
pop(unsigned char * zl,int where)1327 static unsigned char *pop(unsigned char *zl, int where) {
1328     unsigned char *p, *vstr;
1329     unsigned int vlen;
1330     long long vlong;
1331 
1332     p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
1333     if (ziplistGet(p,&vstr,&vlen,&vlong)) {
1334         if (where == ZIPLIST_HEAD)
1335             printf("Pop head: ");
1336         else
1337             printf("Pop tail: ");
1338 
1339         if (vstr) {
1340             if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
1341         }
1342         else {
1343             printf("%lld", vlong);
1344         }
1345 
1346         printf("\n");
1347         return ziplistDelete(zl,&p);
1348     } else {
1349         printf("ERROR: Could not pop\n");
1350         exit(1);
1351     }
1352 }
1353 
randstring(char * target,unsigned int min,unsigned int max)1354 static int randstring(char *target, unsigned int min, unsigned int max) {
1355     int p = 0;
1356     int len = min+rand()%(max-min+1);
1357     int minval, maxval;
1358     switch(rand() % 3) {
1359     case 0:
1360         minval = 0;
1361         maxval = 255;
1362     break;
1363     case 1:
1364         minval = 48;
1365         maxval = 122;
1366     break;
1367     case 2:
1368         minval = 48;
1369         maxval = 52;
1370     break;
1371     default:
1372         assert(NULL);
1373     }
1374 
1375     while(p < len)
1376         target[p++] = minval+rand()%(maxval-minval+1);
1377     return len;
1378 }
1379 
verify(unsigned char * zl,zlentry * e)1380 static void verify(unsigned char *zl, zlentry *e) {
1381     int len = ziplistLen(zl);
1382     zlentry _e;
1383 
1384     ZIPLIST_ENTRY_ZERO(&_e);
1385 
1386     for (int i = 0; i < len; i++) {
1387         memset(&e[i], 0, sizeof(zlentry));
1388         zipEntry(ziplistIndex(zl, i), &e[i]);
1389 
1390         memset(&_e, 0, sizeof(zlentry));
1391         zipEntry(ziplistIndex(zl, -len+i), &_e);
1392 
1393         assert(memcmp(&e[i], &_e, sizeof(zlentry)) == 0);
1394     }
1395 }
1396 
ziplistTest(int argc,char ** argv)1397 int ziplistTest(int argc, char **argv) {
1398     unsigned char *zl, *p;
1399     unsigned char *entry;
1400     unsigned int elen;
1401     long long value;
1402 
1403     /* If an argument is given, use it as the random seed. */
1404     if (argc == 2)
1405         srand(atoi(argv[1]));
1406 
1407     zl = createIntList();
1408     ziplistRepr(zl);
1409 
1410     zfree(zl);
1411 
1412     zl = createList();
1413     ziplistRepr(zl);
1414 
1415     zl = pop(zl,ZIPLIST_TAIL);
1416     ziplistRepr(zl);
1417 
1418     zl = pop(zl,ZIPLIST_HEAD);
1419     ziplistRepr(zl);
1420 
1421     zl = pop(zl,ZIPLIST_TAIL);
1422     ziplistRepr(zl);
1423 
1424     zl = pop(zl,ZIPLIST_TAIL);
1425     ziplistRepr(zl);
1426 
1427     zfree(zl);
1428 
1429     printf("Get element at index 3:\n");
1430     {
1431         zl = createList();
1432         p = ziplistIndex(zl, 3);
1433         if (!ziplistGet(p, &entry, &elen, &value)) {
1434             printf("ERROR: Could not access index 3\n");
1435             return 1;
1436         }
1437         if (entry) {
1438             if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1439             printf("\n");
1440         } else {
1441             printf("%lld\n", value);
1442         }
1443         printf("\n");
1444         zfree(zl);
1445     }
1446 
1447     printf("Get element at index 4 (out of range):\n");
1448     {
1449         zl = createList();
1450         p = ziplistIndex(zl, 4);
1451         if (p == NULL) {
1452             printf("No entry\n");
1453         } else {
1454             printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1455             return 1;
1456         }
1457         printf("\n");
1458         zfree(zl);
1459     }
1460 
1461     printf("Get element at index -1 (last element):\n");
1462     {
1463         zl = createList();
1464         p = ziplistIndex(zl, -1);
1465         if (!ziplistGet(p, &entry, &elen, &value)) {
1466             printf("ERROR: Could not access index -1\n");
1467             return 1;
1468         }
1469         if (entry) {
1470             if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1471             printf("\n");
1472         } else {
1473             printf("%lld\n", value);
1474         }
1475         printf("\n");
1476         zfree(zl);
1477     }
1478 
1479     printf("Get element at index -4 (first element):\n");
1480     {
1481         zl = createList();
1482         p = ziplistIndex(zl, -4);
1483         if (!ziplistGet(p, &entry, &elen, &value)) {
1484             printf("ERROR: Could not access index -4\n");
1485             return 1;
1486         }
1487         if (entry) {
1488             if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1489             printf("\n");
1490         } else {
1491             printf("%lld\n", value);
1492         }
1493         printf("\n");
1494         zfree(zl);
1495     }
1496 
1497     printf("Get element at index -5 (reverse out of range):\n");
1498     {
1499         zl = createList();
1500         p = ziplistIndex(zl, -5);
1501         if (p == NULL) {
1502             printf("No entry\n");
1503         } else {
1504             printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1505             return 1;
1506         }
1507         printf("\n");
1508         zfree(zl);
1509     }
1510 
1511     printf("Iterate list from 0 to end:\n");
1512     {
1513         zl = createList();
1514         p = ziplistIndex(zl, 0);
1515         while (ziplistGet(p, &entry, &elen, &value)) {
1516             printf("Entry: ");
1517             if (entry) {
1518                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1519             } else {
1520                 printf("%lld", value);
1521             }
1522             p = ziplistNext(zl,p);
1523             printf("\n");
1524         }
1525         printf("\n");
1526         zfree(zl);
1527     }
1528 
1529     printf("Iterate list from 1 to end:\n");
1530     {
1531         zl = createList();
1532         p = ziplistIndex(zl, 1);
1533         while (ziplistGet(p, &entry, &elen, &value)) {
1534             printf("Entry: ");
1535             if (entry) {
1536                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1537             } else {
1538                 printf("%lld", value);
1539             }
1540             p = ziplistNext(zl,p);
1541             printf("\n");
1542         }
1543         printf("\n");
1544         zfree(zl);
1545     }
1546 
1547     printf("Iterate list from 2 to end:\n");
1548     {
1549         zl = createList();
1550         p = ziplistIndex(zl, 2);
1551         while (ziplistGet(p, &entry, &elen, &value)) {
1552             printf("Entry: ");
1553             if (entry) {
1554                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1555             } else {
1556                 printf("%lld", value);
1557             }
1558             p = ziplistNext(zl,p);
1559             printf("\n");
1560         }
1561         printf("\n");
1562         zfree(zl);
1563     }
1564 
1565     printf("Iterate starting out of range:\n");
1566     {
1567         zl = createList();
1568         p = ziplistIndex(zl, 4);
1569         if (!ziplistGet(p, &entry, &elen, &value)) {
1570             printf("No entry\n");
1571         } else {
1572             printf("ERROR\n");
1573         }
1574         printf("\n");
1575         zfree(zl);
1576     }
1577 
1578     printf("Iterate from back to front:\n");
1579     {
1580         zl = createList();
1581         p = ziplistIndex(zl, -1);
1582         while (ziplistGet(p, &entry, &elen, &value)) {
1583             printf("Entry: ");
1584             if (entry) {
1585                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1586             } else {
1587                 printf("%lld", value);
1588             }
1589             p = ziplistPrev(zl,p);
1590             printf("\n");
1591         }
1592         printf("\n");
1593         zfree(zl);
1594     }
1595 
1596     printf("Iterate from back to front, deleting all items:\n");
1597     {
1598         zl = createList();
1599         p = ziplistIndex(zl, -1);
1600         while (ziplistGet(p, &entry, &elen, &value)) {
1601             printf("Entry: ");
1602             if (entry) {
1603                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1604             } else {
1605                 printf("%lld", value);
1606             }
1607             zl = ziplistDelete(zl,&p);
1608             p = ziplistPrev(zl,p);
1609             printf("\n");
1610         }
1611         printf("\n");
1612         zfree(zl);
1613     }
1614 
1615     printf("Delete inclusive range 0,0:\n");
1616     {
1617         zl = createList();
1618         zl = ziplistDeleteRange(zl, 0, 1);
1619         ziplistRepr(zl);
1620         zfree(zl);
1621     }
1622 
1623     printf("Delete inclusive range 0,1:\n");
1624     {
1625         zl = createList();
1626         zl = ziplistDeleteRange(zl, 0, 2);
1627         ziplistRepr(zl);
1628         zfree(zl);
1629     }
1630 
1631     printf("Delete inclusive range 1,2:\n");
1632     {
1633         zl = createList();
1634         zl = ziplistDeleteRange(zl, 1, 2);
1635         ziplistRepr(zl);
1636         zfree(zl);
1637     }
1638 
1639     printf("Delete with start index out of range:\n");
1640     {
1641         zl = createList();
1642         zl = ziplistDeleteRange(zl, 5, 1);
1643         ziplistRepr(zl);
1644         zfree(zl);
1645     }
1646 
1647     printf("Delete with num overflow:\n");
1648     {
1649         zl = createList();
1650         zl = ziplistDeleteRange(zl, 1, 5);
1651         ziplistRepr(zl);
1652         zfree(zl);
1653     }
1654 
1655     printf("Delete foo while iterating:\n");
1656     {
1657         zl = createList();
1658         p = ziplistIndex(zl,0);
1659         while (ziplistGet(p,&entry,&elen,&value)) {
1660             if (entry && strncmp("foo",(char*)entry,elen) == 0) {
1661                 printf("Delete foo\n");
1662                 zl = ziplistDelete(zl,&p);
1663             } else {
1664                 printf("Entry: ");
1665                 if (entry) {
1666                     if (elen && fwrite(entry,elen,1,stdout) == 0)
1667                         perror("fwrite");
1668                 } else {
1669                     printf("%lld",value);
1670                 }
1671                 p = ziplistNext(zl,p);
1672                 printf("\n");
1673             }
1674         }
1675         printf("\n");
1676         ziplistRepr(zl);
1677         zfree(zl);
1678     }
1679 
1680     printf("Regression test for >255 byte strings:\n");
1681     {
1682         char v1[257] = {0}, v2[257] = {0};
1683         memset(v1,'x',256);
1684         memset(v2,'y',256);
1685         zl = ziplistNew();
1686         zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
1687         zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);
1688 
1689         /* Pop values again and compare their value. */
1690         p = ziplistIndex(zl,0);
1691         assert(ziplistGet(p,&entry,&elen,&value));
1692         assert(strncmp(v1,(char*)entry,elen) == 0);
1693         p = ziplistIndex(zl,1);
1694         assert(ziplistGet(p,&entry,&elen,&value));
1695         assert(strncmp(v2,(char*)entry,elen) == 0);
1696         printf("SUCCESS\n\n");
1697         zfree(zl);
1698     }
1699 
1700     printf("Regression test deleting next to last entries:\n");
1701     {
1702         char v[3][257] = {{0}};
1703         zlentry e[3] = {{.prevrawlensize = 0, .prevrawlen = 0, .lensize = 0,
1704                          .len = 0, .headersize = 0, .encoding = 0, .p = NULL}};
1705         size_t i;
1706 
1707         for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
1708             memset(v[i], 'a' + i, sizeof(v[0]));
1709         }
1710 
1711         v[0][256] = '\0';
1712         v[1][  1] = '\0';
1713         v[2][256] = '\0';
1714 
1715         zl = ziplistNew();
1716         for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
1717             zl = ziplistPush(zl, (unsigned char *) v[i], strlen(v[i]), ZIPLIST_TAIL);
1718         }
1719 
1720         verify(zl, e);
1721 
1722         assert(e[0].prevrawlensize == 1);
1723         assert(e[1].prevrawlensize == 5);
1724         assert(e[2].prevrawlensize == 1);
1725 
1726         /* Deleting entry 1 will increase `prevrawlensize` for entry 2 */
1727         unsigned char *p = e[1].p;
1728         zl = ziplistDelete(zl, &p);
1729 
1730         verify(zl, e);
1731 
1732         assert(e[0].prevrawlensize == 1);
1733         assert(e[1].prevrawlensize == 5);
1734 
1735         printf("SUCCESS\n\n");
1736         zfree(zl);
1737     }
1738 
1739     printf("Create long list and check indices:\n");
1740     {
1741         zl = ziplistNew();
1742         char buf[32];
1743         int i,len;
1744         for (i = 0; i < 1000; i++) {
1745             len = sprintf(buf,"%d",i);
1746             zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
1747         }
1748         for (i = 0; i < 1000; i++) {
1749             p = ziplistIndex(zl,i);
1750             assert(ziplistGet(p,NULL,NULL,&value));
1751             assert(i == value);
1752 
1753             p = ziplistIndex(zl,-i-1);
1754             assert(ziplistGet(p,NULL,NULL,&value));
1755             assert(999-i == value);
1756         }
1757         printf("SUCCESS\n\n");
1758         zfree(zl);
1759     }
1760 
1761     printf("Compare strings with ziplist entries:\n");
1762     {
1763         zl = createList();
1764         p = ziplistIndex(zl,0);
1765         if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1766             printf("ERROR: not \"hello\"\n");
1767             return 1;
1768         }
1769         if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1770             printf("ERROR: \"hella\"\n");
1771             return 1;
1772         }
1773 
1774         p = ziplistIndex(zl,3);
1775         if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1776             printf("ERROR: not \"1024\"\n");
1777             return 1;
1778         }
1779         if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1780             printf("ERROR: \"1025\"\n");
1781             return 1;
1782         }
1783         printf("SUCCESS\n\n");
1784         zfree(zl);
1785     }
1786 
1787     printf("Merge test:\n");
1788     {
1789         /* create list gives us: [hello, foo, quux, 1024] */
1790         zl = createList();
1791         unsigned char *zl2 = createList();
1792 
1793         unsigned char *zl3 = ziplistNew();
1794         unsigned char *zl4 = ziplistNew();
1795 
1796         if (ziplistMerge(&zl4, &zl4)) {
1797             printf("ERROR: Allowed merging of one ziplist into itself.\n");
1798             return 1;
1799         }
1800 
1801         /* Merge two empty ziplists, get empty result back. */
1802         zl4 = ziplistMerge(&zl3, &zl4);
1803         ziplistRepr(zl4);
1804         if (ziplistLen(zl4)) {
1805             printf("ERROR: Merging two empty ziplists created entries.\n");
1806             return 1;
1807         }
1808         zfree(zl4);
1809 
1810         zl2 = ziplistMerge(&zl, &zl2);
1811         /* merge gives us: [hello, foo, quux, 1024, hello, foo, quux, 1024] */
1812         ziplistRepr(zl2);
1813 
1814         if (ziplistLen(zl2) != 8) {
1815             printf("ERROR: Merged length not 8, but: %u\n", ziplistLen(zl2));
1816             return 1;
1817         }
1818 
1819         p = ziplistIndex(zl2,0);
1820         if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1821             printf("ERROR: not \"hello\"\n");
1822             return 1;
1823         }
1824         if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1825             printf("ERROR: \"hella\"\n");
1826             return 1;
1827         }
1828 
1829         p = ziplistIndex(zl2,3);
1830         if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1831             printf("ERROR: not \"1024\"\n");
1832             return 1;
1833         }
1834         if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1835             printf("ERROR: \"1025\"\n");
1836             return 1;
1837         }
1838 
1839         p = ziplistIndex(zl2,4);
1840         if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1841             printf("ERROR: not \"hello\"\n");
1842             return 1;
1843         }
1844         if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1845             printf("ERROR: \"hella\"\n");
1846             return 1;
1847         }
1848 
1849         p = ziplistIndex(zl2,7);
1850         if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1851             printf("ERROR: not \"1024\"\n");
1852             return 1;
1853         }
1854         if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1855             printf("ERROR: \"1025\"\n");
1856             return 1;
1857         }
1858         printf("SUCCESS\n\n");
1859         zfree(zl);
1860     }
1861 
1862     printf("Stress with random payloads of different encoding:\n");
1863     {
1864         int i,j,len,where;
1865         unsigned char *p;
1866         char buf[1024];
1867         int buflen;
1868         list *ref;
1869         listNode *refnode;
1870 
1871         /* Hold temp vars from ziplist */
1872         unsigned char *sstr;
1873         unsigned int slen;
1874         long long sval;
1875 
1876         for (i = 0; i < 20000; i++) {
1877             zl = ziplistNew();
1878             ref = listCreate();
1879             listSetFreeMethod(ref,(void (*)(void*))sdsfree);
1880             len = rand() % 256;
1881 
1882             /* Create lists */
1883             for (j = 0; j < len; j++) {
1884                 where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
1885                 if (rand() % 2) {
1886                     buflen = randstring(buf,1,sizeof(buf)-1);
1887                 } else {
1888                     switch(rand() % 3) {
1889                     case 0:
1890                         buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20);
1891                         break;
1892                     case 1:
1893                         buflen = sprintf(buf,"%lld",(0LL + rand()));
1894                         break;
1895                     case 2:
1896                         buflen = sprintf(buf,"%lld",(0LL + rand()) << 20);
1897                         break;
1898                     default:
1899                         assert(NULL);
1900                     }
1901                 }
1902 
1903                 /* Add to ziplist */
1904                 zl = ziplistPush(zl, (unsigned char*)buf, buflen, where);
1905 
1906                 /* Add to reference list */
1907                 if (where == ZIPLIST_HEAD) {
1908                     listAddNodeHead(ref,sdsnewlen(buf, buflen));
1909                 } else if (where == ZIPLIST_TAIL) {
1910                     listAddNodeTail(ref,sdsnewlen(buf, buflen));
1911                 } else {
1912                     assert(NULL);
1913                 }
1914             }
1915 
1916             assert(listLength(ref) == ziplistLen(zl));
1917             for (j = 0; j < len; j++) {
1918                 /* Naive way to get elements, but similar to the stresser
1919                  * executed from the Tcl test suite. */
1920                 p = ziplistIndex(zl,j);
1921                 refnode = listIndex(ref,j);
1922 
1923                 assert(ziplistGet(p,&sstr,&slen,&sval));
1924                 if (sstr == NULL) {
1925                     buflen = sprintf(buf,"%lld",sval);
1926                 } else {
1927                     buflen = slen;
1928                     memcpy(buf,sstr,buflen);
1929                     buf[buflen] = '\0';
1930                 }
1931                 assert(memcmp(buf,listNodeValue(refnode),buflen) == 0);
1932             }
1933             zfree(zl);
1934             listRelease(ref);
1935         }
1936         printf("SUCCESS\n\n");
1937     }
1938 
1939     printf("Stress with variable ziplist size:\n");
1940     {
1941         stress(ZIPLIST_HEAD,100000,16384,256);
1942         stress(ZIPLIST_TAIL,100000,16384,256);
1943     }
1944 
1945     return 0;
1946 }
1947 #endif
1948