1 
2 //  Copyright John Maddock 2006-7, 2013-14.
3 //  Copyright Paul A. Bristow 2007, 2013-14.
4 //  Copyright Nikhar Agrawal 2013-14
5 //  Copyright Christopher Kormanyos 2013-14
6 
7 //  Use, modification and distribution are subject to the
8 //  Boost Software License, Version 1.0. (See accompanying file
9 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
10 
11 #ifndef BOOST_MATH_SF_GAMMA_HPP
12 #define BOOST_MATH_SF_GAMMA_HPP
13 
14 #ifdef _MSC_VER
15 #pragma once
16 #endif
17 
18 #include <boost/config.hpp>
19 #include <boost/math/tools/series.hpp>
20 #include <boost/math/tools/fraction.hpp>
21 #include <boost/math/tools/precision.hpp>
22 #include <boost/math/tools/promotion.hpp>
23 #include <boost/math/policies/error_handling.hpp>
24 #include <boost/math/constants/constants.hpp>
25 #include <boost/math/special_functions/math_fwd.hpp>
26 #include <boost/math/special_functions/log1p.hpp>
27 #include <boost/math/special_functions/trunc.hpp>
28 #include <boost/math/special_functions/powm1.hpp>
29 #include <boost/math/special_functions/sqrt1pm1.hpp>
30 #include <boost/math/special_functions/lanczos.hpp>
31 #include <boost/math/special_functions/fpclassify.hpp>
32 #include <boost/math/special_functions/detail/igamma_large.hpp>
33 #include <boost/math/special_functions/detail/unchecked_factorial.hpp>
34 #include <boost/math/special_functions/detail/lgamma_small.hpp>
35 #include <boost/math/special_functions/bernoulli.hpp>
36 #include <boost/type_traits/is_convertible.hpp>
37 #include <boost/assert.hpp>
38 #include <boost/mpl/greater.hpp>
39 #include <boost/mpl/equal_to.hpp>
40 #include <boost/mpl/greater.hpp>
41 
42 #include <boost/config/no_tr1/cmath.hpp>
43 #include <algorithm>
44 
45 #ifdef BOOST_MSVC
46 # pragma warning(push)
47 # pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
48 # pragma warning(disable: 4127) // conditional expression is constant.
49 # pragma warning(disable: 4100) // unreferenced formal parameter.
50 // Several variables made comments,
51 // but some difficulty as whether referenced on not may depend on macro values.
52 // So to be safe, 4100 warnings suppressed.
53 // TODO - revisit this?
54 #endif
55 
56 namespace boost{ namespace math{
57 
58 namespace detail{
59 
60 template <class T>
is_odd(T v,const boost::true_type &)61 inline bool is_odd(T v, const boost::true_type&)
62 {
63    int i = static_cast<int>(v);
64    return i&1;
65 }
66 template <class T>
is_odd(T v,const boost::false_type &)67 inline bool is_odd(T v, const boost::false_type&)
68 {
69    // Oh dear can't cast T to int!
70    BOOST_MATH_STD_USING
71    T modulus = v - 2 * floor(v/2);
72    return static_cast<bool>(modulus != 0);
73 }
74 template <class T>
is_odd(T v)75 inline bool is_odd(T v)
76 {
77    return is_odd(v, ::boost::is_convertible<T, int>());
78 }
79 
80 template <class T>
sinpx(T z)81 T sinpx(T z)
82 {
83    // Ad hoc function calculates x * sin(pi * x),
84    // taking extra care near when x is near a whole number.
85    BOOST_MATH_STD_USING
86    int sign = 1;
87    if(z < 0)
88    {
89       z = -z;
90    }
91    T fl = floor(z);
92    T dist;
93    if(is_odd(fl))
94    {
95       fl += 1;
96       dist = fl - z;
97       sign = -sign;
98    }
99    else
100    {
101       dist = z - fl;
102    }
103    BOOST_ASSERT(fl >= 0);
104    if(dist > 0.5)
105       dist = 1 - dist;
106    T result = sin(dist*boost::math::constants::pi<T>());
107    return sign*z*result;
108 } // template <class T> T sinpx(T z)
109 //
110 // tgamma(z), with Lanczos support:
111 //
112 template <class T, class Policy, class Lanczos>
113 T gamma_imp(T z, const Policy& pol, const Lanczos& l)
114 {
115    BOOST_MATH_STD_USING
116 
117    T result = 1;
118 
119 #ifdef BOOST_MATH_INSTRUMENT
120    static bool b = false;
121    if(!b)
122    {
123       std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
124       b = true;
125    }
126 #endif
127    static const char* function = "boost::math::tgamma<%1%>(%1%)";
128 
129    if(z <= 0)
130    {
131       if(floor(z) == z)
132          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
133       if(z <= -20)
134       {
135          result = gamma_imp(T(-z), pol, l) * sinpx(z);
136          BOOST_MATH_INSTRUMENT_VARIABLE(result);
137          if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>()))
138             return -boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
139          result = -boost::math::constants::pi<T>() / result;
140          if(result == 0)
141             return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
142          if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL)
143             return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", result, pol);
144          BOOST_MATH_INSTRUMENT_VARIABLE(result);
145          return result;
146       }
147 
148       // shift z to > 1:
149       while(z < 0)
150       {
151          result /= z;
152          z += 1;
153       }
154    }
155    BOOST_MATH_INSTRUMENT_VARIABLE(result);
156    if((floor(z) == z) && (z < max_factorial<T>::value))
157    {
158       result *= unchecked_factorial<T>(itrunc(z, pol) - 1);
159       BOOST_MATH_INSTRUMENT_VARIABLE(result);
160    }
161    else if (z < tools::root_epsilon<T>())
162    {
163       if (z < 1 / tools::max_value<T>())
164          result = policies::raise_overflow_error<T>(function, 0, pol);
165 	   result *= 1 / z - constants::euler<T>();
166    }
167    else
168    {
169       result *= Lanczos::lanczos_sum(z);
170       T zgh = (z + static_cast<T>(Lanczos::g()) - boost::math::constants::half<T>());
171       T lzgh = log(zgh);
172       BOOST_MATH_INSTRUMENT_VARIABLE(result);
173       BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value<T>());
174       if(z * lzgh > tools::log_max_value<T>())
175       {
176          // we're going to overflow unless this is done with care:
177          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
178          if(lzgh * z / 2 > tools::log_max_value<T>())
179             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
180          T hp = pow(zgh, (z / 2) - T(0.25));
181          BOOST_MATH_INSTRUMENT_VARIABLE(hp);
182          result *= hp / exp(zgh);
183          BOOST_MATH_INSTRUMENT_VARIABLE(result);
184          if(tools::max_value<T>() / hp < result)
185             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
186          result *= hp;
187          BOOST_MATH_INSTRUMENT_VARIABLE(result);
188       }
189       else
190       {
191          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
192          BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, z - boost::math::constants::half<T>()));
193          BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh));
194          result *= pow(zgh, z - boost::math::constants::half<T>()) / exp(zgh);
195          BOOST_MATH_INSTRUMENT_VARIABLE(result);
196       }
197    }
198    return result;
199 }
200 //
201 // lgamma(z) with Lanczos support:
202 //
203 template <class T, class Policy, class Lanczos>
204 T lgamma_imp(T z, const Policy& pol, const Lanczos& l, int* sign = 0)
205 {
206 #ifdef BOOST_MATH_INSTRUMENT
207    static bool b = false;
208    if(!b)
209    {
210       std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
211       b = true;
212    }
213 #endif
214 
215    BOOST_MATH_STD_USING
216 
217    static const char* function = "boost::math::lgamma<%1%>(%1%)";
218 
219    T result = 0;
220    int sresult = 1;
221    if(z <= -tools::root_epsilon<T>())
222    {
223       // reflection formula:
224       if(floor(z) == z)
225          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
226 
227       T t = sinpx(z);
228       z = -z;
229       if(t < 0)
230       {
231          t = -t;
232       }
233       else
234       {
235          sresult = -sresult;
236       }
237       result = log(boost::math::constants::pi<T>()) - lgamma_imp(z, pol, l) - log(t);
238    }
239    else if (z < tools::root_epsilon<T>())
240    {
241 	   if (0 == z)
242 		   return policies::raise_pole_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
243       if (fabs(z) < 1 / tools::max_value<T>())
244          result = -log(fabs(z));
245       else
246 	      result = log(fabs(1 / z - constants::euler<T>()));
247 	   if (z < 0)
248 		sresult = -1;
249    }
250    else if(z < 15)
251    {
252       typedef typename policies::precision<T, Policy>::type precision_type;
253       typedef typename mpl::if_<
254          mpl::and_<
255             mpl::less_equal<precision_type, mpl::int_<64> >,
256             mpl::greater<precision_type, mpl::int_<0> >
257          >,
258          mpl::int_<64>,
259          typename mpl::if_<
260             mpl::and_<
261                mpl::less_equal<precision_type, mpl::int_<113> >,
262                mpl::greater<precision_type, mpl::int_<0> >
263             >,
264             mpl::int_<113>, mpl::int_<0> >::type
265           >::type tag_type;
266       result = lgamma_small_imp<T>(z, T(z - 1), T(z - 2), tag_type(), pol, l);
267    }
268    else if((z >= 3) && (z < 100) && (std::numeric_limits<T>::max_exponent >= 1024))
269    {
270       // taking the log of tgamma reduces the error, no danger of overflow here:
271       result = log(gamma_imp(z, pol, l));
272    }
273    else
274    {
275       // regular evaluation:
276       T zgh = static_cast<T>(z + Lanczos::g() - boost::math::constants::half<T>());
277       result = log(zgh) - 1;
278       result *= z - 0.5f;
279       result += log(Lanczos::lanczos_sum_expG_scaled(z));
280    }
281 
282    if(sign)
283       *sign = sresult;
284    return result;
285 }
286 
287 //
288 // Incomplete gamma functions follow:
289 //
290 template <class T>
291 struct upper_incomplete_gamma_fract
292 {
293 private:
294    T z, a;
295    int k;
296 public:
297    typedef std::pair<T,T> result_type;
298 
upper_incomplete_gamma_fractboost::math::detail::upper_incomplete_gamma_fract299    upper_incomplete_gamma_fract(T a1, T z1)
300       : z(z1-a1+1), a(a1), k(0)
301    {
302    }
303 
operator ()boost::math::detail::upper_incomplete_gamma_fract304    result_type operator()()
305    {
306       ++k;
307       z += 2;
308       return result_type(k * (a - k), z);
309    }
310 };
311 
312 template <class T>
upper_gamma_fraction(T a,T z,T eps)313 inline T upper_gamma_fraction(T a, T z, T eps)
314 {
315    // Multiply result by z^a * e^-z to get the full
316    // upper incomplete integral.  Divide by tgamma(z)
317    // to normalise.
318    upper_incomplete_gamma_fract<T> f(a, z);
319    return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps));
320 }
321 
322 template <class T>
323 struct lower_incomplete_gamma_series
324 {
325 private:
326    T a, z, result;
327 public:
328    typedef T result_type;
lower_incomplete_gamma_seriesboost::math::detail::lower_incomplete_gamma_series329    lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){}
330 
operator ()boost::math::detail::lower_incomplete_gamma_series331    T operator()()
332    {
333       T r = result;
334       a += 1;
335       result *= z/a;
336       return r;
337    }
338 };
339 
340 template <class T, class Policy>
lower_gamma_series(T a,T z,const Policy & pol,T init_value=0)341 inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0)
342 {
343    // Multiply result by ((z^a) * (e^-z) / a) to get the full
344    // lower incomplete integral. Then divide by tgamma(a)
345    // to get the normalised value.
346    lower_incomplete_gamma_series<T> s(a, z);
347    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
348    T factor = policies::get_epsilon<T, Policy>();
349    T result = boost::math::tools::sum_series(s, factor, max_iter, init_value);
350    policies::check_series_iterations<T>("boost::math::detail::lower_gamma_series<%1%>(%1%)", max_iter, pol);
351    return result;
352 }
353 
354 //
355 // Fully generic tgamma and lgamma use Stirling's approximation
356 // with Bernoulli numbers.
357 //
358 template<class T>
highest_bernoulli_index()359 std::size_t highest_bernoulli_index()
360 {
361    const float digits10_of_type = (std::numeric_limits<T>::is_specialized
362                                       ? static_cast<float>(std::numeric_limits<T>::digits10)
363                                       : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
364 
365    // Find the high index n for Bn to produce the desired precision in Stirling's calculation.
366    return static_cast<std::size_t>(18.0F + (0.6F * digits10_of_type));
367 }
368 
369 template<class T>
minimum_argument_for_bernoulli_recursion()370 T minimum_argument_for_bernoulli_recursion()
371 {
372    const float digits10_of_type = (std::numeric_limits<T>::is_specialized
373                                       ? static_cast<float>(std::numeric_limits<T>::digits10)
374                                       : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
375 
376    return T(digits10_of_type * 1.7F);
377 }
378 
379 // Forward declaration of the lgamma_imp template specialization.
380 template <class T, class Policy>
381 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign = 0);
382 
383 template <class T, class Policy>
384 T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&)
385 {
386    BOOST_MATH_STD_USING
387 
388    static const char* function = "boost::math::tgamma<%1%>(%1%)";
389 
390    // Check if the argument of tgamma is identically zero.
391    const bool is_at_zero = (z == 0);
392 
393    if(is_at_zero)
394       return policies::raise_domain_error<T>(function, "Evaluation of tgamma at zero %1%.", z, pol);
395 
396    const bool b_neg = (z < 0);
397 
398    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
399 
400    // Special case handling of small factorials:
401    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
402    {
403       return boost::math::unchecked_factorial<T>(itrunc(z) - 1);
404    }
405 
406    // Make a local, unsigned copy of the input argument.
407    T zz((!b_neg) ? z : -z);
408 
409    // Special case for ultra-small z:
410    if(zz < tools::cbrt_epsilon<T>())
411    {
412       const T a0(1);
413       const T a1(boost::math::constants::euler<T>());
414       const T six_euler_squared((boost::math::constants::euler<T>() * boost::math::constants::euler<T>()) * 6);
415       const T a2((six_euler_squared -  boost::math::constants::pi_sqr<T>()) / 12);
416 
417       const T inverse_tgamma_series = z * ((a2 * z + a1) * z + a0);
418 
419       return 1 / inverse_tgamma_series;
420    }
421 
422    // Scale the argument up for the calculation of lgamma,
423    // and use downward recursion later for the final result.
424    const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
425 
426    int n_recur;
427 
428    if(zz < min_arg_for_recursion)
429    {
430       n_recur = boost::math::itrunc(min_arg_for_recursion - zz) + 1;
431 
432       zz += n_recur;
433    }
434    else
435    {
436       n_recur = 0;
437    }
438 
439    const T log_gamma_value = lgamma_imp(zz, pol, lanczos::undefined_lanczos());
440 
441    if(log_gamma_value > tools::log_max_value<T>())
442       return policies::raise_overflow_error<T>(function, 0, pol);
443 
444    T gamma_value = exp(log_gamma_value);
445 
446    // Rescale the result using downward recursion if necessary.
447    if(n_recur)
448    {
449       // The order of divides is important, if we keep subtracting 1 from zz
450       // we DO NOT get back to z (cancellation error).  Further if z < epsilon
451       // we would end up dividing by zero.  Also in order to prevent spurious
452       // overflow with the first division, we must save dividing by |z| till last,
453       // so the optimal order of divides is z+1, z+2, z+3...z+n_recur-1,z.
454       zz = fabs(z) + 1;
455       for(int k = 1; k < n_recur; ++k)
456       {
457          gamma_value /= zz;
458          zz += 1;
459       }
460       gamma_value /= fabs(z);
461    }
462 
463    // Return the result, accounting for possible negative arguments.
464    if(b_neg)
465    {
466       // Provide special error analysis for:
467       // * arguments in the neighborhood of a negative integer
468       // * arguments exactly equal to a negative integer.
469 
470       // Check if the argument of tgamma is exactly equal to a negative integer.
471       if(floor_of_z_is_equal_to_z)
472          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
473 
474       gamma_value *= sinpx(z);
475 
476       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
477 
478       const bool result_is_too_large_to_represent = (   (abs(gamma_value) < 1)
479                                                      && ((tools::max_value<T>() * abs(gamma_value)) < boost::math::constants::pi<T>()));
480 
481       if(result_is_too_large_to_represent)
482          return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
483 
484       gamma_value = -boost::math::constants::pi<T>() / gamma_value;
485       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
486 
487       if(gamma_value == 0)
488          return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
489 
490       if((boost::math::fpclassify)(gamma_value) == static_cast<int>(FP_SUBNORMAL))
491          return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", gamma_value, pol);
492    }
493 
494    return gamma_value;
495 }
496 
497 template <class T, class Policy>
498 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign)
499 {
500    BOOST_MATH_STD_USING
501 
502    static const char* function = "boost::math::lgamma<%1%>(%1%)";
503 
504    // Check if the argument of lgamma is identically zero.
505    const bool is_at_zero = (z == 0);
506 
507    if(is_at_zero)
508       return policies::raise_domain_error<T>(function, "Evaluation of lgamma at zero %1%.", z, pol);
509 
510    const bool b_neg = (z < 0);
511 
512    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
513 
514    // Special case handling of small factorials:
515    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
516    {
517       return log(boost::math::unchecked_factorial<T>(itrunc(z) - 1));
518    }
519 
520    // Make a local, unsigned copy of the input argument.
521    T zz((!b_neg) ? z : -z);
522 
523    const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
524 
525    T log_gamma_value;
526 
527    if (zz < min_arg_for_recursion)
528    {
529 	   // Here we simply take the logarithm of tgamma(). This is somewhat
530 	   // inefficient, but simple. The rationale is that the argument here
531 	   // is relatively small and overflow is not expected to be likely.
532       if (z > -tools::root_epsilon<T>())
533       {
534          // Reflection formula may fail if z is very close to zero, let the series
535          // expansion for tgamma close to zero do the work:
536          log_gamma_value = log(abs(gamma_imp(z, pol, lanczos::undefined_lanczos())));
537          if (sign)
538          {
539              *sign = z < 0 ? -1 : 1;
540          }
541          return log_gamma_value;
542       }
543 	   else
544       {
545          // No issue with spurious overflow in reflection formula,
546          // just fall through to regular code:
547          log_gamma_value = log(abs(gamma_imp(zz, pol, lanczos::undefined_lanczos())));
548       }
549    }
550    else
551    {
552       // Perform the Bernoulli series expansion of Stirling's approximation.
553 
554       const std::size_t number_of_bernoullis_b2n = highest_bernoulli_index<T>();
555 
556             T one_over_x_pow_two_n_minus_one = 1 / zz;
557       const T one_over_x2                    = one_over_x_pow_two_n_minus_one * one_over_x_pow_two_n_minus_one;
558             T sum                            = (boost::math::bernoulli_b2n<T>(1) / 2) * one_over_x_pow_two_n_minus_one;
559       const T target_epsilon_to_break_loop   = (sum * boost::math::tools::epsilon<T>()) * T(1.0E-10F);
560 
561       for(std::size_t n = 2U; n < number_of_bernoullis_b2n; ++n)
562       {
563          one_over_x_pow_two_n_minus_one *= one_over_x2;
564 
565          const std::size_t n2 = static_cast<std::size_t>(n * 2U);
566 
567          const T term = (boost::math::bernoulli_b2n<T>(static_cast<int>(n)) * one_over_x_pow_two_n_minus_one) / (n2 * (n2 - 1U));
568 
569          if((n >= 8U) && (abs(term) < target_epsilon_to_break_loop))
570          {
571             // We have reached the desired precision in Stirling's expansion.
572             // Adding additional terms to the sum of this divergent asymptotic
573             // expansion will not improve the result.
574 
575             // Break from the loop.
576             break;
577          }
578 
579          sum += term;
580       }
581 
582       // Complete Stirling's approximation.
583       const T half_ln_two_pi = log(boost::math::constants::two_pi<T>()) / 2;
584 
585       log_gamma_value = ((((zz - boost::math::constants::half<T>()) * log(zz)) - zz) + half_ln_two_pi) + sum;
586    }
587 
588    int sign_of_result = 1;
589 
590    if(b_neg)
591    {
592       // Provide special error analysis if the argument is exactly
593       // equal to a negative integer.
594 
595       // Check if the argument of lgamma is exactly equal to a negative integer.
596       if(floor_of_z_is_equal_to_z)
597          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
598 
599       T t = sinpx(z);
600 
601       if(t < 0)
602       {
603          t = -t;
604       }
605       else
606       {
607          sign_of_result = -sign_of_result;
608       }
609 
610       log_gamma_value = - log_gamma_value
611                         + log(boost::math::constants::pi<T>())
612                         - log(t);
613    }
614 
615    if(sign != static_cast<int*>(0U)) { *sign = sign_of_result; }
616 
617    return log_gamma_value;
618 }
619 
620 //
621 // This helper calculates tgamma(dz+1)-1 without cancellation errors,
622 // used by the upper incomplete gamma with z < 1:
623 //
624 template <class T, class Policy, class Lanczos>
625 T tgammap1m1_imp(T dz, Policy const& pol, const Lanczos& l)
626 {
627    BOOST_MATH_STD_USING
628 
629    typedef typename policies::precision<T,Policy>::type precision_type;
630 
631    typedef typename mpl::if_<
632       mpl::or_<
633          mpl::less_equal<precision_type, mpl::int_<0> >,
634          mpl::greater<precision_type, mpl::int_<113> >
635       >,
636       typename mpl::if_<
637          is_same<Lanczos, lanczos::lanczos24m113>,
638          mpl::int_<113>,
639          mpl::int_<0>
640       >::type,
641       typename mpl::if_<
642          mpl::less_equal<precision_type, mpl::int_<64> >,
643          mpl::int_<64>, mpl::int_<113> >::type
644        >::type tag_type;
645 
646    T result;
647    if(dz < 0)
648    {
649       if(dz < -0.5)
650       {
651          // Best method is simply to subtract 1 from tgamma:
652          result = boost::math::tgamma(1+dz, pol) - 1;
653          BOOST_MATH_INSTRUMENT_CODE(result);
654       }
655       else
656       {
657          // Use expm1 on lgamma:
658          result = boost::math::expm1(-boost::math::log1p(dz, pol)
659             + lgamma_small_imp<T>(dz+2, dz + 1, dz, tag_type(), pol, l));
660          BOOST_MATH_INSTRUMENT_CODE(result);
661       }
662    }
663    else
664    {
665       if(dz < 2)
666       {
667          // Use expm1 on lgamma:
668          result = boost::math::expm1(lgamma_small_imp<T>(dz+1, dz, dz-1, tag_type(), pol, l), pol);
669          BOOST_MATH_INSTRUMENT_CODE(result);
670       }
671       else
672       {
673          // Best method is simply to subtract 1 from tgamma:
674          result = boost::math::tgamma(1+dz, pol) - 1;
675          BOOST_MATH_INSTRUMENT_CODE(result);
676       }
677    }
678 
679    return result;
680 }
681 
682 template <class T, class Policy>
tgammap1m1_imp(T dz,Policy const & pol,const::boost::math::lanczos::undefined_lanczos & l)683 inline T tgammap1m1_imp(T dz, Policy const& pol,
684                  const ::boost::math::lanczos::undefined_lanczos& l)
685 {
686    BOOST_MATH_STD_USING // ADL of std names
687    //
688    // There should be a better solution than this, but the
689    // algebra isn't easy for the general case....
690    // Start by subracting 1 from tgamma:
691    //
692    T result = gamma_imp(T(1 + dz), pol, l) - 1;
693    BOOST_MATH_INSTRUMENT_CODE(result);
694    //
695    // Test the level of cancellation error observed: we loose one bit
696    // for each power of 2 the result is less than 1.  If we would get
697    // more bits from our most precise lgamma rational approximation,
698    // then use that instead:
699    //
700    BOOST_MATH_INSTRUMENT_CODE((dz > -0.5));
701    BOOST_MATH_INSTRUMENT_CODE((dz < 2));
702    BOOST_MATH_INSTRUMENT_CODE((ldexp(1.0, boost::math::policies::digits<T, Policy>()) * fabs(result) < 1e34));
703    if((dz > -0.5) && (dz < 2) && (ldexp(1.0, boost::math::policies::digits<T, Policy>()) * fabs(result) < 1e34))
704    {
705       result = tgammap1m1_imp(dz, pol, boost::math::lanczos::lanczos24m113());
706       BOOST_MATH_INSTRUMENT_CODE(result);
707    }
708    return result;
709 }
710 
711 //
712 // Series representation for upper fraction when z is small:
713 //
714 template <class T>
715 struct small_gamma2_series
716 {
717    typedef T result_type;
718 
small_gamma2_seriesboost::math::detail::small_gamma2_series719    small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){}
720 
operator ()boost::math::detail::small_gamma2_series721    T operator()()
722    {
723       T r = result / (apn);
724       result *= x;
725       result /= ++n;
726       apn += 1;
727       return r;
728    }
729 
730 private:
731    T result, x, apn;
732    int n;
733 };
734 //
735 // calculate power term prefix (z^a)(e^-z) used in the non-normalised
736 // incomplete gammas:
737 //
738 template <class T, class Policy>
739 T full_igamma_prefix(T a, T z, const Policy& pol)
740 {
741    BOOST_MATH_STD_USING
742 
743    T prefix;
744    T alz = a * log(z);
745 
746    if(z >= 1)
747    {
748       if((alz < tools::log_max_value<T>()) && (-z > tools::log_min_value<T>()))
749       {
750          prefix = pow(z, a) * exp(-z);
751       }
752       else if(a >= 1)
753       {
754          prefix = pow(z / exp(z/a), a);
755       }
756       else
757       {
758          prefix = exp(alz - z);
759       }
760    }
761    else
762    {
763       if(alz > tools::log_min_value<T>())
764       {
765          prefix = pow(z, a) * exp(-z);
766       }
767       else if(z/a < tools::log_max_value<T>())
768       {
769          prefix = pow(z / exp(z/a), a);
770       }
771       else
772       {
773          prefix = exp(alz - z);
774       }
775    }
776    //
777    // This error handling isn't very good: it happens after the fact
778    // rather than before it...
779    //
780    if((boost::math::fpclassify)(prefix) == (int)FP_INFINITE)
781       return policies::raise_overflow_error<T>("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)", "Result of incomplete gamma function is too large to represent.", pol);
782 
783    return prefix;
784 }
785 //
786 // Compute (z^a)(e^-z)/tgamma(a)
787 // most if the error occurs in this function:
788 //
789 template <class T, class Policy, class Lanczos>
790 T regularised_gamma_prefix(T a, T z, const Policy& pol, const Lanczos& l)
791 {
792    BOOST_MATH_STD_USING
793    T agh = a + static_cast<T>(Lanczos::g()) - T(0.5);
794    T prefix;
795    T d = ((z - a) - static_cast<T>(Lanczos::g()) + T(0.5)) / agh;
796 
797    if(a < 1)
798    {
799       //
800       // We have to treat a < 1 as a special case because our Lanczos
801       // approximations are optimised against the factorials with a > 1,
802       // and for high precision types especially (128-bit reals for example)
803       // very small values of a can give rather eroneous results for gamma
804       // unless we do this:
805       //
806       // TODO: is this still required?  Lanczos approx should be better now?
807       //
808       if(z <= tools::log_min_value<T>())
809       {
810          // Oh dear, have to use logs, should be free of cancellation errors though:
811          return exp(a * log(z) - z - lgamma_imp(a, pol, l));
812       }
813       else
814       {
815          // direct calculation, no danger of overflow as gamma(a) < 1/a
816          // for small a.
817          return pow(z, a) * exp(-z) / gamma_imp(a, pol, l);
818       }
819    }
820    else if((fabs(d*d*a) <= 100) && (a > 150))
821    {
822       // special case for large a and a ~ z.
823       prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - Lanczos::g()) / agh;
824       prefix = exp(prefix);
825    }
826    else
827    {
828       //
829       // general case.
830       // direct computation is most accurate, but use various fallbacks
831       // for different parts of the problem domain:
832       //
833       T alz = a * log(z / agh);
834       T amz = a - z;
835       if(((std::min)(alz, amz) <= tools::log_min_value<T>()) || ((std::max)(alz, amz) >= tools::log_max_value<T>()))
836       {
837          T amza = amz / a;
838          if(((std::min)(alz, amz)/2 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/2 < tools::log_max_value<T>()))
839          {
840             // compute square root of the result and then square it:
841             T sq = pow(z / agh, a / 2) * exp(amz / 2);
842             prefix = sq * sq;
843          }
844          else if(((std::min)(alz, amz)/4 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/4 < tools::log_max_value<T>()) && (z > a))
845          {
846             // compute the 4th root of the result then square it twice:
847             T sq = pow(z / agh, a / 4) * exp(amz / 4);
848             prefix = sq * sq;
849             prefix *= prefix;
850          }
851          else if((amza > tools::log_min_value<T>()) && (amza < tools::log_max_value<T>()))
852          {
853             prefix = pow((z * exp(amza)) / agh, a);
854          }
855          else
856          {
857             prefix = exp(alz + amz);
858          }
859       }
860       else
861       {
862          prefix = pow(z / agh, a) * exp(amz);
863       }
864    }
865    prefix *= sqrt(agh / boost::math::constants::e<T>()) / Lanczos::lanczos_sum_expG_scaled(a);
866    return prefix;
867 }
868 //
869 // And again, without Lanczos support:
870 //
871 template <class T, class Policy>
872 T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos&)
873 {
874    BOOST_MATH_STD_USING
875 
876    T limit = (std::max)(T(10), a);
877    T sum = detail::lower_gamma_series(a, limit, pol) / a;
878    sum += detail::upper_gamma_fraction(a, limit, ::boost::math::policies::get_epsilon<T, Policy>());
879 
880    if(a < 10)
881    {
882       // special case for small a:
883       T prefix = pow(z / 10, a);
884       prefix *= exp(10-z);
885       if(0 == prefix)
886       {
887          prefix = pow((z * exp((10-z)/a)) / 10, a);
888       }
889       prefix /= sum;
890       return prefix;
891    }
892 
893    T zoa = z / a;
894    T amz = a - z;
895    T alzoa = a * log(zoa);
896    T prefix;
897    if(((std::min)(alzoa, amz) <= tools::log_min_value<T>()) || ((std::max)(alzoa, amz) >= tools::log_max_value<T>()))
898    {
899       T amza = amz / a;
900       if((amza <= tools::log_min_value<T>()) || (amza >= tools::log_max_value<T>()))
901       {
902          prefix = exp(alzoa + amz);
903       }
904       else
905       {
906          prefix = pow(zoa * exp(amza), a);
907       }
908    }
909    else
910    {
911       prefix = pow(zoa, a) * exp(amz);
912    }
913    prefix /= sum;
914    return prefix;
915 }
916 //
917 // Upper gamma fraction for very small a:
918 //
919 template <class T, class Policy>
tgamma_small_upper_part(T a,T x,const Policy & pol,T * pgam=0,bool invert=false,T * pderivative=0)920 inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0)
921 {
922    BOOST_MATH_STD_USING  // ADL of std functions.
923    //
924    // Compute the full upper fraction (Q) when a is very small:
925    //
926    T result;
927    result = boost::math::tgamma1pm1(a, pol);
928    if(pgam)
929       *pgam = (result + 1) / a;
930    T p = boost::math::powm1(x, a, pol);
931    result -= p;
932    result /= a;
933    detail::small_gamma2_series<T> s(a, x);
934    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>() - 10;
935    p += 1;
936    if(pderivative)
937       *pderivative = p / (*pgam * exp(x));
938    T init_value = invert ? *pgam : 0;
939    result = -p * tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, (init_value - result) / p);
940    policies::check_series_iterations<T>("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)", max_iter, pol);
941    if(invert)
942       result = -result;
943    return result;
944 }
945 //
946 // Upper gamma fraction for integer a:
947 //
948 template <class T, class Policy>
finite_gamma_q(T a,T x,Policy const & pol,T * pderivative=0)949 inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0)
950 {
951    //
952    // Calculates normalised Q when a is an integer:
953    //
954    BOOST_MATH_STD_USING
955    T e = exp(-x);
956    T sum = e;
957    if(sum != 0)
958    {
959       T term = sum;
960       for(unsigned n = 1; n < a; ++n)
961       {
962          term /= n;
963          term *= x;
964          sum += term;
965       }
966    }
967    if(pderivative)
968    {
969       *pderivative = e * pow(x, a) / boost::math::unchecked_factorial<T>(itrunc(T(a - 1), pol));
970    }
971    return sum;
972 }
973 //
974 // Upper gamma fraction for half integer a:
975 //
976 template <class T, class Policy>
977 T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol)
978 {
979    //
980    // Calculates normalised Q when a is a half-integer:
981    //
982    BOOST_MATH_STD_USING
983    T e = boost::math::erfc(sqrt(x), pol);
984    if((e != 0) && (a > 1))
985    {
986       T term = exp(-x) / sqrt(constants::pi<T>() * x);
987       term *= x;
988       static const T half = T(1) / 2;
989       term /= half;
990       T sum = term;
991       for(unsigned n = 2; n < a; ++n)
992       {
993          term /= n - half;
994          term *= x;
995          sum += term;
996       }
997       e += sum;
998       if(p_derivative)
999       {
1000          *p_derivative = 0;
1001       }
1002    }
1003    else if(p_derivative)
1004    {
1005       // We'll be dividing by x later, so calculate derivative * x:
1006       *p_derivative = sqrt(x) * exp(-x) / constants::root_pi<T>();
1007    }
1008    return e;
1009 }
1010 //
1011 // Main incomplete gamma entry point, handles all four incomplete gamma's:
1012 //
1013 template <class T, class Policy>
1014 T gamma_incomplete_imp(T a, T x, bool normalised, bool invert,
1015                        const Policy& pol, T* p_derivative)
1016 {
1017    static const char* function = "boost::math::gamma_p<%1%>(%1%, %1%)";
1018    if(a <= 0)
1019       return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1020    if(x < 0)
1021       return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1022 
1023    BOOST_MATH_STD_USING
1024 
1025    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1026 
1027    T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used
1028 
1029    if(a >= max_factorial<T>::value && !normalised)
1030    {
1031       //
1032       // When we're computing the non-normalized incomplete gamma
1033       // and a is large the result is rather hard to compute unless
1034       // we use logs.  There are really two options - if x is a long
1035       // way from a in value then we can reliably use methods 2 and 4
1036       // below in logarithmic form and go straight to the result.
1037       // Otherwise we let the regularized gamma take the strain
1038       // (the result is unlikely to unerflow in the central region anyway)
1039       // and combine with lgamma in the hopes that we get a finite result.
1040       //
1041       if(invert && (a * 4 < x))
1042       {
1043          // This is method 4 below, done in logs:
1044          result = a * log(x) - x;
1045          if(p_derivative)
1046             *p_derivative = exp(result);
1047          result += log(upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>()));
1048       }
1049       else if(!invert && (a > 4 * x))
1050       {
1051          // This is method 2 below, done in logs:
1052          result = a * log(x) - x;
1053          if(p_derivative)
1054             *p_derivative = exp(result);
1055          T init_value = 0;
1056          result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1057       }
1058       else
1059       {
1060          result = gamma_incomplete_imp(a, x, true, invert, pol, p_derivative);
1061          if(result == 0)
1062          {
1063             if(invert)
1064             {
1065                // Try http://functions.wolfram.com/06.06.06.0039.01
1066                result = 1 + 1 / (12 * a) + 1 / (288 * a * a);
1067                result = log(result) - a + (a - 0.5f) * log(a) + log(boost::math::constants::root_two_pi<T>());
1068                if(p_derivative)
1069                   *p_derivative = exp(a * log(x) - x);
1070             }
1071             else
1072             {
1073                // This is method 2 below, done in logs, we're really outside the
1074                // range of this method, but since the result is almost certainly
1075                // infinite, we should probably be OK:
1076                result = a * log(x) - x;
1077                if(p_derivative)
1078                   *p_derivative = exp(result);
1079                T init_value = 0;
1080                result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1081             }
1082          }
1083          else
1084          {
1085             result = log(result) + boost::math::lgamma(a, pol);
1086          }
1087       }
1088       if(result > tools::log_max_value<T>())
1089          return policies::raise_overflow_error<T>(function, 0, pol);
1090       return exp(result);
1091    }
1092 
1093    BOOST_ASSERT((p_derivative == 0) || (normalised == true));
1094 
1095    bool is_int, is_half_int;
1096    bool is_small_a = (a < 30) && (a <= x + 1) && (x < tools::log_max_value<T>());
1097    if(is_small_a)
1098    {
1099       T fa = floor(a);
1100       is_int = (fa == a);
1101       is_half_int = is_int ? false : (fabs(fa - a) == 0.5f);
1102    }
1103    else
1104    {
1105       is_int = is_half_int = false;
1106    }
1107 
1108    int eval_method;
1109 
1110    if(is_int && (x > 0.6))
1111    {
1112       // calculate Q via finite sum:
1113       invert = !invert;
1114       eval_method = 0;
1115    }
1116    else if(is_half_int && (x > 0.2))
1117    {
1118       // calculate Q via finite sum for half integer a:
1119       invert = !invert;
1120       eval_method = 1;
1121    }
1122    else if((x < tools::root_epsilon<T>()) && (a > 1))
1123    {
1124       eval_method = 6;
1125    }
1126    else if(x < 0.5)
1127    {
1128       //
1129       // Changeover criterion chosen to give a changeover at Q ~ 0.33
1130       //
1131       if(-0.4 / log(x) < a)
1132       {
1133          eval_method = 2;
1134       }
1135       else
1136       {
1137          eval_method = 3;
1138       }
1139    }
1140    else if(x < 1.1)
1141    {
1142       //
1143       // Changover here occurs when P ~ 0.75 or Q ~ 0.25:
1144       //
1145       if(x * 0.75f < a)
1146       {
1147          eval_method = 2;
1148       }
1149       else
1150       {
1151          eval_method = 3;
1152       }
1153    }
1154    else
1155    {
1156       //
1157       // Begin by testing whether we're in the "bad" zone
1158       // where the result will be near 0.5 and the usual
1159       // series and continued fractions are slow to converge:
1160       //
1161       bool use_temme = false;
1162       if(normalised && std::numeric_limits<T>::is_specialized && (a > 20))
1163       {
1164          T sigma = fabs((x-a)/a);
1165          if((a > 200) && (policies::digits<T, Policy>() <= 113))
1166          {
1167             //
1168             // This limit is chosen so that we use Temme's expansion
1169             // only if the result would be larger than about 10^-6.
1170             // Below that the regular series and continued fractions
1171             // converge OK, and if we use Temme's method we get increasing
1172             // errors from the dominant erfc term as it's (inexact) argument
1173             // increases in magnitude.
1174             //
1175             if(20 / a > sigma * sigma)
1176                use_temme = true;
1177          }
1178          else if(policies::digits<T, Policy>() <= 64)
1179          {
1180             // Note in this zone we can't use Temme's expansion for
1181             // types longer than an 80-bit real:
1182             // it would require too many terms in the polynomials.
1183             if(sigma < 0.4)
1184                use_temme = true;
1185          }
1186       }
1187       if(use_temme)
1188       {
1189          eval_method = 5;
1190       }
1191       else
1192       {
1193          //
1194          // Regular case where the result will not be too close to 0.5.
1195          //
1196          // Changeover here occurs at P ~ Q ~ 0.5
1197          // Note that series computation of P is about x2 faster than continued fraction
1198          // calculation of Q, so try and use the CF only when really necessary, especially
1199          // for small x.
1200          //
1201          if(x - (1 / (3 * x)) < a)
1202          {
1203             eval_method = 2;
1204          }
1205          else
1206          {
1207             eval_method = 4;
1208             invert = !invert;
1209          }
1210       }
1211    }
1212 
1213    switch(eval_method)
1214    {
1215    case 0:
1216       {
1217          result = finite_gamma_q(a, x, pol, p_derivative);
1218          if(normalised == false)
1219             result *= boost::math::tgamma(a, pol);
1220          break;
1221       }
1222    case 1:
1223       {
1224          result = finite_half_gamma_q(a, x, p_derivative, pol);
1225          if(normalised == false)
1226             result *= boost::math::tgamma(a, pol);
1227          if(p_derivative && (*p_derivative == 0))
1228             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1229          break;
1230       }
1231    case 2:
1232       {
1233          // Compute P:
1234          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1235          if(p_derivative)
1236             *p_derivative = result;
1237          if(result != 0)
1238          {
1239             //
1240             // If we're going to be inverting the result then we can
1241             // reduce the number of series evaluations by quite
1242             // a few iterations if we set an initial value for the
1243             // series sum based on what we'll end up subtracting it from
1244             // at the end.
1245             // Have to be careful though that this optimization doesn't
1246             // lead to spurious numberic overflow.  Note that the
1247             // scary/expensive overflow checks below are more often
1248             // than not bypassed in practice for "sensible" input
1249             // values:
1250             //
1251             T init_value = 0;
1252             bool optimised_invert = false;
1253             if(invert)
1254             {
1255                init_value = (normalised ? 1 : boost::math::tgamma(a, pol));
1256                if(normalised || (result >= 1) || (tools::max_value<T>() * result > init_value))
1257                {
1258                   init_value /= result;
1259                   if(normalised || (a < 1) || (tools::max_value<T>() / a > init_value))
1260                   {
1261                      init_value *= -a;
1262                      optimised_invert = true;
1263                   }
1264                   else
1265                      init_value = 0;
1266                }
1267                else
1268                   init_value = 0;
1269             }
1270             result *= detail::lower_gamma_series(a, x, pol, init_value) / a;
1271             if(optimised_invert)
1272             {
1273                invert = false;
1274                result = -result;
1275             }
1276          }
1277          break;
1278       }
1279    case 3:
1280       {
1281          // Compute Q:
1282          invert = !invert;
1283          T g;
1284          result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative);
1285          invert = false;
1286          if(normalised)
1287             result /= g;
1288          break;
1289       }
1290    case 4:
1291       {
1292          // Compute Q:
1293          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1294          if(p_derivative)
1295             *p_derivative = result;
1296          if(result != 0)
1297             result *= upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>());
1298          break;
1299       }
1300    case 5:
1301       {
1302          //
1303          // Use compile time dispatch to the appropriate
1304          // Temme asymptotic expansion.  This may be dead code
1305          // if T does not have numeric limits support, or has
1306          // too many digits for the most precise version of
1307          // these expansions, in that case we'll be calling
1308          // an empty function.
1309          //
1310          typedef typename policies::precision<T, Policy>::type precision_type;
1311 
1312          typedef typename mpl::if_<
1313             mpl::or_<mpl::equal_to<precision_type, mpl::int_<0> >,
1314             mpl::greater<precision_type, mpl::int_<113> > >,
1315             mpl::int_<0>,
1316             typename mpl::if_<
1317                mpl::less_equal<precision_type, mpl::int_<53> >,
1318                mpl::int_<53>,
1319                typename mpl::if_<
1320                   mpl::less_equal<precision_type, mpl::int_<64> >,
1321                   mpl::int_<64>,
1322                   mpl::int_<113>
1323                >::type
1324             >::type
1325          >::type tag_type;
1326 
1327          result = igamma_temme_large(a, x, pol, static_cast<tag_type const*>(0));
1328          if(x >= a)
1329             invert = !invert;
1330          if(p_derivative)
1331             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1332          break;
1333       }
1334    case 6:
1335       {
1336          // x is so small that P is necessarily very small too,
1337          // use http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/
1338          result = !normalised ? pow(x, a) / (a) : pow(x, a) / boost::math::tgamma(a + 1, pol);
1339          result *= 1 - a * x / (a + 1);
1340       }
1341    }
1342 
1343    if(normalised && (result > 1))
1344       result = 1;
1345    if(invert)
1346    {
1347       T gam = normalised ? 1 : boost::math::tgamma(a, pol);
1348       result = gam - result;
1349    }
1350    if(p_derivative)
1351    {
1352       //
1353       // Need to convert prefix term to derivative:
1354       //
1355       if((x < 1) && (tools::max_value<T>() * x < *p_derivative))
1356       {
1357          // overflow, just return an arbitrarily large value:
1358          *p_derivative = tools::max_value<T>() / 2;
1359       }
1360 
1361       *p_derivative /= x;
1362    }
1363 
1364    return result;
1365 }
1366 
1367 //
1368 // Ratios of two gamma functions:
1369 //
1370 template <class T, class Policy, class Lanczos>
1371 T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const Lanczos& l)
1372 {
1373    BOOST_MATH_STD_USING
1374    if(z < tools::epsilon<T>())
1375    {
1376       //
1377       // We get spurious numeric overflow unless we're very careful, this
1378       // can occur either inside Lanczos::lanczos_sum(z) or in the
1379       // final combination of terms, to avoid this, split the product up
1380       // into 2 (or 3) parts:
1381       //
1382       // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta
1383       //    z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial
1384       //
1385       if(boost::math::max_factorial<T>::value < delta)
1386       {
1387          T ratio = tgamma_delta_ratio_imp_lanczos(delta, T(boost::math::max_factorial<T>::value - delta), pol, l);
1388          ratio *= z;
1389          ratio *= boost::math::unchecked_factorial<T>(boost::math::max_factorial<T>::value - 1);
1390          return 1 / ratio;
1391       }
1392       else
1393       {
1394          return 1 / (z * boost::math::tgamma(z + delta, pol));
1395       }
1396    }
1397    T zgh = z + Lanczos::g() - constants::half<T>();
1398    T result;
1399    if(fabs(delta) < 10)
1400    {
1401       result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
1402    }
1403    else
1404    {
1405       result = pow(zgh / (zgh + delta), z - constants::half<T>());
1406    }
1407    // Split the calculation up to avoid spurious overflow:
1408    result *= Lanczos::lanczos_sum(z) / Lanczos::lanczos_sum(T(z + delta));
1409    result *= pow(constants::e<T>() / (zgh + delta), delta);
1410    return result;
1411 }
1412 //
1413 // And again without Lanczos support this time:
1414 //
1415 template <class T, class Policy>
1416 T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos&)
1417 {
1418    BOOST_MATH_STD_USING
1419    //
1420    // The upper gamma fraction is *very* slow for z < 6, actually it's very
1421    // slow to converge everywhere but recursing until z > 6 gets rid of the
1422    // worst of it's behaviour.
1423    //
1424    T prefix = 1;
1425    T zd = z + delta;
1426    while((zd < 6) && (z < 6))
1427    {
1428       prefix /= z;
1429       prefix *= zd;
1430       z += 1;
1431       zd += 1;
1432    }
1433    if(delta < 10)
1434    {
1435       prefix *= exp(-z * boost::math::log1p(delta / z, pol));
1436    }
1437    else
1438    {
1439       prefix *= pow(z / zd, z);
1440    }
1441    prefix *= pow(constants::e<T>() / zd, delta);
1442    T sum = detail::lower_gamma_series(z, z, pol) / z;
1443    sum += detail::upper_gamma_fraction(z, z, ::boost::math::policies::get_epsilon<T, Policy>());
1444    T sumd = detail::lower_gamma_series(zd, zd, pol) / zd;
1445    sumd += detail::upper_gamma_fraction(zd, zd, ::boost::math::policies::get_epsilon<T, Policy>());
1446    sum /= sumd;
1447    if(fabs(tools::max_value<T>() / prefix) < fabs(sum))
1448       return policies::raise_overflow_error<T>("boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)", "Result of tgamma is too large to represent.", pol);
1449    return sum * prefix;
1450 }
1451 
1452 template <class T, class Policy>
1453 T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol)
1454 {
1455    BOOST_MATH_STD_USING
1456 
1457    if((z <= 0) || (z + delta <= 0))
1458    {
1459       // This isn't very sofisticated, or accurate, but it does work:
1460       return boost::math::tgamma(z, pol) / boost::math::tgamma(z + delta, pol);
1461    }
1462 
1463    if(floor(delta) == delta)
1464    {
1465       if(floor(z) == z)
1466       {
1467          //
1468          // Both z and delta are integers, see if we can just use table lookup
1469          // of the factorials to get the result:
1470          //
1471          if((z <= max_factorial<T>::value) && (z + delta <= max_factorial<T>::value))
1472          {
1473             return unchecked_factorial<T>((unsigned)itrunc(z, pol) - 1) / unchecked_factorial<T>((unsigned)itrunc(T(z + delta), pol) - 1);
1474          }
1475       }
1476       if(fabs(delta) < 20)
1477       {
1478          //
1479          // delta is a small integer, we can use a finite product:
1480          //
1481          if(delta == 0)
1482             return 1;
1483          if(delta < 0)
1484          {
1485             z -= 1;
1486             T result = z;
1487             while(0 != (delta += 1))
1488             {
1489                z -= 1;
1490                result *= z;
1491             }
1492             return result;
1493          }
1494          else
1495          {
1496             T result = 1 / z;
1497             while(0 != (delta -= 1))
1498             {
1499                z += 1;
1500                result /= z;
1501             }
1502             return result;
1503          }
1504       }
1505    }
1506    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1507    return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type());
1508 }
1509 
1510 template <class T, class Policy>
1511 T tgamma_ratio_imp(T x, T y, const Policy& pol)
1512 {
1513    BOOST_MATH_STD_USING
1514 
1515    if((x <= 0) || (boost::math::isinf)(x))
1516       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got a=%1%).", x, pol);
1517    if((y <= 0) || (boost::math::isinf)(y))
1518       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got b=%1%).", y, pol);
1519 
1520    if(x <= tools::min_value<T>())
1521    {
1522       // Special case for denorms...Ugh.
1523       T shift = ldexp(T(1), tools::digits<T>());
1524       return shift * tgamma_ratio_imp(T(x * shift), y, pol);
1525    }
1526 
1527    if((x < max_factorial<T>::value) && (y < max_factorial<T>::value))
1528    {
1529       // Rather than subtracting values, lets just call the gamma functions directly:
1530       return boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1531    }
1532    T prefix = 1;
1533    if(x < 1)
1534    {
1535       if(y < 2 * max_factorial<T>::value)
1536       {
1537          // We need to sidestep on x as well, otherwise we'll underflow
1538          // before we get to factor in the prefix term:
1539          prefix /= x;
1540          x += 1;
1541          while(y >=  max_factorial<T>::value)
1542          {
1543             y -= 1;
1544             prefix /= y;
1545          }
1546          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1547       }
1548       //
1549       // result is almost certainly going to underflow to zero, try logs just in case:
1550       //
1551       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
1552    }
1553    if(y < 1)
1554    {
1555       if(x < 2 * max_factorial<T>::value)
1556       {
1557          // We need to sidestep on y as well, otherwise we'll overflow
1558          // before we get to factor in the prefix term:
1559          prefix *= y;
1560          y += 1;
1561          while(x >= max_factorial<T>::value)
1562          {
1563             x -= 1;
1564             prefix *= x;
1565          }
1566          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1567       }
1568       //
1569       // Result will almost certainly overflow, try logs just in case:
1570       //
1571       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
1572    }
1573    //
1574    // Regular case, x and y both large and similar in magnitude:
1575    //
1576    return boost::math::tgamma_delta_ratio(x, y - x, pol);
1577 }
1578 
1579 template <class T, class Policy>
1580 T gamma_p_derivative_imp(T a, T x, const Policy& pol)
1581 {
1582    BOOST_MATH_STD_USING
1583    //
1584    // Usual error checks first:
1585    //
1586    if(a <= 0)
1587       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1588    if(x < 0)
1589       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1590    //
1591    // Now special cases:
1592    //
1593    if(x == 0)
1594    {
1595       return (a > 1) ? 0 :
1596          (a == 1) ? 1 : policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
1597    }
1598    //
1599    // Normal case:
1600    //
1601    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1602    T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type());
1603    if((x < 1) && (tools::max_value<T>() * x < f1))
1604    {
1605       // overflow:
1606       return policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
1607    }
1608    if(f1 == 0)
1609    {
1610       // Underflow in calculation, use logs instead:
1611       f1 = a * log(x) - x - lgamma(a, pol) - log(x);
1612       f1 = exp(f1);
1613    }
1614    else
1615       f1 /= x;
1616 
1617    return f1;
1618 }
1619 
1620 template <class T, class Policy>
1621 inline typename tools::promote_args<T>::type
tgamma(T z,const Policy &,const mpl::true_)1622    tgamma(T z, const Policy& /* pol */, const mpl::true_)
1623 {
1624    BOOST_FPU_EXCEPTION_GUARD
1625    typedef typename tools::promote_args<T>::type result_type;
1626    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1627    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1628    typedef typename policies::normalise<
1629       Policy,
1630       policies::promote_float<false>,
1631       policies::promote_double<false>,
1632       policies::discrete_quantile<>,
1633       policies::assert_undefined<> >::type forwarding_policy;
1634    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)");
1635 }
1636 
1637 template <class T, class Policy>
1638 struct igamma_initializer
1639 {
1640    struct init
1641    {
initboost::math::detail::igamma_initializer::init1642       init()
1643       {
1644          typedef typename policies::precision<T, Policy>::type precision_type;
1645 
1646          typedef typename mpl::if_<
1647             mpl::or_<mpl::equal_to<precision_type, mpl::int_<0> >,
1648             mpl::greater<precision_type, mpl::int_<113> > >,
1649             mpl::int_<0>,
1650             typename mpl::if_<
1651                mpl::less_equal<precision_type, mpl::int_<53> >,
1652                mpl::int_<53>,
1653                typename mpl::if_<
1654                   mpl::less_equal<precision_type, mpl::int_<64> >,
1655                   mpl::int_<64>,
1656                   mpl::int_<113>
1657                >::type
1658             >::type
1659          >::type tag_type;
1660 
1661          do_init(tag_type());
1662       }
1663       template <int N>
do_initboost::math::detail::igamma_initializer::init1664       static void do_init(const mpl::int_<N>&)
1665       {
1666          boost::math::gamma_p(static_cast<T>(400), static_cast<T>(400), Policy());
1667       }
do_initboost::math::detail::igamma_initializer::init1668       static void do_init(const mpl::int_<53>&){}
force_instantiateboost::math::detail::igamma_initializer::init1669       void force_instantiate()const{}
1670    };
1671    static const init initializer;
force_instantiateboost::math::detail::igamma_initializer1672    static void force_instantiate()
1673    {
1674       initializer.force_instantiate();
1675    }
1676 };
1677 
1678 template <class T, class Policy>
1679 const typename igamma_initializer<T, Policy>::init igamma_initializer<T, Policy>::initializer;
1680 
1681 template <class T, class Policy>
1682 struct lgamma_initializer
1683 {
1684    struct init
1685    {
initboost::math::detail::lgamma_initializer::init1686       init()
1687       {
1688          typedef typename policies::precision<T, Policy>::type precision_type;
1689          typedef typename mpl::if_<
1690             mpl::and_<
1691                mpl::less_equal<precision_type, mpl::int_<64> >,
1692                mpl::greater<precision_type, mpl::int_<0> >
1693             >,
1694             mpl::int_<64>,
1695             typename mpl::if_<
1696                mpl::and_<
1697                   mpl::less_equal<precision_type, mpl::int_<113> >,
1698                   mpl::greater<precision_type, mpl::int_<0> >
1699                >,
1700                mpl::int_<113>, mpl::int_<0> >::type
1701              >::type tag_type;
1702          do_init(tag_type());
1703       }
do_initboost::math::detail::lgamma_initializer::init1704       static void do_init(const mpl::int_<64>&)
1705       {
1706          boost::math::lgamma(static_cast<T>(2.5), Policy());
1707          boost::math::lgamma(static_cast<T>(1.25), Policy());
1708          boost::math::lgamma(static_cast<T>(1.75), Policy());
1709       }
do_initboost::math::detail::lgamma_initializer::init1710       static void do_init(const mpl::int_<113>&)
1711       {
1712          boost::math::lgamma(static_cast<T>(2.5), Policy());
1713          boost::math::lgamma(static_cast<T>(1.25), Policy());
1714          boost::math::lgamma(static_cast<T>(1.5), Policy());
1715          boost::math::lgamma(static_cast<T>(1.75), Policy());
1716       }
do_initboost::math::detail::lgamma_initializer::init1717       static void do_init(const mpl::int_<0>&)
1718       {
1719       }
force_instantiateboost::math::detail::lgamma_initializer::init1720       void force_instantiate()const{}
1721    };
1722    static const init initializer;
force_instantiateboost::math::detail::lgamma_initializer1723    static void force_instantiate()
1724    {
1725       initializer.force_instantiate();
1726    }
1727 };
1728 
1729 template <class T, class Policy>
1730 const typename lgamma_initializer<T, Policy>::init lgamma_initializer<T, Policy>::initializer;
1731 
1732 template <class T1, class T2, class Policy>
1733 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const Policy &,const mpl::false_)1734    tgamma(T1 a, T2 z, const Policy&, const mpl::false_)
1735 {
1736    BOOST_FPU_EXCEPTION_GUARD
1737    typedef typename tools::promote_args<T1, T2>::type result_type;
1738    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1739    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1740    typedef typename policies::normalise<
1741       Policy,
1742       policies::promote_float<false>,
1743       policies::promote_double<false>,
1744       policies::discrete_quantile<>,
1745       policies::assert_undefined<> >::type forwarding_policy;
1746 
1747    igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1748 
1749    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1750       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1751       static_cast<value_type>(z), false, true,
1752       forwarding_policy(), static_cast<value_type*>(0)), "boost::math::tgamma<%1%>(%1%, %1%)");
1753 }
1754 
1755 template <class T1, class T2>
1756 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const mpl::false_ tag)1757    tgamma(T1 a, T2 z, const mpl::false_ tag)
1758 {
1759    return tgamma(a, z, policies::policy<>(), tag);
1760 }
1761 
1762 
1763 } // namespace detail
1764 
1765 template <class T>
1766 inline typename tools::promote_args<T>::type
tgamma(T z)1767    tgamma(T z)
1768 {
1769    return tgamma(z, policies::policy<>());
1770 }
1771 
1772 template <class T, class Policy>
1773 inline typename tools::promote_args<T>::type
lgamma(T z,int * sign,const Policy &)1774    lgamma(T z, int* sign, const Policy&)
1775 {
1776    BOOST_FPU_EXCEPTION_GUARD
1777    typedef typename tools::promote_args<T>::type result_type;
1778    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1779    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1780    typedef typename policies::normalise<
1781       Policy,
1782       policies::promote_float<false>,
1783       policies::promote_double<false>,
1784       policies::discrete_quantile<>,
1785       policies::assert_undefined<> >::type forwarding_policy;
1786 
1787    detail::lgamma_initializer<value_type, forwarding_policy>::force_instantiate();
1788 
1789    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::lgamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)");
1790 }
1791 
1792 template <class T>
1793 inline typename tools::promote_args<T>::type
lgamma(T z,int * sign)1794    lgamma(T z, int* sign)
1795 {
1796    return lgamma(z, sign, policies::policy<>());
1797 }
1798 
1799 template <class T, class Policy>
1800 inline typename tools::promote_args<T>::type
lgamma(T x,const Policy & pol)1801    lgamma(T x, const Policy& pol)
1802 {
1803    return ::boost::math::lgamma(x, 0, pol);
1804 }
1805 
1806 template <class T>
1807 inline typename tools::promote_args<T>::type
lgamma(T x)1808    lgamma(T x)
1809 {
1810    return ::boost::math::lgamma(x, 0, policies::policy<>());
1811 }
1812 
1813 template <class T, class Policy>
1814 inline typename tools::promote_args<T>::type
tgamma1pm1(T z,const Policy &)1815    tgamma1pm1(T z, const Policy& /* pol */)
1816 {
1817    BOOST_FPU_EXCEPTION_GUARD
1818    typedef typename tools::promote_args<T>::type result_type;
1819    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1820    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1821    typedef typename policies::normalise<
1822       Policy,
1823       policies::promote_float<false>,
1824       policies::promote_double<false>,
1825       policies::discrete_quantile<>,
1826       policies::assert_undefined<> >::type forwarding_policy;
1827 
1828    return policies::checked_narrowing_cast<typename remove_cv<result_type>::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)");
1829 }
1830 
1831 template <class T>
1832 inline typename tools::promote_args<T>::type
tgamma1pm1(T z)1833    tgamma1pm1(T z)
1834 {
1835    return tgamma1pm1(z, policies::policy<>());
1836 }
1837 
1838 //
1839 // Full upper incomplete gamma:
1840 //
1841 template <class T1, class T2>
1842 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z)1843    tgamma(T1 a, T2 z)
1844 {
1845    //
1846    // Type T2 could be a policy object, or a value, select the
1847    // right overload based on T2:
1848    //
1849    typedef typename policies::is_policy<T2>::type maybe_policy;
1850    return detail::tgamma(a, z, maybe_policy());
1851 }
1852 template <class T1, class T2, class Policy>
1853 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const Policy & pol)1854    tgamma(T1 a, T2 z, const Policy& pol)
1855 {
1856    return detail::tgamma(a, z, pol, mpl::false_());
1857 }
1858 //
1859 // Full lower incomplete gamma:
1860 //
1861 template <class T1, class T2, class Policy>
1862 inline typename tools::promote_args<T1, T2>::type
tgamma_lower(T1 a,T2 z,const Policy &)1863    tgamma_lower(T1 a, T2 z, const Policy&)
1864 {
1865    BOOST_FPU_EXCEPTION_GUARD
1866    typedef typename tools::promote_args<T1, T2>::type result_type;
1867    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1868    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1869    typedef typename policies::normalise<
1870       Policy,
1871       policies::promote_float<false>,
1872       policies::promote_double<false>,
1873       policies::discrete_quantile<>,
1874       policies::assert_undefined<> >::type forwarding_policy;
1875 
1876    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1877 
1878    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1879       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1880       static_cast<value_type>(z), false, false,
1881       forwarding_policy(), static_cast<value_type*>(0)), "tgamma_lower<%1%>(%1%, %1%)");
1882 }
1883 template <class T1, class T2>
1884 inline typename tools::promote_args<T1, T2>::type
tgamma_lower(T1 a,T2 z)1885    tgamma_lower(T1 a, T2 z)
1886 {
1887    return tgamma_lower(a, z, policies::policy<>());
1888 }
1889 //
1890 // Regularised upper incomplete gamma:
1891 //
1892 template <class T1, class T2, class Policy>
1893 inline typename tools::promote_args<T1, T2>::type
gamma_q(T1 a,T2 z,const Policy &)1894    gamma_q(T1 a, T2 z, const Policy& /* pol */)
1895 {
1896    BOOST_FPU_EXCEPTION_GUARD
1897    typedef typename tools::promote_args<T1, T2>::type result_type;
1898    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1899    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1900    typedef typename policies::normalise<
1901       Policy,
1902       policies::promote_float<false>,
1903       policies::promote_double<false>,
1904       policies::discrete_quantile<>,
1905       policies::assert_undefined<> >::type forwarding_policy;
1906 
1907    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1908 
1909    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1910       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1911       static_cast<value_type>(z), true, true,
1912       forwarding_policy(), static_cast<value_type*>(0)), "gamma_q<%1%>(%1%, %1%)");
1913 }
1914 template <class T1, class T2>
1915 inline typename tools::promote_args<T1, T2>::type
gamma_q(T1 a,T2 z)1916    gamma_q(T1 a, T2 z)
1917 {
1918    return gamma_q(a, z, policies::policy<>());
1919 }
1920 //
1921 // Regularised lower incomplete gamma:
1922 //
1923 template <class T1, class T2, class Policy>
1924 inline typename tools::promote_args<T1, T2>::type
gamma_p(T1 a,T2 z,const Policy &)1925    gamma_p(T1 a, T2 z, const Policy&)
1926 {
1927    BOOST_FPU_EXCEPTION_GUARD
1928    typedef typename tools::promote_args<T1, T2>::type result_type;
1929    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1930    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1931    typedef typename policies::normalise<
1932       Policy,
1933       policies::promote_float<false>,
1934       policies::promote_double<false>,
1935       policies::discrete_quantile<>,
1936       policies::assert_undefined<> >::type forwarding_policy;
1937 
1938    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1939 
1940    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1941       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1942       static_cast<value_type>(z), true, false,
1943       forwarding_policy(), static_cast<value_type*>(0)), "gamma_p<%1%>(%1%, %1%)");
1944 }
1945 template <class T1, class T2>
1946 inline typename tools::promote_args<T1, T2>::type
gamma_p(T1 a,T2 z)1947    gamma_p(T1 a, T2 z)
1948 {
1949    return gamma_p(a, z, policies::policy<>());
1950 }
1951 
1952 // ratios of gamma functions:
1953 template <class T1, class T2, class Policy>
1954 inline typename tools::promote_args<T1, T2>::type
tgamma_delta_ratio(T1 z,T2 delta,const Policy &)1955    tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */)
1956 {
1957    BOOST_FPU_EXCEPTION_GUARD
1958    typedef typename tools::promote_args<T1, T2>::type result_type;
1959    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1960    typedef typename policies::normalise<
1961       Policy,
1962       policies::promote_float<false>,
1963       policies::promote_double<false>,
1964       policies::discrete_quantile<>,
1965       policies::assert_undefined<> >::type forwarding_policy;
1966 
1967    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(z), static_cast<value_type>(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
1968 }
1969 template <class T1, class T2>
1970 inline typename tools::promote_args<T1, T2>::type
tgamma_delta_ratio(T1 z,T2 delta)1971    tgamma_delta_ratio(T1 z, T2 delta)
1972 {
1973    return tgamma_delta_ratio(z, delta, policies::policy<>());
1974 }
1975 template <class T1, class T2, class Policy>
1976 inline typename tools::promote_args<T1, T2>::type
tgamma_ratio(T1 a,T2 b,const Policy &)1977    tgamma_ratio(T1 a, T2 b, const Policy&)
1978 {
1979    typedef typename tools::promote_args<T1, T2>::type result_type;
1980    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1981    typedef typename policies::normalise<
1982       Policy,
1983       policies::promote_float<false>,
1984       policies::promote_double<false>,
1985       policies::discrete_quantile<>,
1986       policies::assert_undefined<> >::type forwarding_policy;
1987 
1988    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_ratio_imp(static_cast<value_type>(a), static_cast<value_type>(b), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
1989 }
1990 template <class T1, class T2>
1991 inline typename tools::promote_args<T1, T2>::type
tgamma_ratio(T1 a,T2 b)1992    tgamma_ratio(T1 a, T2 b)
1993 {
1994    return tgamma_ratio(a, b, policies::policy<>());
1995 }
1996 
1997 template <class T1, class T2, class Policy>
1998 inline typename tools::promote_args<T1, T2>::type
gamma_p_derivative(T1 a,T2 x,const Policy &)1999    gamma_p_derivative(T1 a, T2 x, const Policy&)
2000 {
2001    BOOST_FPU_EXCEPTION_GUARD
2002    typedef typename tools::promote_args<T1, T2>::type result_type;
2003    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2004    typedef typename policies::normalise<
2005       Policy,
2006       policies::promote_float<false>,
2007       policies::promote_double<false>,
2008       policies::discrete_quantile<>,
2009       policies::assert_undefined<> >::type forwarding_policy;
2010 
2011    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_p_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)");
2012 }
2013 template <class T1, class T2>
2014 inline typename tools::promote_args<T1, T2>::type
gamma_p_derivative(T1 a,T2 x)2015    gamma_p_derivative(T1 a, T2 x)
2016 {
2017    return gamma_p_derivative(a, x, policies::policy<>());
2018 }
2019 
2020 } // namespace math
2021 } // namespace boost
2022 
2023 #ifdef BOOST_MSVC
2024 # pragma warning(pop)
2025 #endif
2026 
2027 #include <boost/math/special_functions/detail/igamma_inverse.hpp>
2028 #include <boost/math/special_functions/detail/gamma_inva.hpp>
2029 #include <boost/math/special_functions/erf.hpp>
2030 
2031 #endif // BOOST_MATH_SF_GAMMA_HPP
2032 
2033 
2034 
2035 
2036