1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains subroutines used only from the file reload1.c.
21    It knows how to scan one insn for operands and values
22    that need to be copied into registers to make valid code.
23    It also finds other operands and values which are valid
24    but for which equivalent values in registers exist and
25    ought to be used instead.
26 
27    Before processing the first insn of the function, call `init_reload'.
28    init_reload actually has to be called earlier anyway.
29 
30    To scan an insn, call `find_reloads'.  This does two things:
31    1. sets up tables describing which values must be reloaded
32    for this insn, and what kind of hard regs they must be reloaded into;
33    2. optionally record the locations where those values appear in
34    the data, so they can be replaced properly later.
35    This is done only if the second arg to `find_reloads' is nonzero.
36 
37    The third arg to `find_reloads' specifies the number of levels
38    of indirect addressing supported by the machine.  If it is zero,
39    indirect addressing is not valid.  If it is one, (MEM (REG n))
40    is valid even if (REG n) did not get a hard register; if it is two,
41    (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42    hard register, and similarly for higher values.
43 
44    Then you must choose the hard regs to reload those pseudo regs into,
45    and generate appropriate load insns before this insn and perhaps
46    also store insns after this insn.  Set up the array `reload_reg_rtx'
47    to contain the REG rtx's for the registers you used.  In some
48    cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49    for certain reloads.  Then that tells you which register to use,
50    so you do not need to allocate one.  But you still do need to add extra
51    instructions to copy the value into and out of that register.
52 
53    Finally you must call `subst_reloads' to substitute the reload reg rtx's
54    into the locations already recorded.
55 
56 NOTE SIDE EFFECTS:
57 
58    find_reloads can alter the operands of the instruction it is called on.
59 
60    1. Two operands of any sort may be interchanged, if they are in a
61    commutative instruction.
62    This happens only if find_reloads thinks the instruction will compile
63    better that way.
64 
65    2. Pseudo-registers that are equivalent to constants are replaced
66    with those constants if they are not in hard registers.
67 
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
71 
72 Using a reload register for several reloads in one insn:
73 
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
77 
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
81 
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload.  */
85 
86 #define REG_OK_STRICT
87 
88 /* We do not enable this with CHECKING_P, since it is awfully slow.  */
89 #undef DEBUG_RELOAD
90 
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "backend.h"
95 #include "target.h"
96 #include "rtl.h"
97 #include "tree.h"
98 #include "df.h"
99 #include "memmodel.h"
100 #include "tm_p.h"
101 #include "optabs.h"
102 #include "regs.h"
103 #include "ira.h"
104 #include "recog.h"
105 #include "rtl-error.h"
106 #include "reload.h"
107 #include "addresses.h"
108 #include "params.h"
109 
110 /* True if X is a constant that can be forced into the constant pool.
111    MODE is the mode of the operand, or VOIDmode if not known.  */
112 #define CONST_POOL_OK_P(MODE, X)		\
113   ((MODE) != VOIDmode				\
114    && CONSTANT_P (X)				\
115    && GET_CODE (X) != HIGH			\
116    && !targetm.cannot_force_const_mem (MODE, X))
117 
118 /* True if C is a non-empty register class that has too few registers
119    to be safely used as a reload target class.  */
120 
121 static inline bool
small_register_class_p(reg_class_t rclass)122 small_register_class_p (reg_class_t rclass)
123 {
124   return (reg_class_size [(int) rclass] == 1
125 	  || (reg_class_size [(int) rclass] >= 1
126 	      && targetm.class_likely_spilled_p (rclass)));
127 }
128 
129 
130 /* All reloads of the current insn are recorded here.  See reload.h for
131    comments.  */
132 int n_reloads;
133 struct reload rld[MAX_RELOADS];
134 
135 /* All the "earlyclobber" operands of the current insn
136    are recorded here.  */
137 int n_earlyclobbers;
138 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 
140 int reload_n_operands;
141 
142 /* Replacing reloads.
143 
144    If `replace_reloads' is nonzero, then as each reload is recorded
145    an entry is made for it in the table `replacements'.
146    Then later `subst_reloads' can look through that table and
147    perform all the replacements needed.  */
148 
149 /* Nonzero means record the places to replace.  */
150 static int replace_reloads;
151 
152 /* Each replacement is recorded with a structure like this.  */
153 struct replacement
154 {
155   rtx *where;			/* Location to store in */
156   int what;			/* which reload this is for */
157   machine_mode mode;	/* mode it must have */
158 };
159 
160 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
161 
162 /* Number of replacements currently recorded.  */
163 static int n_replacements;
164 
165 /* Used to track what is modified by an operand.  */
166 struct decomposition
167 {
168   int reg_flag;		/* Nonzero if referencing a register.  */
169   int safe;		/* Nonzero if this can't conflict with anything.  */
170   rtx base;		/* Base address for MEM.  */
171   poly_int64_pod start;	/* Starting offset or register number.  */
172   poly_int64_pod end;	/* Ending offset or register number.  */
173 };
174 
175 /* Save MEMs needed to copy from one class of registers to another.  One MEM
176    is used per mode, but normally only one or two modes are ever used.
177 
178    We keep two versions, before and after register elimination.  The one
179    after register elimination is record separately for each operand.  This
180    is done in case the address is not valid to be sure that we separately
181    reload each.  */
182 
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
186 
187 /* The instruction we are doing reloads for;
188    so we can test whether a register dies in it.  */
189 static rtx_insn *this_insn;
190 
191 /* Nonzero if this instruction is a user-specified asm with operands.  */
192 static int this_insn_is_asm;
193 
194 /* If hard_regs_live_known is nonzero,
195    we can tell which hard regs are currently live,
196    at least enough to succeed in choosing dummy reloads.  */
197 static int hard_regs_live_known;
198 
199 /* Indexed by hard reg number,
200    element is nonnegative if hard reg has been spilled.
201    This vector is passed to `find_reloads' as an argument
202    and is not changed here.  */
203 static short *static_reload_reg_p;
204 
205 /* Set to 1 in subst_reg_equivs if it changes anything.  */
206 static int subst_reg_equivs_changed;
207 
208 /* On return from push_reload, holds the reload-number for the OUT
209    operand, which can be different for that from the input operand.  */
210 static int output_reloadnum;
211 
212   /* Compare two RTX's.  */
213 #define MATCHES(x, y) \
214  (x == y || (x != 0 && (REG_P (x)				\
215 			? REG_P (y) && REGNO (x) == REGNO (y)	\
216 			: rtx_equal_p (x, y) && ! side_effects_p (x))))
217 
218   /* Indicates if two reloads purposes are for similar enough things that we
219      can merge their reloads.  */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221   ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
222    || ((when1) == (when2) && (op1) == (op2))		\
223    || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224    || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
225        && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
226    || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
227        && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 
229   /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231   ((when1) != (when2)					\
232    || ! ((op1) == (op2)					\
233 	 || (when1) == RELOAD_FOR_INPUT			\
234 	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
235 	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 
237   /* If we are going to reload an address, compute the reload type to
238      use.  */
239 #define ADDR_TYPE(type)					\
240   ((type) == RELOAD_FOR_INPUT_ADDRESS			\
241    ? RELOAD_FOR_INPADDR_ADDRESS				\
242    : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
243       ? RELOAD_FOR_OUTADDR_ADDRESS			\
244       : (type)))
245 
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 				  machine_mode, enum reload_type,
248 				  enum insn_code *, secondary_reload_info *);
249 static enum reg_class find_valid_class (machine_mode, machine_mode,
250 					int, unsigned int);
251 static void push_replacement (rtx *, int, machine_mode);
252 static void dup_replacements (rtx *, rtx *);
253 static void combine_reloads (void);
254 static int find_reusable_reload (rtx *, rtx, enum reg_class,
255 				 enum reload_type, int, int);
256 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
257 			      machine_mode, reg_class_t, int, int);
258 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
259 static struct decomposition decompose (rtx);
260 static int immune_p (rtx, rtx, struct decomposition);
261 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
262 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
263 				rtx_insn *, int *);
264 static rtx make_memloc (rtx, int);
265 static int maybe_memory_address_addr_space_p (machine_mode, rtx,
266 					      addr_space_t, rtx *);
267 static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
268 				 int, enum reload_type, int, rtx_insn *);
269 static rtx subst_reg_equivs (rtx, rtx_insn *);
270 static rtx subst_indexed_address (rtx);
271 static void update_auto_inc_notes (rtx_insn *, int, int);
272 static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
273 				   enum rtx_code, enum rtx_code, rtx *,
274 				   int, enum reload_type,int, rtx_insn *);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 				       machine_mode, int,
277 				       enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
279 					int, rtx_insn *, int *);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static poly_int64 find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 					 rtx, rtx *);
285 
286 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
287    list yet.  */
288 
289 static void
push_reg_equiv_alt_mem(int regno,rtx mem)290 push_reg_equiv_alt_mem (int regno, rtx mem)
291 {
292   rtx it;
293 
294   for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
295     if (rtx_equal_p (XEXP (it, 0), mem))
296       return;
297 
298   reg_equiv_alt_mem_list (regno)
299     = alloc_EXPR_LIST (REG_EQUIV, mem,
300 		       reg_equiv_alt_mem_list (regno));
301 }
302 
303 /* Determine if any secondary reloads are needed for loading (if IN_P is
304    nonzero) or storing (if IN_P is zero) X to or from a reload register of
305    register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
306    are needed, push them.
307 
308    Return the reload number of the secondary reload we made, or -1 if
309    we didn't need one.  *PICODE is set to the insn_code to use if we do
310    need a secondary reload.  */
311 
312 static int
push_secondary_reload(int in_p,rtx x,int opnum,int optional,enum reg_class reload_class,machine_mode reload_mode,enum reload_type type,enum insn_code * picode,secondary_reload_info * prev_sri)313 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
314 		       enum reg_class reload_class,
315 		       machine_mode reload_mode, enum reload_type type,
316 		       enum insn_code *picode, secondary_reload_info *prev_sri)
317 {
318   enum reg_class rclass = NO_REGS;
319   enum reg_class scratch_class;
320   machine_mode mode = reload_mode;
321   enum insn_code icode = CODE_FOR_nothing;
322   enum insn_code t_icode = CODE_FOR_nothing;
323   enum reload_type secondary_type;
324   int s_reload, t_reload = -1;
325   const char *scratch_constraint;
326   secondary_reload_info sri;
327 
328   if (type == RELOAD_FOR_INPUT_ADDRESS
329       || type == RELOAD_FOR_OUTPUT_ADDRESS
330       || type == RELOAD_FOR_INPADDR_ADDRESS
331       || type == RELOAD_FOR_OUTADDR_ADDRESS)
332     secondary_type = type;
333   else
334     secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
335 
336   *picode = CODE_FOR_nothing;
337 
338   /* If X is a paradoxical SUBREG, use the inner value to determine both the
339      mode and object being reloaded.  */
340   if (paradoxical_subreg_p (x))
341     {
342       x = SUBREG_REG (x);
343       reload_mode = GET_MODE (x);
344     }
345 
346   /* If X is a pseudo-register that has an equivalent MEM (actually, if it
347      is still a pseudo-register by now, it *must* have an equivalent MEM
348      but we don't want to assume that), use that equivalent when seeing if
349      a secondary reload is needed since whether or not a reload is needed
350      might be sensitive to the form of the MEM.  */
351 
352   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
353       && reg_equiv_mem (REGNO (x)))
354     x = reg_equiv_mem (REGNO (x));
355 
356   sri.icode = CODE_FOR_nothing;
357   sri.prev_sri = prev_sri;
358   rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
359 						      reload_mode, &sri);
360   icode = (enum insn_code) sri.icode;
361 
362   /* If we don't need any secondary registers, done.  */
363   if (rclass == NO_REGS && icode == CODE_FOR_nothing)
364     return -1;
365 
366   if (rclass != NO_REGS)
367     t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
368 				      reload_mode, type, &t_icode, &sri);
369 
370   /* If we will be using an insn, the secondary reload is for a
371      scratch register.  */
372 
373   if (icode != CODE_FOR_nothing)
374     {
375       /* If IN_P is nonzero, the reload register will be the output in
376 	 operand 0.  If IN_P is zero, the reload register will be the input
377 	 in operand 1.  Outputs should have an initial "=", which we must
378 	 skip.  */
379 
380       /* ??? It would be useful to be able to handle only two, or more than
381 	 three, operands, but for now we can only handle the case of having
382 	 exactly three: output, input and one temp/scratch.  */
383       gcc_assert (insn_data[(int) icode].n_operands == 3);
384 
385       /* ??? We currently have no way to represent a reload that needs
386 	 an icode to reload from an intermediate tertiary reload register.
387 	 We should probably have a new field in struct reload to tag a
388 	 chain of scratch operand reloads onto.   */
389       gcc_assert (rclass == NO_REGS);
390 
391       scratch_constraint = insn_data[(int) icode].operand[2].constraint;
392       gcc_assert (*scratch_constraint == '=');
393       scratch_constraint++;
394       if (*scratch_constraint == '&')
395 	scratch_constraint++;
396       scratch_class = (reg_class_for_constraint
397 		       (lookup_constraint (scratch_constraint)));
398 
399       rclass = scratch_class;
400       mode = insn_data[(int) icode].operand[2].mode;
401     }
402 
403   /* This case isn't valid, so fail.  Reload is allowed to use the same
404      register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405      in the case of a secondary register, we actually need two different
406      registers for correct code.  We fail here to prevent the possibility of
407      silently generating incorrect code later.
408 
409      The convention is that secondary input reloads are valid only if the
410      secondary_class is different from class.  If you have such a case, you
411      can not use secondary reloads, you must work around the problem some
412      other way.
413 
414      Allow this when a reload_in/out pattern is being used.  I.e. assume
415      that the generated code handles this case.  */
416 
417   gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
418 	      || t_icode != CODE_FOR_nothing);
419 
420   /* See if we can reuse an existing secondary reload.  */
421   for (s_reload = 0; s_reload < n_reloads; s_reload++)
422     if (rld[s_reload].secondary_p
423 	&& (reg_class_subset_p (rclass, rld[s_reload].rclass)
424 	    || reg_class_subset_p (rld[s_reload].rclass, rclass))
425 	&& ((in_p && rld[s_reload].inmode == mode)
426 	    || (! in_p && rld[s_reload].outmode == mode))
427 	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
428 	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
429 	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
430 	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
431 	&& (small_register_class_p (rclass)
432 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
433 	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
434 			     opnum, rld[s_reload].opnum))
435       {
436 	if (in_p)
437 	  rld[s_reload].inmode = mode;
438 	if (! in_p)
439 	  rld[s_reload].outmode = mode;
440 
441 	if (reg_class_subset_p (rclass, rld[s_reload].rclass))
442 	  rld[s_reload].rclass = rclass;
443 
444 	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
445 	rld[s_reload].optional &= optional;
446 	rld[s_reload].secondary_p = 1;
447 	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
448 			    opnum, rld[s_reload].opnum))
449 	  rld[s_reload].when_needed = RELOAD_OTHER;
450 
451 	break;
452       }
453 
454   if (s_reload == n_reloads)
455     {
456       /* If we need a memory location to copy between the two reload regs,
457 	 set it up now.  Note that we do the input case before making
458 	 the reload and the output case after.  This is due to the
459 	 way reloads are output.  */
460 
461       if (in_p && icode == CODE_FOR_nothing
462 	  && targetm.secondary_memory_needed (mode, rclass, reload_class))
463 	{
464 	  get_secondary_mem (x, reload_mode, opnum, type);
465 
466 	  /* We may have just added new reloads.  Make sure we add
467 	     the new reload at the end.  */
468 	  s_reload = n_reloads;
469 	}
470 
471       /* We need to make a new secondary reload for this register class.  */
472       rld[s_reload].in = rld[s_reload].out = 0;
473       rld[s_reload].rclass = rclass;
474 
475       rld[s_reload].inmode = in_p ? mode : VOIDmode;
476       rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
477       rld[s_reload].reg_rtx = 0;
478       rld[s_reload].optional = optional;
479       rld[s_reload].inc = 0;
480       /* Maybe we could combine these, but it seems too tricky.  */
481       rld[s_reload].nocombine = 1;
482       rld[s_reload].in_reg = 0;
483       rld[s_reload].out_reg = 0;
484       rld[s_reload].opnum = opnum;
485       rld[s_reload].when_needed = secondary_type;
486       rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
487       rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
488       rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
489       rld[s_reload].secondary_out_icode
490 	= ! in_p ? t_icode : CODE_FOR_nothing;
491       rld[s_reload].secondary_p = 1;
492 
493       n_reloads++;
494 
495       if (! in_p && icode == CODE_FOR_nothing
496 	  && targetm.secondary_memory_needed (mode, reload_class, rclass))
497 	get_secondary_mem (x, mode, opnum, type);
498     }
499 
500   *picode = icode;
501   return s_reload;
502 }
503 
504 /* If a secondary reload is needed, return its class.  If both an intermediate
505    register and a scratch register is needed, we return the class of the
506    intermediate register.  */
507 reg_class_t
secondary_reload_class(bool in_p,reg_class_t rclass,machine_mode mode,rtx x)508 secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
509 			rtx x)
510 {
511   enum insn_code icode;
512   secondary_reload_info sri;
513 
514   sri.icode = CODE_FOR_nothing;
515   sri.prev_sri = NULL;
516   rclass
517     = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
518   icode = (enum insn_code) sri.icode;
519 
520   /* If there are no secondary reloads at all, we return NO_REGS.
521      If an intermediate register is needed, we return its class.  */
522   if (icode == CODE_FOR_nothing || rclass != NO_REGS)
523     return rclass;
524 
525   /* No intermediate register is needed, but we have a special reload
526      pattern, which we assume for now needs a scratch register.  */
527   return scratch_reload_class (icode);
528 }
529 
530 /* ICODE is the insn_code of a reload pattern.  Check that it has exactly
531    three operands, verify that operand 2 is an output operand, and return
532    its register class.
533    ??? We'd like to be able to handle any pattern with at least 2 operands,
534    for zero or more scratch registers, but that needs more infrastructure.  */
535 enum reg_class
scratch_reload_class(enum insn_code icode)536 scratch_reload_class (enum insn_code icode)
537 {
538   const char *scratch_constraint;
539   enum reg_class rclass;
540 
541   gcc_assert (insn_data[(int) icode].n_operands == 3);
542   scratch_constraint = insn_data[(int) icode].operand[2].constraint;
543   gcc_assert (*scratch_constraint == '=');
544   scratch_constraint++;
545   if (*scratch_constraint == '&')
546     scratch_constraint++;
547   rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
548   gcc_assert (rclass != NO_REGS);
549   return rclass;
550 }
551 
552 /* Return a memory location that will be used to copy X in mode MODE.
553    If we haven't already made a location for this mode in this insn,
554    call find_reloads_address on the location being returned.  */
555 
556 rtx
get_secondary_mem(rtx x ATTRIBUTE_UNUSED,machine_mode mode,int opnum,enum reload_type type)557 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
558 		   int opnum, enum reload_type type)
559 {
560   rtx loc;
561   int mem_valid;
562 
563   /* By default, if MODE is narrower than a word, widen it to a word.
564      This is required because most machines that require these memory
565      locations do not support short load and stores from all registers
566      (e.g., FP registers).  */
567 
568   mode = targetm.secondary_memory_needed_mode (mode);
569 
570   /* If we already have made a MEM for this operand in MODE, return it.  */
571   if (secondary_memlocs_elim[(int) mode][opnum] != 0)
572     return secondary_memlocs_elim[(int) mode][opnum];
573 
574   /* If this is the first time we've tried to get a MEM for this mode,
575      allocate a new one.  `something_changed' in reload will get set
576      by noticing that the frame size has changed.  */
577 
578   if (secondary_memlocs[(int) mode] == 0)
579     {
580 #ifdef SECONDARY_MEMORY_NEEDED_RTX
581       secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
582 #else
583       secondary_memlocs[(int) mode]
584 	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
585 #endif
586     }
587 
588   /* Get a version of the address doing any eliminations needed.  If that
589      didn't give us a new MEM, make a new one if it isn't valid.  */
590 
591   loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
592   mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
593 						  MEM_ADDR_SPACE (loc));
594 
595   if (! mem_valid && loc == secondary_memlocs[(int) mode])
596     loc = copy_rtx (loc);
597 
598   /* The only time the call below will do anything is if the stack
599      offset is too large.  In that case IND_LEVELS doesn't matter, so we
600      can just pass a zero.  Adjust the type to be the address of the
601      corresponding object.  If the address was valid, save the eliminated
602      address.  If it wasn't valid, we need to make a reload each time, so
603      don't save it.  */
604 
605   if (! mem_valid)
606     {
607       type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
608 	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
609 	       : RELOAD_OTHER);
610 
611       find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
612 			    opnum, type, 0, 0);
613     }
614 
615   secondary_memlocs_elim[(int) mode][opnum] = loc;
616   if (secondary_memlocs_elim_used <= (int)mode)
617     secondary_memlocs_elim_used = (int)mode + 1;
618   return loc;
619 }
620 
621 /* Clear any secondary memory locations we've made.  */
622 
623 void
clear_secondary_mem(void)624 clear_secondary_mem (void)
625 {
626   memset (secondary_memlocs, 0, sizeof secondary_memlocs);
627 }
628 
629 
630 /* Find the largest class which has at least one register valid in
631    mode INNER, and which for every such register, that register number
632    plus N is also valid in OUTER (if in range) and is cheap to move
633    into REGNO.  Such a class must exist.  */
634 
635 static enum reg_class
find_valid_class(machine_mode outer ATTRIBUTE_UNUSED,machine_mode inner ATTRIBUTE_UNUSED,int n,unsigned int dest_regno ATTRIBUTE_UNUSED)636 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
637 		  machine_mode inner ATTRIBUTE_UNUSED, int n,
638 		  unsigned int dest_regno ATTRIBUTE_UNUSED)
639 {
640   int best_cost = -1;
641   int rclass;
642   int regno;
643   enum reg_class best_class = NO_REGS;
644   enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
645   unsigned int best_size = 0;
646   int cost;
647 
648   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
649     {
650       int bad = 0;
651       int good = 0;
652       for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
653 	if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
654 	  {
655 	    if (targetm.hard_regno_mode_ok (regno, inner))
656 	      {
657 		good = 1;
658 		if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
659 		    && !targetm.hard_regno_mode_ok (regno + n, outer))
660 		  bad = 1;
661 	      }
662 	  }
663 
664       if (bad || !good)
665 	continue;
666       cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
667 
668       if ((reg_class_size[rclass] > best_size
669 	   && (best_cost < 0 || best_cost >= cost))
670 	  || best_cost > cost)
671 	{
672 	  best_class = (enum reg_class) rclass;
673 	  best_size = reg_class_size[rclass];
674 	  best_cost = register_move_cost (outer, (enum reg_class) rclass,
675 					  dest_class);
676 	}
677     }
678 
679   gcc_assert (best_size != 0);
680 
681   return best_class;
682 }
683 
684 /* We are trying to reload a subreg of something that is not a register.
685    Find the largest class which contains only registers valid in
686    mode MODE.  OUTER is the mode of the subreg, DEST_CLASS the class in
687    which we would eventually like to obtain the object.  */
688 
689 static enum reg_class
find_valid_class_1(machine_mode outer ATTRIBUTE_UNUSED,machine_mode mode ATTRIBUTE_UNUSED,enum reg_class dest_class ATTRIBUTE_UNUSED)690 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
691 		    machine_mode mode ATTRIBUTE_UNUSED,
692 		    enum reg_class dest_class ATTRIBUTE_UNUSED)
693 {
694   int best_cost = -1;
695   int rclass;
696   int regno;
697   enum reg_class best_class = NO_REGS;
698   unsigned int best_size = 0;
699   int cost;
700 
701   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
702     {
703       unsigned int computed_rclass_size = 0;
704 
705       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
706         {
707           if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
708 	      && targetm.hard_regno_mode_ok (regno, mode))
709             computed_rclass_size++;
710         }
711 
712       cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
713 
714       if ((computed_rclass_size > best_size
715 	   && (best_cost < 0 || best_cost >= cost))
716 	  || best_cost > cost)
717 	{
718 	  best_class = (enum reg_class) rclass;
719 	  best_size = computed_rclass_size;
720 	  best_cost = register_move_cost (outer, (enum reg_class) rclass,
721 					  dest_class);
722 	}
723     }
724 
725   gcc_assert (best_size != 0);
726 
727 #ifdef LIMIT_RELOAD_CLASS
728   best_class = LIMIT_RELOAD_CLASS (mode, best_class);
729 #endif
730   return best_class;
731 }
732 
733 /* Return the number of a previously made reload that can be combined with
734    a new one, or n_reloads if none of the existing reloads can be used.
735    OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
736    push_reload, they determine the kind of the new reload that we try to
737    combine.  P_IN points to the corresponding value of IN, which can be
738    modified by this function.
739    DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
740 
741 static int
find_reusable_reload(rtx * p_in,rtx out,enum reg_class rclass,enum reload_type type,int opnum,int dont_share)742 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
743 		      enum reload_type type, int opnum, int dont_share)
744 {
745   rtx in = *p_in;
746   int i;
747   /* We can't merge two reloads if the output of either one is
748      earlyclobbered.  */
749 
750   if (earlyclobber_operand_p (out))
751     return n_reloads;
752 
753   /* We can use an existing reload if the class is right
754      and at least one of IN and OUT is a match
755      and the other is at worst neutral.
756      (A zero compared against anything is neutral.)
757 
758      For targets with small register classes, don't use existing reloads
759      unless they are for the same thing since that can cause us to need
760      more reload registers than we otherwise would.  */
761 
762   for (i = 0; i < n_reloads; i++)
763     if ((reg_class_subset_p (rclass, rld[i].rclass)
764 	 || reg_class_subset_p (rld[i].rclass, rclass))
765 	/* If the existing reload has a register, it must fit our class.  */
766 	&& (rld[i].reg_rtx == 0
767 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
768 				  true_regnum (rld[i].reg_rtx)))
769 	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
770 	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
771 	    || (out != 0 && MATCHES (rld[i].out, out)
772 		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
773 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
774 	&& (small_register_class_p (rclass)
775 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
776 	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
777       return i;
778 
779   /* Reloading a plain reg for input can match a reload to postincrement
780      that reg, since the postincrement's value is the right value.
781      Likewise, it can match a preincrement reload, since we regard
782      the preincrementation as happening before any ref in this insn
783      to that register.  */
784   for (i = 0; i < n_reloads; i++)
785     if ((reg_class_subset_p (rclass, rld[i].rclass)
786 	 || reg_class_subset_p (rld[i].rclass, rclass))
787 	/* If the existing reload has a register, it must fit our
788 	   class.  */
789 	&& (rld[i].reg_rtx == 0
790 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
791 				  true_regnum (rld[i].reg_rtx)))
792 	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
793 	&& ((REG_P (in)
794 	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
795 	     && MATCHES (XEXP (rld[i].in, 0), in))
796 	    || (REG_P (rld[i].in)
797 		&& GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
798 		&& MATCHES (XEXP (in, 0), rld[i].in)))
799 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
800 	&& (small_register_class_p (rclass)
801 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
802 	&& MERGABLE_RELOADS (type, rld[i].when_needed,
803 			     opnum, rld[i].opnum))
804       {
805 	/* Make sure reload_in ultimately has the increment,
806 	   not the plain register.  */
807 	if (REG_P (in))
808 	  *p_in = rld[i].in;
809 	return i;
810       }
811   return n_reloads;
812 }
813 
814 /* Return true if:
815 
816    (a) (subreg:OUTER_MODE REG ...) represents a word or subword subreg
817        of a multiword value; and
818 
819    (b) the number of *words* in REG does not match the number of *registers*
820        in REG.  */
821 
822 static bool
complex_word_subreg_p(machine_mode outer_mode,rtx reg)823 complex_word_subreg_p (machine_mode outer_mode, rtx reg)
824 {
825   machine_mode inner_mode = GET_MODE (reg);
826   poly_uint64 reg_words = REG_NREGS (reg) * UNITS_PER_WORD;
827   return (known_le (GET_MODE_SIZE (outer_mode), UNITS_PER_WORD)
828 	  && maybe_gt (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
829 	  && !known_equal_after_align_up (GET_MODE_SIZE (inner_mode),
830 					  reg_words, UNITS_PER_WORD));
831 }
832 
833 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
834    expression.  MODE is the mode that X will be used in.  OUTPUT is true if
835    the function is invoked for the output part of an enclosing reload.  */
836 
837 static bool
reload_inner_reg_of_subreg(rtx x,machine_mode mode,bool output)838 reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
839 {
840   rtx inner;
841 
842   /* Only SUBREGs are problematical.  */
843   if (GET_CODE (x) != SUBREG)
844     return false;
845 
846   inner = SUBREG_REG (x);
847 
848   /* If INNER is a constant or PLUS, then INNER will need reloading.  */
849   if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
850     return true;
851 
852   /* If INNER is not a hard register, then INNER will not need reloading.  */
853   if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
854     return false;
855 
856   /* If INNER is not ok for MODE, then INNER will need reloading.  */
857   if (!targetm.hard_regno_mode_ok (subreg_regno (x), mode))
858     return true;
859 
860   /* If this is for an output, and the outer part is a word or smaller,
861      INNER is larger than a word and the number of registers in INNER is
862      not the same as the number of words in INNER, then INNER will need
863      reloading (with an in-out reload).  */
864   return output && complex_word_subreg_p (mode, inner);
865 }
866 
867 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
868    requiring an extra reload register.  The caller has already found that
869    IN contains some reference to REGNO, so check that we can produce the
870    new value in a single step.  E.g. if we have
871    (set (reg r13) (plus (reg r13) (const int 1))), and there is an
872    instruction that adds one to a register, this should succeed.
873    However, if we have something like
874    (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
875    needs to be loaded into a register first, we need a separate reload
876    register.
877    Such PLUS reloads are generated by find_reload_address_part.
878    The out-of-range PLUS expressions are usually introduced in the instruction
879    patterns by register elimination and substituting pseudos without a home
880    by their function-invariant equivalences.  */
881 static int
can_reload_into(rtx in,int regno,machine_mode mode)882 can_reload_into (rtx in, int regno, machine_mode mode)
883 {
884   rtx dst;
885   rtx_insn *test_insn;
886   int r = 0;
887   struct recog_data_d save_recog_data;
888 
889   /* For matching constraints, we often get notional input reloads where
890      we want to use the original register as the reload register.  I.e.
891      technically this is a non-optional input-output reload, but IN is
892      already a valid register, and has been chosen as the reload register.
893      Speed this up, since it trivially works.  */
894   if (REG_P (in))
895     return 1;
896 
897   /* To test MEMs properly, we'd have to take into account all the reloads
898      that are already scheduled, which can become quite complicated.
899      And since we've already handled address reloads for this MEM, it
900      should always succeed anyway.  */
901   if (MEM_P (in))
902     return 1;
903 
904   /* If we can make a simple SET insn that does the job, everything should
905      be fine.  */
906   dst =  gen_rtx_REG (mode, regno);
907   test_insn = make_insn_raw (gen_rtx_SET (dst, in));
908   save_recog_data = recog_data;
909   if (recog_memoized (test_insn) >= 0)
910     {
911       extract_insn (test_insn);
912       r = constrain_operands (1, get_enabled_alternatives (test_insn));
913     }
914   recog_data = save_recog_data;
915   return r;
916 }
917 
918 /* Record one reload that needs to be performed.
919    IN is an rtx saying where the data are to be found before this instruction.
920    OUT says where they must be stored after the instruction.
921    (IN is zero for data not read, and OUT is zero for data not written.)
922    INLOC and OUTLOC point to the places in the instructions where
923    IN and OUT were found.
924    If IN and OUT are both nonzero, it means the same register must be used
925    to reload both IN and OUT.
926 
927    RCLASS is a register class required for the reloaded data.
928    INMODE is the machine mode that the instruction requires
929    for the reg that replaces IN and OUTMODE is likewise for OUT.
930 
931    If IN is zero, then OUT's location and mode should be passed as
932    INLOC and INMODE.
933 
934    STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
935 
936    OPTIONAL nonzero means this reload does not need to be performed:
937    it can be discarded if that is more convenient.
938 
939    OPNUM and TYPE say what the purpose of this reload is.
940 
941    The return value is the reload-number for this reload.
942 
943    If both IN and OUT are nonzero, in some rare cases we might
944    want to make two separate reloads.  (Actually we never do this now.)
945    Therefore, the reload-number for OUT is stored in
946    output_reloadnum when we return; the return value applies to IN.
947    Usually (presently always), when IN and OUT are nonzero,
948    the two reload-numbers are equal, but the caller should be careful to
949    distinguish them.  */
950 
951 int
push_reload(rtx in,rtx out,rtx * inloc,rtx * outloc,enum reg_class rclass,machine_mode inmode,machine_mode outmode,int strict_low,int optional,int opnum,enum reload_type type)952 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
953 	     enum reg_class rclass, machine_mode inmode,
954 	     machine_mode outmode, int strict_low, int optional,
955 	     int opnum, enum reload_type type)
956 {
957   int i;
958   int dont_share = 0;
959   int dont_remove_subreg = 0;
960 #ifdef LIMIT_RELOAD_CLASS
961   rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
962 #endif
963   int secondary_in_reload = -1, secondary_out_reload = -1;
964   enum insn_code secondary_in_icode = CODE_FOR_nothing;
965   enum insn_code secondary_out_icode = CODE_FOR_nothing;
966   enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
967   subreg_in_class = NO_REGS;
968 
969   /* INMODE and/or OUTMODE could be VOIDmode if no mode
970      has been specified for the operand.  In that case,
971      use the operand's mode as the mode to reload.  */
972   if (inmode == VOIDmode && in != 0)
973     inmode = GET_MODE (in);
974   if (outmode == VOIDmode && out != 0)
975     outmode = GET_MODE (out);
976 
977   /* If find_reloads and friends until now missed to replace a pseudo
978      with a constant of reg_equiv_constant something went wrong
979      beforehand.
980      Note that it can't simply be done here if we missed it earlier
981      since the constant might need to be pushed into the literal pool
982      and the resulting memref would probably need further
983      reloading.  */
984   if (in != 0 && REG_P (in))
985     {
986       int regno = REGNO (in);
987 
988       gcc_assert (regno < FIRST_PSEUDO_REGISTER
989 		  || reg_renumber[regno] >= 0
990 		  || reg_equiv_constant (regno) == NULL_RTX);
991     }
992 
993   /* reg_equiv_constant only contains constants which are obviously
994      not appropriate as destination.  So if we would need to replace
995      the destination pseudo with a constant we are in real
996      trouble.  */
997   if (out != 0 && REG_P (out))
998     {
999       int regno = REGNO (out);
1000 
1001       gcc_assert (regno < FIRST_PSEUDO_REGISTER
1002 		  || reg_renumber[regno] >= 0
1003 		  || reg_equiv_constant (regno) == NULL_RTX);
1004     }
1005 
1006   /* If we have a read-write operand with an address side-effect,
1007      change either IN or OUT so the side-effect happens only once.  */
1008   if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1009     switch (GET_CODE (XEXP (in, 0)))
1010       {
1011       case POST_INC: case POST_DEC:   case POST_MODIFY:
1012 	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1013 	break;
1014 
1015       case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1016 	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1017 	break;
1018 
1019       default:
1020 	break;
1021       }
1022 
1023   /* If we are reloading a (SUBREG constant ...), really reload just the
1024      inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
1025      If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1026      a pseudo and hence will become a MEM) with M1 wider than M2 and the
1027      register is a pseudo, also reload the inside expression.
1028      For machines that extend byte loads, do this for any SUBREG of a pseudo
1029      where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1030      M2 is an integral mode that gets extended when loaded.
1031      Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1032      where either M1 is not valid for R or M2 is wider than a word but we
1033      only need one register to store an M2-sized quantity in R.
1034      (However, if OUT is nonzero, we need to reload the reg *and*
1035      the subreg, so do nothing here, and let following statement handle it.)
1036 
1037      Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1038      we can't handle it here because CONST_INT does not indicate a mode.
1039 
1040      Similarly, we must reload the inside expression if we have a
1041      STRICT_LOW_PART (presumably, in == out in this case).
1042 
1043      Also reload the inner expression if it does not require a secondary
1044      reload but the SUBREG does.
1045 
1046      Finally, reload the inner expression if it is a register that is in
1047      the class whose registers cannot be referenced in a different size
1048      and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
1049      cannot reload just the inside since we might end up with the wrong
1050      register class.  But if it is inside a STRICT_LOW_PART, we have
1051      no choice, so we hope we do get the right register class there.  */
1052 
1053   scalar_int_mode inner_mode;
1054   if (in != 0 && GET_CODE (in) == SUBREG
1055       && (subreg_lowpart_p (in) || strict_low)
1056       && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (in)),
1057 					inmode, rclass)
1058       && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (in))]
1059       && (CONSTANT_P (SUBREG_REG (in))
1060 	  || GET_CODE (SUBREG_REG (in)) == PLUS
1061 	  || strict_low
1062 	  || (((REG_P (SUBREG_REG (in))
1063 		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1064 	       || MEM_P (SUBREG_REG (in)))
1065 	      && (paradoxical_subreg_p (inmode, GET_MODE (SUBREG_REG (in)))
1066 		  || (known_le (GET_MODE_SIZE (inmode), UNITS_PER_WORD)
1067 		      && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (in)),
1068 						 &inner_mode)
1069 		      && GET_MODE_SIZE (inner_mode) <= UNITS_PER_WORD
1070 		      && paradoxical_subreg_p (inmode, inner_mode)
1071 		      && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)
1072 		  || (WORD_REGISTER_OPERATIONS
1073 		      && partial_subreg_p (inmode, GET_MODE (SUBREG_REG (in)))
1074 		      && (known_equal_after_align_down
1075 			  (GET_MODE_SIZE (inmode) - 1,
1076 			   GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1,
1077 			   UNITS_PER_WORD)))))
1078 	  || (REG_P (SUBREG_REG (in))
1079 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1080 	      /* The case where out is nonzero
1081 		 is handled differently in the following statement.  */
1082 	      && (out == 0 || subreg_lowpart_p (in))
1083 	      && (complex_word_subreg_p (inmode, SUBREG_REG (in))
1084 		  || !targetm.hard_regno_mode_ok (subreg_regno (in), inmode)))
1085 	  || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1086 	      && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1087 					  SUBREG_REG (in))
1088 		  == NO_REGS))
1089 	  || (REG_P (SUBREG_REG (in))
1090 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1091 	      && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (in)),
1092 					 GET_MODE (SUBREG_REG (in)), inmode))))
1093     {
1094 #ifdef LIMIT_RELOAD_CLASS
1095       in_subreg_loc = inloc;
1096 #endif
1097       inloc = &SUBREG_REG (in);
1098       in = *inloc;
1099 
1100       if (!WORD_REGISTER_OPERATIONS
1101 	  && LOAD_EXTEND_OP (GET_MODE (in)) == UNKNOWN
1102 	  && MEM_P (in))
1103 	/* This is supposed to happen only for paradoxical subregs made by
1104 	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1105 	gcc_assert (known_le (GET_MODE_SIZE (GET_MODE (in)),
1106 			      GET_MODE_SIZE (inmode)));
1107 
1108       inmode = GET_MODE (in);
1109     }
1110 
1111   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1112      where M1 is not valid for R if it was not handled by the code above.
1113 
1114      Similar issue for (SUBREG constant ...) if it was not handled by the
1115      code above.  This can happen if SUBREG_BYTE != 0.
1116 
1117      However, we must reload the inner reg *as well as* the subreg in
1118      that case.  */
1119 
1120   if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1121     {
1122       if (REG_P (SUBREG_REG (in)))
1123 	subreg_in_class
1124 	  = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1125 			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1126 						   GET_MODE (SUBREG_REG (in)),
1127 						   SUBREG_BYTE (in),
1128 						   GET_MODE (in)),
1129 			      REGNO (SUBREG_REG (in)));
1130       else if (CONSTANT_P (SUBREG_REG (in))
1131                || GET_CODE (SUBREG_REG (in)) == PLUS)
1132 	subreg_in_class = find_valid_class_1 (inmode,
1133 					      GET_MODE (SUBREG_REG (in)),
1134 					      rclass);
1135 
1136       /* This relies on the fact that emit_reload_insns outputs the
1137 	 instructions for input reloads of type RELOAD_OTHER in the same
1138 	 order as the reloads.  Thus if the outer reload is also of type
1139 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1140 	 output before the outer reload.  */
1141       push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1142 		   subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1143       dont_remove_subreg = 1;
1144     }
1145 
1146   /* Similarly for paradoxical and problematical SUBREGs on the output.
1147      Note that there is no reason we need worry about the previous value
1148      of SUBREG_REG (out); even if wider than out, storing in a subreg is
1149      entitled to clobber it all (except in the case of a word mode subreg
1150      or of a STRICT_LOW_PART, in that latter case the constraint should
1151      label it input-output.)  */
1152   if (out != 0 && GET_CODE (out) == SUBREG
1153       && (subreg_lowpart_p (out) || strict_low)
1154       && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (out)),
1155 					outmode, rclass)
1156       && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (out))]
1157       && (CONSTANT_P (SUBREG_REG (out))
1158 	  || strict_low
1159 	  || (((REG_P (SUBREG_REG (out))
1160 		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1161 	       || MEM_P (SUBREG_REG (out)))
1162 	      && (paradoxical_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1163 		  || (WORD_REGISTER_OPERATIONS
1164 		      && partial_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1165 		      && (known_equal_after_align_down
1166 			  (GET_MODE_SIZE (outmode) - 1,
1167 			   GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1,
1168 			   UNITS_PER_WORD)))))
1169 	  || (REG_P (SUBREG_REG (out))
1170 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1171 	      /* The case of a word mode subreg
1172 		 is handled differently in the following statement.  */
1173 	      && ! (known_le (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1174 		    && maybe_gt (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))),
1175 				 UNITS_PER_WORD))
1176 	      && !targetm.hard_regno_mode_ok (subreg_regno (out), outmode))
1177 	  || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1178 	      && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1179 					  SUBREG_REG (out))
1180 		  == NO_REGS))
1181 	  || (REG_P (SUBREG_REG (out))
1182 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1183 	      && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1184 					 GET_MODE (SUBREG_REG (out)),
1185 					 outmode))))
1186     {
1187 #ifdef LIMIT_RELOAD_CLASS
1188       out_subreg_loc = outloc;
1189 #endif
1190       outloc = &SUBREG_REG (out);
1191       out = *outloc;
1192       gcc_assert (WORD_REGISTER_OPERATIONS || !MEM_P (out)
1193 		  || known_le (GET_MODE_SIZE (GET_MODE (out)),
1194 			       GET_MODE_SIZE (outmode)));
1195       outmode = GET_MODE (out);
1196     }
1197 
1198   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1199      where either M1 is not valid for R or M2 is wider than a word but we
1200      only need one register to store an M2-sized quantity in R.
1201 
1202      However, we must reload the inner reg *as well as* the subreg in
1203      that case and the inner reg is an in-out reload.  */
1204 
1205   if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1206     {
1207       enum reg_class in_out_class
1208 	= find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1209 			    subreg_regno_offset (REGNO (SUBREG_REG (out)),
1210 						 GET_MODE (SUBREG_REG (out)),
1211 						 SUBREG_BYTE (out),
1212 						 GET_MODE (out)),
1213 			    REGNO (SUBREG_REG (out)));
1214 
1215       /* This relies on the fact that emit_reload_insns outputs the
1216 	 instructions for output reloads of type RELOAD_OTHER in reverse
1217 	 order of the reloads.  Thus if the outer reload is also of type
1218 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1219 	 output after the outer reload.  */
1220       push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1221 		   &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1222 		   0, 0, opnum, RELOAD_OTHER);
1223       dont_remove_subreg = 1;
1224     }
1225 
1226   /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1227   if (in != 0 && out != 0 && MEM_P (out)
1228       && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1229       && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1230     dont_share = 1;
1231 
1232   /* If IN is a SUBREG of a hard register, make a new REG.  This
1233      simplifies some of the cases below.  */
1234 
1235   if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1236       && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1237       && ! dont_remove_subreg)
1238     in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1239 
1240   /* Similarly for OUT.  */
1241   if (out != 0 && GET_CODE (out) == SUBREG
1242       && REG_P (SUBREG_REG (out))
1243       && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1244       && ! dont_remove_subreg)
1245     out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1246 
1247   /* Narrow down the class of register wanted if that is
1248      desirable on this machine for efficiency.  */
1249   {
1250     reg_class_t preferred_class = rclass;
1251 
1252     if (in != 0)
1253       preferred_class = targetm.preferred_reload_class (in, rclass);
1254 
1255     /* Output reloads may need analogous treatment, different in detail.  */
1256     if (out != 0)
1257       preferred_class
1258 	= targetm.preferred_output_reload_class (out, preferred_class);
1259 
1260     /* Discard what the target said if we cannot do it.  */
1261     if (preferred_class != NO_REGS
1262 	|| (optional && type == RELOAD_FOR_OUTPUT))
1263       rclass = (enum reg_class) preferred_class;
1264   }
1265 
1266   /* Make sure we use a class that can handle the actual pseudo
1267      inside any subreg.  For example, on the 386, QImode regs
1268      can appear within SImode subregs.  Although GENERAL_REGS
1269      can handle SImode, QImode needs a smaller class.  */
1270 #ifdef LIMIT_RELOAD_CLASS
1271   if (in_subreg_loc)
1272     rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1273   else if (in != 0 && GET_CODE (in) == SUBREG)
1274     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1275 
1276   if (out_subreg_loc)
1277     rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1278   if (out != 0 && GET_CODE (out) == SUBREG)
1279     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1280 #endif
1281 
1282   /* Verify that this class is at least possible for the mode that
1283      is specified.  */
1284   if (this_insn_is_asm)
1285     {
1286       machine_mode mode;
1287       if (paradoxical_subreg_p (inmode, outmode))
1288 	mode = inmode;
1289       else
1290 	mode = outmode;
1291       if (mode == VOIDmode)
1292 	{
1293 	  error_for_asm (this_insn, "cannot reload integer constant "
1294 			 "operand in %<asm%>");
1295 	  mode = word_mode;
1296 	  if (in != 0)
1297 	    inmode = word_mode;
1298 	  if (out != 0)
1299 	    outmode = word_mode;
1300 	}
1301       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1302 	if (targetm.hard_regno_mode_ok (i, mode)
1303 	    && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1304 	  break;
1305       if (i == FIRST_PSEUDO_REGISTER)
1306 	{
1307 	  error_for_asm (this_insn, "impossible register constraint "
1308 			 "in %<asm%>");
1309 	  /* Avoid further trouble with this insn.  */
1310 	  PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1311 	  /* We used to continue here setting class to ALL_REGS, but it triggers
1312 	     sanity check on i386 for:
1313 	     void foo(long double d)
1314 	     {
1315 	       asm("" :: "a" (d));
1316 	     }
1317 	     Returning zero here ought to be safe as we take care in
1318 	     find_reloads to not process the reloads when instruction was
1319 	     replaced by USE.  */
1320 
1321 	  return 0;
1322 	}
1323     }
1324 
1325   /* Optional output reloads are always OK even if we have no register class,
1326      since the function of these reloads is only to have spill_reg_store etc.
1327      set, so that the storing insn can be deleted later.  */
1328   gcc_assert (rclass != NO_REGS
1329 	      || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1330 
1331   i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1332 
1333   if (i == n_reloads)
1334     {
1335       /* See if we need a secondary reload register to move between CLASS
1336 	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1337 	 needed for each of them if so.  */
1338 
1339       if (in != 0)
1340 	secondary_in_reload
1341 	  = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1342 				   &secondary_in_icode, NULL);
1343       if (out != 0 && GET_CODE (out) != SCRATCH)
1344 	secondary_out_reload
1345 	  = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1346 				   type, &secondary_out_icode, NULL);
1347 
1348       /* We found no existing reload suitable for re-use.
1349 	 So add an additional reload.  */
1350 
1351       if (subreg_in_class == NO_REGS
1352 	  && in != 0
1353 	  && (REG_P (in)
1354 	      || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1355 	  && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1356 	subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1357       /* If a memory location is needed for the copy, make one.  */
1358       if (subreg_in_class != NO_REGS
1359 	  && targetm.secondary_memory_needed (inmode, subreg_in_class, rclass))
1360 	get_secondary_mem (in, inmode, opnum, type);
1361 
1362       i = n_reloads;
1363       rld[i].in = in;
1364       rld[i].out = out;
1365       rld[i].rclass = rclass;
1366       rld[i].inmode = inmode;
1367       rld[i].outmode = outmode;
1368       rld[i].reg_rtx = 0;
1369       rld[i].optional = optional;
1370       rld[i].inc = 0;
1371       rld[i].nocombine = 0;
1372       rld[i].in_reg = inloc ? *inloc : 0;
1373       rld[i].out_reg = outloc ? *outloc : 0;
1374       rld[i].opnum = opnum;
1375       rld[i].when_needed = type;
1376       rld[i].secondary_in_reload = secondary_in_reload;
1377       rld[i].secondary_out_reload = secondary_out_reload;
1378       rld[i].secondary_in_icode = secondary_in_icode;
1379       rld[i].secondary_out_icode = secondary_out_icode;
1380       rld[i].secondary_p = 0;
1381 
1382       n_reloads++;
1383 
1384       if (out != 0
1385           && (REG_P (out)
1386 	      || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1387 	  && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1388 	  && (targetm.secondary_memory_needed
1389 	      (outmode, rclass, REGNO_REG_CLASS (reg_or_subregno (out)))))
1390 	get_secondary_mem (out, outmode, opnum, type);
1391     }
1392   else
1393     {
1394       /* We are reusing an existing reload,
1395 	 but we may have additional information for it.
1396 	 For example, we may now have both IN and OUT
1397 	 while the old one may have just one of them.  */
1398 
1399       /* The modes can be different.  If they are, we want to reload in
1400 	 the larger mode, so that the value is valid for both modes.  */
1401       if (inmode != VOIDmode
1402 	  && partial_subreg_p (rld[i].inmode, inmode))
1403 	rld[i].inmode = inmode;
1404       if (outmode != VOIDmode
1405 	  && partial_subreg_p (rld[i].outmode, outmode))
1406 	rld[i].outmode = outmode;
1407       if (in != 0)
1408 	{
1409 	  rtx in_reg = inloc ? *inloc : 0;
1410 	  /* If we merge reloads for two distinct rtl expressions that
1411 	     are identical in content, there might be duplicate address
1412 	     reloads.  Remove the extra set now, so that if we later find
1413 	     that we can inherit this reload, we can get rid of the
1414 	     address reloads altogether.
1415 
1416 	     Do not do this if both reloads are optional since the result
1417 	     would be an optional reload which could potentially leave
1418 	     unresolved address replacements.
1419 
1420 	     It is not sufficient to call transfer_replacements since
1421 	     choose_reload_regs will remove the replacements for address
1422 	     reloads of inherited reloads which results in the same
1423 	     problem.  */
1424 	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1425 	      && ! (rld[i].optional && optional))
1426 	    {
1427 	      /* We must keep the address reload with the lower operand
1428 		 number alive.  */
1429 	      if (opnum > rld[i].opnum)
1430 		{
1431 		  remove_address_replacements (in);
1432 		  in = rld[i].in;
1433 		  in_reg = rld[i].in_reg;
1434 		}
1435 	      else
1436 		remove_address_replacements (rld[i].in);
1437 	    }
1438 	  /* When emitting reloads we don't necessarily look at the in-
1439 	     and outmode, but also directly at the operands (in and out).
1440 	     So we can't simply overwrite them with whatever we have found
1441 	     for this (to-be-merged) reload, we have to "merge" that too.
1442 	     Reusing another reload already verified that we deal with the
1443 	     same operands, just possibly in different modes.  So we
1444 	     overwrite the operands only when the new mode is larger.
1445 	     See also PR33613.  */
1446 	  if (!rld[i].in
1447 	      || partial_subreg_p (GET_MODE (rld[i].in), GET_MODE (in)))
1448 	    rld[i].in = in;
1449 	  if (!rld[i].in_reg
1450 	      || (in_reg
1451 		  && partial_subreg_p (GET_MODE (rld[i].in_reg),
1452 				       GET_MODE (in_reg))))
1453 	    rld[i].in_reg = in_reg;
1454 	}
1455       if (out != 0)
1456 	{
1457 	  if (!rld[i].out
1458 	      || (out
1459 		  && partial_subreg_p (GET_MODE (rld[i].out),
1460 				       GET_MODE (out))))
1461 	    rld[i].out = out;
1462 	  if (outloc
1463 	      && (!rld[i].out_reg
1464 		  || partial_subreg_p (GET_MODE (rld[i].out_reg),
1465 				       GET_MODE (*outloc))))
1466 	    rld[i].out_reg = *outloc;
1467 	}
1468       if (reg_class_subset_p (rclass, rld[i].rclass))
1469 	rld[i].rclass = rclass;
1470       rld[i].optional &= optional;
1471       if (MERGE_TO_OTHER (type, rld[i].when_needed,
1472 			  opnum, rld[i].opnum))
1473 	rld[i].when_needed = RELOAD_OTHER;
1474       rld[i].opnum = MIN (rld[i].opnum, opnum);
1475     }
1476 
1477   /* If the ostensible rtx being reloaded differs from the rtx found
1478      in the location to substitute, this reload is not safe to combine
1479      because we cannot reliably tell whether it appears in the insn.  */
1480 
1481   if (in != 0 && in != *inloc)
1482     rld[i].nocombine = 1;
1483 
1484 #if 0
1485   /* This was replaced by changes in find_reloads_address_1 and the new
1486      function inc_for_reload, which go with a new meaning of reload_inc.  */
1487 
1488   /* If this is an IN/OUT reload in an insn that sets the CC,
1489      it must be for an autoincrement.  It doesn't work to store
1490      the incremented value after the insn because that would clobber the CC.
1491      So we must do the increment of the value reloaded from,
1492      increment it, store it back, then decrement again.  */
1493   if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1494     {
1495       out = 0;
1496       rld[i].out = 0;
1497       rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1498       /* If we did not find a nonzero amount-to-increment-by,
1499 	 that contradicts the belief that IN is being incremented
1500 	 in an address in this insn.  */
1501       gcc_assert (rld[i].inc != 0);
1502     }
1503 #endif
1504 
1505   /* If we will replace IN and OUT with the reload-reg,
1506      record where they are located so that substitution need
1507      not do a tree walk.  */
1508 
1509   if (replace_reloads)
1510     {
1511       if (inloc != 0)
1512 	{
1513 	  struct replacement *r = &replacements[n_replacements++];
1514 	  r->what = i;
1515 	  r->where = inloc;
1516 	  r->mode = inmode;
1517 	}
1518       if (outloc != 0 && outloc != inloc)
1519 	{
1520 	  struct replacement *r = &replacements[n_replacements++];
1521 	  r->what = i;
1522 	  r->where = outloc;
1523 	  r->mode = outmode;
1524 	}
1525     }
1526 
1527   /* If this reload is just being introduced and it has both
1528      an incoming quantity and an outgoing quantity that are
1529      supposed to be made to match, see if either one of the two
1530      can serve as the place to reload into.
1531 
1532      If one of them is acceptable, set rld[i].reg_rtx
1533      to that one.  */
1534 
1535   if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1536     {
1537       rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1538 					  inmode, outmode,
1539 					  rld[i].rclass, i,
1540 					  earlyclobber_operand_p (out));
1541 
1542       /* If the outgoing register already contains the same value
1543 	 as the incoming one, we can dispense with loading it.
1544 	 The easiest way to tell the caller that is to give a phony
1545 	 value for the incoming operand (same as outgoing one).  */
1546       if (rld[i].reg_rtx == out
1547 	  && (REG_P (in) || CONSTANT_P (in))
1548 	  && find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1549 			     static_reload_reg_p, i, inmode) != 0)
1550 	rld[i].in = out;
1551     }
1552 
1553   /* If this is an input reload and the operand contains a register that
1554      dies in this insn and is used nowhere else, see if it is the right class
1555      to be used for this reload.  Use it if so.  (This occurs most commonly
1556      in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1557      this if it is also an output reload that mentions the register unless
1558      the output is a SUBREG that clobbers an entire register.
1559 
1560      Note that the operand might be one of the spill regs, if it is a
1561      pseudo reg and we are in a block where spilling has not taken place.
1562      But if there is no spilling in this block, that is OK.
1563      An explicitly used hard reg cannot be a spill reg.  */
1564 
1565   if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1566     {
1567       rtx note;
1568       int regno;
1569       machine_mode rel_mode = inmode;
1570 
1571       if (out && partial_subreg_p (rel_mode, outmode))
1572 	rel_mode = outmode;
1573 
1574       for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1575 	if (REG_NOTE_KIND (note) == REG_DEAD
1576 	    && REG_P (XEXP (note, 0))
1577 	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1578 	    && reg_mentioned_p (XEXP (note, 0), in)
1579 	    /* Check that a former pseudo is valid; see find_dummy_reload.  */
1580 	    && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1581 		|| (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1582 				    ORIGINAL_REGNO (XEXP (note, 0)))
1583 		    && REG_NREGS (XEXP (note, 0)) == 1))
1584 	    && ! refers_to_regno_for_reload_p (regno,
1585 					       end_hard_regno (rel_mode,
1586 							       regno),
1587 					       PATTERN (this_insn), inloc)
1588 	    && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1589 	    /* If this is also an output reload, IN cannot be used as
1590 	       the reload register if it is set in this insn unless IN
1591 	       is also OUT.  */
1592 	    && (out == 0 || in == out
1593 		|| ! hard_reg_set_here_p (regno,
1594 					  end_hard_regno (rel_mode, regno),
1595 					  PATTERN (this_insn)))
1596 	    /* ??? Why is this code so different from the previous?
1597 	       Is there any simple coherent way to describe the two together?
1598 	       What's going on here.  */
1599 	    && (in != out
1600 		|| (GET_CODE (in) == SUBREG
1601 		    && (known_equal_after_align_up
1602 			(GET_MODE_SIZE (GET_MODE (in)),
1603 			 GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))),
1604 			 UNITS_PER_WORD))))
1605 	    /* Make sure the operand fits in the reg that dies.  */
1606 	    && known_le (GET_MODE_SIZE (rel_mode),
1607 			 GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1608 	    && targetm.hard_regno_mode_ok (regno, inmode)
1609 	    && targetm.hard_regno_mode_ok (regno, outmode))
1610 	  {
1611 	    unsigned int offs;
1612 	    unsigned int nregs = MAX (hard_regno_nregs (regno, inmode),
1613 				      hard_regno_nregs (regno, outmode));
1614 
1615 	    for (offs = 0; offs < nregs; offs++)
1616 	      if (fixed_regs[regno + offs]
1617 		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1618 					  regno + offs))
1619 		break;
1620 
1621 	    if (offs == nregs
1622 		&& (! (refers_to_regno_for_reload_p
1623 		       (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1624 		    || can_reload_into (in, regno, inmode)))
1625 	      {
1626 		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1627 		break;
1628 	      }
1629 	  }
1630     }
1631 
1632   if (out)
1633     output_reloadnum = i;
1634 
1635   return i;
1636 }
1637 
1638 /* Record an additional place we must replace a value
1639    for which we have already recorded a reload.
1640    RELOADNUM is the value returned by push_reload
1641    when the reload was recorded.
1642    This is used in insn patterns that use match_dup.  */
1643 
1644 static void
push_replacement(rtx * loc,int reloadnum,machine_mode mode)1645 push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1646 {
1647   if (replace_reloads)
1648     {
1649       struct replacement *r = &replacements[n_replacements++];
1650       r->what = reloadnum;
1651       r->where = loc;
1652       r->mode = mode;
1653     }
1654 }
1655 
1656 /* Duplicate any replacement we have recorded to apply at
1657    location ORIG_LOC to also be performed at DUP_LOC.
1658    This is used in insn patterns that use match_dup.  */
1659 
1660 static void
dup_replacements(rtx * dup_loc,rtx * orig_loc)1661 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1662 {
1663   int i, n = n_replacements;
1664 
1665   for (i = 0; i < n; i++)
1666     {
1667       struct replacement *r = &replacements[i];
1668       if (r->where == orig_loc)
1669 	push_replacement (dup_loc, r->what, r->mode);
1670     }
1671 }
1672 
1673 /* Transfer all replacements that used to be in reload FROM to be in
1674    reload TO.  */
1675 
1676 void
transfer_replacements(int to,int from)1677 transfer_replacements (int to, int from)
1678 {
1679   int i;
1680 
1681   for (i = 0; i < n_replacements; i++)
1682     if (replacements[i].what == from)
1683       replacements[i].what = to;
1684 }
1685 
1686 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1687    or a subpart of it.  If we have any replacements registered for IN_RTX,
1688    cancel the reloads that were supposed to load them.
1689    Return nonzero if we canceled any reloads.  */
1690 int
remove_address_replacements(rtx in_rtx)1691 remove_address_replacements (rtx in_rtx)
1692 {
1693   int i, j;
1694   char reload_flags[MAX_RELOADS];
1695   int something_changed = 0;
1696 
1697   memset (reload_flags, 0, sizeof reload_flags);
1698   for (i = 0, j = 0; i < n_replacements; i++)
1699     {
1700       if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1701 	reload_flags[replacements[i].what] |= 1;
1702       else
1703 	{
1704 	  replacements[j++] = replacements[i];
1705 	  reload_flags[replacements[i].what] |= 2;
1706 	}
1707     }
1708   /* Note that the following store must be done before the recursive calls.  */
1709   n_replacements = j;
1710 
1711   for (i = n_reloads - 1; i >= 0; i--)
1712     {
1713       if (reload_flags[i] == 1)
1714 	{
1715 	  deallocate_reload_reg (i);
1716 	  remove_address_replacements (rld[i].in);
1717 	  rld[i].in = 0;
1718 	  something_changed = 1;
1719 	}
1720     }
1721   return something_changed;
1722 }
1723 
1724 /* If there is only one output reload, and it is not for an earlyclobber
1725    operand, try to combine it with a (logically unrelated) input reload
1726    to reduce the number of reload registers needed.
1727 
1728    This is safe if the input reload does not appear in
1729    the value being output-reloaded, because this implies
1730    it is not needed any more once the original insn completes.
1731 
1732    If that doesn't work, see we can use any of the registers that
1733    die in this insn as a reload register.  We can if it is of the right
1734    class and does not appear in the value being output-reloaded.  */
1735 
1736 static void
combine_reloads(void)1737 combine_reloads (void)
1738 {
1739   int i, regno;
1740   int output_reload = -1;
1741   int secondary_out = -1;
1742   rtx note;
1743 
1744   /* Find the output reload; return unless there is exactly one
1745      and that one is mandatory.  */
1746 
1747   for (i = 0; i < n_reloads; i++)
1748     if (rld[i].out != 0)
1749       {
1750 	if (output_reload >= 0)
1751 	  return;
1752 	output_reload = i;
1753       }
1754 
1755   if (output_reload < 0 || rld[output_reload].optional)
1756     return;
1757 
1758   /* An input-output reload isn't combinable.  */
1759 
1760   if (rld[output_reload].in != 0)
1761     return;
1762 
1763   /* If this reload is for an earlyclobber operand, we can't do anything.  */
1764   if (earlyclobber_operand_p (rld[output_reload].out))
1765     return;
1766 
1767   /* If there is a reload for part of the address of this operand, we would
1768      need to change it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1769      its life to the point where doing this combine would not lower the
1770      number of spill registers needed.  */
1771   for (i = 0; i < n_reloads; i++)
1772     if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1773 	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1774 	&& rld[i].opnum == rld[output_reload].opnum)
1775       return;
1776 
1777   /* Check each input reload; can we combine it?  */
1778 
1779   for (i = 0; i < n_reloads; i++)
1780     if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1781 	/* Life span of this reload must not extend past main insn.  */
1782 	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1783 	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1784 	&& rld[i].when_needed != RELOAD_OTHER
1785 	&& (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1786 	    == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1787 				       [(int) rld[output_reload].outmode])
1788 	&& known_eq (rld[i].inc, 0)
1789 	&& rld[i].reg_rtx == 0
1790 	/* Don't combine two reloads with different secondary
1791 	   memory locations.  */
1792 	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1793 	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1794 	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1795 			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1796 	&& (targetm.small_register_classes_for_mode_p (VOIDmode)
1797 	    ? (rld[i].rclass == rld[output_reload].rclass)
1798 	    : (reg_class_subset_p (rld[i].rclass,
1799 				   rld[output_reload].rclass)
1800 	       || reg_class_subset_p (rld[output_reload].rclass,
1801 				      rld[i].rclass)))
1802 	&& (MATCHES (rld[i].in, rld[output_reload].out)
1803 	    /* Args reversed because the first arg seems to be
1804 	       the one that we imagine being modified
1805 	       while the second is the one that might be affected.  */
1806 	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1807 						      rld[i].in)
1808 		/* However, if the input is a register that appears inside
1809 		   the output, then we also can't share.
1810 		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1811 		   If the same reload reg is used for both reg 69 and the
1812 		   result to be stored in memory, then that result
1813 		   will clobber the address of the memory ref.  */
1814 		&& ! (REG_P (rld[i].in)
1815 		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1816 							     rld[output_reload].out))))
1817 	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1818 					 rld[i].when_needed != RELOAD_FOR_INPUT)
1819 	&& (reg_class_size[(int) rld[i].rclass]
1820 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
1821 	/* We will allow making things slightly worse by combining an
1822 	   input and an output, but no worse than that.  */
1823 	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1824 	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1825       {
1826 	int j;
1827 
1828 	/* We have found a reload to combine with!  */
1829 	rld[i].out = rld[output_reload].out;
1830 	rld[i].out_reg = rld[output_reload].out_reg;
1831 	rld[i].outmode = rld[output_reload].outmode;
1832 	/* Mark the old output reload as inoperative.  */
1833 	rld[output_reload].out = 0;
1834 	/* The combined reload is needed for the entire insn.  */
1835 	rld[i].when_needed = RELOAD_OTHER;
1836 	/* If the output reload had a secondary reload, copy it.  */
1837 	if (rld[output_reload].secondary_out_reload != -1)
1838 	  {
1839 	    rld[i].secondary_out_reload
1840 	      = rld[output_reload].secondary_out_reload;
1841 	    rld[i].secondary_out_icode
1842 	      = rld[output_reload].secondary_out_icode;
1843 	  }
1844 
1845 	/* Copy any secondary MEM.  */
1846 	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1847 	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1848 	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1849 	/* If required, minimize the register class.  */
1850 	if (reg_class_subset_p (rld[output_reload].rclass,
1851 				rld[i].rclass))
1852 	  rld[i].rclass = rld[output_reload].rclass;
1853 
1854 	/* Transfer all replacements from the old reload to the combined.  */
1855 	for (j = 0; j < n_replacements; j++)
1856 	  if (replacements[j].what == output_reload)
1857 	    replacements[j].what = i;
1858 
1859 	return;
1860       }
1861 
1862   /* If this insn has only one operand that is modified or written (assumed
1863      to be the first),  it must be the one corresponding to this reload.  It
1864      is safe to use anything that dies in this insn for that output provided
1865      that it does not occur in the output (we already know it isn't an
1866      earlyclobber.  If this is an asm insn, give up.  */
1867 
1868   if (INSN_CODE (this_insn) == -1)
1869     return;
1870 
1871   for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1872     if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1873 	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1874       return;
1875 
1876   /* See if some hard register that dies in this insn and is not used in
1877      the output is the right class.  Only works if the register we pick
1878      up can fully hold our output reload.  */
1879   for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1880     if (REG_NOTE_KIND (note) == REG_DEAD
1881 	&& REG_P (XEXP (note, 0))
1882 	&& !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1883 						rld[output_reload].out)
1884 	&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1885 	&& targetm.hard_regno_mode_ok (regno, rld[output_reload].outmode)
1886 	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1887 			      regno)
1888 	&& (hard_regno_nregs (regno, rld[output_reload].outmode)
1889 	    <= REG_NREGS (XEXP (note, 0)))
1890 	/* Ensure that a secondary or tertiary reload for this output
1891 	   won't want this register.  */
1892 	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1893 	    || (!(TEST_HARD_REG_BIT
1894 		  (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1895 		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1896 		    || !(TEST_HARD_REG_BIT
1897 			 (reg_class_contents[(int) rld[secondary_out].rclass],
1898 			  regno)))))
1899 	&& !fixed_regs[regno]
1900 	/* Check that a former pseudo is valid; see find_dummy_reload.  */
1901 	&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1902 	    || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1903 			       ORIGINAL_REGNO (XEXP (note, 0)))
1904 		&& REG_NREGS (XEXP (note, 0)) == 1)))
1905       {
1906 	rld[output_reload].reg_rtx
1907 	  = gen_rtx_REG (rld[output_reload].outmode, regno);
1908 	return;
1909       }
1910 }
1911 
1912 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1913    See if one of IN and OUT is a register that may be used;
1914    this is desirable since a spill-register won't be needed.
1915    If so, return the register rtx that proves acceptable.
1916 
1917    INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1918    RCLASS is the register class required for the reload.
1919 
1920    If FOR_REAL is >= 0, it is the number of the reload,
1921    and in some cases when it can be discovered that OUT doesn't need
1922    to be computed, clear out rld[FOR_REAL].out.
1923 
1924    If FOR_REAL is -1, this should not be done, because this call
1925    is just to see if a register can be found, not to find and install it.
1926 
1927    EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
1928    puts an additional constraint on being able to use IN for OUT since
1929    IN must not appear elsewhere in the insn (it is assumed that IN itself
1930    is safe from the earlyclobber).  */
1931 
1932 static rtx
find_dummy_reload(rtx real_in,rtx real_out,rtx * inloc,rtx * outloc,machine_mode inmode,machine_mode outmode,reg_class_t rclass,int for_real,int earlyclobber)1933 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1934 		   machine_mode inmode, machine_mode outmode,
1935 		   reg_class_t rclass, int for_real, int earlyclobber)
1936 {
1937   rtx in = real_in;
1938   rtx out = real_out;
1939   int in_offset = 0;
1940   int out_offset = 0;
1941   rtx value = 0;
1942 
1943   /* If operands exceed a word, we can't use either of them
1944      unless they have the same size.  */
1945   if (maybe_ne (GET_MODE_SIZE (outmode), GET_MODE_SIZE (inmode))
1946       && (maybe_gt (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1947 	  || maybe_gt (GET_MODE_SIZE (inmode), UNITS_PER_WORD)))
1948     return 0;
1949 
1950   /* Note that {in,out}_offset are needed only when 'in' or 'out'
1951      respectively refers to a hard register.  */
1952 
1953   /* Find the inside of any subregs.  */
1954   while (GET_CODE (out) == SUBREG)
1955     {
1956       if (REG_P (SUBREG_REG (out))
1957 	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1958 	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1959 					   GET_MODE (SUBREG_REG (out)),
1960 					   SUBREG_BYTE (out),
1961 					   GET_MODE (out));
1962       out = SUBREG_REG (out);
1963     }
1964   while (GET_CODE (in) == SUBREG)
1965     {
1966       if (REG_P (SUBREG_REG (in))
1967 	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1968 	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1969 					  GET_MODE (SUBREG_REG (in)),
1970 					  SUBREG_BYTE (in),
1971 					  GET_MODE (in));
1972       in = SUBREG_REG (in);
1973     }
1974 
1975   /* Narrow down the reg class, the same way push_reload will;
1976      otherwise we might find a dummy now, but push_reload won't.  */
1977   {
1978     reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1979     if (preferred_class != NO_REGS)
1980       rclass = (enum reg_class) preferred_class;
1981   }
1982 
1983   /* See if OUT will do.  */
1984   if (REG_P (out)
1985       && REGNO (out) < FIRST_PSEUDO_REGISTER)
1986     {
1987       unsigned int regno = REGNO (out) + out_offset;
1988       unsigned int nwords = hard_regno_nregs (regno, outmode);
1989       rtx saved_rtx;
1990 
1991       /* When we consider whether the insn uses OUT,
1992 	 ignore references within IN.  They don't prevent us
1993 	 from copying IN into OUT, because those refs would
1994 	 move into the insn that reloads IN.
1995 
1996 	 However, we only ignore IN in its role as this reload.
1997 	 If the insn uses IN elsewhere and it contains OUT,
1998 	 that counts.  We can't be sure it's the "same" operand
1999 	 so it might not go through this reload.
2000 
2001          We also need to avoid using OUT if it, or part of it, is a
2002          fixed register.  Modifying such registers, even transiently,
2003          may have undefined effects on the machine, such as modifying
2004          the stack pointer.  */
2005       saved_rtx = *inloc;
2006       *inloc = const0_rtx;
2007 
2008       if (regno < FIRST_PSEUDO_REGISTER
2009 	  && targetm.hard_regno_mode_ok (regno, outmode)
2010 	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2011 					     PATTERN (this_insn), outloc))
2012 	{
2013 	  unsigned int i;
2014 
2015 	  for (i = 0; i < nwords; i++)
2016 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2017 				     regno + i)
2018 		|| fixed_regs[regno + i])
2019 	      break;
2020 
2021 	  if (i == nwords)
2022 	    {
2023 	      if (REG_P (real_out))
2024 		value = real_out;
2025 	      else
2026 		value = gen_rtx_REG (outmode, regno);
2027 	    }
2028 	}
2029 
2030       *inloc = saved_rtx;
2031     }
2032 
2033   /* Consider using IN if OUT was not acceptable
2034      or if OUT dies in this insn (like the quotient in a divmod insn).
2035      We can't use IN unless it is dies in this insn,
2036      which means we must know accurately which hard regs are live.
2037      Also, the result can't go in IN if IN is used within OUT,
2038      or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
2039   if (hard_regs_live_known
2040       && REG_P (in)
2041       && REGNO (in) < FIRST_PSEUDO_REGISTER
2042       && (value == 0
2043 	  || find_reg_note (this_insn, REG_UNUSED, real_out))
2044       && find_reg_note (this_insn, REG_DEAD, real_in)
2045       && !fixed_regs[REGNO (in)]
2046       && targetm.hard_regno_mode_ok (REGNO (in),
2047 				     /* The only case where out and real_out
2048 					might have different modes is where
2049 					real_out is a subreg, and in that
2050 					case, out has a real mode.  */
2051 				     (GET_MODE (out) != VOIDmode
2052 				      ? GET_MODE (out) : outmode))
2053       && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2054 	  /* However only do this if we can be sure that this input
2055 	     operand doesn't correspond with an uninitialized pseudo.
2056 	     global can assign some hardreg to it that is the same as
2057 	     the one assigned to a different, also live pseudo (as it
2058 	     can ignore the conflict).  We must never introduce writes
2059 	     to such hardregs, as they would clobber the other live
2060 	     pseudo.  See PR 20973.  */
2061 	  || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2062 			     ORIGINAL_REGNO (in))
2063 	      /* Similarly, only do this if we can be sure that the death
2064 		 note is still valid.  global can assign some hardreg to
2065 		 the pseudo referenced in the note and simultaneously a
2066 		 subword of this hardreg to a different, also live pseudo,
2067 		 because only another subword of the hardreg is actually
2068 		 used in the insn.  This cannot happen if the pseudo has
2069 		 been assigned exactly one hardreg.  See PR 33732.  */
2070 	      && REG_NREGS (in) == 1)))
2071     {
2072       unsigned int regno = REGNO (in) + in_offset;
2073       unsigned int nwords = hard_regno_nregs (regno, inmode);
2074 
2075       if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2076 	  && ! hard_reg_set_here_p (regno, regno + nwords,
2077 				    PATTERN (this_insn))
2078 	  && (! earlyclobber
2079 	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2080 						 PATTERN (this_insn), inloc)))
2081 	{
2082 	  unsigned int i;
2083 
2084 	  for (i = 0; i < nwords; i++)
2085 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2086 				     regno + i))
2087 	      break;
2088 
2089 	  if (i == nwords)
2090 	    {
2091 	      /* If we were going to use OUT as the reload reg
2092 		 and changed our mind, it means OUT is a dummy that
2093 		 dies here.  So don't bother copying value to it.  */
2094 	      if (for_real >= 0 && value == real_out)
2095 		rld[for_real].out = 0;
2096 	      if (REG_P (real_in))
2097 		value = real_in;
2098 	      else
2099 		value = gen_rtx_REG (inmode, regno);
2100 	    }
2101 	}
2102     }
2103 
2104   return value;
2105 }
2106 
2107 /* This page contains subroutines used mainly for determining
2108    whether the IN or an OUT of a reload can serve as the
2109    reload register.  */
2110 
2111 /* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
2112 
2113 int
earlyclobber_operand_p(rtx x)2114 earlyclobber_operand_p (rtx x)
2115 {
2116   int i;
2117 
2118   for (i = 0; i < n_earlyclobbers; i++)
2119     if (reload_earlyclobbers[i] == x)
2120       return 1;
2121 
2122   return 0;
2123 }
2124 
2125 /* Return 1 if expression X alters a hard reg in the range
2126    from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2127    either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2128    X should be the body of an instruction.  */
2129 
2130 static int
hard_reg_set_here_p(unsigned int beg_regno,unsigned int end_regno,rtx x)2131 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2132 {
2133   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2134     {
2135       rtx op0 = SET_DEST (x);
2136 
2137       while (GET_CODE (op0) == SUBREG)
2138 	op0 = SUBREG_REG (op0);
2139       if (REG_P (op0))
2140 	{
2141 	  unsigned int r = REGNO (op0);
2142 
2143 	  /* See if this reg overlaps range under consideration.  */
2144 	  if (r < end_regno
2145 	      && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2146 	    return 1;
2147 	}
2148     }
2149   else if (GET_CODE (x) == PARALLEL)
2150     {
2151       int i = XVECLEN (x, 0) - 1;
2152 
2153       for (; i >= 0; i--)
2154 	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2155 	  return 1;
2156     }
2157 
2158   return 0;
2159 }
2160 
2161 /* Return 1 if ADDR is a valid memory address for mode MODE
2162    in address space AS, and check that each pseudo reg has the
2163    proper kind of hard reg.  */
2164 
2165 int
strict_memory_address_addr_space_p(machine_mode mode ATTRIBUTE_UNUSED,rtx addr,addr_space_t as)2166 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2167 				    rtx addr, addr_space_t as)
2168 {
2169 #ifdef GO_IF_LEGITIMATE_ADDRESS
2170   gcc_assert (ADDR_SPACE_GENERIC_P (as));
2171   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2172   return 0;
2173 
2174  win:
2175   return 1;
2176 #else
2177   return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2178 #endif
2179 }
2180 
2181 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2182    if they are the same hard reg, and has special hacks for
2183    autoincrement and autodecrement.
2184    This is specifically intended for find_reloads to use
2185    in determining whether two operands match.
2186    X is the operand whose number is the lower of the two.
2187 
2188    The value is 2 if Y contains a pre-increment that matches
2189    a non-incrementing address in X.  */
2190 
2191 /* ??? To be completely correct, we should arrange to pass
2192    for X the output operand and for Y the input operand.
2193    For now, we assume that the output operand has the lower number
2194    because that is natural in (SET output (... input ...)).  */
2195 
2196 int
operands_match_p(rtx x,rtx y)2197 operands_match_p (rtx x, rtx y)
2198 {
2199   int i;
2200   RTX_CODE code = GET_CODE (x);
2201   const char *fmt;
2202   int success_2;
2203 
2204   if (x == y)
2205     return 1;
2206   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2207       && (REG_P (y) || (GET_CODE (y) == SUBREG
2208 				  && REG_P (SUBREG_REG (y)))))
2209     {
2210       int j;
2211 
2212       if (code == SUBREG)
2213 	{
2214 	  i = REGNO (SUBREG_REG (x));
2215 	  if (i >= FIRST_PSEUDO_REGISTER)
2216 	    goto slow;
2217 	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2218 				    GET_MODE (SUBREG_REG (x)),
2219 				    SUBREG_BYTE (x),
2220 				    GET_MODE (x));
2221 	}
2222       else
2223 	i = REGNO (x);
2224 
2225       if (GET_CODE (y) == SUBREG)
2226 	{
2227 	  j = REGNO (SUBREG_REG (y));
2228 	  if (j >= FIRST_PSEUDO_REGISTER)
2229 	    goto slow;
2230 	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2231 				    GET_MODE (SUBREG_REG (y)),
2232 				    SUBREG_BYTE (y),
2233 				    GET_MODE (y));
2234 	}
2235       else
2236 	j = REGNO (y);
2237 
2238       /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2239 	 multiple hard register group of scalar integer registers, so that
2240 	 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2241 	 register.  */
2242       scalar_int_mode xmode;
2243       if (REG_WORDS_BIG_ENDIAN
2244 	  && is_a <scalar_int_mode> (GET_MODE (x), &xmode)
2245 	  && GET_MODE_SIZE (xmode) > UNITS_PER_WORD
2246 	  && i < FIRST_PSEUDO_REGISTER)
2247 	i += hard_regno_nregs (i, xmode) - 1;
2248       scalar_int_mode ymode;
2249       if (REG_WORDS_BIG_ENDIAN
2250 	  && is_a <scalar_int_mode> (GET_MODE (y), &ymode)
2251 	  && GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2252 	  && j < FIRST_PSEUDO_REGISTER)
2253 	j += hard_regno_nregs (j, ymode) - 1;
2254 
2255       return i == j;
2256     }
2257   /* If two operands must match, because they are really a single
2258      operand of an assembler insn, then two postincrements are invalid
2259      because the assembler insn would increment only once.
2260      On the other hand, a postincrement matches ordinary indexing
2261      if the postincrement is the output operand.  */
2262   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2263     return operands_match_p (XEXP (x, 0), y);
2264   /* Two preincrements are invalid
2265      because the assembler insn would increment only once.
2266      On the other hand, a preincrement matches ordinary indexing
2267      if the preincrement is the input operand.
2268      In this case, return 2, since some callers need to do special
2269      things when this happens.  */
2270   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2271       || GET_CODE (y) == PRE_MODIFY)
2272     return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2273 
2274  slow:
2275 
2276   /* Now we have disposed of all the cases in which different rtx codes
2277      can match.  */
2278   if (code != GET_CODE (y))
2279     return 0;
2280 
2281   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2282   if (GET_MODE (x) != GET_MODE (y))
2283     return 0;
2284 
2285   /* MEMs referring to different address space are not equivalent.  */
2286   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2287     return 0;
2288 
2289   switch (code)
2290     {
2291     CASE_CONST_UNIQUE:
2292       return 0;
2293 
2294     case LABEL_REF:
2295       return label_ref_label (x) == label_ref_label (y);
2296     case SYMBOL_REF:
2297       return XSTR (x, 0) == XSTR (y, 0);
2298 
2299     default:
2300       break;
2301     }
2302 
2303   /* Compare the elements.  If any pair of corresponding elements
2304      fail to match, return 0 for the whole things.  */
2305 
2306   success_2 = 0;
2307   fmt = GET_RTX_FORMAT (code);
2308   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2309     {
2310       int val, j;
2311       switch (fmt[i])
2312 	{
2313 	case 'w':
2314 	  if (XWINT (x, i) != XWINT (y, i))
2315 	    return 0;
2316 	  break;
2317 
2318 	case 'i':
2319 	  if (XINT (x, i) != XINT (y, i))
2320 	    return 0;
2321 	  break;
2322 
2323 	case 'p':
2324 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2325 	    return 0;
2326 	  break;
2327 
2328 	case 'e':
2329 	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2330 	  if (val == 0)
2331 	    return 0;
2332 	  /* If any subexpression returns 2,
2333 	     we should return 2 if we are successful.  */
2334 	  if (val == 2)
2335 	    success_2 = 1;
2336 	  break;
2337 
2338 	case '0':
2339 	  break;
2340 
2341 	case 'E':
2342 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2343 	    return 0;
2344 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2345 	    {
2346 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2347 	      if (val == 0)
2348 		return 0;
2349 	      if (val == 2)
2350 		success_2 = 1;
2351 	    }
2352 	  break;
2353 
2354 	  /* It is believed that rtx's at this level will never
2355 	     contain anything but integers and other rtx's,
2356 	     except for within LABEL_REFs and SYMBOL_REFs.  */
2357 	default:
2358 	  gcc_unreachable ();
2359 	}
2360     }
2361   return 1 + success_2;
2362 }
2363 
2364 /* Describe the range of registers or memory referenced by X.
2365    If X is a register, set REG_FLAG and put the first register
2366    number into START and the last plus one into END.
2367    If X is a memory reference, put a base address into BASE
2368    and a range of integer offsets into START and END.
2369    If X is pushing on the stack, we can assume it causes no trouble,
2370    so we set the SAFE field.  */
2371 
2372 static struct decomposition
decompose(rtx x)2373 decompose (rtx x)
2374 {
2375   struct decomposition val;
2376   int all_const = 0, regno;
2377 
2378   memset (&val, 0, sizeof (val));
2379 
2380   switch (GET_CODE (x))
2381     {
2382     case MEM:
2383       {
2384 	rtx base = NULL_RTX, offset = 0;
2385 	rtx addr = XEXP (x, 0);
2386 
2387 	if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2388 	    || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2389 	  {
2390 	    val.base = XEXP (addr, 0);
2391 	    val.start = -GET_MODE_SIZE (GET_MODE (x));
2392 	    val.end = GET_MODE_SIZE (GET_MODE (x));
2393 	    val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2394 	    return val;
2395 	  }
2396 
2397 	if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2398 	  {
2399 	    if (GET_CODE (XEXP (addr, 1)) == PLUS
2400 		&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2401 		&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2402 	      {
2403 		val.base  = XEXP (addr, 0);
2404 		val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2405 		val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2406 		val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2407 		return val;
2408 	      }
2409 	  }
2410 
2411 	if (GET_CODE (addr) == CONST)
2412 	  {
2413 	    addr = XEXP (addr, 0);
2414 	    all_const = 1;
2415 	  }
2416 	if (GET_CODE (addr) == PLUS)
2417 	  {
2418 	    if (CONSTANT_P (XEXP (addr, 0)))
2419 	      {
2420 		base = XEXP (addr, 1);
2421 		offset = XEXP (addr, 0);
2422 	      }
2423 	    else if (CONSTANT_P (XEXP (addr, 1)))
2424 	      {
2425 		base = XEXP (addr, 0);
2426 		offset = XEXP (addr, 1);
2427 	      }
2428 	  }
2429 
2430 	if (offset == 0)
2431 	  {
2432 	    base = addr;
2433 	    offset = const0_rtx;
2434 	  }
2435 	if (GET_CODE (offset) == CONST)
2436 	  offset = XEXP (offset, 0);
2437 	if (GET_CODE (offset) == PLUS)
2438 	  {
2439 	    if (CONST_INT_P (XEXP (offset, 0)))
2440 	      {
2441 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2442 		offset = XEXP (offset, 0);
2443 	      }
2444 	    else if (CONST_INT_P (XEXP (offset, 1)))
2445 	      {
2446 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2447 		offset = XEXP (offset, 1);
2448 	      }
2449 	    else
2450 	      {
2451 		base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2452 		offset = const0_rtx;
2453 	      }
2454 	  }
2455 	else if (!CONST_INT_P (offset))
2456 	  {
2457 	    base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2458 	    offset = const0_rtx;
2459 	  }
2460 
2461 	if (all_const && GET_CODE (base) == PLUS)
2462 	  base = gen_rtx_CONST (GET_MODE (base), base);
2463 
2464 	gcc_assert (CONST_INT_P (offset));
2465 
2466 	val.start = INTVAL (offset);
2467 	val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2468 	val.base = base;
2469       }
2470       break;
2471 
2472     case REG:
2473       val.reg_flag = 1;
2474       regno = true_regnum (x);
2475       if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2476 	{
2477 	  /* A pseudo with no hard reg.  */
2478 	  val.start = REGNO (x);
2479 	  val.end = val.start + 1;
2480 	}
2481       else
2482 	{
2483 	  /* A hard reg.  */
2484 	  val.start = regno;
2485 	  val.end = end_hard_regno (GET_MODE (x), regno);
2486 	}
2487       break;
2488 
2489     case SUBREG:
2490       if (!REG_P (SUBREG_REG (x)))
2491 	/* This could be more precise, but it's good enough.  */
2492 	return decompose (SUBREG_REG (x));
2493       regno = true_regnum (x);
2494       if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2495 	return decompose (SUBREG_REG (x));
2496 
2497       /* A hard reg.  */
2498       val.reg_flag = 1;
2499       val.start = regno;
2500       val.end = regno + subreg_nregs (x);
2501       break;
2502 
2503     case SCRATCH:
2504       /* This hasn't been assigned yet, so it can't conflict yet.  */
2505       val.safe = 1;
2506       break;
2507 
2508     default:
2509       gcc_assert (CONSTANT_P (x));
2510       val.safe = 1;
2511       break;
2512     }
2513   return val;
2514 }
2515 
2516 /* Return 1 if altering Y will not modify the value of X.
2517    Y is also described by YDATA, which should be decompose (Y).  */
2518 
2519 static int
immune_p(rtx x,rtx y,struct decomposition ydata)2520 immune_p (rtx x, rtx y, struct decomposition ydata)
2521 {
2522   struct decomposition xdata;
2523 
2524   if (ydata.reg_flag)
2525     /* In this case the decomposition structure contains register
2526        numbers rather than byte offsets.  */
2527     return !refers_to_regno_for_reload_p (ydata.start.to_constant (),
2528 					  ydata.end.to_constant (),
2529 					  x, (rtx *) 0);
2530   if (ydata.safe)
2531     return 1;
2532 
2533   gcc_assert (MEM_P (y));
2534   /* If Y is memory and X is not, Y can't affect X.  */
2535   if (!MEM_P (x))
2536     return 1;
2537 
2538   xdata = decompose (x);
2539 
2540   if (! rtx_equal_p (xdata.base, ydata.base))
2541     {
2542       /* If bases are distinct symbolic constants, there is no overlap.  */
2543       if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2544 	return 1;
2545       /* Constants and stack slots never overlap.  */
2546       if (CONSTANT_P (xdata.base)
2547 	  && (ydata.base == frame_pointer_rtx
2548 	      || ydata.base == hard_frame_pointer_rtx
2549 	      || ydata.base == stack_pointer_rtx))
2550 	return 1;
2551       if (CONSTANT_P (ydata.base)
2552 	  && (xdata.base == frame_pointer_rtx
2553 	      || xdata.base == hard_frame_pointer_rtx
2554 	      || xdata.base == stack_pointer_rtx))
2555 	return 1;
2556       /* If either base is variable, we don't know anything.  */
2557       return 0;
2558     }
2559 
2560   return known_ge (xdata.start, ydata.end) || known_ge (ydata.start, xdata.end);
2561 }
2562 
2563 /* Similar, but calls decompose.  */
2564 
2565 int
safe_from_earlyclobber(rtx op,rtx clobber)2566 safe_from_earlyclobber (rtx op, rtx clobber)
2567 {
2568   struct decomposition early_data;
2569 
2570   early_data = decompose (clobber);
2571   return immune_p (op, clobber, early_data);
2572 }
2573 
2574 /* Main entry point of this file: search the body of INSN
2575    for values that need reloading and record them with push_reload.
2576    REPLACE nonzero means record also where the values occur
2577    so that subst_reloads can be used.
2578 
2579    IND_LEVELS says how many levels of indirection are supported by this
2580    machine; a value of zero means that a memory reference is not a valid
2581    memory address.
2582 
2583    LIVE_KNOWN says we have valid information about which hard
2584    regs are live at each point in the program; this is true when
2585    we are called from global_alloc but false when stupid register
2586    allocation has been done.
2587 
2588    RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2589    which is nonnegative if the reg has been commandeered for reloading into.
2590    It is copied into STATIC_RELOAD_REG_P and referenced from there
2591    by various subroutines.
2592 
2593    Return TRUE if some operands need to be changed, because of swapping
2594    commutative operands, reg_equiv_address substitution, or whatever.  */
2595 
2596 int
find_reloads(rtx_insn * insn,int replace,int ind_levels,int live_known,short * reload_reg_p)2597 find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2598 	      short *reload_reg_p)
2599 {
2600   int insn_code_number;
2601   int i, j;
2602   int noperands;
2603   /* These start out as the constraints for the insn
2604      and they are chewed up as we consider alternatives.  */
2605   const char *constraints[MAX_RECOG_OPERANDS];
2606   /* These are the preferred classes for an operand, or NO_REGS if it isn't
2607      a register.  */
2608   enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2609   char pref_or_nothing[MAX_RECOG_OPERANDS];
2610   /* Nonzero for a MEM operand whose entire address needs a reload.
2611      May be -1 to indicate the entire address may or may not need a reload.  */
2612   int address_reloaded[MAX_RECOG_OPERANDS];
2613   /* Nonzero for an address operand that needs to be completely reloaded.
2614      May be -1 to indicate the entire operand may or may not need a reload.  */
2615   int address_operand_reloaded[MAX_RECOG_OPERANDS];
2616   /* Value of enum reload_type to use for operand.  */
2617   enum reload_type operand_type[MAX_RECOG_OPERANDS];
2618   /* Value of enum reload_type to use within address of operand.  */
2619   enum reload_type address_type[MAX_RECOG_OPERANDS];
2620   /* Save the usage of each operand.  */
2621   enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2622   int no_input_reloads = 0, no_output_reloads = 0;
2623   int n_alternatives;
2624   reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2625   char this_alternative_match_win[MAX_RECOG_OPERANDS];
2626   char this_alternative_win[MAX_RECOG_OPERANDS];
2627   char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2628   char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2629   int this_alternative_matches[MAX_RECOG_OPERANDS];
2630   reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2631   int this_alternative_number;
2632   int goal_alternative_number = 0;
2633   int operand_reloadnum[MAX_RECOG_OPERANDS];
2634   int goal_alternative_matches[MAX_RECOG_OPERANDS];
2635   int goal_alternative_matched[MAX_RECOG_OPERANDS];
2636   char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2637   char goal_alternative_win[MAX_RECOG_OPERANDS];
2638   char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2639   char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2640   int goal_alternative_swapped;
2641   int best;
2642   int commutative;
2643   char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2644   rtx substed_operand[MAX_RECOG_OPERANDS];
2645   rtx body = PATTERN (insn);
2646   rtx set = single_set (insn);
2647   int goal_earlyclobber = 0, this_earlyclobber;
2648   machine_mode operand_mode[MAX_RECOG_OPERANDS];
2649   int retval = 0;
2650 
2651   this_insn = insn;
2652   n_reloads = 0;
2653   n_replacements = 0;
2654   n_earlyclobbers = 0;
2655   replace_reloads = replace;
2656   hard_regs_live_known = live_known;
2657   static_reload_reg_p = reload_reg_p;
2658 
2659   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2660      neither are insns that SET cc0.  Insns that use CC0 are not allowed
2661      to have any input reloads.  */
2662   if (JUMP_P (insn) || CALL_P (insn))
2663     no_output_reloads = 1;
2664 
2665   if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
2666     no_input_reloads = 1;
2667   if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (insn)))
2668     no_output_reloads = 1;
2669 
2670   /* The eliminated forms of any secondary memory locations are per-insn, so
2671      clear them out here.  */
2672 
2673   if (secondary_memlocs_elim_used)
2674     {
2675       memset (secondary_memlocs_elim, 0,
2676 	      sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2677       secondary_memlocs_elim_used = 0;
2678     }
2679 
2680   /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2681      is cheap to move between them.  If it is not, there may not be an insn
2682      to do the copy, so we may need a reload.  */
2683   if (GET_CODE (body) == SET
2684       && REG_P (SET_DEST (body))
2685       && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2686       && REG_P (SET_SRC (body))
2687       && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2688       && register_move_cost (GET_MODE (SET_SRC (body)),
2689 			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2690 			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2691     return 0;
2692 
2693   extract_insn (insn);
2694 
2695   noperands = reload_n_operands = recog_data.n_operands;
2696   n_alternatives = recog_data.n_alternatives;
2697 
2698   /* Just return "no reloads" if insn has no operands with constraints.  */
2699   if (noperands == 0 || n_alternatives == 0)
2700     return 0;
2701 
2702   insn_code_number = INSN_CODE (insn);
2703   this_insn_is_asm = insn_code_number < 0;
2704 
2705   memcpy (operand_mode, recog_data.operand_mode,
2706 	  noperands * sizeof (machine_mode));
2707   memcpy (constraints, recog_data.constraints,
2708 	  noperands * sizeof (const char *));
2709 
2710   commutative = -1;
2711 
2712   /* If we will need to know, later, whether some pair of operands
2713      are the same, we must compare them now and save the result.
2714      Reloading the base and index registers will clobber them
2715      and afterward they will fail to match.  */
2716 
2717   for (i = 0; i < noperands; i++)
2718     {
2719       const char *p;
2720       int c;
2721       char *end;
2722 
2723       substed_operand[i] = recog_data.operand[i];
2724       p = constraints[i];
2725 
2726       modified[i] = RELOAD_READ;
2727 
2728       /* Scan this operand's constraint to see if it is an output operand,
2729 	 an in-out operand, is commutative, or should match another.  */
2730 
2731       while ((c = *p))
2732 	{
2733 	  p += CONSTRAINT_LEN (c, p);
2734 	  switch (c)
2735 	    {
2736 	    case '=':
2737 	      modified[i] = RELOAD_WRITE;
2738 	      break;
2739 	    case '+':
2740 	      modified[i] = RELOAD_READ_WRITE;
2741 	      break;
2742 	    case '%':
2743 	      {
2744 		/* The last operand should not be marked commutative.  */
2745 		gcc_assert (i != noperands - 1);
2746 
2747 		/* We currently only support one commutative pair of
2748 		   operands.  Some existing asm code currently uses more
2749 		   than one pair.  Previously, that would usually work,
2750 		   but sometimes it would crash the compiler.  We
2751 		   continue supporting that case as well as we can by
2752 		   silently ignoring all but the first pair.  In the
2753 		   future we may handle it correctly.  */
2754 		if (commutative < 0)
2755 		  commutative = i;
2756 		else
2757 		  gcc_assert (this_insn_is_asm);
2758 	      }
2759 	      break;
2760 	    /* Use of ISDIGIT is tempting here, but it may get expensive because
2761 	       of locale support we don't want.  */
2762 	    case '0': case '1': case '2': case '3': case '4':
2763 	    case '5': case '6': case '7': case '8': case '9':
2764 	      {
2765 		c = strtoul (p - 1, &end, 10);
2766 		p = end;
2767 
2768 		operands_match[c][i]
2769 		  = operands_match_p (recog_data.operand[c],
2770 				      recog_data.operand[i]);
2771 
2772 		/* An operand may not match itself.  */
2773 		gcc_assert (c != i);
2774 
2775 		/* If C can be commuted with C+1, and C might need to match I,
2776 		   then C+1 might also need to match I.  */
2777 		if (commutative >= 0)
2778 		  {
2779 		    if (c == commutative || c == commutative + 1)
2780 		      {
2781 			int other = c + (c == commutative ? 1 : -1);
2782 			operands_match[other][i]
2783 			  = operands_match_p (recog_data.operand[other],
2784 					      recog_data.operand[i]);
2785 		      }
2786 		    if (i == commutative || i == commutative + 1)
2787 		      {
2788 			int other = i + (i == commutative ? 1 : -1);
2789 			operands_match[c][other]
2790 			  = operands_match_p (recog_data.operand[c],
2791 					      recog_data.operand[other]);
2792 		      }
2793 		    /* Note that C is supposed to be less than I.
2794 		       No need to consider altering both C and I because in
2795 		       that case we would alter one into the other.  */
2796 		  }
2797 	      }
2798 	    }
2799 	}
2800     }
2801 
2802   /* Examine each operand that is a memory reference or memory address
2803      and reload parts of the addresses into index registers.
2804      Also here any references to pseudo regs that didn't get hard regs
2805      but are equivalent to constants get replaced in the insn itself
2806      with those constants.  Nobody will ever see them again.
2807 
2808      Finally, set up the preferred classes of each operand.  */
2809 
2810   for (i = 0; i < noperands; i++)
2811     {
2812       RTX_CODE code = GET_CODE (recog_data.operand[i]);
2813 
2814       address_reloaded[i] = 0;
2815       address_operand_reloaded[i] = 0;
2816       operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2817 			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2818 			 : RELOAD_OTHER);
2819       address_type[i]
2820 	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2821 	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2822 	   : RELOAD_OTHER);
2823 
2824       if (*constraints[i] == 0)
2825 	/* Ignore things like match_operator operands.  */
2826 	;
2827       else if (insn_extra_address_constraint
2828 	       (lookup_constraint (constraints[i])))
2829 	{
2830 	  address_operand_reloaded[i]
2831 	    = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2832 				    recog_data.operand[i],
2833 				    recog_data.operand_loc[i],
2834 				    i, operand_type[i], ind_levels, insn);
2835 
2836 	  /* If we now have a simple operand where we used to have a
2837 	     PLUS or MULT, re-recognize and try again.  */
2838 	  if ((OBJECT_P (*recog_data.operand_loc[i])
2839 	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2840 	      && (GET_CODE (recog_data.operand[i]) == MULT
2841 		  || GET_CODE (recog_data.operand[i]) == PLUS))
2842 	    {
2843 	      INSN_CODE (insn) = -1;
2844 	      retval = find_reloads (insn, replace, ind_levels, live_known,
2845 				     reload_reg_p);
2846 	      return retval;
2847 	    }
2848 
2849 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2850 	  substed_operand[i] = recog_data.operand[i];
2851 
2852 	  /* Address operands are reloaded in their existing mode,
2853 	     no matter what is specified in the machine description.  */
2854 	  operand_mode[i] = GET_MODE (recog_data.operand[i]);
2855 
2856 	  /* If the address is a single CONST_INT pick address mode
2857 	     instead otherwise we will later not know in which mode
2858 	     the reload should be performed.  */
2859 	  if (operand_mode[i] == VOIDmode)
2860 	    operand_mode[i] = Pmode;
2861 
2862 	}
2863       else if (code == MEM)
2864 	{
2865 	  address_reloaded[i]
2866 	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2867 				    recog_data.operand_loc[i],
2868 				    XEXP (recog_data.operand[i], 0),
2869 				    &XEXP (recog_data.operand[i], 0),
2870 				    i, address_type[i], ind_levels, insn);
2871 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2872 	  substed_operand[i] = recog_data.operand[i];
2873 	}
2874       else if (code == SUBREG)
2875 	{
2876 	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2877 	  rtx op
2878 	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2879 				   ind_levels,
2880 				   set != 0
2881 				   && &SET_DEST (set) == recog_data.operand_loc[i],
2882 				   insn,
2883 				   &address_reloaded[i]);
2884 
2885 	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2886 	     that didn't get a hard register, emit a USE with a REG_EQUAL
2887 	     note in front so that we might inherit a previous, possibly
2888 	     wider reload.  */
2889 
2890 	  if (replace
2891 	      && MEM_P (op)
2892 	      && REG_P (reg)
2893 	      && known_ge (GET_MODE_SIZE (GET_MODE (reg)),
2894 			   GET_MODE_SIZE (GET_MODE (op)))
2895 	      && reg_equiv_constant (REGNO (reg)) == 0)
2896 	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2897 						   insn),
2898 				 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2899 
2900 	  substed_operand[i] = recog_data.operand[i] = op;
2901 	}
2902       else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2903 	/* We can get a PLUS as an "operand" as a result of register
2904 	   elimination.  See eliminate_regs and gen_reload.  We handle
2905 	   a unary operator by reloading the operand.  */
2906 	substed_operand[i] = recog_data.operand[i]
2907 	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2908 				 ind_levels, 0, insn,
2909 				 &address_reloaded[i]);
2910       else if (code == REG)
2911 	{
2912 	  /* This is equivalent to calling find_reloads_toplev.
2913 	     The code is duplicated for speed.
2914 	     When we find a pseudo always equivalent to a constant,
2915 	     we replace it by the constant.  We must be sure, however,
2916 	     that we don't try to replace it in the insn in which it
2917 	     is being set.  */
2918 	  int regno = REGNO (recog_data.operand[i]);
2919 	  if (reg_equiv_constant (regno) != 0
2920 	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2921 	    {
2922 	      /* Record the existing mode so that the check if constants are
2923 		 allowed will work when operand_mode isn't specified.  */
2924 
2925 	      if (operand_mode[i] == VOIDmode)
2926 		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2927 
2928 	      substed_operand[i] = recog_data.operand[i]
2929 		= reg_equiv_constant (regno);
2930 	    }
2931 	  if (reg_equiv_memory_loc (regno) != 0
2932 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2933 	    /* We need not give a valid is_set_dest argument since the case
2934 	       of a constant equivalence was checked above.  */
2935 	    substed_operand[i] = recog_data.operand[i]
2936 	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2937 				     ind_levels, 0, insn,
2938 				     &address_reloaded[i]);
2939 	}
2940       /* If the operand is still a register (we didn't replace it with an
2941 	 equivalent), get the preferred class to reload it into.  */
2942       code = GET_CODE (recog_data.operand[i]);
2943       preferred_class[i]
2944 	= ((code == REG && REGNO (recog_data.operand[i])
2945 	    >= FIRST_PSEUDO_REGISTER)
2946 	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2947 	   : NO_REGS);
2948       pref_or_nothing[i]
2949 	= (code == REG
2950 	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2951 	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2952     }
2953 
2954   /* If this is simply a copy from operand 1 to operand 0, merge the
2955      preferred classes for the operands.  */
2956   if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2957       && recog_data.operand[1] == SET_SRC (set))
2958     {
2959       preferred_class[0] = preferred_class[1]
2960 	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2961       pref_or_nothing[0] |= pref_or_nothing[1];
2962       pref_or_nothing[1] |= pref_or_nothing[0];
2963     }
2964 
2965   /* Now see what we need for pseudo-regs that didn't get hard regs
2966      or got the wrong kind of hard reg.  For this, we must consider
2967      all the operands together against the register constraints.  */
2968 
2969   best = MAX_RECOG_OPERANDS * 2 + 600;
2970 
2971   goal_alternative_swapped = 0;
2972 
2973   /* The constraints are made of several alternatives.
2974      Each operand's constraint looks like foo,bar,... with commas
2975      separating the alternatives.  The first alternatives for all
2976      operands go together, the second alternatives go together, etc.
2977 
2978      First loop over alternatives.  */
2979 
2980   alternative_mask enabled = get_enabled_alternatives (insn);
2981   for (this_alternative_number = 0;
2982        this_alternative_number < n_alternatives;
2983        this_alternative_number++)
2984     {
2985       int swapped;
2986 
2987       if (!TEST_BIT (enabled, this_alternative_number))
2988 	{
2989 	  int i;
2990 
2991 	  for (i = 0; i < recog_data.n_operands; i++)
2992 	    constraints[i] = skip_alternative (constraints[i]);
2993 
2994 	  continue;
2995 	}
2996 
2997       /* If insn is commutative (it's safe to exchange a certain pair
2998 	 of operands) then we need to try each alternative twice, the
2999 	 second time matching those two operands as if we had
3000 	 exchanged them.  To do this, really exchange them in
3001 	 operands.  */
3002       for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3003 	{
3004 	  /* Loop over operands for one constraint alternative.  */
3005 	  /* LOSERS counts those that don't fit this alternative
3006 	     and would require loading.  */
3007 	  int losers = 0;
3008 	  /* BAD is set to 1 if it some operand can't fit this alternative
3009 	     even after reloading.  */
3010 	  int bad = 0;
3011 	  /* REJECT is a count of how undesirable this alternative says it is
3012 	     if any reloading is required.  If the alternative matches exactly
3013 	     then REJECT is ignored, but otherwise it gets this much
3014 	     counted against it in addition to the reloading needed.  Each
3015 	     ? counts three times here since we want the disparaging caused by
3016 	     a bad register class to only count 1/3 as much.  */
3017 	  int reject = 0;
3018 
3019 	  if (swapped)
3020 	    {
3021 	      recog_data.operand[commutative] = substed_operand[commutative + 1];
3022 	      recog_data.operand[commutative + 1] = substed_operand[commutative];
3023 	      /* Swap the duplicates too.  */
3024 	      for (i = 0; i < recog_data.n_dups; i++)
3025 		if (recog_data.dup_num[i] == commutative
3026 		    || recog_data.dup_num[i] == commutative + 1)
3027 		  *recog_data.dup_loc[i]
3028 		    = recog_data.operand[(int) recog_data.dup_num[i]];
3029 
3030 	      std::swap (preferred_class[commutative],
3031 			 preferred_class[commutative + 1]);
3032 	      std::swap (pref_or_nothing[commutative],
3033 			 pref_or_nothing[commutative + 1]);
3034 	      std::swap (address_reloaded[commutative],
3035 			 address_reloaded[commutative + 1]);
3036 	    }
3037 
3038 	  this_earlyclobber = 0;
3039 
3040 	  for (i = 0; i < noperands; i++)
3041 	    {
3042 	      const char *p = constraints[i];
3043 	      char *end;
3044 	      int len;
3045 	      int win = 0;
3046 	      int did_match = 0;
3047 	      /* 0 => this operand can be reloaded somehow for this alternative.  */
3048 	      int badop = 1;
3049 	      /* 0 => this operand can be reloaded if the alternative allows regs.  */
3050 	      int winreg = 0;
3051 	      int c;
3052 	      int m;
3053 	      rtx operand = recog_data.operand[i];
3054 	      int offset = 0;
3055 	      /* Nonzero means this is a MEM that must be reloaded into a reg
3056 		 regardless of what the constraint says.  */
3057 	      int force_reload = 0;
3058 	      int offmemok = 0;
3059 	      /* Nonzero if a constant forced into memory would be OK for this
3060 		 operand.  */
3061 	      int constmemok = 0;
3062 	      int earlyclobber = 0;
3063 	      enum constraint_num cn;
3064 	      enum reg_class cl;
3065 
3066 	      /* If the predicate accepts a unary operator, it means that
3067 		 we need to reload the operand, but do not do this for
3068 		 match_operator and friends.  */
3069 	      if (UNARY_P (operand) && *p != 0)
3070 		operand = XEXP (operand, 0);
3071 
3072 	      /* If the operand is a SUBREG, extract
3073 		 the REG or MEM (or maybe even a constant) within.
3074 		 (Constants can occur as a result of reg_equiv_constant.)  */
3075 
3076 	      while (GET_CODE (operand) == SUBREG)
3077 		{
3078 		  /* Offset only matters when operand is a REG and
3079 		     it is a hard reg.  This is because it is passed
3080 		     to reg_fits_class_p if it is a REG and all pseudos
3081 		     return 0 from that function.  */
3082 		  if (REG_P (SUBREG_REG (operand))
3083 		      && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3084 		    {
3085 		      if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3086 						 GET_MODE (SUBREG_REG (operand)),
3087 						 SUBREG_BYTE (operand),
3088 						 GET_MODE (operand)) < 0)
3089 			force_reload = 1;
3090 		      offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3091 						     GET_MODE (SUBREG_REG (operand)),
3092 						     SUBREG_BYTE (operand),
3093 						     GET_MODE (operand));
3094 		    }
3095 		  operand = SUBREG_REG (operand);
3096 		  /* Force reload if this is a constant or PLUS or if there may
3097 		     be a problem accessing OPERAND in the outer mode.  */
3098 		  scalar_int_mode inner_mode;
3099 		  if (CONSTANT_P (operand)
3100 		      || GET_CODE (operand) == PLUS
3101 		      /* We must force a reload of paradoxical SUBREGs
3102 			 of a MEM because the alignment of the inner value
3103 			 may not be enough to do the outer reference.  On
3104 			 big-endian machines, it may also reference outside
3105 			 the object.
3106 
3107 			 On machines that extend byte operations and we have a
3108 			 SUBREG where both the inner and outer modes are no wider
3109 			 than a word and the inner mode is narrower, is integral,
3110 			 and gets extended when loaded from memory, combine.c has
3111 			 made assumptions about the behavior of the machine in such
3112 			 register access.  If the data is, in fact, in memory we
3113 			 must always load using the size assumed to be in the
3114 			 register and let the insn do the different-sized
3115 			 accesses.
3116 
3117 			 This is doubly true if WORD_REGISTER_OPERATIONS.  In
3118 			 this case eliminate_regs has left non-paradoxical
3119 			 subregs for push_reload to see.  Make sure it does
3120 			 by forcing the reload.
3121 
3122 			 ??? When is it right at this stage to have a subreg
3123 			 of a mem that is _not_ to be handled specially?  IMO
3124 			 those should have been reduced to just a mem.  */
3125 		      || ((MEM_P (operand)
3126 			   || (REG_P (operand)
3127 			       && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3128 			  && (WORD_REGISTER_OPERATIONS
3129 			      || (((maybe_lt
3130 				    (GET_MODE_BITSIZE (GET_MODE (operand)),
3131 				     BIGGEST_ALIGNMENT))
3132 				   && (paradoxical_subreg_p
3133 				       (operand_mode[i], GET_MODE (operand)))))
3134 			      || BYTES_BIG_ENDIAN
3135 			      || (known_le (GET_MODE_SIZE (operand_mode[i]),
3136 					    UNITS_PER_WORD)
3137 				  && (is_a <scalar_int_mode>
3138 				      (GET_MODE (operand), &inner_mode))
3139 				  && (GET_MODE_SIZE (inner_mode)
3140 				      <= UNITS_PER_WORD)
3141 				  && paradoxical_subreg_p (operand_mode[i],
3142 							   inner_mode)
3143 				  && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)))
3144 		      )
3145 		    force_reload = 1;
3146 		}
3147 
3148 	      this_alternative[i] = NO_REGS;
3149 	      this_alternative_win[i] = 0;
3150 	      this_alternative_match_win[i] = 0;
3151 	      this_alternative_offmemok[i] = 0;
3152 	      this_alternative_earlyclobber[i] = 0;
3153 	      this_alternative_matches[i] = -1;
3154 
3155 	      /* An empty constraint or empty alternative
3156 		 allows anything which matched the pattern.  */
3157 	      if (*p == 0 || *p == ',')
3158 		win = 1, badop = 0;
3159 
3160 	      /* Scan this alternative's specs for this operand;
3161 		 set WIN if the operand fits any letter in this alternative.
3162 		 Otherwise, clear BADOP if this operand could
3163 		 fit some letter after reloads,
3164 		 or set WINREG if this operand could fit after reloads
3165 		 provided the constraint allows some registers.  */
3166 
3167 	      do
3168 		switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3169 		  {
3170 		  case '\0':
3171 		    len = 0;
3172 		    break;
3173 		  case ',':
3174 		    c = '\0';
3175 		    break;
3176 
3177 		  case '?':
3178 		    reject += 6;
3179 		    break;
3180 
3181 		  case '!':
3182 		    reject = 600;
3183 		    break;
3184 
3185 		  case '#':
3186 		    /* Ignore rest of this alternative as far as
3187 		       reloading is concerned.  */
3188 		    do
3189 		      p++;
3190 		    while (*p && *p != ',');
3191 		    len = 0;
3192 		    break;
3193 
3194 		  case '0':  case '1':  case '2':  case '3':  case '4':
3195 		  case '5':  case '6':  case '7':  case '8':  case '9':
3196 		    m = strtoul (p, &end, 10);
3197 		    p = end;
3198 		    len = 0;
3199 
3200 		    this_alternative_matches[i] = m;
3201 		    /* We are supposed to match a previous operand.
3202 		       If we do, we win if that one did.
3203 		       If we do not, count both of the operands as losers.
3204 		       (This is too conservative, since most of the time
3205 		       only a single reload insn will be needed to make
3206 		       the two operands win.  As a result, this alternative
3207 		       may be rejected when it is actually desirable.)  */
3208 		    if ((swapped && (m != commutative || i != commutative + 1))
3209 			/* If we are matching as if two operands were swapped,
3210 			   also pretend that operands_match had been computed
3211 			   with swapped.
3212 			   But if I is the second of those and C is the first,
3213 			   don't exchange them, because operands_match is valid
3214 			   only on one side of its diagonal.  */
3215 			? (operands_match
3216 			   [(m == commutative || m == commutative + 1)
3217 			    ? 2 * commutative + 1 - m : m]
3218 			   [(i == commutative || i == commutative + 1)
3219 			    ? 2 * commutative + 1 - i : i])
3220 			: operands_match[m][i])
3221 		      {
3222 			/* If we are matching a non-offsettable address where an
3223 			   offsettable address was expected, then we must reject
3224 			   this combination, because we can't reload it.  */
3225 			if (this_alternative_offmemok[m]
3226 			    && MEM_P (recog_data.operand[m])
3227 			    && this_alternative[m] == NO_REGS
3228 			    && ! this_alternative_win[m])
3229 			  bad = 1;
3230 
3231 			did_match = this_alternative_win[m];
3232 		      }
3233 		    else
3234 		      {
3235 			/* Operands don't match.  */
3236 			rtx value;
3237 			int loc1, loc2;
3238 			/* Retroactively mark the operand we had to match
3239 			   as a loser, if it wasn't already.  */
3240 			if (this_alternative_win[m])
3241 			  losers++;
3242 			this_alternative_win[m] = 0;
3243 			if (this_alternative[m] == NO_REGS)
3244 			  bad = 1;
3245 			/* But count the pair only once in the total badness of
3246 			   this alternative, if the pair can be a dummy reload.
3247 			   The pointers in operand_loc are not swapped; swap
3248 			   them by hand if necessary.  */
3249 			if (swapped && i == commutative)
3250 			  loc1 = commutative + 1;
3251 			else if (swapped && i == commutative + 1)
3252 			  loc1 = commutative;
3253 			else
3254 			  loc1 = i;
3255 			if (swapped && m == commutative)
3256 			  loc2 = commutative + 1;
3257 			else if (swapped && m == commutative + 1)
3258 			  loc2 = commutative;
3259 			else
3260 			  loc2 = m;
3261 			value
3262 			  = find_dummy_reload (recog_data.operand[i],
3263 					       recog_data.operand[m],
3264 					       recog_data.operand_loc[loc1],
3265 					       recog_data.operand_loc[loc2],
3266 					       operand_mode[i], operand_mode[m],
3267 					       this_alternative[m], -1,
3268 					       this_alternative_earlyclobber[m]);
3269 
3270 			if (value != 0)
3271 			  losers--;
3272 		      }
3273 		    /* This can be fixed with reloads if the operand
3274 		       we are supposed to match can be fixed with reloads.  */
3275 		    badop = 0;
3276 		    this_alternative[i] = this_alternative[m];
3277 
3278 		    /* If we have to reload this operand and some previous
3279 		       operand also had to match the same thing as this
3280 		       operand, we don't know how to do that.  So reject this
3281 		       alternative.  */
3282 		    if (! did_match || force_reload)
3283 		      for (j = 0; j < i; j++)
3284 			if (this_alternative_matches[j]
3285 			    == this_alternative_matches[i])
3286 			  {
3287 			    badop = 1;
3288 			    break;
3289 			  }
3290 		    break;
3291 
3292 		  case 'p':
3293 		    /* All necessary reloads for an address_operand
3294 		       were handled in find_reloads_address.  */
3295 		    this_alternative[i]
3296 		      = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3297 					ADDRESS, SCRATCH);
3298 		    win = 1;
3299 		    badop = 0;
3300 		    break;
3301 
3302 		  case TARGET_MEM_CONSTRAINT:
3303 		    if (force_reload)
3304 		      break;
3305 		    if (MEM_P (operand)
3306 			|| (REG_P (operand)
3307 			    && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3308 			    && reg_renumber[REGNO (operand)] < 0))
3309 		      win = 1;
3310 		    if (CONST_POOL_OK_P (operand_mode[i], operand))
3311 		      badop = 0;
3312 		    constmemok = 1;
3313 		    break;
3314 
3315 		  case '<':
3316 		    if (MEM_P (operand)
3317 			&& ! address_reloaded[i]
3318 			&& (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3319 			    || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3320 		      win = 1;
3321 		    break;
3322 
3323 		  case '>':
3324 		    if (MEM_P (operand)
3325 			&& ! address_reloaded[i]
3326 			&& (GET_CODE (XEXP (operand, 0)) == PRE_INC
3327 			    || GET_CODE (XEXP (operand, 0)) == POST_INC))
3328 		      win = 1;
3329 		    break;
3330 
3331 		    /* Memory operand whose address is not offsettable.  */
3332 		  case 'V':
3333 		    if (force_reload)
3334 		      break;
3335 		    if (MEM_P (operand)
3336 			&& ! (ind_levels ? offsettable_memref_p (operand)
3337 			      : offsettable_nonstrict_memref_p (operand))
3338 			/* Certain mem addresses will become offsettable
3339 			   after they themselves are reloaded.  This is important;
3340 			   we don't want our own handling of unoffsettables
3341 			   to override the handling of reg_equiv_address.  */
3342 			&& !(REG_P (XEXP (operand, 0))
3343 			     && (ind_levels == 0
3344 				 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3345 		      win = 1;
3346 		    break;
3347 
3348 		    /* Memory operand whose address is offsettable.  */
3349 		  case 'o':
3350 		    if (force_reload)
3351 		      break;
3352 		    if ((MEM_P (operand)
3353 			 /* If IND_LEVELS, find_reloads_address won't reload a
3354 			    pseudo that didn't get a hard reg, so we have to
3355 			    reject that case.  */
3356 			 && ((ind_levels ? offsettable_memref_p (operand)
3357 			      : offsettable_nonstrict_memref_p (operand))
3358 			     /* A reloaded address is offsettable because it is now
3359 				just a simple register indirect.  */
3360 			     || address_reloaded[i] == 1))
3361 			|| (REG_P (operand)
3362 			    && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3363 			    && reg_renumber[REGNO (operand)] < 0
3364 			    /* If reg_equiv_address is nonzero, we will be
3365 			       loading it into a register; hence it will be
3366 			       offsettable, but we cannot say that reg_equiv_mem
3367 			       is offsettable without checking.  */
3368 			    && ((reg_equiv_mem (REGNO (operand)) != 0
3369 				 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3370 				|| (reg_equiv_address (REGNO (operand)) != 0))))
3371 		      win = 1;
3372 		    if (CONST_POOL_OK_P (operand_mode[i], operand)
3373 			|| MEM_P (operand))
3374 		      badop = 0;
3375 		    constmemok = 1;
3376 		    offmemok = 1;
3377 		    break;
3378 
3379 		  case '&':
3380 		    /* Output operand that is stored before the need for the
3381 		       input operands (and their index registers) is over.  */
3382 		    earlyclobber = 1, this_earlyclobber = 1;
3383 		    break;
3384 
3385 		  case 'X':
3386 		    force_reload = 0;
3387 		    win = 1;
3388 		    break;
3389 
3390 		  case 'g':
3391 		    if (! force_reload
3392 			/* A PLUS is never a valid operand, but reload can make
3393 			   it from a register when eliminating registers.  */
3394 			&& GET_CODE (operand) != PLUS
3395 			/* A SCRATCH is not a valid operand.  */
3396 			&& GET_CODE (operand) != SCRATCH
3397 			&& (! CONSTANT_P (operand)
3398 			    || ! flag_pic
3399 			    || LEGITIMATE_PIC_OPERAND_P (operand))
3400 			&& (GENERAL_REGS == ALL_REGS
3401 			    || !REG_P (operand)
3402 			    || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3403 				&& reg_renumber[REGNO (operand)] < 0)))
3404 		      win = 1;
3405 		    cl = GENERAL_REGS;
3406 		    goto reg;
3407 
3408 		  default:
3409 		    cn = lookup_constraint (p);
3410 		    switch (get_constraint_type (cn))
3411 		      {
3412 		      case CT_REGISTER:
3413 			cl = reg_class_for_constraint (cn);
3414 			if (cl != NO_REGS)
3415 			  goto reg;
3416 			break;
3417 
3418 		      case CT_CONST_INT:
3419 			if (CONST_INT_P (operand)
3420 			    && (insn_const_int_ok_for_constraint
3421 				(INTVAL (operand), cn)))
3422 			  win = true;
3423 			break;
3424 
3425 		      case CT_MEMORY:
3426 			if (force_reload)
3427 			  break;
3428 			if (constraint_satisfied_p (operand, cn))
3429 			  win = 1;
3430 			/* If the address was already reloaded,
3431 			   we win as well.  */
3432 			else if (MEM_P (operand) && address_reloaded[i] == 1)
3433 			  win = 1;
3434 			/* Likewise if the address will be reloaded because
3435 			   reg_equiv_address is nonzero.  For reg_equiv_mem
3436 			   we have to check.  */
3437 			else if (REG_P (operand)
3438 				 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3439 				 && reg_renumber[REGNO (operand)] < 0
3440 				 && ((reg_equiv_mem (REGNO (operand)) != 0
3441 				      && (constraint_satisfied_p
3442 					  (reg_equiv_mem (REGNO (operand)),
3443 					   cn)))
3444 				     || (reg_equiv_address (REGNO (operand))
3445 					 != 0)))
3446 			  win = 1;
3447 
3448 			/* If we didn't already win, we can reload
3449 			   constants via force_const_mem, and other
3450 			   MEMs by reloading the address like for 'o'.  */
3451 			if (CONST_POOL_OK_P (operand_mode[i], operand)
3452 			    || MEM_P (operand))
3453 			  badop = 0;
3454 			constmemok = 1;
3455 			offmemok = 1;
3456 			break;
3457 
3458 		      case CT_SPECIAL_MEMORY:
3459 			if (force_reload)
3460 			  break;
3461 			if (constraint_satisfied_p (operand, cn))
3462 			  win = 1;
3463 			/* Likewise if the address will be reloaded because
3464 			   reg_equiv_address is nonzero.  For reg_equiv_mem
3465 			   we have to check.  */
3466 			else if (REG_P (operand)
3467 				 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3468 				 && reg_renumber[REGNO (operand)] < 0
3469 				 && reg_equiv_mem (REGNO (operand)) != 0
3470 				 && (constraint_satisfied_p
3471 				     (reg_equiv_mem (REGNO (operand)), cn)))
3472 			  win = 1;
3473 			break;
3474 
3475 		      case CT_ADDRESS:
3476 			if (constraint_satisfied_p (operand, cn))
3477 			  win = 1;
3478 
3479 			/* If we didn't already win, we can reload
3480 			   the address into a base register.  */
3481 			this_alternative[i]
3482 			  = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3483 					    ADDRESS, SCRATCH);
3484 			badop = 0;
3485 			break;
3486 
3487 		      case CT_FIXED_FORM:
3488 			if (constraint_satisfied_p (operand, cn))
3489 			  win = 1;
3490 			break;
3491 		      }
3492 		    break;
3493 
3494 		  reg:
3495 		    this_alternative[i]
3496 		      = reg_class_subunion[this_alternative[i]][cl];
3497 		    if (GET_MODE (operand) == BLKmode)
3498 		      break;
3499 		    winreg = 1;
3500 		    if (REG_P (operand)
3501 			&& reg_fits_class_p (operand, this_alternative[i],
3502   			             offset, GET_MODE (recog_data.operand[i])))
3503 		      win = 1;
3504 		    break;
3505 		  }
3506 	      while ((p += len), c);
3507 
3508 	      if (swapped == (commutative >= 0 ? 1 : 0))
3509 		constraints[i] = p;
3510 
3511 	      /* If this operand could be handled with a reg,
3512 		 and some reg is allowed, then this operand can be handled.  */
3513 	      if (winreg && this_alternative[i] != NO_REGS
3514 		  && (win || !class_only_fixed_regs[this_alternative[i]]))
3515 		badop = 0;
3516 
3517 	      /* Record which operands fit this alternative.  */
3518 	      this_alternative_earlyclobber[i] = earlyclobber;
3519 	      if (win && ! force_reload)
3520 		this_alternative_win[i] = 1;
3521 	      else if (did_match && ! force_reload)
3522 		this_alternative_match_win[i] = 1;
3523 	      else
3524 		{
3525 		  int const_to_mem = 0;
3526 
3527 		  this_alternative_offmemok[i] = offmemok;
3528 		  losers++;
3529 		  if (badop)
3530 		    bad = 1;
3531 		  /* Alternative loses if it has no regs for a reg operand.  */
3532 		  if (REG_P (operand)
3533 		      && this_alternative[i] == NO_REGS
3534 		      && this_alternative_matches[i] < 0)
3535 		    bad = 1;
3536 
3537 		  /* If this is a constant that is reloaded into the desired
3538 		     class by copying it to memory first, count that as another
3539 		     reload.  This is consistent with other code and is
3540 		     required to avoid choosing another alternative when
3541 		     the constant is moved into memory by this function on
3542 		     an early reload pass.  Note that the test here is
3543 		     precisely the same as in the code below that calls
3544 		     force_const_mem.  */
3545 		  if (CONST_POOL_OK_P (operand_mode[i], operand)
3546 		      && ((targetm.preferred_reload_class (operand,
3547 							   this_alternative[i])
3548 			   == NO_REGS)
3549 			  || no_input_reloads))
3550 		    {
3551 		      const_to_mem = 1;
3552 		      if (this_alternative[i] != NO_REGS)
3553 			losers++;
3554 		    }
3555 
3556 		  /* Alternative loses if it requires a type of reload not
3557 		     permitted for this insn.  We can always reload SCRATCH
3558 		     and objects with a REG_UNUSED note.  */
3559 		  if (GET_CODE (operand) != SCRATCH
3560 		      && modified[i] != RELOAD_READ && no_output_reloads
3561 		      && ! find_reg_note (insn, REG_UNUSED, operand))
3562 		    bad = 1;
3563 		  else if (modified[i] != RELOAD_WRITE && no_input_reloads
3564 			   && ! const_to_mem)
3565 		    bad = 1;
3566 
3567 		  /* If we can't reload this value at all, reject this
3568 		     alternative.  Note that we could also lose due to
3569 		     LIMIT_RELOAD_CLASS, but we don't check that
3570 		     here.  */
3571 
3572 		  if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3573 		    {
3574 		      if (targetm.preferred_reload_class (operand,
3575 							  this_alternative[i])
3576 			  == NO_REGS)
3577 			reject = 600;
3578 
3579 		      if (operand_type[i] == RELOAD_FOR_OUTPUT
3580 			  && (targetm.preferred_output_reload_class (operand,
3581 							    this_alternative[i])
3582 			      == NO_REGS))
3583 			reject = 600;
3584 		    }
3585 
3586 		  /* We prefer to reload pseudos over reloading other things,
3587 		     since such reloads may be able to be eliminated later.
3588 		     If we are reloading a SCRATCH, we won't be generating any
3589 		     insns, just using a register, so it is also preferred.
3590 		     So bump REJECT in other cases.  Don't do this in the
3591 		     case where we are forcing a constant into memory and
3592 		     it will then win since we don't want to have a different
3593 		     alternative match then.  */
3594 		  if (! (REG_P (operand)
3595 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3596 		      && GET_CODE (operand) != SCRATCH
3597 		      && ! (const_to_mem && constmemok))
3598 		    reject += 2;
3599 
3600 		  /* Input reloads can be inherited more often than output
3601 		     reloads can be removed, so penalize output reloads.  */
3602 		  if (operand_type[i] != RELOAD_FOR_INPUT
3603 		      && GET_CODE (operand) != SCRATCH)
3604 		    reject++;
3605 		}
3606 
3607 	      /* If this operand is a pseudo register that didn't get
3608 		 a hard reg and this alternative accepts some
3609 		 register, see if the class that we want is a subset
3610 		 of the preferred class for this register.  If not,
3611 		 but it intersects that class, use the preferred class
3612 		 instead.  If it does not intersect the preferred
3613 		 class, show that usage of this alternative should be
3614 		 discouraged; it will be discouraged more still if the
3615 		 register is `preferred or nothing'.  We do this
3616 		 because it increases the chance of reusing our spill
3617 		 register in a later insn and avoiding a pair of
3618 		 memory stores and loads.
3619 
3620 		 Don't bother with this if this alternative will
3621 		 accept this operand.
3622 
3623 		 Don't do this for a multiword operand, since it is
3624 		 only a small win and has the risk of requiring more
3625 		 spill registers, which could cause a large loss.
3626 
3627 		 Don't do this if the preferred class has only one
3628 		 register because we might otherwise exhaust the
3629 		 class.  */
3630 
3631 	      if (! win && ! did_match
3632 		  && this_alternative[i] != NO_REGS
3633 		  && known_le (GET_MODE_SIZE (operand_mode[i]), UNITS_PER_WORD)
3634 		  && reg_class_size [(int) preferred_class[i]] > 0
3635 		  && ! small_register_class_p (preferred_class[i]))
3636 		{
3637 		  if (! reg_class_subset_p (this_alternative[i],
3638 					    preferred_class[i]))
3639 		    {
3640 		      /* Since we don't have a way of forming the intersection,
3641 			 we just do something special if the preferred class
3642 			 is a subset of the class we have; that's the most
3643 			 common case anyway.  */
3644 		      if (reg_class_subset_p (preferred_class[i],
3645 					      this_alternative[i]))
3646 			this_alternative[i] = preferred_class[i];
3647 		      else
3648 			reject += (2 + 2 * pref_or_nothing[i]);
3649 		    }
3650 		}
3651 	    }
3652 
3653 	  /* Now see if any output operands that are marked "earlyclobber"
3654 	     in this alternative conflict with any input operands
3655 	     or any memory addresses.  */
3656 
3657 	  for (i = 0; i < noperands; i++)
3658 	    if (this_alternative_earlyclobber[i]
3659 		&& (this_alternative_win[i] || this_alternative_match_win[i]))
3660 	      {
3661 		struct decomposition early_data;
3662 
3663 		early_data = decompose (recog_data.operand[i]);
3664 
3665 		gcc_assert (modified[i] != RELOAD_READ);
3666 
3667 		if (this_alternative[i] == NO_REGS)
3668 		  {
3669 		    this_alternative_earlyclobber[i] = 0;
3670 		    gcc_assert (this_insn_is_asm);
3671 		    error_for_asm (this_insn,
3672 			      "%<&%> constraint used with no register class");
3673 		  }
3674 
3675 		for (j = 0; j < noperands; j++)
3676 		  /* Is this an input operand or a memory ref?  */
3677 		  if ((MEM_P (recog_data.operand[j])
3678 		       || modified[j] != RELOAD_WRITE)
3679 		      && j != i
3680 		      /* Ignore things like match_operator operands.  */
3681 		      && !recog_data.is_operator[j]
3682 		      /* Don't count an input operand that is constrained to match
3683 			 the early clobber operand.  */
3684 		      && ! (this_alternative_matches[j] == i
3685 			    && rtx_equal_p (recog_data.operand[i],
3686 					    recog_data.operand[j]))
3687 		      /* Is it altered by storing the earlyclobber operand?  */
3688 		      && !immune_p (recog_data.operand[j], recog_data.operand[i],
3689 				    early_data))
3690 		    {
3691 		      /* If the output is in a non-empty few-regs class,
3692 			 it's costly to reload it, so reload the input instead.  */
3693 		      if (small_register_class_p (this_alternative[i])
3694 			  && (REG_P (recog_data.operand[j])
3695 			      || GET_CODE (recog_data.operand[j]) == SUBREG))
3696 			{
3697 			  losers++;
3698 			  this_alternative_win[j] = 0;
3699 			  this_alternative_match_win[j] = 0;
3700 			}
3701 		      else
3702 			break;
3703 		    }
3704 		/* If an earlyclobber operand conflicts with something,
3705 		   it must be reloaded, so request this and count the cost.  */
3706 		if (j != noperands)
3707 		  {
3708 		    losers++;
3709 		    this_alternative_win[i] = 0;
3710 		    this_alternative_match_win[j] = 0;
3711 		    for (j = 0; j < noperands; j++)
3712 		      if (this_alternative_matches[j] == i
3713 			  && this_alternative_match_win[j])
3714 			{
3715 			  this_alternative_win[j] = 0;
3716 			  this_alternative_match_win[j] = 0;
3717 			  losers++;
3718 			}
3719 		  }
3720 	      }
3721 
3722 	  /* If one alternative accepts all the operands, no reload required,
3723 	     choose that alternative; don't consider the remaining ones.  */
3724 	  if (losers == 0)
3725 	    {
3726 	      /* Unswap these so that they are never swapped at `finish'.  */
3727 	      if (swapped)
3728 		{
3729 		  recog_data.operand[commutative] = substed_operand[commutative];
3730 		  recog_data.operand[commutative + 1]
3731 		    = substed_operand[commutative + 1];
3732 		}
3733 	      for (i = 0; i < noperands; i++)
3734 		{
3735 		  goal_alternative_win[i] = this_alternative_win[i];
3736 		  goal_alternative_match_win[i] = this_alternative_match_win[i];
3737 		  goal_alternative[i] = this_alternative[i];
3738 		  goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3739 		  goal_alternative_matches[i] = this_alternative_matches[i];
3740 		  goal_alternative_earlyclobber[i]
3741 		    = this_alternative_earlyclobber[i];
3742 		}
3743 	      goal_alternative_number = this_alternative_number;
3744 	      goal_alternative_swapped = swapped;
3745 	      goal_earlyclobber = this_earlyclobber;
3746 	      goto finish;
3747 	    }
3748 
3749 	  /* REJECT, set by the ! and ? constraint characters and when a register
3750 	     would be reloaded into a non-preferred class, discourages the use of
3751 	     this alternative for a reload goal.  REJECT is incremented by six
3752 	     for each ? and two for each non-preferred class.  */
3753 	  losers = losers * 6 + reject;
3754 
3755 	  /* If this alternative can be made to work by reloading,
3756 	     and it needs less reloading than the others checked so far,
3757 	     record it as the chosen goal for reloading.  */
3758 	  if (! bad)
3759 	    {
3760 	      if (best > losers)
3761 		{
3762 		  for (i = 0; i < noperands; i++)
3763 		    {
3764 		      goal_alternative[i] = this_alternative[i];
3765 		      goal_alternative_win[i] = this_alternative_win[i];
3766 		      goal_alternative_match_win[i]
3767 			= this_alternative_match_win[i];
3768 		      goal_alternative_offmemok[i]
3769 			= this_alternative_offmemok[i];
3770 		      goal_alternative_matches[i] = this_alternative_matches[i];
3771 		      goal_alternative_earlyclobber[i]
3772 			= this_alternative_earlyclobber[i];
3773 		    }
3774 		  goal_alternative_swapped = swapped;
3775 		  best = losers;
3776 		  goal_alternative_number = this_alternative_number;
3777 		  goal_earlyclobber = this_earlyclobber;
3778 		}
3779 	    }
3780 
3781 	  if (swapped)
3782 	    {
3783 	      /* If the commutative operands have been swapped, swap
3784 		 them back in order to check the next alternative.  */
3785 	      recog_data.operand[commutative] = substed_operand[commutative];
3786 	      recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3787 	      /* Unswap the duplicates too.  */
3788 	      for (i = 0; i < recog_data.n_dups; i++)
3789 		if (recog_data.dup_num[i] == commutative
3790 		    || recog_data.dup_num[i] == commutative + 1)
3791 		  *recog_data.dup_loc[i]
3792 		    = recog_data.operand[(int) recog_data.dup_num[i]];
3793 
3794 	      /* Unswap the operand related information as well.  */
3795 	      std::swap (preferred_class[commutative],
3796 			 preferred_class[commutative + 1]);
3797 	      std::swap (pref_or_nothing[commutative],
3798 			 pref_or_nothing[commutative + 1]);
3799 	      std::swap (address_reloaded[commutative],
3800 			 address_reloaded[commutative + 1]);
3801 	    }
3802 	}
3803     }
3804 
3805   /* The operands don't meet the constraints.
3806      goal_alternative describes the alternative
3807      that we could reach by reloading the fewest operands.
3808      Reload so as to fit it.  */
3809 
3810   if (best == MAX_RECOG_OPERANDS * 2 + 600)
3811     {
3812       /* No alternative works with reloads??  */
3813       if (insn_code_number >= 0)
3814 	fatal_insn ("unable to generate reloads for:", insn);
3815       error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3816       /* Avoid further trouble with this insn.  */
3817       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3818       n_reloads = 0;
3819       return 0;
3820     }
3821 
3822   /* Jump to `finish' from above if all operands are valid already.
3823      In that case, goal_alternative_win is all 1.  */
3824  finish:
3825 
3826   /* Right now, for any pair of operands I and J that are required to match,
3827      with I < J,
3828      goal_alternative_matches[J] is I.
3829      Set up goal_alternative_matched as the inverse function:
3830      goal_alternative_matched[I] = J.  */
3831 
3832   for (i = 0; i < noperands; i++)
3833     goal_alternative_matched[i] = -1;
3834 
3835   for (i = 0; i < noperands; i++)
3836     if (! goal_alternative_win[i]
3837 	&& goal_alternative_matches[i] >= 0)
3838       goal_alternative_matched[goal_alternative_matches[i]] = i;
3839 
3840   for (i = 0; i < noperands; i++)
3841     goal_alternative_win[i] |= goal_alternative_match_win[i];
3842 
3843   /* If the best alternative is with operands 1 and 2 swapped,
3844      consider them swapped before reporting the reloads.  Update the
3845      operand numbers of any reloads already pushed.  */
3846 
3847   if (goal_alternative_swapped)
3848     {
3849       std::swap (substed_operand[commutative],
3850 		 substed_operand[commutative + 1]);
3851       std::swap (recog_data.operand[commutative],
3852 		 recog_data.operand[commutative + 1]);
3853       std::swap (*recog_data.operand_loc[commutative],
3854 		 *recog_data.operand_loc[commutative + 1]);
3855 
3856       for (i = 0; i < recog_data.n_dups; i++)
3857 	if (recog_data.dup_num[i] == commutative
3858 	    || recog_data.dup_num[i] == commutative + 1)
3859 	  *recog_data.dup_loc[i]
3860 	    = recog_data.operand[(int) recog_data.dup_num[i]];
3861 
3862       for (i = 0; i < n_reloads; i++)
3863 	{
3864 	  if (rld[i].opnum == commutative)
3865 	    rld[i].opnum = commutative + 1;
3866 	  else if (rld[i].opnum == commutative + 1)
3867 	    rld[i].opnum = commutative;
3868 	}
3869     }
3870 
3871   for (i = 0; i < noperands; i++)
3872     {
3873       operand_reloadnum[i] = -1;
3874 
3875       /* If this is an earlyclobber operand, we need to widen the scope.
3876 	 The reload must remain valid from the start of the insn being
3877 	 reloaded until after the operand is stored into its destination.
3878 	 We approximate this with RELOAD_OTHER even though we know that we
3879 	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3880 
3881 	 One special case that is worth checking is when we have an
3882 	 output that is earlyclobber but isn't used past the insn (typically
3883 	 a SCRATCH).  In this case, we only need have the reload live
3884 	 through the insn itself, but not for any of our input or output
3885 	 reloads.
3886 	 But we must not accidentally narrow the scope of an existing
3887 	 RELOAD_OTHER reload - leave these alone.
3888 
3889 	 In any case, anything needed to address this operand can remain
3890 	 however they were previously categorized.  */
3891 
3892       if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3893 	operand_type[i]
3894 	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3895 	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3896     }
3897 
3898   /* Any constants that aren't allowed and can't be reloaded
3899      into registers are here changed into memory references.  */
3900   for (i = 0; i < noperands; i++)
3901     if (! goal_alternative_win[i])
3902       {
3903 	rtx op = recog_data.operand[i];
3904 	rtx subreg = NULL_RTX;
3905 	rtx plus = NULL_RTX;
3906 	machine_mode mode = operand_mode[i];
3907 
3908 	/* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3909 	   push_reload so we have to let them pass here.  */
3910 	if (GET_CODE (op) == SUBREG)
3911 	  {
3912 	    subreg = op;
3913 	    op = SUBREG_REG (op);
3914 	    mode = GET_MODE (op);
3915 	  }
3916 
3917 	if (GET_CODE (op) == PLUS)
3918 	  {
3919 	    plus = op;
3920 	    op = XEXP (op, 1);
3921 	  }
3922 
3923 	if (CONST_POOL_OK_P (mode, op)
3924 	    && ((targetm.preferred_reload_class (op, goal_alternative[i])
3925 		 == NO_REGS)
3926 		|| no_input_reloads))
3927 	  {
3928 	    int this_address_reloaded;
3929 	    rtx tem = force_const_mem (mode, op);
3930 
3931 	    /* If we stripped a SUBREG or a PLUS above add it back.  */
3932 	    if (plus != NULL_RTX)
3933 	      tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3934 
3935 	    if (subreg != NULL_RTX)
3936 	      tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3937 
3938 	    this_address_reloaded = 0;
3939 	    substed_operand[i] = recog_data.operand[i]
3940 	      = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3941 				     0, insn, &this_address_reloaded);
3942 
3943 	    /* If the alternative accepts constant pool refs directly
3944 	       there will be no reload needed at all.  */
3945 	    if (plus == NULL_RTX
3946 		&& subreg == NULL_RTX
3947 		&& alternative_allows_const_pool_ref (this_address_reloaded != 1
3948 						      ? substed_operand[i]
3949 						      : NULL,
3950 						      recog_data.constraints[i],
3951 						      goal_alternative_number))
3952 	      goal_alternative_win[i] = 1;
3953 	  }
3954       }
3955 
3956   /* Record the values of the earlyclobber operands for the caller.  */
3957   if (goal_earlyclobber)
3958     for (i = 0; i < noperands; i++)
3959       if (goal_alternative_earlyclobber[i])
3960 	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3961 
3962   /* Now record reloads for all the operands that need them.  */
3963   for (i = 0; i < noperands; i++)
3964     if (! goal_alternative_win[i])
3965       {
3966 	/* Operands that match previous ones have already been handled.  */
3967 	if (goal_alternative_matches[i] >= 0)
3968 	  ;
3969 	/* Handle an operand with a nonoffsettable address
3970 	   appearing where an offsettable address will do
3971 	   by reloading the address into a base register.
3972 
3973 	   ??? We can also do this when the operand is a register and
3974 	   reg_equiv_mem is not offsettable, but this is a bit tricky,
3975 	   so we don't bother with it.  It may not be worth doing.  */
3976 	else if (goal_alternative_matched[i] == -1
3977 		 && goal_alternative_offmemok[i]
3978 		 && MEM_P (recog_data.operand[i]))
3979 	  {
3980 	    /* If the address to be reloaded is a VOIDmode constant,
3981 	       use the default address mode as mode of the reload register,
3982 	       as would have been done by find_reloads_address.  */
3983 	    addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3984 	    machine_mode address_mode;
3985 
3986 	    address_mode = get_address_mode (recog_data.operand[i]);
3987 	    operand_reloadnum[i]
3988 	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3989 			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3990 			     base_reg_class (VOIDmode, as, MEM, SCRATCH),
3991 			     address_mode,
3992 			     VOIDmode, 0, 0, i, RELOAD_OTHER);
3993 	    rld[operand_reloadnum[i]].inc
3994 	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3995 
3996 	    /* If this operand is an output, we will have made any
3997 	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3998 	       now we are treating part of the operand as an input, so
3999 	       we must change these to RELOAD_FOR_OTHER_ADDRESS.  */
4000 
4001 	    if (modified[i] == RELOAD_WRITE)
4002 	      {
4003 		for (j = 0; j < n_reloads; j++)
4004 		  {
4005 		    if (rld[j].opnum == i)
4006 		      {
4007 			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4008 			  rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4009 			else if (rld[j].when_needed
4010 				 == RELOAD_FOR_OUTADDR_ADDRESS)
4011 			  rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4012 		      }
4013 		  }
4014 	      }
4015 	  }
4016 	else if (goal_alternative_matched[i] == -1)
4017 	  {
4018 	    operand_reloadnum[i]
4019 	      = push_reload ((modified[i] != RELOAD_WRITE
4020 			      ? recog_data.operand[i] : 0),
4021 			     (modified[i] != RELOAD_READ
4022 			      ? recog_data.operand[i] : 0),
4023 			     (modified[i] != RELOAD_WRITE
4024 			      ? recog_data.operand_loc[i] : 0),
4025 			     (modified[i] != RELOAD_READ
4026 			      ? recog_data.operand_loc[i] : 0),
4027 			     (enum reg_class) goal_alternative[i],
4028 			     (modified[i] == RELOAD_WRITE
4029 			      ? VOIDmode : operand_mode[i]),
4030 			     (modified[i] == RELOAD_READ
4031 			      ? VOIDmode : operand_mode[i]),
4032 			     (insn_code_number < 0 ? 0
4033 			      : insn_data[insn_code_number].operand[i].strict_low),
4034 			     0, i, operand_type[i]);
4035 	  }
4036 	/* In a matching pair of operands, one must be input only
4037 	   and the other must be output only.
4038 	   Pass the input operand as IN and the other as OUT.  */
4039 	else if (modified[i] == RELOAD_READ
4040 		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4041 	  {
4042 	    operand_reloadnum[i]
4043 	      = push_reload (recog_data.operand[i],
4044 			     recog_data.operand[goal_alternative_matched[i]],
4045 			     recog_data.operand_loc[i],
4046 			     recog_data.operand_loc[goal_alternative_matched[i]],
4047 			     (enum reg_class) goal_alternative[i],
4048 			     operand_mode[i],
4049 			     operand_mode[goal_alternative_matched[i]],
4050 			     0, 0, i, RELOAD_OTHER);
4051 	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4052 	  }
4053 	else if (modified[i] == RELOAD_WRITE
4054 		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4055 	  {
4056 	    operand_reloadnum[goal_alternative_matched[i]]
4057 	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
4058 			     recog_data.operand[i],
4059 			     recog_data.operand_loc[goal_alternative_matched[i]],
4060 			     recog_data.operand_loc[i],
4061 			     (enum reg_class) goal_alternative[i],
4062 			     operand_mode[goal_alternative_matched[i]],
4063 			     operand_mode[i],
4064 			     0, 0, i, RELOAD_OTHER);
4065 	    operand_reloadnum[i] = output_reloadnum;
4066 	  }
4067 	else
4068 	  {
4069 	    gcc_assert (insn_code_number < 0);
4070 	    error_for_asm (insn, "inconsistent operand constraints "
4071 			   "in an %<asm%>");
4072 	    /* Avoid further trouble with this insn.  */
4073 	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4074 	    n_reloads = 0;
4075 	    return 0;
4076 	  }
4077       }
4078     else if (goal_alternative_matched[i] < 0
4079 	     && goal_alternative_matches[i] < 0
4080 	     && address_operand_reloaded[i] != 1
4081 	     && optimize)
4082       {
4083 	/* For each non-matching operand that's a MEM or a pseudo-register
4084 	   that didn't get a hard register, make an optional reload.
4085 	   This may get done even if the insn needs no reloads otherwise.  */
4086 
4087 	rtx operand = recog_data.operand[i];
4088 
4089 	while (GET_CODE (operand) == SUBREG)
4090 	  operand = SUBREG_REG (operand);
4091 	if ((MEM_P (operand)
4092 	     || (REG_P (operand)
4093 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4094 	    /* If this is only for an output, the optional reload would not
4095 	       actually cause us to use a register now, just note that
4096 	       something is stored here.  */
4097 	    && (goal_alternative[i] != NO_REGS
4098 		|| modified[i] == RELOAD_WRITE)
4099 	    && ! no_input_reloads
4100 	    /* An optional output reload might allow to delete INSN later.
4101 	       We mustn't make in-out reloads on insns that are not permitted
4102 	       output reloads.
4103 	       If this is an asm, we can't delete it; we must not even call
4104 	       push_reload for an optional output reload in this case,
4105 	       because we can't be sure that the constraint allows a register,
4106 	       and push_reload verifies the constraints for asms.  */
4107 	    && (modified[i] == RELOAD_READ
4108 		|| (! no_output_reloads && ! this_insn_is_asm)))
4109 	  operand_reloadnum[i]
4110 	    = push_reload ((modified[i] != RELOAD_WRITE
4111 			    ? recog_data.operand[i] : 0),
4112 			   (modified[i] != RELOAD_READ
4113 			    ? recog_data.operand[i] : 0),
4114 			   (modified[i] != RELOAD_WRITE
4115 			    ? recog_data.operand_loc[i] : 0),
4116 			   (modified[i] != RELOAD_READ
4117 			    ? recog_data.operand_loc[i] : 0),
4118 			   (enum reg_class) goal_alternative[i],
4119 			   (modified[i] == RELOAD_WRITE
4120 			    ? VOIDmode : operand_mode[i]),
4121 			   (modified[i] == RELOAD_READ
4122 			    ? VOIDmode : operand_mode[i]),
4123 			   (insn_code_number < 0 ? 0
4124 			    : insn_data[insn_code_number].operand[i].strict_low),
4125 			   1, i, operand_type[i]);
4126 	/* If a memory reference remains (either as a MEM or a pseudo that
4127 	   did not get a hard register), yet we can't make an optional
4128 	   reload, check if this is actually a pseudo register reference;
4129 	   we then need to emit a USE and/or a CLOBBER so that reload
4130 	   inheritance will do the right thing.  */
4131 	else if (replace
4132 		 && (MEM_P (operand)
4133 		     || (REG_P (operand)
4134 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4135 			 && reg_renumber [REGNO (operand)] < 0)))
4136 	  {
4137 	    operand = *recog_data.operand_loc[i];
4138 
4139 	    while (GET_CODE (operand) == SUBREG)
4140 	      operand = SUBREG_REG (operand);
4141 	    if (REG_P (operand))
4142 	      {
4143 		if (modified[i] != RELOAD_WRITE)
4144 		  /* We mark the USE with QImode so that we recognize
4145 		     it as one that can be safely deleted at the end
4146 		     of reload.  */
4147 		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4148 					      insn), QImode);
4149 		if (modified[i] != RELOAD_READ)
4150 		  emit_insn_after (gen_clobber (operand), insn);
4151 	      }
4152 	  }
4153       }
4154     else if (goal_alternative_matches[i] >= 0
4155 	     && goal_alternative_win[goal_alternative_matches[i]]
4156 	     && modified[i] == RELOAD_READ
4157 	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4158 	     && ! no_input_reloads && ! no_output_reloads
4159 	     && optimize)
4160       {
4161 	/* Similarly, make an optional reload for a pair of matching
4162 	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
4163 
4164 	rtx operand = recog_data.operand[i];
4165 
4166 	while (GET_CODE (operand) == SUBREG)
4167 	  operand = SUBREG_REG (operand);
4168 	if ((MEM_P (operand)
4169 	     || (REG_P (operand)
4170 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4171 	    && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4172 	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4173 	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
4174 			   recog_data.operand[i],
4175 			   recog_data.operand_loc[goal_alternative_matches[i]],
4176 			   recog_data.operand_loc[i],
4177 			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4178 			   operand_mode[goal_alternative_matches[i]],
4179 			   operand_mode[i],
4180 			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4181       }
4182 
4183   /* Perform whatever substitutions on the operands we are supposed
4184      to make due to commutativity or replacement of registers
4185      with equivalent constants or memory slots.  */
4186 
4187   for (i = 0; i < noperands; i++)
4188     {
4189       /* We only do this on the last pass through reload, because it is
4190 	 possible for some data (like reg_equiv_address) to be changed during
4191 	 later passes.  Moreover, we lose the opportunity to get a useful
4192 	 reload_{in,out}_reg when we do these replacements.  */
4193 
4194       if (replace)
4195 	{
4196 	  rtx substitution = substed_operand[i];
4197 
4198 	  *recog_data.operand_loc[i] = substitution;
4199 
4200 	  /* If we're replacing an operand with a LABEL_REF, we need to
4201 	     make sure that there's a REG_LABEL_OPERAND note attached to
4202 	     this instruction.  */
4203 	  if (GET_CODE (substitution) == LABEL_REF
4204 	      && !find_reg_note (insn, REG_LABEL_OPERAND,
4205 				 label_ref_label (substitution))
4206 	      /* For a JUMP_P, if it was a branch target it must have
4207 		 already been recorded as such.  */
4208 	      && (!JUMP_P (insn)
4209 		  || !label_is_jump_target_p (label_ref_label (substitution),
4210 					      insn)))
4211 	    {
4212 	      add_reg_note (insn, REG_LABEL_OPERAND,
4213 			    label_ref_label (substitution));
4214 	      if (LABEL_P (label_ref_label (substitution)))
4215 		++LABEL_NUSES (label_ref_label (substitution));
4216 	    }
4217 
4218 	}
4219       else
4220 	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4221     }
4222 
4223   /* If this insn pattern contains any MATCH_DUP's, make sure that
4224      they will be substituted if the operands they match are substituted.
4225      Also do now any substitutions we already did on the operands.
4226 
4227      Don't do this if we aren't making replacements because we might be
4228      propagating things allocated by frame pointer elimination into places
4229      it doesn't expect.  */
4230 
4231   if (insn_code_number >= 0 && replace)
4232     for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4233       {
4234 	int opno = recog_data.dup_num[i];
4235 	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4236 	dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4237       }
4238 
4239 #if 0
4240   /* This loses because reloading of prior insns can invalidate the equivalence
4241      (or at least find_equiv_reg isn't smart enough to find it any more),
4242      causing this insn to need more reload regs than it needed before.
4243      It may be too late to make the reload regs available.
4244      Now this optimization is done safely in choose_reload_regs.  */
4245 
4246   /* For each reload of a reg into some other class of reg,
4247      search for an existing equivalent reg (same value now) in the right class.
4248      We can use it as long as we don't need to change its contents.  */
4249   for (i = 0; i < n_reloads; i++)
4250     if (rld[i].reg_rtx == 0
4251 	&& rld[i].in != 0
4252 	&& REG_P (rld[i].in)
4253 	&& rld[i].out == 0)
4254       {
4255 	rld[i].reg_rtx
4256 	  = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4257 			    static_reload_reg_p, 0, rld[i].inmode);
4258 	/* Prevent generation of insn to load the value
4259 	   because the one we found already has the value.  */
4260 	if (rld[i].reg_rtx)
4261 	  rld[i].in = rld[i].reg_rtx;
4262       }
4263 #endif
4264 
4265   /* If we detected error and replaced asm instruction by USE, forget about the
4266      reloads.  */
4267   if (GET_CODE (PATTERN (insn)) == USE
4268       && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4269     n_reloads = 0;
4270 
4271   /* Perhaps an output reload can be combined with another
4272      to reduce needs by one.  */
4273   if (!goal_earlyclobber)
4274     combine_reloads ();
4275 
4276   /* If we have a pair of reloads for parts of an address, they are reloading
4277      the same object, the operands themselves were not reloaded, and they
4278      are for two operands that are supposed to match, merge the reloads and
4279      change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
4280 
4281   for (i = 0; i < n_reloads; i++)
4282     {
4283       int k;
4284 
4285       for (j = i + 1; j < n_reloads; j++)
4286 	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4287 	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4288 	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4289 	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4290 	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4291 		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4292 		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4293 		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4294 	    && rtx_equal_p (rld[i].in, rld[j].in)
4295 	    && (operand_reloadnum[rld[i].opnum] < 0
4296 		|| rld[operand_reloadnum[rld[i].opnum]].optional)
4297 	    && (operand_reloadnum[rld[j].opnum] < 0
4298 		|| rld[operand_reloadnum[rld[j].opnum]].optional)
4299 	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4300 		|| (goal_alternative_matches[rld[j].opnum]
4301 		    == rld[i].opnum)))
4302 	  {
4303 	    for (k = 0; k < n_replacements; k++)
4304 	      if (replacements[k].what == j)
4305 		replacements[k].what = i;
4306 
4307 	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4308 		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4309 	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4310 	    else
4311 	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4312 	    rld[j].in = 0;
4313 	  }
4314     }
4315 
4316   /* Scan all the reloads and update their type.
4317      If a reload is for the address of an operand and we didn't reload
4318      that operand, change the type.  Similarly, change the operand number
4319      of a reload when two operands match.  If a reload is optional, treat it
4320      as though the operand isn't reloaded.
4321 
4322      ??? This latter case is somewhat odd because if we do the optional
4323      reload, it means the object is hanging around.  Thus we need only
4324      do the address reload if the optional reload was NOT done.
4325 
4326      Change secondary reloads to be the address type of their operand, not
4327      the normal type.
4328 
4329      If an operand's reload is now RELOAD_OTHER, change any
4330      RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4331      RELOAD_FOR_OTHER_ADDRESS.  */
4332 
4333   for (i = 0; i < n_reloads; i++)
4334     {
4335       if (rld[i].secondary_p
4336 	  && rld[i].when_needed == operand_type[rld[i].opnum])
4337 	rld[i].when_needed = address_type[rld[i].opnum];
4338 
4339       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4340 	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4341 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4342 	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4343 	  && (operand_reloadnum[rld[i].opnum] < 0
4344 	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4345 	{
4346 	  /* If we have a secondary reload to go along with this reload,
4347 	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4348 
4349 	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4350 	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4351 	      && rld[i].secondary_in_reload != -1)
4352 	    {
4353 	      int secondary_in_reload = rld[i].secondary_in_reload;
4354 
4355 	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4356 
4357 	      /* If there's a tertiary reload we have to change it also.  */
4358 	      if (secondary_in_reload > 0
4359 		  && rld[secondary_in_reload].secondary_in_reload != -1)
4360 		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4361 		  = RELOAD_FOR_OPADDR_ADDR;
4362 	    }
4363 
4364 	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4365 	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4366 	      && rld[i].secondary_out_reload != -1)
4367 	    {
4368 	      int secondary_out_reload = rld[i].secondary_out_reload;
4369 
4370 	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4371 
4372 	      /* If there's a tertiary reload we have to change it also.  */
4373 	      if (secondary_out_reload
4374 		  && rld[secondary_out_reload].secondary_out_reload != -1)
4375 		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4376 		  = RELOAD_FOR_OPADDR_ADDR;
4377 	    }
4378 
4379 	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4380 	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4381 	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4382 	  else
4383 	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4384 	}
4385 
4386       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4387 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4388 	  && operand_reloadnum[rld[i].opnum] >= 0
4389 	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4390 	      == RELOAD_OTHER))
4391 	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4392 
4393       if (goal_alternative_matches[rld[i].opnum] >= 0)
4394 	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4395     }
4396 
4397   /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4398      If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4399      reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4400 
4401      choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4402      conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4403      single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4404      However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4405      then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4406      RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4407      This is complicated by the fact that a single operand can have more
4408      than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4409      choose_reload_regs without affecting code quality, and cases that
4410      actually fail are extremely rare, so it turns out to be better to fix
4411      the problem here by not generating cases that choose_reload_regs will
4412      fail for.  */
4413   /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4414      RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4415      a single operand.
4416      We can reduce the register pressure by exploiting that a
4417      RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4418      does not conflict with any of them, if it is only used for the first of
4419      the RELOAD_FOR_X_ADDRESS reloads.  */
4420   {
4421     int first_op_addr_num = -2;
4422     int first_inpaddr_num[MAX_RECOG_OPERANDS];
4423     int first_outpaddr_num[MAX_RECOG_OPERANDS];
4424     int need_change = 0;
4425     /* We use last_op_addr_reload and the contents of the above arrays
4426        first as flags - -2 means no instance encountered, -1 means exactly
4427        one instance encountered.
4428        If more than one instance has been encountered, we store the reload
4429        number of the first reload of the kind in question; reload numbers
4430        are known to be non-negative.  */
4431     for (i = 0; i < noperands; i++)
4432       first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4433     for (i = n_reloads - 1; i >= 0; i--)
4434       {
4435 	switch (rld[i].when_needed)
4436 	  {
4437 	  case RELOAD_FOR_OPERAND_ADDRESS:
4438 	    if (++first_op_addr_num >= 0)
4439 	      {
4440 		first_op_addr_num = i;
4441 		need_change = 1;
4442 	      }
4443 	    break;
4444 	  case RELOAD_FOR_INPUT_ADDRESS:
4445 	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4446 	      {
4447 		first_inpaddr_num[rld[i].opnum] = i;
4448 		need_change = 1;
4449 	      }
4450 	    break;
4451 	  case RELOAD_FOR_OUTPUT_ADDRESS:
4452 	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4453 	      {
4454 		first_outpaddr_num[rld[i].opnum] = i;
4455 		need_change = 1;
4456 	      }
4457 	    break;
4458 	  default:
4459 	    break;
4460 	  }
4461       }
4462 
4463     if (need_change)
4464       {
4465 	for (i = 0; i < n_reloads; i++)
4466 	  {
4467 	    int first_num;
4468 	    enum reload_type type;
4469 
4470 	    switch (rld[i].when_needed)
4471 	      {
4472 	      case RELOAD_FOR_OPADDR_ADDR:
4473 		first_num = first_op_addr_num;
4474 		type = RELOAD_FOR_OPERAND_ADDRESS;
4475 		break;
4476 	      case RELOAD_FOR_INPADDR_ADDRESS:
4477 		first_num = first_inpaddr_num[rld[i].opnum];
4478 		type = RELOAD_FOR_INPUT_ADDRESS;
4479 		break;
4480 	      case RELOAD_FOR_OUTADDR_ADDRESS:
4481 		first_num = first_outpaddr_num[rld[i].opnum];
4482 		type = RELOAD_FOR_OUTPUT_ADDRESS;
4483 		break;
4484 	      default:
4485 		continue;
4486 	      }
4487 	    if (first_num < 0)
4488 	      continue;
4489 	    else if (i > first_num)
4490 	      rld[i].when_needed = type;
4491 	    else
4492 	      {
4493 		/* Check if the only TYPE reload that uses reload I is
4494 		   reload FIRST_NUM.  */
4495 		for (j = n_reloads - 1; j > first_num; j--)
4496 		  {
4497 		    if (rld[j].when_needed == type
4498 			&& (rld[i].secondary_p
4499 			    ? rld[j].secondary_in_reload == i
4500 			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4501 		      {
4502 			rld[i].when_needed = type;
4503 			break;
4504 		      }
4505 		  }
4506 	      }
4507 	  }
4508       }
4509   }
4510 
4511   /* See if we have any reloads that are now allowed to be merged
4512      because we've changed when the reload is needed to
4513      RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4514      check for the most common cases.  */
4515 
4516   for (i = 0; i < n_reloads; i++)
4517     if (rld[i].in != 0 && rld[i].out == 0
4518 	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4519 	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4520 	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4521       for (j = 0; j < n_reloads; j++)
4522 	if (i != j && rld[j].in != 0 && rld[j].out == 0
4523 	    && rld[j].when_needed == rld[i].when_needed
4524 	    && MATCHES (rld[i].in, rld[j].in)
4525 	    && rld[i].rclass == rld[j].rclass
4526 	    && !rld[i].nocombine && !rld[j].nocombine
4527 	    && rld[i].reg_rtx == rld[j].reg_rtx)
4528 	  {
4529 	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4530 	    transfer_replacements (i, j);
4531 	    rld[j].in = 0;
4532 	  }
4533 
4534   /* If we made any reloads for addresses, see if they violate a
4535      "no input reloads" requirement for this insn.  But loads that we
4536      do after the insn (such as for output addresses) are fine.  */
4537   if (HAVE_cc0 && no_input_reloads)
4538     for (i = 0; i < n_reloads; i++)
4539       gcc_assert (rld[i].in == 0
4540 		  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4541 		  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4542 
4543   /* Compute reload_mode and reload_nregs.  */
4544   for (i = 0; i < n_reloads; i++)
4545     {
4546       rld[i].mode = rld[i].inmode;
4547       if (rld[i].mode == VOIDmode
4548 	  || partial_subreg_p (rld[i].mode, rld[i].outmode))
4549 	rld[i].mode = rld[i].outmode;
4550 
4551       rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4552     }
4553 
4554   /* Special case a simple move with an input reload and a
4555      destination of a hard reg, if the hard reg is ok, use it.  */
4556   for (i = 0; i < n_reloads; i++)
4557     if (rld[i].when_needed == RELOAD_FOR_INPUT
4558 	&& GET_CODE (PATTERN (insn)) == SET
4559 	&& REG_P (SET_DEST (PATTERN (insn)))
4560 	&& (SET_SRC (PATTERN (insn)) == rld[i].in
4561 	    || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4562 	&& !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4563       {
4564 	rtx dest = SET_DEST (PATTERN (insn));
4565 	unsigned int regno = REGNO (dest);
4566 
4567 	if (regno < FIRST_PSEUDO_REGISTER
4568 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4569 	    && targetm.hard_regno_mode_ok (regno, rld[i].mode))
4570 	  {
4571 	    int nr = hard_regno_nregs (regno, rld[i].mode);
4572 	    int ok = 1, nri;
4573 
4574 	    for (nri = 1; nri < nr; nri ++)
4575 	      if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4576 		{
4577 		  ok = 0;
4578 		  break;
4579 		}
4580 
4581 	    if (ok)
4582 	      rld[i].reg_rtx = dest;
4583 	  }
4584       }
4585 
4586   return retval;
4587 }
4588 
4589 /* Return true if alternative number ALTNUM in constraint-string
4590    CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4591    MEM gives the reference if its address hasn't been fully reloaded,
4592    otherwise it is NULL.  */
4593 
4594 static bool
alternative_allows_const_pool_ref(rtx mem ATTRIBUTE_UNUSED,const char * constraint,int altnum)4595 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4596 				   const char *constraint, int altnum)
4597 {
4598   int c;
4599 
4600   /* Skip alternatives before the one requested.  */
4601   while (altnum > 0)
4602     {
4603       while (*constraint++ != ',')
4604 	;
4605       altnum--;
4606     }
4607   /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4608      If one of them is present, this alternative accepts the result of
4609      passing a constant-pool reference through find_reloads_toplev.
4610 
4611      The same is true of extra memory constraints if the address
4612      was reloaded into a register.  However, the target may elect
4613      to disallow the original constant address, forcing it to be
4614      reloaded into a register instead.  */
4615   for (; (c = *constraint) && c != ',' && c != '#';
4616        constraint += CONSTRAINT_LEN (c, constraint))
4617     {
4618       enum constraint_num cn = lookup_constraint (constraint);
4619       if (insn_extra_memory_constraint (cn)
4620 	  && (mem == NULL || constraint_satisfied_p (mem, cn)))
4621 	return true;
4622     }
4623   return false;
4624 }
4625 
4626 /* Scan X for memory references and scan the addresses for reloading.
4627    Also checks for references to "constant" regs that we want to eliminate
4628    and replaces them with the values they stand for.
4629    We may alter X destructively if it contains a reference to such.
4630    If X is just a constant reg, we return the equivalent value
4631    instead of X.
4632 
4633    IND_LEVELS says how many levels of indirect addressing this machine
4634    supports.
4635 
4636    OPNUM and TYPE identify the purpose of the reload.
4637 
4638    IS_SET_DEST is true if X is the destination of a SET, which is not
4639    appropriate to be replaced by a constant.
4640 
4641    INSN, if nonzero, is the insn in which we do the reload.  It is used
4642    to determine if we may generate output reloads, and where to put USEs
4643    for pseudos that we have to replace with stack slots.
4644 
4645    ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4646    result of find_reloads_address.  */
4647 
4648 static rtx
find_reloads_toplev(rtx x,int opnum,enum reload_type type,int ind_levels,int is_set_dest,rtx_insn * insn,int * address_reloaded)4649 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4650 		     int ind_levels, int is_set_dest, rtx_insn *insn,
4651 		     int *address_reloaded)
4652 {
4653   RTX_CODE code = GET_CODE (x);
4654 
4655   const char *fmt = GET_RTX_FORMAT (code);
4656   int i;
4657   int copied;
4658 
4659   if (code == REG)
4660     {
4661       /* This code is duplicated for speed in find_reloads.  */
4662       int regno = REGNO (x);
4663       if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4664 	x = reg_equiv_constant (regno);
4665 #if 0
4666       /*  This creates (subreg (mem...)) which would cause an unnecessary
4667 	  reload of the mem.  */
4668       else if (reg_equiv_mem (regno) != 0)
4669 	x = reg_equiv_mem (regno);
4670 #endif
4671       else if (reg_equiv_memory_loc (regno)
4672 	       && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4673 	{
4674 	  rtx mem = make_memloc (x, regno);
4675 	  if (reg_equiv_address (regno)
4676 	      || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4677 	    {
4678 	      /* If this is not a toplevel operand, find_reloads doesn't see
4679 		 this substitution.  We have to emit a USE of the pseudo so
4680 		 that delete_output_reload can see it.  */
4681 	      if (replace_reloads && recog_data.operand[opnum] != x)
4682 		/* We mark the USE with QImode so that we recognize it
4683 		   as one that can be safely deleted at the end of
4684 		   reload.  */
4685 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4686 			  QImode);
4687 	      x = mem;
4688 	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4689 					opnum, type, ind_levels, insn);
4690 	      if (!rtx_equal_p (x, mem))
4691 		push_reg_equiv_alt_mem (regno, x);
4692 	      if (address_reloaded)
4693 		*address_reloaded = i;
4694 	    }
4695 	}
4696       return x;
4697     }
4698   if (code == MEM)
4699     {
4700       rtx tem = x;
4701 
4702       i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4703 				opnum, type, ind_levels, insn);
4704       if (address_reloaded)
4705 	*address_reloaded = i;
4706 
4707       return tem;
4708     }
4709 
4710   if (code == SUBREG && REG_P (SUBREG_REG (x)))
4711     {
4712       /* Check for SUBREG containing a REG that's equivalent to a
4713 	 constant.  If the constant has a known value, truncate it
4714 	 right now.  Similarly if we are extracting a single-word of a
4715 	 multi-word constant.  If the constant is symbolic, allow it
4716 	 to be substituted normally.  push_reload will strip the
4717 	 subreg later.  The constant must not be VOIDmode, because we
4718 	 will lose the mode of the register (this should never happen
4719 	 because one of the cases above should handle it).  */
4720 
4721       int regno = REGNO (SUBREG_REG (x));
4722       rtx tem;
4723 
4724       if (regno >= FIRST_PSEUDO_REGISTER
4725 	  && reg_renumber[regno] < 0
4726 	  && reg_equiv_constant (regno) != 0)
4727 	{
4728 	  tem =
4729 	    simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4730 				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4731 	  gcc_assert (tem);
4732 	  if (CONSTANT_P (tem)
4733 	      && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4734 	    {
4735 	      tem = force_const_mem (GET_MODE (x), tem);
4736 	      i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4737 					&XEXP (tem, 0), opnum, type,
4738 					ind_levels, insn);
4739 	      if (address_reloaded)
4740 		*address_reloaded = i;
4741 	    }
4742 	  return tem;
4743 	}
4744 
4745       /* If the subreg contains a reg that will be converted to a mem,
4746 	 attempt to convert the whole subreg to a (narrower or wider)
4747 	 memory reference instead.  If this succeeds, we're done --
4748 	 otherwise fall through to check whether the inner reg still
4749 	 needs address reloads anyway.  */
4750 
4751       if (regno >= FIRST_PSEUDO_REGISTER
4752 	  && reg_equiv_memory_loc (regno) != 0)
4753 	{
4754 	  tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4755 					     insn, address_reloaded);
4756 	  if (tem)
4757 	    return tem;
4758 	}
4759     }
4760 
4761   for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4762     {
4763       if (fmt[i] == 'e')
4764 	{
4765 	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4766 					      ind_levels, is_set_dest, insn,
4767 					      address_reloaded);
4768 	  /* If we have replaced a reg with it's equivalent memory loc -
4769 	     that can still be handled here e.g. if it's in a paradoxical
4770 	     subreg - we must make the change in a copy, rather than using
4771 	     a destructive change.  This way, find_reloads can still elect
4772 	     not to do the change.  */
4773 	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4774 	    {
4775 	      x = shallow_copy_rtx (x);
4776 	      copied = 1;
4777 	    }
4778 	  XEXP (x, i) = new_part;
4779 	}
4780     }
4781   return x;
4782 }
4783 
4784 /* Return a mem ref for the memory equivalent of reg REGNO.
4785    This mem ref is not shared with anything.  */
4786 
4787 static rtx
make_memloc(rtx ad,int regno)4788 make_memloc (rtx ad, int regno)
4789 {
4790   /* We must rerun eliminate_regs, in case the elimination
4791      offsets have changed.  */
4792   rtx tem
4793     = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4794 	    0);
4795 
4796   /* If TEM might contain a pseudo, we must copy it to avoid
4797      modifying it when we do the substitution for the reload.  */
4798   if (rtx_varies_p (tem, 0))
4799     tem = copy_rtx (tem);
4800 
4801   tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4802   tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4803 
4804   /* Copy the result if it's still the same as the equivalence, to avoid
4805      modifying it when we do the substitution for the reload.  */
4806   if (tem == reg_equiv_memory_loc (regno))
4807     tem = copy_rtx (tem);
4808   return tem;
4809 }
4810 
4811 /* Returns true if AD could be turned into a valid memory reference
4812    to mode MODE in address space AS by reloading the part pointed to
4813    by PART into a register.  */
4814 
4815 static int
maybe_memory_address_addr_space_p(machine_mode mode,rtx ad,addr_space_t as,rtx * part)4816 maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4817 				   addr_space_t as, rtx *part)
4818 {
4819   int retv;
4820   rtx tem = *part;
4821   rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4822 
4823   *part = reg;
4824   retv = memory_address_addr_space_p (mode, ad, as);
4825   *part = tem;
4826 
4827   return retv;
4828 }
4829 
4830 /* Record all reloads needed for handling memory address AD
4831    which appears in *LOC in a memory reference to mode MODE
4832    which itself is found in location  *MEMREFLOC.
4833    Note that we take shortcuts assuming that no multi-reg machine mode
4834    occurs as part of an address.
4835 
4836    OPNUM and TYPE specify the purpose of this reload.
4837 
4838    IND_LEVELS says how many levels of indirect addressing this machine
4839    supports.
4840 
4841    INSN, if nonzero, is the insn in which we do the reload.  It is used
4842    to determine if we may generate output reloads, and where to put USEs
4843    for pseudos that we have to replace with stack slots.
4844 
4845    Value is one if this address is reloaded or replaced as a whole; it is
4846    zero if the top level of this address was not reloaded or replaced, and
4847    it is -1 if it may or may not have been reloaded or replaced.
4848 
4849    Note that there is no verification that the address will be valid after
4850    this routine does its work.  Instead, we rely on the fact that the address
4851    was valid when reload started.  So we need only undo things that reload
4852    could have broken.  These are wrong register types, pseudos not allocated
4853    to a hard register, and frame pointer elimination.  */
4854 
4855 static int
find_reloads_address(machine_mode mode,rtx * memrefloc,rtx ad,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx_insn * insn)4856 find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4857 		      rtx *loc, int opnum, enum reload_type type,
4858 		      int ind_levels, rtx_insn *insn)
4859 {
4860   addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4861 			     : ADDR_SPACE_GENERIC;
4862   int regno;
4863   int removed_and = 0;
4864   int op_index;
4865   rtx tem;
4866 
4867   /* If the address is a register, see if it is a legitimate address and
4868      reload if not.  We first handle the cases where we need not reload
4869      or where we must reload in a non-standard way.  */
4870 
4871   if (REG_P (ad))
4872     {
4873       regno = REGNO (ad);
4874 
4875       if (reg_equiv_constant (regno) != 0)
4876 	{
4877 	  find_reloads_address_part (reg_equiv_constant (regno), loc,
4878 				     base_reg_class (mode, as, MEM, SCRATCH),
4879 				     GET_MODE (ad), opnum, type, ind_levels);
4880 	  return 1;
4881 	}
4882 
4883       tem = reg_equiv_memory_loc (regno);
4884       if (tem != 0)
4885 	{
4886 	  if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4887 	    {
4888 	      tem = make_memloc (ad, regno);
4889 	      if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4890 							XEXP (tem, 0),
4891 							MEM_ADDR_SPACE (tem)))
4892 		{
4893 		  rtx orig = tem;
4894 
4895 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4896 					&XEXP (tem, 0), opnum,
4897 					ADDR_TYPE (type), ind_levels, insn);
4898 		  if (!rtx_equal_p (tem, orig))
4899 		    push_reg_equiv_alt_mem (regno, tem);
4900 		}
4901 	      /* We can avoid a reload if the register's equivalent memory
4902 		 expression is valid as an indirect memory address.
4903 		 But not all addresses are valid in a mem used as an indirect
4904 		 address: only reg or reg+constant.  */
4905 
4906 	      if (ind_levels > 0
4907 		  && strict_memory_address_addr_space_p (mode, tem, as)
4908 		  && (REG_P (XEXP (tem, 0))
4909 		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4910 			  && REG_P (XEXP (XEXP (tem, 0), 0))
4911 			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4912 		{
4913 		  /* TEM is not the same as what we'll be replacing the
4914 		     pseudo with after reload, put a USE in front of INSN
4915 		     in the final reload pass.  */
4916 		  if (replace_reloads
4917 		      && num_not_at_initial_offset
4918 		      && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4919 		    {
4920 		      *loc = tem;
4921 		      /* We mark the USE with QImode so that we
4922 			 recognize it as one that can be safely
4923 			 deleted at the end of reload.  */
4924 		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4925 						  insn), QImode);
4926 
4927 		      /* This doesn't really count as replacing the address
4928 			 as a whole, since it is still a memory access.  */
4929 		    }
4930 		  return 0;
4931 		}
4932 	      ad = tem;
4933 	    }
4934 	}
4935 
4936       /* The only remaining case where we can avoid a reload is if this is a
4937 	 hard register that is valid as a base register and which is not the
4938 	 subject of a CLOBBER in this insn.  */
4939 
4940       else if (regno < FIRST_PSEUDO_REGISTER
4941 	       && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4942 	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
4943 	return 0;
4944 
4945       /* If we do not have one of the cases above, we must do the reload.  */
4946       push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4947 		   base_reg_class (mode, as, MEM, SCRATCH),
4948 		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4949       return 1;
4950     }
4951 
4952   if (strict_memory_address_addr_space_p (mode, ad, as))
4953     {
4954       /* The address appears valid, so reloads are not needed.
4955 	 But the address may contain an eliminable register.
4956 	 This can happen because a machine with indirect addressing
4957 	 may consider a pseudo register by itself a valid address even when
4958 	 it has failed to get a hard reg.
4959 	 So do a tree-walk to find and eliminate all such regs.  */
4960 
4961       /* But first quickly dispose of a common case.  */
4962       if (GET_CODE (ad) == PLUS
4963 	  && CONST_INT_P (XEXP (ad, 1))
4964 	  && REG_P (XEXP (ad, 0))
4965 	  && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4966 	return 0;
4967 
4968       subst_reg_equivs_changed = 0;
4969       *loc = subst_reg_equivs (ad, insn);
4970 
4971       if (! subst_reg_equivs_changed)
4972 	return 0;
4973 
4974       /* Check result for validity after substitution.  */
4975       if (strict_memory_address_addr_space_p (mode, ad, as))
4976 	return 0;
4977     }
4978 
4979 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4980   do
4981     {
4982       if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4983 	{
4984 	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4985 				     ind_levels, win);
4986 	}
4987       break;
4988     win:
4989       *memrefloc = copy_rtx (*memrefloc);
4990       XEXP (*memrefloc, 0) = ad;
4991       move_replacements (&ad, &XEXP (*memrefloc, 0));
4992       return -1;
4993     }
4994   while (0);
4995 #endif
4996 
4997   /* The address is not valid.  We have to figure out why.  First see if
4998      we have an outer AND and remove it if so.  Then analyze what's inside.  */
4999 
5000   if (GET_CODE (ad) == AND)
5001     {
5002       removed_and = 1;
5003       loc = &XEXP (ad, 0);
5004       ad = *loc;
5005     }
5006 
5007   /* One possibility for why the address is invalid is that it is itself
5008      a MEM.  This can happen when the frame pointer is being eliminated, a
5009      pseudo is not allocated to a hard register, and the offset between the
5010      frame and stack pointers is not its initial value.  In that case the
5011      pseudo will have been replaced by a MEM referring to the
5012      stack pointer.  */
5013   if (MEM_P (ad))
5014     {
5015       /* First ensure that the address in this MEM is valid.  Then, unless
5016 	 indirect addresses are valid, reload the MEM into a register.  */
5017       tem = ad;
5018       find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5019 			    opnum, ADDR_TYPE (type),
5020 			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
5021 
5022       /* If tem was changed, then we must create a new memory reference to
5023 	 hold it and store it back into memrefloc.  */
5024       if (tem != ad && memrefloc)
5025 	{
5026 	  *memrefloc = copy_rtx (*memrefloc);
5027 	  copy_replacements (tem, XEXP (*memrefloc, 0));
5028 	  loc = &XEXP (*memrefloc, 0);
5029 	  if (removed_and)
5030 	    loc = &XEXP (*loc, 0);
5031 	}
5032 
5033       /* Check similar cases as for indirect addresses as above except
5034 	 that we can allow pseudos and a MEM since they should have been
5035 	 taken care of above.  */
5036 
5037       if (ind_levels == 0
5038 	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5039 	  || MEM_P (XEXP (tem, 0))
5040 	  || ! (REG_P (XEXP (tem, 0))
5041 		|| (GET_CODE (XEXP (tem, 0)) == PLUS
5042 		    && REG_P (XEXP (XEXP (tem, 0), 0))
5043 		    && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5044 	{
5045 	  /* Must use TEM here, not AD, since it is the one that will
5046 	     have any subexpressions reloaded, if needed.  */
5047 	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5048 		       base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5049 		       VOIDmode, 0,
5050 		       0, opnum, type);
5051 	  return ! removed_and;
5052 	}
5053       else
5054 	return 0;
5055     }
5056 
5057   /* If we have address of a stack slot but it's not valid because the
5058      displacement is too large, compute the sum in a register.
5059      Handle all base registers here, not just fp/ap/sp, because on some
5060      targets (namely SH) we can also get too large displacements from
5061      big-endian corrections.  */
5062   else if (GET_CODE (ad) == PLUS
5063 	   && REG_P (XEXP (ad, 0))
5064 	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5065 	   && CONST_INT_P (XEXP (ad, 1))
5066 	   && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5067 				    CONST_INT)
5068 	       /* Similarly, if we were to reload the base register and the
5069 		  mem+offset address is still invalid, then we want to reload
5070 		  the whole address, not just the base register.  */
5071 	       || ! maybe_memory_address_addr_space_p
5072 		     (mode, ad, as, &(XEXP (ad, 0)))))
5073 
5074     {
5075       /* Unshare the MEM rtx so we can safely alter it.  */
5076       if (memrefloc)
5077 	{
5078 	  *memrefloc = copy_rtx (*memrefloc);
5079 	  loc = &XEXP (*memrefloc, 0);
5080 	  if (removed_and)
5081 	    loc = &XEXP (*loc, 0);
5082 	}
5083 
5084       if (double_reg_address_ok[mode]
5085 	  && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5086 				  PLUS, CONST_INT))
5087 	{
5088 	  /* Unshare the sum as well.  */
5089 	  *loc = ad = copy_rtx (ad);
5090 
5091 	  /* Reload the displacement into an index reg.
5092 	     We assume the frame pointer or arg pointer is a base reg.  */
5093 	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5094 				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
5095 				     type, ind_levels);
5096 	  return 0;
5097 	}
5098       else
5099 	{
5100 	  /* If the sum of two regs is not necessarily valid,
5101 	     reload the sum into a base reg.
5102 	     That will at least work.  */
5103 	  find_reloads_address_part (ad, loc,
5104 				     base_reg_class (mode, as, MEM, SCRATCH),
5105 				     GET_MODE (ad), opnum, type, ind_levels);
5106 	}
5107       return ! removed_and;
5108     }
5109 
5110   /* If we have an indexed stack slot, there are three possible reasons why
5111      it might be invalid: The index might need to be reloaded, the address
5112      might have been made by frame pointer elimination and hence have a
5113      constant out of range, or both reasons might apply.
5114 
5115      We can easily check for an index needing reload, but even if that is the
5116      case, we might also have an invalid constant.  To avoid making the
5117      conservative assumption and requiring two reloads, we see if this address
5118      is valid when not interpreted strictly.  If it is, the only problem is
5119      that the index needs a reload and find_reloads_address_1 will take care
5120      of it.
5121 
5122      Handle all base registers here, not just fp/ap/sp, because on some
5123      targets (namely SPARC) we can also get invalid addresses from preventive
5124      subreg big-endian corrections made by find_reloads_toplev.  We
5125      can also get expressions involving LO_SUM (rather than PLUS) from
5126      find_reloads_subreg_address.
5127 
5128      If we decide to do something, it must be that `double_reg_address_ok'
5129      is true.  We generate a reload of the base register + constant and
5130      rework the sum so that the reload register will be added to the index.
5131      This is safe because we know the address isn't shared.
5132 
5133      We check for the base register as both the first and second operand of
5134      the innermost PLUS and/or LO_SUM.  */
5135 
5136   for (op_index = 0; op_index < 2; ++op_index)
5137     {
5138       rtx operand, addend;
5139       enum rtx_code inner_code;
5140 
5141       if (GET_CODE (ad) != PLUS)
5142 	  continue;
5143 
5144       inner_code = GET_CODE (XEXP (ad, 0));
5145       if (!(GET_CODE (ad) == PLUS
5146 	    && CONST_INT_P (XEXP (ad, 1))
5147 	    && (inner_code == PLUS || inner_code == LO_SUM)))
5148 	continue;
5149 
5150       operand = XEXP (XEXP (ad, 0), op_index);
5151       if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5152 	continue;
5153 
5154       addend = XEXP (XEXP (ad, 0), 1 - op_index);
5155 
5156       if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5157 				GET_CODE (addend))
5158 	   || operand == frame_pointer_rtx
5159 	   || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
5160 	       && operand == hard_frame_pointer_rtx)
5161 	   || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5162 	       && operand == arg_pointer_rtx)
5163 	   || operand == stack_pointer_rtx)
5164 	  && ! maybe_memory_address_addr_space_p
5165 		(mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5166 	{
5167 	  rtx offset_reg;
5168 	  enum reg_class cls;
5169 
5170 	  offset_reg = plus_constant (GET_MODE (ad), operand,
5171 				      INTVAL (XEXP (ad, 1)));
5172 
5173 	  /* Form the adjusted address.  */
5174 	  if (GET_CODE (XEXP (ad, 0)) == PLUS)
5175 	    ad = gen_rtx_PLUS (GET_MODE (ad),
5176 			       op_index == 0 ? offset_reg : addend,
5177 			       op_index == 0 ? addend : offset_reg);
5178 	  else
5179 	    ad = gen_rtx_LO_SUM (GET_MODE (ad),
5180 				 op_index == 0 ? offset_reg : addend,
5181 				 op_index == 0 ? addend : offset_reg);
5182 	  *loc = ad;
5183 
5184 	  cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5185 	  find_reloads_address_part (XEXP (ad, op_index),
5186 				     &XEXP (ad, op_index), cls,
5187 				     GET_MODE (ad), opnum, type, ind_levels);
5188 	  find_reloads_address_1 (mode, as,
5189 				  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5190 				  GET_CODE (XEXP (ad, op_index)),
5191 				  &XEXP (ad, 1 - op_index), opnum,
5192 				  type, 0, insn);
5193 
5194 	  return 0;
5195 	}
5196     }
5197 
5198   /* See if address becomes valid when an eliminable register
5199      in a sum is replaced.  */
5200 
5201   tem = ad;
5202   if (GET_CODE (ad) == PLUS)
5203     tem = subst_indexed_address (ad);
5204   if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5205     {
5206       /* Ok, we win that way.  Replace any additional eliminable
5207 	 registers.  */
5208 
5209       subst_reg_equivs_changed = 0;
5210       tem = subst_reg_equivs (tem, insn);
5211 
5212       /* Make sure that didn't make the address invalid again.  */
5213 
5214       if (! subst_reg_equivs_changed
5215 	  || strict_memory_address_addr_space_p (mode, tem, as))
5216 	{
5217 	  *loc = tem;
5218 	  return 0;
5219 	}
5220     }
5221 
5222   /* If constants aren't valid addresses, reload the constant address
5223      into a register.  */
5224   if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5225     {
5226       machine_mode address_mode = GET_MODE (ad);
5227       if (address_mode == VOIDmode)
5228 	address_mode = targetm.addr_space.address_mode (as);
5229 
5230       /* If AD is an address in the constant pool, the MEM rtx may be shared.
5231 	 Unshare it so we can safely alter it.  */
5232       if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5233 	  && CONSTANT_POOL_ADDRESS_P (ad))
5234 	{
5235 	  *memrefloc = copy_rtx (*memrefloc);
5236 	  loc = &XEXP (*memrefloc, 0);
5237 	  if (removed_and)
5238 	    loc = &XEXP (*loc, 0);
5239 	}
5240 
5241       find_reloads_address_part (ad, loc,
5242 				 base_reg_class (mode, as, MEM, SCRATCH),
5243 				 address_mode, opnum, type, ind_levels);
5244       return ! removed_and;
5245     }
5246 
5247   return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5248 				 opnum, type, ind_levels, insn);
5249 }
5250 
5251 /* Find all pseudo regs appearing in AD
5252    that are eliminable in favor of equivalent values
5253    and do not have hard regs; replace them by their equivalents.
5254    INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
5255    front of it for pseudos that we have to replace with stack slots.  */
5256 
5257 static rtx
subst_reg_equivs(rtx ad,rtx_insn * insn)5258 subst_reg_equivs (rtx ad, rtx_insn *insn)
5259 {
5260   RTX_CODE code = GET_CODE (ad);
5261   int i;
5262   const char *fmt;
5263 
5264   switch (code)
5265     {
5266     case HIGH:
5267     case CONST:
5268     CASE_CONST_ANY:
5269     case SYMBOL_REF:
5270     case LABEL_REF:
5271     case PC:
5272     case CC0:
5273       return ad;
5274 
5275     case REG:
5276       {
5277 	int regno = REGNO (ad);
5278 
5279 	if (reg_equiv_constant (regno) != 0)
5280 	  {
5281 	    subst_reg_equivs_changed = 1;
5282 	    return reg_equiv_constant (regno);
5283 	  }
5284 	if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5285 	  {
5286 	    rtx mem = make_memloc (ad, regno);
5287 	    if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5288 	      {
5289 		subst_reg_equivs_changed = 1;
5290 		/* We mark the USE with QImode so that we recognize it
5291 		   as one that can be safely deleted at the end of
5292 		   reload.  */
5293 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5294 			  QImode);
5295 		return mem;
5296 	      }
5297 	  }
5298       }
5299       return ad;
5300 
5301     case PLUS:
5302       /* Quickly dispose of a common case.  */
5303       if (XEXP (ad, 0) == frame_pointer_rtx
5304 	  && CONST_INT_P (XEXP (ad, 1)))
5305 	return ad;
5306       break;
5307 
5308     default:
5309       break;
5310     }
5311 
5312   fmt = GET_RTX_FORMAT (code);
5313   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5314     if (fmt[i] == 'e')
5315       XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5316   return ad;
5317 }
5318 
5319 /* Compute the sum of X and Y, making canonicalizations assumed in an
5320    address, namely: sum constant integers, surround the sum of two
5321    constants with a CONST, put the constant as the second operand, and
5322    group the constant on the outermost sum.
5323 
5324    This routine assumes both inputs are already in canonical form.  */
5325 
5326 rtx
form_sum(machine_mode mode,rtx x,rtx y)5327 form_sum (machine_mode mode, rtx x, rtx y)
5328 {
5329   rtx tem;
5330 
5331   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5332   gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5333 
5334   if (CONST_INT_P (x))
5335     return plus_constant (mode, y, INTVAL (x));
5336   else if (CONST_INT_P (y))
5337     return plus_constant (mode, x, INTVAL (y));
5338   else if (CONSTANT_P (x))
5339     tem = x, x = y, y = tem;
5340 
5341   if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5342     return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5343 
5344   /* Note that if the operands of Y are specified in the opposite
5345      order in the recursive calls below, infinite recursion will occur.  */
5346   if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5347     return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5348 
5349   /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5350      constant will have been placed second.  */
5351   if (CONSTANT_P (x) && CONSTANT_P (y))
5352     {
5353       if (GET_CODE (x) == CONST)
5354 	x = XEXP (x, 0);
5355       if (GET_CODE (y) == CONST)
5356 	y = XEXP (y, 0);
5357 
5358       return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5359     }
5360 
5361   return gen_rtx_PLUS (mode, x, y);
5362 }
5363 
5364 /* If ADDR is a sum containing a pseudo register that should be
5365    replaced with a constant (from reg_equiv_constant),
5366    return the result of doing so, and also apply the associative
5367    law so that the result is more likely to be a valid address.
5368    (But it is not guaranteed to be one.)
5369 
5370    Note that at most one register is replaced, even if more are
5371    replaceable.  Also, we try to put the result into a canonical form
5372    so it is more likely to be a valid address.
5373 
5374    In all other cases, return ADDR.  */
5375 
5376 static rtx
subst_indexed_address(rtx addr)5377 subst_indexed_address (rtx addr)
5378 {
5379   rtx op0 = 0, op1 = 0, op2 = 0;
5380   rtx tem;
5381   int regno;
5382 
5383   if (GET_CODE (addr) == PLUS)
5384     {
5385       /* Try to find a register to replace.  */
5386       op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5387       if (REG_P (op0)
5388 	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5389 	  && reg_renumber[regno] < 0
5390 	  && reg_equiv_constant (regno) != 0)
5391 	op0 = reg_equiv_constant (regno);
5392       else if (REG_P (op1)
5393 	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5394 	       && reg_renumber[regno] < 0
5395 	       && reg_equiv_constant (regno) != 0)
5396 	op1 = reg_equiv_constant (regno);
5397       else if (GET_CODE (op0) == PLUS
5398 	       && (tem = subst_indexed_address (op0)) != op0)
5399 	op0 = tem;
5400       else if (GET_CODE (op1) == PLUS
5401 	       && (tem = subst_indexed_address (op1)) != op1)
5402 	op1 = tem;
5403       else
5404 	return addr;
5405 
5406       /* Pick out up to three things to add.  */
5407       if (GET_CODE (op1) == PLUS)
5408 	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5409       else if (GET_CODE (op0) == PLUS)
5410 	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5411 
5412       /* Compute the sum.  */
5413       if (op2 != 0)
5414 	op1 = form_sum (GET_MODE (addr), op1, op2);
5415       if (op1 != 0)
5416 	op0 = form_sum (GET_MODE (addr), op0, op1);
5417 
5418       return op0;
5419     }
5420   return addr;
5421 }
5422 
5423 /* Update the REG_INC notes for an insn.  It updates all REG_INC
5424    notes for the instruction which refer to REGNO the to refer
5425    to the reload number.
5426 
5427    INSN is the insn for which any REG_INC notes need updating.
5428 
5429    REGNO is the register number which has been reloaded.
5430 
5431    RELOADNUM is the reload number.  */
5432 
5433 static void
update_auto_inc_notes(rtx_insn * insn ATTRIBUTE_UNUSED,int regno ATTRIBUTE_UNUSED,int reloadnum ATTRIBUTE_UNUSED)5434 update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5435 		       int reloadnum ATTRIBUTE_UNUSED)
5436 {
5437   if (!AUTO_INC_DEC)
5438     return;
5439 
5440   for (rtx link = REG_NOTES (insn); link; link = XEXP (link, 1))
5441     if (REG_NOTE_KIND (link) == REG_INC
5442         && (int) REGNO (XEXP (link, 0)) == regno)
5443       push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5444 }
5445 
5446 /* Record the pseudo registers we must reload into hard registers in a
5447    subexpression of a would-be memory address, X referring to a value
5448    in mode MODE.  (This function is not called if the address we find
5449    is strictly valid.)
5450 
5451    CONTEXT = 1 means we are considering regs as index regs,
5452    = 0 means we are considering them as base regs.
5453    OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5454    or an autoinc code.
5455    If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5456    is the code of the index part of the address.  Otherwise, pass SCRATCH
5457    for this argument.
5458    OPNUM and TYPE specify the purpose of any reloads made.
5459 
5460    IND_LEVELS says how many levels of indirect addressing are
5461    supported at this point in the address.
5462 
5463    INSN, if nonzero, is the insn in which we do the reload.  It is used
5464    to determine if we may generate output reloads.
5465 
5466    We return nonzero if X, as a whole, is reloaded or replaced.  */
5467 
5468 /* Note that we take shortcuts assuming that no multi-reg machine mode
5469    occurs as part of an address.
5470    Also, this is not fully machine-customizable; it works for machines
5471    such as VAXen and 68000's and 32000's, but other possible machines
5472    could have addressing modes that this does not handle right.
5473    If you add push_reload calls here, you need to make sure gen_reload
5474    handles those cases gracefully.  */
5475 
5476 static int
find_reloads_address_1(machine_mode mode,addr_space_t as,rtx x,int context,enum rtx_code outer_code,enum rtx_code index_code,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx_insn * insn)5477 find_reloads_address_1 (machine_mode mode, addr_space_t as,
5478 			rtx x, int context,
5479 			enum rtx_code outer_code, enum rtx_code index_code,
5480 			rtx *loc, int opnum, enum reload_type type,
5481 			int ind_levels, rtx_insn *insn)
5482 {
5483 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX)	\
5484   ((CONTEXT) == 0							\
5485    ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX)		\
5486    : REGNO_OK_FOR_INDEX_P (REGNO))
5487 
5488   enum reg_class context_reg_class;
5489   RTX_CODE code = GET_CODE (x);
5490   bool reloaded_inner_of_autoinc = false;
5491 
5492   if (context == 1)
5493     context_reg_class = INDEX_REG_CLASS;
5494   else
5495     context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5496 
5497   switch (code)
5498     {
5499     case PLUS:
5500       {
5501 	rtx orig_op0 = XEXP (x, 0);
5502 	rtx orig_op1 = XEXP (x, 1);
5503 	RTX_CODE code0 = GET_CODE (orig_op0);
5504 	RTX_CODE code1 = GET_CODE (orig_op1);
5505 	rtx op0 = orig_op0;
5506 	rtx op1 = orig_op1;
5507 
5508 	if (GET_CODE (op0) == SUBREG)
5509 	  {
5510 	    op0 = SUBREG_REG (op0);
5511 	    code0 = GET_CODE (op0);
5512 	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5513 	      op0 = gen_rtx_REG (word_mode,
5514 				 (REGNO (op0) +
5515 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5516 						       GET_MODE (SUBREG_REG (orig_op0)),
5517 						       SUBREG_BYTE (orig_op0),
5518 						       GET_MODE (orig_op0))));
5519 	  }
5520 
5521 	if (GET_CODE (op1) == SUBREG)
5522 	  {
5523 	    op1 = SUBREG_REG (op1);
5524 	    code1 = GET_CODE (op1);
5525 	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5526 	      /* ??? Why is this given op1's mode and above for
5527 		 ??? op0 SUBREGs we use word_mode?  */
5528 	      op1 = gen_rtx_REG (GET_MODE (op1),
5529 				 (REGNO (op1) +
5530 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5531 						       GET_MODE (SUBREG_REG (orig_op1)),
5532 						       SUBREG_BYTE (orig_op1),
5533 						       GET_MODE (orig_op1))));
5534 	  }
5535 	/* Plus in the index register may be created only as a result of
5536 	   register rematerialization for expression like &localvar*4.  Reload it.
5537 	   It may be possible to combine the displacement on the outer level,
5538 	   but it is probably not worthwhile to do so.  */
5539 	if (context == 1)
5540 	  {
5541 	    find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5542 				  opnum, ADDR_TYPE (type), ind_levels, insn);
5543 	    push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5544 			 context_reg_class,
5545 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5546 	    return 1;
5547 	  }
5548 
5549 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5550 	    || code0 == ZERO_EXTEND || code1 == MEM)
5551 	  {
5552 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5553 				    &XEXP (x, 0), opnum, type, ind_levels,
5554 				    insn);
5555 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5556 				    &XEXP (x, 1), opnum, type, ind_levels,
5557 				    insn);
5558 	  }
5559 
5560 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5561 		 || code1 == ZERO_EXTEND || code0 == MEM)
5562 	  {
5563 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5564 				    &XEXP (x, 0), opnum, type, ind_levels,
5565 				    insn);
5566 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5567 				    &XEXP (x, 1), opnum, type, ind_levels,
5568 				    insn);
5569 	  }
5570 
5571 	else if (code0 == CONST_INT || code0 == CONST
5572 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5573 	  find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5574 				  &XEXP (x, 1), opnum, type, ind_levels,
5575 				  insn);
5576 
5577 	else if (code1 == CONST_INT || code1 == CONST
5578 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5579 	  find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5580 				  &XEXP (x, 0), opnum, type, ind_levels,
5581 				  insn);
5582 
5583 	else if (code0 == REG && code1 == REG)
5584 	  {
5585 	    if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5586 		&& regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5587 	      return 0;
5588 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5589 		     && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5590 	      return 0;
5591 	    else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5592 	      find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5593 				      &XEXP (x, 1), opnum, type, ind_levels,
5594 				      insn);
5595 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5596 	      find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5597 				      &XEXP (x, 0), opnum, type, ind_levels,
5598 				      insn);
5599 	    else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5600 	      find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5601 				      &XEXP (x, 0), opnum, type, ind_levels,
5602 				      insn);
5603 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5604 	      find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5605 				      &XEXP (x, 1), opnum, type, ind_levels,
5606 				      insn);
5607 	    else
5608 	      {
5609 		find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5610 					&XEXP (x, 0), opnum, type, ind_levels,
5611 					insn);
5612 		find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5613 					&XEXP (x, 1), opnum, type, ind_levels,
5614 					insn);
5615 	      }
5616 	  }
5617 
5618 	else if (code0 == REG)
5619 	  {
5620 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5621 				    &XEXP (x, 0), opnum, type, ind_levels,
5622 				    insn);
5623 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5624 				    &XEXP (x, 1), opnum, type, ind_levels,
5625 				    insn);
5626 	  }
5627 
5628 	else if (code1 == REG)
5629 	  {
5630 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5631 				    &XEXP (x, 1), opnum, type, ind_levels,
5632 				    insn);
5633 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5634 				    &XEXP (x, 0), opnum, type, ind_levels,
5635 				    insn);
5636 	  }
5637       }
5638 
5639       return 0;
5640 
5641     case POST_MODIFY:
5642     case PRE_MODIFY:
5643       {
5644 	rtx op0 = XEXP (x, 0);
5645 	rtx op1 = XEXP (x, 1);
5646 	enum rtx_code index_code;
5647 	int regno;
5648 	int reloadnum;
5649 
5650 	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5651 	  return 0;
5652 
5653 	/* Currently, we only support {PRE,POST}_MODIFY constructs
5654 	   where a base register is {inc,dec}remented by the contents
5655 	   of another register or by a constant value.  Thus, these
5656 	   operands must match.  */
5657 	gcc_assert (op0 == XEXP (op1, 0));
5658 
5659 	/* Require index register (or constant).  Let's just handle the
5660 	   register case in the meantime... If the target allows
5661 	   auto-modify by a constant then we could try replacing a pseudo
5662 	   register with its equivalent constant where applicable.
5663 
5664 	   We also handle the case where the register was eliminated
5665 	   resulting in a PLUS subexpression.
5666 
5667 	   If we later decide to reload the whole PRE_MODIFY or
5668 	   POST_MODIFY, inc_for_reload might clobber the reload register
5669 	   before reading the index.  The index register might therefore
5670 	   need to live longer than a TYPE reload normally would, so be
5671 	   conservative and class it as RELOAD_OTHER.  */
5672 	if ((REG_P (XEXP (op1, 1))
5673 	     && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5674 	    || GET_CODE (XEXP (op1, 1)) == PLUS)
5675 	  find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5676 				  &XEXP (op1, 1), opnum, RELOAD_OTHER,
5677 				  ind_levels, insn);
5678 
5679 	gcc_assert (REG_P (XEXP (op1, 0)));
5680 
5681 	regno = REGNO (XEXP (op1, 0));
5682 	index_code = GET_CODE (XEXP (op1, 1));
5683 
5684 	/* A register that is incremented cannot be constant!  */
5685 	gcc_assert (regno < FIRST_PSEUDO_REGISTER
5686 		    || reg_equiv_constant (regno) == 0);
5687 
5688 	/* Handle a register that is equivalent to a memory location
5689 	    which cannot be addressed directly.  */
5690 	if (reg_equiv_memory_loc (regno) != 0
5691 	    && (reg_equiv_address (regno) != 0
5692 		|| num_not_at_initial_offset))
5693 	  {
5694 	    rtx tem = make_memloc (XEXP (x, 0), regno);
5695 
5696 	    if (reg_equiv_address (regno)
5697 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5698 	      {
5699 		rtx orig = tem;
5700 
5701 		/* First reload the memory location's address.
5702 		    We can't use ADDR_TYPE (type) here, because we need to
5703 		    write back the value after reading it, hence we actually
5704 		    need two registers.  */
5705 		find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5706 				      &XEXP (tem, 0), opnum,
5707 				      RELOAD_OTHER,
5708 				      ind_levels, insn);
5709 
5710 		if (!rtx_equal_p (tem, orig))
5711 		  push_reg_equiv_alt_mem (regno, tem);
5712 
5713 		/* Then reload the memory location into a base
5714 		   register.  */
5715 		reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5716 					 &XEXP (op1, 0),
5717 					 base_reg_class (mode, as,
5718 							 code, index_code),
5719 					 GET_MODE (x), GET_MODE (x), 0,
5720 					 0, opnum, RELOAD_OTHER);
5721 
5722 		update_auto_inc_notes (this_insn, regno, reloadnum);
5723 		return 0;
5724 	      }
5725 	  }
5726 
5727 	if (reg_renumber[regno] >= 0)
5728 	  regno = reg_renumber[regno];
5729 
5730 	/* We require a base register here...  */
5731 	if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5732 	  {
5733 	    reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5734 				     &XEXP (op1, 0), &XEXP (x, 0),
5735 				     base_reg_class (mode, as,
5736 						     code, index_code),
5737 				     GET_MODE (x), GET_MODE (x), 0, 0,
5738 				     opnum, RELOAD_OTHER);
5739 
5740 	    update_auto_inc_notes (this_insn, regno, reloadnum);
5741 	    return 0;
5742 	  }
5743       }
5744       return 0;
5745 
5746     case POST_INC:
5747     case POST_DEC:
5748     case PRE_INC:
5749     case PRE_DEC:
5750       if (REG_P (XEXP (x, 0)))
5751 	{
5752 	  int regno = REGNO (XEXP (x, 0));
5753 	  int value = 0;
5754 	  rtx x_orig = x;
5755 
5756 	  /* A register that is incremented cannot be constant!  */
5757 	  gcc_assert (regno < FIRST_PSEUDO_REGISTER
5758 		      || reg_equiv_constant (regno) == 0);
5759 
5760 	  /* Handle a register that is equivalent to a memory location
5761 	     which cannot be addressed directly.  */
5762 	  if (reg_equiv_memory_loc (regno) != 0
5763 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5764 	    {
5765 	      rtx tem = make_memloc (XEXP (x, 0), regno);
5766 	      if (reg_equiv_address (regno)
5767 		  || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5768 		{
5769 		  rtx orig = tem;
5770 
5771 		  /* First reload the memory location's address.
5772 		     We can't use ADDR_TYPE (type) here, because we need to
5773 		     write back the value after reading it, hence we actually
5774 		     need two registers.  */
5775 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5776 					&XEXP (tem, 0), opnum, type,
5777 					ind_levels, insn);
5778 		  reloaded_inner_of_autoinc = true;
5779 		  if (!rtx_equal_p (tem, orig))
5780 		    push_reg_equiv_alt_mem (regno, tem);
5781 		  /* Put this inside a new increment-expression.  */
5782 		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5783 		  /* Proceed to reload that, as if it contained a register.  */
5784 		}
5785 	    }
5786 
5787 	  /* If we have a hard register that is ok in this incdec context,
5788 	     don't make a reload.  If the register isn't nice enough for
5789 	     autoincdec, we can reload it.  But, if an autoincrement of a
5790 	     register that we here verified as playing nice, still outside
5791 	     isn't "valid", it must be that no autoincrement is "valid".
5792 	     If that is true and something made an autoincrement anyway,
5793 	     this must be a special context where one is allowed.
5794 	     (For example, a "push" instruction.)
5795 	     We can't improve this address, so leave it alone.  */
5796 
5797 	  /* Otherwise, reload the autoincrement into a suitable hard reg
5798 	     and record how much to increment by.  */
5799 
5800 	  if (reg_renumber[regno] >= 0)
5801 	    regno = reg_renumber[regno];
5802 	  if (regno >= FIRST_PSEUDO_REGISTER
5803 	      || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5804 				      index_code))
5805 	    {
5806 	      int reloadnum;
5807 
5808 	      /* If we can output the register afterwards, do so, this
5809 		 saves the extra update.
5810 		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5811 		 CALL_INSN - and it does not set CC0.
5812 		 But don't do this if we cannot directly address the
5813 		 memory location, since this will make it harder to
5814 		 reuse address reloads, and increases register pressure.
5815 		 Also don't do this if we can probably update x directly.  */
5816 	      rtx equiv = (MEM_P (XEXP (x, 0))
5817 			   ? XEXP (x, 0)
5818 			   : reg_equiv_mem (regno));
5819 	      enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5820 	      if (insn && NONJUMP_INSN_P (insn)
5821 #if HAVE_cc0
5822 		  && ! sets_cc0_p (PATTERN (insn))
5823 #endif
5824 		  && (regno < FIRST_PSEUDO_REGISTER
5825 		      || (equiv
5826 			  && memory_operand (equiv, GET_MODE (equiv))
5827 			  && ! (icode != CODE_FOR_nothing
5828 				&& insn_operand_matches (icode, 0, equiv)
5829 				&& insn_operand_matches (icode, 1, equiv))))
5830 		  /* Using RELOAD_OTHER means we emit this and the reload we
5831 		     made earlier in the wrong order.  */
5832 		  && !reloaded_inner_of_autoinc)
5833 		{
5834 		  /* We use the original pseudo for loc, so that
5835 		     emit_reload_insns() knows which pseudo this
5836 		     reload refers to and updates the pseudo rtx, not
5837 		     its equivalent memory location, as well as the
5838 		     corresponding entry in reg_last_reload_reg.  */
5839 		  loc = &XEXP (x_orig, 0);
5840 		  x = XEXP (x, 0);
5841 		  reloadnum
5842 		    = push_reload (x, x, loc, loc,
5843 				   context_reg_class,
5844 				   GET_MODE (x), GET_MODE (x), 0, 0,
5845 				   opnum, RELOAD_OTHER);
5846 		}
5847 	      else
5848 		{
5849 		  reloadnum
5850 		    = push_reload (x, x, loc, (rtx*) 0,
5851 				   context_reg_class,
5852 				   GET_MODE (x), GET_MODE (x), 0, 0,
5853 				   opnum, type);
5854 		  rld[reloadnum].inc
5855 		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5856 
5857 		  value = 1;
5858 		}
5859 
5860 	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5861 				     reloadnum);
5862 	    }
5863 	  return value;
5864 	}
5865       return 0;
5866 
5867     case TRUNCATE:
5868     case SIGN_EXTEND:
5869     case ZERO_EXTEND:
5870       /* Look for parts to reload in the inner expression and reload them
5871 	 too, in addition to this operation.  Reloading all inner parts in
5872 	 addition to this one shouldn't be necessary, but at this point,
5873 	 we don't know if we can possibly omit any part that *can* be
5874 	 reloaded.  Targets that are better off reloading just either part
5875 	 (or perhaps even a different part of an outer expression), should
5876 	 define LEGITIMIZE_RELOAD_ADDRESS.  */
5877       find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5878 			      context, code, SCRATCH, &XEXP (x, 0), opnum,
5879 			      type, ind_levels, insn);
5880       push_reload (x, NULL_RTX, loc, (rtx*) 0,
5881 		   context_reg_class,
5882 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5883       return 1;
5884 
5885     case MEM:
5886       /* This is probably the result of a substitution, by eliminate_regs, of
5887 	 an equivalent address for a pseudo that was not allocated to a hard
5888 	 register.  Verify that the specified address is valid and reload it
5889 	 into a register.
5890 
5891 	 Since we know we are going to reload this item, don't decrement for
5892 	 the indirection level.
5893 
5894 	 Note that this is actually conservative:  it would be slightly more
5895 	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5896 	 reload1.c here.  */
5897 
5898       find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5899 			    opnum, ADDR_TYPE (type), ind_levels, insn);
5900       push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5901 		   context_reg_class,
5902 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5903       return 1;
5904 
5905     case REG:
5906       {
5907 	int regno = REGNO (x);
5908 
5909 	if (reg_equiv_constant (regno) != 0)
5910 	  {
5911 	    find_reloads_address_part (reg_equiv_constant (regno), loc,
5912 				       context_reg_class,
5913 				       GET_MODE (x), opnum, type, ind_levels);
5914 	    return 1;
5915 	  }
5916 
5917 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5918 	 that feeds this insn.  */
5919 	if (reg_equiv_mem (regno) != 0)
5920 	  {
5921 	    push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5922 			 context_reg_class,
5923 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5924 	    return 1;
5925 	  }
5926 #endif
5927 
5928 	if (reg_equiv_memory_loc (regno)
5929 	    && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5930 	  {
5931 	    rtx tem = make_memloc (x, regno);
5932 	    if (reg_equiv_address (regno) != 0
5933 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5934 	      {
5935 		x = tem;
5936 		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5937 				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
5938 				      ind_levels, insn);
5939 		if (!rtx_equal_p (x, tem))
5940 		  push_reg_equiv_alt_mem (regno, x);
5941 	      }
5942 	  }
5943 
5944 	if (reg_renumber[regno] >= 0)
5945 	  regno = reg_renumber[regno];
5946 
5947 	if (regno >= FIRST_PSEUDO_REGISTER
5948 	    || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5949 				    index_code))
5950 	  {
5951 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5952 			 context_reg_class,
5953 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5954 	    return 1;
5955 	  }
5956 
5957 	/* If a register appearing in an address is the subject of a CLOBBER
5958 	   in this insn, reload it into some other register to be safe.
5959 	   The CLOBBER is supposed to make the register unavailable
5960 	   from before this insn to after it.  */
5961 	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5962 	  {
5963 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5964 			 context_reg_class,
5965 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5966 	    return 1;
5967 	  }
5968       }
5969       return 0;
5970 
5971     case SUBREG:
5972       if (REG_P (SUBREG_REG (x)))
5973 	{
5974 	  /* If this is a SUBREG of a hard register and the resulting register
5975 	     is of the wrong class, reload the whole SUBREG.  This avoids
5976 	     needless copies if SUBREG_REG is multi-word.  */
5977 	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5978 	    {
5979 	      int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5980 
5981 	      if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5982 				       index_code))
5983 		{
5984 		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
5985 			       context_reg_class,
5986 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5987 		  return 1;
5988 		}
5989 	    }
5990 	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5991 	     is larger than the class size, then reload the whole SUBREG.  */
5992 	  else
5993 	    {
5994 	      enum reg_class rclass = context_reg_class;
5995 	      if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
5996 		  > reg_class_size[(int) rclass])
5997 		{
5998 		  /* If the inner register will be replaced by a memory
5999 		     reference, we can do this only if we can replace the
6000 		     whole subreg by a (narrower) memory reference.  If
6001 		     this is not possible, fall through and reload just
6002 		     the inner register (including address reloads).  */
6003 		  if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6004 		    {
6005 		      rtx tem = find_reloads_subreg_address (x, opnum,
6006 							     ADDR_TYPE (type),
6007 							     ind_levels, insn,
6008 							     NULL);
6009 		      if (tem)
6010 			{
6011 			  push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6012 				       GET_MODE (tem), VOIDmode, 0, 0,
6013 				       opnum, type);
6014 			  return 1;
6015 			}
6016 		    }
6017 		  else
6018 		    {
6019 		      push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6020 				   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6021 		      return 1;
6022 		    }
6023 		}
6024 	    }
6025 	}
6026       break;
6027 
6028     default:
6029       break;
6030     }
6031 
6032   {
6033     const char *fmt = GET_RTX_FORMAT (code);
6034     int i;
6035 
6036     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6037       {
6038 	if (fmt[i] == 'e')
6039 	  /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6040 	     we get here.  */
6041 	  find_reloads_address_1 (mode, as, XEXP (x, i), context,
6042 				  code, SCRATCH, &XEXP (x, i),
6043 				  opnum, type, ind_levels, insn);
6044       }
6045   }
6046 
6047 #undef REG_OK_FOR_CONTEXT
6048   return 0;
6049 }
6050 
6051 /* X, which is found at *LOC, is a part of an address that needs to be
6052    reloaded into a register of class RCLASS.  If X is a constant, or if
6053    X is a PLUS that contains a constant, check that the constant is a
6054    legitimate operand and that we are supposed to be able to load
6055    it into the register.
6056 
6057    If not, force the constant into memory and reload the MEM instead.
6058 
6059    MODE is the mode to use, in case X is an integer constant.
6060 
6061    OPNUM and TYPE describe the purpose of any reloads made.
6062 
6063    IND_LEVELS says how many levels of indirect addressing this machine
6064    supports.  */
6065 
6066 static void
find_reloads_address_part(rtx x,rtx * loc,enum reg_class rclass,machine_mode mode,int opnum,enum reload_type type,int ind_levels)6067 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6068 			   machine_mode mode, int opnum,
6069 			   enum reload_type type, int ind_levels)
6070 {
6071   if (CONSTANT_P (x)
6072       && (!targetm.legitimate_constant_p (mode, x)
6073 	  || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6074     {
6075       x = force_const_mem (mode, x);
6076       find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6077 			    opnum, type, ind_levels, 0);
6078     }
6079 
6080   else if (GET_CODE (x) == PLUS
6081 	   && CONSTANT_P (XEXP (x, 1))
6082 	   && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6083 	       || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6084 		   == NO_REGS))
6085     {
6086       rtx tem;
6087 
6088       tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6089       x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6090       find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6091 			    opnum, type, ind_levels, 0);
6092     }
6093 
6094   push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6095 	       mode, VOIDmode, 0, 0, opnum, type);
6096 }
6097 
6098 /* X, a subreg of a pseudo, is a part of an address that needs to be
6099    reloaded, and the pseusdo is equivalent to a memory location.
6100 
6101    Attempt to replace the whole subreg by a (possibly narrower or wider)
6102    memory reference.  If this is possible, return this new memory
6103    reference, and push all required address reloads.  Otherwise,
6104    return NULL.
6105 
6106    OPNUM and TYPE identify the purpose of the reload.
6107 
6108    IND_LEVELS says how many levels of indirect addressing are
6109    supported at this point in the address.
6110 
6111    INSN, if nonzero, is the insn in which we do the reload.  It is used
6112    to determine where to put USEs for pseudos that we have to replace with
6113    stack slots.  */
6114 
6115 static rtx
find_reloads_subreg_address(rtx x,int opnum,enum reload_type type,int ind_levels,rtx_insn * insn,int * address_reloaded)6116 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6117 			     int ind_levels, rtx_insn *insn,
6118 			     int *address_reloaded)
6119 {
6120   machine_mode outer_mode = GET_MODE (x);
6121   machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6122   int regno = REGNO (SUBREG_REG (x));
6123   int reloaded = 0;
6124   rtx tem, orig;
6125   poly_int64 offset;
6126 
6127   gcc_assert (reg_equiv_memory_loc (regno) != 0);
6128 
6129   /* We cannot replace the subreg with a modified memory reference if:
6130 
6131      - we have a paradoxical subreg that implicitly acts as a zero or
6132        sign extension operation due to LOAD_EXTEND_OP;
6133 
6134      - we have a subreg that is implicitly supposed to act on the full
6135        register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6136 
6137      - the address of the equivalent memory location is mode-dependent;  or
6138 
6139      - we have a paradoxical subreg and the resulting memory is not
6140        sufficiently aligned to allow access in the wider mode.
6141 
6142     In addition, we choose not to perform the replacement for *any*
6143     paradoxical subreg, even if it were possible in principle.  This
6144     is to avoid generating wider memory references than necessary.
6145 
6146     This corresponds to how previous versions of reload used to handle
6147     paradoxical subregs where no address reload was required.  */
6148 
6149   if (paradoxical_subreg_p (x))
6150     return NULL;
6151 
6152   if (WORD_REGISTER_OPERATIONS
6153       && partial_subreg_p (outer_mode, inner_mode)
6154       && known_equal_after_align_down (GET_MODE_SIZE (outer_mode) - 1,
6155 				       GET_MODE_SIZE (inner_mode) - 1,
6156 				       UNITS_PER_WORD))
6157     return NULL;
6158 
6159   /* Since we don't attempt to handle paradoxical subregs, we can just
6160      call into simplify_subreg, which will handle all remaining checks
6161      for us.  */
6162   orig = make_memloc (SUBREG_REG (x), regno);
6163   offset = SUBREG_BYTE (x);
6164   tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6165   if (!tem || !MEM_P (tem))
6166     return NULL;
6167 
6168   /* Now push all required address reloads, if any.  */
6169   reloaded = find_reloads_address (GET_MODE (tem), &tem,
6170 				   XEXP (tem, 0), &XEXP (tem, 0),
6171 				   opnum, type, ind_levels, insn);
6172   /* ??? Do we need to handle nonzero offsets somehow?  */
6173   if (known_eq (offset, 0) && !rtx_equal_p (tem, orig))
6174     push_reg_equiv_alt_mem (regno, tem);
6175 
6176   /* For some processors an address may be valid in the original mode but
6177      not in a smaller mode.  For example, ARM accepts a scaled index register
6178      in SImode but not in HImode.  Note that this is only a problem if the
6179      address in reg_equiv_mem is already invalid in the new mode; other
6180      cases would be fixed by find_reloads_address as usual.
6181 
6182      ??? We attempt to handle such cases here by doing an additional reload
6183      of the full address after the usual processing by find_reloads_address.
6184      Note that this may not work in the general case, but it seems to cover
6185      the cases where this situation currently occurs.  A more general fix
6186      might be to reload the *value* instead of the address, but this would
6187      not be expected by the callers of this routine as-is.
6188 
6189      If find_reloads_address already completed replaced the address, there
6190      is nothing further to do.  */
6191   if (reloaded == 0
6192       && reg_equiv_mem (regno) != 0
6193       && !strict_memory_address_addr_space_p
6194 		(GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6195 		 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6196     {
6197       push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6198 		   base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6199 				   MEM, SCRATCH),
6200 		   GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6201       reloaded = 1;
6202     }
6203 
6204   /* If this is not a toplevel operand, find_reloads doesn't see this
6205      substitution.  We have to emit a USE of the pseudo so that
6206      delete_output_reload can see it.  */
6207   if (replace_reloads && recog_data.operand[opnum] != x)
6208     /* We mark the USE with QImode so that we recognize it as one that
6209        can be safely deleted at the end of reload.  */
6210     PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6211 	      QImode);
6212 
6213   if (address_reloaded)
6214     *address_reloaded = reloaded;
6215 
6216   return tem;
6217 }
6218 
6219 /* Substitute into the current INSN the registers into which we have reloaded
6220    the things that need reloading.  The array `replacements'
6221    contains the locations of all pointers that must be changed
6222    and says what to replace them with.
6223 
6224    Return the rtx that X translates into; usually X, but modified.  */
6225 
6226 void
subst_reloads(rtx_insn * insn)6227 subst_reloads (rtx_insn *insn)
6228 {
6229   int i;
6230 
6231   for (i = 0; i < n_replacements; i++)
6232     {
6233       struct replacement *r = &replacements[i];
6234       rtx reloadreg = rld[r->what].reg_rtx;
6235       if (reloadreg)
6236 	{
6237 #ifdef DEBUG_RELOAD
6238 	  /* This checking takes a very long time on some platforms
6239 	     causing the gcc.c-torture/compile/limits-fnargs.c test
6240 	     to time out during testing.  See PR 31850.
6241 
6242 	     Internal consistency test.  Check that we don't modify
6243 	     anything in the equivalence arrays.  Whenever something from
6244 	     those arrays needs to be reloaded, it must be unshared before
6245 	     being substituted into; the equivalence must not be modified.
6246 	     Otherwise, if the equivalence is used after that, it will
6247 	     have been modified, and the thing substituted (probably a
6248 	     register) is likely overwritten and not a usable equivalence.  */
6249 	  int check_regno;
6250 
6251 	  for (check_regno = 0; check_regno < max_regno; check_regno++)
6252 	    {
6253 #define CHECK_MODF(ARRAY)						\
6254 	      gcc_assert (!(*reg_equivs)[check_regno].ARRAY		\
6255 			  || !loc_mentioned_in_p (r->where,		\
6256 						  (*reg_equivs)[check_regno].ARRAY))
6257 
6258 	      CHECK_MODF (constant);
6259 	      CHECK_MODF (memory_loc);
6260 	      CHECK_MODF (address);
6261 	      CHECK_MODF (mem);
6262 #undef CHECK_MODF
6263 	    }
6264 #endif /* DEBUG_RELOAD */
6265 
6266 	  /* If we're replacing a LABEL_REF with a register, there must
6267 	     already be an indication (to e.g. flow) which label this
6268 	     register refers to.  */
6269 	  gcc_assert (GET_CODE (*r->where) != LABEL_REF
6270 		      || !JUMP_P (insn)
6271 		      || find_reg_note (insn,
6272 					REG_LABEL_OPERAND,
6273 					XEXP (*r->where, 0))
6274 		      || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6275 
6276 	  /* Encapsulate RELOADREG so its machine mode matches what
6277 	     used to be there.  Note that gen_lowpart_common will
6278 	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
6279 	     will always be a REG here.  */
6280 	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6281 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6282 
6283 	  *r->where = reloadreg;
6284 	}
6285       /* If reload got no reg and isn't optional, something's wrong.  */
6286       else
6287 	gcc_assert (rld[r->what].optional);
6288     }
6289 }
6290 
6291 /* Make a copy of any replacements being done into X and move those
6292    copies to locations in Y, a copy of X.  */
6293 
6294 void
copy_replacements(rtx x,rtx y)6295 copy_replacements (rtx x, rtx y)
6296 {
6297   copy_replacements_1 (&x, &y, n_replacements);
6298 }
6299 
6300 static void
copy_replacements_1(rtx * px,rtx * py,int orig_replacements)6301 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6302 {
6303   int i, j;
6304   rtx x, y;
6305   struct replacement *r;
6306   enum rtx_code code;
6307   const char *fmt;
6308 
6309   for (j = 0; j < orig_replacements; j++)
6310     if (replacements[j].where == px)
6311       {
6312 	r = &replacements[n_replacements++];
6313 	r->where = py;
6314 	r->what = replacements[j].what;
6315 	r->mode = replacements[j].mode;
6316       }
6317 
6318   x = *px;
6319   y = *py;
6320   code = GET_CODE (x);
6321   fmt = GET_RTX_FORMAT (code);
6322 
6323   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6324     {
6325       if (fmt[i] == 'e')
6326 	copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6327       else if (fmt[i] == 'E')
6328 	for (j = XVECLEN (x, i); --j >= 0; )
6329 	  copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6330 			       orig_replacements);
6331     }
6332 }
6333 
6334 /* Change any replacements being done to *X to be done to *Y.  */
6335 
6336 void
move_replacements(rtx * x,rtx * y)6337 move_replacements (rtx *x, rtx *y)
6338 {
6339   int i;
6340 
6341   for (i = 0; i < n_replacements; i++)
6342     if (replacements[i].where == x)
6343       replacements[i].where = y;
6344 }
6345 
6346 /* If LOC was scheduled to be replaced by something, return the replacement.
6347    Otherwise, return *LOC.  */
6348 
6349 rtx
find_replacement(rtx * loc)6350 find_replacement (rtx *loc)
6351 {
6352   struct replacement *r;
6353 
6354   for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6355     {
6356       rtx reloadreg = rld[r->what].reg_rtx;
6357 
6358       if (reloadreg && r->where == loc)
6359 	{
6360 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6361 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6362 
6363 	  return reloadreg;
6364 	}
6365       else if (reloadreg && GET_CODE (*loc) == SUBREG
6366 	       && r->where == &SUBREG_REG (*loc))
6367 	{
6368 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6369 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6370 
6371 	  return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6372 				      GET_MODE (SUBREG_REG (*loc)),
6373 				      SUBREG_BYTE (*loc));
6374 	}
6375     }
6376 
6377   /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6378      what's inside and make a new rtl if so.  */
6379   if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6380       || GET_CODE (*loc) == MULT)
6381     {
6382       rtx x = find_replacement (&XEXP (*loc, 0));
6383       rtx y = find_replacement (&XEXP (*loc, 1));
6384 
6385       if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6386 	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6387     }
6388 
6389   return *loc;
6390 }
6391 
6392 /* Return nonzero if register in range [REGNO, ENDREGNO)
6393    appears either explicitly or implicitly in X
6394    other than being stored into (except for earlyclobber operands).
6395 
6396    References contained within the substructure at LOC do not count.
6397    LOC may be zero, meaning don't ignore anything.
6398 
6399    This is similar to refers_to_regno_p in rtlanal.c except that we
6400    look at equivalences for pseudos that didn't get hard registers.  */
6401 
6402 static int
refers_to_regno_for_reload_p(unsigned int regno,unsigned int endregno,rtx x,rtx * loc)6403 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6404 			      rtx x, rtx *loc)
6405 {
6406   int i;
6407   unsigned int r;
6408   RTX_CODE code;
6409   const char *fmt;
6410 
6411   if (x == 0)
6412     return 0;
6413 
6414  repeat:
6415   code = GET_CODE (x);
6416 
6417   switch (code)
6418     {
6419     case REG:
6420       r = REGNO (x);
6421 
6422       /* If this is a pseudo, a hard register must not have been allocated.
6423 	 X must therefore either be a constant or be in memory.  */
6424       if (r >= FIRST_PSEUDO_REGISTER)
6425 	{
6426 	  if (reg_equiv_memory_loc (r))
6427 	    return refers_to_regno_for_reload_p (regno, endregno,
6428 						 reg_equiv_memory_loc (r),
6429 						 (rtx*) 0);
6430 
6431 	  gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6432 	  return 0;
6433 	}
6434 
6435       return endregno > r && regno < END_REGNO (x);
6436 
6437     case SUBREG:
6438       /* If this is a SUBREG of a hard reg, we can see exactly which
6439 	 registers are being modified.  Otherwise, handle normally.  */
6440       if (REG_P (SUBREG_REG (x))
6441 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6442 	{
6443 	  unsigned int inner_regno = subreg_regno (x);
6444 	  unsigned int inner_endregno
6445 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6446 			     ? subreg_nregs (x) : 1);
6447 
6448 	  return endregno > inner_regno && regno < inner_endregno;
6449 	}
6450       break;
6451 
6452     case CLOBBER:
6453     case SET:
6454       if (&SET_DEST (x) != loc
6455 	  /* Note setting a SUBREG counts as referring to the REG it is in for
6456 	     a pseudo but not for hard registers since we can
6457 	     treat each word individually.  */
6458 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6459 	       && loc != &SUBREG_REG (SET_DEST (x))
6460 	       && REG_P (SUBREG_REG (SET_DEST (x)))
6461 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6462 	       && refers_to_regno_for_reload_p (regno, endregno,
6463 						SUBREG_REG (SET_DEST (x)),
6464 						loc))
6465 	      /* If the output is an earlyclobber operand, this is
6466 		 a conflict.  */
6467 	      || ((!REG_P (SET_DEST (x))
6468 		   || earlyclobber_operand_p (SET_DEST (x)))
6469 		  && refers_to_regno_for_reload_p (regno, endregno,
6470 						   SET_DEST (x), loc))))
6471 	return 1;
6472 
6473       if (code == CLOBBER || loc == &SET_SRC (x))
6474 	return 0;
6475       x = SET_SRC (x);
6476       goto repeat;
6477 
6478     default:
6479       break;
6480     }
6481 
6482   /* X does not match, so try its subexpressions.  */
6483 
6484   fmt = GET_RTX_FORMAT (code);
6485   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6486     {
6487       if (fmt[i] == 'e' && loc != &XEXP (x, i))
6488 	{
6489 	  if (i == 0)
6490 	    {
6491 	      x = XEXP (x, 0);
6492 	      goto repeat;
6493 	    }
6494 	  else
6495 	    if (refers_to_regno_for_reload_p (regno, endregno,
6496 					      XEXP (x, i), loc))
6497 	      return 1;
6498 	}
6499       else if (fmt[i] == 'E')
6500 	{
6501 	  int j;
6502 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6503 	    if (loc != &XVECEXP (x, i, j)
6504 		&& refers_to_regno_for_reload_p (regno, endregno,
6505 						 XVECEXP (x, i, j), loc))
6506 	      return 1;
6507 	}
6508     }
6509   return 0;
6510 }
6511 
6512 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6513    we check if any register number in X conflicts with the relevant register
6514    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6515    contains a MEM (we don't bother checking for memory addresses that can't
6516    conflict because we expect this to be a rare case.
6517 
6518    This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6519    that we look at equivalences for pseudos that didn't get hard registers.  */
6520 
6521 int
reg_overlap_mentioned_for_reload_p(rtx x,rtx in)6522 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6523 {
6524   int regno, endregno;
6525 
6526   /* Overly conservative.  */
6527   if (GET_CODE (x) == STRICT_LOW_PART
6528       || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6529     x = XEXP (x, 0);
6530 
6531   /* If either argument is a constant, then modifying X can not affect IN.  */
6532   if (CONSTANT_P (x) || CONSTANT_P (in))
6533     return 0;
6534   else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6535     return refers_to_mem_for_reload_p (in);
6536   else if (GET_CODE (x) == SUBREG)
6537     {
6538       regno = REGNO (SUBREG_REG (x));
6539       if (regno < FIRST_PSEUDO_REGISTER)
6540 	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6541 				      GET_MODE (SUBREG_REG (x)),
6542 				      SUBREG_BYTE (x),
6543 				      GET_MODE (x));
6544       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6545 			  ? subreg_nregs (x) : 1);
6546 
6547       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6548     }
6549   else if (REG_P (x))
6550     {
6551       regno = REGNO (x);
6552 
6553       /* If this is a pseudo, it must not have been assigned a hard register.
6554 	 Therefore, it must either be in memory or be a constant.  */
6555 
6556       if (regno >= FIRST_PSEUDO_REGISTER)
6557 	{
6558 	  if (reg_equiv_memory_loc (regno))
6559 	    return refers_to_mem_for_reload_p (in);
6560 	  gcc_assert (reg_equiv_constant (regno));
6561 	  return 0;
6562 	}
6563 
6564       endregno = END_REGNO (x);
6565 
6566       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6567     }
6568   else if (MEM_P (x))
6569     return refers_to_mem_for_reload_p (in);
6570   else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6571 	   || GET_CODE (x) == CC0)
6572     return reg_mentioned_p (x, in);
6573   else
6574     {
6575       gcc_assert (GET_CODE (x) == PLUS);
6576 
6577       /* We actually want to know if X is mentioned somewhere inside IN.
6578 	 We must not say that (plus (sp) (const_int 124)) is in
6579 	 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6580 	 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6581 	 into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
6582       while (MEM_P (in))
6583 	in = XEXP (in, 0);
6584       if (REG_P (in))
6585 	return 0;
6586       else if (GET_CODE (in) == PLUS)
6587 	return (rtx_equal_p (x, in)
6588 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6589 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6590       else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6591 		   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6592     }
6593 
6594   gcc_unreachable ();
6595 }
6596 
6597 /* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6598    registers.  */
6599 
6600 static int
refers_to_mem_for_reload_p(rtx x)6601 refers_to_mem_for_reload_p (rtx x)
6602 {
6603   const char *fmt;
6604   int i;
6605 
6606   if (MEM_P (x))
6607     return 1;
6608 
6609   if (REG_P (x))
6610     return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6611 	    && reg_equiv_memory_loc (REGNO (x)));
6612 
6613   fmt = GET_RTX_FORMAT (GET_CODE (x));
6614   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6615     if (fmt[i] == 'e'
6616 	&& (MEM_P (XEXP (x, i))
6617 	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6618       return 1;
6619 
6620   return 0;
6621 }
6622 
6623 /* Check the insns before INSN to see if there is a suitable register
6624    containing the same value as GOAL.
6625    If OTHER is -1, look for a register in class RCLASS.
6626    Otherwise, just see if register number OTHER shares GOAL's value.
6627 
6628    Return an rtx for the register found, or zero if none is found.
6629 
6630    If RELOAD_REG_P is (short *)1,
6631    we reject any hard reg that appears in reload_reg_rtx
6632    because such a hard reg is also needed coming into this insn.
6633 
6634    If RELOAD_REG_P is any other nonzero value,
6635    it is a vector indexed by hard reg number
6636    and we reject any hard reg whose element in the vector is nonnegative
6637    as well as any that appears in reload_reg_rtx.
6638 
6639    If GOAL is zero, then GOALREG is a register number; we look
6640    for an equivalent for that register.
6641 
6642    MODE is the machine mode of the value we want an equivalence for.
6643    If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6644 
6645    This function is used by jump.c as well as in the reload pass.
6646 
6647    If GOAL is the sum of the stack pointer and a constant, we treat it
6648    as if it were a constant except that sp is required to be unchanging.  */
6649 
6650 rtx
find_equiv_reg(rtx goal,rtx_insn * insn,enum reg_class rclass,int other,short * reload_reg_p,int goalreg,machine_mode mode)6651 find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6652 		short *reload_reg_p, int goalreg, machine_mode mode)
6653 {
6654   rtx_insn *p = insn;
6655   rtx goaltry, valtry, value;
6656   rtx_insn *where;
6657   rtx pat;
6658   int regno = -1;
6659   int valueno;
6660   int goal_mem = 0;
6661   int goal_const = 0;
6662   int goal_mem_addr_varies = 0;
6663   int need_stable_sp = 0;
6664   int nregs;
6665   int valuenregs;
6666   int num = 0;
6667 
6668   if (goal == 0)
6669     regno = goalreg;
6670   else if (REG_P (goal))
6671     regno = REGNO (goal);
6672   else if (MEM_P (goal))
6673     {
6674       enum rtx_code code = GET_CODE (XEXP (goal, 0));
6675       if (MEM_VOLATILE_P (goal))
6676 	return 0;
6677       if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6678 	return 0;
6679       /* An address with side effects must be reexecuted.  */
6680       switch (code)
6681 	{
6682 	case POST_INC:
6683 	case PRE_INC:
6684 	case POST_DEC:
6685 	case PRE_DEC:
6686 	case POST_MODIFY:
6687 	case PRE_MODIFY:
6688 	  return 0;
6689 	default:
6690 	  break;
6691 	}
6692       goal_mem = 1;
6693     }
6694   else if (CONSTANT_P (goal))
6695     goal_const = 1;
6696   else if (GET_CODE (goal) == PLUS
6697 	   && XEXP (goal, 0) == stack_pointer_rtx
6698 	   && CONSTANT_P (XEXP (goal, 1)))
6699     goal_const = need_stable_sp = 1;
6700   else if (GET_CODE (goal) == PLUS
6701 	   && XEXP (goal, 0) == frame_pointer_rtx
6702 	   && CONSTANT_P (XEXP (goal, 1)))
6703     goal_const = 1;
6704   else
6705     return 0;
6706 
6707   num = 0;
6708   /* Scan insns back from INSN, looking for one that copies
6709      a value into or out of GOAL.
6710      Stop and give up if we reach a label.  */
6711 
6712   while (1)
6713     {
6714       p = PREV_INSN (p);
6715       if (p && DEBUG_INSN_P (p))
6716 	continue;
6717       num++;
6718       if (p == 0 || LABEL_P (p)
6719 	  || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6720 	return 0;
6721 
6722       /* Don't reuse register contents from before a setjmp-type
6723 	 function call; on the second return (from the longjmp) it
6724 	 might have been clobbered by a later reuse.  It doesn't
6725 	 seem worthwhile to actually go and see if it is actually
6726 	 reused even if that information would be readily available;
6727 	 just don't reuse it across the setjmp call.  */
6728       if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6729 	return 0;
6730 
6731       if (NONJUMP_INSN_P (p)
6732 	  /* If we don't want spill regs ...  */
6733 	  && (! (reload_reg_p != 0
6734 		 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6735 	      /* ... then ignore insns introduced by reload; they aren't
6736 		 useful and can cause results in reload_as_needed to be
6737 		 different from what they were when calculating the need for
6738 		 spills.  If we notice an input-reload insn here, we will
6739 		 reject it below, but it might hide a usable equivalent.
6740 		 That makes bad code.  It may even fail: perhaps no reg was
6741 		 spilled for this insn because it was assumed we would find
6742 		 that equivalent.  */
6743 	      || INSN_UID (p) < reload_first_uid))
6744 	{
6745 	  rtx tem;
6746 	  pat = single_set (p);
6747 
6748 	  /* First check for something that sets some reg equal to GOAL.  */
6749 	  if (pat != 0
6750 	      && ((regno >= 0
6751 		   && true_regnum (SET_SRC (pat)) == regno
6752 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6753 		  ||
6754 		  (regno >= 0
6755 		   && true_regnum (SET_DEST (pat)) == regno
6756 		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6757 		  ||
6758 		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6759 		   /* When looking for stack pointer + const,
6760 		      make sure we don't use a stack adjust.  */
6761 		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6762 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6763 		  || (goal_mem
6764 		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6765 		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6766 		  || (goal_mem
6767 		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6768 		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6769 		  /* If we are looking for a constant,
6770 		     and something equivalent to that constant was copied
6771 		     into a reg, we can use that reg.  */
6772 		  || (goal_const && REG_NOTES (p) != 0
6773 		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6774 		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6775 			   && (valueno
6776 			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6777 			  || (REG_P (SET_DEST (pat))
6778 			      && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6779 			      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6780 			      && CONST_INT_P (goal)
6781 			      && (goaltry = operand_subword (XEXP (tem, 0), 0,
6782 							     0, VOIDmode)) != 0
6783 			      && rtx_equal_p (goal, goaltry)
6784 			      && (valtry
6785 				  = operand_subword (SET_DEST (pat), 0, 0,
6786 						     VOIDmode))
6787 			      && (valueno = true_regnum (valtry)) >= 0)))
6788 		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6789 							  NULL_RTX))
6790 		      && REG_P (SET_DEST (pat))
6791 		      && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6792 		      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6793 		      && CONST_INT_P (goal)
6794 		      && (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6795 						     VOIDmode)) != 0
6796 		      && rtx_equal_p (goal, goaltry)
6797 		      && (valtry
6798 			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6799 		      && (valueno = true_regnum (valtry)) >= 0)))
6800 	    {
6801 	      if (other >= 0)
6802 		{
6803 		  if (valueno != other)
6804 		    continue;
6805 		}
6806 	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6807 		continue;
6808 	      else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6809 					  mode, valueno))
6810 		continue;
6811 	      value = valtry;
6812 	      where = p;
6813 	      break;
6814 	    }
6815 	}
6816     }
6817 
6818   /* We found a previous insn copying GOAL into a suitable other reg VALUE
6819      (or copying VALUE into GOAL, if GOAL is also a register).
6820      Now verify that VALUE is really valid.  */
6821 
6822   /* VALUENO is the register number of VALUE; a hard register.  */
6823 
6824   /* Don't try to re-use something that is killed in this insn.  We want
6825      to be able to trust REG_UNUSED notes.  */
6826   if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6827     return 0;
6828 
6829   /* If we propose to get the value from the stack pointer or if GOAL is
6830      a MEM based on the stack pointer, we need a stable SP.  */
6831   if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6832       || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6833 							  goal)))
6834     need_stable_sp = 1;
6835 
6836   /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6837   if (GET_MODE (value) != mode)
6838     return 0;
6839 
6840   /* Reject VALUE if it was loaded from GOAL
6841      and is also a register that appears in the address of GOAL.  */
6842 
6843   if (goal_mem && value == SET_DEST (single_set (where))
6844       && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6845 				       goal, (rtx*) 0))
6846     return 0;
6847 
6848   /* Reject registers that overlap GOAL.  */
6849 
6850   if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6851     nregs = hard_regno_nregs (regno, mode);
6852   else
6853     nregs = 1;
6854   valuenregs = hard_regno_nregs (valueno, mode);
6855 
6856   if (!goal_mem && !goal_const
6857       && regno + nregs > valueno && regno < valueno + valuenregs)
6858     return 0;
6859 
6860   /* Reject VALUE if it is one of the regs reserved for reloads.
6861      Reload1 knows how to reuse them anyway, and it would get
6862      confused if we allocated one without its knowledge.
6863      (Now that insns introduced by reload are ignored above,
6864      this case shouldn't happen, but I'm not positive.)  */
6865 
6866   if (reload_reg_p != 0 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6867     {
6868       int i;
6869       for (i = 0; i < valuenregs; ++i)
6870 	if (reload_reg_p[valueno + i] >= 0)
6871 	  return 0;
6872     }
6873 
6874   /* Reject VALUE if it is a register being used for an input reload
6875      even if it is not one of those reserved.  */
6876 
6877   if (reload_reg_p != 0)
6878     {
6879       int i;
6880       for (i = 0; i < n_reloads; i++)
6881 	if (rld[i].reg_rtx != 0
6882 	    && rld[i].in
6883 	    && (int) REGNO (rld[i].reg_rtx) < valueno + valuenregs
6884 	    && (int) END_REGNO (rld[i].reg_rtx) > valueno)
6885 	  return 0;
6886     }
6887 
6888   if (goal_mem)
6889     /* We must treat frame pointer as varying here,
6890        since it can vary--in a nonlocal goto as generated by expand_goto.  */
6891     goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6892 
6893   /* Now verify that the values of GOAL and VALUE remain unaltered
6894      until INSN is reached.  */
6895 
6896   p = insn;
6897   while (1)
6898     {
6899       p = PREV_INSN (p);
6900       if (p == where)
6901 	return value;
6902 
6903       /* Don't trust the conversion past a function call
6904 	 if either of the two is in a call-clobbered register, or memory.  */
6905       if (CALL_P (p))
6906 	{
6907 	  int i;
6908 
6909 	  if (goal_mem || need_stable_sp)
6910 	    return 0;
6911 
6912 	  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6913 	    for (i = 0; i < nregs; ++i)
6914 	      if (call_used_regs[regno + i]
6915 		  || targetm.hard_regno_call_part_clobbered (regno + i, mode))
6916 		return 0;
6917 
6918 	  if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6919 	    for (i = 0; i < valuenregs; ++i)
6920 	      if (call_used_regs[valueno + i]
6921 		  || targetm.hard_regno_call_part_clobbered (valueno + i,
6922 							     mode))
6923 		return 0;
6924 	}
6925 
6926       if (INSN_P (p))
6927 	{
6928 	  pat = PATTERN (p);
6929 
6930 	  /* Watch out for unspec_volatile, and volatile asms.  */
6931 	  if (volatile_insn_p (pat))
6932 	    return 0;
6933 
6934 	  /* If this insn P stores in either GOAL or VALUE, return 0.
6935 	     If GOAL is a memory ref and this insn writes memory, return 0.
6936 	     If GOAL is a memory ref and its address is not constant,
6937 	     and this insn P changes a register used in GOAL, return 0.  */
6938 
6939 	  if (GET_CODE (pat) == COND_EXEC)
6940 	    pat = COND_EXEC_CODE (pat);
6941 	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6942 	    {
6943 	      rtx dest = SET_DEST (pat);
6944 	      while (GET_CODE (dest) == SUBREG
6945 		     || GET_CODE (dest) == ZERO_EXTRACT
6946 		     || GET_CODE (dest) == STRICT_LOW_PART)
6947 		dest = XEXP (dest, 0);
6948 	      if (REG_P (dest))
6949 		{
6950 		  int xregno = REGNO (dest);
6951 		  int end_xregno = END_REGNO (dest);
6952 		  if (xregno < regno + nregs && end_xregno > regno)
6953 		    return 0;
6954 		  if (xregno < valueno + valuenregs
6955 		      && end_xregno > valueno)
6956 		    return 0;
6957 		  if (goal_mem_addr_varies
6958 		      && reg_overlap_mentioned_for_reload_p (dest, goal))
6959 		    return 0;
6960 		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6961 		    return 0;
6962 		}
6963 	      else if (goal_mem && MEM_P (dest)
6964 		       && ! push_operand (dest, GET_MODE (dest)))
6965 		return 0;
6966 	      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6967 		       && reg_equiv_memory_loc (regno) != 0)
6968 		return 0;
6969 	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6970 		return 0;
6971 	    }
6972 	  else if (GET_CODE (pat) == PARALLEL)
6973 	    {
6974 	      int i;
6975 	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6976 		{
6977 		  rtx v1 = XVECEXP (pat, 0, i);
6978 		  if (GET_CODE (v1) == COND_EXEC)
6979 		    v1 = COND_EXEC_CODE (v1);
6980 		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6981 		    {
6982 		      rtx dest = SET_DEST (v1);
6983 		      while (GET_CODE (dest) == SUBREG
6984 			     || GET_CODE (dest) == ZERO_EXTRACT
6985 			     || GET_CODE (dest) == STRICT_LOW_PART)
6986 			dest = XEXP (dest, 0);
6987 		      if (REG_P (dest))
6988 			{
6989 			  int xregno = REGNO (dest);
6990 			  int end_xregno = END_REGNO (dest);
6991 			  if (xregno < regno + nregs
6992 			      && end_xregno > regno)
6993 			    return 0;
6994 			  if (xregno < valueno + valuenregs
6995 			      && end_xregno > valueno)
6996 			    return 0;
6997 			  if (goal_mem_addr_varies
6998 			      && reg_overlap_mentioned_for_reload_p (dest,
6999 								     goal))
7000 			    return 0;
7001 			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7002 			    return 0;
7003 			}
7004 		      else if (goal_mem && MEM_P (dest)
7005 			       && ! push_operand (dest, GET_MODE (dest)))
7006 			return 0;
7007 		      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7008 			       && reg_equiv_memory_loc (regno) != 0)
7009 			return 0;
7010 		      else if (need_stable_sp
7011 			       && push_operand (dest, GET_MODE (dest)))
7012 			return 0;
7013 		    }
7014 		}
7015 	    }
7016 
7017 	  if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7018 	    {
7019 	      rtx link;
7020 
7021 	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7022 		   link = XEXP (link, 1))
7023 		{
7024 		  pat = XEXP (link, 0);
7025 		  if (GET_CODE (pat) == CLOBBER)
7026 		    {
7027 		      rtx dest = SET_DEST (pat);
7028 
7029 		      if (REG_P (dest))
7030 			{
7031 			  int xregno = REGNO (dest);
7032 			  int end_xregno = END_REGNO (dest);
7033 
7034 			  if (xregno < regno + nregs
7035 			      && end_xregno > regno)
7036 			    return 0;
7037 			  else if (xregno < valueno + valuenregs
7038 				   && end_xregno > valueno)
7039 			    return 0;
7040 			  else if (goal_mem_addr_varies
7041 				   && reg_overlap_mentioned_for_reload_p (dest,
7042 								     goal))
7043 			    return 0;
7044 			}
7045 
7046 		      else if (goal_mem && MEM_P (dest)
7047 			       && ! push_operand (dest, GET_MODE (dest)))
7048 			return 0;
7049 		      else if (need_stable_sp
7050 			       && push_operand (dest, GET_MODE (dest)))
7051 			return 0;
7052 		    }
7053 		}
7054 	    }
7055 
7056 #if AUTO_INC_DEC
7057 	  /* If this insn auto-increments or auto-decrements
7058 	     either regno or valueno, return 0 now.
7059 	     If GOAL is a memory ref and its address is not constant,
7060 	     and this insn P increments a register used in GOAL, return 0.  */
7061 	  {
7062 	    rtx link;
7063 
7064 	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7065 	      if (REG_NOTE_KIND (link) == REG_INC
7066 		  && REG_P (XEXP (link, 0)))
7067 		{
7068 		  int incno = REGNO (XEXP (link, 0));
7069 		  if (incno < regno + nregs && incno >= regno)
7070 		    return 0;
7071 		  if (incno < valueno + valuenregs && incno >= valueno)
7072 		    return 0;
7073 		  if (goal_mem_addr_varies
7074 		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7075 							     goal))
7076 		    return 0;
7077 		}
7078 	  }
7079 #endif
7080 	}
7081     }
7082 }
7083 
7084 /* Find a place where INCED appears in an increment or decrement operator
7085    within X, and return the amount INCED is incremented or decremented by.
7086    The value is always positive.  */
7087 
7088 static poly_int64
find_inc_amount(rtx x,rtx inced)7089 find_inc_amount (rtx x, rtx inced)
7090 {
7091   enum rtx_code code = GET_CODE (x);
7092   const char *fmt;
7093   int i;
7094 
7095   if (code == MEM)
7096     {
7097       rtx addr = XEXP (x, 0);
7098       if ((GET_CODE (addr) == PRE_DEC
7099 	   || GET_CODE (addr) == POST_DEC
7100 	   || GET_CODE (addr) == PRE_INC
7101 	   || GET_CODE (addr) == POST_INC)
7102 	  && XEXP (addr, 0) == inced)
7103 	return GET_MODE_SIZE (GET_MODE (x));
7104       else if ((GET_CODE (addr) == PRE_MODIFY
7105 		|| GET_CODE (addr) == POST_MODIFY)
7106 	       && GET_CODE (XEXP (addr, 1)) == PLUS
7107 	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7108 	       && XEXP (addr, 0) == inced
7109 	       && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7110 	{
7111 	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
7112 	  return i < 0 ? -i : i;
7113 	}
7114     }
7115 
7116   fmt = GET_RTX_FORMAT (code);
7117   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7118     {
7119       if (fmt[i] == 'e')
7120 	{
7121 	  poly_int64 tem = find_inc_amount (XEXP (x, i), inced);
7122 	  if (maybe_ne (tem, 0))
7123 	    return tem;
7124 	}
7125       if (fmt[i] == 'E')
7126 	{
7127 	  int j;
7128 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7129 	    {
7130 	      poly_int64 tem = find_inc_amount (XVECEXP (x, i, j), inced);
7131 	      if (maybe_ne (tem, 0))
7132 		return tem;
7133 	    }
7134 	}
7135     }
7136 
7137   return 0;
7138 }
7139 
7140 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7141    REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
7142 
7143 static int
reg_inc_found_and_valid_p(unsigned int regno,unsigned int endregno,rtx insn)7144 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7145 			   rtx insn)
7146 {
7147   rtx link;
7148 
7149   if (!AUTO_INC_DEC)
7150     return 0;
7151 
7152   gcc_assert (insn);
7153 
7154   if (! INSN_P (insn))
7155     return 0;
7156 
7157   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7158     if (REG_NOTE_KIND (link) == REG_INC)
7159       {
7160 	unsigned int test = (int) REGNO (XEXP (link, 0));
7161 	if (test >= regno && test < endregno)
7162 	  return 1;
7163       }
7164   return 0;
7165 }
7166 
7167 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7168    If SETS is 1, also consider SETs.  If SETS is 2, enable checking
7169    REG_INC.  REGNO must refer to a hard register.  */
7170 
7171 int
regno_clobbered_p(unsigned int regno,rtx_insn * insn,machine_mode mode,int sets)7172 regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7173 		   int sets)
7174 {
7175   /* regno must be a hard register.  */
7176   gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7177 
7178   unsigned int endregno = end_hard_regno (mode, regno);
7179 
7180   if ((GET_CODE (PATTERN (insn)) == CLOBBER
7181        || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7182       && REG_P (XEXP (PATTERN (insn), 0)))
7183     {
7184       unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7185 
7186       return test >= regno && test < endregno;
7187     }
7188 
7189   if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7190     return 1;
7191 
7192   if (GET_CODE (PATTERN (insn)) == PARALLEL)
7193     {
7194       int i = XVECLEN (PATTERN (insn), 0) - 1;
7195 
7196       for (; i >= 0; i--)
7197 	{
7198 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7199 	  if ((GET_CODE (elt) == CLOBBER
7200 	       || (sets == 1 && GET_CODE (elt) == SET))
7201 	      && REG_P (XEXP (elt, 0)))
7202 	    {
7203 	      unsigned int test = REGNO (XEXP (elt, 0));
7204 
7205 	      if (test >= regno && test < endregno)
7206 		return 1;
7207 	    }
7208 	  if (sets == 2
7209 	      && reg_inc_found_and_valid_p (regno, endregno, elt))
7210 	    return 1;
7211 	}
7212     }
7213 
7214   return 0;
7215 }
7216 
7217 /* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
7218 rtx
reload_adjust_reg_for_mode(rtx reloadreg,machine_mode mode)7219 reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7220 {
7221   int regno;
7222 
7223   if (GET_MODE (reloadreg) == mode)
7224     return reloadreg;
7225 
7226   regno = REGNO (reloadreg);
7227 
7228   if (REG_WORDS_BIG_ENDIAN)
7229     regno += ((int) REG_NREGS (reloadreg)
7230 	      - (int) hard_regno_nregs (regno, mode));
7231 
7232   return gen_rtx_REG (mode, regno);
7233 }
7234 
7235 static const char *const reload_when_needed_name[] =
7236 {
7237   "RELOAD_FOR_INPUT",
7238   "RELOAD_FOR_OUTPUT",
7239   "RELOAD_FOR_INSN",
7240   "RELOAD_FOR_INPUT_ADDRESS",
7241   "RELOAD_FOR_INPADDR_ADDRESS",
7242   "RELOAD_FOR_OUTPUT_ADDRESS",
7243   "RELOAD_FOR_OUTADDR_ADDRESS",
7244   "RELOAD_FOR_OPERAND_ADDRESS",
7245   "RELOAD_FOR_OPADDR_ADDR",
7246   "RELOAD_OTHER",
7247   "RELOAD_FOR_OTHER_ADDRESS"
7248 };
7249 
7250 /* These functions are used to print the variables set by 'find_reloads' */
7251 
7252 DEBUG_FUNCTION void
debug_reload_to_stream(FILE * f)7253 debug_reload_to_stream (FILE *f)
7254 {
7255   int r;
7256   const char *prefix;
7257 
7258   if (! f)
7259     f = stderr;
7260   for (r = 0; r < n_reloads; r++)
7261     {
7262       fprintf (f, "Reload %d: ", r);
7263 
7264       if (rld[r].in != 0)
7265 	{
7266 	  fprintf (f, "reload_in (%s) = ",
7267 		   GET_MODE_NAME (rld[r].inmode));
7268 	  print_inline_rtx (f, rld[r].in, 24);
7269 	  fprintf (f, "\n\t");
7270 	}
7271 
7272       if (rld[r].out != 0)
7273 	{
7274 	  fprintf (f, "reload_out (%s) = ",
7275 		   GET_MODE_NAME (rld[r].outmode));
7276 	  print_inline_rtx (f, rld[r].out, 24);
7277 	  fprintf (f, "\n\t");
7278 	}
7279 
7280       fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7281 
7282       fprintf (f, "%s (opnum = %d)",
7283 	       reload_when_needed_name[(int) rld[r].when_needed],
7284 	       rld[r].opnum);
7285 
7286       if (rld[r].optional)
7287 	fprintf (f, ", optional");
7288 
7289       if (rld[r].nongroup)
7290 	fprintf (f, ", nongroup");
7291 
7292       if (maybe_ne (rld[r].inc, 0))
7293 	{
7294 	  fprintf (f, ", inc by ");
7295 	  print_dec (rld[r].inc, f, SIGNED);
7296 	}
7297 
7298       if (rld[r].nocombine)
7299 	fprintf (f, ", can't combine");
7300 
7301       if (rld[r].secondary_p)
7302 	fprintf (f, ", secondary_reload_p");
7303 
7304       if (rld[r].in_reg != 0)
7305 	{
7306 	  fprintf (f, "\n\treload_in_reg: ");
7307 	  print_inline_rtx (f, rld[r].in_reg, 24);
7308 	}
7309 
7310       if (rld[r].out_reg != 0)
7311 	{
7312 	  fprintf (f, "\n\treload_out_reg: ");
7313 	  print_inline_rtx (f, rld[r].out_reg, 24);
7314 	}
7315 
7316       if (rld[r].reg_rtx != 0)
7317 	{
7318 	  fprintf (f, "\n\treload_reg_rtx: ");
7319 	  print_inline_rtx (f, rld[r].reg_rtx, 24);
7320 	}
7321 
7322       prefix = "\n\t";
7323       if (rld[r].secondary_in_reload != -1)
7324 	{
7325 	  fprintf (f, "%ssecondary_in_reload = %d",
7326 		   prefix, rld[r].secondary_in_reload);
7327 	  prefix = ", ";
7328 	}
7329 
7330       if (rld[r].secondary_out_reload != -1)
7331 	fprintf (f, "%ssecondary_out_reload = %d\n",
7332 		 prefix, rld[r].secondary_out_reload);
7333 
7334       prefix = "\n\t";
7335       if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7336 	{
7337 	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
7338 		   insn_data[rld[r].secondary_in_icode].name);
7339 	  prefix = ", ";
7340 	}
7341 
7342       if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7343 	fprintf (f, "%ssecondary_out_icode = %s", prefix,
7344 		 insn_data[rld[r].secondary_out_icode].name);
7345 
7346       fprintf (f, "\n");
7347     }
7348 }
7349 
7350 DEBUG_FUNCTION void
debug_reload(void)7351 debug_reload (void)
7352 {
7353   debug_reload_to_stream (stderr);
7354 }
7355