1 /* Code sinking for trees
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "cfganal.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "cfgloop.h"
37 #include "params.h"
38
39 /* TODO:
40 1. Sinking store only using scalar promotion (IE without moving the RHS):
41
42 *q = p;
43 p = p + 1;
44 if (something)
45 *q = <not p>;
46 else
47 y = *q;
48
49
50 should become
51 sinktemp = p;
52 p = p + 1;
53 if (something)
54 *q = <not p>;
55 else
56 {
57 *q = sinktemp;
58 y = *q
59 }
60 Store copy propagation will take care of the store elimination above.
61
62
63 2. Sinking using Partial Dead Code Elimination. */
64
65
66 static struct
67 {
68 /* The number of statements sunk down the flowgraph by code sinking. */
69 int sunk;
70
71 } sink_stats;
72
73
74 /* Given a PHI, and one of its arguments (DEF), find the edge for
75 that argument and return it. If the argument occurs twice in the PHI node,
76 we return NULL. */
77
78 static basic_block
find_bb_for_arg(gphi * phi,tree def)79 find_bb_for_arg (gphi *phi, tree def)
80 {
81 size_t i;
82 bool foundone = false;
83 basic_block result = NULL;
84 for (i = 0; i < gimple_phi_num_args (phi); i++)
85 if (PHI_ARG_DEF (phi, i) == def)
86 {
87 if (foundone)
88 return NULL;
89 foundone = true;
90 result = gimple_phi_arg_edge (phi, i)->src;
91 }
92 return result;
93 }
94
95 /* When the first immediate use is in a statement, then return true if all
96 immediate uses in IMM are in the same statement.
97 We could also do the case where the first immediate use is in a phi node,
98 and all the other uses are in phis in the same basic block, but this
99 requires some expensive checking later (you have to make sure no def/vdef
100 in the statement occurs for multiple edges in the various phi nodes it's
101 used in, so that you only have one place you can sink it to. */
102
103 static bool
all_immediate_uses_same_place(def_operand_p def_p)104 all_immediate_uses_same_place (def_operand_p def_p)
105 {
106 tree var = DEF_FROM_PTR (def_p);
107 imm_use_iterator imm_iter;
108 use_operand_p use_p;
109
110 gimple *firstuse = NULL;
111 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
112 {
113 if (is_gimple_debug (USE_STMT (use_p)))
114 continue;
115 if (firstuse == NULL)
116 firstuse = USE_STMT (use_p);
117 else
118 if (firstuse != USE_STMT (use_p))
119 return false;
120 }
121
122 return true;
123 }
124
125 /* Find the nearest common dominator of all of the immediate uses in IMM. */
126
127 static basic_block
nearest_common_dominator_of_uses(def_operand_p def_p,bool * debug_stmts)128 nearest_common_dominator_of_uses (def_operand_p def_p, bool *debug_stmts)
129 {
130 tree var = DEF_FROM_PTR (def_p);
131 auto_bitmap blocks;
132 basic_block commondom;
133 unsigned int j;
134 bitmap_iterator bi;
135 imm_use_iterator imm_iter;
136 use_operand_p use_p;
137
138 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
139 {
140 gimple *usestmt = USE_STMT (use_p);
141 basic_block useblock;
142
143 if (gphi *phi = dyn_cast <gphi *> (usestmt))
144 {
145 int idx = PHI_ARG_INDEX_FROM_USE (use_p);
146
147 useblock = gimple_phi_arg_edge (phi, idx)->src;
148 }
149 else if (is_gimple_debug (usestmt))
150 {
151 *debug_stmts = true;
152 continue;
153 }
154 else
155 {
156 useblock = gimple_bb (usestmt);
157 }
158
159 /* Short circuit. Nothing dominates the entry block. */
160 if (useblock == ENTRY_BLOCK_PTR_FOR_FN (cfun))
161 return NULL;
162
163 bitmap_set_bit (blocks, useblock->index);
164 }
165 commondom = BASIC_BLOCK_FOR_FN (cfun, bitmap_first_set_bit (blocks));
166 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
167 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
168 BASIC_BLOCK_FOR_FN (cfun, j));
169 return commondom;
170 }
171
172 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
173 tree, return the best basic block between them (inclusive) to place
174 statements.
175
176 We want the most control dependent block in the shallowest loop nest.
177
178 If the resulting block is in a shallower loop nest, then use it. Else
179 only use the resulting block if it has significantly lower execution
180 frequency than EARLY_BB to avoid gratutious statement movement. We
181 consider statements with VOPS more desirable to move.
182
183 This pass would obviously benefit from PDO as it utilizes block
184 frequencies. It would also benefit from recomputing frequencies
185 if profile data is not available since frequencies often get out
186 of sync with reality. */
187
188 static basic_block
select_best_block(basic_block early_bb,basic_block late_bb,gimple * stmt)189 select_best_block (basic_block early_bb,
190 basic_block late_bb,
191 gimple *stmt)
192 {
193 basic_block best_bb = late_bb;
194 basic_block temp_bb = late_bb;
195 int threshold;
196
197 while (temp_bb != early_bb)
198 {
199 /* If we've moved into a lower loop nest, then that becomes
200 our best block. */
201 if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb))
202 best_bb = temp_bb;
203
204 /* Walk up the dominator tree, hopefully we'll find a shallower
205 loop nest. */
206 temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
207 }
208
209 /* If we found a shallower loop nest, then we always consider that
210 a win. This will always give us the most control dependent block
211 within that loop nest. */
212 if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb))
213 return best_bb;
214
215 /* Get the sinking threshold. If the statement to be moved has memory
216 operands, then increase the threshold by 7% as those are even more
217 profitable to avoid, clamping at 100%. */
218 threshold = PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD);
219 if (gimple_vuse (stmt) || gimple_vdef (stmt))
220 {
221 threshold += 7;
222 if (threshold > 100)
223 threshold = 100;
224 }
225
226 /* If BEST_BB is at the same nesting level, then require it to have
227 significantly lower execution frequency to avoid gratutious movement. */
228 if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb)
229 /* If result of comparsion is unknown, preffer EARLY_BB.
230 Thus use !(...>=..) rather than (...<...) */
231 && !(best_bb->count.apply_scale (100, 1)
232 >= early_bb->count.apply_scale (threshold, 1)))
233 return best_bb;
234
235 /* No better block found, so return EARLY_BB, which happens to be the
236 statement's original block. */
237 return early_bb;
238 }
239
240 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
241 determine the location to sink the statement to, if any.
242 Returns true if there is such location; in that case, TOGSI points to the
243 statement before that STMT should be moved. */
244
245 static bool
statement_sink_location(gimple * stmt,basic_block frombb,gimple_stmt_iterator * togsi,bool * zero_uses_p)246 statement_sink_location (gimple *stmt, basic_block frombb,
247 gimple_stmt_iterator *togsi, bool *zero_uses_p)
248 {
249 gimple *use;
250 use_operand_p one_use = NULL_USE_OPERAND_P;
251 basic_block sinkbb;
252 use_operand_p use_p;
253 def_operand_p def_p;
254 ssa_op_iter iter;
255 imm_use_iterator imm_iter;
256
257 *zero_uses_p = false;
258
259 /* We only can sink assignments and non-looping const/pure calls. */
260 int cf;
261 if (!is_gimple_assign (stmt)
262 && (!is_gimple_call (stmt)
263 || !((cf = gimple_call_flags (stmt)) & (ECF_CONST|ECF_PURE))
264 || (cf & ECF_LOOPING_CONST_OR_PURE)))
265 return false;
266
267 /* We only can sink stmts with a single definition. */
268 def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
269 if (def_p == NULL_DEF_OPERAND_P)
270 return false;
271
272 /* There are a few classes of things we can't or don't move, some because we
273 don't have code to handle it, some because it's not profitable and some
274 because it's not legal.
275
276 We can't sink things that may be global stores, at least not without
277 calculating a lot more information, because we may cause it to no longer
278 be seen by an external routine that needs it depending on where it gets
279 moved to.
280
281 We can't sink statements that end basic blocks without splitting the
282 incoming edge for the sink location to place it there.
283
284 We can't sink statements that have volatile operands.
285
286 We don't want to sink dead code, so anything with 0 immediate uses is not
287 sunk.
288
289 Don't sink BLKmode assignments if current function has any local explicit
290 register variables, as BLKmode assignments may involve memcpy or memset
291 calls or, on some targets, inline expansion thereof that sometimes need
292 to use specific hard registers.
293
294 */
295 if (stmt_ends_bb_p (stmt)
296 || gimple_has_side_effects (stmt)
297 || (cfun->has_local_explicit_reg_vars
298 && TYPE_MODE (TREE_TYPE (gimple_get_lhs (stmt))) == BLKmode))
299 return false;
300
301 /* Return if there are no immediate uses of this stmt. */
302 if (has_zero_uses (DEF_FROM_PTR (def_p)))
303 {
304 *zero_uses_p = true;
305 return false;
306 }
307
308 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
309 return false;
310
311 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
312 {
313 tree use = USE_FROM_PTR (use_p);
314 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
315 return false;
316 }
317
318 use = NULL;
319
320 /* If stmt is a store the one and only use needs to be the VOP
321 merging PHI node. */
322 if (virtual_operand_p (DEF_FROM_PTR (def_p)))
323 {
324 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
325 {
326 gimple *use_stmt = USE_STMT (use_p);
327
328 /* A killing definition is not a use. */
329 if ((gimple_has_lhs (use_stmt)
330 && operand_equal_p (gimple_get_lhs (stmt),
331 gimple_get_lhs (use_stmt), 0))
332 || stmt_kills_ref_p (use_stmt, gimple_get_lhs (stmt)))
333 {
334 /* If use_stmt is or might be a nop assignment then USE_STMT
335 acts as a use as well as definition. */
336 if (stmt != use_stmt
337 && ref_maybe_used_by_stmt_p (use_stmt,
338 gimple_get_lhs (stmt)))
339 return false;
340 continue;
341 }
342
343 if (gimple_code (use_stmt) != GIMPLE_PHI)
344 return false;
345
346 if (use
347 && use != use_stmt)
348 return false;
349
350 use = use_stmt;
351 }
352 if (!use)
353 return false;
354 }
355 /* If all the immediate uses are not in the same place, find the nearest
356 common dominator of all the immediate uses. For PHI nodes, we have to
357 find the nearest common dominator of all of the predecessor blocks, since
358 that is where insertion would have to take place. */
359 else if (gimple_vuse (stmt)
360 || !all_immediate_uses_same_place (def_p))
361 {
362 bool debug_stmts = false;
363 basic_block commondom = nearest_common_dominator_of_uses (def_p,
364 &debug_stmts);
365
366 if (commondom == frombb)
367 return false;
368
369 /* If this is a load then do not sink past any stores.
370 ??? This is overly simple but cheap. We basically look
371 for an existing load with the same VUSE in the path to one
372 of the sink candidate blocks and we adjust commondom to the
373 nearest to commondom. */
374 if (gimple_vuse (stmt))
375 {
376 /* Do not sink loads from hard registers. */
377 if (gimple_assign_single_p (stmt)
378 && TREE_CODE (gimple_assign_rhs1 (stmt)) == VAR_DECL
379 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
380 return false;
381
382 imm_use_iterator imm_iter;
383 use_operand_p use_p;
384 basic_block found = NULL;
385 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vuse (stmt))
386 {
387 gimple *use_stmt = USE_STMT (use_p);
388 basic_block bb = gimple_bb (use_stmt);
389 /* For PHI nodes the block we know sth about
390 is the incoming block with the use. */
391 if (gimple_code (use_stmt) == GIMPLE_PHI)
392 bb = EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src;
393 /* Any dominator of commondom would be ok with
394 adjusting commondom to that block. */
395 bb = nearest_common_dominator (CDI_DOMINATORS, bb, commondom);
396 if (!found)
397 found = bb;
398 else if (dominated_by_p (CDI_DOMINATORS, bb, found))
399 found = bb;
400 /* If we can't improve, stop. */
401 if (found == commondom)
402 break;
403 }
404 commondom = found;
405 if (commondom == frombb)
406 return false;
407 }
408
409 /* Our common dominator has to be dominated by frombb in order to be a
410 trivially safe place to put this statement, since it has multiple
411 uses. */
412 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
413 return false;
414
415 commondom = select_best_block (frombb, commondom, stmt);
416
417 if (commondom == frombb)
418 return false;
419
420 *togsi = gsi_after_labels (commondom);
421
422 return true;
423 }
424 else
425 {
426 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
427 {
428 if (is_gimple_debug (USE_STMT (one_use)))
429 continue;
430 break;
431 }
432 use = USE_STMT (one_use);
433
434 if (gimple_code (use) != GIMPLE_PHI)
435 {
436 sinkbb = gimple_bb (use);
437 sinkbb = select_best_block (frombb, gimple_bb (use), stmt);
438
439 if (sinkbb == frombb)
440 return false;
441
442 if (sinkbb == gimple_bb (use))
443 *togsi = gsi_for_stmt (use);
444 else
445 *togsi = gsi_after_labels (sinkbb);
446
447 return true;
448 }
449 }
450
451 sinkbb = find_bb_for_arg (as_a <gphi *> (use), DEF_FROM_PTR (def_p));
452
453 /* This can happen if there are multiple uses in a PHI. */
454 if (!sinkbb)
455 return false;
456
457 sinkbb = select_best_block (frombb, sinkbb, stmt);
458 if (!sinkbb || sinkbb == frombb)
459 return false;
460
461 /* If the latch block is empty, don't make it non-empty by sinking
462 something into it. */
463 if (sinkbb == frombb->loop_father->latch
464 && empty_block_p (sinkbb))
465 return false;
466
467 *togsi = gsi_after_labels (sinkbb);
468
469 return true;
470 }
471
472 /* Perform code sinking on BB */
473
474 static void
sink_code_in_bb(basic_block bb)475 sink_code_in_bb (basic_block bb)
476 {
477 basic_block son;
478 gimple_stmt_iterator gsi;
479 edge_iterator ei;
480 edge e;
481 bool last = true;
482
483 /* If this block doesn't dominate anything, there can't be any place to sink
484 the statements to. */
485 if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
486 goto earlyout;
487
488 /* We can't move things across abnormal edges, so don't try. */
489 FOR_EACH_EDGE (e, ei, bb->succs)
490 if (e->flags & EDGE_ABNORMAL)
491 goto earlyout;
492
493 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
494 {
495 gimple *stmt = gsi_stmt (gsi);
496 gimple_stmt_iterator togsi;
497 bool zero_uses_p;
498
499 if (!statement_sink_location (stmt, bb, &togsi, &zero_uses_p))
500 {
501 gimple_stmt_iterator saved = gsi;
502 if (!gsi_end_p (gsi))
503 gsi_prev (&gsi);
504 /* If we face a dead stmt remove it as it possibly blocks
505 sinking of uses. */
506 if (zero_uses_p
507 && ! gimple_vdef (stmt))
508 {
509 gsi_remove (&saved, true);
510 release_defs (stmt);
511 }
512 else
513 last = false;
514 continue;
515 }
516 if (dump_file)
517 {
518 fprintf (dump_file, "Sinking ");
519 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
520 fprintf (dump_file, " from bb %d to bb %d\n",
521 bb->index, (gsi_bb (togsi))->index);
522 }
523
524 /* Update virtual operands of statements in the path we
525 do not sink to. */
526 if (gimple_vdef (stmt))
527 {
528 imm_use_iterator iter;
529 use_operand_p use_p;
530 gimple *vuse_stmt;
531
532 FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
533 if (gimple_code (vuse_stmt) != GIMPLE_PHI)
534 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
535 SET_USE (use_p, gimple_vuse (stmt));
536 }
537
538 /* If this is the end of the basic block, we need to insert at the end
539 of the basic block. */
540 if (gsi_end_p (togsi))
541 gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
542 else
543 gsi_move_before (&gsi, &togsi);
544
545 sink_stats.sunk++;
546
547 /* If we've just removed the last statement of the BB, the
548 gsi_end_p() test below would fail, but gsi_prev() would have
549 succeeded, and we want it to succeed. So we keep track of
550 whether we're at the last statement and pick up the new last
551 statement. */
552 if (last)
553 {
554 gsi = gsi_last_bb (bb);
555 continue;
556 }
557
558 last = false;
559 if (!gsi_end_p (gsi))
560 gsi_prev (&gsi);
561
562 }
563 earlyout:
564 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
565 son;
566 son = next_dom_son (CDI_POST_DOMINATORS, son))
567 {
568 sink_code_in_bb (son);
569 }
570 }
571
572 /* Perform code sinking.
573 This moves code down the flowgraph when we know it would be
574 profitable to do so, or it wouldn't increase the number of
575 executions of the statement.
576
577 IE given
578
579 a_1 = b + c;
580 if (<something>)
581 {
582 }
583 else
584 {
585 foo (&b, &c);
586 a_5 = b + c;
587 }
588 a_6 = PHI (a_5, a_1);
589 USE a_6.
590
591 we'll transform this into:
592
593 if (<something>)
594 {
595 a_1 = b + c;
596 }
597 else
598 {
599 foo (&b, &c);
600 a_5 = b + c;
601 }
602 a_6 = PHI (a_5, a_1);
603 USE a_6.
604
605 Note that this reduces the number of computations of a = b + c to 1
606 when we take the else edge, instead of 2.
607 */
608 namespace {
609
610 const pass_data pass_data_sink_code =
611 {
612 GIMPLE_PASS, /* type */
613 "sink", /* name */
614 OPTGROUP_NONE, /* optinfo_flags */
615 TV_TREE_SINK, /* tv_id */
616 /* PROP_no_crit_edges is ensured by running split_critical_edges in
617 pass_data_sink_code::execute (). */
618 ( PROP_cfg | PROP_ssa ), /* properties_required */
619 0, /* properties_provided */
620 0, /* properties_destroyed */
621 0, /* todo_flags_start */
622 TODO_update_ssa, /* todo_flags_finish */
623 };
624
625 class pass_sink_code : public gimple_opt_pass
626 {
627 public:
pass_sink_code(gcc::context * ctxt)628 pass_sink_code (gcc::context *ctxt)
629 : gimple_opt_pass (pass_data_sink_code, ctxt)
630 {}
631
632 /* opt_pass methods: */
gate(function *)633 virtual bool gate (function *) { return flag_tree_sink != 0; }
634 virtual unsigned int execute (function *);
635
636 }; // class pass_sink_code
637
638 unsigned int
execute(function * fun)639 pass_sink_code::execute (function *fun)
640 {
641 loop_optimizer_init (LOOPS_NORMAL);
642 split_critical_edges ();
643 connect_infinite_loops_to_exit ();
644 memset (&sink_stats, 0, sizeof (sink_stats));
645 calculate_dominance_info (CDI_DOMINATORS);
646 calculate_dominance_info (CDI_POST_DOMINATORS);
647 sink_code_in_bb (EXIT_BLOCK_PTR_FOR_FN (fun));
648 statistics_counter_event (fun, "Sunk statements", sink_stats.sunk);
649 free_dominance_info (CDI_POST_DOMINATORS);
650 remove_fake_exit_edges ();
651 loop_optimizer_finalize ();
652
653 return 0;
654 }
655
656 } // anon namespace
657
658 gimple_opt_pass *
make_pass_sink_code(gcc::context * ctxt)659 make_pass_sink_code (gcc::context *ctxt)
660 {
661 return new pass_sink_code (ctxt);
662 }
663