1 //===-- tsan_interface_atomic.cc ------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
11
12 // ThreadSanitizer atomic operations are based on C++11/C1x standards.
13 // For background see C++11 standard. A slightly older, publicly
14 // available draft of the standard (not entirely up-to-date, but close enough
15 // for casual browsing) is available here:
16 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
17 // The following page contains more background information:
18 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
19
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_stacktrace.h"
22 #include "sanitizer_common/sanitizer_mutex.h"
23 #include "tsan_flags.h"
24 #include "tsan_interface.h"
25 #include "tsan_rtl.h"
26
27 using namespace __tsan; // NOLINT
28
29 #if !SANITIZER_GO && __TSAN_HAS_INT128
30 // Protects emulation of 128-bit atomic operations.
31 static StaticSpinMutex mutex128;
32 #endif
33
IsLoadOrder(morder mo)34 static bool IsLoadOrder(morder mo) {
35 return mo == mo_relaxed || mo == mo_consume
36 || mo == mo_acquire || mo == mo_seq_cst;
37 }
38
IsStoreOrder(morder mo)39 static bool IsStoreOrder(morder mo) {
40 return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
41 }
42
IsReleaseOrder(morder mo)43 static bool IsReleaseOrder(morder mo) {
44 return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
45 }
46
IsAcquireOrder(morder mo)47 static bool IsAcquireOrder(morder mo) {
48 return mo == mo_consume || mo == mo_acquire
49 || mo == mo_acq_rel || mo == mo_seq_cst;
50 }
51
IsAcqRelOrder(morder mo)52 static bool IsAcqRelOrder(morder mo) {
53 return mo == mo_acq_rel || mo == mo_seq_cst;
54 }
55
func_xchg(volatile T * v,T op)56 template<typename T> T func_xchg(volatile T *v, T op) {
57 T res = __sync_lock_test_and_set(v, op);
58 // __sync_lock_test_and_set does not contain full barrier.
59 __sync_synchronize();
60 return res;
61 }
62
func_add(volatile T * v,T op)63 template<typename T> T func_add(volatile T *v, T op) {
64 return __sync_fetch_and_add(v, op);
65 }
66
func_sub(volatile T * v,T op)67 template<typename T> T func_sub(volatile T *v, T op) {
68 return __sync_fetch_and_sub(v, op);
69 }
70
func_and(volatile T * v,T op)71 template<typename T> T func_and(volatile T *v, T op) {
72 return __sync_fetch_and_and(v, op);
73 }
74
func_or(volatile T * v,T op)75 template<typename T> T func_or(volatile T *v, T op) {
76 return __sync_fetch_and_or(v, op);
77 }
78
func_xor(volatile T * v,T op)79 template<typename T> T func_xor(volatile T *v, T op) {
80 return __sync_fetch_and_xor(v, op);
81 }
82
func_nand(volatile T * v,T op)83 template<typename T> T func_nand(volatile T *v, T op) {
84 // clang does not support __sync_fetch_and_nand.
85 T cmp = *v;
86 for (;;) {
87 T newv = ~(cmp & op);
88 T cur = __sync_val_compare_and_swap(v, cmp, newv);
89 if (cmp == cur)
90 return cmp;
91 cmp = cur;
92 }
93 }
94
func_cas(volatile T * v,T cmp,T xch)95 template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
96 return __sync_val_compare_and_swap(v, cmp, xch);
97 }
98
99 // clang does not support 128-bit atomic ops.
100 // Atomic ops are executed under tsan internal mutex,
101 // here we assume that the atomic variables are not accessed
102 // from non-instrumented code.
103 #if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !SANITIZER_GO \
104 && __TSAN_HAS_INT128
func_xchg(volatile a128 * v,a128 op)105 a128 func_xchg(volatile a128 *v, a128 op) {
106 SpinMutexLock lock(&mutex128);
107 a128 cmp = *v;
108 *v = op;
109 return cmp;
110 }
111
func_add(volatile a128 * v,a128 op)112 a128 func_add(volatile a128 *v, a128 op) {
113 SpinMutexLock lock(&mutex128);
114 a128 cmp = *v;
115 *v = cmp + op;
116 return cmp;
117 }
118
func_sub(volatile a128 * v,a128 op)119 a128 func_sub(volatile a128 *v, a128 op) {
120 SpinMutexLock lock(&mutex128);
121 a128 cmp = *v;
122 *v = cmp - op;
123 return cmp;
124 }
125
func_and(volatile a128 * v,a128 op)126 a128 func_and(volatile a128 *v, a128 op) {
127 SpinMutexLock lock(&mutex128);
128 a128 cmp = *v;
129 *v = cmp & op;
130 return cmp;
131 }
132
func_or(volatile a128 * v,a128 op)133 a128 func_or(volatile a128 *v, a128 op) {
134 SpinMutexLock lock(&mutex128);
135 a128 cmp = *v;
136 *v = cmp | op;
137 return cmp;
138 }
139
func_xor(volatile a128 * v,a128 op)140 a128 func_xor(volatile a128 *v, a128 op) {
141 SpinMutexLock lock(&mutex128);
142 a128 cmp = *v;
143 *v = cmp ^ op;
144 return cmp;
145 }
146
func_nand(volatile a128 * v,a128 op)147 a128 func_nand(volatile a128 *v, a128 op) {
148 SpinMutexLock lock(&mutex128);
149 a128 cmp = *v;
150 *v = ~(cmp & op);
151 return cmp;
152 }
153
func_cas(volatile a128 * v,a128 cmp,a128 xch)154 a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
155 SpinMutexLock lock(&mutex128);
156 a128 cur = *v;
157 if (cur == cmp)
158 *v = xch;
159 return cur;
160 }
161 #endif
162
163 template<typename T>
SizeLog()164 static int SizeLog() {
165 if (sizeof(T) <= 1)
166 return kSizeLog1;
167 else if (sizeof(T) <= 2)
168 return kSizeLog2;
169 else if (sizeof(T) <= 4)
170 return kSizeLog4;
171 else
172 return kSizeLog8;
173 // For 16-byte atomics we also use 8-byte memory access,
174 // this leads to false negatives only in very obscure cases.
175 }
176
177 #if !SANITIZER_GO
to_atomic(const volatile a8 * a)178 static atomic_uint8_t *to_atomic(const volatile a8 *a) {
179 return reinterpret_cast<atomic_uint8_t *>(const_cast<a8 *>(a));
180 }
181
to_atomic(const volatile a16 * a)182 static atomic_uint16_t *to_atomic(const volatile a16 *a) {
183 return reinterpret_cast<atomic_uint16_t *>(const_cast<a16 *>(a));
184 }
185 #endif
186
to_atomic(const volatile a32 * a)187 static atomic_uint32_t *to_atomic(const volatile a32 *a) {
188 return reinterpret_cast<atomic_uint32_t *>(const_cast<a32 *>(a));
189 }
190
to_atomic(const volatile a64 * a)191 static atomic_uint64_t *to_atomic(const volatile a64 *a) {
192 return reinterpret_cast<atomic_uint64_t *>(const_cast<a64 *>(a));
193 }
194
to_mo(morder mo)195 static memory_order to_mo(morder mo) {
196 switch (mo) {
197 case mo_relaxed: return memory_order_relaxed;
198 case mo_consume: return memory_order_consume;
199 case mo_acquire: return memory_order_acquire;
200 case mo_release: return memory_order_release;
201 case mo_acq_rel: return memory_order_acq_rel;
202 case mo_seq_cst: return memory_order_seq_cst;
203 }
204 CHECK(0);
205 return memory_order_seq_cst;
206 }
207
208 template<typename T>
NoTsanAtomicLoad(const volatile T * a,morder mo)209 static T NoTsanAtomicLoad(const volatile T *a, morder mo) {
210 return atomic_load(to_atomic(a), to_mo(mo));
211 }
212
213 #if __TSAN_HAS_INT128 && !SANITIZER_GO
NoTsanAtomicLoad(const volatile a128 * a,morder mo)214 static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) {
215 SpinMutexLock lock(&mutex128);
216 return *a;
217 }
218 #endif
219
220 template<typename T>
AtomicLoad(ThreadState * thr,uptr pc,const volatile T * a,morder mo)221 static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a, morder mo) {
222 CHECK(IsLoadOrder(mo));
223 // This fast-path is critical for performance.
224 // Assume the access is atomic.
225 if (!IsAcquireOrder(mo)) {
226 MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
227 return NoTsanAtomicLoad(a, mo);
228 }
229 // Don't create sync object if it does not exist yet. For example, an atomic
230 // pointer is initialized to nullptr and then periodically acquire-loaded.
231 T v = NoTsanAtomicLoad(a, mo);
232 SyncVar *s = ctx->metamap.GetIfExistsAndLock((uptr)a, false);
233 if (s) {
234 AcquireImpl(thr, pc, &s->clock);
235 // Re-read under sync mutex because we need a consistent snapshot
236 // of the value and the clock we acquire.
237 v = NoTsanAtomicLoad(a, mo);
238 s->mtx.ReadUnlock();
239 }
240 MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
241 return v;
242 }
243
244 template<typename T>
NoTsanAtomicStore(volatile T * a,T v,morder mo)245 static void NoTsanAtomicStore(volatile T *a, T v, morder mo) {
246 atomic_store(to_atomic(a), v, to_mo(mo));
247 }
248
249 #if __TSAN_HAS_INT128 && !SANITIZER_GO
NoTsanAtomicStore(volatile a128 * a,a128 v,morder mo)250 static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) {
251 SpinMutexLock lock(&mutex128);
252 *a = v;
253 }
254 #endif
255
256 template<typename T>
AtomicStore(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)257 static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
258 morder mo) {
259 CHECK(IsStoreOrder(mo));
260 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
261 // This fast-path is critical for performance.
262 // Assume the access is atomic.
263 // Strictly saying even relaxed store cuts off release sequence,
264 // so must reset the clock.
265 if (!IsReleaseOrder(mo)) {
266 NoTsanAtomicStore(a, v, mo);
267 return;
268 }
269 __sync_synchronize();
270 SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
271 thr->fast_state.IncrementEpoch();
272 // Can't increment epoch w/o writing to the trace as well.
273 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
274 ReleaseStoreImpl(thr, pc, &s->clock);
275 NoTsanAtomicStore(a, v, mo);
276 s->mtx.Unlock();
277 }
278
279 template<typename T, T (*F)(volatile T *v, T op)>
AtomicRMW(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)280 static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
281 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
282 SyncVar *s = 0;
283 if (mo != mo_relaxed) {
284 s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
285 thr->fast_state.IncrementEpoch();
286 // Can't increment epoch w/o writing to the trace as well.
287 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
288 if (IsAcqRelOrder(mo))
289 AcquireReleaseImpl(thr, pc, &s->clock);
290 else if (IsReleaseOrder(mo))
291 ReleaseImpl(thr, pc, &s->clock);
292 else if (IsAcquireOrder(mo))
293 AcquireImpl(thr, pc, &s->clock);
294 }
295 v = F(a, v);
296 if (s)
297 s->mtx.Unlock();
298 return v;
299 }
300
301 template<typename T>
NoTsanAtomicExchange(volatile T * a,T v,morder mo)302 static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) {
303 return func_xchg(a, v);
304 }
305
306 template<typename T>
NoTsanAtomicFetchAdd(volatile T * a,T v,morder mo)307 static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) {
308 return func_add(a, v);
309 }
310
311 template<typename T>
NoTsanAtomicFetchSub(volatile T * a,T v,morder mo)312 static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) {
313 return func_sub(a, v);
314 }
315
316 template<typename T>
NoTsanAtomicFetchAnd(volatile T * a,T v,morder mo)317 static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) {
318 return func_and(a, v);
319 }
320
321 template<typename T>
NoTsanAtomicFetchOr(volatile T * a,T v,morder mo)322 static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) {
323 return func_or(a, v);
324 }
325
326 template<typename T>
NoTsanAtomicFetchXor(volatile T * a,T v,morder mo)327 static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) {
328 return func_xor(a, v);
329 }
330
331 template<typename T>
NoTsanAtomicFetchNand(volatile T * a,T v,morder mo)332 static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) {
333 return func_nand(a, v);
334 }
335
336 template<typename T>
AtomicExchange(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)337 static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
338 morder mo) {
339 return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
340 }
341
342 template<typename T>
AtomicFetchAdd(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)343 static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
344 morder mo) {
345 return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
346 }
347
348 template<typename T>
AtomicFetchSub(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)349 static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
350 morder mo) {
351 return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
352 }
353
354 template<typename T>
AtomicFetchAnd(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)355 static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
356 morder mo) {
357 return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
358 }
359
360 template<typename T>
AtomicFetchOr(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)361 static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
362 morder mo) {
363 return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
364 }
365
366 template<typename T>
AtomicFetchXor(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)367 static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
368 morder mo) {
369 return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
370 }
371
372 template<typename T>
AtomicFetchNand(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)373 static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
374 morder mo) {
375 return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
376 }
377
378 template<typename T>
NoTsanAtomicCAS(volatile T * a,T * c,T v,morder mo,morder fmo)379 static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) {
380 return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo));
381 }
382
383 #if __TSAN_HAS_INT128
NoTsanAtomicCAS(volatile a128 * a,a128 * c,a128 v,morder mo,morder fmo)384 static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v,
385 morder mo, morder fmo) {
386 a128 old = *c;
387 a128 cur = func_cas(a, old, v);
388 if (cur == old)
389 return true;
390 *c = cur;
391 return false;
392 }
393 #endif
394
395 template<typename T>
NoTsanAtomicCAS(volatile T * a,T c,T v,morder mo,morder fmo)396 static T NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) {
397 NoTsanAtomicCAS(a, &c, v, mo, fmo);
398 return c;
399 }
400
401 template<typename T>
AtomicCAS(ThreadState * thr,uptr pc,volatile T * a,T * c,T v,morder mo,morder fmo)402 static bool AtomicCAS(ThreadState *thr, uptr pc,
403 volatile T *a, T *c, T v, morder mo, morder fmo) {
404 (void)fmo; // Unused because llvm does not pass it yet.
405 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
406 SyncVar *s = 0;
407 bool write_lock = mo != mo_acquire && mo != mo_consume;
408 if (mo != mo_relaxed) {
409 s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, write_lock);
410 thr->fast_state.IncrementEpoch();
411 // Can't increment epoch w/o writing to the trace as well.
412 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
413 if (IsAcqRelOrder(mo))
414 AcquireReleaseImpl(thr, pc, &s->clock);
415 else if (IsReleaseOrder(mo))
416 ReleaseImpl(thr, pc, &s->clock);
417 else if (IsAcquireOrder(mo))
418 AcquireImpl(thr, pc, &s->clock);
419 }
420 T cc = *c;
421 T pr = func_cas(a, cc, v);
422 if (s) {
423 if (write_lock)
424 s->mtx.Unlock();
425 else
426 s->mtx.ReadUnlock();
427 }
428 if (pr == cc)
429 return true;
430 *c = pr;
431 return false;
432 }
433
434 template<typename T>
AtomicCAS(ThreadState * thr,uptr pc,volatile T * a,T c,T v,morder mo,morder fmo)435 static T AtomicCAS(ThreadState *thr, uptr pc,
436 volatile T *a, T c, T v, morder mo, morder fmo) {
437 AtomicCAS(thr, pc, a, &c, v, mo, fmo);
438 return c;
439 }
440
441 #if !SANITIZER_GO
NoTsanAtomicFence(morder mo)442 static void NoTsanAtomicFence(morder mo) {
443 __sync_synchronize();
444 }
445
AtomicFence(ThreadState * thr,uptr pc,morder mo)446 static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
447 // FIXME(dvyukov): not implemented.
448 __sync_synchronize();
449 }
450 #endif
451
452 // Interface functions follow.
453 #if !SANITIZER_GO
454
455 // C/C++
456
convert_morder(morder mo)457 static morder convert_morder(morder mo) {
458 if (flags()->force_seq_cst_atomics)
459 return (morder)mo_seq_cst;
460
461 // Filter out additional memory order flags:
462 // MEMMODEL_SYNC = 1 << 15
463 // __ATOMIC_HLE_ACQUIRE = 1 << 16
464 // __ATOMIC_HLE_RELEASE = 1 << 17
465 //
466 // HLE is an optimization, and we pretend that elision always fails.
467 // MEMMODEL_SYNC is used when lowering __sync_ atomics,
468 // since we use __sync_ atomics for actual atomic operations,
469 // we can safely ignore it as well. It also subtly affects semantics,
470 // but we don't model the difference.
471 return (morder)(mo & 0x7fff);
472 }
473
474 #define SCOPED_ATOMIC(func, ...) \
475 ThreadState *const thr = cur_thread(); \
476 if (thr->ignore_sync || thr->ignore_interceptors) { \
477 ProcessPendingSignals(thr); \
478 return NoTsanAtomic##func(__VA_ARGS__); \
479 } \
480 const uptr callpc = (uptr)__builtin_return_address(0); \
481 uptr pc = StackTrace::GetCurrentPc(); \
482 mo = convert_morder(mo); \
483 AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
484 ScopedAtomic sa(thr, callpc, a, mo, __func__); \
485 return Atomic##func(thr, pc, __VA_ARGS__); \
486 /**/
487
488 class ScopedAtomic {
489 public:
ScopedAtomic(ThreadState * thr,uptr pc,const volatile void * a,morder mo,const char * func)490 ScopedAtomic(ThreadState *thr, uptr pc, const volatile void *a,
491 morder mo, const char *func)
492 : thr_(thr) {
493 FuncEntry(thr_, pc);
494 DPrintf("#%d: %s(%p, %d)\n", thr_->tid, func, a, mo);
495 }
~ScopedAtomic()496 ~ScopedAtomic() {
497 ProcessPendingSignals(thr_);
498 FuncExit(thr_);
499 }
500 private:
501 ThreadState *thr_;
502 };
503
AtomicStatInc(ThreadState * thr,uptr size,morder mo,StatType t)504 static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
505 StatInc(thr, StatAtomic);
506 StatInc(thr, t);
507 StatInc(thr, size == 1 ? StatAtomic1
508 : size == 2 ? StatAtomic2
509 : size == 4 ? StatAtomic4
510 : size == 8 ? StatAtomic8
511 : StatAtomic16);
512 StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
513 : mo == mo_consume ? StatAtomicConsume
514 : mo == mo_acquire ? StatAtomicAcquire
515 : mo == mo_release ? StatAtomicRelease
516 : mo == mo_acq_rel ? StatAtomicAcq_Rel
517 : StatAtomicSeq_Cst);
518 }
519
520 extern "C" {
521 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_load(const volatile a8 * a,morder mo)522 a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
523 SCOPED_ATOMIC(Load, a, mo);
524 }
525
526 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_load(const volatile a16 * a,morder mo)527 a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
528 SCOPED_ATOMIC(Load, a, mo);
529 }
530
531 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_load(const volatile a32 * a,morder mo)532 a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
533 SCOPED_ATOMIC(Load, a, mo);
534 }
535
536 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_load(const volatile a64 * a,morder mo)537 a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
538 SCOPED_ATOMIC(Load, a, mo);
539 }
540
541 #if __TSAN_HAS_INT128
542 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_load(const volatile a128 * a,morder mo)543 a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
544 SCOPED_ATOMIC(Load, a, mo);
545 }
546 #endif
547
548 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_store(volatile a8 * a,a8 v,morder mo)549 void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
550 SCOPED_ATOMIC(Store, a, v, mo);
551 }
552
553 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_store(volatile a16 * a,a16 v,morder mo)554 void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
555 SCOPED_ATOMIC(Store, a, v, mo);
556 }
557
558 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_store(volatile a32 * a,a32 v,morder mo)559 void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
560 SCOPED_ATOMIC(Store, a, v, mo);
561 }
562
563 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_store(volatile a64 * a,a64 v,morder mo)564 void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
565 SCOPED_ATOMIC(Store, a, v, mo);
566 }
567
568 #if __TSAN_HAS_INT128
569 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_store(volatile a128 * a,a128 v,morder mo)570 void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
571 SCOPED_ATOMIC(Store, a, v, mo);
572 }
573 #endif
574
575 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_exchange(volatile a8 * a,a8 v,morder mo)576 a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
577 SCOPED_ATOMIC(Exchange, a, v, mo);
578 }
579
580 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_exchange(volatile a16 * a,a16 v,morder mo)581 a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
582 SCOPED_ATOMIC(Exchange, a, v, mo);
583 }
584
585 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_exchange(volatile a32 * a,a32 v,morder mo)586 a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
587 SCOPED_ATOMIC(Exchange, a, v, mo);
588 }
589
590 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_exchange(volatile a64 * a,a64 v,morder mo)591 a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
592 SCOPED_ATOMIC(Exchange, a, v, mo);
593 }
594
595 #if __TSAN_HAS_INT128
596 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_exchange(volatile a128 * a,a128 v,morder mo)597 a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
598 SCOPED_ATOMIC(Exchange, a, v, mo);
599 }
600 #endif
601
602 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_add(volatile a8 * a,a8 v,morder mo)603 a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
604 SCOPED_ATOMIC(FetchAdd, a, v, mo);
605 }
606
607 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_add(volatile a16 * a,a16 v,morder mo)608 a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
609 SCOPED_ATOMIC(FetchAdd, a, v, mo);
610 }
611
612 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_add(volatile a32 * a,a32 v,morder mo)613 a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
614 SCOPED_ATOMIC(FetchAdd, a, v, mo);
615 }
616
617 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_add(volatile a64 * a,a64 v,morder mo)618 a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
619 SCOPED_ATOMIC(FetchAdd, a, v, mo);
620 }
621
622 #if __TSAN_HAS_INT128
623 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_add(volatile a128 * a,a128 v,morder mo)624 a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
625 SCOPED_ATOMIC(FetchAdd, a, v, mo);
626 }
627 #endif
628
629 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_sub(volatile a8 * a,a8 v,morder mo)630 a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
631 SCOPED_ATOMIC(FetchSub, a, v, mo);
632 }
633
634 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_sub(volatile a16 * a,a16 v,morder mo)635 a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
636 SCOPED_ATOMIC(FetchSub, a, v, mo);
637 }
638
639 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_sub(volatile a32 * a,a32 v,morder mo)640 a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
641 SCOPED_ATOMIC(FetchSub, a, v, mo);
642 }
643
644 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_sub(volatile a64 * a,a64 v,morder mo)645 a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
646 SCOPED_ATOMIC(FetchSub, a, v, mo);
647 }
648
649 #if __TSAN_HAS_INT128
650 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_sub(volatile a128 * a,a128 v,morder mo)651 a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
652 SCOPED_ATOMIC(FetchSub, a, v, mo);
653 }
654 #endif
655
656 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_and(volatile a8 * a,a8 v,morder mo)657 a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
658 SCOPED_ATOMIC(FetchAnd, a, v, mo);
659 }
660
661 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_and(volatile a16 * a,a16 v,morder mo)662 a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
663 SCOPED_ATOMIC(FetchAnd, a, v, mo);
664 }
665
666 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_and(volatile a32 * a,a32 v,morder mo)667 a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
668 SCOPED_ATOMIC(FetchAnd, a, v, mo);
669 }
670
671 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_and(volatile a64 * a,a64 v,morder mo)672 a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
673 SCOPED_ATOMIC(FetchAnd, a, v, mo);
674 }
675
676 #if __TSAN_HAS_INT128
677 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_and(volatile a128 * a,a128 v,morder mo)678 a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
679 SCOPED_ATOMIC(FetchAnd, a, v, mo);
680 }
681 #endif
682
683 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_or(volatile a8 * a,a8 v,morder mo)684 a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
685 SCOPED_ATOMIC(FetchOr, a, v, mo);
686 }
687
688 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_or(volatile a16 * a,a16 v,morder mo)689 a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
690 SCOPED_ATOMIC(FetchOr, a, v, mo);
691 }
692
693 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_or(volatile a32 * a,a32 v,morder mo)694 a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
695 SCOPED_ATOMIC(FetchOr, a, v, mo);
696 }
697
698 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_or(volatile a64 * a,a64 v,morder mo)699 a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
700 SCOPED_ATOMIC(FetchOr, a, v, mo);
701 }
702
703 #if __TSAN_HAS_INT128
704 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_or(volatile a128 * a,a128 v,morder mo)705 a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
706 SCOPED_ATOMIC(FetchOr, a, v, mo);
707 }
708 #endif
709
710 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_xor(volatile a8 * a,a8 v,morder mo)711 a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
712 SCOPED_ATOMIC(FetchXor, a, v, mo);
713 }
714
715 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_xor(volatile a16 * a,a16 v,morder mo)716 a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
717 SCOPED_ATOMIC(FetchXor, a, v, mo);
718 }
719
720 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_xor(volatile a32 * a,a32 v,morder mo)721 a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
722 SCOPED_ATOMIC(FetchXor, a, v, mo);
723 }
724
725 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_xor(volatile a64 * a,a64 v,morder mo)726 a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
727 SCOPED_ATOMIC(FetchXor, a, v, mo);
728 }
729
730 #if __TSAN_HAS_INT128
731 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_xor(volatile a128 * a,a128 v,morder mo)732 a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
733 SCOPED_ATOMIC(FetchXor, a, v, mo);
734 }
735 #endif
736
737 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_nand(volatile a8 * a,a8 v,morder mo)738 a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
739 SCOPED_ATOMIC(FetchNand, a, v, mo);
740 }
741
742 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_nand(volatile a16 * a,a16 v,morder mo)743 a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
744 SCOPED_ATOMIC(FetchNand, a, v, mo);
745 }
746
747 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_nand(volatile a32 * a,a32 v,morder mo)748 a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
749 SCOPED_ATOMIC(FetchNand, a, v, mo);
750 }
751
752 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_nand(volatile a64 * a,a64 v,morder mo)753 a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
754 SCOPED_ATOMIC(FetchNand, a, v, mo);
755 }
756
757 #if __TSAN_HAS_INT128
758 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_nand(volatile a128 * a,a128 v,morder mo)759 a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
760 SCOPED_ATOMIC(FetchNand, a, v, mo);
761 }
762 #endif
763
764 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_compare_exchange_strong(volatile a8 * a,a8 * c,a8 v,morder mo,morder fmo)765 int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
766 morder mo, morder fmo) {
767 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
768 }
769
770 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_compare_exchange_strong(volatile a16 * a,a16 * c,a16 v,morder mo,morder fmo)771 int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
772 morder mo, morder fmo) {
773 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
774 }
775
776 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_compare_exchange_strong(volatile a32 * a,a32 * c,a32 v,morder mo,morder fmo)777 int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
778 morder mo, morder fmo) {
779 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
780 }
781
782 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_compare_exchange_strong(volatile a64 * a,a64 * c,a64 v,morder mo,morder fmo)783 int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
784 morder mo, morder fmo) {
785 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
786 }
787
788 #if __TSAN_HAS_INT128
789 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_compare_exchange_strong(volatile a128 * a,a128 * c,a128 v,morder mo,morder fmo)790 int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
791 morder mo, morder fmo) {
792 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
793 }
794 #endif
795
796 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_compare_exchange_weak(volatile a8 * a,a8 * c,a8 v,morder mo,morder fmo)797 int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
798 morder mo, morder fmo) {
799 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
800 }
801
802 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_compare_exchange_weak(volatile a16 * a,a16 * c,a16 v,morder mo,morder fmo)803 int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
804 morder mo, morder fmo) {
805 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
806 }
807
808 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_compare_exchange_weak(volatile a32 * a,a32 * c,a32 v,morder mo,morder fmo)809 int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
810 morder mo, morder fmo) {
811 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
812 }
813
814 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_compare_exchange_weak(volatile a64 * a,a64 * c,a64 v,morder mo,morder fmo)815 int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
816 morder mo, morder fmo) {
817 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
818 }
819
820 #if __TSAN_HAS_INT128
821 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_compare_exchange_weak(volatile a128 * a,a128 * c,a128 v,morder mo,morder fmo)822 int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
823 morder mo, morder fmo) {
824 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
825 }
826 #endif
827
828 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_compare_exchange_val(volatile a8 * a,a8 c,a8 v,morder mo,morder fmo)829 a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
830 morder mo, morder fmo) {
831 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
832 }
833
834 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_compare_exchange_val(volatile a16 * a,a16 c,a16 v,morder mo,morder fmo)835 a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
836 morder mo, morder fmo) {
837 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
838 }
839
840 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_compare_exchange_val(volatile a32 * a,a32 c,a32 v,morder mo,morder fmo)841 a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
842 morder mo, morder fmo) {
843 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
844 }
845
846 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_compare_exchange_val(volatile a64 * a,a64 c,a64 v,morder mo,morder fmo)847 a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
848 morder mo, morder fmo) {
849 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
850 }
851
852 #if __TSAN_HAS_INT128
853 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_compare_exchange_val(volatile a128 * a,a128 c,a128 v,morder mo,morder fmo)854 a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
855 morder mo, morder fmo) {
856 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
857 }
858 #endif
859
860 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic_thread_fence(morder mo)861 void __tsan_atomic_thread_fence(morder mo) {
862 char* a = 0;
863 SCOPED_ATOMIC(Fence, mo);
864 }
865
866 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic_signal_fence(morder mo)867 void __tsan_atomic_signal_fence(morder mo) {
868 }
869 } // extern "C"
870
871 #else // #if !SANITIZER_GO
872
873 // Go
874
875 #define ATOMIC(func, ...) \
876 if (thr->ignore_sync) { \
877 NoTsanAtomic##func(__VA_ARGS__); \
878 } else { \
879 FuncEntry(thr, cpc); \
880 Atomic##func(thr, pc, __VA_ARGS__); \
881 FuncExit(thr); \
882 } \
883 /**/
884
885 #define ATOMIC_RET(func, ret, ...) \
886 if (thr->ignore_sync) { \
887 (ret) = NoTsanAtomic##func(__VA_ARGS__); \
888 } else { \
889 FuncEntry(thr, cpc); \
890 (ret) = Atomic##func(thr, pc, __VA_ARGS__); \
891 FuncExit(thr); \
892 } \
893 /**/
894
895 extern "C" {
896 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_load(ThreadState * thr,uptr cpc,uptr pc,u8 * a)897 void __tsan_go_atomic32_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
898 ATOMIC_RET(Load, *(a32*)(a+8), *(a32**)a, mo_acquire);
899 }
900
901 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_load(ThreadState * thr,uptr cpc,uptr pc,u8 * a)902 void __tsan_go_atomic64_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
903 ATOMIC_RET(Load, *(a64*)(a+8), *(a64**)a, mo_acquire);
904 }
905
906 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_store(ThreadState * thr,uptr cpc,uptr pc,u8 * a)907 void __tsan_go_atomic32_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
908 ATOMIC(Store, *(a32**)a, *(a32*)(a+8), mo_release);
909 }
910
911 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_store(ThreadState * thr,uptr cpc,uptr pc,u8 * a)912 void __tsan_go_atomic64_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
913 ATOMIC(Store, *(a64**)a, *(a64*)(a+8), mo_release);
914 }
915
916 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_fetch_add(ThreadState * thr,uptr cpc,uptr pc,u8 * a)917 void __tsan_go_atomic32_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
918 ATOMIC_RET(FetchAdd, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
919 }
920
921 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_fetch_add(ThreadState * thr,uptr cpc,uptr pc,u8 * a)922 void __tsan_go_atomic64_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
923 ATOMIC_RET(FetchAdd, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
924 }
925
926 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)927 void __tsan_go_atomic32_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
928 ATOMIC_RET(Exchange, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
929 }
930
931 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)932 void __tsan_go_atomic64_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
933 ATOMIC_RET(Exchange, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
934 }
935
936 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_compare_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)937 void __tsan_go_atomic32_compare_exchange(
938 ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
939 a32 cur = 0;
940 a32 cmp = *(a32*)(a+8);
941 ATOMIC_RET(CAS, cur, *(a32**)a, cmp, *(a32*)(a+12), mo_acq_rel, mo_acquire);
942 *(bool*)(a+16) = (cur == cmp);
943 }
944
945 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_compare_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)946 void __tsan_go_atomic64_compare_exchange(
947 ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
948 a64 cur = 0;
949 a64 cmp = *(a64*)(a+8);
950 ATOMIC_RET(CAS, cur, *(a64**)a, cmp, *(a64*)(a+16), mo_acq_rel, mo_acquire);
951 *(bool*)(a+24) = (cur == cmp);
952 }
953 } // extern "C"
954 #endif // #if !SANITIZER_GO
955