1 /* Miscellaneous utilities.
2    Copyright (C) 2019-2021 Free Software Foundation, Inc.
3 
4    This file is part of libctf.
5 
6    libctf is free software; you can redistribute it and/or modify it under
7    the terms of the GNU General Public License as published by the Free
8    Software Foundation; either version 3, or (at your option) any later
9    version.
10 
11    This program is distributed in the hope that it will be useful, but
12    WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14    See the GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; see the file COPYING.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 #include <ctf-impl.h>
21 #include <string.h>
22 #include "ctf-endian.h"
23 
24 /* Simple doubly-linked list append routine.  This implementation assumes that
25    each list element contains an embedded ctf_list_t as the first member.
26    An additional ctf_list_t is used to store the head (l_next) and tail
27    (l_prev) pointers.  The current head and tail list elements have their
28    previous and next pointers set to NULL, respectively.  */
29 
30 void
ctf_list_append(ctf_list_t * lp,void * newp)31 ctf_list_append (ctf_list_t *lp, void *newp)
32 {
33   ctf_list_t *p = lp->l_prev;	/* p = tail list element.  */
34   ctf_list_t *q = newp;		/* q = new list element.  */
35 
36   lp->l_prev = q;
37   q->l_prev = p;
38   q->l_next = NULL;
39 
40   if (p != NULL)
41     p->l_next = q;
42   else
43     lp->l_next = q;
44 }
45 
46 /* Prepend the specified existing element to the given ctf_list_t.  The
47    existing pointer should be pointing at a struct with embedded ctf_list_t.  */
48 
49 void
ctf_list_prepend(ctf_list_t * lp,void * newp)50 ctf_list_prepend (ctf_list_t * lp, void *newp)
51 {
52   ctf_list_t *p = newp;		/* p = new list element.  */
53   ctf_list_t *q = lp->l_next;	/* q = head list element.  */
54 
55   lp->l_next = p;
56   p->l_prev = NULL;
57   p->l_next = q;
58 
59   if (q != NULL)
60     q->l_prev = p;
61   else
62     lp->l_prev = p;
63 }
64 
65 /* Delete the specified existing element from the given ctf_list_t.  The
66    existing pointer should be pointing at a struct with embedded ctf_list_t.  */
67 
68 void
ctf_list_delete(ctf_list_t * lp,void * existing)69 ctf_list_delete (ctf_list_t *lp, void *existing)
70 {
71   ctf_list_t *p = existing;
72 
73   if (p->l_prev != NULL)
74     p->l_prev->l_next = p->l_next;
75   else
76     lp->l_next = p->l_next;
77 
78   if (p->l_next != NULL)
79     p->l_next->l_prev = p->l_prev;
80   else
81     lp->l_prev = p->l_prev;
82 }
83 
84 /* Return 1 if the list is empty.  */
85 
86 int
ctf_list_empty_p(ctf_list_t * lp)87 ctf_list_empty_p (ctf_list_t *lp)
88 {
89   return (lp->l_next == NULL && lp->l_prev == NULL);
90 }
91 
92 /* Splice one entire list onto the end of another one.  The existing list is
93    emptied.  */
94 
95 void
ctf_list_splice(ctf_list_t * lp,ctf_list_t * append)96 ctf_list_splice (ctf_list_t *lp, ctf_list_t *append)
97 {
98   if (ctf_list_empty_p (append))
99     return;
100 
101   if (lp->l_prev != NULL)
102     lp->l_prev->l_next = append->l_next;
103   else
104     lp->l_next = append->l_next;
105 
106   append->l_next->l_prev = lp->l_prev;
107   lp->l_prev = append->l_prev;
108   append->l_next = NULL;
109   append->l_prev = NULL;
110 }
111 
112 /* Convert a 32-bit ELF symbol to a ctf_link_sym_t.  */
113 
114 ctf_link_sym_t *
ctf_elf32_to_link_sym(ctf_dict_t * fp,ctf_link_sym_t * dst,const Elf32_Sym * src,uint32_t symidx)115 ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src,
116 		       uint32_t symidx)
117 {
118   Elf32_Sym tmp;
119   int needs_flipping = 0;
120 
121 #ifdef WORDS_BIGENDIAN
122   if (fp->ctf_symsect_little_endian)
123     needs_flipping = 1;
124 #else
125   if (!fp->ctf_symsect_little_endian)
126     needs_flipping = 1;
127 #endif
128 
129   memcpy (&tmp, src, sizeof (Elf32_Sym));
130   if (needs_flipping)
131     {
132       swap_thing (tmp.st_name);
133       swap_thing (tmp.st_size);
134       swap_thing (tmp.st_shndx);
135       swap_thing (tmp.st_value);
136     }
137   /* The name must be in the external string table.  */
138   if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
139     dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
140   else
141     dst->st_name = _CTF_NULLSTR;
142   dst->st_nameidx_set = 0;
143   dst->st_symidx = symidx;
144   dst->st_shndx = tmp.st_shndx;
145   dst->st_type = ELF32_ST_TYPE (tmp.st_info);
146   dst->st_value = tmp.st_value;
147 
148   return dst;
149 }
150 
151 /* Convert a 64-bit ELF symbol to a ctf_link_sym_t.  */
152 
153 ctf_link_sym_t *
ctf_elf64_to_link_sym(ctf_dict_t * fp,ctf_link_sym_t * dst,const Elf64_Sym * src,uint32_t symidx)154 ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src,
155 		       uint32_t symidx)
156 {
157   Elf64_Sym tmp;
158   int needs_flipping = 0;
159 
160 #ifdef WORDS_BIGENDIAN
161   if (fp->ctf_symsect_little_endian)
162     needs_flipping = 1;
163 #else
164   if (!fp->ctf_symsect_little_endian)
165     needs_flipping = 1;
166 #endif
167 
168   memcpy (&tmp, src, sizeof (Elf64_Sym));
169   if (needs_flipping)
170     {
171       swap_thing (tmp.st_name);
172       swap_thing (tmp.st_size);
173       swap_thing (tmp.st_shndx);
174       swap_thing (tmp.st_value);
175     }
176 
177   /* The name must be in the external string table.  */
178   if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
179     dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
180   else
181     dst->st_name = _CTF_NULLSTR;
182   dst->st_nameidx_set = 0;
183   dst->st_symidx = symidx;
184   dst->st_shndx = tmp.st_shndx;
185   dst->st_type = ELF32_ST_TYPE (tmp.st_info);
186 
187   /* We only care if the value is zero, so avoid nonzeroes turning into
188      zeroes.  */
189   if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0)))
190     dst->st_value = 1;
191   else
192     dst->st_value = (uint32_t) tmp.st_value;
193 
194   return dst;
195 }
196 
197 /* A string appender working on dynamic strings.  Returns NULL on OOM.  */
198 
199 char *
ctf_str_append(char * s,const char * append)200 ctf_str_append (char *s, const char *append)
201 {
202   size_t s_len = 0;
203 
204   if (append == NULL)
205     return s;
206 
207   if (s != NULL)
208     s_len = strlen (s);
209 
210   size_t append_len = strlen (append);
211 
212   if ((s = realloc (s, s_len + append_len + 1)) == NULL)
213     return NULL;
214 
215   memcpy (s + s_len, append, append_len);
216   s[s_len + append_len] = '\0';
217 
218   return s;
219 }
220 
221 /* A version of ctf_str_append that returns the old string on OOM.  */
222 
223 char *
ctf_str_append_noerr(char * s,const char * append)224 ctf_str_append_noerr (char *s, const char *append)
225 {
226   char *new_s;
227 
228   new_s = ctf_str_append (s, append);
229   if (!new_s)
230     return s;
231   return new_s;
232 }
233 
234 /* A realloc() that fails noisily if called with any ctf_str_num_users.  */
235 void *
ctf_realloc(ctf_dict_t * fp,void * ptr,size_t size)236 ctf_realloc (ctf_dict_t *fp, void *ptr, size_t size)
237 {
238   if (fp->ctf_str_num_refs > 0)
239     {
240       ctf_dprintf ("%p: attempt to realloc() string table with %lu active refs\n",
241 		   (void *) fp, (unsigned long) fp->ctf_str_num_refs);
242       return NULL;
243     }
244   return realloc (ptr, size);
245 }
246 
247 /* Store the specified error code into errp if it is non-NULL, and then
248    return NULL for the benefit of the caller.  */
249 
250 void *
ctf_set_open_errno(int * errp,int error)251 ctf_set_open_errno (int *errp, int error)
252 {
253   if (errp != NULL)
254     *errp = error;
255   return NULL;
256 }
257 
258 /* Store the specified error code into the CTF dict, and then return CTF_ERR /
259    -1 for the benefit of the caller. */
260 
261 unsigned long
ctf_set_errno(ctf_dict_t * fp,int err)262 ctf_set_errno (ctf_dict_t *fp, int err)
263 {
264   fp->ctf_errno = err;
265   return CTF_ERR;
266 }
267 
268 /* Create a ctf_next_t.  */
269 
270 ctf_next_t *
ctf_next_create(void)271 ctf_next_create (void)
272 {
273   return calloc (1, sizeof (struct ctf_next));
274 }
275 
276 /* Destroy a ctf_next_t, for early exit from iterators.  */
277 
278 void
ctf_next_destroy(ctf_next_t * i)279 ctf_next_destroy (ctf_next_t *i)
280 {
281   if (i == NULL)
282     return;
283 
284   if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
285     free (i->u.ctn_sorted_hkv);
286   if (i->ctn_next)
287     ctf_next_destroy (i->ctn_next);
288   free (i);
289 }
290 
291 /* Copy a ctf_next_t.  */
292 
293 ctf_next_t *
ctf_next_copy(ctf_next_t * i)294 ctf_next_copy (ctf_next_t *i)
295 {
296   ctf_next_t *i2;
297 
298   if ((i2 = ctf_next_create()) == NULL)
299     return NULL;
300   memcpy (i2, i, sizeof (struct ctf_next));
301 
302   if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
303     {
304       size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h);
305       if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
306 	{
307 	  free (i2);
308 	  return NULL;
309 	}
310       memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv,
311 	      els * sizeof (ctf_next_hkv_t));
312     }
313   return i2;
314 }
315