1------------------------------------------------------------------------------ 2-- -- 3-- GNAT COMPILER COMPONENTS -- 4-- -- 5-- E X P _ U T I L -- 6-- -- 7-- B o d y -- 8-- -- 9-- Copyright (C) 1992-2018, Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 3, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- 17-- for more details. You should have received a copy of the GNU General -- 18-- Public License distributed with GNAT; see file COPYING3. If not, go to -- 19-- http://www.gnu.org/licenses for a complete copy of the license. -- 20-- -- 21-- GNAT was originally developed by the GNAT team at New York University. -- 22-- Extensive contributions were provided by Ada Core Technologies Inc. -- 23-- -- 24------------------------------------------------------------------------------ 25 26with Aspects; use Aspects; 27with Atree; use Atree; 28with Casing; use Casing; 29with Checks; use Checks; 30with Debug; use Debug; 31with Einfo; use Einfo; 32with Elists; use Elists; 33with Errout; use Errout; 34with Exp_Aggr; use Exp_Aggr; 35with Exp_Ch6; use Exp_Ch6; 36with Exp_Ch7; use Exp_Ch7; 37with Exp_Ch11; use Exp_Ch11; 38with Ghost; use Ghost; 39with Inline; use Inline; 40with Itypes; use Itypes; 41with Lib; use Lib; 42with Nlists; use Nlists; 43with Nmake; use Nmake; 44with Opt; use Opt; 45with Restrict; use Restrict; 46with Rident; use Rident; 47with Sem; use Sem; 48with Sem_Aux; use Sem_Aux; 49with Sem_Ch3; use Sem_Ch3; 50with Sem_Ch6; use Sem_Ch6; 51with Sem_Ch8; use Sem_Ch8; 52with Sem_Ch12; use Sem_Ch12; 53with Sem_Ch13; use Sem_Ch13; 54with Sem_Disp; use Sem_Disp; 55with Sem_Elab; use Sem_Elab; 56with Sem_Eval; use Sem_Eval; 57with Sem_Res; use Sem_Res; 58with Sem_Type; use Sem_Type; 59with Sem_Util; use Sem_Util; 60with Snames; use Snames; 61with Stand; use Stand; 62with Stringt; use Stringt; 63with Targparm; use Targparm; 64with Tbuild; use Tbuild; 65with Ttypes; use Ttypes; 66with Urealp; use Urealp; 67with Validsw; use Validsw; 68 69with GNAT.HTable; 70package body Exp_Util is 71 72 --------------------------------------------------------- 73 -- Handling of inherited class-wide pre/postconditions -- 74 --------------------------------------------------------- 75 76 -- Following AI12-0113, the expression for a class-wide condition is 77 -- transformed for a subprogram that inherits it, by replacing calls 78 -- to primitive operations of the original controlling type into the 79 -- corresponding overriding operations of the derived type. The following 80 -- hash table manages this mapping, and is expanded on demand whenever 81 -- such inherited expression needs to be constructed. 82 83 -- The mapping is also used to check whether an inherited operation has 84 -- a condition that depends on overridden operations. For such an 85 -- operation we must create a wrapper that is then treated as a normal 86 -- overriding. In SPARK mode such operations are illegal. 87 88 -- For a given root type there may be several type extensions with their 89 -- own overriding operations, so at various times a given operation of 90 -- the root will be mapped into different overridings. The root type is 91 -- also mapped into the current type extension to indicate that its 92 -- operations are mapped into the overriding operations of that current 93 -- type extension. 94 95 -- The contents of the map are as follows: 96 97 -- Key Value 98 99 -- Discriminant (Entity_Id) Discriminant (Entity_Id) 100 -- Discriminant (Entity_Id) Non-discriminant name (Entity_Id) 101 -- Discriminant (Entity_Id) Expression (Node_Id) 102 -- Primitive subprogram (Entity_Id) Primitive subprogram (Entity_Id) 103 -- Type (Entity_Id) Type (Entity_Id) 104 105 Type_Map_Size : constant := 511; 106 107 subtype Type_Map_Header is Integer range 0 .. Type_Map_Size - 1; 108 function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header; 109 110 package Type_Map is new GNAT.HTable.Simple_HTable 111 (Header_Num => Type_Map_Header, 112 Key => Entity_Id, 113 Element => Node_Or_Entity_Id, 114 No_element => Empty, 115 Hash => Type_Map_Hash, 116 Equal => "="); 117 118 ----------------------- 119 -- Local Subprograms -- 120 ----------------------- 121 122 function Build_Task_Array_Image 123 (Loc : Source_Ptr; 124 Id_Ref : Node_Id; 125 A_Type : Entity_Id; 126 Dyn : Boolean := False) return Node_Id; 127 -- Build function to generate the image string for a task that is an array 128 -- component, concatenating the images of each index. To avoid storage 129 -- leaks, the string is built with successive slice assignments. The flag 130 -- Dyn indicates whether this is called for the initialization procedure of 131 -- an array of tasks, or for the name of a dynamically created task that is 132 -- assigned to an indexed component. 133 134 function Build_Task_Image_Function 135 (Loc : Source_Ptr; 136 Decls : List_Id; 137 Stats : List_Id; 138 Res : Entity_Id) return Node_Id; 139 -- Common processing for Task_Array_Image and Task_Record_Image. Build 140 -- function body that computes image. 141 142 procedure Build_Task_Image_Prefix 143 (Loc : Source_Ptr; 144 Len : out Entity_Id; 145 Res : out Entity_Id; 146 Pos : out Entity_Id; 147 Prefix : Entity_Id; 148 Sum : Node_Id; 149 Decls : List_Id; 150 Stats : List_Id); 151 -- Common processing for Task_Array_Image and Task_Record_Image. Create 152 -- local variables and assign prefix of name to result string. 153 154 function Build_Task_Record_Image 155 (Loc : Source_Ptr; 156 Id_Ref : Node_Id; 157 Dyn : Boolean := False) return Node_Id; 158 -- Build function to generate the image string for a task that is a record 159 -- component. Concatenate name of variable with that of selector. The flag 160 -- Dyn indicates whether this is called for the initialization procedure of 161 -- record with task components, or for a dynamically created task that is 162 -- assigned to a selected component. 163 164 procedure Evaluate_Slice_Bounds (Slice : Node_Id); 165 -- Force evaluation of bounds of a slice, which may be given by a range 166 -- or by a subtype indication with or without a constraint. 167 168 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean; 169 -- Determine whether pragma Default_Initial_Condition denoted by Prag has 170 -- an assertion expression that should be verified at run time. 171 172 function Make_CW_Equivalent_Type 173 (T : Entity_Id; 174 E : Node_Id) return Entity_Id; 175 -- T is a class-wide type entity, E is the initial expression node that 176 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function 177 -- returns the entity of the Equivalent type and inserts on the fly the 178 -- necessary declaration such as: 179 -- 180 -- type anon is record 181 -- _parent : Root_Type (T); constrained with E discriminants (if any) 182 -- Extension : String (1 .. expr to match size of E); 183 -- end record; 184 -- 185 -- This record is compatible with any object of the class of T thanks to 186 -- the first field and has the same size as E thanks to the second. 187 188 function Make_Literal_Range 189 (Loc : Source_Ptr; 190 Literal_Typ : Entity_Id) return Node_Id; 191 -- Produce a Range node whose bounds are: 192 -- Low_Bound (Literal_Type) .. 193 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1) 194 -- this is used for expanding declarations like X : String := "sdfgdfg"; 195 -- 196 -- If the index type of the target array is not integer, we generate: 197 -- Low_Bound (Literal_Type) .. 198 -- Literal_Type'Val 199 -- (Literal_Type'Pos (Low_Bound (Literal_Type)) 200 -- + (Length (Literal_Typ) -1)) 201 202 function Make_Non_Empty_Check 203 (Loc : Source_Ptr; 204 N : Node_Id) return Node_Id; 205 -- Produce a boolean expression checking that the unidimensional array 206 -- node N is not empty. 207 208 function New_Class_Wide_Subtype 209 (CW_Typ : Entity_Id; 210 N : Node_Id) return Entity_Id; 211 -- Create an implicit subtype of CW_Typ attached to node N 212 213 function Requires_Cleanup_Actions 214 (L : List_Id; 215 Lib_Level : Boolean; 216 Nested_Constructs : Boolean) return Boolean; 217 -- Given a list L, determine whether it contains one of the following: 218 -- 219 -- 1) controlled objects 220 -- 2) library-level tagged types 221 -- 222 -- Lib_Level is True when the list comes from a construct at the library 223 -- level, and False otherwise. Nested_Constructs is True when any nested 224 -- packages declared in L must be processed, and False otherwise. 225 226 ------------------------------------- 227 -- Activate_Atomic_Synchronization -- 228 ------------------------------------- 229 230 procedure Activate_Atomic_Synchronization (N : Node_Id) is 231 Msg_Node : Node_Id; 232 233 begin 234 case Nkind (Parent (N)) is 235 236 -- Check for cases of appearing in the prefix of a construct where we 237 -- don't need atomic synchronization for this kind of usage. 238 239 when 240 -- Nothing to do if we are the prefix of an attribute, since we 241 -- do not want an atomic sync operation for things like 'Size. 242 243 N_Attribute_Reference 244 245 -- The N_Reference node is like an attribute 246 247 | N_Reference 248 249 -- Nothing to do for a reference to a component (or components) 250 -- of a composite object. Only reads and updates of the object 251 -- as a whole require atomic synchronization (RM C.6 (15)). 252 253 | N_Indexed_Component 254 | N_Selected_Component 255 | N_Slice 256 => 257 -- For all the above cases, nothing to do if we are the prefix 258 259 if Prefix (Parent (N)) = N then 260 return; 261 end if; 262 263 when others => 264 null; 265 end case; 266 267 -- Nothing to do for the identifier in an object renaming declaration, 268 -- the renaming itself does not need atomic synchronization. 269 270 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then 271 return; 272 end if; 273 274 -- Go ahead and set the flag 275 276 Set_Atomic_Sync_Required (N); 277 278 -- Generate info message if requested 279 280 if Warn_On_Atomic_Synchronization then 281 case Nkind (N) is 282 when N_Identifier => 283 Msg_Node := N; 284 285 when N_Expanded_Name 286 | N_Selected_Component 287 => 288 Msg_Node := Selector_Name (N); 289 290 when N_Explicit_Dereference 291 | N_Indexed_Component 292 => 293 Msg_Node := Empty; 294 295 when others => 296 pragma Assert (False); 297 return; 298 end case; 299 300 if Present (Msg_Node) then 301 Error_Msg_N 302 ("info: atomic synchronization set for &?N?", Msg_Node); 303 else 304 Error_Msg_N 305 ("info: atomic synchronization set?N?", N); 306 end if; 307 end if; 308 end Activate_Atomic_Synchronization; 309 310 ---------------------- 311 -- Adjust_Condition -- 312 ---------------------- 313 314 procedure Adjust_Condition (N : Node_Id) is 315 begin 316 if No (N) then 317 return; 318 end if; 319 320 declare 321 Loc : constant Source_Ptr := Sloc (N); 322 T : constant Entity_Id := Etype (N); 323 Ti : Entity_Id; 324 325 begin 326 -- Defend against a call where the argument has no type, or has a 327 -- type that is not Boolean. This can occur because of prior errors. 328 329 if No (T) or else not Is_Boolean_Type (T) then 330 return; 331 end if; 332 333 -- Apply validity checking if needed 334 335 if Validity_Checks_On and Validity_Check_Tests then 336 Ensure_Valid (N); 337 end if; 338 339 -- Immediate return if standard boolean, the most common case, 340 -- where nothing needs to be done. 341 342 if Base_Type (T) = Standard_Boolean then 343 return; 344 end if; 345 346 -- Case of zero/non-zero semantics or non-standard enumeration 347 -- representation. In each case, we rewrite the node as: 348 349 -- ityp!(N) /= False'Enum_Rep 350 351 -- where ityp is an integer type with large enough size to hold any 352 -- value of type T. 353 354 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then 355 if Esize (T) <= Esize (Standard_Integer) then 356 Ti := Standard_Integer; 357 else 358 Ti := Standard_Long_Long_Integer; 359 end if; 360 361 Rewrite (N, 362 Make_Op_Ne (Loc, 363 Left_Opnd => Unchecked_Convert_To (Ti, N), 364 Right_Opnd => 365 Make_Attribute_Reference (Loc, 366 Attribute_Name => Name_Enum_Rep, 367 Prefix => 368 New_Occurrence_Of (First_Literal (T), Loc)))); 369 Analyze_And_Resolve (N, Standard_Boolean); 370 371 else 372 Rewrite (N, Convert_To (Standard_Boolean, N)); 373 Analyze_And_Resolve (N, Standard_Boolean); 374 end if; 375 end; 376 end Adjust_Condition; 377 378 ------------------------ 379 -- Adjust_Result_Type -- 380 ------------------------ 381 382 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is 383 begin 384 -- Ignore call if current type is not Standard.Boolean 385 386 if Etype (N) /= Standard_Boolean then 387 return; 388 end if; 389 390 -- If result is already of correct type, nothing to do. Note that 391 -- this will get the most common case where everything has a type 392 -- of Standard.Boolean. 393 394 if Base_Type (T) = Standard_Boolean then 395 return; 396 397 else 398 declare 399 KP : constant Node_Kind := Nkind (Parent (N)); 400 401 begin 402 -- If result is to be used as a Condition in the syntax, no need 403 -- to convert it back, since if it was changed to Standard.Boolean 404 -- using Adjust_Condition, that is just fine for this usage. 405 406 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then 407 return; 408 409 -- If result is an operand of another logical operation, no need 410 -- to reset its type, since Standard.Boolean is just fine, and 411 -- such operations always do Adjust_Condition on their operands. 412 413 elsif KP in N_Op_Boolean 414 or else KP in N_Short_Circuit 415 or else KP = N_Op_Not 416 then 417 return; 418 419 -- Otherwise we perform a conversion from the current type, which 420 -- must be Standard.Boolean, to the desired type. Use the base 421 -- type to prevent spurious constraint checks that are extraneous 422 -- to the transformation. The type and its base have the same 423 -- representation, standard or otherwise. 424 425 else 426 Set_Analyzed (N); 427 Rewrite (N, Convert_To (Base_Type (T), N)); 428 Analyze_And_Resolve (N, Base_Type (T)); 429 end if; 430 end; 431 end if; 432 end Adjust_Result_Type; 433 434 -------------------------- 435 -- Append_Freeze_Action -- 436 -------------------------- 437 438 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is 439 Fnode : Node_Id; 440 441 begin 442 Ensure_Freeze_Node (T); 443 Fnode := Freeze_Node (T); 444 445 if No (Actions (Fnode)) then 446 Set_Actions (Fnode, New_List (N)); 447 else 448 Append (N, Actions (Fnode)); 449 end if; 450 451 end Append_Freeze_Action; 452 453 --------------------------- 454 -- Append_Freeze_Actions -- 455 --------------------------- 456 457 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is 458 Fnode : Node_Id; 459 460 begin 461 if No (L) then 462 return; 463 end if; 464 465 Ensure_Freeze_Node (T); 466 Fnode := Freeze_Node (T); 467 468 if No (Actions (Fnode)) then 469 Set_Actions (Fnode, L); 470 else 471 Append_List (L, Actions (Fnode)); 472 end if; 473 end Append_Freeze_Actions; 474 475 ------------------------------------ 476 -- Build_Allocate_Deallocate_Proc -- 477 ------------------------------------ 478 479 procedure Build_Allocate_Deallocate_Proc 480 (N : Node_Id; 481 Is_Allocate : Boolean) 482 is 483 function Find_Object (E : Node_Id) return Node_Id; 484 -- Given an arbitrary expression of an allocator, try to find an object 485 -- reference in it, otherwise return the original expression. 486 487 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean; 488 -- Determine whether subprogram Subp denotes a custom allocate or 489 -- deallocate. 490 491 ----------------- 492 -- Find_Object -- 493 ----------------- 494 495 function Find_Object (E : Node_Id) return Node_Id is 496 Expr : Node_Id; 497 498 begin 499 pragma Assert (Is_Allocate); 500 501 Expr := E; 502 loop 503 if Nkind (Expr) = N_Explicit_Dereference then 504 Expr := Prefix (Expr); 505 506 elsif Nkind (Expr) = N_Qualified_Expression then 507 Expr := Expression (Expr); 508 509 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then 510 511 -- When interface class-wide types are involved in allocation, 512 -- the expander introduces several levels of address arithmetic 513 -- to perform dispatch table displacement. In this scenario the 514 -- object appears as: 515 516 -- Tag_Ptr (Base_Address (<object>'Address)) 517 518 -- Detect this case and utilize the whole expression as the 519 -- "object" since it now points to the proper dispatch table. 520 521 if Is_RTE (Etype (Expr), RE_Tag_Ptr) then 522 exit; 523 524 -- Continue to strip the object 525 526 else 527 Expr := Expression (Expr); 528 end if; 529 530 else 531 exit; 532 end if; 533 end loop; 534 535 return Expr; 536 end Find_Object; 537 538 --------------------------------- 539 -- Is_Allocate_Deallocate_Proc -- 540 --------------------------------- 541 542 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is 543 begin 544 -- Look for a subprogram body with only one statement which is a 545 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled. 546 547 if Ekind (Subp) = E_Procedure 548 and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body 549 then 550 declare 551 HSS : constant Node_Id := 552 Handled_Statement_Sequence (Parent (Parent (Subp))); 553 Proc : Entity_Id; 554 555 begin 556 if Present (Statements (HSS)) 557 and then Nkind (First (Statements (HSS))) = 558 N_Procedure_Call_Statement 559 then 560 Proc := Entity (Name (First (Statements (HSS)))); 561 562 return 563 Is_RTE (Proc, RE_Allocate_Any_Controlled) 564 or else Is_RTE (Proc, RE_Deallocate_Any_Controlled); 565 end if; 566 end; 567 end if; 568 569 return False; 570 end Is_Allocate_Deallocate_Proc; 571 572 -- Local variables 573 574 Desig_Typ : Entity_Id; 575 Expr : Node_Id; 576 Needs_Fin : Boolean; 577 Pool_Id : Entity_Id; 578 Proc_To_Call : Node_Id := Empty; 579 Ptr_Typ : Entity_Id; 580 581 -- Start of processing for Build_Allocate_Deallocate_Proc 582 583 begin 584 -- Obtain the attributes of the allocation / deallocation 585 586 if Nkind (N) = N_Free_Statement then 587 Expr := Expression (N); 588 Ptr_Typ := Base_Type (Etype (Expr)); 589 Proc_To_Call := Procedure_To_Call (N); 590 591 else 592 if Nkind (N) = N_Object_Declaration then 593 Expr := Expression (N); 594 else 595 Expr := N; 596 end if; 597 598 -- In certain cases an allocator with a qualified expression may 599 -- be relocated and used as the initialization expression of a 600 -- temporary: 601 602 -- before: 603 -- Obj : Ptr_Typ := new Desig_Typ'(...); 604 605 -- after: 606 -- Tmp : Ptr_Typ := new Desig_Typ'(...); 607 -- Obj : Ptr_Typ := Tmp; 608 609 -- Since the allocator is always marked as analyzed to avoid infinite 610 -- expansion, it will never be processed by this routine given that 611 -- the designated type needs finalization actions. Detect this case 612 -- and complete the expansion of the allocator. 613 614 if Nkind (Expr) = N_Identifier 615 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration 616 and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator 617 then 618 Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True); 619 return; 620 end if; 621 622 -- The allocator may have been rewritten into something else in which 623 -- case the expansion performed by this routine does not apply. 624 625 if Nkind (Expr) /= N_Allocator then 626 return; 627 end if; 628 629 Ptr_Typ := Base_Type (Etype (Expr)); 630 Proc_To_Call := Procedure_To_Call (Expr); 631 end if; 632 633 Pool_Id := Associated_Storage_Pool (Ptr_Typ); 634 Desig_Typ := Available_View (Designated_Type (Ptr_Typ)); 635 636 -- Handle concurrent types 637 638 if Is_Concurrent_Type (Desig_Typ) 639 and then Present (Corresponding_Record_Type (Desig_Typ)) 640 then 641 Desig_Typ := Corresponding_Record_Type (Desig_Typ); 642 end if; 643 644 -- Do not process allocations / deallocations without a pool 645 646 if No (Pool_Id) then 647 return; 648 649 -- Do not process allocations on / deallocations from the secondary 650 -- stack. 651 652 elsif Is_RTE (Pool_Id, RE_SS_Pool) 653 or else (Nkind (Expr) = N_Allocator 654 and then Is_RTE (Storage_Pool (Expr), RE_SS_Pool)) 655 then 656 return; 657 658 -- Optimize the case where we are using the default Global_Pool_Object, 659 -- and we don't need the heavy finalization machinery. 660 661 elsif Pool_Id = RTE (RE_Global_Pool_Object) 662 and then not Needs_Finalization (Desig_Typ) 663 then 664 return; 665 666 -- Do not replicate the machinery if the allocator / free has already 667 -- been expanded and has a custom Allocate / Deallocate. 668 669 elsif Present (Proc_To_Call) 670 and then Is_Allocate_Deallocate_Proc (Proc_To_Call) 671 then 672 return; 673 end if; 674 675 -- Finalization actions are required when the object to be allocated or 676 -- deallocated needs these actions and the associated access type is not 677 -- subject to pragma No_Heap_Finalization. 678 679 Needs_Fin := 680 Needs_Finalization (Desig_Typ) 681 and then not No_Heap_Finalization (Ptr_Typ); 682 683 if Needs_Fin then 684 685 -- Certain run-time configurations and targets do not provide support 686 -- for controlled types. 687 688 if Restriction_Active (No_Finalization) then 689 return; 690 691 -- Do nothing if the access type may never allocate / deallocate 692 -- objects. 693 694 elsif No_Pool_Assigned (Ptr_Typ) then 695 return; 696 end if; 697 698 -- The allocation / deallocation of a controlled object must be 699 -- chained on / detached from a finalization master. 700 701 pragma Assert (Present (Finalization_Master (Ptr_Typ))); 702 703 -- The only other kind of allocation / deallocation supported by this 704 -- routine is on / from a subpool. 705 706 elsif Nkind (Expr) = N_Allocator 707 and then No (Subpool_Handle_Name (Expr)) 708 then 709 return; 710 end if; 711 712 declare 713 Loc : constant Source_Ptr := Sloc (N); 714 Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A'); 715 Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L'); 716 Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); 717 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); 718 719 Actuals : List_Id; 720 Fin_Addr_Id : Entity_Id; 721 Fin_Mas_Act : Node_Id; 722 Fin_Mas_Id : Entity_Id; 723 Proc_To_Call : Entity_Id; 724 Subpool : Node_Id := Empty; 725 726 begin 727 -- Step 1: Construct all the actuals for the call to library routine 728 -- Allocate_Any_Controlled / Deallocate_Any_Controlled. 729 730 -- a) Storage pool 731 732 Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc)); 733 734 if Is_Allocate then 735 736 -- b) Subpool 737 738 if Nkind (Expr) = N_Allocator then 739 Subpool := Subpool_Handle_Name (Expr); 740 end if; 741 742 -- If a subpool is present it can be an arbitrary name, so make 743 -- the actual by copying the tree. 744 745 if Present (Subpool) then 746 Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc)); 747 else 748 Append_To (Actuals, Make_Null (Loc)); 749 end if; 750 751 -- c) Finalization master 752 753 if Needs_Fin then 754 Fin_Mas_Id := Finalization_Master (Ptr_Typ); 755 Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc); 756 757 -- Handle the case where the master is actually a pointer to a 758 -- master. This case arises in build-in-place functions. 759 760 if Is_Access_Type (Etype (Fin_Mas_Id)) then 761 Append_To (Actuals, Fin_Mas_Act); 762 else 763 Append_To (Actuals, 764 Make_Attribute_Reference (Loc, 765 Prefix => Fin_Mas_Act, 766 Attribute_Name => Name_Unrestricted_Access)); 767 end if; 768 else 769 Append_To (Actuals, Make_Null (Loc)); 770 end if; 771 772 -- d) Finalize_Address 773 774 -- Primitive Finalize_Address is never generated in CodePeer mode 775 -- since it contains an Unchecked_Conversion. 776 777 if Needs_Fin and then not CodePeer_Mode then 778 Fin_Addr_Id := Finalize_Address (Desig_Typ); 779 pragma Assert (Present (Fin_Addr_Id)); 780 781 Append_To (Actuals, 782 Make_Attribute_Reference (Loc, 783 Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc), 784 Attribute_Name => Name_Unrestricted_Access)); 785 else 786 Append_To (Actuals, Make_Null (Loc)); 787 end if; 788 end if; 789 790 -- e) Address 791 -- f) Storage_Size 792 -- g) Alignment 793 794 Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc)); 795 Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc)); 796 797 if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then 798 Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc)); 799 800 -- For deallocation of class-wide types we obtain the value of 801 -- alignment from the Type Specific Record of the deallocated object. 802 -- This is needed because the frontend expansion of class-wide types 803 -- into equivalent types confuses the back end. 804 805 else 806 -- Generate: 807 -- Obj.all'Alignment 808 809 -- ... because 'Alignment applied to class-wide types is expanded 810 -- into the code that reads the value of alignment from the TSD 811 -- (see Expand_N_Attribute_Reference) 812 813 Append_To (Actuals, 814 Unchecked_Convert_To (RTE (RE_Storage_Offset), 815 Make_Attribute_Reference (Loc, 816 Prefix => 817 Make_Explicit_Dereference (Loc, Relocate_Node (Expr)), 818 Attribute_Name => Name_Alignment))); 819 end if; 820 821 -- h) Is_Controlled 822 823 if Needs_Fin then 824 Is_Controlled : declare 825 Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F'); 826 Flag_Expr : Node_Id; 827 Param : Node_Id; 828 Pref : Node_Id; 829 Temp : Node_Id; 830 831 begin 832 if Is_Allocate then 833 Temp := Find_Object (Expression (Expr)); 834 else 835 Temp := Expr; 836 end if; 837 838 -- Processing for allocations where the expression is a subtype 839 -- indication. 840 841 if Is_Allocate 842 and then Is_Entity_Name (Temp) 843 and then Is_Type (Entity (Temp)) 844 then 845 Flag_Expr := 846 New_Occurrence_Of 847 (Boolean_Literals 848 (Needs_Finalization (Entity (Temp))), Loc); 849 850 -- The allocation / deallocation of a class-wide object relies 851 -- on a runtime check to determine whether the object is truly 852 -- controlled or not. Depending on this check, the finalization 853 -- machinery will request or reclaim extra storage reserved for 854 -- a list header. 855 856 elsif Is_Class_Wide_Type (Desig_Typ) then 857 858 -- Detect a special case where interface class-wide types 859 -- are involved as the object appears as: 860 861 -- Tag_Ptr (Base_Address (<object>'Address)) 862 863 -- The expression already yields the proper tag, generate: 864 865 -- Temp.all 866 867 if Is_RTE (Etype (Temp), RE_Tag_Ptr) then 868 Param := 869 Make_Explicit_Dereference (Loc, 870 Prefix => Relocate_Node (Temp)); 871 872 -- In the default case, obtain the tag of the object about 873 -- to be allocated / deallocated. Generate: 874 875 -- Temp'Tag 876 877 -- If the object is an unchecked conversion (typically to 878 -- an access to class-wide type), we must preserve the 879 -- conversion to ensure that the object is seen as tagged 880 -- in the code that follows. 881 882 else 883 Pref := Temp; 884 885 if Nkind (Parent (Pref)) = N_Unchecked_Type_Conversion 886 then 887 Pref := Parent (Pref); 888 end if; 889 890 Param := 891 Make_Attribute_Reference (Loc, 892 Prefix => Relocate_Node (Pref), 893 Attribute_Name => Name_Tag); 894 end if; 895 896 -- Generate: 897 -- Needs_Finalization (<Param>) 898 899 Flag_Expr := 900 Make_Function_Call (Loc, 901 Name => 902 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc), 903 Parameter_Associations => New_List (Param)); 904 905 -- Processing for generic actuals 906 907 elsif Is_Generic_Actual_Type (Desig_Typ) then 908 Flag_Expr := 909 New_Occurrence_Of (Boolean_Literals 910 (Needs_Finalization (Base_Type (Desig_Typ))), Loc); 911 912 -- The object does not require any specialized checks, it is 913 -- known to be controlled. 914 915 else 916 Flag_Expr := New_Occurrence_Of (Standard_True, Loc); 917 end if; 918 919 -- Create the temporary which represents the finalization state 920 -- of the expression. Generate: 921 -- 922 -- F : constant Boolean := <Flag_Expr>; 923 924 Insert_Action (N, 925 Make_Object_Declaration (Loc, 926 Defining_Identifier => Flag_Id, 927 Constant_Present => True, 928 Object_Definition => 929 New_Occurrence_Of (Standard_Boolean, Loc), 930 Expression => Flag_Expr)); 931 932 Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc)); 933 end Is_Controlled; 934 935 -- The object is not controlled 936 937 else 938 Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc)); 939 end if; 940 941 -- i) On_Subpool 942 943 if Is_Allocate then 944 Append_To (Actuals, 945 New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc)); 946 end if; 947 948 -- Step 2: Build a wrapper Allocate / Deallocate which internally 949 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled. 950 951 -- Select the proper routine to call 952 953 if Is_Allocate then 954 Proc_To_Call := RTE (RE_Allocate_Any_Controlled); 955 else 956 Proc_To_Call := RTE (RE_Deallocate_Any_Controlled); 957 end if; 958 959 -- Create a custom Allocate / Deallocate routine which has identical 960 -- profile to that of System.Storage_Pools. 961 962 Insert_Action (N, 963 Make_Subprogram_Body (Loc, 964 Specification => 965 966 -- procedure Pnn 967 968 Make_Procedure_Specification (Loc, 969 Defining_Unit_Name => Proc_Id, 970 Parameter_Specifications => New_List ( 971 972 -- P : Root_Storage_Pool 973 974 Make_Parameter_Specification (Loc, 975 Defining_Identifier => Make_Temporary (Loc, 'P'), 976 Parameter_Type => 977 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)), 978 979 -- A : [out] Address 980 981 Make_Parameter_Specification (Loc, 982 Defining_Identifier => Addr_Id, 983 Out_Present => Is_Allocate, 984 Parameter_Type => 985 New_Occurrence_Of (RTE (RE_Address), Loc)), 986 987 -- S : Storage_Count 988 989 Make_Parameter_Specification (Loc, 990 Defining_Identifier => Size_Id, 991 Parameter_Type => 992 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)), 993 994 -- L : Storage_Count 995 996 Make_Parameter_Specification (Loc, 997 Defining_Identifier => Alig_Id, 998 Parameter_Type => 999 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))), 1000 1001 Declarations => No_List, 1002 1003 Handled_Statement_Sequence => 1004 Make_Handled_Sequence_Of_Statements (Loc, 1005 Statements => New_List ( 1006 Make_Procedure_Call_Statement (Loc, 1007 Name => 1008 New_Occurrence_Of (Proc_To_Call, Loc), 1009 Parameter_Associations => Actuals)))), 1010 Suppress => All_Checks); 1011 1012 -- The newly generated Allocate / Deallocate becomes the default 1013 -- procedure to call when the back end processes the allocation / 1014 -- deallocation. 1015 1016 if Is_Allocate then 1017 Set_Procedure_To_Call (Expr, Proc_Id); 1018 else 1019 Set_Procedure_To_Call (N, Proc_Id); 1020 end if; 1021 end; 1022 end Build_Allocate_Deallocate_Proc; 1023 1024 ------------------------------- 1025 -- Build_Abort_Undefer_Block -- 1026 ------------------------------- 1027 1028 function Build_Abort_Undefer_Block 1029 (Loc : Source_Ptr; 1030 Stmts : List_Id; 1031 Context : Node_Id) return Node_Id 1032 is 1033 Exceptions_OK : constant Boolean := 1034 not Restriction_Active (No_Exception_Propagation); 1035 1036 AUD : Entity_Id; 1037 Blk : Node_Id; 1038 Blk_Id : Entity_Id; 1039 HSS : Node_Id; 1040 1041 begin 1042 -- The block should be generated only when undeferring abort in the 1043 -- context of a potential exception. 1044 1045 pragma Assert (Abort_Allowed and Exceptions_OK); 1046 1047 -- Generate: 1048 -- begin 1049 -- <Stmts> 1050 -- at end 1051 -- Abort_Undefer_Direct; 1052 -- end; 1053 1054 AUD := RTE (RE_Abort_Undefer_Direct); 1055 1056 HSS := 1057 Make_Handled_Sequence_Of_Statements (Loc, 1058 Statements => Stmts, 1059 At_End_Proc => New_Occurrence_Of (AUD, Loc)); 1060 1061 Blk := 1062 Make_Block_Statement (Loc, 1063 Handled_Statement_Sequence => HSS); 1064 Set_Is_Abort_Block (Blk); 1065 1066 Add_Block_Identifier (Blk, Blk_Id); 1067 Expand_At_End_Handler (HSS, Blk_Id); 1068 1069 -- Present the Abort_Undefer_Direct function to the back end to inline 1070 -- the call to the routine. 1071 1072 Add_Inlined_Body (AUD, Context); 1073 1074 return Blk; 1075 end Build_Abort_Undefer_Block; 1076 1077 --------------------------------- 1078 -- Build_Class_Wide_Expression -- 1079 --------------------------------- 1080 1081 procedure Build_Class_Wide_Expression 1082 (Prag : Node_Id; 1083 Subp : Entity_Id; 1084 Par_Subp : Entity_Id; 1085 Adjust_Sloc : Boolean; 1086 Needs_Wrapper : out Boolean) 1087 is 1088 function Replace_Entity (N : Node_Id) return Traverse_Result; 1089 -- Replace reference to formal of inherited operation or to primitive 1090 -- operation of root type, with corresponding entity for derived type, 1091 -- when constructing the class-wide condition of an overriding 1092 -- subprogram. 1093 1094 -------------------- 1095 -- Replace_Entity -- 1096 -------------------- 1097 1098 function Replace_Entity (N : Node_Id) return Traverse_Result is 1099 New_E : Entity_Id; 1100 1101 begin 1102 if Adjust_Sloc then 1103 Adjust_Inherited_Pragma_Sloc (N); 1104 end if; 1105 1106 if Nkind (N) = N_Identifier 1107 and then Present (Entity (N)) 1108 and then 1109 (Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N))) 1110 and then 1111 (Nkind (Parent (N)) /= N_Attribute_Reference 1112 or else Attribute_Name (Parent (N)) /= Name_Class) 1113 then 1114 -- The replacement does not apply to dispatching calls within the 1115 -- condition, but only to calls whose static tag is that of the 1116 -- parent type. 1117 1118 if Is_Subprogram (Entity (N)) 1119 and then Nkind (Parent (N)) = N_Function_Call 1120 and then Present (Controlling_Argument (Parent (N))) 1121 then 1122 return OK; 1123 end if; 1124 1125 -- Determine whether entity has a renaming 1126 1127 New_E := Type_Map.Get (Entity (N)); 1128 1129 if Present (New_E) then 1130 Rewrite (N, New_Occurrence_Of (New_E, Sloc (N))); 1131 1132 -- AI12-0166: a precondition for a protected operation 1133 -- cannot include an internal call to a protected function 1134 -- of the type. In the case of an inherited condition for an 1135 -- overriding operation, both the operation and the function 1136 -- are given by primitive wrappers. 1137 1138 if Ekind (New_E) = E_Function 1139 and then Is_Primitive_Wrapper (New_E) 1140 and then Is_Primitive_Wrapper (Subp) 1141 and then Scope (Subp) = Scope (New_E) 1142 then 1143 Error_Msg_Node_2 := Wrapped_Entity (Subp); 1144 Error_Msg_NE 1145 ("internal call to& cannot appear in inherited " 1146 & "precondition of protected operation&", 1147 N, Wrapped_Entity (New_E)); 1148 end if; 1149 1150 -- If the entity is an overridden primitive and we are not 1151 -- in GNATprove mode, we must build a wrapper for the current 1152 -- inherited operation. If the reference is the prefix of an 1153 -- attribute such as 'Result (or others ???) there is no need 1154 -- for a wrapper: the condition is just rewritten in terms of 1155 -- the inherited subprogram. 1156 1157 if Is_Subprogram (New_E) 1158 and then Nkind (Parent (N)) /= N_Attribute_Reference 1159 and then not GNATprove_Mode 1160 then 1161 Needs_Wrapper := True; 1162 end if; 1163 end if; 1164 1165 -- Check that there are no calls left to abstract operations if 1166 -- the current subprogram is not abstract. 1167 1168 if Nkind (Parent (N)) = N_Function_Call 1169 and then N = Name (Parent (N)) 1170 then 1171 if not Is_Abstract_Subprogram (Subp) 1172 and then Is_Abstract_Subprogram (Entity (N)) 1173 then 1174 Error_Msg_Sloc := Sloc (Current_Scope); 1175 Error_Msg_Node_2 := Subp; 1176 if Comes_From_Source (Subp) then 1177 Error_Msg_NE 1178 ("cannot call abstract subprogram & in inherited " 1179 & "condition for&#", Subp, Entity (N)); 1180 else 1181 Error_Msg_NE 1182 ("cannot call abstract subprogram & in inherited " 1183 & "condition for inherited&#", Subp, Entity (N)); 1184 end if; 1185 1186 -- In SPARK mode, reject an inherited condition for an 1187 -- inherited operation if it contains a call to an overriding 1188 -- operation, because this implies that the pre/postconditions 1189 -- of the inherited operation have changed silently. 1190 1191 elsif SPARK_Mode = On 1192 and then Warn_On_Suspicious_Contract 1193 and then Present (Alias (Subp)) 1194 and then Present (New_E) 1195 and then Comes_From_Source (New_E) 1196 then 1197 Error_Msg_N 1198 ("cannot modify inherited condition (SPARK RM 6.1.1(1))", 1199 Parent (Subp)); 1200 Error_Msg_Sloc := Sloc (New_E); 1201 Error_Msg_Node_2 := Subp; 1202 Error_Msg_NE 1203 ("\overriding of&# forces overriding of&", 1204 Parent (Subp), New_E); 1205 end if; 1206 end if; 1207 1208 -- Update type of function call node, which should be the same as 1209 -- the function's return type. 1210 1211 if Is_Subprogram (Entity (N)) 1212 and then Nkind (Parent (N)) = N_Function_Call 1213 then 1214 Set_Etype (Parent (N), Etype (Entity (N))); 1215 end if; 1216 1217 -- The whole expression will be reanalyzed 1218 1219 elsif Nkind (N) in N_Has_Etype then 1220 Set_Analyzed (N, False); 1221 end if; 1222 1223 return OK; 1224 end Replace_Entity; 1225 1226 procedure Replace_Condition_Entities is 1227 new Traverse_Proc (Replace_Entity); 1228 1229 -- Local variables 1230 1231 Par_Formal : Entity_Id; 1232 Subp_Formal : Entity_Id; 1233 1234 -- Start of processing for Build_Class_Wide_Expression 1235 1236 begin 1237 Needs_Wrapper := False; 1238 1239 -- Add mapping from old formals to new formals 1240 1241 Par_Formal := First_Formal (Par_Subp); 1242 Subp_Formal := First_Formal (Subp); 1243 1244 while Present (Par_Formal) and then Present (Subp_Formal) loop 1245 Type_Map.Set (Par_Formal, Subp_Formal); 1246 Next_Formal (Par_Formal); 1247 Next_Formal (Subp_Formal); 1248 end loop; 1249 1250 Replace_Condition_Entities (Prag); 1251 end Build_Class_Wide_Expression; 1252 1253 -------------------- 1254 -- Build_DIC_Call -- 1255 -------------------- 1256 1257 function Build_DIC_Call 1258 (Loc : Source_Ptr; 1259 Obj_Id : Entity_Id; 1260 Typ : Entity_Id) return Node_Id 1261 is 1262 Proc_Id : constant Entity_Id := DIC_Procedure (Typ); 1263 Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id)); 1264 1265 begin 1266 return 1267 Make_Procedure_Call_Statement (Loc, 1268 Name => New_Occurrence_Of (Proc_Id, Loc), 1269 Parameter_Associations => New_List ( 1270 Make_Unchecked_Type_Conversion (Loc, 1271 Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc), 1272 Expression => New_Occurrence_Of (Obj_Id, Loc)))); 1273 end Build_DIC_Call; 1274 1275 ------------------------------ 1276 -- Build_DIC_Procedure_Body -- 1277 ------------------------------ 1278 1279 -- WARNING: This routine manages Ghost regions. Return statements must be 1280 -- replaced by gotos which jump to the end of the routine and restore the 1281 -- Ghost mode. 1282 1283 procedure Build_DIC_Procedure_Body 1284 (Typ : Entity_Id; 1285 For_Freeze : Boolean := False) 1286 is 1287 procedure Add_DIC_Check 1288 (DIC_Prag : Node_Id; 1289 DIC_Expr : Node_Id; 1290 Stmts : in out List_Id); 1291 -- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify 1292 -- assertion expression DIC_Expr of pragma DIC_Prag. All generated code 1293 -- is added to list Stmts. 1294 1295 procedure Add_Inherited_DIC 1296 (DIC_Prag : Node_Id; 1297 Par_Typ : Entity_Id; 1298 Deriv_Typ : Entity_Id; 1299 Stmts : in out List_Id); 1300 -- Add a runtime check to verify the assertion expression of inherited 1301 -- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of 1302 -- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC 1303 -- pragma. All generated code is added to list Stmts. 1304 1305 procedure Add_Inherited_Tagged_DIC 1306 (DIC_Prag : Node_Id; 1307 Par_Typ : Entity_Id; 1308 Deriv_Typ : Entity_Id; 1309 Stmts : in out List_Id); 1310 -- Add a runtime check to verify assertion expression DIC_Expr of 1311 -- inherited pragma DIC_Prag. This routine applies class-wide pre- and 1312 -- postcondition-like runtime semantics to the check. Par_Typ is the 1313 -- parent type whose DIC pragma is being inherited. Deriv_Typ is the 1314 -- derived type inheriting the DIC pragma. All generated code is added 1315 -- to list Stmts. 1316 1317 procedure Add_Own_DIC 1318 (DIC_Prag : Node_Id; 1319 DIC_Typ : Entity_Id; 1320 Stmts : in out List_Id); 1321 -- Add a runtime check to verify the assertion expression of pragma 1322 -- DIC_Prag. DIC_Typ is the owner of the DIC pragma. All generated code 1323 -- is added to list Stmts. 1324 1325 ------------------- 1326 -- Add_DIC_Check -- 1327 ------------------- 1328 1329 procedure Add_DIC_Check 1330 (DIC_Prag : Node_Id; 1331 DIC_Expr : Node_Id; 1332 Stmts : in out List_Id) 1333 is 1334 Loc : constant Source_Ptr := Sloc (DIC_Prag); 1335 Nam : constant Name_Id := Original_Aspect_Pragma_Name (DIC_Prag); 1336 1337 begin 1338 -- The DIC pragma is ignored, nothing left to do 1339 1340 if Is_Ignored (DIC_Prag) then 1341 null; 1342 1343 -- Otherwise the DIC expression must be checked at run time. 1344 -- Generate: 1345 1346 -- pragma Check (<Nam>, <DIC_Expr>); 1347 1348 else 1349 Append_New_To (Stmts, 1350 Make_Pragma (Loc, 1351 Pragma_Identifier => 1352 Make_Identifier (Loc, Name_Check), 1353 1354 Pragma_Argument_Associations => New_List ( 1355 Make_Pragma_Argument_Association (Loc, 1356 Expression => Make_Identifier (Loc, Nam)), 1357 1358 Make_Pragma_Argument_Association (Loc, 1359 Expression => DIC_Expr)))); 1360 end if; 1361 end Add_DIC_Check; 1362 1363 ----------------------- 1364 -- Add_Inherited_DIC -- 1365 ----------------------- 1366 1367 procedure Add_Inherited_DIC 1368 (DIC_Prag : Node_Id; 1369 Par_Typ : Entity_Id; 1370 Deriv_Typ : Entity_Id; 1371 Stmts : in out List_Id) 1372 is 1373 Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ); 1374 Deriv_Obj : constant Entity_Id := First_Entity (Deriv_Proc); 1375 Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ); 1376 Par_Obj : constant Entity_Id := First_Entity (Par_Proc); 1377 Loc : constant Source_Ptr := Sloc (DIC_Prag); 1378 1379 begin 1380 pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc)); 1381 1382 -- Verify the inherited DIC assertion expression by calling the DIC 1383 -- procedure of the parent type. 1384 1385 -- Generate: 1386 -- <Par_Typ>DIC (Par_Typ (_object)); 1387 1388 Append_New_To (Stmts, 1389 Make_Procedure_Call_Statement (Loc, 1390 Name => New_Occurrence_Of (Par_Proc, Loc), 1391 Parameter_Associations => New_List ( 1392 Convert_To 1393 (Typ => Etype (Par_Obj), 1394 Expr => New_Occurrence_Of (Deriv_Obj, Loc))))); 1395 end Add_Inherited_DIC; 1396 1397 ------------------------------ 1398 -- Add_Inherited_Tagged_DIC -- 1399 ------------------------------ 1400 1401 procedure Add_Inherited_Tagged_DIC 1402 (DIC_Prag : Node_Id; 1403 Par_Typ : Entity_Id; 1404 Deriv_Typ : Entity_Id; 1405 Stmts : in out List_Id) 1406 is 1407 Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ); 1408 DIC_Args : constant List_Id := 1409 Pragma_Argument_Associations (DIC_Prag); 1410 DIC_Arg : constant Node_Id := First (DIC_Args); 1411 DIC_Expr : constant Node_Id := Expression_Copy (DIC_Arg); 1412 Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ); 1413 1414 Expr : Node_Id; 1415 1416 begin 1417 -- The processing of an inherited DIC assertion expression starts off 1418 -- with a copy of the original parent expression where all references 1419 -- to the parent type have already been replaced with references to 1420 -- the _object formal parameter of the parent type's DIC procedure. 1421 1422 pragma Assert (Present (DIC_Expr)); 1423 Expr := New_Copy_Tree (DIC_Expr); 1424 1425 -- Perform the following substitutions: 1426 1427 -- * Replace a reference to the _object parameter of the parent 1428 -- type's DIC procedure with a reference to the _object parameter 1429 -- of the derived types' DIC procedure. 1430 1431 -- * Replace a reference to a discriminant of the parent type with 1432 -- a suitable value from the point of view of the derived type. 1433 1434 -- * Replace a call to an overridden parent primitive with a call 1435 -- to the overriding derived type primitive. 1436 1437 -- * Replace a call to an inherited parent primitive with a call to 1438 -- the internally-generated inherited derived type primitive. 1439 1440 -- Note that primitives defined in the private part are automatically 1441 -- handled by the overriding/inheritance mechanism and do not require 1442 -- an extra replacement pass. 1443 1444 pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc)); 1445 1446 Replace_References 1447 (Expr => Expr, 1448 Par_Typ => Par_Typ, 1449 Deriv_Typ => Deriv_Typ, 1450 Par_Obj => First_Formal (Par_Proc), 1451 Deriv_Obj => First_Formal (Deriv_Proc)); 1452 1453 -- Once the DIC assertion expression is fully processed, add a check 1454 -- to the statements of the DIC procedure. 1455 1456 Add_DIC_Check 1457 (DIC_Prag => DIC_Prag, 1458 DIC_Expr => Expr, 1459 Stmts => Stmts); 1460 end Add_Inherited_Tagged_DIC; 1461 1462 ----------------- 1463 -- Add_Own_DIC -- 1464 ----------------- 1465 1466 procedure Add_Own_DIC 1467 (DIC_Prag : Node_Id; 1468 DIC_Typ : Entity_Id; 1469 Stmts : in out List_Id) 1470 is 1471 DIC_Args : constant List_Id := 1472 Pragma_Argument_Associations (DIC_Prag); 1473 DIC_Arg : constant Node_Id := First (DIC_Args); 1474 DIC_Asp : constant Node_Id := Corresponding_Aspect (DIC_Prag); 1475 DIC_Expr : constant Node_Id := Get_Pragma_Arg (DIC_Arg); 1476 DIC_Proc : constant Entity_Id := DIC_Procedure (DIC_Typ); 1477 Obj_Id : constant Entity_Id := First_Formal (DIC_Proc); 1478 1479 procedure Preanalyze_Own_DIC_For_ASIS; 1480 -- Preanalyze the original DIC expression of an aspect or a source 1481 -- pragma for ASIS. 1482 1483 --------------------------------- 1484 -- Preanalyze_Own_DIC_For_ASIS -- 1485 --------------------------------- 1486 1487 procedure Preanalyze_Own_DIC_For_ASIS is 1488 Expr : Node_Id := Empty; 1489 1490 begin 1491 -- The DIC pragma is a source construct, preanalyze the original 1492 -- expression of the pragma. 1493 1494 if Comes_From_Source (DIC_Prag) then 1495 Expr := DIC_Expr; 1496 1497 -- Otherwise preanalyze the expression of the corresponding aspect 1498 1499 elsif Present (DIC_Asp) then 1500 Expr := Expression (DIC_Asp); 1501 end if; 1502 1503 -- The expression must be subjected to the same substitutions as 1504 -- the copy used in the generation of the runtime check. 1505 1506 if Present (Expr) then 1507 Replace_Type_References 1508 (Expr => Expr, 1509 Typ => DIC_Typ, 1510 Obj_Id => Obj_Id); 1511 1512 Preanalyze_Assert_Expression (Expr, Any_Boolean); 1513 end if; 1514 end Preanalyze_Own_DIC_For_ASIS; 1515 1516 -- Local variables 1517 1518 Typ_Decl : constant Node_Id := Declaration_Node (DIC_Typ); 1519 1520 Expr : Node_Id; 1521 1522 -- Start of processing for Add_Own_DIC 1523 1524 begin 1525 pragma Assert (Present (DIC_Expr)); 1526 Expr := New_Copy_Tree (DIC_Expr); 1527 1528 -- Perform the following substitution: 1529 1530 -- * Replace the current instance of DIC_Typ with a reference to 1531 -- the _object formal parameter of the DIC procedure. 1532 1533 Replace_Type_References 1534 (Expr => Expr, 1535 Typ => DIC_Typ, 1536 Obj_Id => Obj_Id); 1537 1538 -- Preanalyze the DIC expression to detect errors and at the same 1539 -- time capture the visibility of the proper package part. 1540 1541 Set_Parent (Expr, Typ_Decl); 1542 Preanalyze_Assert_Expression (Expr, Any_Boolean); 1543 1544 -- Save a copy of the expression with all replacements and analysis 1545 -- already taken place in case a derived type inherits the pragma. 1546 -- The copy will be used as the foundation of the derived type's own 1547 -- version of the DIC assertion expression. 1548 1549 if Is_Tagged_Type (DIC_Typ) then 1550 Set_Expression_Copy (DIC_Arg, New_Copy_Tree (Expr)); 1551 end if; 1552 1553 -- If the pragma comes from an aspect specification, replace the 1554 -- saved expression because all type references must be substituted 1555 -- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx 1556 -- routines. 1557 1558 if Present (DIC_Asp) then 1559 Set_Entity (Identifier (DIC_Asp), New_Copy_Tree (Expr)); 1560 end if; 1561 1562 -- Preanalyze the original DIC expression for ASIS 1563 1564 if ASIS_Mode then 1565 Preanalyze_Own_DIC_For_ASIS; 1566 end if; 1567 1568 -- Once the DIC assertion expression is fully processed, add a check 1569 -- to the statements of the DIC procedure. 1570 1571 Add_DIC_Check 1572 (DIC_Prag => DIC_Prag, 1573 DIC_Expr => Expr, 1574 Stmts => Stmts); 1575 end Add_Own_DIC; 1576 1577 -- Local variables 1578 1579 Loc : constant Source_Ptr := Sloc (Typ); 1580 1581 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; 1582 -- Save the Ghost mode to restore on exit 1583 1584 DIC_Prag : Node_Id; 1585 DIC_Typ : Entity_Id; 1586 Dummy_1 : Entity_Id; 1587 Dummy_2 : Entity_Id; 1588 Proc_Body : Node_Id; 1589 Proc_Body_Id : Entity_Id; 1590 Proc_Decl : Node_Id; 1591 Proc_Id : Entity_Id; 1592 Stmts : List_Id := No_List; 1593 1594 Build_Body : Boolean := False; 1595 -- Flag set when the type requires a DIC procedure body to be built 1596 1597 Work_Typ : Entity_Id; 1598 -- The working type 1599 1600 -- Start of processing for Build_DIC_Procedure_Body 1601 1602 begin 1603 Work_Typ := Base_Type (Typ); 1604 1605 -- Do not process class-wide types as these are Itypes, but lack a first 1606 -- subtype (see below). 1607 1608 if Is_Class_Wide_Type (Work_Typ) then 1609 return; 1610 1611 -- Do not process the underlying full view of a private type. There is 1612 -- no way to get back to the partial view, plus the body will be built 1613 -- by the full view or the base type. 1614 1615 elsif Is_Underlying_Full_View (Work_Typ) then 1616 return; 1617 1618 -- Use the first subtype when dealing with various base types 1619 1620 elsif Is_Itype (Work_Typ) then 1621 Work_Typ := First_Subtype (Work_Typ); 1622 1623 -- The input denotes the corresponding record type of a protected or a 1624 -- task type. Work with the concurrent type because the corresponding 1625 -- record type may not be visible to clients of the type. 1626 1627 elsif Ekind (Work_Typ) = E_Record_Type 1628 and then Is_Concurrent_Record_Type (Work_Typ) 1629 then 1630 Work_Typ := Corresponding_Concurrent_Type (Work_Typ); 1631 end if; 1632 1633 -- The working type may be subject to pragma Ghost. Set the mode now to 1634 -- ensure that the DIC procedure is properly marked as Ghost. 1635 1636 Set_Ghost_Mode (Work_Typ); 1637 1638 -- The working type must be either define a DIC pragma of its own or 1639 -- inherit one from a parent type. 1640 1641 pragma Assert (Has_DIC (Work_Typ)); 1642 1643 -- Recover the type which defines the DIC pragma. This is either the 1644 -- working type itself or a parent type when the pragma is inherited. 1645 1646 DIC_Typ := Find_DIC_Type (Work_Typ); 1647 pragma Assert (Present (DIC_Typ)); 1648 1649 DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition); 1650 pragma Assert (Present (DIC_Prag)); 1651 1652 -- Nothing to do if pragma DIC appears without an argument or its sole 1653 -- argument is "null". 1654 1655 if not Is_Verifiable_DIC_Pragma (DIC_Prag) then 1656 goto Leave; 1657 end if; 1658 1659 -- The working type may lack a DIC procedure declaration. This may be 1660 -- due to several reasons: 1661 1662 -- * The working type's own DIC pragma does not contain a verifiable 1663 -- assertion expression. In this case there is no need to build a 1664 -- DIC procedure because there is nothing to check. 1665 1666 -- * The working type derives from a parent type. In this case a DIC 1667 -- procedure should be built only when the inherited DIC pragma has 1668 -- a verifiable assertion expression. 1669 1670 Proc_Id := DIC_Procedure (Work_Typ); 1671 1672 -- Build a DIC procedure declaration when the working type derives from 1673 -- a parent type. 1674 1675 if No (Proc_Id) then 1676 Build_DIC_Procedure_Declaration (Work_Typ); 1677 Proc_Id := DIC_Procedure (Work_Typ); 1678 end if; 1679 1680 -- At this point there should be a DIC procedure declaration 1681 1682 pragma Assert (Present (Proc_Id)); 1683 Proc_Decl := Unit_Declaration_Node (Proc_Id); 1684 1685 -- Nothing to do if the DIC procedure already has a body 1686 1687 if Present (Corresponding_Body (Proc_Decl)) then 1688 goto Leave; 1689 end if; 1690 1691 -- Emulate the environment of the DIC procedure by installing its scope 1692 -- and formal parameters. 1693 1694 Push_Scope (Proc_Id); 1695 Install_Formals (Proc_Id); 1696 1697 -- The working type defines its own DIC pragma. Replace the current 1698 -- instance of the working type with the formal of the DIC procedure. 1699 -- Note that there is no need to consider inherited DIC pragmas from 1700 -- parent types because the working type's DIC pragma "hides" all 1701 -- inherited DIC pragmas. 1702 1703 if Has_Own_DIC (Work_Typ) then 1704 pragma Assert (DIC_Typ = Work_Typ); 1705 1706 Add_Own_DIC 1707 (DIC_Prag => DIC_Prag, 1708 DIC_Typ => DIC_Typ, 1709 Stmts => Stmts); 1710 1711 Build_Body := True; 1712 1713 -- Otherwise the working type inherits a DIC pragma from a parent type. 1714 -- This processing is carried out when the type is frozen because the 1715 -- state of all parent discriminants is known at that point. Note that 1716 -- it is semantically sound to delay the creation of the DIC procedure 1717 -- body till the freeze point. If the type has a DIC pragma of its own, 1718 -- then the DIC procedure body would have already been constructed at 1719 -- the end of the visible declarations and all parent DIC pragmas are 1720 -- effectively "hidden" and irrelevant. 1721 1722 elsif For_Freeze then 1723 pragma Assert (Has_Inherited_DIC (Work_Typ)); 1724 pragma Assert (DIC_Typ /= Work_Typ); 1725 1726 -- The working type is tagged. The verification of the assertion 1727 -- expression is subject to the same semantics as class-wide pre- 1728 -- and postconditions. 1729 1730 if Is_Tagged_Type (Work_Typ) then 1731 Add_Inherited_Tagged_DIC 1732 (DIC_Prag => DIC_Prag, 1733 Par_Typ => DIC_Typ, 1734 Deriv_Typ => Work_Typ, 1735 Stmts => Stmts); 1736 1737 -- Otherwise the working type is not tagged. Verify the assertion 1738 -- expression of the inherited DIC pragma by directly calling the 1739 -- DIC procedure of the parent type. 1740 1741 else 1742 Add_Inherited_DIC 1743 (DIC_Prag => DIC_Prag, 1744 Par_Typ => DIC_Typ, 1745 Deriv_Typ => Work_Typ, 1746 Stmts => Stmts); 1747 end if; 1748 1749 Build_Body := True; 1750 end if; 1751 1752 End_Scope; 1753 1754 if Build_Body then 1755 1756 -- Produce an empty completing body in the following cases: 1757 -- * Assertions are disabled 1758 -- * The DIC Assertion_Policy is Ignore 1759 1760 if No (Stmts) then 1761 Stmts := New_List (Make_Null_Statement (Loc)); 1762 end if; 1763 1764 -- Generate: 1765 -- procedure <Work_Typ>DIC (_object : <Work_Typ>) is 1766 -- begin 1767 -- <Stmts> 1768 -- end <Work_Typ>DIC; 1769 1770 Proc_Body := 1771 Make_Subprogram_Body (Loc, 1772 Specification => 1773 Copy_Subprogram_Spec (Parent (Proc_Id)), 1774 Declarations => Empty_List, 1775 Handled_Statement_Sequence => 1776 Make_Handled_Sequence_Of_Statements (Loc, 1777 Statements => Stmts)); 1778 Proc_Body_Id := Defining_Entity (Proc_Body); 1779 1780 -- Perform minor decoration in case the body is not analyzed 1781 1782 Set_Ekind (Proc_Body_Id, E_Subprogram_Body); 1783 Set_Etype (Proc_Body_Id, Standard_Void_Type); 1784 Set_Scope (Proc_Body_Id, Current_Scope); 1785 Set_SPARK_Pragma (Proc_Body_Id, SPARK_Pragma (Proc_Id)); 1786 Set_SPARK_Pragma_Inherited 1787 (Proc_Body_Id, SPARK_Pragma_Inherited (Proc_Id)); 1788 1789 -- Link both spec and body to avoid generating duplicates 1790 1791 Set_Corresponding_Body (Proc_Decl, Proc_Body_Id); 1792 Set_Corresponding_Spec (Proc_Body, Proc_Id); 1793 1794 -- The body should not be inserted into the tree when the context 1795 -- is ASIS or a generic unit because it is not part of the template. 1796 -- Note that the body must still be generated in order to resolve the 1797 -- DIC assertion expression. 1798 1799 if ASIS_Mode or Inside_A_Generic then 1800 null; 1801 1802 -- Semi-insert the body into the tree for GNATprove by setting its 1803 -- Parent field. This allows for proper upstream tree traversals. 1804 1805 elsif GNATprove_Mode then 1806 Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ))); 1807 1808 -- Otherwise the body is part of the freezing actions of the working 1809 -- type. 1810 1811 else 1812 Append_Freeze_Action (Work_Typ, Proc_Body); 1813 end if; 1814 end if; 1815 1816 <<Leave>> 1817 Restore_Ghost_Mode (Saved_GM); 1818 end Build_DIC_Procedure_Body; 1819 1820 ------------------------------------- 1821 -- Build_DIC_Procedure_Declaration -- 1822 ------------------------------------- 1823 1824 -- WARNING: This routine manages Ghost regions. Return statements must be 1825 -- replaced by gotos which jump to the end of the routine and restore the 1826 -- Ghost mode. 1827 1828 procedure Build_DIC_Procedure_Declaration (Typ : Entity_Id) is 1829 Loc : constant Source_Ptr := Sloc (Typ); 1830 1831 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; 1832 -- Save the Ghost mode to restore on exit 1833 1834 DIC_Prag : Node_Id; 1835 DIC_Typ : Entity_Id; 1836 Proc_Decl : Node_Id; 1837 Proc_Id : Entity_Id; 1838 Typ_Decl : Node_Id; 1839 1840 CRec_Typ : Entity_Id; 1841 -- The corresponding record type of Full_Typ 1842 1843 Full_Base : Entity_Id; 1844 -- The base type of Full_Typ 1845 1846 Full_Typ : Entity_Id; 1847 -- The full view of working type 1848 1849 Obj_Id : Entity_Id; 1850 -- The _object formal parameter of the DIC procedure 1851 1852 Priv_Typ : Entity_Id; 1853 -- The partial view of working type 1854 1855 Work_Typ : Entity_Id; 1856 -- The working type 1857 1858 begin 1859 Work_Typ := Base_Type (Typ); 1860 1861 -- Do not process class-wide types as these are Itypes, but lack a first 1862 -- subtype (see below). 1863 1864 if Is_Class_Wide_Type (Work_Typ) then 1865 return; 1866 1867 -- Do not process the underlying full view of a private type. There is 1868 -- no way to get back to the partial view, plus the body will be built 1869 -- by the full view or the base type. 1870 1871 elsif Is_Underlying_Full_View (Work_Typ) then 1872 return; 1873 1874 -- Use the first subtype when dealing with various base types 1875 1876 elsif Is_Itype (Work_Typ) then 1877 Work_Typ := First_Subtype (Work_Typ); 1878 1879 -- The input denotes the corresponding record type of a protected or a 1880 -- task type. Work with the concurrent type because the corresponding 1881 -- record type may not be visible to clients of the type. 1882 1883 elsif Ekind (Work_Typ) = E_Record_Type 1884 and then Is_Concurrent_Record_Type (Work_Typ) 1885 then 1886 Work_Typ := Corresponding_Concurrent_Type (Work_Typ); 1887 end if; 1888 1889 -- The working type may be subject to pragma Ghost. Set the mode now to 1890 -- ensure that the DIC procedure is properly marked as Ghost. 1891 1892 Set_Ghost_Mode (Work_Typ); 1893 1894 -- The type must be either subject to a DIC pragma or inherit one from a 1895 -- parent type. 1896 1897 pragma Assert (Has_DIC (Work_Typ)); 1898 1899 -- Recover the type which defines the DIC pragma. This is either the 1900 -- working type itself or a parent type when the pragma is inherited. 1901 1902 DIC_Typ := Find_DIC_Type (Work_Typ); 1903 pragma Assert (Present (DIC_Typ)); 1904 1905 DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition); 1906 pragma Assert (Present (DIC_Prag)); 1907 1908 -- Nothing to do if pragma DIC appears without an argument or its sole 1909 -- argument is "null". 1910 1911 if not Is_Verifiable_DIC_Pragma (DIC_Prag) then 1912 goto Leave; 1913 1914 -- Nothing to do if the type already has a DIC procedure 1915 1916 elsif Present (DIC_Procedure (Work_Typ)) then 1917 goto Leave; 1918 end if; 1919 1920 Proc_Id := 1921 Make_Defining_Identifier (Loc, 1922 Chars => 1923 New_External_Name (Chars (Work_Typ), "Default_Initial_Condition")); 1924 1925 -- Perform minor decoration in case the declaration is not analyzed 1926 1927 Set_Ekind (Proc_Id, E_Procedure); 1928 Set_Etype (Proc_Id, Standard_Void_Type); 1929 Set_Is_DIC_Procedure (Proc_Id); 1930 Set_Scope (Proc_Id, Current_Scope); 1931 Set_SPARK_Pragma (Proc_Id, SPARK_Mode_Pragma); 1932 Set_SPARK_Pragma_Inherited (Proc_Id); 1933 1934 Set_DIC_Procedure (Work_Typ, Proc_Id); 1935 1936 -- The DIC procedure requires debug info when the assertion expression 1937 -- is subject to Source Coverage Obligations. 1938 1939 if Generate_SCO then 1940 Set_Needs_Debug_Info (Proc_Id); 1941 end if; 1942 1943 -- Obtain all views of the input type 1944 1945 Get_Views (Work_Typ, Priv_Typ, Full_Typ, Full_Base, CRec_Typ); 1946 1947 -- Associate the DIC procedure and various relevant flags with all views 1948 1949 Propagate_DIC_Attributes (Priv_Typ, From_Typ => Work_Typ); 1950 Propagate_DIC_Attributes (Full_Typ, From_Typ => Work_Typ); 1951 Propagate_DIC_Attributes (Full_Base, From_Typ => Work_Typ); 1952 Propagate_DIC_Attributes (CRec_Typ, From_Typ => Work_Typ); 1953 1954 -- The declaration of the DIC procedure must be inserted after the 1955 -- declaration of the partial view as this allows for proper external 1956 -- visibility. 1957 1958 if Present (Priv_Typ) then 1959 Typ_Decl := Declaration_Node (Priv_Typ); 1960 1961 -- Derived types with the full view as parent do not have a partial 1962 -- view. Insert the DIC procedure after the derived type. 1963 1964 else 1965 Typ_Decl := Declaration_Node (Full_Typ); 1966 end if; 1967 1968 -- The type should have a declarative node 1969 1970 pragma Assert (Present (Typ_Decl)); 1971 1972 -- Create the formal parameter which emulates the variable-like behavior 1973 -- of the type's current instance. 1974 1975 Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject); 1976 1977 -- Perform minor decoration in case the declaration is not analyzed 1978 1979 Set_Ekind (Obj_Id, E_In_Parameter); 1980 Set_Etype (Obj_Id, Work_Typ); 1981 Set_Scope (Obj_Id, Proc_Id); 1982 1983 Set_First_Entity (Proc_Id, Obj_Id); 1984 1985 -- Generate: 1986 -- procedure <Work_Typ>DIC (_object : <Work_Typ>); 1987 1988 Proc_Decl := 1989 Make_Subprogram_Declaration (Loc, 1990 Specification => 1991 Make_Procedure_Specification (Loc, 1992 Defining_Unit_Name => Proc_Id, 1993 Parameter_Specifications => New_List ( 1994 Make_Parameter_Specification (Loc, 1995 Defining_Identifier => Obj_Id, 1996 Parameter_Type => 1997 New_Occurrence_Of (Work_Typ, Loc))))); 1998 1999 -- The declaration should not be inserted into the tree when the context 2000 -- is ASIS or a generic unit because it is not part of the template. 2001 2002 if ASIS_Mode or Inside_A_Generic then 2003 null; 2004 2005 -- Semi-insert the declaration into the tree for GNATprove by setting 2006 -- its Parent field. This allows for proper upstream tree traversals. 2007 2008 elsif GNATprove_Mode then 2009 Set_Parent (Proc_Decl, Parent (Typ_Decl)); 2010 2011 -- Otherwise insert the declaration 2012 2013 else 2014 Insert_After_And_Analyze (Typ_Decl, Proc_Decl); 2015 end if; 2016 2017 <<Leave>> 2018 Restore_Ghost_Mode (Saved_GM); 2019 end Build_DIC_Procedure_Declaration; 2020 2021 ------------------------------------ 2022 -- Build_Invariant_Procedure_Body -- 2023 ------------------------------------ 2024 2025 -- WARNING: This routine manages Ghost regions. Return statements must be 2026 -- replaced by gotos which jump to the end of the routine and restore the 2027 -- Ghost mode. 2028 2029 procedure Build_Invariant_Procedure_Body 2030 (Typ : Entity_Id; 2031 Partial_Invariant : Boolean := False) 2032 is 2033 Loc : constant Source_Ptr := Sloc (Typ); 2034 2035 Pragmas_Seen : Elist_Id := No_Elist; 2036 -- This list contains all invariant pragmas processed so far. The list 2037 -- is used to avoid generating redundant invariant checks. 2038 2039 Produced_Check : Boolean := False; 2040 -- This flag tracks whether the type has produced at least one invariant 2041 -- check. The flag is used as a sanity check at the end of the routine. 2042 2043 -- NOTE: most of the routines in Build_Invariant_Procedure_Body are 2044 -- intentionally unnested to avoid deep indentation of code. 2045 2046 -- NOTE: all Add_xxx_Invariants routines are reactive. In other words 2047 -- they emit checks, loops (for arrays) and case statements (for record 2048 -- variant parts) only when there are invariants to verify. This keeps 2049 -- the body of the invariant procedure free of useless code. 2050 2051 procedure Add_Array_Component_Invariants 2052 (T : Entity_Id; 2053 Obj_Id : Entity_Id; 2054 Checks : in out List_Id); 2055 -- Generate an invariant check for each component of array type T. 2056 -- Obj_Id denotes the entity of the _object formal parameter of the 2057 -- invariant procedure. All created checks are added to list Checks. 2058 2059 procedure Add_Inherited_Invariants 2060 (T : Entity_Id; 2061 Priv_Typ : Entity_Id; 2062 Full_Typ : Entity_Id; 2063 Obj_Id : Entity_Id; 2064 Checks : in out List_Id); 2065 -- Generate an invariant check for each inherited class-wide invariant 2066 -- coming from all parent types of type T. Priv_Typ and Full_Typ denote 2067 -- the partial and full view of the parent type. Obj_Id denotes the 2068 -- entity of the _object formal parameter of the invariant procedure. 2069 -- All created checks are added to list Checks. 2070 2071 procedure Add_Interface_Invariants 2072 (T : Entity_Id; 2073 Obj_Id : Entity_Id; 2074 Checks : in out List_Id); 2075 -- Generate an invariant check for each inherited class-wide invariant 2076 -- coming from all interfaces implemented by type T. Obj_Id denotes the 2077 -- entity of the _object formal parameter of the invariant procedure. 2078 -- All created checks are added to list Checks. 2079 2080 procedure Add_Invariant_Check 2081 (Prag : Node_Id; 2082 Expr : Node_Id; 2083 Checks : in out List_Id; 2084 Inherited : Boolean := False); 2085 -- Subsidiary to all Add_xxx_Invariant routines. Add a runtime check to 2086 -- verify assertion expression Expr of pragma Prag. All generated code 2087 -- is added to list Checks. Flag Inherited should be set when the pragma 2088 -- is inherited from a parent or interface type. 2089 2090 procedure Add_Own_Invariants 2091 (T : Entity_Id; 2092 Obj_Id : Entity_Id; 2093 Checks : in out List_Id; 2094 Priv_Item : Node_Id := Empty); 2095 -- Generate an invariant check for each invariant found for type T. 2096 -- Obj_Id denotes the entity of the _object formal parameter of the 2097 -- invariant procedure. All created checks are added to list Checks. 2098 -- Priv_Item denotes the first rep item of the private type. 2099 2100 procedure Add_Parent_Invariants 2101 (T : Entity_Id; 2102 Obj_Id : Entity_Id; 2103 Checks : in out List_Id); 2104 -- Generate an invariant check for each inherited class-wide invariant 2105 -- coming from all parent types of type T. Obj_Id denotes the entity of 2106 -- the _object formal parameter of the invariant procedure. All created 2107 -- checks are added to list Checks. 2108 2109 procedure Add_Record_Component_Invariants 2110 (T : Entity_Id; 2111 Obj_Id : Entity_Id; 2112 Checks : in out List_Id); 2113 -- Generate an invariant check for each component of record type T. 2114 -- Obj_Id denotes the entity of the _object formal parameter of the 2115 -- invariant procedure. All created checks are added to list Checks. 2116 2117 ------------------------------------ 2118 -- Add_Array_Component_Invariants -- 2119 ------------------------------------ 2120 2121 procedure Add_Array_Component_Invariants 2122 (T : Entity_Id; 2123 Obj_Id : Entity_Id; 2124 Checks : in out List_Id) 2125 is 2126 Comp_Typ : constant Entity_Id := Component_Type (T); 2127 Dims : constant Pos := Number_Dimensions (T); 2128 2129 procedure Process_Array_Component 2130 (Indices : List_Id; 2131 Comp_Checks : in out List_Id); 2132 -- Generate an invariant check for an array component identified by 2133 -- the indices in list Indices. All created checks are added to list 2134 -- Comp_Checks. 2135 2136 procedure Process_One_Dimension 2137 (Dim : Pos; 2138 Indices : List_Id; 2139 Dim_Checks : in out List_Id); 2140 -- Generate a loop over the Nth dimension Dim of an array type. List 2141 -- Indices contains all array indices for the dimension. All created 2142 -- checks are added to list Dim_Checks. 2143 2144 ----------------------------- 2145 -- Process_Array_Component -- 2146 ----------------------------- 2147 2148 procedure Process_Array_Component 2149 (Indices : List_Id; 2150 Comp_Checks : in out List_Id) 2151 is 2152 Proc_Id : Entity_Id; 2153 2154 begin 2155 if Has_Invariants (Comp_Typ) then 2156 2157 -- In GNATprove mode, the component invariants are checked by 2158 -- other means. They should not be added to the array type 2159 -- invariant procedure, so that the procedure can be used to 2160 -- check the array type invariants if any. 2161 2162 if GNATprove_Mode then 2163 null; 2164 2165 else 2166 Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ)); 2167 2168 -- The component type should have an invariant procedure 2169 -- if it has invariants of its own or inherits class-wide 2170 -- invariants from parent or interface types. 2171 2172 pragma Assert (Present (Proc_Id)); 2173 2174 -- Generate: 2175 -- <Comp_Typ>Invariant (_object (<Indices>)); 2176 2177 -- Note that the invariant procedure may have a null body if 2178 -- assertions are disabled or Assertion_Policy Ignore is in 2179 -- effect. 2180 2181 if not Has_Null_Body (Proc_Id) then 2182 Append_New_To (Comp_Checks, 2183 Make_Procedure_Call_Statement (Loc, 2184 Name => 2185 New_Occurrence_Of (Proc_Id, Loc), 2186 Parameter_Associations => New_List ( 2187 Make_Indexed_Component (Loc, 2188 Prefix => New_Occurrence_Of (Obj_Id, Loc), 2189 Expressions => New_Copy_List (Indices))))); 2190 end if; 2191 end if; 2192 2193 Produced_Check := True; 2194 end if; 2195 end Process_Array_Component; 2196 2197 --------------------------- 2198 -- Process_One_Dimension -- 2199 --------------------------- 2200 2201 procedure Process_One_Dimension 2202 (Dim : Pos; 2203 Indices : List_Id; 2204 Dim_Checks : in out List_Id) 2205 is 2206 Comp_Checks : List_Id := No_List; 2207 Index : Entity_Id; 2208 2209 begin 2210 -- Generate the invariant checks for the array component after all 2211 -- dimensions have produced their respective loops. 2212 2213 if Dim > Dims then 2214 Process_Array_Component 2215 (Indices => Indices, 2216 Comp_Checks => Dim_Checks); 2217 2218 -- Otherwise create a loop for the current dimension 2219 2220 else 2221 -- Create a new loop variable for each dimension 2222 2223 Index := 2224 Make_Defining_Identifier (Loc, 2225 Chars => New_External_Name ('I', Dim)); 2226 Append_To (Indices, New_Occurrence_Of (Index, Loc)); 2227 2228 Process_One_Dimension 2229 (Dim => Dim + 1, 2230 Indices => Indices, 2231 Dim_Checks => Comp_Checks); 2232 2233 -- Generate: 2234 -- for I<Dim> in _object'Range (<Dim>) loop 2235 -- <Comp_Checks> 2236 -- end loop; 2237 2238 -- Note that the invariant procedure may have a null body if 2239 -- assertions are disabled or Assertion_Policy Ignore is in 2240 -- effect. 2241 2242 if Present (Comp_Checks) then 2243 Append_New_To (Dim_Checks, 2244 Make_Implicit_Loop_Statement (T, 2245 Identifier => Empty, 2246 Iteration_Scheme => 2247 Make_Iteration_Scheme (Loc, 2248 Loop_Parameter_Specification => 2249 Make_Loop_Parameter_Specification (Loc, 2250 Defining_Identifier => Index, 2251 Discrete_Subtype_Definition => 2252 Make_Attribute_Reference (Loc, 2253 Prefix => 2254 New_Occurrence_Of (Obj_Id, Loc), 2255 Attribute_Name => Name_Range, 2256 Expressions => New_List ( 2257 Make_Integer_Literal (Loc, Dim))))), 2258 Statements => Comp_Checks)); 2259 end if; 2260 end if; 2261 end Process_One_Dimension; 2262 2263 -- Start of processing for Add_Array_Component_Invariants 2264 2265 begin 2266 Process_One_Dimension 2267 (Dim => 1, 2268 Indices => New_List, 2269 Dim_Checks => Checks); 2270 end Add_Array_Component_Invariants; 2271 2272 ------------------------------ 2273 -- Add_Inherited_Invariants -- 2274 ------------------------------ 2275 2276 procedure Add_Inherited_Invariants 2277 (T : Entity_Id; 2278 Priv_Typ : Entity_Id; 2279 Full_Typ : Entity_Id; 2280 Obj_Id : Entity_Id; 2281 Checks : in out List_Id) 2282 is 2283 Deriv_Typ : Entity_Id; 2284 Expr : Node_Id; 2285 Prag : Node_Id; 2286 Prag_Expr : Node_Id; 2287 Prag_Expr_Arg : Node_Id; 2288 Prag_Typ : Node_Id; 2289 Prag_Typ_Arg : Node_Id; 2290 2291 Par_Proc : Entity_Id; 2292 -- The "partial" invariant procedure of Par_Typ 2293 2294 Par_Typ : Entity_Id; 2295 -- The suitable view of the parent type used in the substitution of 2296 -- type attributes. 2297 2298 begin 2299 if not Present (Priv_Typ) and then not Present (Full_Typ) then 2300 return; 2301 end if; 2302 2303 -- When the type inheriting the class-wide invariant is a concurrent 2304 -- type, use the corresponding record type because it contains all 2305 -- primitive operations of the concurrent type and allows for proper 2306 -- substitution. 2307 2308 if Is_Concurrent_Type (T) then 2309 Deriv_Typ := Corresponding_Record_Type (T); 2310 else 2311 Deriv_Typ := T; 2312 end if; 2313 2314 pragma Assert (Present (Deriv_Typ)); 2315 2316 -- Determine which rep item chain to use. Precedence is given to that 2317 -- of the parent type's partial view since it usually carries all the 2318 -- class-wide invariants. 2319 2320 if Present (Priv_Typ) then 2321 Prag := First_Rep_Item (Priv_Typ); 2322 else 2323 Prag := First_Rep_Item (Full_Typ); 2324 end if; 2325 2326 while Present (Prag) loop 2327 if Nkind (Prag) = N_Pragma 2328 and then Pragma_Name (Prag) = Name_Invariant 2329 then 2330 -- Nothing to do if the pragma was already processed 2331 2332 if Contains (Pragmas_Seen, Prag) then 2333 return; 2334 2335 -- Nothing to do when the caller requests the processing of all 2336 -- inherited class-wide invariants, but the pragma does not 2337 -- fall in this category. 2338 2339 elsif not Class_Present (Prag) then 2340 return; 2341 end if; 2342 2343 -- Extract the arguments of the invariant pragma 2344 2345 Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag)); 2346 Prag_Expr_Arg := Next (Prag_Typ_Arg); 2347 Prag_Expr := Expression_Copy (Prag_Expr_Arg); 2348 Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg); 2349 2350 -- The pragma applies to the partial view of the parent type 2351 2352 if Present (Priv_Typ) 2353 and then Entity (Prag_Typ) = Priv_Typ 2354 then 2355 Par_Typ := Priv_Typ; 2356 2357 -- The pragma applies to the full view of the parent type 2358 2359 elsif Present (Full_Typ) 2360 and then Entity (Prag_Typ) = Full_Typ 2361 then 2362 Par_Typ := Full_Typ; 2363 2364 -- Otherwise the pragma does not belong to the parent type and 2365 -- should not be considered. 2366 2367 else 2368 return; 2369 end if; 2370 2371 -- Perform the following substitutions: 2372 2373 -- * Replace a reference to the _object parameter of the 2374 -- parent type's partial invariant procedure with a 2375 -- reference to the _object parameter of the derived 2376 -- type's full invariant procedure. 2377 2378 -- * Replace a reference to a discriminant of the parent type 2379 -- with a suitable value from the point of view of the 2380 -- derived type. 2381 2382 -- * Replace a call to an overridden parent primitive with a 2383 -- call to the overriding derived type primitive. 2384 2385 -- * Replace a call to an inherited parent primitive with a 2386 -- call to the internally-generated inherited derived type 2387 -- primitive. 2388 2389 Expr := New_Copy_Tree (Prag_Expr); 2390 2391 -- The parent type must have a "partial" invariant procedure 2392 -- because class-wide invariants are captured exclusively by 2393 -- it. 2394 2395 Par_Proc := Partial_Invariant_Procedure (Par_Typ); 2396 pragma Assert (Present (Par_Proc)); 2397 2398 Replace_References 2399 (Expr => Expr, 2400 Par_Typ => Par_Typ, 2401 Deriv_Typ => Deriv_Typ, 2402 Par_Obj => First_Formal (Par_Proc), 2403 Deriv_Obj => Obj_Id); 2404 2405 Add_Invariant_Check (Prag, Expr, Checks, Inherited => True); 2406 end if; 2407 2408 Next_Rep_Item (Prag); 2409 end loop; 2410 end Add_Inherited_Invariants; 2411 2412 ------------------------------ 2413 -- Add_Interface_Invariants -- 2414 ------------------------------ 2415 2416 procedure Add_Interface_Invariants 2417 (T : Entity_Id; 2418 Obj_Id : Entity_Id; 2419 Checks : in out List_Id) 2420 is 2421 Iface_Elmt : Elmt_Id; 2422 Ifaces : Elist_Id; 2423 2424 begin 2425 -- Generate an invariant check for each class-wide invariant coming 2426 -- from all interfaces implemented by type T. 2427 2428 if Is_Tagged_Type (T) then 2429 Collect_Interfaces (T, Ifaces); 2430 2431 -- Process the class-wide invariants of all implemented interfaces 2432 2433 Iface_Elmt := First_Elmt (Ifaces); 2434 while Present (Iface_Elmt) loop 2435 2436 -- The Full_Typ parameter is intentionally left Empty because 2437 -- interfaces are treated as the partial view of a private type 2438 -- in order to achieve uniformity with the general case. 2439 2440 Add_Inherited_Invariants 2441 (T => T, 2442 Priv_Typ => Node (Iface_Elmt), 2443 Full_Typ => Empty, 2444 Obj_Id => Obj_Id, 2445 Checks => Checks); 2446 2447 Next_Elmt (Iface_Elmt); 2448 end loop; 2449 end if; 2450 end Add_Interface_Invariants; 2451 2452 ------------------------- 2453 -- Add_Invariant_Check -- 2454 ------------------------- 2455 2456 procedure Add_Invariant_Check 2457 (Prag : Node_Id; 2458 Expr : Node_Id; 2459 Checks : in out List_Id; 2460 Inherited : Boolean := False) 2461 is 2462 Args : constant List_Id := Pragma_Argument_Associations (Prag); 2463 Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag); 2464 Ploc : constant Source_Ptr := Sloc (Prag); 2465 Str_Arg : constant Node_Id := Next (Next (First (Args))); 2466 2467 Assoc : List_Id; 2468 Str : String_Id; 2469 2470 begin 2471 -- The invariant is ignored, nothing left to do 2472 2473 if Is_Ignored (Prag) then 2474 null; 2475 2476 -- Otherwise the invariant is checked. Build a pragma Check to verify 2477 -- the expression at run time. 2478 2479 else 2480 Assoc := New_List ( 2481 Make_Pragma_Argument_Association (Ploc, 2482 Expression => Make_Identifier (Ploc, Nam)), 2483 Make_Pragma_Argument_Association (Ploc, 2484 Expression => Expr)); 2485 2486 -- Handle the String argument (if any) 2487 2488 if Present (Str_Arg) then 2489 Str := Strval (Get_Pragma_Arg (Str_Arg)); 2490 2491 -- When inheriting an invariant, modify the message from 2492 -- "failed invariant" to "failed inherited invariant". 2493 2494 if Inherited then 2495 String_To_Name_Buffer (Str); 2496 2497 if Name_Buffer (1 .. 16) = "failed invariant" then 2498 Insert_Str_In_Name_Buffer ("inherited ", 8); 2499 Str := String_From_Name_Buffer; 2500 end if; 2501 end if; 2502 2503 Append_To (Assoc, 2504 Make_Pragma_Argument_Association (Ploc, 2505 Expression => Make_String_Literal (Ploc, Str))); 2506 end if; 2507 2508 -- Generate: 2509 -- pragma Check (<Nam>, <Expr>, <Str>); 2510 2511 Append_New_To (Checks, 2512 Make_Pragma (Ploc, 2513 Chars => Name_Check, 2514 Pragma_Argument_Associations => Assoc)); 2515 end if; 2516 2517 -- Output an info message when inheriting an invariant and the 2518 -- listing option is enabled. 2519 2520 if Inherited and Opt.List_Inherited_Aspects then 2521 Error_Msg_Sloc := Sloc (Prag); 2522 Error_Msg_N 2523 ("info: & inherits `Invariant''Class` aspect from #?L?", Typ); 2524 end if; 2525 2526 -- Add the pragma to the list of processed pragmas 2527 2528 Append_New_Elmt (Prag, Pragmas_Seen); 2529 Produced_Check := True; 2530 end Add_Invariant_Check; 2531 2532 --------------------------- 2533 -- Add_Parent_Invariants -- 2534 --------------------------- 2535 2536 procedure Add_Parent_Invariants 2537 (T : Entity_Id; 2538 Obj_Id : Entity_Id; 2539 Checks : in out List_Id) 2540 is 2541 Dummy_1 : Entity_Id; 2542 Dummy_2 : Entity_Id; 2543 2544 Curr_Typ : Entity_Id; 2545 -- The entity of the current type being examined 2546 2547 Full_Typ : Entity_Id; 2548 -- The full view of Par_Typ 2549 2550 Par_Typ : Entity_Id; 2551 -- The entity of the parent type 2552 2553 Priv_Typ : Entity_Id; 2554 -- The partial view of Par_Typ 2555 2556 begin 2557 -- Do not process array types because they cannot have true parent 2558 -- types. This also prevents the generation of a duplicate invariant 2559 -- check when the input type is an array base type because its Etype 2560 -- denotes the first subtype, both of which share the same component 2561 -- type. 2562 2563 if Is_Array_Type (T) then 2564 return; 2565 end if; 2566 2567 -- Climb the parent type chain 2568 2569 Curr_Typ := T; 2570 loop 2571 -- Do not consider subtypes as they inherit the invariants 2572 -- from their base types. 2573 2574 Par_Typ := Base_Type (Etype (Curr_Typ)); 2575 2576 -- Stop the climb once the root of the parent chain is 2577 -- reached. 2578 2579 exit when Curr_Typ = Par_Typ; 2580 2581 -- Process the class-wide invariants of the parent type 2582 2583 Get_Views (Par_Typ, Priv_Typ, Full_Typ, Dummy_1, Dummy_2); 2584 2585 -- Process the elements of an array type 2586 2587 if Is_Array_Type (Full_Typ) then 2588 Add_Array_Component_Invariants (Full_Typ, Obj_Id, Checks); 2589 2590 -- Process the components of a record type 2591 2592 elsif Ekind (Full_Typ) = E_Record_Type then 2593 Add_Record_Component_Invariants (Full_Typ, Obj_Id, Checks); 2594 end if; 2595 2596 Add_Inherited_Invariants 2597 (T => T, 2598 Priv_Typ => Priv_Typ, 2599 Full_Typ => Full_Typ, 2600 Obj_Id => Obj_Id, 2601 Checks => Checks); 2602 2603 Curr_Typ := Par_Typ; 2604 end loop; 2605 end Add_Parent_Invariants; 2606 2607 ------------------------ 2608 -- Add_Own_Invariants -- 2609 ------------------------ 2610 2611 procedure Add_Own_Invariants 2612 (T : Entity_Id; 2613 Obj_Id : Entity_Id; 2614 Checks : in out List_Id; 2615 Priv_Item : Node_Id := Empty) 2616 is 2617 ASIS_Expr : Node_Id; 2618 Expr : Node_Id; 2619 Prag : Node_Id; 2620 Prag_Asp : Node_Id; 2621 Prag_Expr : Node_Id; 2622 Prag_Expr_Arg : Node_Id; 2623 Prag_Typ : Node_Id; 2624 Prag_Typ_Arg : Node_Id; 2625 2626 begin 2627 if not Present (T) then 2628 return; 2629 end if; 2630 2631 Prag := First_Rep_Item (T); 2632 while Present (Prag) loop 2633 if Nkind (Prag) = N_Pragma 2634 and then Pragma_Name (Prag) = Name_Invariant 2635 then 2636 -- Stop the traversal of the rep item chain once a specific 2637 -- item is encountered. 2638 2639 if Present (Priv_Item) and then Prag = Priv_Item then 2640 exit; 2641 end if; 2642 2643 -- Nothing to do if the pragma was already processed 2644 2645 if Contains (Pragmas_Seen, Prag) then 2646 return; 2647 end if; 2648 2649 -- Extract the arguments of the invariant pragma 2650 2651 Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag)); 2652 Prag_Expr_Arg := Next (Prag_Typ_Arg); 2653 Prag_Expr := Get_Pragma_Arg (Prag_Expr_Arg); 2654 Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg); 2655 Prag_Asp := Corresponding_Aspect (Prag); 2656 2657 -- Verify the pragma belongs to T, otherwise the pragma applies 2658 -- to a parent type in which case it will be processed later by 2659 -- Add_Parent_Invariants or Add_Interface_Invariants. 2660 2661 if Entity (Prag_Typ) /= T then 2662 return; 2663 end if; 2664 2665 Expr := New_Copy_Tree (Prag_Expr); 2666 2667 -- Substitute all references to type T with references to the 2668 -- _object formal parameter. 2669 2670 Replace_Type_References (Expr, T, Obj_Id); 2671 2672 -- Preanalyze the invariant expression to detect errors and at 2673 -- the same time capture the visibility of the proper package 2674 -- part. 2675 2676 Set_Parent (Expr, Parent (Prag_Expr)); 2677 Preanalyze_Assert_Expression (Expr, Any_Boolean); 2678 2679 -- Save a copy of the expression when T is tagged to detect 2680 -- errors and capture the visibility of the proper package part 2681 -- for the generation of inherited type invariants. 2682 2683 if Is_Tagged_Type (T) then 2684 Set_Expression_Copy (Prag_Expr_Arg, New_Copy_Tree (Expr)); 2685 end if; 2686 2687 -- If the pragma comes from an aspect specification, replace 2688 -- the saved expression because all type references must be 2689 -- substituted for the call to Preanalyze_Spec_Expression in 2690 -- Check_Aspect_At_xxx routines. 2691 2692 if Present (Prag_Asp) then 2693 Set_Entity (Identifier (Prag_Asp), New_Copy_Tree (Expr)); 2694 end if; 2695 2696 -- Analyze the original invariant expression for ASIS 2697 2698 if ASIS_Mode then 2699 ASIS_Expr := Empty; 2700 2701 if Comes_From_Source (Prag) then 2702 ASIS_Expr := Prag_Expr; 2703 elsif Present (Prag_Asp) then 2704 ASIS_Expr := Expression (Prag_Asp); 2705 end if; 2706 2707 if Present (ASIS_Expr) then 2708 Replace_Type_References (ASIS_Expr, T, Obj_Id); 2709 Preanalyze_Assert_Expression (ASIS_Expr, Any_Boolean); 2710 end if; 2711 end if; 2712 2713 Add_Invariant_Check (Prag, Expr, Checks); 2714 end if; 2715 2716 Next_Rep_Item (Prag); 2717 end loop; 2718 end Add_Own_Invariants; 2719 2720 ------------------------------------- 2721 -- Add_Record_Component_Invariants -- 2722 ------------------------------------- 2723 2724 procedure Add_Record_Component_Invariants 2725 (T : Entity_Id; 2726 Obj_Id : Entity_Id; 2727 Checks : in out List_Id) 2728 is 2729 procedure Process_Component_List 2730 (Comp_List : Node_Id; 2731 CL_Checks : in out List_Id); 2732 -- Generate invariant checks for all record components found in 2733 -- component list Comp_List, including variant parts. All created 2734 -- checks are added to list CL_Checks. 2735 2736 procedure Process_Record_Component 2737 (Comp_Id : Entity_Id; 2738 Comp_Checks : in out List_Id); 2739 -- Generate an invariant check for a record component identified by 2740 -- Comp_Id. All created checks are added to list Comp_Checks. 2741 2742 ---------------------------- 2743 -- Process_Component_List -- 2744 ---------------------------- 2745 2746 procedure Process_Component_List 2747 (Comp_List : Node_Id; 2748 CL_Checks : in out List_Id) 2749 is 2750 Comp : Node_Id; 2751 Var : Node_Id; 2752 Var_Alts : List_Id := No_List; 2753 Var_Checks : List_Id := No_List; 2754 Var_Stmts : List_Id; 2755 2756 Produced_Variant_Check : Boolean := False; 2757 -- This flag tracks whether the component has produced at least 2758 -- one invariant check. 2759 2760 begin 2761 -- Traverse the component items 2762 2763 Comp := First (Component_Items (Comp_List)); 2764 while Present (Comp) loop 2765 if Nkind (Comp) = N_Component_Declaration then 2766 2767 -- Generate the component invariant check 2768 2769 Process_Record_Component 2770 (Comp_Id => Defining_Entity (Comp), 2771 Comp_Checks => CL_Checks); 2772 end if; 2773 2774 Next (Comp); 2775 end loop; 2776 2777 -- Traverse the variant part 2778 2779 if Present (Variant_Part (Comp_List)) then 2780 Var := First (Variants (Variant_Part (Comp_List))); 2781 while Present (Var) loop 2782 Var_Checks := No_List; 2783 2784 -- Generate invariant checks for all components and variant 2785 -- parts that qualify. 2786 2787 Process_Component_List 2788 (Comp_List => Component_List (Var), 2789 CL_Checks => Var_Checks); 2790 2791 -- The components of the current variant produced at least 2792 -- one invariant check. 2793 2794 if Present (Var_Checks) then 2795 Var_Stmts := Var_Checks; 2796 Produced_Variant_Check := True; 2797 2798 -- Otherwise there are either no components with invariants, 2799 -- assertions are disabled, or Assertion_Policy Ignore is in 2800 -- effect. 2801 2802 else 2803 Var_Stmts := New_List (Make_Null_Statement (Loc)); 2804 end if; 2805 2806 Append_New_To (Var_Alts, 2807 Make_Case_Statement_Alternative (Loc, 2808 Discrete_Choices => 2809 New_Copy_List (Discrete_Choices (Var)), 2810 Statements => Var_Stmts)); 2811 2812 Next (Var); 2813 end loop; 2814 2815 -- Create a case statement which verifies the invariant checks 2816 -- of a particular component list depending on the discriminant 2817 -- values only when there is at least one real invariant check. 2818 2819 if Produced_Variant_Check then 2820 Append_New_To (CL_Checks, 2821 Make_Case_Statement (Loc, 2822 Expression => 2823 Make_Selected_Component (Loc, 2824 Prefix => New_Occurrence_Of (Obj_Id, Loc), 2825 Selector_Name => 2826 New_Occurrence_Of 2827 (Entity (Name (Variant_Part (Comp_List))), Loc)), 2828 Alternatives => Var_Alts)); 2829 end if; 2830 end if; 2831 end Process_Component_List; 2832 2833 ------------------------------ 2834 -- Process_Record_Component -- 2835 ------------------------------ 2836 2837 procedure Process_Record_Component 2838 (Comp_Id : Entity_Id; 2839 Comp_Checks : in out List_Id) 2840 is 2841 Comp_Typ : constant Entity_Id := Etype (Comp_Id); 2842 Proc_Id : Entity_Id; 2843 2844 Produced_Component_Check : Boolean := False; 2845 -- This flag tracks whether the component has produced at least 2846 -- one invariant check. 2847 2848 begin 2849 -- Nothing to do for internal component _parent. Note that it is 2850 -- not desirable to check whether the component comes from source 2851 -- because protected type components are relocated to an internal 2852 -- corresponding record, but still need processing. 2853 2854 if Chars (Comp_Id) = Name_uParent then 2855 return; 2856 end if; 2857 2858 -- Verify the invariant of the component. Note that an access 2859 -- type may have an invariant when it acts as the full view of a 2860 -- private type and the invariant appears on the partial view. In 2861 -- this case verify the access value itself. 2862 2863 if Has_Invariants (Comp_Typ) then 2864 2865 -- In GNATprove mode, the component invariants are checked by 2866 -- other means. They should not be added to the record type 2867 -- invariant procedure, so that the procedure can be used to 2868 -- check the record type invariants if any. 2869 2870 if GNATprove_Mode then 2871 null; 2872 2873 else 2874 Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ)); 2875 2876 -- The component type should have an invariant procedure 2877 -- if it has invariants of its own or inherits class-wide 2878 -- invariants from parent or interface types. 2879 2880 pragma Assert (Present (Proc_Id)); 2881 2882 -- Generate: 2883 -- <Comp_Typ>Invariant (T (_object).<Comp_Id>); 2884 2885 -- Note that the invariant procedure may have a null body if 2886 -- assertions are disabled or Assertion_Policy Ignore is in 2887 -- effect. 2888 2889 if not Has_Null_Body (Proc_Id) then 2890 Append_New_To (Comp_Checks, 2891 Make_Procedure_Call_Statement (Loc, 2892 Name => 2893 New_Occurrence_Of (Proc_Id, Loc), 2894 Parameter_Associations => New_List ( 2895 Make_Selected_Component (Loc, 2896 Prefix => 2897 Unchecked_Convert_To 2898 (T, New_Occurrence_Of (Obj_Id, Loc)), 2899 Selector_Name => 2900 New_Occurrence_Of (Comp_Id, Loc))))); 2901 end if; 2902 end if; 2903 2904 Produced_Check := True; 2905 Produced_Component_Check := True; 2906 end if; 2907 2908 if Produced_Component_Check and then Has_Unchecked_Union (T) then 2909 Error_Msg_NE 2910 ("invariants cannot be checked on components of " 2911 & "unchecked_union type &?", Comp_Id, T); 2912 end if; 2913 end Process_Record_Component; 2914 2915 -- Local variables 2916 2917 Comps : Node_Id; 2918 Def : Node_Id; 2919 2920 -- Start of processing for Add_Record_Component_Invariants 2921 2922 begin 2923 -- An untagged derived type inherits the components of its parent 2924 -- type. In order to avoid creating redundant invariant checks, do 2925 -- not process the components now. Instead wait until the ultimate 2926 -- parent of the untagged derivation chain is reached. 2927 2928 if not Is_Untagged_Derivation (T) then 2929 Def := Type_Definition (Parent (T)); 2930 2931 if Nkind (Def) = N_Derived_Type_Definition then 2932 Def := Record_Extension_Part (Def); 2933 end if; 2934 2935 pragma Assert (Nkind (Def) = N_Record_Definition); 2936 Comps := Component_List (Def); 2937 2938 if Present (Comps) then 2939 Process_Component_List 2940 (Comp_List => Comps, 2941 CL_Checks => Checks); 2942 end if; 2943 end if; 2944 end Add_Record_Component_Invariants; 2945 2946 -- Local variables 2947 2948 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; 2949 -- Save the Ghost mode to restore on exit 2950 2951 Dummy : Entity_Id; 2952 Priv_Item : Node_Id; 2953 Proc_Body : Node_Id; 2954 Proc_Body_Id : Entity_Id; 2955 Proc_Decl : Node_Id; 2956 Proc_Id : Entity_Id; 2957 Stmts : List_Id := No_List; 2958 2959 CRec_Typ : Entity_Id := Empty; 2960 -- The corresponding record type of Full_Typ 2961 2962 Full_Proc : Entity_Id := Empty; 2963 -- The entity of the "full" invariant procedure 2964 2965 Full_Typ : Entity_Id := Empty; 2966 -- The full view of the working type 2967 2968 Obj_Id : Entity_Id := Empty; 2969 -- The _object formal parameter of the invariant procedure 2970 2971 Part_Proc : Entity_Id := Empty; 2972 -- The entity of the "partial" invariant procedure 2973 2974 Priv_Typ : Entity_Id := Empty; 2975 -- The partial view of the working type 2976 2977 Work_Typ : Entity_Id := Empty; 2978 -- The working type 2979 2980 -- Start of processing for Build_Invariant_Procedure_Body 2981 2982 begin 2983 Work_Typ := Typ; 2984 2985 -- The input type denotes the implementation base type of a constrained 2986 -- array type. Work with the first subtype as all invariant pragmas are 2987 -- on its rep item chain. 2988 2989 if Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then 2990 Work_Typ := First_Subtype (Work_Typ); 2991 2992 -- The input type denotes the corresponding record type of a protected 2993 -- or task type. Work with the concurrent type because the corresponding 2994 -- record type may not be visible to clients of the type. 2995 2996 elsif Ekind (Work_Typ) = E_Record_Type 2997 and then Is_Concurrent_Record_Type (Work_Typ) 2998 then 2999 Work_Typ := Corresponding_Concurrent_Type (Work_Typ); 3000 end if; 3001 3002 -- The working type may be subject to pragma Ghost. Set the mode now to 3003 -- ensure that the invariant procedure is properly marked as Ghost. 3004 3005 Set_Ghost_Mode (Work_Typ); 3006 3007 -- The type must either have invariants of its own, inherit class-wide 3008 -- invariants from parent types or interfaces, or be an array or record 3009 -- type whose components have invariants. 3010 3011 pragma Assert (Has_Invariants (Work_Typ)); 3012 3013 -- Interfaces are treated as the partial view of a private type in order 3014 -- to achieve uniformity with the general case. 3015 3016 if Is_Interface (Work_Typ) then 3017 Priv_Typ := Work_Typ; 3018 3019 -- Otherwise obtain both views of the type 3020 3021 else 3022 Get_Views (Work_Typ, Priv_Typ, Full_Typ, Dummy, CRec_Typ); 3023 end if; 3024 3025 -- The caller requests a body for the partial invariant procedure 3026 3027 if Partial_Invariant then 3028 Full_Proc := Invariant_Procedure (Work_Typ); 3029 Proc_Id := Partial_Invariant_Procedure (Work_Typ); 3030 3031 -- The "full" invariant procedure body was already created 3032 3033 if Present (Full_Proc) 3034 and then Present 3035 (Corresponding_Body (Unit_Declaration_Node (Full_Proc))) 3036 then 3037 -- This scenario happens only when the type is an untagged 3038 -- derivation from a private parent and the underlying full 3039 -- view was processed before the partial view. 3040 3041 pragma Assert 3042 (Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ)); 3043 3044 -- Nothing to do because the processing of the underlying full 3045 -- view already checked the invariants of the partial view. 3046 3047 goto Leave; 3048 end if; 3049 3050 -- Create a declaration for the "partial" invariant procedure if it 3051 -- is not available. 3052 3053 if No (Proc_Id) then 3054 Build_Invariant_Procedure_Declaration 3055 (Typ => Work_Typ, 3056 Partial_Invariant => True); 3057 3058 Proc_Id := Partial_Invariant_Procedure (Work_Typ); 3059 end if; 3060 3061 -- The caller requests a body for the "full" invariant procedure 3062 3063 else 3064 Proc_Id := Invariant_Procedure (Work_Typ); 3065 Part_Proc := Partial_Invariant_Procedure (Work_Typ); 3066 3067 -- Create a declaration for the "full" invariant procedure if it is 3068 -- not available. 3069 3070 if No (Proc_Id) then 3071 Build_Invariant_Procedure_Declaration (Work_Typ); 3072 Proc_Id := Invariant_Procedure (Work_Typ); 3073 end if; 3074 end if; 3075 3076 -- At this point there should be an invariant procedure declaration 3077 3078 pragma Assert (Present (Proc_Id)); 3079 Proc_Decl := Unit_Declaration_Node (Proc_Id); 3080 3081 -- Nothing to do if the invariant procedure already has a body 3082 3083 if Present (Corresponding_Body (Proc_Decl)) then 3084 goto Leave; 3085 end if; 3086 3087 -- Emulate the environment of the invariant procedure by installing its 3088 -- scope and formal parameters. Note that this is not needed, but having 3089 -- the scope installed helps with the detection of invariant-related 3090 -- errors. 3091 3092 Push_Scope (Proc_Id); 3093 Install_Formals (Proc_Id); 3094 3095 Obj_Id := First_Formal (Proc_Id); 3096 pragma Assert (Present (Obj_Id)); 3097 3098 -- The "partial" invariant procedure verifies the invariants of the 3099 -- partial view only. 3100 3101 if Partial_Invariant then 3102 pragma Assert (Present (Priv_Typ)); 3103 3104 Add_Own_Invariants 3105 (T => Priv_Typ, 3106 Obj_Id => Obj_Id, 3107 Checks => Stmts); 3108 3109 -- Otherwise the "full" invariant procedure verifies the invariants of 3110 -- the full view, all array or record components, as well as class-wide 3111 -- invariants inherited from parent types or interfaces. In addition, it 3112 -- indirectly verifies the invariants of the partial view by calling the 3113 -- "partial" invariant procedure. 3114 3115 else 3116 pragma Assert (Present (Full_Typ)); 3117 3118 -- Check the invariants of the partial view by calling the "partial" 3119 -- invariant procedure. Generate: 3120 3121 -- <Work_Typ>Partial_Invariant (_object); 3122 3123 if Present (Part_Proc) then 3124 Append_New_To (Stmts, 3125 Make_Procedure_Call_Statement (Loc, 3126 Name => New_Occurrence_Of (Part_Proc, Loc), 3127 Parameter_Associations => New_List ( 3128 New_Occurrence_Of (Obj_Id, Loc)))); 3129 3130 Produced_Check := True; 3131 end if; 3132 3133 Priv_Item := Empty; 3134 3135 -- Derived subtypes do not have a partial view 3136 3137 if Present (Priv_Typ) then 3138 3139 -- The processing of the "full" invariant procedure intentionally 3140 -- skips the partial view because a) this may result in changes of 3141 -- visibility and b) lead to duplicate checks. However, when the 3142 -- full view is the underlying full view of an untagged derived 3143 -- type whose parent type is private, partial invariants appear on 3144 -- the rep item chain of the partial view only. 3145 3146 -- package Pack_1 is 3147 -- type Root ... is private; 3148 -- private 3149 -- <full view of Root> 3150 -- end Pack_1; 3151 3152 -- with Pack_1; 3153 -- package Pack_2 is 3154 -- type Child is new Pack_1.Root with Type_Invariant => ...; 3155 -- <underlying full view of Child> 3156 -- end Pack_2; 3157 3158 -- As a result, the processing of the full view must also consider 3159 -- all invariants of the partial view. 3160 3161 if Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ) then 3162 null; 3163 3164 -- Otherwise the invariants of the partial view are ignored 3165 3166 else 3167 -- Note that the rep item chain is shared between the partial 3168 -- and full views of a type. To avoid processing the invariants 3169 -- of the partial view, signal the logic to stop when the first 3170 -- rep item of the partial view has been reached. 3171 3172 Priv_Item := First_Rep_Item (Priv_Typ); 3173 3174 -- Ignore the invariants of the partial view by eliminating the 3175 -- view. 3176 3177 Priv_Typ := Empty; 3178 end if; 3179 end if; 3180 3181 -- Process the invariants of the full view and in certain cases those 3182 -- of the partial view. This also handles any invariants on array or 3183 -- record components. 3184 3185 Add_Own_Invariants 3186 (T => Priv_Typ, 3187 Obj_Id => Obj_Id, 3188 Checks => Stmts, 3189 Priv_Item => Priv_Item); 3190 3191 Add_Own_Invariants 3192 (T => Full_Typ, 3193 Obj_Id => Obj_Id, 3194 Checks => Stmts, 3195 Priv_Item => Priv_Item); 3196 3197 -- Process the elements of an array type 3198 3199 if Is_Array_Type (Full_Typ) then 3200 Add_Array_Component_Invariants (Full_Typ, Obj_Id, Stmts); 3201 3202 -- Process the components of a record type 3203 3204 elsif Ekind (Full_Typ) = E_Record_Type then 3205 Add_Record_Component_Invariants (Full_Typ, Obj_Id, Stmts); 3206 3207 -- Process the components of a corresponding record 3208 3209 elsif Present (CRec_Typ) then 3210 Add_Record_Component_Invariants (CRec_Typ, Obj_Id, Stmts); 3211 end if; 3212 3213 -- Process the inherited class-wide invariants of all parent types. 3214 -- This also handles any invariants on record components. 3215 3216 Add_Parent_Invariants (Full_Typ, Obj_Id, Stmts); 3217 3218 -- Process the inherited class-wide invariants of all implemented 3219 -- interface types. 3220 3221 Add_Interface_Invariants (Full_Typ, Obj_Id, Stmts); 3222 end if; 3223 3224 End_Scope; 3225 3226 -- At this point there should be at least one invariant check. If this 3227 -- is not the case, then the invariant-related flags were not properly 3228 -- set, or there is a missing invariant procedure on one of the array 3229 -- or record components. 3230 3231 pragma Assert (Produced_Check); 3232 3233 -- Account for the case where assertions are disabled or all invariant 3234 -- checks are subject to Assertion_Policy Ignore. Produce a completing 3235 -- empty body. 3236 3237 if No (Stmts) then 3238 Stmts := New_List (Make_Null_Statement (Loc)); 3239 end if; 3240 3241 -- Generate: 3242 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>) is 3243 -- begin 3244 -- <Stmts> 3245 -- end <Work_Typ>[Partial_]Invariant; 3246 3247 Proc_Body := 3248 Make_Subprogram_Body (Loc, 3249 Specification => 3250 Copy_Subprogram_Spec (Parent (Proc_Id)), 3251 Declarations => Empty_List, 3252 Handled_Statement_Sequence => 3253 Make_Handled_Sequence_Of_Statements (Loc, 3254 Statements => Stmts)); 3255 Proc_Body_Id := Defining_Entity (Proc_Body); 3256 3257 -- Perform minor decoration in case the body is not analyzed 3258 3259 Set_Ekind (Proc_Body_Id, E_Subprogram_Body); 3260 Set_Etype (Proc_Body_Id, Standard_Void_Type); 3261 Set_Scope (Proc_Body_Id, Current_Scope); 3262 3263 -- Link both spec and body to avoid generating duplicates 3264 3265 Set_Corresponding_Body (Proc_Decl, Proc_Body_Id); 3266 Set_Corresponding_Spec (Proc_Body, Proc_Id); 3267 3268 -- The body should not be inserted into the tree when the context is 3269 -- ASIS or a generic unit because it is not part of the template. Note 3270 -- that the body must still be generated in order to resolve the 3271 -- invariants. 3272 3273 if ASIS_Mode or Inside_A_Generic then 3274 null; 3275 3276 -- Semi-insert the body into the tree for GNATprove by setting its 3277 -- Parent field. This allows for proper upstream tree traversals. 3278 3279 elsif GNATprove_Mode then 3280 Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ))); 3281 3282 -- Otherwise the body is part of the freezing actions of the type 3283 3284 else 3285 Append_Freeze_Action (Work_Typ, Proc_Body); 3286 end if; 3287 3288 <<Leave>> 3289 Restore_Ghost_Mode (Saved_GM); 3290 end Build_Invariant_Procedure_Body; 3291 3292 ------------------------------------------- 3293 -- Build_Invariant_Procedure_Declaration -- 3294 ------------------------------------------- 3295 3296 -- WARNING: This routine manages Ghost regions. Return statements must be 3297 -- replaced by gotos which jump to the end of the routine and restore the 3298 -- Ghost mode. 3299 3300 procedure Build_Invariant_Procedure_Declaration 3301 (Typ : Entity_Id; 3302 Partial_Invariant : Boolean := False) 3303 is 3304 Loc : constant Source_Ptr := Sloc (Typ); 3305 3306 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; 3307 -- Save the Ghost mode to restore on exit 3308 3309 Proc_Decl : Node_Id; 3310 Proc_Id : Entity_Id; 3311 Proc_Nam : Name_Id; 3312 Typ_Decl : Node_Id; 3313 3314 CRec_Typ : Entity_Id; 3315 -- The corresponding record type of Full_Typ 3316 3317 Full_Base : Entity_Id; 3318 -- The base type of Full_Typ 3319 3320 Full_Typ : Entity_Id; 3321 -- The full view of working type 3322 3323 Obj_Id : Entity_Id; 3324 -- The _object formal parameter of the invariant procedure 3325 3326 Obj_Typ : Entity_Id; 3327 -- The type of the _object formal parameter 3328 3329 Priv_Typ : Entity_Id; 3330 -- The partial view of working type 3331 3332 Work_Typ : Entity_Id; 3333 -- The working type 3334 3335 begin 3336 Work_Typ := Typ; 3337 3338 -- The input type denotes the implementation base type of a constrained 3339 -- array type. Work with the first subtype as all invariant pragmas are 3340 -- on its rep item chain. 3341 3342 if Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then 3343 Work_Typ := First_Subtype (Work_Typ); 3344 3345 -- The input denotes the corresponding record type of a protected or a 3346 -- task type. Work with the concurrent type because the corresponding 3347 -- record type may not be visible to clients of the type. 3348 3349 elsif Ekind (Work_Typ) = E_Record_Type 3350 and then Is_Concurrent_Record_Type (Work_Typ) 3351 then 3352 Work_Typ := Corresponding_Concurrent_Type (Work_Typ); 3353 end if; 3354 3355 -- The working type may be subject to pragma Ghost. Set the mode now to 3356 -- ensure that the invariant procedure is properly marked as Ghost. 3357 3358 Set_Ghost_Mode (Work_Typ); 3359 3360 -- The type must either have invariants of its own, inherit class-wide 3361 -- invariants from parent or interface types, or be an array or record 3362 -- type whose components have invariants. 3363 3364 pragma Assert (Has_Invariants (Work_Typ)); 3365 3366 -- Nothing to do if the type already has a "partial" invariant procedure 3367 3368 if Partial_Invariant then 3369 if Present (Partial_Invariant_Procedure (Work_Typ)) then 3370 goto Leave; 3371 end if; 3372 3373 -- Nothing to do if the type already has a "full" invariant procedure 3374 3375 elsif Present (Invariant_Procedure (Work_Typ)) then 3376 goto Leave; 3377 end if; 3378 3379 -- The caller requests the declaration of the "partial" invariant 3380 -- procedure. 3381 3382 if Partial_Invariant then 3383 Proc_Nam := New_External_Name (Chars (Work_Typ), "Partial_Invariant"); 3384 3385 -- Otherwise the caller requests the declaration of the "full" invariant 3386 -- procedure. 3387 3388 else 3389 Proc_Nam := New_External_Name (Chars (Work_Typ), "Invariant"); 3390 end if; 3391 3392 Proc_Id := Make_Defining_Identifier (Loc, Chars => Proc_Nam); 3393 3394 -- Perform minor decoration in case the declaration is not analyzed 3395 3396 Set_Ekind (Proc_Id, E_Procedure); 3397 Set_Etype (Proc_Id, Standard_Void_Type); 3398 Set_Scope (Proc_Id, Current_Scope); 3399 3400 if Partial_Invariant then 3401 Set_Is_Partial_Invariant_Procedure (Proc_Id); 3402 Set_Partial_Invariant_Procedure (Work_Typ, Proc_Id); 3403 else 3404 Set_Is_Invariant_Procedure (Proc_Id); 3405 Set_Invariant_Procedure (Work_Typ, Proc_Id); 3406 end if; 3407 3408 -- The invariant procedure requires debug info when the invariants are 3409 -- subject to Source Coverage Obligations. 3410 3411 if Generate_SCO then 3412 Set_Needs_Debug_Info (Proc_Id); 3413 end if; 3414 3415 -- Obtain all views of the input type 3416 3417 Get_Views (Work_Typ, Priv_Typ, Full_Typ, Full_Base, CRec_Typ); 3418 3419 -- Associate the invariant procedure with all views 3420 3421 Propagate_Invariant_Attributes (Priv_Typ, From_Typ => Work_Typ); 3422 Propagate_Invariant_Attributes (Full_Typ, From_Typ => Work_Typ); 3423 Propagate_Invariant_Attributes (Full_Base, From_Typ => Work_Typ); 3424 Propagate_Invariant_Attributes (CRec_Typ, From_Typ => Work_Typ); 3425 3426 -- The declaration of the invariant procedure is inserted after the 3427 -- declaration of the partial view as this allows for proper external 3428 -- visibility. 3429 3430 if Present (Priv_Typ) then 3431 Typ_Decl := Declaration_Node (Priv_Typ); 3432 3433 -- Anonymous arrays in object declarations have no explicit declaration 3434 -- so use the related object declaration as the insertion point. 3435 3436 elsif Is_Itype (Work_Typ) and then Is_Array_Type (Work_Typ) then 3437 Typ_Decl := Associated_Node_For_Itype (Work_Typ); 3438 3439 -- Derived types with the full view as parent do not have a partial 3440 -- view. Insert the invariant procedure after the derived type. 3441 3442 else 3443 Typ_Decl := Declaration_Node (Full_Typ); 3444 end if; 3445 3446 -- The type should have a declarative node 3447 3448 pragma Assert (Present (Typ_Decl)); 3449 3450 -- Create the formal parameter which emulates the variable-like behavior 3451 -- of the current type instance. 3452 3453 Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject); 3454 3455 -- When generating an invariant procedure declaration for an abstract 3456 -- type (including interfaces), use the class-wide type as the _object 3457 -- type. This has several desirable effects: 3458 3459 -- * The invariant procedure does not become a primitive of the type. 3460 -- This eliminates the need to either special case the treatment of 3461 -- invariant procedures, or to make it a predefined primitive and 3462 -- force every derived type to potentially provide an empty body. 3463 3464 -- * The invariant procedure does not need to be declared as abstract. 3465 -- This allows for a proper body, which in turn avoids redundant 3466 -- processing of the same invariants for types with multiple views. 3467 3468 -- * The class-wide type allows for calls to abstract primitives 3469 -- within a nonabstract subprogram. The calls are treated as 3470 -- dispatching and require additional processing when they are 3471 -- remapped to call primitives of derived types. See routine 3472 -- Replace_References for details. 3473 3474 if Is_Abstract_Type (Work_Typ) then 3475 Obj_Typ := Class_Wide_Type (Work_Typ); 3476 else 3477 Obj_Typ := Work_Typ; 3478 end if; 3479 3480 -- Perform minor decoration in case the declaration is not analyzed 3481 3482 Set_Ekind (Obj_Id, E_In_Parameter); 3483 Set_Etype (Obj_Id, Obj_Typ); 3484 Set_Scope (Obj_Id, Proc_Id); 3485 3486 Set_First_Entity (Proc_Id, Obj_Id); 3487 Set_Last_Entity (Proc_Id, Obj_Id); 3488 3489 -- Generate: 3490 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>); 3491 3492 Proc_Decl := 3493 Make_Subprogram_Declaration (Loc, 3494 Specification => 3495 Make_Procedure_Specification (Loc, 3496 Defining_Unit_Name => Proc_Id, 3497 Parameter_Specifications => New_List ( 3498 Make_Parameter_Specification (Loc, 3499 Defining_Identifier => Obj_Id, 3500 Parameter_Type => New_Occurrence_Of (Obj_Typ, Loc))))); 3501 3502 -- The declaration should not be inserted into the tree when the context 3503 -- is ASIS or a generic unit because it is not part of the template. 3504 3505 if ASIS_Mode or Inside_A_Generic then 3506 null; 3507 3508 -- Semi-insert the declaration into the tree for GNATprove by setting 3509 -- its Parent field. This allows for proper upstream tree traversals. 3510 3511 elsif GNATprove_Mode then 3512 Set_Parent (Proc_Decl, Parent (Typ_Decl)); 3513 3514 -- Otherwise insert the declaration 3515 3516 else 3517 pragma Assert (Present (Typ_Decl)); 3518 Insert_After_And_Analyze (Typ_Decl, Proc_Decl); 3519 end if; 3520 3521 <<Leave>> 3522 Restore_Ghost_Mode (Saved_GM); 3523 end Build_Invariant_Procedure_Declaration; 3524 3525 -------------------------- 3526 -- Build_Procedure_Form -- 3527 -------------------------- 3528 3529 procedure Build_Procedure_Form (N : Node_Id) is 3530 Loc : constant Source_Ptr := Sloc (N); 3531 Subp : constant Entity_Id := Defining_Entity (N); 3532 3533 Func_Formal : Entity_Id; 3534 Proc_Formals : List_Id; 3535 Proc_Decl : Node_Id; 3536 3537 begin 3538 -- No action needed if this transformation was already done, or in case 3539 -- of subprogram renaming declarations. 3540 3541 if Nkind (Specification (N)) = N_Procedure_Specification 3542 or else Nkind (N) = N_Subprogram_Renaming_Declaration 3543 then 3544 return; 3545 end if; 3546 3547 -- Ditto when dealing with an expression function, where both the 3548 -- original expression and the generated declaration end up being 3549 -- expanded here. 3550 3551 if Rewritten_For_C (Subp) then 3552 return; 3553 end if; 3554 3555 Proc_Formals := New_List; 3556 3557 -- Create a list of formal parameters with the same types as the 3558 -- function. 3559 3560 Func_Formal := First_Formal (Subp); 3561 while Present (Func_Formal) loop 3562 Append_To (Proc_Formals, 3563 Make_Parameter_Specification (Loc, 3564 Defining_Identifier => 3565 Make_Defining_Identifier (Loc, Chars (Func_Formal)), 3566 Parameter_Type => 3567 New_Occurrence_Of (Etype (Func_Formal), Loc))); 3568 3569 Next_Formal (Func_Formal); 3570 end loop; 3571 3572 -- Add an extra out parameter to carry the function result 3573 3574 Name_Len := 6; 3575 Name_Buffer (1 .. Name_Len) := "RESULT"; 3576 Append_To (Proc_Formals, 3577 Make_Parameter_Specification (Loc, 3578 Defining_Identifier => 3579 Make_Defining_Identifier (Loc, Chars => Name_Find), 3580 Out_Present => True, 3581 Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc))); 3582 3583 -- The new procedure declaration is inserted immediately after the 3584 -- function declaration. The processing in Build_Procedure_Body_Form 3585 -- relies on this order. 3586 3587 Proc_Decl := 3588 Make_Subprogram_Declaration (Loc, 3589 Specification => 3590 Make_Procedure_Specification (Loc, 3591 Defining_Unit_Name => 3592 Make_Defining_Identifier (Loc, Chars (Subp)), 3593 Parameter_Specifications => Proc_Formals)); 3594 3595 Insert_After_And_Analyze (Unit_Declaration_Node (Subp), Proc_Decl); 3596 3597 -- Entity of procedure must remain invisible so that it does not 3598 -- overload subsequent references to the original function. 3599 3600 Set_Is_Immediately_Visible (Defining_Entity (Proc_Decl), False); 3601 3602 -- Mark the function as having a procedure form and link the function 3603 -- and its internally built procedure. 3604 3605 Set_Rewritten_For_C (Subp); 3606 Set_Corresponding_Procedure (Subp, Defining_Entity (Proc_Decl)); 3607 Set_Corresponding_Function (Defining_Entity (Proc_Decl), Subp); 3608 end Build_Procedure_Form; 3609 3610 ------------------------ 3611 -- Build_Runtime_Call -- 3612 ------------------------ 3613 3614 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is 3615 begin 3616 -- If entity is not available, we can skip making the call (this avoids 3617 -- junk duplicated error messages in a number of cases). 3618 3619 if not RTE_Available (RE) then 3620 return Make_Null_Statement (Loc); 3621 else 3622 return 3623 Make_Procedure_Call_Statement (Loc, 3624 Name => New_Occurrence_Of (RTE (RE), Loc)); 3625 end if; 3626 end Build_Runtime_Call; 3627 3628 ------------------------ 3629 -- Build_SS_Mark_Call -- 3630 ------------------------ 3631 3632 function Build_SS_Mark_Call 3633 (Loc : Source_Ptr; 3634 Mark : Entity_Id) return Node_Id 3635 is 3636 begin 3637 -- Generate: 3638 -- Mark : constant Mark_Id := SS_Mark; 3639 3640 return 3641 Make_Object_Declaration (Loc, 3642 Defining_Identifier => Mark, 3643 Constant_Present => True, 3644 Object_Definition => 3645 New_Occurrence_Of (RTE (RE_Mark_Id), Loc), 3646 Expression => 3647 Make_Function_Call (Loc, 3648 Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc))); 3649 end Build_SS_Mark_Call; 3650 3651 --------------------------- 3652 -- Build_SS_Release_Call -- 3653 --------------------------- 3654 3655 function Build_SS_Release_Call 3656 (Loc : Source_Ptr; 3657 Mark : Entity_Id) return Node_Id 3658 is 3659 begin 3660 -- Generate: 3661 -- SS_Release (Mark); 3662 3663 return 3664 Make_Procedure_Call_Statement (Loc, 3665 Name => 3666 New_Occurrence_Of (RTE (RE_SS_Release), Loc), 3667 Parameter_Associations => New_List ( 3668 New_Occurrence_Of (Mark, Loc))); 3669 end Build_SS_Release_Call; 3670 3671 ---------------------------- 3672 -- Build_Task_Array_Image -- 3673 ---------------------------- 3674 3675 -- This function generates the body for a function that constructs the 3676 -- image string for a task that is an array component. The function is 3677 -- local to the init proc for the array type, and is called for each one 3678 -- of the components. The constructed image has the form of an indexed 3679 -- component, whose prefix is the outer variable of the array type. 3680 -- The n-dimensional array type has known indexes Index, Index2... 3681 3682 -- Id_Ref is an indexed component form created by the enclosing init proc. 3683 -- Its successive indexes are Val1, Val2, ... which are the loop variables 3684 -- in the loops that call the individual task init proc on each component. 3685 3686 -- The generated function has the following structure: 3687 3688 -- function F return String is 3689 -- Pref : string renames Task_Name; 3690 -- T1 : String := Index1'Image (Val1); 3691 -- ... 3692 -- Tn : String := indexn'image (Valn); 3693 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1; 3694 -- -- Len includes commas and the end parentheses. 3695 -- Res : String (1..Len); 3696 -- Pos : Integer := Pref'Length; 3697 -- 3698 -- begin 3699 -- Res (1 .. Pos) := Pref; 3700 -- Pos := Pos + 1; 3701 -- Res (Pos) := '('; 3702 -- Pos := Pos + 1; 3703 -- Res (Pos .. Pos + T1'Length - 1) := T1; 3704 -- Pos := Pos + T1'Length; 3705 -- Res (Pos) := '.'; 3706 -- Pos := Pos + 1; 3707 -- ... 3708 -- Res (Pos .. Pos + Tn'Length - 1) := Tn; 3709 -- Res (Len) := ')'; 3710 -- 3711 -- return Res; 3712 -- end F; 3713 -- 3714 -- Needless to say, multidimensional arrays of tasks are rare enough that 3715 -- the bulkiness of this code is not really a concern. 3716 3717 function Build_Task_Array_Image 3718 (Loc : Source_Ptr; 3719 Id_Ref : Node_Id; 3720 A_Type : Entity_Id; 3721 Dyn : Boolean := False) return Node_Id 3722 is 3723 Dims : constant Nat := Number_Dimensions (A_Type); 3724 -- Number of dimensions for array of tasks 3725 3726 Temps : array (1 .. Dims) of Entity_Id; 3727 -- Array of temporaries to hold string for each index 3728 3729 Indx : Node_Id; 3730 -- Index expression 3731 3732 Len : Entity_Id; 3733 -- Total length of generated name 3734 3735 Pos : Entity_Id; 3736 -- Running index for substring assignments 3737 3738 Pref : constant Entity_Id := Make_Temporary (Loc, 'P'); 3739 -- Name of enclosing variable, prefix of resulting name 3740 3741 Res : Entity_Id; 3742 -- String to hold result 3743 3744 Val : Node_Id; 3745 -- Value of successive indexes 3746 3747 Sum : Node_Id; 3748 -- Expression to compute total size of string 3749 3750 T : Entity_Id; 3751 -- Entity for name at one index position 3752 3753 Decls : constant List_Id := New_List; 3754 Stats : constant List_Id := New_List; 3755 3756 begin 3757 -- For a dynamic task, the name comes from the target variable. For a 3758 -- static one it is a formal of the enclosing init proc. 3759 3760 if Dyn then 3761 Get_Name_String (Chars (Entity (Prefix (Id_Ref)))); 3762 Append_To (Decls, 3763 Make_Object_Declaration (Loc, 3764 Defining_Identifier => Pref, 3765 Object_Definition => New_Occurrence_Of (Standard_String, Loc), 3766 Expression => 3767 Make_String_Literal (Loc, 3768 Strval => String_From_Name_Buffer))); 3769 3770 else 3771 Append_To (Decls, 3772 Make_Object_Renaming_Declaration (Loc, 3773 Defining_Identifier => Pref, 3774 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), 3775 Name => Make_Identifier (Loc, Name_uTask_Name))); 3776 end if; 3777 3778 Indx := First_Index (A_Type); 3779 Val := First (Expressions (Id_Ref)); 3780 3781 for J in 1 .. Dims loop 3782 T := Make_Temporary (Loc, 'T'); 3783 Temps (J) := T; 3784 3785 Append_To (Decls, 3786 Make_Object_Declaration (Loc, 3787 Defining_Identifier => T, 3788 Object_Definition => New_Occurrence_Of (Standard_String, Loc), 3789 Expression => 3790 Make_Attribute_Reference (Loc, 3791 Attribute_Name => Name_Image, 3792 Prefix => New_Occurrence_Of (Etype (Indx), Loc), 3793 Expressions => New_List (New_Copy_Tree (Val))))); 3794 3795 Next_Index (Indx); 3796 Next (Val); 3797 end loop; 3798 3799 Sum := Make_Integer_Literal (Loc, Dims + 1); 3800 3801 Sum := 3802 Make_Op_Add (Loc, 3803 Left_Opnd => Sum, 3804 Right_Opnd => 3805 Make_Attribute_Reference (Loc, 3806 Attribute_Name => Name_Length, 3807 Prefix => New_Occurrence_Of (Pref, Loc), 3808 Expressions => New_List (Make_Integer_Literal (Loc, 1)))); 3809 3810 for J in 1 .. Dims loop 3811 Sum := 3812 Make_Op_Add (Loc, 3813 Left_Opnd => Sum, 3814 Right_Opnd => 3815 Make_Attribute_Reference (Loc, 3816 Attribute_Name => Name_Length, 3817 Prefix => 3818 New_Occurrence_Of (Temps (J), Loc), 3819 Expressions => New_List (Make_Integer_Literal (Loc, 1)))); 3820 end loop; 3821 3822 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats); 3823 3824 Set_Character_Literal_Name (Char_Code (Character'Pos ('('))); 3825 3826 Append_To (Stats, 3827 Make_Assignment_Statement (Loc, 3828 Name => 3829 Make_Indexed_Component (Loc, 3830 Prefix => New_Occurrence_Of (Res, Loc), 3831 Expressions => New_List (New_Occurrence_Of (Pos, Loc))), 3832 Expression => 3833 Make_Character_Literal (Loc, 3834 Chars => Name_Find, 3835 Char_Literal_Value => UI_From_Int (Character'Pos ('('))))); 3836 3837 Append_To (Stats, 3838 Make_Assignment_Statement (Loc, 3839 Name => New_Occurrence_Of (Pos, Loc), 3840 Expression => 3841 Make_Op_Add (Loc, 3842 Left_Opnd => New_Occurrence_Of (Pos, Loc), 3843 Right_Opnd => Make_Integer_Literal (Loc, 1)))); 3844 3845 for J in 1 .. Dims loop 3846 3847 Append_To (Stats, 3848 Make_Assignment_Statement (Loc, 3849 Name => 3850 Make_Slice (Loc, 3851 Prefix => New_Occurrence_Of (Res, Loc), 3852 Discrete_Range => 3853 Make_Range (Loc, 3854 Low_Bound => New_Occurrence_Of (Pos, Loc), 3855 High_Bound => 3856 Make_Op_Subtract (Loc, 3857 Left_Opnd => 3858 Make_Op_Add (Loc, 3859 Left_Opnd => New_Occurrence_Of (Pos, Loc), 3860 Right_Opnd => 3861 Make_Attribute_Reference (Loc, 3862 Attribute_Name => Name_Length, 3863 Prefix => 3864 New_Occurrence_Of (Temps (J), Loc), 3865 Expressions => 3866 New_List (Make_Integer_Literal (Loc, 1)))), 3867 Right_Opnd => Make_Integer_Literal (Loc, 1)))), 3868 3869 Expression => New_Occurrence_Of (Temps (J), Loc))); 3870 3871 if J < Dims then 3872 Append_To (Stats, 3873 Make_Assignment_Statement (Loc, 3874 Name => New_Occurrence_Of (Pos, Loc), 3875 Expression => 3876 Make_Op_Add (Loc, 3877 Left_Opnd => New_Occurrence_Of (Pos, Loc), 3878 Right_Opnd => 3879 Make_Attribute_Reference (Loc, 3880 Attribute_Name => Name_Length, 3881 Prefix => New_Occurrence_Of (Temps (J), Loc), 3882 Expressions => 3883 New_List (Make_Integer_Literal (Loc, 1)))))); 3884 3885 Set_Character_Literal_Name (Char_Code (Character'Pos (','))); 3886 3887 Append_To (Stats, 3888 Make_Assignment_Statement (Loc, 3889 Name => Make_Indexed_Component (Loc, 3890 Prefix => New_Occurrence_Of (Res, Loc), 3891 Expressions => New_List (New_Occurrence_Of (Pos, Loc))), 3892 Expression => 3893 Make_Character_Literal (Loc, 3894 Chars => Name_Find, 3895 Char_Literal_Value => UI_From_Int (Character'Pos (','))))); 3896 3897 Append_To (Stats, 3898 Make_Assignment_Statement (Loc, 3899 Name => New_Occurrence_Of (Pos, Loc), 3900 Expression => 3901 Make_Op_Add (Loc, 3902 Left_Opnd => New_Occurrence_Of (Pos, Loc), 3903 Right_Opnd => Make_Integer_Literal (Loc, 1)))); 3904 end if; 3905 end loop; 3906 3907 Set_Character_Literal_Name (Char_Code (Character'Pos (')'))); 3908 3909 Append_To (Stats, 3910 Make_Assignment_Statement (Loc, 3911 Name => 3912 Make_Indexed_Component (Loc, 3913 Prefix => New_Occurrence_Of (Res, Loc), 3914 Expressions => New_List (New_Occurrence_Of (Len, Loc))), 3915 Expression => 3916 Make_Character_Literal (Loc, 3917 Chars => Name_Find, 3918 Char_Literal_Value => UI_From_Int (Character'Pos (')'))))); 3919 return Build_Task_Image_Function (Loc, Decls, Stats, Res); 3920 end Build_Task_Array_Image; 3921 3922 ---------------------------- 3923 -- Build_Task_Image_Decls -- 3924 ---------------------------- 3925 3926 function Build_Task_Image_Decls 3927 (Loc : Source_Ptr; 3928 Id_Ref : Node_Id; 3929 A_Type : Entity_Id; 3930 In_Init_Proc : Boolean := False) return List_Id 3931 is 3932 Decls : constant List_Id := New_List; 3933 T_Id : Entity_Id := Empty; 3934 Decl : Node_Id; 3935 Expr : Node_Id := Empty; 3936 Fun : Node_Id := Empty; 3937 Is_Dyn : constant Boolean := 3938 Nkind (Parent (Id_Ref)) = N_Assignment_Statement 3939 and then 3940 Nkind (Expression (Parent (Id_Ref))) = N_Allocator; 3941 3942 begin 3943 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect, 3944 -- generate a dummy declaration only. 3945 3946 if Restriction_Active (No_Implicit_Heap_Allocations) 3947 or else Global_Discard_Names 3948 then 3949 T_Id := Make_Temporary (Loc, 'J'); 3950 Name_Len := 0; 3951 3952 return 3953 New_List ( 3954 Make_Object_Declaration (Loc, 3955 Defining_Identifier => T_Id, 3956 Object_Definition => New_Occurrence_Of (Standard_String, Loc), 3957 Expression => 3958 Make_String_Literal (Loc, 3959 Strval => String_From_Name_Buffer))); 3960 3961 else 3962 if Nkind (Id_Ref) = N_Identifier 3963 or else Nkind (Id_Ref) = N_Defining_Identifier 3964 then 3965 -- For a simple variable, the image of the task is built from 3966 -- the name of the variable. To avoid possible conflict with the 3967 -- anonymous type created for a single protected object, add a 3968 -- numeric suffix. 3969 3970 T_Id := 3971 Make_Defining_Identifier (Loc, 3972 New_External_Name (Chars (Id_Ref), 'T', 1)); 3973 3974 Get_Name_String (Chars (Id_Ref)); 3975 3976 Expr := 3977 Make_String_Literal (Loc, 3978 Strval => String_From_Name_Buffer); 3979 3980 elsif Nkind (Id_Ref) = N_Selected_Component then 3981 T_Id := 3982 Make_Defining_Identifier (Loc, 3983 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T')); 3984 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn); 3985 3986 elsif Nkind (Id_Ref) = N_Indexed_Component then 3987 T_Id := 3988 Make_Defining_Identifier (Loc, 3989 New_External_Name (Chars (A_Type), 'N')); 3990 3991 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn); 3992 end if; 3993 end if; 3994 3995 if Present (Fun) then 3996 Append (Fun, Decls); 3997 Expr := Make_Function_Call (Loc, 3998 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc)); 3999 4000 if not In_Init_Proc then 4001 Set_Uses_Sec_Stack (Defining_Entity (Fun)); 4002 end if; 4003 end if; 4004 4005 Decl := Make_Object_Declaration (Loc, 4006 Defining_Identifier => T_Id, 4007 Object_Definition => New_Occurrence_Of (Standard_String, Loc), 4008 Constant_Present => True, 4009 Expression => Expr); 4010 4011 Append (Decl, Decls); 4012 return Decls; 4013 end Build_Task_Image_Decls; 4014 4015 ------------------------------- 4016 -- Build_Task_Image_Function -- 4017 ------------------------------- 4018 4019 function Build_Task_Image_Function 4020 (Loc : Source_Ptr; 4021 Decls : List_Id; 4022 Stats : List_Id; 4023 Res : Entity_Id) return Node_Id 4024 is 4025 Spec : Node_Id; 4026 4027 begin 4028 Append_To (Stats, 4029 Make_Simple_Return_Statement (Loc, 4030 Expression => New_Occurrence_Of (Res, Loc))); 4031 4032 Spec := Make_Function_Specification (Loc, 4033 Defining_Unit_Name => Make_Temporary (Loc, 'F'), 4034 Result_Definition => New_Occurrence_Of (Standard_String, Loc)); 4035 4036 -- Calls to 'Image use the secondary stack, which must be cleaned up 4037 -- after the task name is built. 4038 4039 return Make_Subprogram_Body (Loc, 4040 Specification => Spec, 4041 Declarations => Decls, 4042 Handled_Statement_Sequence => 4043 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats)); 4044 end Build_Task_Image_Function; 4045 4046 ----------------------------- 4047 -- Build_Task_Image_Prefix -- 4048 ----------------------------- 4049 4050 procedure Build_Task_Image_Prefix 4051 (Loc : Source_Ptr; 4052 Len : out Entity_Id; 4053 Res : out Entity_Id; 4054 Pos : out Entity_Id; 4055 Prefix : Entity_Id; 4056 Sum : Node_Id; 4057 Decls : List_Id; 4058 Stats : List_Id) 4059 is 4060 begin 4061 Len := Make_Temporary (Loc, 'L', Sum); 4062 4063 Append_To (Decls, 4064 Make_Object_Declaration (Loc, 4065 Defining_Identifier => Len, 4066 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc), 4067 Expression => Sum)); 4068 4069 Res := Make_Temporary (Loc, 'R'); 4070 4071 Append_To (Decls, 4072 Make_Object_Declaration (Loc, 4073 Defining_Identifier => Res, 4074 Object_Definition => 4075 Make_Subtype_Indication (Loc, 4076 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), 4077 Constraint => 4078 Make_Index_Or_Discriminant_Constraint (Loc, 4079 Constraints => 4080 New_List ( 4081 Make_Range (Loc, 4082 Low_Bound => Make_Integer_Literal (Loc, 1), 4083 High_Bound => New_Occurrence_Of (Len, Loc))))))); 4084 4085 -- Indicate that the result is an internal temporary, so it does not 4086 -- receive a bogus initialization when declaration is expanded. This 4087 -- is both efficient, and prevents anomalies in the handling of 4088 -- dynamic objects on the secondary stack. 4089 4090 Set_Is_Internal (Res); 4091 Pos := Make_Temporary (Loc, 'P'); 4092 4093 Append_To (Decls, 4094 Make_Object_Declaration (Loc, 4095 Defining_Identifier => Pos, 4096 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc))); 4097 4098 -- Pos := Prefix'Length; 4099 4100 Append_To (Stats, 4101 Make_Assignment_Statement (Loc, 4102 Name => New_Occurrence_Of (Pos, Loc), 4103 Expression => 4104 Make_Attribute_Reference (Loc, 4105 Attribute_Name => Name_Length, 4106 Prefix => New_Occurrence_Of (Prefix, Loc), 4107 Expressions => New_List (Make_Integer_Literal (Loc, 1))))); 4108 4109 -- Res (1 .. Pos) := Prefix; 4110 4111 Append_To (Stats, 4112 Make_Assignment_Statement (Loc, 4113 Name => 4114 Make_Slice (Loc, 4115 Prefix => New_Occurrence_Of (Res, Loc), 4116 Discrete_Range => 4117 Make_Range (Loc, 4118 Low_Bound => Make_Integer_Literal (Loc, 1), 4119 High_Bound => New_Occurrence_Of (Pos, Loc))), 4120 4121 Expression => New_Occurrence_Of (Prefix, Loc))); 4122 4123 Append_To (Stats, 4124 Make_Assignment_Statement (Loc, 4125 Name => New_Occurrence_Of (Pos, Loc), 4126 Expression => 4127 Make_Op_Add (Loc, 4128 Left_Opnd => New_Occurrence_Of (Pos, Loc), 4129 Right_Opnd => Make_Integer_Literal (Loc, 1)))); 4130 end Build_Task_Image_Prefix; 4131 4132 ----------------------------- 4133 -- Build_Task_Record_Image -- 4134 ----------------------------- 4135 4136 function Build_Task_Record_Image 4137 (Loc : Source_Ptr; 4138 Id_Ref : Node_Id; 4139 Dyn : Boolean := False) return Node_Id 4140 is 4141 Len : Entity_Id; 4142 -- Total length of generated name 4143 4144 Pos : Entity_Id; 4145 -- Index into result 4146 4147 Res : Entity_Id; 4148 -- String to hold result 4149 4150 Pref : constant Entity_Id := Make_Temporary (Loc, 'P'); 4151 -- Name of enclosing variable, prefix of resulting name 4152 4153 Sum : Node_Id; 4154 -- Expression to compute total size of string 4155 4156 Sel : Entity_Id; 4157 -- Entity for selector name 4158 4159 Decls : constant List_Id := New_List; 4160 Stats : constant List_Id := New_List; 4161 4162 begin 4163 -- For a dynamic task, the name comes from the target variable. For a 4164 -- static one it is a formal of the enclosing init proc. 4165 4166 if Dyn then 4167 Get_Name_String (Chars (Entity (Prefix (Id_Ref)))); 4168 Append_To (Decls, 4169 Make_Object_Declaration (Loc, 4170 Defining_Identifier => Pref, 4171 Object_Definition => New_Occurrence_Of (Standard_String, Loc), 4172 Expression => 4173 Make_String_Literal (Loc, 4174 Strval => String_From_Name_Buffer))); 4175 4176 else 4177 Append_To (Decls, 4178 Make_Object_Renaming_Declaration (Loc, 4179 Defining_Identifier => Pref, 4180 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), 4181 Name => Make_Identifier (Loc, Name_uTask_Name))); 4182 end if; 4183 4184 Sel := Make_Temporary (Loc, 'S'); 4185 4186 Get_Name_String (Chars (Selector_Name (Id_Ref))); 4187 4188 Append_To (Decls, 4189 Make_Object_Declaration (Loc, 4190 Defining_Identifier => Sel, 4191 Object_Definition => New_Occurrence_Of (Standard_String, Loc), 4192 Expression => 4193 Make_String_Literal (Loc, 4194 Strval => String_From_Name_Buffer))); 4195 4196 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1)); 4197 4198 Sum := 4199 Make_Op_Add (Loc, 4200 Left_Opnd => Sum, 4201 Right_Opnd => 4202 Make_Attribute_Reference (Loc, 4203 Attribute_Name => Name_Length, 4204 Prefix => 4205 New_Occurrence_Of (Pref, Loc), 4206 Expressions => New_List (Make_Integer_Literal (Loc, 1)))); 4207 4208 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats); 4209 4210 Set_Character_Literal_Name (Char_Code (Character'Pos ('.'))); 4211 4212 -- Res (Pos) := '.'; 4213 4214 Append_To (Stats, 4215 Make_Assignment_Statement (Loc, 4216 Name => Make_Indexed_Component (Loc, 4217 Prefix => New_Occurrence_Of (Res, Loc), 4218 Expressions => New_List (New_Occurrence_Of (Pos, Loc))), 4219 Expression => 4220 Make_Character_Literal (Loc, 4221 Chars => Name_Find, 4222 Char_Literal_Value => 4223 UI_From_Int (Character'Pos ('.'))))); 4224 4225 Append_To (Stats, 4226 Make_Assignment_Statement (Loc, 4227 Name => New_Occurrence_Of (Pos, Loc), 4228 Expression => 4229 Make_Op_Add (Loc, 4230 Left_Opnd => New_Occurrence_Of (Pos, Loc), 4231 Right_Opnd => Make_Integer_Literal (Loc, 1)))); 4232 4233 -- Res (Pos .. Len) := Selector; 4234 4235 Append_To (Stats, 4236 Make_Assignment_Statement (Loc, 4237 Name => Make_Slice (Loc, 4238 Prefix => New_Occurrence_Of (Res, Loc), 4239 Discrete_Range => 4240 Make_Range (Loc, 4241 Low_Bound => New_Occurrence_Of (Pos, Loc), 4242 High_Bound => New_Occurrence_Of (Len, Loc))), 4243 Expression => New_Occurrence_Of (Sel, Loc))); 4244 4245 return Build_Task_Image_Function (Loc, Decls, Stats, Res); 4246 end Build_Task_Record_Image; 4247 4248 --------------------------------------- 4249 -- Build_Transient_Object_Statements -- 4250 --------------------------------------- 4251 4252 procedure Build_Transient_Object_Statements 4253 (Obj_Decl : Node_Id; 4254 Fin_Call : out Node_Id; 4255 Hook_Assign : out Node_Id; 4256 Hook_Clear : out Node_Id; 4257 Hook_Decl : out Node_Id; 4258 Ptr_Decl : out Node_Id; 4259 Finalize_Obj : Boolean := True) 4260 is 4261 Loc : constant Source_Ptr := Sloc (Obj_Decl); 4262 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl); 4263 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id)); 4264 4265 Desig_Typ : Entity_Id; 4266 Hook_Expr : Node_Id; 4267 Hook_Id : Entity_Id; 4268 Obj_Ref : Node_Id; 4269 Ptr_Typ : Entity_Id; 4270 4271 begin 4272 -- Recover the type of the object 4273 4274 Desig_Typ := Obj_Typ; 4275 4276 if Is_Access_Type (Desig_Typ) then 4277 Desig_Typ := Available_View (Designated_Type (Desig_Typ)); 4278 end if; 4279 4280 -- Create an access type which provides a reference to the transient 4281 -- object. Generate: 4282 4283 -- type Ptr_Typ is access all Desig_Typ; 4284 4285 Ptr_Typ := Make_Temporary (Loc, 'A'); 4286 Set_Ekind (Ptr_Typ, E_General_Access_Type); 4287 Set_Directly_Designated_Type (Ptr_Typ, Desig_Typ); 4288 4289 Ptr_Decl := 4290 Make_Full_Type_Declaration (Loc, 4291 Defining_Identifier => Ptr_Typ, 4292 Type_Definition => 4293 Make_Access_To_Object_Definition (Loc, 4294 All_Present => True, 4295 Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))); 4296 4297 -- Create a temporary check which acts as a hook to the transient 4298 -- object. Generate: 4299 4300 -- Hook : Ptr_Typ := null; 4301 4302 Hook_Id := Make_Temporary (Loc, 'T'); 4303 Set_Ekind (Hook_Id, E_Variable); 4304 Set_Etype (Hook_Id, Ptr_Typ); 4305 4306 Hook_Decl := 4307 Make_Object_Declaration (Loc, 4308 Defining_Identifier => Hook_Id, 4309 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc), 4310 Expression => Make_Null (Loc)); 4311 4312 -- Mark the temporary as a hook. This signals the machinery in 4313 -- Build_Finalizer to recognize this special case. 4314 4315 Set_Status_Flag_Or_Transient_Decl (Hook_Id, Obj_Decl); 4316 4317 -- Hook the transient object to the temporary. Generate: 4318 4319 -- Hook := Ptr_Typ (Obj_Id); 4320 -- <or> 4321 -- Hool := Obj_Id'Unrestricted_Access; 4322 4323 if Is_Access_Type (Obj_Typ) then 4324 Hook_Expr := 4325 Unchecked_Convert_To (Ptr_Typ, New_Occurrence_Of (Obj_Id, Loc)); 4326 else 4327 Hook_Expr := 4328 Make_Attribute_Reference (Loc, 4329 Prefix => New_Occurrence_Of (Obj_Id, Loc), 4330 Attribute_Name => Name_Unrestricted_Access); 4331 end if; 4332 4333 Hook_Assign := 4334 Make_Assignment_Statement (Loc, 4335 Name => New_Occurrence_Of (Hook_Id, Loc), 4336 Expression => Hook_Expr); 4337 4338 -- Crear the hook prior to finalizing the object. Generate: 4339 4340 -- Hook := null; 4341 4342 Hook_Clear := 4343 Make_Assignment_Statement (Loc, 4344 Name => New_Occurrence_Of (Hook_Id, Loc), 4345 Expression => Make_Null (Loc)); 4346 4347 -- Finalize the object. Generate: 4348 4349 -- [Deep_]Finalize (Obj_Ref[.all]); 4350 4351 if Finalize_Obj then 4352 Obj_Ref := New_Occurrence_Of (Obj_Id, Loc); 4353 4354 if Is_Access_Type (Obj_Typ) then 4355 Obj_Ref := Make_Explicit_Dereference (Loc, Obj_Ref); 4356 Set_Etype (Obj_Ref, Desig_Typ); 4357 end if; 4358 4359 Fin_Call := 4360 Make_Final_Call 4361 (Obj_Ref => Obj_Ref, 4362 Typ => Desig_Typ); 4363 4364 -- Otherwise finalize the hook. Generate: 4365 4366 -- [Deep_]Finalize (Hook.all); 4367 4368 else 4369 Fin_Call := 4370 Make_Final_Call ( 4371 Obj_Ref => 4372 Make_Explicit_Dereference (Loc, 4373 Prefix => New_Occurrence_Of (Hook_Id, Loc)), 4374 Typ => Desig_Typ); 4375 end if; 4376 end Build_Transient_Object_Statements; 4377 4378 ----------------------------- 4379 -- Check_Float_Op_Overflow -- 4380 ----------------------------- 4381 4382 procedure Check_Float_Op_Overflow (N : Node_Id) is 4383 begin 4384 -- Return if no check needed 4385 4386 if not Is_Floating_Point_Type (Etype (N)) 4387 or else not (Do_Overflow_Check (N) and then Check_Float_Overflow) 4388 4389 -- In CodePeer_Mode, rely on the overflow check flag being set instead 4390 -- and do not expand the code for float overflow checking. 4391 4392 or else CodePeer_Mode 4393 then 4394 return; 4395 end if; 4396 4397 -- Otherwise we replace the expression by 4398 4399 -- do Tnn : constant ftype := expression; 4400 -- constraint_error when not Tnn'Valid; 4401 -- in Tnn; 4402 4403 declare 4404 Loc : constant Source_Ptr := Sloc (N); 4405 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N); 4406 Typ : constant Entity_Id := Etype (N); 4407 4408 begin 4409 -- Turn off the Do_Overflow_Check flag, since we are doing that work 4410 -- right here. We also set the node as analyzed to prevent infinite 4411 -- recursion from repeating the operation in the expansion. 4412 4413 Set_Do_Overflow_Check (N, False); 4414 Set_Analyzed (N, True); 4415 4416 -- Do the rewrite to include the check 4417 4418 Rewrite (N, 4419 Make_Expression_With_Actions (Loc, 4420 Actions => New_List ( 4421 Make_Object_Declaration (Loc, 4422 Defining_Identifier => Tnn, 4423 Object_Definition => New_Occurrence_Of (Typ, Loc), 4424 Constant_Present => True, 4425 Expression => Relocate_Node (N)), 4426 Make_Raise_Constraint_Error (Loc, 4427 Condition => 4428 Make_Op_Not (Loc, 4429 Right_Opnd => 4430 Make_Attribute_Reference (Loc, 4431 Prefix => New_Occurrence_Of (Tnn, Loc), 4432 Attribute_Name => Name_Valid)), 4433 Reason => CE_Overflow_Check_Failed)), 4434 Expression => New_Occurrence_Of (Tnn, Loc))); 4435 4436 Analyze_And_Resolve (N, Typ); 4437 end; 4438 end Check_Float_Op_Overflow; 4439 4440 ---------------------------------- 4441 -- Component_May_Be_Bit_Aligned -- 4442 ---------------------------------- 4443 4444 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is 4445 UT : Entity_Id; 4446 4447 begin 4448 -- If no component clause, then everything is fine, since the back end 4449 -- never bit-misaligns by default, even if there is a pragma Packed for 4450 -- the record. 4451 4452 if No (Comp) or else No (Component_Clause (Comp)) then 4453 return False; 4454 end if; 4455 4456 UT := Underlying_Type (Etype (Comp)); 4457 4458 -- It is only array and record types that cause trouble 4459 4460 if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then 4461 return False; 4462 4463 -- If we know that we have a small (64 bits or less) record or small 4464 -- bit-packed array, then everything is fine, since the back end can 4465 -- handle these cases correctly. 4466 4467 elsif Esize (Comp) <= 64 4468 and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT)) 4469 then 4470 return False; 4471 4472 -- Otherwise if the component is not byte aligned, we know we have the 4473 -- nasty unaligned case. 4474 4475 elsif Normalized_First_Bit (Comp) /= Uint_0 4476 or else Esize (Comp) mod System_Storage_Unit /= Uint_0 4477 then 4478 return True; 4479 4480 -- If we are large and byte aligned, then OK at this level 4481 4482 else 4483 return False; 4484 end if; 4485 end Component_May_Be_Bit_Aligned; 4486 4487 ---------------------------------------- 4488 -- Containing_Package_With_Ext_Axioms -- 4489 ---------------------------------------- 4490 4491 function Containing_Package_With_Ext_Axioms 4492 (E : Entity_Id) return Entity_Id 4493 is 4494 begin 4495 -- E is the package or generic package which is externally axiomatized 4496 4497 if Ekind_In (E, E_Generic_Package, E_Package) 4498 and then Has_Annotate_Pragma_For_External_Axiomatization (E) 4499 then 4500 return E; 4501 end if; 4502 4503 -- If E's scope is axiomatized, E is axiomatized 4504 4505 if Present (Scope (E)) then 4506 declare 4507 First_Ax_Parent_Scope : constant Entity_Id := 4508 Containing_Package_With_Ext_Axioms (Scope (E)); 4509 begin 4510 if Present (First_Ax_Parent_Scope) then 4511 return First_Ax_Parent_Scope; 4512 end if; 4513 end; 4514 end if; 4515 4516 -- Otherwise, if E is a package instance, it is axiomatized if the 4517 -- corresponding generic package is axiomatized. 4518 4519 if Ekind (E) = E_Package then 4520 declare 4521 Par : constant Node_Id := Parent (E); 4522 Decl : Node_Id; 4523 4524 begin 4525 if Nkind (Par) = N_Defining_Program_Unit_Name then 4526 Decl := Parent (Par); 4527 else 4528 Decl := Par; 4529 end if; 4530 4531 if Present (Generic_Parent (Decl)) then 4532 return 4533 Containing_Package_With_Ext_Axioms (Generic_Parent (Decl)); 4534 end if; 4535 end; 4536 end if; 4537 4538 return Empty; 4539 end Containing_Package_With_Ext_Axioms; 4540 4541 ------------------------------- 4542 -- Convert_To_Actual_Subtype -- 4543 ------------------------------- 4544 4545 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is 4546 Act_ST : Entity_Id; 4547 4548 begin 4549 Act_ST := Get_Actual_Subtype (Exp); 4550 4551 if Act_ST = Etype (Exp) then 4552 return; 4553 else 4554 Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp))); 4555 Analyze_And_Resolve (Exp, Act_ST); 4556 end if; 4557 end Convert_To_Actual_Subtype; 4558 4559 ----------------------------------- 4560 -- Corresponding_Runtime_Package -- 4561 ----------------------------------- 4562 4563 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is 4564 function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean; 4565 -- Return True if protected type T has one entry and the maximum queue 4566 -- length is one. 4567 4568 -------------------------------- 4569 -- Has_One_Entry_And_No_Queue -- 4570 -------------------------------- 4571 4572 function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean is 4573 Item : Entity_Id; 4574 Is_First : Boolean := True; 4575 4576 begin 4577 Item := First_Entity (T); 4578 while Present (Item) loop 4579 if Is_Entry (Item) then 4580 4581 -- The protected type has more than one entry 4582 4583 if not Is_First then 4584 return False; 4585 end if; 4586 4587 -- The queue length is not one 4588 4589 if not Restriction_Active (No_Entry_Queue) 4590 and then Get_Max_Queue_Length (Item) /= Uint_1 4591 then 4592 return False; 4593 end if; 4594 4595 Is_First := False; 4596 end if; 4597 4598 Next_Entity (Item); 4599 end loop; 4600 4601 return True; 4602 end Has_One_Entry_And_No_Queue; 4603 4604 -- Local variables 4605 4606 Pkg_Id : RTU_Id := RTU_Null; 4607 4608 -- Start of processing for Corresponding_Runtime_Package 4609 4610 begin 4611 pragma Assert (Is_Concurrent_Type (Typ)); 4612 4613 if Ekind (Typ) in Protected_Kind then 4614 if Has_Entries (Typ) 4615 4616 -- A protected type without entries that covers an interface and 4617 -- overrides the abstract routines with protected procedures is 4618 -- considered equivalent to a protected type with entries in the 4619 -- context of dispatching select statements. It is sufficient to 4620 -- check for the presence of an interface list in the declaration 4621 -- node to recognize this case. 4622 4623 or else Present (Interface_List (Parent (Typ))) 4624 4625 -- Protected types with interrupt handlers (when not using a 4626 -- restricted profile) are also considered equivalent to 4627 -- protected types with entries. The types which are used 4628 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection) 4629 -- are derived from Protection_Entries. 4630 4631 or else (Has_Attach_Handler (Typ) and then not Restricted_Profile) 4632 or else Has_Interrupt_Handler (Typ) 4633 then 4634 if Abort_Allowed 4635 or else Restriction_Active (No_Select_Statements) = False 4636 or else not Has_One_Entry_And_No_Queue (Typ) 4637 or else (Has_Attach_Handler (Typ) 4638 and then not Restricted_Profile) 4639 then 4640 Pkg_Id := System_Tasking_Protected_Objects_Entries; 4641 else 4642 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry; 4643 end if; 4644 4645 else 4646 Pkg_Id := System_Tasking_Protected_Objects; 4647 end if; 4648 end if; 4649 4650 return Pkg_Id; 4651 end Corresponding_Runtime_Package; 4652 4653 ----------------------------------- 4654 -- Current_Sem_Unit_Declarations -- 4655 ----------------------------------- 4656 4657 function Current_Sem_Unit_Declarations return List_Id is 4658 U : Node_Id := Unit (Cunit (Current_Sem_Unit)); 4659 Decls : List_Id; 4660 4661 begin 4662 -- If the current unit is a package body, locate the visible 4663 -- declarations of the package spec. 4664 4665 if Nkind (U) = N_Package_Body then 4666 U := Unit (Library_Unit (Cunit (Current_Sem_Unit))); 4667 end if; 4668 4669 if Nkind (U) = N_Package_Declaration then 4670 U := Specification (U); 4671 Decls := Visible_Declarations (U); 4672 4673 if No (Decls) then 4674 Decls := New_List; 4675 Set_Visible_Declarations (U, Decls); 4676 end if; 4677 4678 else 4679 Decls := Declarations (U); 4680 4681 if No (Decls) then 4682 Decls := New_List; 4683 Set_Declarations (U, Decls); 4684 end if; 4685 end if; 4686 4687 return Decls; 4688 end Current_Sem_Unit_Declarations; 4689 4690 ----------------------- 4691 -- Duplicate_Subexpr -- 4692 ----------------------- 4693 4694 function Duplicate_Subexpr 4695 (Exp : Node_Id; 4696 Name_Req : Boolean := False; 4697 Renaming_Req : Boolean := False) return Node_Id 4698 is 4699 begin 4700 Remove_Side_Effects (Exp, Name_Req, Renaming_Req); 4701 return New_Copy_Tree (Exp); 4702 end Duplicate_Subexpr; 4703 4704 --------------------------------- 4705 -- Duplicate_Subexpr_No_Checks -- 4706 --------------------------------- 4707 4708 function Duplicate_Subexpr_No_Checks 4709 (Exp : Node_Id; 4710 Name_Req : Boolean := False; 4711 Renaming_Req : Boolean := False; 4712 Related_Id : Entity_Id := Empty; 4713 Is_Low_Bound : Boolean := False; 4714 Is_High_Bound : Boolean := False) return Node_Id 4715 is 4716 New_Exp : Node_Id; 4717 4718 begin 4719 Remove_Side_Effects 4720 (Exp => Exp, 4721 Name_Req => Name_Req, 4722 Renaming_Req => Renaming_Req, 4723 Related_Id => Related_Id, 4724 Is_Low_Bound => Is_Low_Bound, 4725 Is_High_Bound => Is_High_Bound); 4726 4727 New_Exp := New_Copy_Tree (Exp); 4728 Remove_Checks (New_Exp); 4729 return New_Exp; 4730 end Duplicate_Subexpr_No_Checks; 4731 4732 ----------------------------------- 4733 -- Duplicate_Subexpr_Move_Checks -- 4734 ----------------------------------- 4735 4736 function Duplicate_Subexpr_Move_Checks 4737 (Exp : Node_Id; 4738 Name_Req : Boolean := False; 4739 Renaming_Req : Boolean := False) return Node_Id 4740 is 4741 New_Exp : Node_Id; 4742 4743 begin 4744 Remove_Side_Effects (Exp, Name_Req, Renaming_Req); 4745 New_Exp := New_Copy_Tree (Exp); 4746 Remove_Checks (Exp); 4747 return New_Exp; 4748 end Duplicate_Subexpr_Move_Checks; 4749 4750 -------------------- 4751 -- Ensure_Defined -- 4752 -------------------- 4753 4754 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is 4755 IR : Node_Id; 4756 4757 begin 4758 -- An itype reference must only be created if this is a local itype, so 4759 -- that gigi can elaborate it on the proper objstack. 4760 4761 if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then 4762 IR := Make_Itype_Reference (Sloc (N)); 4763 Set_Itype (IR, Typ); 4764 Insert_Action (N, IR); 4765 end if; 4766 end Ensure_Defined; 4767 4768 -------------------- 4769 -- Entry_Names_OK -- 4770 -------------------- 4771 4772 function Entry_Names_OK return Boolean is 4773 begin 4774 return 4775 not Restricted_Profile 4776 and then not Global_Discard_Names 4777 and then not Restriction_Active (No_Implicit_Heap_Allocations) 4778 and then not Restriction_Active (No_Local_Allocators); 4779 end Entry_Names_OK; 4780 4781 ------------------- 4782 -- Evaluate_Name -- 4783 ------------------- 4784 4785 procedure Evaluate_Name (Nam : Node_Id) is 4786 begin 4787 -- For an attribute reference or an indexed component, evaluate the 4788 -- prefix, which is itself a name, recursively, and then force the 4789 -- evaluation of all the subscripts (or attribute expressions). 4790 4791 case Nkind (Nam) is 4792 when N_Attribute_Reference 4793 | N_Indexed_Component 4794 => 4795 Evaluate_Name (Prefix (Nam)); 4796 4797 declare 4798 E : Node_Id; 4799 4800 begin 4801 E := First (Expressions (Nam)); 4802 while Present (E) loop 4803 Force_Evaluation (E); 4804 4805 if Original_Node (E) /= E then 4806 Set_Do_Range_Check 4807 (E, Do_Range_Check (Original_Node (E))); 4808 end if; 4809 4810 Next (E); 4811 end loop; 4812 end; 4813 4814 -- For an explicit dereference, we simply force the evaluation of 4815 -- the name expression. The dereference provides a value that is the 4816 -- address for the renamed object, and it is precisely this value 4817 -- that we want to preserve. 4818 4819 when N_Explicit_Dereference => 4820 Force_Evaluation (Prefix (Nam)); 4821 4822 -- For a function call, we evaluate the call 4823 4824 when N_Function_Call => 4825 Force_Evaluation (Nam); 4826 4827 -- For a qualified expression, we evaluate the underlying object 4828 -- name if any, otherwise we force the evaluation of the underlying 4829 -- expression. 4830 4831 when N_Qualified_Expression => 4832 if Is_Object_Reference (Expression (Nam)) then 4833 Evaluate_Name (Expression (Nam)); 4834 else 4835 Force_Evaluation (Expression (Nam)); 4836 end if; 4837 4838 -- For a selected component, we simply evaluate the prefix 4839 4840 when N_Selected_Component => 4841 Evaluate_Name (Prefix (Nam)); 4842 4843 -- For a slice, we evaluate the prefix, as for the indexed component 4844 -- case and then, if there is a range present, either directly or as 4845 -- the constraint of a discrete subtype indication, we evaluate the 4846 -- two bounds of this range. 4847 4848 when N_Slice => 4849 Evaluate_Name (Prefix (Nam)); 4850 Evaluate_Slice_Bounds (Nam); 4851 4852 -- For a type conversion, the expression of the conversion must be 4853 -- the name of an object, and we simply need to evaluate this name. 4854 4855 when N_Type_Conversion => 4856 Evaluate_Name (Expression (Nam)); 4857 4858 -- The remaining cases are direct name, operator symbol and character 4859 -- literal. In all these cases, we do nothing, since we want to 4860 -- reevaluate each time the renamed object is used. 4861 4862 when others => 4863 null; 4864 end case; 4865 end Evaluate_Name; 4866 4867 --------------------------- 4868 -- Evaluate_Slice_Bounds -- 4869 --------------------------- 4870 4871 procedure Evaluate_Slice_Bounds (Slice : Node_Id) is 4872 DR : constant Node_Id := Discrete_Range (Slice); 4873 Constr : Node_Id; 4874 Rexpr : Node_Id; 4875 4876 begin 4877 if Nkind (DR) = N_Range then 4878 Force_Evaluation (Low_Bound (DR)); 4879 Force_Evaluation (High_Bound (DR)); 4880 4881 elsif Nkind (DR) = N_Subtype_Indication then 4882 Constr := Constraint (DR); 4883 4884 if Nkind (Constr) = N_Range_Constraint then 4885 Rexpr := Range_Expression (Constr); 4886 4887 Force_Evaluation (Low_Bound (Rexpr)); 4888 Force_Evaluation (High_Bound (Rexpr)); 4889 end if; 4890 end if; 4891 end Evaluate_Slice_Bounds; 4892 4893 --------------------- 4894 -- Evolve_And_Then -- 4895 --------------------- 4896 4897 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is 4898 begin 4899 if No (Cond) then 4900 Cond := Cond1; 4901 else 4902 Cond := 4903 Make_And_Then (Sloc (Cond1), 4904 Left_Opnd => Cond, 4905 Right_Opnd => Cond1); 4906 end if; 4907 end Evolve_And_Then; 4908 4909 -------------------- 4910 -- Evolve_Or_Else -- 4911 -------------------- 4912 4913 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is 4914 begin 4915 if No (Cond) then 4916 Cond := Cond1; 4917 else 4918 Cond := 4919 Make_Or_Else (Sloc (Cond1), 4920 Left_Opnd => Cond, 4921 Right_Opnd => Cond1); 4922 end if; 4923 end Evolve_Or_Else; 4924 4925 ----------------------------------- 4926 -- Exceptions_In_Finalization_OK -- 4927 ----------------------------------- 4928 4929 function Exceptions_In_Finalization_OK return Boolean is 4930 begin 4931 return 4932 not (Restriction_Active (No_Exception_Handlers) or else 4933 Restriction_Active (No_Exception_Propagation) or else 4934 Restriction_Active (No_Exceptions)); 4935 end Exceptions_In_Finalization_OK; 4936 4937 ----------------------------------------- 4938 -- Expand_Static_Predicates_In_Choices -- 4939 ----------------------------------------- 4940 4941 procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is 4942 pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant)); 4943 4944 Choices : constant List_Id := Discrete_Choices (N); 4945 4946 Choice : Node_Id; 4947 Next_C : Node_Id; 4948 P : Node_Id; 4949 C : Node_Id; 4950 4951 begin 4952 Choice := First (Choices); 4953 while Present (Choice) loop 4954 Next_C := Next (Choice); 4955 4956 -- Check for name of subtype with static predicate 4957 4958 if Is_Entity_Name (Choice) 4959 and then Is_Type (Entity (Choice)) 4960 and then Has_Predicates (Entity (Choice)) 4961 then 4962 -- Loop through entries in predicate list, converting to choices 4963 -- and inserting in the list before the current choice. Note that 4964 -- if the list is empty, corresponding to a False predicate, then 4965 -- no choices are inserted. 4966 4967 P := First (Static_Discrete_Predicate (Entity (Choice))); 4968 while Present (P) loop 4969 4970 -- If low bound and high bounds are equal, copy simple choice 4971 4972 if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then 4973 C := New_Copy (Low_Bound (P)); 4974 4975 -- Otherwise copy a range 4976 4977 else 4978 C := New_Copy (P); 4979 end if; 4980 4981 -- Change Sloc to referencing choice (rather than the Sloc of 4982 -- the predicate declaration element itself). 4983 4984 Set_Sloc (C, Sloc (Choice)); 4985 Insert_Before (Choice, C); 4986 Next (P); 4987 end loop; 4988 4989 -- Delete the predicated entry 4990 4991 Remove (Choice); 4992 end if; 4993 4994 -- Move to next choice to check 4995 4996 Choice := Next_C; 4997 end loop; 4998 end Expand_Static_Predicates_In_Choices; 4999 5000 ------------------------------ 5001 -- Expand_Subtype_From_Expr -- 5002 ------------------------------ 5003 5004 -- This function is applicable for both static and dynamic allocation of 5005 -- objects which are constrained by an initial expression. Basically it 5006 -- transforms an unconstrained subtype indication into a constrained one. 5007 5008 -- The expression may also be transformed in certain cases in order to 5009 -- avoid multiple evaluation. In the static allocation case, the general 5010 -- scheme is: 5011 5012 -- Val : T := Expr; 5013 5014 -- is transformed into 5015 5016 -- Val : Constrained_Subtype_Of_T := Maybe_Modified_Expr; 5017 -- 5018 -- Here are the main cases : 5019 -- 5020 -- <if Expr is a Slice> 5021 -- Val : T ([Index_Subtype (Expr)]) := Expr; 5022 -- 5023 -- <elsif Expr is a String Literal> 5024 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr; 5025 -- 5026 -- <elsif Expr is Constrained> 5027 -- subtype T is Type_Of_Expr 5028 -- Val : T := Expr; 5029 -- 5030 -- <elsif Expr is an entity_name> 5031 -- Val : T (constraints taken from Expr) := Expr; 5032 -- 5033 -- <else> 5034 -- type Axxx is access all T; 5035 -- Rval : Axxx := Expr'ref; 5036 -- Val : T (constraints taken from Rval) := Rval.all; 5037 5038 -- ??? note: when the Expression is allocated in the secondary stack 5039 -- we could use it directly instead of copying it by declaring 5040 -- Val : T (...) renames Rval.all 5041 5042 procedure Expand_Subtype_From_Expr 5043 (N : Node_Id; 5044 Unc_Type : Entity_Id; 5045 Subtype_Indic : Node_Id; 5046 Exp : Node_Id; 5047 Related_Id : Entity_Id := Empty) 5048 is 5049 Loc : constant Source_Ptr := Sloc (N); 5050 Exp_Typ : constant Entity_Id := Etype (Exp); 5051 T : Entity_Id; 5052 5053 begin 5054 -- In general we cannot build the subtype if expansion is disabled, 5055 -- because internal entities may not have been defined. However, to 5056 -- avoid some cascaded errors, we try to continue when the expression is 5057 -- an array (or string), because it is safe to compute the bounds. It is 5058 -- in fact required to do so even in a generic context, because there 5059 -- may be constants that depend on the bounds of a string literal, both 5060 -- standard string types and more generally arrays of characters. 5061 5062 -- In GNATprove mode, these extra subtypes are not needed 5063 5064 if GNATprove_Mode then 5065 return; 5066 end if; 5067 5068 if not Expander_Active 5069 and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp))) 5070 then 5071 return; 5072 end if; 5073 5074 if Nkind (Exp) = N_Slice then 5075 declare 5076 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ)); 5077 5078 begin 5079 Rewrite (Subtype_Indic, 5080 Make_Subtype_Indication (Loc, 5081 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc), 5082 Constraint => 5083 Make_Index_Or_Discriminant_Constraint (Loc, 5084 Constraints => New_List 5085 (New_Occurrence_Of (Slice_Type, Loc))))); 5086 5087 -- This subtype indication may be used later for constraint checks 5088 -- we better make sure that if a variable was used as a bound of 5089 -- of the original slice, its value is frozen. 5090 5091 Evaluate_Slice_Bounds (Exp); 5092 end; 5093 5094 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then 5095 Rewrite (Subtype_Indic, 5096 Make_Subtype_Indication (Loc, 5097 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc), 5098 Constraint => 5099 Make_Index_Or_Discriminant_Constraint (Loc, 5100 Constraints => New_List ( 5101 Make_Literal_Range (Loc, 5102 Literal_Typ => Exp_Typ))))); 5103 5104 -- If the type of the expression is an internally generated type it 5105 -- may not be necessary to create a new subtype. However there are two 5106 -- exceptions: references to the current instances, and aliased array 5107 -- object declarations for which the back end has to create a template. 5108 5109 elsif Is_Constrained (Exp_Typ) 5110 and then not Is_Class_Wide_Type (Unc_Type) 5111 and then 5112 (Nkind (N) /= N_Object_Declaration 5113 or else not Is_Entity_Name (Expression (N)) 5114 or else not Comes_From_Source (Entity (Expression (N))) 5115 or else not Is_Array_Type (Exp_Typ) 5116 or else not Aliased_Present (N)) 5117 then 5118 if Is_Itype (Exp_Typ) then 5119 5120 -- Within an initialization procedure, a selected component 5121 -- denotes a component of the enclosing record, and it appears as 5122 -- an actual in a call to its own initialization procedure. If 5123 -- this component depends on the outer discriminant, we must 5124 -- generate the proper actual subtype for it. 5125 5126 if Nkind (Exp) = N_Selected_Component 5127 and then Within_Init_Proc 5128 then 5129 declare 5130 Decl : constant Node_Id := 5131 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp); 5132 begin 5133 if Present (Decl) then 5134 Insert_Action (N, Decl); 5135 T := Defining_Identifier (Decl); 5136 else 5137 T := Exp_Typ; 5138 end if; 5139 end; 5140 5141 -- No need to generate a new subtype 5142 5143 else 5144 T := Exp_Typ; 5145 end if; 5146 5147 else 5148 T := Make_Temporary (Loc, 'T'); 5149 5150 Insert_Action (N, 5151 Make_Subtype_Declaration (Loc, 5152 Defining_Identifier => T, 5153 Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc))); 5154 5155 -- This type is marked as an itype even though it has an explicit 5156 -- declaration since otherwise Is_Generic_Actual_Type can get 5157 -- set, resulting in the generation of spurious errors. (See 5158 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers) 5159 5160 Set_Is_Itype (T); 5161 Set_Associated_Node_For_Itype (T, Exp); 5162 end if; 5163 5164 Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc)); 5165 5166 -- Nothing needs to be done for private types with unknown discriminants 5167 -- if the underlying type is not an unconstrained composite type or it 5168 -- is an unchecked union. 5169 5170 elsif Is_Private_Type (Unc_Type) 5171 and then Has_Unknown_Discriminants (Unc_Type) 5172 and then (not Is_Composite_Type (Underlying_Type (Unc_Type)) 5173 or else Is_Constrained (Underlying_Type (Unc_Type)) 5174 or else Is_Unchecked_Union (Underlying_Type (Unc_Type))) 5175 then 5176 null; 5177 5178 -- Case of derived type with unknown discriminants where the parent type 5179 -- also has unknown discriminants. 5180 5181 elsif Is_Record_Type (Unc_Type) 5182 and then not Is_Class_Wide_Type (Unc_Type) 5183 and then Has_Unknown_Discriminants (Unc_Type) 5184 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type)) 5185 then 5186 -- Nothing to be done if no underlying record view available 5187 5188 -- If this is a limited type derived from a type with unknown 5189 -- discriminants, do not expand either, so that subsequent expansion 5190 -- of the call can add build-in-place parameters to call. 5191 5192 if No (Underlying_Record_View (Unc_Type)) 5193 or else Is_Limited_Type (Unc_Type) 5194 then 5195 null; 5196 5197 -- Otherwise use the Underlying_Record_View to create the proper 5198 -- constrained subtype for an object of a derived type with unknown 5199 -- discriminants. 5200 5201 else 5202 Remove_Side_Effects (Exp); 5203 Rewrite (Subtype_Indic, 5204 Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type))); 5205 end if; 5206 5207 -- Renamings of class-wide interface types require no equivalent 5208 -- constrained type declarations because we only need to reference 5209 -- the tag component associated with the interface. The same is 5210 -- presumably true for class-wide types in general, so this test 5211 -- is broadened to include all class-wide renamings, which also 5212 -- avoids cases of unbounded recursion in Remove_Side_Effects. 5213 -- (Is this really correct, or are there some cases of class-wide 5214 -- renamings that require action in this procedure???) 5215 5216 elsif Present (N) 5217 and then Nkind (N) = N_Object_Renaming_Declaration 5218 and then Is_Class_Wide_Type (Unc_Type) 5219 then 5220 null; 5221 5222 -- In Ada 95 nothing to be done if the type of the expression is limited 5223 -- because in this case the expression cannot be copied, and its use can 5224 -- only be by reference. 5225 5226 -- In Ada 2005 the context can be an object declaration whose expression 5227 -- is a function that returns in place. If the nominal subtype has 5228 -- unknown discriminants, the call still provides constraints on the 5229 -- object, and we have to create an actual subtype from it. 5230 5231 -- If the type is class-wide, the expression is dynamically tagged and 5232 -- we do not create an actual subtype either. Ditto for an interface. 5233 -- For now this applies only if the type is immutably limited, and the 5234 -- function being called is build-in-place. This will have to be revised 5235 -- when build-in-place functions are generalized to other types. 5236 5237 elsif Is_Limited_View (Exp_Typ) 5238 and then 5239 (Is_Class_Wide_Type (Exp_Typ) 5240 or else Is_Interface (Exp_Typ) 5241 or else not Has_Unknown_Discriminants (Exp_Typ) 5242 or else not Is_Composite_Type (Unc_Type)) 5243 then 5244 null; 5245 5246 -- For limited objects initialized with build in place function calls, 5247 -- nothing to be done; otherwise we prematurely introduce an N_Reference 5248 -- node in the expression initializing the object, which breaks the 5249 -- circuitry that detects and adds the additional arguments to the 5250 -- called function. 5251 5252 elsif Is_Build_In_Place_Function_Call (Exp) then 5253 null; 5254 5255 else 5256 Remove_Side_Effects (Exp); 5257 Rewrite (Subtype_Indic, 5258 Make_Subtype_From_Expr (Exp, Unc_Type, Related_Id)); 5259 end if; 5260 end Expand_Subtype_From_Expr; 5261 5262 --------------------------------------------- 5263 -- Expression_Contains_Primitives_Calls_Of -- 5264 --------------------------------------------- 5265 5266 function Expression_Contains_Primitives_Calls_Of 5267 (Expr : Node_Id; 5268 Typ : Entity_Id) return Boolean 5269 is 5270 U_Typ : constant Entity_Id := Unique_Entity (Typ); 5271 5272 Calls_OK : Boolean := False; 5273 -- This flag is set to True when expression Expr contains at least one 5274 -- call to a nondispatching primitive function of Typ. 5275 5276 function Search_Primitive_Calls (N : Node_Id) return Traverse_Result; 5277 -- Search for nondispatching calls to primitive functions of type Typ 5278 5279 ---------------------------- 5280 -- Search_Primitive_Calls -- 5281 ---------------------------- 5282 5283 function Search_Primitive_Calls (N : Node_Id) return Traverse_Result is 5284 Disp_Typ : Entity_Id; 5285 Subp : Entity_Id; 5286 5287 begin 5288 -- Detect a function call that could denote a nondispatching 5289 -- primitive of the input type. 5290 5291 if Nkind (N) = N_Function_Call 5292 and then Is_Entity_Name (Name (N)) 5293 then 5294 Subp := Entity (Name (N)); 5295 5296 -- Do not consider function calls with a controlling argument, as 5297 -- those are always dispatching calls. 5298 5299 if Is_Dispatching_Operation (Subp) 5300 and then No (Controlling_Argument (N)) 5301 then 5302 Disp_Typ := Find_Dispatching_Type (Subp); 5303 5304 -- To qualify as a suitable primitive, the dispatching type of 5305 -- the function must be the input type. 5306 5307 if Present (Disp_Typ) 5308 and then Unique_Entity (Disp_Typ) = U_Typ 5309 then 5310 Calls_OK := True; 5311 5312 -- There is no need to continue the traversal, as one such 5313 -- call suffices. 5314 5315 return Abandon; 5316 end if; 5317 end if; 5318 end if; 5319 5320 return OK; 5321 end Search_Primitive_Calls; 5322 5323 procedure Search_Calls is new Traverse_Proc (Search_Primitive_Calls); 5324 5325 -- Start of processing for Expression_Contains_Primitives_Calls_Of_Type 5326 5327 begin 5328 Search_Calls (Expr); 5329 return Calls_OK; 5330 end Expression_Contains_Primitives_Calls_Of; 5331 5332 ---------------------- 5333 -- Finalize_Address -- 5334 ---------------------- 5335 5336 function Finalize_Address (Typ : Entity_Id) return Entity_Id is 5337 Utyp : Entity_Id := Typ; 5338 5339 begin 5340 -- Handle protected class-wide or task class-wide types 5341 5342 if Is_Class_Wide_Type (Utyp) then 5343 if Is_Concurrent_Type (Root_Type (Utyp)) then 5344 Utyp := Root_Type (Utyp); 5345 5346 elsif Is_Private_Type (Root_Type (Utyp)) 5347 and then Present (Full_View (Root_Type (Utyp))) 5348 and then Is_Concurrent_Type (Full_View (Root_Type (Utyp))) 5349 then 5350 Utyp := Full_View (Root_Type (Utyp)); 5351 end if; 5352 end if; 5353 5354 -- Handle private types 5355 5356 if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then 5357 Utyp := Full_View (Utyp); 5358 end if; 5359 5360 -- Handle protected and task types 5361 5362 if Is_Concurrent_Type (Utyp) 5363 and then Present (Corresponding_Record_Type (Utyp)) 5364 then 5365 Utyp := Corresponding_Record_Type (Utyp); 5366 end if; 5367 5368 Utyp := Underlying_Type (Base_Type (Utyp)); 5369 5370 -- Deal with untagged derivation of private views. If the parent is 5371 -- now known to be protected, the finalization routine is the one 5372 -- defined on the corresponding record of the ancestor (corresponding 5373 -- records do not automatically inherit operations, but maybe they 5374 -- should???) 5375 5376 if Is_Untagged_Derivation (Typ) then 5377 if Is_Protected_Type (Typ) then 5378 Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ))); 5379 5380 else 5381 Utyp := Underlying_Type (Root_Type (Base_Type (Typ))); 5382 5383 if Is_Protected_Type (Utyp) then 5384 Utyp := Corresponding_Record_Type (Utyp); 5385 end if; 5386 end if; 5387 end if; 5388 5389 -- If the underlying_type is a subtype, we are dealing with the 5390 -- completion of a private type. We need to access the base type and 5391 -- generate a conversion to it. 5392 5393 if Utyp /= Base_Type (Utyp) then 5394 pragma Assert (Is_Private_Type (Typ)); 5395 5396 Utyp := Base_Type (Utyp); 5397 end if; 5398 5399 -- When dealing with an internally built full view for a type with 5400 -- unknown discriminants, use the original record type. 5401 5402 if Is_Underlying_Record_View (Utyp) then 5403 Utyp := Etype (Utyp); 5404 end if; 5405 5406 return TSS (Utyp, TSS_Finalize_Address); 5407 end Finalize_Address; 5408 5409 ------------------------ 5410 -- Find_Interface_ADT -- 5411 ------------------------ 5412 5413 function Find_Interface_ADT 5414 (T : Entity_Id; 5415 Iface : Entity_Id) return Elmt_Id 5416 is 5417 ADT : Elmt_Id; 5418 Typ : Entity_Id := T; 5419 5420 begin 5421 pragma Assert (Is_Interface (Iface)); 5422 5423 -- Handle private types 5424 5425 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then 5426 Typ := Full_View (Typ); 5427 end if; 5428 5429 -- Handle access types 5430 5431 if Is_Access_Type (Typ) then 5432 Typ := Designated_Type (Typ); 5433 end if; 5434 5435 -- Handle task and protected types implementing interfaces 5436 5437 if Is_Concurrent_Type (Typ) then 5438 Typ := Corresponding_Record_Type (Typ); 5439 end if; 5440 5441 pragma Assert 5442 (not Is_Class_Wide_Type (Typ) 5443 and then Ekind (Typ) /= E_Incomplete_Type); 5444 5445 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then 5446 return First_Elmt (Access_Disp_Table (Typ)); 5447 5448 else 5449 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ)))); 5450 while Present (ADT) 5451 and then Present (Related_Type (Node (ADT))) 5452 and then Related_Type (Node (ADT)) /= Iface 5453 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)), 5454 Use_Full_View => True) 5455 loop 5456 Next_Elmt (ADT); 5457 end loop; 5458 5459 pragma Assert (Present (Related_Type (Node (ADT)))); 5460 return ADT; 5461 end if; 5462 end Find_Interface_ADT; 5463 5464 ------------------------ 5465 -- Find_Interface_Tag -- 5466 ------------------------ 5467 5468 function Find_Interface_Tag 5469 (T : Entity_Id; 5470 Iface : Entity_Id) return Entity_Id 5471 is 5472 AI_Tag : Entity_Id := Empty; 5473 Found : Boolean := False; 5474 Typ : Entity_Id := T; 5475 5476 procedure Find_Tag (Typ : Entity_Id); 5477 -- Internal subprogram used to recursively climb to the ancestors 5478 5479 -------------- 5480 -- Find_Tag -- 5481 -------------- 5482 5483 procedure Find_Tag (Typ : Entity_Id) is 5484 AI_Elmt : Elmt_Id; 5485 AI : Node_Id; 5486 5487 begin 5488 -- This routine does not handle the case in which the interface is an 5489 -- ancestor of Typ. That case is handled by the enclosing subprogram. 5490 5491 pragma Assert (Typ /= Iface); 5492 5493 -- Climb to the root type handling private types 5494 5495 if Present (Full_View (Etype (Typ))) then 5496 if Full_View (Etype (Typ)) /= Typ then 5497 Find_Tag (Full_View (Etype (Typ))); 5498 end if; 5499 5500 elsif Etype (Typ) /= Typ then 5501 Find_Tag (Etype (Typ)); 5502 end if; 5503 5504 -- Traverse the list of interfaces implemented by the type 5505 5506 if not Found 5507 and then Present (Interfaces (Typ)) 5508 and then not (Is_Empty_Elmt_List (Interfaces (Typ))) 5509 then 5510 -- Skip the tag associated with the primary table 5511 5512 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag)); 5513 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ)); 5514 pragma Assert (Present (AI_Tag)); 5515 5516 AI_Elmt := First_Elmt (Interfaces (Typ)); 5517 while Present (AI_Elmt) loop 5518 AI := Node (AI_Elmt); 5519 5520 if AI = Iface 5521 or else Is_Ancestor (Iface, AI, Use_Full_View => True) 5522 then 5523 Found := True; 5524 return; 5525 end if; 5526 5527 AI_Tag := Next_Tag_Component (AI_Tag); 5528 Next_Elmt (AI_Elmt); 5529 end loop; 5530 end if; 5531 end Find_Tag; 5532 5533 -- Start of processing for Find_Interface_Tag 5534 5535 begin 5536 pragma Assert (Is_Interface (Iface)); 5537 5538 -- Handle access types 5539 5540 if Is_Access_Type (Typ) then 5541 Typ := Designated_Type (Typ); 5542 end if; 5543 5544 -- Handle class-wide types 5545 5546 if Is_Class_Wide_Type (Typ) then 5547 Typ := Root_Type (Typ); 5548 end if; 5549 5550 -- Handle private types 5551 5552 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then 5553 Typ := Full_View (Typ); 5554 end if; 5555 5556 -- Handle entities from the limited view 5557 5558 if Ekind (Typ) = E_Incomplete_Type then 5559 pragma Assert (Present (Non_Limited_View (Typ))); 5560 Typ := Non_Limited_View (Typ); 5561 end if; 5562 5563 -- Handle task and protected types implementing interfaces 5564 5565 if Is_Concurrent_Type (Typ) then 5566 Typ := Corresponding_Record_Type (Typ); 5567 end if; 5568 5569 -- If the interface is an ancestor of the type, then it shared the 5570 -- primary dispatch table. 5571 5572 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then 5573 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag)); 5574 return First_Tag_Component (Typ); 5575 5576 -- Otherwise we need to search for its associated tag component 5577 5578 else 5579 Find_Tag (Typ); 5580 pragma Assert (Found); 5581 return AI_Tag; 5582 end if; 5583 end Find_Interface_Tag; 5584 5585 --------------------------- 5586 -- Find_Optional_Prim_Op -- 5587 --------------------------- 5588 5589 function Find_Optional_Prim_Op 5590 (T : Entity_Id; Name : Name_Id) return Entity_Id 5591 is 5592 Prim : Elmt_Id; 5593 Typ : Entity_Id := T; 5594 Op : Entity_Id; 5595 5596 begin 5597 if Is_Class_Wide_Type (Typ) then 5598 Typ := Root_Type (Typ); 5599 end if; 5600 5601 Typ := Underlying_Type (Typ); 5602 5603 -- Loop through primitive operations 5604 5605 Prim := First_Elmt (Primitive_Operations (Typ)); 5606 while Present (Prim) loop 5607 Op := Node (Prim); 5608 5609 -- We can retrieve primitive operations by name if it is an internal 5610 -- name. For equality we must check that both of its operands have 5611 -- the same type, to avoid confusion with user-defined equalities 5612 -- than may have a non-symmetric signature. 5613 5614 exit when Chars (Op) = Name 5615 and then 5616 (Name /= Name_Op_Eq 5617 or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op))); 5618 5619 Next_Elmt (Prim); 5620 end loop; 5621 5622 return Node (Prim); -- Empty if not found 5623 end Find_Optional_Prim_Op; 5624 5625 --------------------------- 5626 -- Find_Optional_Prim_Op -- 5627 --------------------------- 5628 5629 function Find_Optional_Prim_Op 5630 (T : Entity_Id; 5631 Name : TSS_Name_Type) return Entity_Id 5632 is 5633 Inher_Op : Entity_Id := Empty; 5634 Own_Op : Entity_Id := Empty; 5635 Prim_Elmt : Elmt_Id; 5636 Prim_Id : Entity_Id; 5637 Typ : Entity_Id := T; 5638 5639 begin 5640 if Is_Class_Wide_Type (Typ) then 5641 Typ := Root_Type (Typ); 5642 end if; 5643 5644 Typ := Underlying_Type (Typ); 5645 5646 -- This search is based on the assertion that the dispatching version 5647 -- of the TSS routine always precedes the real primitive. 5648 5649 Prim_Elmt := First_Elmt (Primitive_Operations (Typ)); 5650 while Present (Prim_Elmt) loop 5651 Prim_Id := Node (Prim_Elmt); 5652 5653 if Is_TSS (Prim_Id, Name) then 5654 if Present (Alias (Prim_Id)) then 5655 Inher_Op := Prim_Id; 5656 else 5657 Own_Op := Prim_Id; 5658 end if; 5659 end if; 5660 5661 Next_Elmt (Prim_Elmt); 5662 end loop; 5663 5664 if Present (Own_Op) then 5665 return Own_Op; 5666 elsif Present (Inher_Op) then 5667 return Inher_Op; 5668 else 5669 return Empty; 5670 end if; 5671 end Find_Optional_Prim_Op; 5672 5673 ------------------ 5674 -- Find_Prim_Op -- 5675 ------------------ 5676 5677 function Find_Prim_Op 5678 (T : Entity_Id; Name : Name_Id) return Entity_Id 5679 is 5680 Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name); 5681 begin 5682 if No (Result) then 5683 raise Program_Error; 5684 end if; 5685 5686 return Result; 5687 end Find_Prim_Op; 5688 5689 ------------------ 5690 -- Find_Prim_Op -- 5691 ------------------ 5692 5693 function Find_Prim_Op 5694 (T : Entity_Id; 5695 Name : TSS_Name_Type) return Entity_Id 5696 is 5697 Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name); 5698 begin 5699 if No (Result) then 5700 raise Program_Error; 5701 end if; 5702 5703 return Result; 5704 end Find_Prim_Op; 5705 5706 ---------------------------- 5707 -- Find_Protection_Object -- 5708 ---------------------------- 5709 5710 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is 5711 S : Entity_Id; 5712 5713 begin 5714 S := Scop; 5715 while Present (S) loop 5716 if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure) 5717 and then Present (Protection_Object (S)) 5718 then 5719 return Protection_Object (S); 5720 end if; 5721 5722 S := Scope (S); 5723 end loop; 5724 5725 -- If we do not find a Protection object in the scope chain, then 5726 -- something has gone wrong, most likely the object was never created. 5727 5728 raise Program_Error; 5729 end Find_Protection_Object; 5730 5731 -------------------------- 5732 -- Find_Protection_Type -- 5733 -------------------------- 5734 5735 function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is 5736 Comp : Entity_Id; 5737 Typ : Entity_Id := Conc_Typ; 5738 5739 begin 5740 if Is_Concurrent_Type (Typ) then 5741 Typ := Corresponding_Record_Type (Typ); 5742 end if; 5743 5744 -- Since restriction violations are not considered serious errors, the 5745 -- expander remains active, but may leave the corresponding record type 5746 -- malformed. In such cases, component _object is not available so do 5747 -- not look for it. 5748 5749 if not Analyzed (Typ) then 5750 return Empty; 5751 end if; 5752 5753 Comp := First_Component (Typ); 5754 while Present (Comp) loop 5755 if Chars (Comp) = Name_uObject then 5756 return Base_Type (Etype (Comp)); 5757 end if; 5758 5759 Next_Component (Comp); 5760 end loop; 5761 5762 -- The corresponding record of a protected type should always have an 5763 -- _object field. 5764 5765 raise Program_Error; 5766 end Find_Protection_Type; 5767 5768 ----------------------- 5769 -- Find_Hook_Context -- 5770 ----------------------- 5771 5772 function Find_Hook_Context (N : Node_Id) return Node_Id is 5773 Par : Node_Id; 5774 Top : Node_Id; 5775 5776 Wrapped_Node : Node_Id; 5777 -- Note: if we are in a transient scope, we want to reuse it as 5778 -- the context for actions insertion, if possible. But if N is itself 5779 -- part of the stored actions for the current transient scope, 5780 -- then we need to insert at the appropriate (inner) location in 5781 -- the not as an action on Node_To_Be_Wrapped. 5782 5783 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N); 5784 5785 begin 5786 -- When the node is inside a case/if expression, the lifetime of any 5787 -- temporary controlled object is extended. Find a suitable insertion 5788 -- node by locating the topmost case or if expressions. 5789 5790 if In_Cond_Expr then 5791 Par := N; 5792 Top := N; 5793 while Present (Par) loop 5794 if Nkind_In (Original_Node (Par), N_Case_Expression, 5795 N_If_Expression) 5796 then 5797 Top := Par; 5798 5799 -- Prevent the search from going too far 5800 5801 elsif Is_Body_Or_Package_Declaration (Par) then 5802 exit; 5803 end if; 5804 5805 Par := Parent (Par); 5806 end loop; 5807 5808 -- The topmost case or if expression is now recovered, but it may 5809 -- still not be the correct place to add generated code. Climb to 5810 -- find a parent that is part of a declarative or statement list, 5811 -- and is not a list of actuals in a call. 5812 5813 Par := Top; 5814 while Present (Par) loop 5815 if Is_List_Member (Par) 5816 and then not Nkind_In (Par, N_Component_Association, 5817 N_Discriminant_Association, 5818 N_Parameter_Association, 5819 N_Pragma_Argument_Association) 5820 and then not Nkind_In (Parent (Par), N_Function_Call, 5821 N_Procedure_Call_Statement, 5822 N_Entry_Call_Statement) 5823 5824 then 5825 return Par; 5826 5827 -- Prevent the search from going too far 5828 5829 elsif Is_Body_Or_Package_Declaration (Par) then 5830 exit; 5831 end if; 5832 5833 Par := Parent (Par); 5834 end loop; 5835 5836 return Par; 5837 5838 else 5839 Par := N; 5840 while Present (Par) loop 5841 5842 -- Keep climbing past various operators 5843 5844 if Nkind (Parent (Par)) in N_Op 5845 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else) 5846 then 5847 Par := Parent (Par); 5848 else 5849 exit; 5850 end if; 5851 end loop; 5852 5853 Top := Par; 5854 5855 -- The node may be located in a pragma in which case return the 5856 -- pragma itself: 5857 5858 -- pragma Precondition (... and then Ctrl_Func_Call ...); 5859 5860 -- Similar case occurs when the node is related to an object 5861 -- declaration or assignment: 5862 5863 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...; 5864 5865 -- Another case to consider is when the node is part of a return 5866 -- statement: 5867 5868 -- return ... and then Ctrl_Func_Call ...; 5869 5870 -- Another case is when the node acts as a formal in a procedure 5871 -- call statement: 5872 5873 -- Proc (... and then Ctrl_Func_Call ...); 5874 5875 if Scope_Is_Transient then 5876 Wrapped_Node := Node_To_Be_Wrapped; 5877 else 5878 Wrapped_Node := Empty; 5879 end if; 5880 5881 while Present (Par) loop 5882 if Par = Wrapped_Node 5883 or else Nkind_In (Par, N_Assignment_Statement, 5884 N_Object_Declaration, 5885 N_Pragma, 5886 N_Procedure_Call_Statement, 5887 N_Simple_Return_Statement) 5888 then 5889 return Par; 5890 5891 -- Prevent the search from going too far 5892 5893 elsif Is_Body_Or_Package_Declaration (Par) then 5894 exit; 5895 end if; 5896 5897 Par := Parent (Par); 5898 end loop; 5899 5900 -- Return the topmost short circuit operator 5901 5902 return Top; 5903 end if; 5904 end Find_Hook_Context; 5905 5906 ------------------------------ 5907 -- Following_Address_Clause -- 5908 ------------------------------ 5909 5910 function Following_Address_Clause (D : Node_Id) return Node_Id is 5911 Id : constant Entity_Id := Defining_Identifier (D); 5912 Result : Node_Id; 5913 Par : Node_Id; 5914 5915 function Check_Decls (D : Node_Id) return Node_Id; 5916 -- This internal function differs from the main function in that it 5917 -- gets called to deal with a following package private part, and 5918 -- it checks declarations starting with D (the main function checks 5919 -- declarations following D). If D is Empty, then Empty is returned. 5920 5921 ----------------- 5922 -- Check_Decls -- 5923 ----------------- 5924 5925 function Check_Decls (D : Node_Id) return Node_Id is 5926 Decl : Node_Id; 5927 5928 begin 5929 Decl := D; 5930 while Present (Decl) loop 5931 if Nkind (Decl) = N_At_Clause 5932 and then Chars (Identifier (Decl)) = Chars (Id) 5933 then 5934 return Decl; 5935 5936 elsif Nkind (Decl) = N_Attribute_Definition_Clause 5937 and then Chars (Decl) = Name_Address 5938 and then Chars (Name (Decl)) = Chars (Id) 5939 then 5940 return Decl; 5941 end if; 5942 5943 Next (Decl); 5944 end loop; 5945 5946 -- Otherwise not found, return Empty 5947 5948 return Empty; 5949 end Check_Decls; 5950 5951 -- Start of processing for Following_Address_Clause 5952 5953 begin 5954 -- If parser detected no address clause for the identifier in question, 5955 -- then the answer is a quick NO, without the need for a search. 5956 5957 if not Get_Name_Table_Boolean1 (Chars (Id)) then 5958 return Empty; 5959 end if; 5960 5961 -- Otherwise search current declarative unit 5962 5963 Result := Check_Decls (Next (D)); 5964 5965 if Present (Result) then 5966 return Result; 5967 end if; 5968 5969 -- Check for possible package private part following 5970 5971 Par := Parent (D); 5972 5973 if Nkind (Par) = N_Package_Specification 5974 and then Visible_Declarations (Par) = List_Containing (D) 5975 and then Present (Private_Declarations (Par)) 5976 then 5977 -- Private part present, check declarations there 5978 5979 return Check_Decls (First (Private_Declarations (Par))); 5980 5981 else 5982 -- No private part, clause not found, return Empty 5983 5984 return Empty; 5985 end if; 5986 end Following_Address_Clause; 5987 5988 ---------------------- 5989 -- Force_Evaluation -- 5990 ---------------------- 5991 5992 procedure Force_Evaluation 5993 (Exp : Node_Id; 5994 Name_Req : Boolean := False; 5995 Related_Id : Entity_Id := Empty; 5996 Is_Low_Bound : Boolean := False; 5997 Is_High_Bound : Boolean := False; 5998 Mode : Force_Evaluation_Mode := Relaxed) 5999 is 6000 begin 6001 Remove_Side_Effects 6002 (Exp => Exp, 6003 Name_Req => Name_Req, 6004 Variable_Ref => True, 6005 Renaming_Req => False, 6006 Related_Id => Related_Id, 6007 Is_Low_Bound => Is_Low_Bound, 6008 Is_High_Bound => Is_High_Bound, 6009 Check_Side_Effects => 6010 Is_Static_Expression (Exp) 6011 or else Mode = Relaxed); 6012 end Force_Evaluation; 6013 6014 --------------------------------- 6015 -- Fully_Qualified_Name_String -- 6016 --------------------------------- 6017 6018 function Fully_Qualified_Name_String 6019 (E : Entity_Id; 6020 Append_NUL : Boolean := True) return String_Id 6021 is 6022 procedure Internal_Full_Qualified_Name (E : Entity_Id); 6023 -- Compute recursively the qualified name without NUL at the end, adding 6024 -- it to the currently started string being generated 6025 6026 ---------------------------------- 6027 -- Internal_Full_Qualified_Name -- 6028 ---------------------------------- 6029 6030 procedure Internal_Full_Qualified_Name (E : Entity_Id) is 6031 Ent : Entity_Id; 6032 6033 begin 6034 -- Deal properly with child units 6035 6036 if Nkind (E) = N_Defining_Program_Unit_Name then 6037 Ent := Defining_Identifier (E); 6038 else 6039 Ent := E; 6040 end if; 6041 6042 -- Compute qualification recursively (only "Standard" has no scope) 6043 6044 if Present (Scope (Scope (Ent))) then 6045 Internal_Full_Qualified_Name (Scope (Ent)); 6046 Store_String_Char (Get_Char_Code ('.')); 6047 end if; 6048 6049 -- Every entity should have a name except some expanded blocks 6050 -- don't bother about those. 6051 6052 if Chars (Ent) = No_Name then 6053 return; 6054 end if; 6055 6056 -- Generates the entity name in upper case 6057 6058 Get_Decoded_Name_String (Chars (Ent)); 6059 Set_All_Upper_Case; 6060 Store_String_Chars (Name_Buffer (1 .. Name_Len)); 6061 return; 6062 end Internal_Full_Qualified_Name; 6063 6064 -- Start of processing for Full_Qualified_Name 6065 6066 begin 6067 Start_String; 6068 Internal_Full_Qualified_Name (E); 6069 6070 if Append_NUL then 6071 Store_String_Char (Get_Char_Code (ASCII.NUL)); 6072 end if; 6073 6074 return End_String; 6075 end Fully_Qualified_Name_String; 6076 6077 ------------------------ 6078 -- Generate_Poll_Call -- 6079 ------------------------ 6080 6081 procedure Generate_Poll_Call (N : Node_Id) is 6082 begin 6083 -- No poll call if polling not active 6084 6085 if not Polling_Required then 6086 return; 6087 6088 -- Otherwise generate require poll call 6089 6090 else 6091 Insert_Before_And_Analyze (N, 6092 Make_Procedure_Call_Statement (Sloc (N), 6093 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N)))); 6094 end if; 6095 end Generate_Poll_Call; 6096 6097 --------------------------------- 6098 -- Get_Current_Value_Condition -- 6099 --------------------------------- 6100 6101 -- Note: the implementation of this procedure is very closely tied to the 6102 -- implementation of Set_Current_Value_Condition. In the Get procedure, we 6103 -- interpret Current_Value fields set by the Set procedure, so the two 6104 -- procedures need to be closely coordinated. 6105 6106 procedure Get_Current_Value_Condition 6107 (Var : Node_Id; 6108 Op : out Node_Kind; 6109 Val : out Node_Id) 6110 is 6111 Loc : constant Source_Ptr := Sloc (Var); 6112 Ent : constant Entity_Id := Entity (Var); 6113 6114 procedure Process_Current_Value_Condition 6115 (N : Node_Id; 6116 S : Boolean); 6117 -- N is an expression which holds either True (S = True) or False (S = 6118 -- False) in the condition. This procedure digs out the expression and 6119 -- if it refers to Ent, sets Op and Val appropriately. 6120 6121 ------------------------------------- 6122 -- Process_Current_Value_Condition -- 6123 ------------------------------------- 6124 6125 procedure Process_Current_Value_Condition 6126 (N : Node_Id; 6127 S : Boolean) 6128 is 6129 Cond : Node_Id; 6130 Prev_Cond : Node_Id; 6131 Sens : Boolean; 6132 6133 begin 6134 Cond := N; 6135 Sens := S; 6136 6137 loop 6138 Prev_Cond := Cond; 6139 6140 -- Deal with NOT operators, inverting sense 6141 6142 while Nkind (Cond) = N_Op_Not loop 6143 Cond := Right_Opnd (Cond); 6144 Sens := not Sens; 6145 end loop; 6146 6147 -- Deal with conversions, qualifications, and expressions with 6148 -- actions. 6149 6150 while Nkind_In (Cond, 6151 N_Type_Conversion, 6152 N_Qualified_Expression, 6153 N_Expression_With_Actions) 6154 loop 6155 Cond := Expression (Cond); 6156 end loop; 6157 6158 exit when Cond = Prev_Cond; 6159 end loop; 6160 6161 -- Deal with AND THEN and AND cases 6162 6163 if Nkind_In (Cond, N_And_Then, N_Op_And) then 6164 6165 -- Don't ever try to invert a condition that is of the form of an 6166 -- AND or AND THEN (since we are not doing sufficiently general 6167 -- processing to allow this). 6168 6169 if Sens = False then 6170 Op := N_Empty; 6171 Val := Empty; 6172 return; 6173 end if; 6174 6175 -- Recursively process AND and AND THEN branches 6176 6177 Process_Current_Value_Condition (Left_Opnd (Cond), True); 6178 6179 if Op /= N_Empty then 6180 return; 6181 end if; 6182 6183 Process_Current_Value_Condition (Right_Opnd (Cond), True); 6184 return; 6185 6186 -- Case of relational operator 6187 6188 elsif Nkind (Cond) in N_Op_Compare then 6189 Op := Nkind (Cond); 6190 6191 -- Invert sense of test if inverted test 6192 6193 if Sens = False then 6194 case Op is 6195 when N_Op_Eq => Op := N_Op_Ne; 6196 when N_Op_Ne => Op := N_Op_Eq; 6197 when N_Op_Lt => Op := N_Op_Ge; 6198 when N_Op_Gt => Op := N_Op_Le; 6199 when N_Op_Le => Op := N_Op_Gt; 6200 when N_Op_Ge => Op := N_Op_Lt; 6201 when others => raise Program_Error; 6202 end case; 6203 end if; 6204 6205 -- Case of entity op value 6206 6207 if Is_Entity_Name (Left_Opnd (Cond)) 6208 and then Ent = Entity (Left_Opnd (Cond)) 6209 and then Compile_Time_Known_Value (Right_Opnd (Cond)) 6210 then 6211 Val := Right_Opnd (Cond); 6212 6213 -- Case of value op entity 6214 6215 elsif Is_Entity_Name (Right_Opnd (Cond)) 6216 and then Ent = Entity (Right_Opnd (Cond)) 6217 and then Compile_Time_Known_Value (Left_Opnd (Cond)) 6218 then 6219 Val := Left_Opnd (Cond); 6220 6221 -- We are effectively swapping operands 6222 6223 case Op is 6224 when N_Op_Eq => null; 6225 when N_Op_Ne => null; 6226 when N_Op_Lt => Op := N_Op_Gt; 6227 when N_Op_Gt => Op := N_Op_Lt; 6228 when N_Op_Le => Op := N_Op_Ge; 6229 when N_Op_Ge => Op := N_Op_Le; 6230 when others => raise Program_Error; 6231 end case; 6232 6233 else 6234 Op := N_Empty; 6235 end if; 6236 6237 return; 6238 6239 elsif Nkind_In (Cond, 6240 N_Type_Conversion, 6241 N_Qualified_Expression, 6242 N_Expression_With_Actions) 6243 then 6244 Cond := Expression (Cond); 6245 6246 -- Case of Boolean variable reference, return as though the 6247 -- reference had said var = True. 6248 6249 else 6250 if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then 6251 Val := New_Occurrence_Of (Standard_True, Sloc (Cond)); 6252 6253 if Sens = False then 6254 Op := N_Op_Ne; 6255 else 6256 Op := N_Op_Eq; 6257 end if; 6258 end if; 6259 end if; 6260 end Process_Current_Value_Condition; 6261 6262 -- Start of processing for Get_Current_Value_Condition 6263 6264 begin 6265 Op := N_Empty; 6266 Val := Empty; 6267 6268 -- Immediate return, nothing doing, if this is not an object 6269 6270 if Ekind (Ent) not in Object_Kind then 6271 return; 6272 end if; 6273 6274 -- Otherwise examine current value 6275 6276 declare 6277 CV : constant Node_Id := Current_Value (Ent); 6278 Sens : Boolean; 6279 Stm : Node_Id; 6280 6281 begin 6282 -- If statement. Condition is known true in THEN section, known False 6283 -- in any ELSIF or ELSE part, and unknown outside the IF statement. 6284 6285 if Nkind (CV) = N_If_Statement then 6286 6287 -- Before start of IF statement 6288 6289 if Loc < Sloc (CV) then 6290 return; 6291 6292 -- After end of IF statement 6293 6294 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then 6295 return; 6296 end if; 6297 6298 -- At this stage we know that we are within the IF statement, but 6299 -- unfortunately, the tree does not record the SLOC of the ELSE so 6300 -- we cannot use a simple SLOC comparison to distinguish between 6301 -- the then/else statements, so we have to climb the tree. 6302 6303 declare 6304 N : Node_Id; 6305 6306 begin 6307 N := Parent (Var); 6308 while Parent (N) /= CV loop 6309 N := Parent (N); 6310 6311 -- If we fall off the top of the tree, then that's odd, but 6312 -- perhaps it could occur in some error situation, and the 6313 -- safest response is simply to assume that the outcome of 6314 -- the condition is unknown. No point in bombing during an 6315 -- attempt to optimize things. 6316 6317 if No (N) then 6318 return; 6319 end if; 6320 end loop; 6321 6322 -- Now we have N pointing to a node whose parent is the IF 6323 -- statement in question, so now we can tell if we are within 6324 -- the THEN statements. 6325 6326 if Is_List_Member (N) 6327 and then List_Containing (N) = Then_Statements (CV) 6328 then 6329 Sens := True; 6330 6331 -- If the variable reference does not come from source, we 6332 -- cannot reliably tell whether it appears in the else part. 6333 -- In particular, if it appears in generated code for a node 6334 -- that requires finalization, it may be attached to a list 6335 -- that has not been yet inserted into the code. For now, 6336 -- treat it as unknown. 6337 6338 elsif not Comes_From_Source (N) then 6339 return; 6340 6341 -- Otherwise we must be in ELSIF or ELSE part 6342 6343 else 6344 Sens := False; 6345 end if; 6346 end; 6347 6348 -- ELSIF part. Condition is known true within the referenced 6349 -- ELSIF, known False in any subsequent ELSIF or ELSE part, 6350 -- and unknown before the ELSE part or after the IF statement. 6351 6352 elsif Nkind (CV) = N_Elsif_Part then 6353 6354 -- if the Elsif_Part had condition_actions, the elsif has been 6355 -- rewritten as a nested if, and the original elsif_part is 6356 -- detached from the tree, so there is no way to obtain useful 6357 -- information on the current value of the variable. 6358 -- Can this be improved ??? 6359 6360 if No (Parent (CV)) then 6361 return; 6362 end if; 6363 6364 Stm := Parent (CV); 6365 6366 -- If the tree has been otherwise rewritten there is nothing 6367 -- else to be done either. 6368 6369 if Nkind (Stm) /= N_If_Statement then 6370 return; 6371 end if; 6372 6373 -- Before start of ELSIF part 6374 6375 if Loc < Sloc (CV) then 6376 return; 6377 6378 -- After end of IF statement 6379 6380 elsif Loc >= Sloc (Stm) + 6381 Text_Ptr (UI_To_Int (End_Span (Stm))) 6382 then 6383 return; 6384 end if; 6385 6386 -- Again we lack the SLOC of the ELSE, so we need to climb the 6387 -- tree to see if we are within the ELSIF part in question. 6388 6389 declare 6390 N : Node_Id; 6391 6392 begin 6393 N := Parent (Var); 6394 while Parent (N) /= Stm loop 6395 N := Parent (N); 6396 6397 -- If we fall off the top of the tree, then that's odd, but 6398 -- perhaps it could occur in some error situation, and the 6399 -- safest response is simply to assume that the outcome of 6400 -- the condition is unknown. No point in bombing during an 6401 -- attempt to optimize things. 6402 6403 if No (N) then 6404 return; 6405 end if; 6406 end loop; 6407 6408 -- Now we have N pointing to a node whose parent is the IF 6409 -- statement in question, so see if is the ELSIF part we want. 6410 -- the THEN statements. 6411 6412 if N = CV then 6413 Sens := True; 6414 6415 -- Otherwise we must be in subsequent ELSIF or ELSE part 6416 6417 else 6418 Sens := False; 6419 end if; 6420 end; 6421 6422 -- Iteration scheme of while loop. The condition is known to be 6423 -- true within the body of the loop. 6424 6425 elsif Nkind (CV) = N_Iteration_Scheme then 6426 declare 6427 Loop_Stmt : constant Node_Id := Parent (CV); 6428 6429 begin 6430 -- Before start of body of loop 6431 6432 if Loc < Sloc (Loop_Stmt) then 6433 return; 6434 6435 -- After end of LOOP statement 6436 6437 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then 6438 return; 6439 6440 -- We are within the body of the loop 6441 6442 else 6443 Sens := True; 6444 end if; 6445 end; 6446 6447 -- All other cases of Current_Value settings 6448 6449 else 6450 return; 6451 end if; 6452 6453 -- If we fall through here, then we have a reportable condition, Sens 6454 -- is True if the condition is true and False if it needs inverting. 6455 6456 Process_Current_Value_Condition (Condition (CV), Sens); 6457 end; 6458 end Get_Current_Value_Condition; 6459 6460 --------------------- 6461 -- Get_Stream_Size -- 6462 --------------------- 6463 6464 function Get_Stream_Size (E : Entity_Id) return Uint is 6465 begin 6466 -- If we have a Stream_Size clause for this type use it 6467 6468 if Has_Stream_Size_Clause (E) then 6469 return Static_Integer (Expression (Stream_Size_Clause (E))); 6470 6471 -- Otherwise the Stream_Size if the size of the type 6472 6473 else 6474 return Esize (E); 6475 end if; 6476 end Get_Stream_Size; 6477 6478 --------------------------- 6479 -- Has_Access_Constraint -- 6480 --------------------------- 6481 6482 function Has_Access_Constraint (E : Entity_Id) return Boolean is 6483 Disc : Entity_Id; 6484 T : constant Entity_Id := Etype (E); 6485 6486 begin 6487 if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then 6488 Disc := First_Discriminant (T); 6489 while Present (Disc) loop 6490 if Is_Access_Type (Etype (Disc)) then 6491 return True; 6492 end if; 6493 6494 Next_Discriminant (Disc); 6495 end loop; 6496 6497 return False; 6498 else 6499 return False; 6500 end if; 6501 end Has_Access_Constraint; 6502 6503 ----------------------------------------------------- 6504 -- Has_Annotate_Pragma_For_External_Axiomatization -- 6505 ----------------------------------------------------- 6506 6507 function Has_Annotate_Pragma_For_External_Axiomatization 6508 (E : Entity_Id) return Boolean 6509 is 6510 function Is_Annotate_Pragma_For_External_Axiomatization 6511 (N : Node_Id) return Boolean; 6512 -- Returns whether N is 6513 -- pragma Annotate (GNATprove, External_Axiomatization); 6514 6515 ---------------------------------------------------- 6516 -- Is_Annotate_Pragma_For_External_Axiomatization -- 6517 ---------------------------------------------------- 6518 6519 -- The general form of pragma Annotate is 6520 6521 -- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]); 6522 -- ARG ::= NAME | EXPRESSION 6523 6524 -- The first two arguments are by convention intended to refer to an 6525 -- external tool and a tool-specific function. These arguments are 6526 -- not analyzed. 6527 6528 -- The following is used to annotate a package specification which 6529 -- GNATprove should treat specially, because the axiomatization of 6530 -- this unit is given by the user instead of being automatically 6531 -- generated. 6532 6533 -- pragma Annotate (GNATprove, External_Axiomatization); 6534 6535 function Is_Annotate_Pragma_For_External_Axiomatization 6536 (N : Node_Id) return Boolean 6537 is 6538 Name_GNATprove : constant String := 6539 "gnatprove"; 6540 Name_External_Axiomatization : constant String := 6541 "external_axiomatization"; 6542 -- Special names 6543 6544 begin 6545 if Nkind (N) = N_Pragma 6546 and then Get_Pragma_Id (N) = Pragma_Annotate 6547 and then List_Length (Pragma_Argument_Associations (N)) = 2 6548 then 6549 declare 6550 Arg1 : constant Node_Id := 6551 First (Pragma_Argument_Associations (N)); 6552 Arg2 : constant Node_Id := Next (Arg1); 6553 Nam1 : Name_Id; 6554 Nam2 : Name_Id; 6555 6556 begin 6557 -- Fill in Name_Buffer with Name_GNATprove first, and then with 6558 -- Name_External_Axiomatization so that Name_Find returns the 6559 -- corresponding name. This takes care of all possible casings. 6560 6561 Name_Len := 0; 6562 Add_Str_To_Name_Buffer (Name_GNATprove); 6563 Nam1 := Name_Find; 6564 6565 Name_Len := 0; 6566 Add_Str_To_Name_Buffer (Name_External_Axiomatization); 6567 Nam2 := Name_Find; 6568 6569 return Chars (Get_Pragma_Arg (Arg1)) = Nam1 6570 and then 6571 Chars (Get_Pragma_Arg (Arg2)) = Nam2; 6572 end; 6573 6574 else 6575 return False; 6576 end if; 6577 end Is_Annotate_Pragma_For_External_Axiomatization; 6578 6579 -- Local variables 6580 6581 Decl : Node_Id; 6582 Vis_Decls : List_Id; 6583 N : Node_Id; 6584 6585 -- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization 6586 6587 begin 6588 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then 6589 Decl := Parent (Parent (E)); 6590 else 6591 Decl := Parent (E); 6592 end if; 6593 6594 Vis_Decls := Visible_Declarations (Decl); 6595 6596 N := First (Vis_Decls); 6597 while Present (N) loop 6598 6599 -- Skip declarations generated by the frontend. Skip all pragmas 6600 -- that are not the desired Annotate pragma. Stop the search on 6601 -- the first non-pragma source declaration. 6602 6603 if Comes_From_Source (N) then 6604 if Nkind (N) = N_Pragma then 6605 if Is_Annotate_Pragma_For_External_Axiomatization (N) then 6606 return True; 6607 end if; 6608 else 6609 return False; 6610 end if; 6611 end if; 6612 6613 Next (N); 6614 end loop; 6615 6616 return False; 6617 end Has_Annotate_Pragma_For_External_Axiomatization; 6618 6619 -------------------- 6620 -- Homonym_Number -- 6621 -------------------- 6622 6623 function Homonym_Number (Subp : Entity_Id) return Nat is 6624 Count : Nat; 6625 Hom : Entity_Id; 6626 6627 begin 6628 Count := 1; 6629 Hom := Homonym (Subp); 6630 while Present (Hom) loop 6631 if Scope (Hom) = Scope (Subp) then 6632 Count := Count + 1; 6633 end if; 6634 6635 Hom := Homonym (Hom); 6636 end loop; 6637 6638 return Count; 6639 end Homonym_Number; 6640 6641 ----------------------------------- 6642 -- In_Library_Level_Package_Body -- 6643 ----------------------------------- 6644 6645 function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is 6646 begin 6647 -- First determine whether the entity appears at the library level, then 6648 -- look at the containing unit. 6649 6650 if Is_Library_Level_Entity (Id) then 6651 declare 6652 Container : constant Node_Id := Cunit (Get_Source_Unit (Id)); 6653 6654 begin 6655 return Nkind (Unit (Container)) = N_Package_Body; 6656 end; 6657 end if; 6658 6659 return False; 6660 end In_Library_Level_Package_Body; 6661 6662 ------------------------------ 6663 -- In_Unconditional_Context -- 6664 ------------------------------ 6665 6666 function In_Unconditional_Context (Node : Node_Id) return Boolean is 6667 P : Node_Id; 6668 6669 begin 6670 P := Node; 6671 while Present (P) loop 6672 case Nkind (P) is 6673 when N_Subprogram_Body => return True; 6674 when N_If_Statement => return False; 6675 when N_Loop_Statement => return False; 6676 when N_Case_Statement => return False; 6677 when others => P := Parent (P); 6678 end case; 6679 end loop; 6680 6681 return False; 6682 end In_Unconditional_Context; 6683 6684 ------------------- 6685 -- Insert_Action -- 6686 ------------------- 6687 6688 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is 6689 begin 6690 if Present (Ins_Action) then 6691 Insert_Actions (Assoc_Node, New_List (Ins_Action)); 6692 end if; 6693 end Insert_Action; 6694 6695 -- Version with check(s) suppressed 6696 6697 procedure Insert_Action 6698 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id) 6699 is 6700 begin 6701 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress); 6702 end Insert_Action; 6703 6704 ------------------------- 6705 -- Insert_Action_After -- 6706 ------------------------- 6707 6708 procedure Insert_Action_After 6709 (Assoc_Node : Node_Id; 6710 Ins_Action : Node_Id) 6711 is 6712 begin 6713 Insert_Actions_After (Assoc_Node, New_List (Ins_Action)); 6714 end Insert_Action_After; 6715 6716 -------------------- 6717 -- Insert_Actions -- 6718 -------------------- 6719 6720 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is 6721 N : Node_Id; 6722 P : Node_Id; 6723 6724 Wrapped_Node : Node_Id := Empty; 6725 6726 begin 6727 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then 6728 return; 6729 end if; 6730 6731 -- Ignore insert of actions from inside default expression (or other 6732 -- similar "spec expression") in the special spec-expression analyze 6733 -- mode. Any insertions at this point have no relevance, since we are 6734 -- only doing the analyze to freeze the types of any static expressions. 6735 -- See section "Handling of Default Expressions" in the spec of package 6736 -- Sem for further details. 6737 6738 if In_Spec_Expression then 6739 return; 6740 end if; 6741 6742 -- If the action derives from stuff inside a record, then the actions 6743 -- are attached to the current scope, to be inserted and analyzed on 6744 -- exit from the scope. The reason for this is that we may also be 6745 -- generating freeze actions at the same time, and they must eventually 6746 -- be elaborated in the correct order. 6747 6748 if Is_Record_Type (Current_Scope) 6749 and then not Is_Frozen (Current_Scope) 6750 then 6751 if No (Scope_Stack.Table 6752 (Scope_Stack.Last).Pending_Freeze_Actions) 6753 then 6754 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions := 6755 Ins_Actions; 6756 else 6757 Append_List 6758 (Ins_Actions, 6759 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions); 6760 end if; 6761 6762 return; 6763 end if; 6764 6765 -- We now intend to climb up the tree to find the right point to 6766 -- insert the actions. We start at Assoc_Node, unless this node is a 6767 -- subexpression in which case we start with its parent. We do this for 6768 -- two reasons. First it speeds things up. Second, if Assoc_Node is 6769 -- itself one of the special nodes like N_And_Then, then we assume that 6770 -- an initial request to insert actions for such a node does not expect 6771 -- the actions to get deposited in the node for later handling when the 6772 -- node is expanded, since clearly the node is being dealt with by the 6773 -- caller. Note that in the subexpression case, N is always the child we 6774 -- came from. 6775 6776 -- N_Raise_xxx_Error is an annoying special case, it is a statement 6777 -- if it has type Standard_Void_Type, and a subexpression otherwise. 6778 -- Procedure calls, and similarly procedure attribute references, are 6779 -- also statements. 6780 6781 if Nkind (Assoc_Node) in N_Subexpr 6782 and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error 6783 or else Etype (Assoc_Node) /= Standard_Void_Type) 6784 and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement 6785 and then (Nkind (Assoc_Node) /= N_Attribute_Reference 6786 or else not Is_Procedure_Attribute_Name 6787 (Attribute_Name (Assoc_Node))) 6788 then 6789 N := Assoc_Node; 6790 P := Parent (Assoc_Node); 6791 6792 -- Non-subexpression case. Note that N is initially Empty in this case 6793 -- (N is only guaranteed Non-Empty in the subexpr case). 6794 6795 else 6796 N := Empty; 6797 P := Assoc_Node; 6798 end if; 6799 6800 -- Capture root of the transient scope 6801 6802 if Scope_Is_Transient then 6803 Wrapped_Node := Node_To_Be_Wrapped; 6804 end if; 6805 6806 loop 6807 pragma Assert (Present (P)); 6808 6809 -- Make sure that inserted actions stay in the transient scope 6810 6811 if Present (Wrapped_Node) and then N = Wrapped_Node then 6812 Store_Before_Actions_In_Scope (Ins_Actions); 6813 return; 6814 end if; 6815 6816 case Nkind (P) is 6817 6818 -- Case of right operand of AND THEN or OR ELSE. Put the actions 6819 -- in the Actions field of the right operand. They will be moved 6820 -- out further when the AND THEN or OR ELSE operator is expanded. 6821 -- Nothing special needs to be done for the left operand since 6822 -- in that case the actions are executed unconditionally. 6823 6824 when N_Short_Circuit => 6825 if N = Right_Opnd (P) then 6826 6827 -- We are now going to either append the actions to the 6828 -- actions field of the short-circuit operation. We will 6829 -- also analyze the actions now. 6830 6831 -- This analysis is really too early, the proper thing would 6832 -- be to just park them there now, and only analyze them if 6833 -- we find we really need them, and to it at the proper 6834 -- final insertion point. However attempting to this proved 6835 -- tricky, so for now we just kill current values before and 6836 -- after the analyze call to make sure we avoid peculiar 6837 -- optimizations from this out of order insertion. 6838 6839 Kill_Current_Values; 6840 6841 -- If P has already been expanded, we can't park new actions 6842 -- on it, so we need to expand them immediately, introducing 6843 -- an Expression_With_Actions. N can't be an expression 6844 -- with actions, or else then the actions would have been 6845 -- inserted at an inner level. 6846 6847 if Analyzed (P) then 6848 pragma Assert (Nkind (N) /= N_Expression_With_Actions); 6849 Rewrite (N, 6850 Make_Expression_With_Actions (Sloc (N), 6851 Actions => Ins_Actions, 6852 Expression => Relocate_Node (N))); 6853 Analyze_And_Resolve (N); 6854 6855 elsif Present (Actions (P)) then 6856 Insert_List_After_And_Analyze 6857 (Last (Actions (P)), Ins_Actions); 6858 else 6859 Set_Actions (P, Ins_Actions); 6860 Analyze_List (Actions (P)); 6861 end if; 6862 6863 Kill_Current_Values; 6864 6865 return; 6866 end if; 6867 6868 -- Then or Else dependent expression of an if expression. Add 6869 -- actions to Then_Actions or Else_Actions field as appropriate. 6870 -- The actions will be moved further out when the if is expanded. 6871 6872 when N_If_Expression => 6873 declare 6874 ThenX : constant Node_Id := Next (First (Expressions (P))); 6875 ElseX : constant Node_Id := Next (ThenX); 6876 6877 begin 6878 -- If the enclosing expression is already analyzed, as 6879 -- is the case for nested elaboration checks, insert the 6880 -- conditional further out. 6881 6882 if Analyzed (P) then 6883 null; 6884 6885 -- Actions belong to the then expression, temporarily place 6886 -- them as Then_Actions of the if expression. They will be 6887 -- moved to the proper place later when the if expression 6888 -- is expanded. 6889 6890 elsif N = ThenX then 6891 if Present (Then_Actions (P)) then 6892 Insert_List_After_And_Analyze 6893 (Last (Then_Actions (P)), Ins_Actions); 6894 else 6895 Set_Then_Actions (P, Ins_Actions); 6896 Analyze_List (Then_Actions (P)); 6897 end if; 6898 6899 return; 6900 6901 -- Actions belong to the else expression, temporarily place 6902 -- them as Else_Actions of the if expression. They will be 6903 -- moved to the proper place later when the if expression 6904 -- is expanded. 6905 6906 elsif N = ElseX then 6907 if Present (Else_Actions (P)) then 6908 Insert_List_After_And_Analyze 6909 (Last (Else_Actions (P)), Ins_Actions); 6910 else 6911 Set_Else_Actions (P, Ins_Actions); 6912 Analyze_List (Else_Actions (P)); 6913 end if; 6914 6915 return; 6916 6917 -- Actions belong to the condition. In this case they are 6918 -- unconditionally executed, and so we can continue the 6919 -- search for the proper insert point. 6920 6921 else 6922 null; 6923 end if; 6924 end; 6925 6926 -- Alternative of case expression, we place the action in the 6927 -- Actions field of the case expression alternative, this will 6928 -- be handled when the case expression is expanded. 6929 6930 when N_Case_Expression_Alternative => 6931 if Present (Actions (P)) then 6932 Insert_List_After_And_Analyze 6933 (Last (Actions (P)), Ins_Actions); 6934 else 6935 Set_Actions (P, Ins_Actions); 6936 Analyze_List (Actions (P)); 6937 end if; 6938 6939 return; 6940 6941 -- Case of appearing within an Expressions_With_Actions node. When 6942 -- the new actions come from the expression of the expression with 6943 -- actions, they must be added to the existing actions. The other 6944 -- alternative is when the new actions are related to one of the 6945 -- existing actions of the expression with actions, and should 6946 -- never reach here: if actions are inserted on a statement 6947 -- within the Actions of an expression with actions, or on some 6948 -- subexpression of such a statement, then the outermost proper 6949 -- insertion point is right before the statement, and we should 6950 -- never climb up as far as the N_Expression_With_Actions itself. 6951 6952 when N_Expression_With_Actions => 6953 if N = Expression (P) then 6954 if Is_Empty_List (Actions (P)) then 6955 Append_List_To (Actions (P), Ins_Actions); 6956 Analyze_List (Actions (P)); 6957 else 6958 Insert_List_After_And_Analyze 6959 (Last (Actions (P)), Ins_Actions); 6960 end if; 6961 6962 return; 6963 6964 else 6965 raise Program_Error; 6966 end if; 6967 6968 -- Case of appearing in the condition of a while expression or 6969 -- elsif. We insert the actions into the Condition_Actions field. 6970 -- They will be moved further out when the while loop or elsif 6971 -- is analyzed. 6972 6973 when N_Elsif_Part 6974 | N_Iteration_Scheme 6975 => 6976 if N = Condition (P) then 6977 if Present (Condition_Actions (P)) then 6978 Insert_List_After_And_Analyze 6979 (Last (Condition_Actions (P)), Ins_Actions); 6980 else 6981 Set_Condition_Actions (P, Ins_Actions); 6982 6983 -- Set the parent of the insert actions explicitly. This 6984 -- is not a syntactic field, but we need the parent field 6985 -- set, in particular so that freeze can understand that 6986 -- it is dealing with condition actions, and properly 6987 -- insert the freezing actions. 6988 6989 Set_Parent (Ins_Actions, P); 6990 Analyze_List (Condition_Actions (P)); 6991 end if; 6992 6993 return; 6994 end if; 6995 6996 -- Statements, declarations, pragmas, representation clauses 6997 6998 when 6999 -- Statements 7000 7001 N_Procedure_Call_Statement 7002 | N_Statement_Other_Than_Procedure_Call 7003 7004 -- Pragmas 7005 7006 | N_Pragma 7007 7008 -- Representation_Clause 7009 7010 | N_At_Clause 7011 | N_Attribute_Definition_Clause 7012 | N_Enumeration_Representation_Clause 7013 | N_Record_Representation_Clause 7014 7015 -- Declarations 7016 7017 | N_Abstract_Subprogram_Declaration 7018 | N_Entry_Body 7019 | N_Exception_Declaration 7020 | N_Exception_Renaming_Declaration 7021 | N_Expression_Function 7022 | N_Formal_Abstract_Subprogram_Declaration 7023 | N_Formal_Concrete_Subprogram_Declaration 7024 | N_Formal_Object_Declaration 7025 | N_Formal_Type_Declaration 7026 | N_Full_Type_Declaration 7027 | N_Function_Instantiation 7028 | N_Generic_Function_Renaming_Declaration 7029 | N_Generic_Package_Declaration 7030 | N_Generic_Package_Renaming_Declaration 7031 | N_Generic_Procedure_Renaming_Declaration 7032 | N_Generic_Subprogram_Declaration 7033 | N_Implicit_Label_Declaration 7034 | N_Incomplete_Type_Declaration 7035 | N_Number_Declaration 7036 | N_Object_Declaration 7037 | N_Object_Renaming_Declaration 7038 | N_Package_Body 7039 | N_Package_Body_Stub 7040 | N_Package_Declaration 7041 | N_Package_Instantiation 7042 | N_Package_Renaming_Declaration 7043 | N_Private_Extension_Declaration 7044 | N_Private_Type_Declaration 7045 | N_Procedure_Instantiation 7046 | N_Protected_Body 7047 | N_Protected_Body_Stub 7048 | N_Protected_Type_Declaration 7049 | N_Single_Task_Declaration 7050 | N_Subprogram_Body 7051 | N_Subprogram_Body_Stub 7052 | N_Subprogram_Declaration 7053 | N_Subprogram_Renaming_Declaration 7054 | N_Subtype_Declaration 7055 | N_Task_Body 7056 | N_Task_Body_Stub 7057 | N_Task_Type_Declaration 7058 7059 -- Use clauses can appear in lists of declarations 7060 7061 | N_Use_Package_Clause 7062 | N_Use_Type_Clause 7063 7064 -- Freeze entity behaves like a declaration or statement 7065 7066 | N_Freeze_Entity 7067 | N_Freeze_Generic_Entity 7068 => 7069 -- Do not insert here if the item is not a list member (this 7070 -- happens for example with a triggering statement, and the 7071 -- proper approach is to insert before the entire select). 7072 7073 if not Is_List_Member (P) then 7074 null; 7075 7076 -- Do not insert if parent of P is an N_Component_Association 7077 -- node (i.e. we are in the context of an N_Aggregate or 7078 -- N_Extension_Aggregate node. In this case we want to insert 7079 -- before the entire aggregate. 7080 7081 elsif Nkind (Parent (P)) = N_Component_Association then 7082 null; 7083 7084 -- Do not insert if the parent of P is either an N_Variant node 7085 -- or an N_Record_Definition node, meaning in either case that 7086 -- P is a member of a component list, and that therefore the 7087 -- actions should be inserted outside the complete record 7088 -- declaration. 7089 7090 elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then 7091 null; 7092 7093 -- Do not insert freeze nodes within the loop generated for 7094 -- an aggregate, because they may be elaborated too late for 7095 -- subsequent use in the back end: within a package spec the 7096 -- loop is part of the elaboration procedure and is only 7097 -- elaborated during the second pass. 7098 7099 -- If the loop comes from source, or the entity is local to the 7100 -- loop itself it must remain within. 7101 7102 elsif Nkind (Parent (P)) = N_Loop_Statement 7103 and then not Comes_From_Source (Parent (P)) 7104 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity 7105 and then 7106 Scope (Entity (First (Ins_Actions))) /= Current_Scope 7107 then 7108 null; 7109 7110 -- Otherwise we can go ahead and do the insertion 7111 7112 elsif P = Wrapped_Node then 7113 Store_Before_Actions_In_Scope (Ins_Actions); 7114 return; 7115 7116 else 7117 Insert_List_Before_And_Analyze (P, Ins_Actions); 7118 return; 7119 end if; 7120 7121 -- A special case, N_Raise_xxx_Error can act either as a statement 7122 -- or a subexpression. We tell the difference by looking at the 7123 -- Etype. It is set to Standard_Void_Type in the statement case. 7124 7125 when N_Raise_xxx_Error => 7126 if Etype (P) = Standard_Void_Type then 7127 if P = Wrapped_Node then 7128 Store_Before_Actions_In_Scope (Ins_Actions); 7129 else 7130 Insert_List_Before_And_Analyze (P, Ins_Actions); 7131 end if; 7132 7133 return; 7134 7135 -- In the subexpression case, keep climbing 7136 7137 else 7138 null; 7139 end if; 7140 7141 -- If a component association appears within a loop created for 7142 -- an array aggregate, attach the actions to the association so 7143 -- they can be subsequently inserted within the loop. For other 7144 -- component associations insert outside of the aggregate. For 7145 -- an association that will generate a loop, its Loop_Actions 7146 -- attribute is already initialized (see exp_aggr.adb). 7147 7148 -- The list of Loop_Actions can in turn generate additional ones, 7149 -- that are inserted before the associated node. If the associated 7150 -- node is outside the aggregate, the new actions are collected 7151 -- at the end of the Loop_Actions, to respect the order in which 7152 -- they are to be elaborated. 7153 7154 when N_Component_Association 7155 | N_Iterated_Component_Association 7156 => 7157 if Nkind (Parent (P)) = N_Aggregate 7158 and then Present (Loop_Actions (P)) 7159 then 7160 if Is_Empty_List (Loop_Actions (P)) then 7161 Set_Loop_Actions (P, Ins_Actions); 7162 Analyze_List (Ins_Actions); 7163 else 7164 declare 7165 Decl : Node_Id; 7166 7167 begin 7168 -- Check whether these actions were generated by a 7169 -- declaration that is part of the Loop_Actions for 7170 -- the component_association. 7171 7172 Decl := Assoc_Node; 7173 while Present (Decl) loop 7174 exit when Parent (Decl) = P 7175 and then Is_List_Member (Decl) 7176 and then 7177 List_Containing (Decl) = Loop_Actions (P); 7178 Decl := Parent (Decl); 7179 end loop; 7180 7181 if Present (Decl) then 7182 Insert_List_Before_And_Analyze 7183 (Decl, Ins_Actions); 7184 else 7185 Insert_List_After_And_Analyze 7186 (Last (Loop_Actions (P)), Ins_Actions); 7187 end if; 7188 end; 7189 end if; 7190 7191 return; 7192 7193 else 7194 null; 7195 end if; 7196 7197 -- Special case: an attribute denoting a procedure call 7198 7199 when N_Attribute_Reference => 7200 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then 7201 if P = Wrapped_Node then 7202 Store_Before_Actions_In_Scope (Ins_Actions); 7203 else 7204 Insert_List_Before_And_Analyze (P, Ins_Actions); 7205 end if; 7206 7207 return; 7208 7209 -- In the subexpression case, keep climbing 7210 7211 else 7212 null; 7213 end if; 7214 7215 -- Special case: a marker 7216 7217 when N_Call_Marker 7218 | N_Variable_Reference_Marker 7219 => 7220 if Is_List_Member (P) then 7221 Insert_List_Before_And_Analyze (P, Ins_Actions); 7222 return; 7223 end if; 7224 7225 -- A contract node should not belong to the tree 7226 7227 when N_Contract => 7228 raise Program_Error; 7229 7230 -- For all other node types, keep climbing tree 7231 7232 when N_Abortable_Part 7233 | N_Accept_Alternative 7234 | N_Access_Definition 7235 | N_Access_Function_Definition 7236 | N_Access_Procedure_Definition 7237 | N_Access_To_Object_Definition 7238 | N_Aggregate 7239 | N_Allocator 7240 | N_Aspect_Specification 7241 | N_Case_Expression 7242 | N_Case_Statement_Alternative 7243 | N_Character_Literal 7244 | N_Compilation_Unit 7245 | N_Compilation_Unit_Aux 7246 | N_Component_Clause 7247 | N_Component_Declaration 7248 | N_Component_Definition 7249 | N_Component_List 7250 | N_Constrained_Array_Definition 7251 | N_Decimal_Fixed_Point_Definition 7252 | N_Defining_Character_Literal 7253 | N_Defining_Identifier 7254 | N_Defining_Operator_Symbol 7255 | N_Defining_Program_Unit_Name 7256 | N_Delay_Alternative 7257 | N_Delta_Aggregate 7258 | N_Delta_Constraint 7259 | N_Derived_Type_Definition 7260 | N_Designator 7261 | N_Digits_Constraint 7262 | N_Discriminant_Association 7263 | N_Discriminant_Specification 7264 | N_Empty 7265 | N_Entry_Body_Formal_Part 7266 | N_Entry_Call_Alternative 7267 | N_Entry_Declaration 7268 | N_Entry_Index_Specification 7269 | N_Enumeration_Type_Definition 7270 | N_Error 7271 | N_Exception_Handler 7272 | N_Expanded_Name 7273 | N_Explicit_Dereference 7274 | N_Extension_Aggregate 7275 | N_Floating_Point_Definition 7276 | N_Formal_Decimal_Fixed_Point_Definition 7277 | N_Formal_Derived_Type_Definition 7278 | N_Formal_Discrete_Type_Definition 7279 | N_Formal_Floating_Point_Definition 7280 | N_Formal_Modular_Type_Definition 7281 | N_Formal_Ordinary_Fixed_Point_Definition 7282 | N_Formal_Package_Declaration 7283 | N_Formal_Private_Type_Definition 7284 | N_Formal_Incomplete_Type_Definition 7285 | N_Formal_Signed_Integer_Type_Definition 7286 | N_Function_Call 7287 | N_Function_Specification 7288 | N_Generic_Association 7289 | N_Handled_Sequence_Of_Statements 7290 | N_Identifier 7291 | N_In 7292 | N_Index_Or_Discriminant_Constraint 7293 | N_Indexed_Component 7294 | N_Integer_Literal 7295 | N_Iterator_Specification 7296 | N_Itype_Reference 7297 | N_Label 7298 | N_Loop_Parameter_Specification 7299 | N_Mod_Clause 7300 | N_Modular_Type_Definition 7301 | N_Not_In 7302 | N_Null 7303 | N_Op_Abs 7304 | N_Op_Add 7305 | N_Op_And 7306 | N_Op_Concat 7307 | N_Op_Divide 7308 | N_Op_Eq 7309 | N_Op_Expon 7310 | N_Op_Ge 7311 | N_Op_Gt 7312 | N_Op_Le 7313 | N_Op_Lt 7314 | N_Op_Minus 7315 | N_Op_Mod 7316 | N_Op_Multiply 7317 | N_Op_Ne 7318 | N_Op_Not 7319 | N_Op_Or 7320 | N_Op_Plus 7321 | N_Op_Rem 7322 | N_Op_Rotate_Left 7323 | N_Op_Rotate_Right 7324 | N_Op_Shift_Left 7325 | N_Op_Shift_Right 7326 | N_Op_Shift_Right_Arithmetic 7327 | N_Op_Subtract 7328 | N_Op_Xor 7329 | N_Operator_Symbol 7330 | N_Ordinary_Fixed_Point_Definition 7331 | N_Others_Choice 7332 | N_Package_Specification 7333 | N_Parameter_Association 7334 | N_Parameter_Specification 7335 | N_Pop_Constraint_Error_Label 7336 | N_Pop_Program_Error_Label 7337 | N_Pop_Storage_Error_Label 7338 | N_Pragma_Argument_Association 7339 | N_Procedure_Specification 7340 | N_Protected_Definition 7341 | N_Push_Constraint_Error_Label 7342 | N_Push_Program_Error_Label 7343 | N_Push_Storage_Error_Label 7344 | N_Qualified_Expression 7345 | N_Quantified_Expression 7346 | N_Raise_Expression 7347 | N_Range 7348 | N_Range_Constraint 7349 | N_Real_Literal 7350 | N_Real_Range_Specification 7351 | N_Record_Definition 7352 | N_Reduction_Expression 7353 | N_Reduction_Expression_Parameter 7354 | N_Reference 7355 | N_SCIL_Dispatch_Table_Tag_Init 7356 | N_SCIL_Dispatching_Call 7357 | N_SCIL_Membership_Test 7358 | N_Selected_Component 7359 | N_Signed_Integer_Type_Definition 7360 | N_Single_Protected_Declaration 7361 | N_Slice 7362 | N_String_Literal 7363 | N_Subtype_Indication 7364 | N_Subunit 7365 | N_Target_Name 7366 | N_Task_Definition 7367 | N_Terminate_Alternative 7368 | N_Triggering_Alternative 7369 | N_Type_Conversion 7370 | N_Unchecked_Expression 7371 | N_Unchecked_Type_Conversion 7372 | N_Unconstrained_Array_Definition 7373 | N_Unused_At_End 7374 | N_Unused_At_Start 7375 | N_Variant 7376 | N_Variant_Part 7377 | N_Validate_Unchecked_Conversion 7378 | N_With_Clause 7379 => 7380 null; 7381 end case; 7382 7383 -- If we fall through above tests, keep climbing tree 7384 7385 N := P; 7386 7387 if Nkind (Parent (N)) = N_Subunit then 7388 7389 -- This is the proper body corresponding to a stub. Insertion must 7390 -- be done at the point of the stub, which is in the declarative 7391 -- part of the parent unit. 7392 7393 P := Corresponding_Stub (Parent (N)); 7394 7395 else 7396 P := Parent (N); 7397 end if; 7398 end loop; 7399 end Insert_Actions; 7400 7401 -- Version with check(s) suppressed 7402 7403 procedure Insert_Actions 7404 (Assoc_Node : Node_Id; 7405 Ins_Actions : List_Id; 7406 Suppress : Check_Id) 7407 is 7408 begin 7409 if Suppress = All_Checks then 7410 declare 7411 Sva : constant Suppress_Array := Scope_Suppress.Suppress; 7412 begin 7413 Scope_Suppress.Suppress := (others => True); 7414 Insert_Actions (Assoc_Node, Ins_Actions); 7415 Scope_Suppress.Suppress := Sva; 7416 end; 7417 7418 else 7419 declare 7420 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress); 7421 begin 7422 Scope_Suppress.Suppress (Suppress) := True; 7423 Insert_Actions (Assoc_Node, Ins_Actions); 7424 Scope_Suppress.Suppress (Suppress) := Svg; 7425 end; 7426 end if; 7427 end Insert_Actions; 7428 7429 -------------------------- 7430 -- Insert_Actions_After -- 7431 -------------------------- 7432 7433 procedure Insert_Actions_After 7434 (Assoc_Node : Node_Id; 7435 Ins_Actions : List_Id) 7436 is 7437 begin 7438 if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then 7439 Store_After_Actions_In_Scope (Ins_Actions); 7440 else 7441 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions); 7442 end if; 7443 end Insert_Actions_After; 7444 7445 ------------------------ 7446 -- Insert_Declaration -- 7447 ------------------------ 7448 7449 procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is 7450 P : Node_Id; 7451 7452 begin 7453 pragma Assert (Nkind (N) in N_Subexpr); 7454 7455 -- Climb until we find a procedure or a package 7456 7457 P := N; 7458 loop 7459 pragma Assert (Present (Parent (P))); 7460 P := Parent (P); 7461 7462 if Is_List_Member (P) then 7463 exit when Nkind_In (Parent (P), N_Package_Specification, 7464 N_Subprogram_Body); 7465 7466 -- Special handling for handled sequence of statements, we must 7467 -- insert in the statements not the exception handlers! 7468 7469 if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then 7470 P := First (Statements (Parent (P))); 7471 exit; 7472 end if; 7473 end if; 7474 end loop; 7475 7476 -- Now do the insertion 7477 7478 Insert_Before (P, Decl); 7479 Analyze (Decl); 7480 end Insert_Declaration; 7481 7482 --------------------------------- 7483 -- Insert_Library_Level_Action -- 7484 --------------------------------- 7485 7486 procedure Insert_Library_Level_Action (N : Node_Id) is 7487 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit)); 7488 7489 begin 7490 Push_Scope (Cunit_Entity (Current_Sem_Unit)); 7491 -- And not Main_Unit as previously. If the main unit is a body, 7492 -- the scope needed to analyze the actions is the entity of the 7493 -- corresponding declaration. 7494 7495 if No (Actions (Aux)) then 7496 Set_Actions (Aux, New_List (N)); 7497 else 7498 Append (N, Actions (Aux)); 7499 end if; 7500 7501 Analyze (N); 7502 Pop_Scope; 7503 end Insert_Library_Level_Action; 7504 7505 ---------------------------------- 7506 -- Insert_Library_Level_Actions -- 7507 ---------------------------------- 7508 7509 procedure Insert_Library_Level_Actions (L : List_Id) is 7510 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit)); 7511 7512 begin 7513 if Is_Non_Empty_List (L) then 7514 Push_Scope (Cunit_Entity (Main_Unit)); 7515 -- ??? should this be Current_Sem_Unit instead of Main_Unit? 7516 7517 if No (Actions (Aux)) then 7518 Set_Actions (Aux, L); 7519 Analyze_List (L); 7520 else 7521 Insert_List_After_And_Analyze (Last (Actions (Aux)), L); 7522 end if; 7523 7524 Pop_Scope; 7525 end if; 7526 end Insert_Library_Level_Actions; 7527 7528 ---------------------- 7529 -- Inside_Init_Proc -- 7530 ---------------------- 7531 7532 function Inside_Init_Proc return Boolean is 7533 S : Entity_Id; 7534 7535 begin 7536 S := Current_Scope; 7537 while Present (S) and then S /= Standard_Standard loop 7538 if Is_Init_Proc (S) then 7539 return True; 7540 else 7541 S := Scope (S); 7542 end if; 7543 end loop; 7544 7545 return False; 7546 end Inside_Init_Proc; 7547 7548 ---------------------------- 7549 -- Is_All_Null_Statements -- 7550 ---------------------------- 7551 7552 function Is_All_Null_Statements (L : List_Id) return Boolean is 7553 Stm : Node_Id; 7554 7555 begin 7556 Stm := First (L); 7557 while Present (Stm) loop 7558 if Nkind (Stm) /= N_Null_Statement then 7559 return False; 7560 end if; 7561 7562 Next (Stm); 7563 end loop; 7564 7565 return True; 7566 end Is_All_Null_Statements; 7567 7568 -------------------------------------------------- 7569 -- Is_Displacement_Of_Object_Or_Function_Result -- 7570 -------------------------------------------------- 7571 7572 function Is_Displacement_Of_Object_Or_Function_Result 7573 (Obj_Id : Entity_Id) return Boolean 7574 is 7575 function Is_Controlled_Function_Call (N : Node_Id) return Boolean; 7576 -- Determine whether node N denotes a controlled function call 7577 7578 function Is_Controlled_Indexing (N : Node_Id) return Boolean; 7579 -- Determine whether node N denotes a generalized indexing form which 7580 -- involves a controlled result. 7581 7582 function Is_Displace_Call (N : Node_Id) return Boolean; 7583 -- Determine whether node N denotes a call to Ada.Tags.Displace 7584 7585 function Is_Source_Object (N : Node_Id) return Boolean; 7586 -- Determine whether a particular node denotes a source object 7587 7588 function Strip (N : Node_Id) return Node_Id; 7589 -- Examine arbitrary node N by stripping various indirections and return 7590 -- the "real" node. 7591 7592 --------------------------------- 7593 -- Is_Controlled_Function_Call -- 7594 --------------------------------- 7595 7596 function Is_Controlled_Function_Call (N : Node_Id) return Boolean is 7597 Expr : Node_Id; 7598 7599 begin 7600 -- When a function call appears in Object.Operation format, the 7601 -- original representation has several possible forms depending on 7602 -- the availability and form of actual parameters: 7603 7604 -- Obj.Func N_Selected_Component 7605 -- Obj.Func (Actual) N_Indexed_Component 7606 -- Obj.Func (Formal => Actual) N_Function_Call, whose Name is an 7607 -- N_Selected_Component 7608 7609 Expr := Original_Node (N); 7610 loop 7611 if Nkind (Expr) = N_Function_Call then 7612 Expr := Name (Expr); 7613 7614 -- "Obj.Func (Actual)" case 7615 7616 elsif Nkind (Expr) = N_Indexed_Component then 7617 Expr := Prefix (Expr); 7618 7619 -- "Obj.Func" or "Obj.Func (Formal => Actual) case 7620 7621 elsif Nkind (Expr) = N_Selected_Component then 7622 Expr := Selector_Name (Expr); 7623 7624 else 7625 exit; 7626 end if; 7627 end loop; 7628 7629 return 7630 Nkind (Expr) in N_Has_Entity 7631 and then Present (Entity (Expr)) 7632 and then Ekind (Entity (Expr)) = E_Function 7633 and then Needs_Finalization (Etype (Entity (Expr))); 7634 end Is_Controlled_Function_Call; 7635 7636 ---------------------------- 7637 -- Is_Controlled_Indexing -- 7638 ---------------------------- 7639 7640 function Is_Controlled_Indexing (N : Node_Id) return Boolean is 7641 Expr : constant Node_Id := Original_Node (N); 7642 7643 begin 7644 return 7645 Nkind (Expr) = N_Indexed_Component 7646 and then Present (Generalized_Indexing (Expr)) 7647 and then Needs_Finalization (Etype (Expr)); 7648 end Is_Controlled_Indexing; 7649 7650 ---------------------- 7651 -- Is_Displace_Call -- 7652 ---------------------- 7653 7654 function Is_Displace_Call (N : Node_Id) return Boolean is 7655 Call : constant Node_Id := Strip (N); 7656 7657 begin 7658 return 7659 Present (Call) 7660 and then Nkind (Call) = N_Function_Call 7661 and then Nkind (Name (Call)) in N_Has_Entity 7662 and then Is_RTE (Entity (Name (Call)), RE_Displace); 7663 end Is_Displace_Call; 7664 7665 ---------------------- 7666 -- Is_Source_Object -- 7667 ---------------------- 7668 7669 function Is_Source_Object (N : Node_Id) return Boolean is 7670 Obj : constant Node_Id := Strip (N); 7671 7672 begin 7673 return 7674 Present (Obj) 7675 and then Comes_From_Source (Obj) 7676 and then Nkind (Obj) in N_Has_Entity 7677 and then Is_Object (Entity (Obj)); 7678 end Is_Source_Object; 7679 7680 ----------- 7681 -- Strip -- 7682 ----------- 7683 7684 function Strip (N : Node_Id) return Node_Id is 7685 Result : Node_Id; 7686 7687 begin 7688 Result := N; 7689 loop 7690 if Nkind (Result) = N_Explicit_Dereference then 7691 Result := Prefix (Result); 7692 7693 elsif Nkind_In (Result, N_Type_Conversion, 7694 N_Unchecked_Type_Conversion) 7695 then 7696 Result := Expression (Result); 7697 7698 else 7699 exit; 7700 end if; 7701 end loop; 7702 7703 return Result; 7704 end Strip; 7705 7706 -- Local variables 7707 7708 Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id); 7709 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id)); 7710 Orig_Decl : constant Node_Id := Original_Node (Obj_Decl); 7711 Orig_Expr : Node_Id; 7712 7713 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result 7714 7715 begin 7716 -- Case 1: 7717 7718 -- Obj : CW_Type := Function_Call (...); 7719 7720 -- is rewritten into: 7721 7722 -- Temp : ... := Function_Call (...)'reference; 7723 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp)); 7724 7725 -- where the return type of the function and the class-wide type require 7726 -- dispatch table pointer displacement. 7727 7728 -- Case 2: 7729 7730 -- Obj : CW_Type := Container (...); 7731 7732 -- is rewritten into: 7733 7734 -- Temp : ... := Function_Call (Container, ...)'reference; 7735 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp)); 7736 7737 -- where the container element type and the class-wide type require 7738 -- dispatch table pointer dispacement. 7739 7740 -- Case 3: 7741 7742 -- Obj : CW_Type := Src_Obj; 7743 7744 -- is rewritten into: 7745 7746 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj)); 7747 7748 -- where the type of the source object and the class-wide type require 7749 -- dispatch table pointer displacement. 7750 7751 if Nkind (Obj_Decl) = N_Object_Renaming_Declaration 7752 and then Is_Class_Wide_Type (Obj_Typ) 7753 and then Is_Displace_Call (Renamed_Object (Obj_Id)) 7754 and then Nkind (Orig_Decl) = N_Object_Declaration 7755 and then Comes_From_Source (Orig_Decl) 7756 then 7757 Orig_Expr := Expression (Orig_Decl); 7758 7759 return 7760 Is_Controlled_Function_Call (Orig_Expr) 7761 or else Is_Controlled_Indexing (Orig_Expr) 7762 or else Is_Source_Object (Orig_Expr); 7763 end if; 7764 7765 return False; 7766 end Is_Displacement_Of_Object_Or_Function_Result; 7767 7768 ------------------------------ 7769 -- Is_Finalizable_Transient -- 7770 ------------------------------ 7771 7772 function Is_Finalizable_Transient 7773 (Decl : Node_Id; 7774 Rel_Node : Node_Id) return Boolean 7775 is 7776 Obj_Id : constant Entity_Id := Defining_Identifier (Decl); 7777 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id)); 7778 7779 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean; 7780 -- Determine whether transient object Trans_Id is initialized either 7781 -- by a function call which returns an access type or simply renames 7782 -- another pointer. 7783 7784 function Initialized_By_Aliased_BIP_Func_Call 7785 (Trans_Id : Entity_Id) return Boolean; 7786 -- Determine whether transient object Trans_Id is initialized by a 7787 -- build-in-place function call where the BIPalloc parameter is of 7788 -- value 1 and BIPaccess is not null. This case creates an aliasing 7789 -- between the returned value and the value denoted by BIPaccess. 7790 7791 function Is_Aliased 7792 (Trans_Id : Entity_Id; 7793 First_Stmt : Node_Id) return Boolean; 7794 -- Determine whether transient object Trans_Id has been renamed or 7795 -- aliased through 'reference in the statement list starting from 7796 -- First_Stmt. 7797 7798 function Is_Allocated (Trans_Id : Entity_Id) return Boolean; 7799 -- Determine whether transient object Trans_Id is allocated on the heap 7800 7801 function Is_Iterated_Container 7802 (Trans_Id : Entity_Id; 7803 First_Stmt : Node_Id) return Boolean; 7804 -- Determine whether transient object Trans_Id denotes a container which 7805 -- is in the process of being iterated in the statement list starting 7806 -- from First_Stmt. 7807 7808 --------------------------- 7809 -- Initialized_By_Access -- 7810 --------------------------- 7811 7812 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is 7813 Expr : constant Node_Id := Expression (Parent (Trans_Id)); 7814 7815 begin 7816 return 7817 Present (Expr) 7818 and then Nkind (Expr) /= N_Reference 7819 and then Is_Access_Type (Etype (Expr)); 7820 end Initialized_By_Access; 7821 7822 ------------------------------------------ 7823 -- Initialized_By_Aliased_BIP_Func_Call -- 7824 ------------------------------------------ 7825 7826 function Initialized_By_Aliased_BIP_Func_Call 7827 (Trans_Id : Entity_Id) return Boolean 7828 is 7829 Call : Node_Id := Expression (Parent (Trans_Id)); 7830 7831 begin 7832 -- Build-in-place calls usually appear in 'reference format 7833 7834 if Nkind (Call) = N_Reference then 7835 Call := Prefix (Call); 7836 end if; 7837 7838 Call := Unqual_Conv (Call); 7839 7840 if Is_Build_In_Place_Function_Call (Call) then 7841 declare 7842 Access_Nam : Name_Id := No_Name; 7843 Access_OK : Boolean := False; 7844 Actual : Node_Id; 7845 Alloc_Nam : Name_Id := No_Name; 7846 Alloc_OK : Boolean := False; 7847 Formal : Node_Id; 7848 Func_Id : Entity_Id; 7849 Param : Node_Id; 7850 7851 begin 7852 -- Examine all parameter associations of the function call 7853 7854 Param := First (Parameter_Associations (Call)); 7855 while Present (Param) loop 7856 if Nkind (Param) = N_Parameter_Association 7857 and then Nkind (Selector_Name (Param)) = N_Identifier 7858 then 7859 Actual := Explicit_Actual_Parameter (Param); 7860 Formal := Selector_Name (Param); 7861 7862 -- Construct the names of formals BIPaccess and BIPalloc 7863 -- using the function name retrieved from an arbitrary 7864 -- formal. 7865 7866 if Access_Nam = No_Name 7867 and then Alloc_Nam = No_Name 7868 and then Present (Entity (Formal)) 7869 then 7870 Func_Id := Scope (Entity (Formal)); 7871 7872 Access_Nam := 7873 New_External_Name (Chars (Func_Id), 7874 BIP_Formal_Suffix (BIP_Object_Access)); 7875 7876 Alloc_Nam := 7877 New_External_Name (Chars (Func_Id), 7878 BIP_Formal_Suffix (BIP_Alloc_Form)); 7879 end if; 7880 7881 -- A match for BIPaccess => Temp has been found 7882 7883 if Chars (Formal) = Access_Nam 7884 and then Nkind (Actual) /= N_Null 7885 then 7886 Access_OK := True; 7887 end if; 7888 7889 -- A match for BIPalloc => 1 has been found 7890 7891 if Chars (Formal) = Alloc_Nam 7892 and then Nkind (Actual) = N_Integer_Literal 7893 and then Intval (Actual) = Uint_1 7894 then 7895 Alloc_OK := True; 7896 end if; 7897 end if; 7898 7899 Next (Param); 7900 end loop; 7901 7902 return Access_OK and Alloc_OK; 7903 end; 7904 end if; 7905 7906 return False; 7907 end Initialized_By_Aliased_BIP_Func_Call; 7908 7909 ---------------- 7910 -- Is_Aliased -- 7911 ---------------- 7912 7913 function Is_Aliased 7914 (Trans_Id : Entity_Id; 7915 First_Stmt : Node_Id) return Boolean 7916 is 7917 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id; 7918 -- Given an object renaming declaration, retrieve the entity of the 7919 -- renamed name. Return Empty if the renamed name is anything other 7920 -- than a variable or a constant. 7921 7922 ------------------------- 7923 -- Find_Renamed_Object -- 7924 ------------------------- 7925 7926 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is 7927 Ren_Obj : Node_Id := Empty; 7928 7929 function Find_Object (N : Node_Id) return Traverse_Result; 7930 -- Try to detect an object which is either a constant or a 7931 -- variable. 7932 7933 ----------------- 7934 -- Find_Object -- 7935 ----------------- 7936 7937 function Find_Object (N : Node_Id) return Traverse_Result is 7938 begin 7939 -- Stop the search once a constant or a variable has been 7940 -- detected. 7941 7942 if Nkind (N) = N_Identifier 7943 and then Present (Entity (N)) 7944 and then Ekind_In (Entity (N), E_Constant, E_Variable) 7945 then 7946 Ren_Obj := Entity (N); 7947 return Abandon; 7948 end if; 7949 7950 return OK; 7951 end Find_Object; 7952 7953 procedure Search is new Traverse_Proc (Find_Object); 7954 7955 -- Local variables 7956 7957 Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl)); 7958 7959 -- Start of processing for Find_Renamed_Object 7960 7961 begin 7962 -- Actions related to dispatching calls may appear as renamings of 7963 -- tags. Do not process this type of renaming because it does not 7964 -- use the actual value of the object. 7965 7966 if not Is_RTE (Typ, RE_Tag_Ptr) then 7967 Search (Name (Ren_Decl)); 7968 end if; 7969 7970 return Ren_Obj; 7971 end Find_Renamed_Object; 7972 7973 -- Local variables 7974 7975 Expr : Node_Id; 7976 Ren_Obj : Entity_Id; 7977 Stmt : Node_Id; 7978 7979 -- Start of processing for Is_Aliased 7980 7981 begin 7982 -- A controlled transient object is not considered aliased when it 7983 -- appears inside an expression_with_actions node even when there are 7984 -- explicit aliases of it: 7985 7986 -- do 7987 -- Trans_Id : Ctrl_Typ ...; -- transient object 7988 -- Alias : ... := Trans_Id; -- object is aliased 7989 -- Val : constant Boolean := 7990 -- ... Alias ...; -- aliasing ends 7991 -- <finalize Trans_Id> -- object safe to finalize 7992 -- in Val end; 7993 7994 -- Expansion ensures that all aliases are encapsulated in the actions 7995 -- list and do not leak to the expression by forcing the evaluation 7996 -- of the expression. 7997 7998 if Nkind (Rel_Node) = N_Expression_With_Actions then 7999 return False; 8000 8001 -- Otherwise examine the statements after the controlled transient 8002 -- object and look for various forms of aliasing. 8003 8004 else 8005 Stmt := First_Stmt; 8006 while Present (Stmt) loop 8007 if Nkind (Stmt) = N_Object_Declaration then 8008 Expr := Expression (Stmt); 8009 8010 -- Aliasing of the form: 8011 -- Obj : ... := Trans_Id'reference; 8012 8013 if Present (Expr) 8014 and then Nkind (Expr) = N_Reference 8015 and then Nkind (Prefix (Expr)) = N_Identifier 8016 and then Entity (Prefix (Expr)) = Trans_Id 8017 then 8018 return True; 8019 end if; 8020 8021 elsif Nkind (Stmt) = N_Object_Renaming_Declaration then 8022 Ren_Obj := Find_Renamed_Object (Stmt); 8023 8024 -- Aliasing of the form: 8025 -- Obj : ... renames ... Trans_Id ...; 8026 8027 if Present (Ren_Obj) and then Ren_Obj = Trans_Id then 8028 return True; 8029 end if; 8030 end if; 8031 8032 Next (Stmt); 8033 end loop; 8034 8035 return False; 8036 end if; 8037 end Is_Aliased; 8038 8039 ------------------ 8040 -- Is_Allocated -- 8041 ------------------ 8042 8043 function Is_Allocated (Trans_Id : Entity_Id) return Boolean is 8044 Expr : constant Node_Id := Expression (Parent (Trans_Id)); 8045 begin 8046 return 8047 Is_Access_Type (Etype (Trans_Id)) 8048 and then Present (Expr) 8049 and then Nkind (Expr) = N_Allocator; 8050 end Is_Allocated; 8051 8052 --------------------------- 8053 -- Is_Iterated_Container -- 8054 --------------------------- 8055 8056 function Is_Iterated_Container 8057 (Trans_Id : Entity_Id; 8058 First_Stmt : Node_Id) return Boolean 8059 is 8060 Aspect : Node_Id; 8061 Call : Node_Id; 8062 Iter : Entity_Id; 8063 Param : Node_Id; 8064 Stmt : Node_Id; 8065 Typ : Entity_Id; 8066 8067 begin 8068 -- It is not possible to iterate over containers in non-Ada 2012 code 8069 8070 if Ada_Version < Ada_2012 then 8071 return False; 8072 end if; 8073 8074 Typ := Etype (Trans_Id); 8075 8076 -- Handle access type created for secondary stack use 8077 8078 if Is_Access_Type (Typ) then 8079 Typ := Designated_Type (Typ); 8080 end if; 8081 8082 -- Look for aspect Default_Iterator. It may be part of a type 8083 -- declaration for a container, or inherited from a base type 8084 -- or parent type. 8085 8086 Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator); 8087 8088 if Present (Aspect) then 8089 Iter := Entity (Aspect); 8090 8091 -- Examine the statements following the container object and 8092 -- look for a call to the default iterate routine where the 8093 -- first parameter is the transient. Such a call appears as: 8094 8095 -- It : Access_To_CW_Iterator := 8096 -- Iterate (Tran_Id.all, ...)'reference; 8097 8098 Stmt := First_Stmt; 8099 while Present (Stmt) loop 8100 8101 -- Detect an object declaration which is initialized by a 8102 -- secondary stack function call. 8103 8104 if Nkind (Stmt) = N_Object_Declaration 8105 and then Present (Expression (Stmt)) 8106 and then Nkind (Expression (Stmt)) = N_Reference 8107 and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call 8108 then 8109 Call := Prefix (Expression (Stmt)); 8110 8111 -- The call must invoke the default iterate routine of 8112 -- the container and the transient object must appear as 8113 -- the first actual parameter. Skip any calls whose names 8114 -- are not entities. 8115 8116 if Is_Entity_Name (Name (Call)) 8117 and then Entity (Name (Call)) = Iter 8118 and then Present (Parameter_Associations (Call)) 8119 then 8120 Param := First (Parameter_Associations (Call)); 8121 8122 if Nkind (Param) = N_Explicit_Dereference 8123 and then Entity (Prefix (Param)) = Trans_Id 8124 then 8125 return True; 8126 end if; 8127 end if; 8128 end if; 8129 8130 Next (Stmt); 8131 end loop; 8132 end if; 8133 8134 return False; 8135 end Is_Iterated_Container; 8136 8137 -- Local variables 8138 8139 Desig : Entity_Id := Obj_Typ; 8140 8141 -- Start of processing for Is_Finalizable_Transient 8142 8143 begin 8144 -- Handle access types 8145 8146 if Is_Access_Type (Desig) then 8147 Desig := Available_View (Designated_Type (Desig)); 8148 end if; 8149 8150 return 8151 Ekind_In (Obj_Id, E_Constant, E_Variable) 8152 and then Needs_Finalization (Desig) 8153 and then Requires_Transient_Scope (Desig) 8154 and then Nkind (Rel_Node) /= N_Simple_Return_Statement 8155 8156 -- Do not consider a transient object that was already processed 8157 8158 and then not Is_Finalized_Transient (Obj_Id) 8159 8160 -- Do not consider renamed or 'reference-d transient objects because 8161 -- the act of renaming extends the object's lifetime. 8162 8163 and then not Is_Aliased (Obj_Id, Decl) 8164 8165 -- Do not consider transient objects allocated on the heap since 8166 -- they are attached to a finalization master. 8167 8168 and then not Is_Allocated (Obj_Id) 8169 8170 -- If the transient object is a pointer, check that it is not 8171 -- initialized by a function that returns a pointer or acts as a 8172 -- renaming of another pointer. 8173 8174 and then 8175 (not Is_Access_Type (Obj_Typ) 8176 or else not Initialized_By_Access (Obj_Id)) 8177 8178 -- Do not consider transient objects which act as indirect aliases 8179 -- of build-in-place function results. 8180 8181 and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id) 8182 8183 -- Do not consider conversions of tags to class-wide types 8184 8185 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id) 8186 8187 -- Do not consider iterators because those are treated as normal 8188 -- controlled objects and are processed by the usual finalization 8189 -- machinery. This avoids the double finalization of an iterator. 8190 8191 and then not Is_Iterator (Desig) 8192 8193 -- Do not consider containers in the context of iterator loops. Such 8194 -- transient objects must exist for as long as the loop is around, 8195 -- otherwise any operation carried out by the iterator will fail. 8196 8197 and then not Is_Iterated_Container (Obj_Id, Decl); 8198 end Is_Finalizable_Transient; 8199 8200 --------------------------------- 8201 -- Is_Fully_Repped_Tagged_Type -- 8202 --------------------------------- 8203 8204 function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is 8205 U : constant Entity_Id := Underlying_Type (T); 8206 Comp : Entity_Id; 8207 8208 begin 8209 if No (U) or else not Is_Tagged_Type (U) then 8210 return False; 8211 elsif Has_Discriminants (U) then 8212 return False; 8213 elsif not Has_Specified_Layout (U) then 8214 return False; 8215 end if; 8216 8217 -- Here we have a tagged type, see if it has any unlayed out fields 8218 -- other than a possible tag and parent fields. If so, we return False. 8219 8220 Comp := First_Component (U); 8221 while Present (Comp) loop 8222 if not Is_Tag (Comp) 8223 and then Chars (Comp) /= Name_uParent 8224 and then No (Component_Clause (Comp)) 8225 then 8226 return False; 8227 else 8228 Next_Component (Comp); 8229 end if; 8230 end loop; 8231 8232 -- All components are layed out 8233 8234 return True; 8235 end Is_Fully_Repped_Tagged_Type; 8236 8237 ---------------------------------- 8238 -- Is_Library_Level_Tagged_Type -- 8239 ---------------------------------- 8240 8241 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is 8242 begin 8243 return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ); 8244 end Is_Library_Level_Tagged_Type; 8245 8246 -------------------------- 8247 -- Is_Non_BIP_Func_Call -- 8248 -------------------------- 8249 8250 function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is 8251 begin 8252 -- The expected call is of the format 8253 -- 8254 -- Func_Call'reference 8255 8256 return 8257 Nkind (Expr) = N_Reference 8258 and then Nkind (Prefix (Expr)) = N_Function_Call 8259 and then not Is_Build_In_Place_Function_Call (Prefix (Expr)); 8260 end Is_Non_BIP_Func_Call; 8261 8262 ---------------------------------- 8263 -- Is_Possibly_Unaligned_Object -- 8264 ---------------------------------- 8265 8266 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is 8267 T : constant Entity_Id := Etype (N); 8268 8269 begin 8270 -- If renamed object, apply test to underlying object 8271 8272 if Is_Entity_Name (N) 8273 and then Is_Object (Entity (N)) 8274 and then Present (Renamed_Object (Entity (N))) 8275 then 8276 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N))); 8277 end if; 8278 8279 -- Tagged and controlled types and aliased types are always aligned, as 8280 -- are concurrent types. 8281 8282 if Is_Aliased (T) 8283 or else Has_Controlled_Component (T) 8284 or else Is_Concurrent_Type (T) 8285 or else Is_Tagged_Type (T) 8286 or else Is_Controlled (T) 8287 then 8288 return False; 8289 end if; 8290 8291 -- If this is an element of a packed array, may be unaligned 8292 8293 if Is_Ref_To_Bit_Packed_Array (N) then 8294 return True; 8295 end if; 8296 8297 -- Case of indexed component reference: test whether prefix is unaligned 8298 8299 if Nkind (N) = N_Indexed_Component then 8300 return Is_Possibly_Unaligned_Object (Prefix (N)); 8301 8302 -- Case of selected component reference 8303 8304 elsif Nkind (N) = N_Selected_Component then 8305 declare 8306 P : constant Node_Id := Prefix (N); 8307 C : constant Entity_Id := Entity (Selector_Name (N)); 8308 M : Nat; 8309 S : Nat; 8310 8311 begin 8312 -- If component reference is for an array with non-static bounds, 8313 -- then it is always aligned: we can only process unaligned arrays 8314 -- with static bounds (more precisely compile time known bounds). 8315 8316 if Is_Array_Type (T) 8317 and then not Compile_Time_Known_Bounds (T) 8318 then 8319 return False; 8320 end if; 8321 8322 -- If component is aliased, it is definitely properly aligned 8323 8324 if Is_Aliased (C) then 8325 return False; 8326 end if; 8327 8328 -- If component is for a type implemented as a scalar, and the 8329 -- record is packed, and the component is other than the first 8330 -- component of the record, then the component may be unaligned. 8331 8332 if Is_Packed (Etype (P)) 8333 and then Represented_As_Scalar (Etype (C)) 8334 and then First_Entity (Scope (C)) /= C 8335 then 8336 return True; 8337 end if; 8338 8339 -- Compute maximum possible alignment for T 8340 8341 -- If alignment is known, then that settles things 8342 8343 if Known_Alignment (T) then 8344 M := UI_To_Int (Alignment (T)); 8345 8346 -- If alignment is not known, tentatively set max alignment 8347 8348 else 8349 M := Ttypes.Maximum_Alignment; 8350 8351 -- We can reduce this if the Esize is known since the default 8352 -- alignment will never be more than the smallest power of 2 8353 -- that does not exceed this Esize value. 8354 8355 if Known_Esize (T) then 8356 S := UI_To_Int (Esize (T)); 8357 8358 while (M / 2) >= S loop 8359 M := M / 2; 8360 end loop; 8361 end if; 8362 end if; 8363 8364 -- The following code is historical, it used to be present but it 8365 -- is too cautious, because the front-end does not know the proper 8366 -- default alignments for the target. Also, if the alignment is 8367 -- not known, the front end can't know in any case. If a copy is 8368 -- needed, the back-end will take care of it. This whole section 8369 -- including this comment can be removed later ??? 8370 8371 -- If the component reference is for a record that has a specified 8372 -- alignment, and we either know it is too small, or cannot tell, 8373 -- then the component may be unaligned. 8374 8375 -- What is the following commented out code ??? 8376 8377 -- if Known_Alignment (Etype (P)) 8378 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment 8379 -- and then M > Alignment (Etype (P)) 8380 -- then 8381 -- return True; 8382 -- end if; 8383 8384 -- Case of component clause present which may specify an 8385 -- unaligned position. 8386 8387 if Present (Component_Clause (C)) then 8388 8389 -- Otherwise we can do a test to make sure that the actual 8390 -- start position in the record, and the length, are both 8391 -- consistent with the required alignment. If not, we know 8392 -- that we are unaligned. 8393 8394 declare 8395 Align_In_Bits : constant Nat := M * System_Storage_Unit; 8396 begin 8397 if Component_Bit_Offset (C) mod Align_In_Bits /= 0 8398 or else Esize (C) mod Align_In_Bits /= 0 8399 then 8400 return True; 8401 end if; 8402 end; 8403 end if; 8404 8405 -- Otherwise, for a component reference, test prefix 8406 8407 return Is_Possibly_Unaligned_Object (P); 8408 end; 8409 8410 -- If not a component reference, must be aligned 8411 8412 else 8413 return False; 8414 end if; 8415 end Is_Possibly_Unaligned_Object; 8416 8417 --------------------------------- 8418 -- Is_Possibly_Unaligned_Slice -- 8419 --------------------------------- 8420 8421 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is 8422 begin 8423 -- Go to renamed object 8424 8425 if Is_Entity_Name (N) 8426 and then Is_Object (Entity (N)) 8427 and then Present (Renamed_Object (Entity (N))) 8428 then 8429 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N))); 8430 end if; 8431 8432 -- The reference must be a slice 8433 8434 if Nkind (N) /= N_Slice then 8435 return False; 8436 end if; 8437 8438 -- We only need to worry if the target has strict alignment 8439 8440 if not Target_Strict_Alignment then 8441 return False; 8442 end if; 8443 8444 -- If it is a slice, then look at the array type being sliced 8445 8446 declare 8447 Sarr : constant Node_Id := Prefix (N); 8448 -- Prefix of the slice, i.e. the array being sliced 8449 8450 Styp : constant Entity_Id := Etype (Prefix (N)); 8451 -- Type of the array being sliced 8452 8453 Pref : Node_Id; 8454 Ptyp : Entity_Id; 8455 8456 begin 8457 -- The problems arise if the array object that is being sliced 8458 -- is a component of a record or array, and we cannot guarantee 8459 -- the alignment of the array within its containing object. 8460 8461 -- To investigate this, we look at successive prefixes to see 8462 -- if we have a worrisome indexed or selected component. 8463 8464 Pref := Sarr; 8465 loop 8466 -- Case of array is part of an indexed component reference 8467 8468 if Nkind (Pref) = N_Indexed_Component then 8469 Ptyp := Etype (Prefix (Pref)); 8470 8471 -- The only problematic case is when the array is packed, in 8472 -- which case we really know nothing about the alignment of 8473 -- individual components. 8474 8475 if Is_Bit_Packed_Array (Ptyp) then 8476 return True; 8477 end if; 8478 8479 -- Case of array is part of a selected component reference 8480 8481 elsif Nkind (Pref) = N_Selected_Component then 8482 Ptyp := Etype (Prefix (Pref)); 8483 8484 -- We are definitely in trouble if the record in question 8485 -- has an alignment, and either we know this alignment is 8486 -- inconsistent with the alignment of the slice, or we don't 8487 -- know what the alignment of the slice should be. 8488 8489 if Known_Alignment (Ptyp) 8490 and then (Unknown_Alignment (Styp) 8491 or else Alignment (Styp) > Alignment (Ptyp)) 8492 then 8493 return True; 8494 end if; 8495 8496 -- We are in potential trouble if the record type is packed. 8497 -- We could special case when we know that the array is the 8498 -- first component, but that's not such a simple case ??? 8499 8500 if Is_Packed (Ptyp) then 8501 return True; 8502 end if; 8503 8504 -- We are in trouble if there is a component clause, and 8505 -- either we do not know the alignment of the slice, or 8506 -- the alignment of the slice is inconsistent with the 8507 -- bit position specified by the component clause. 8508 8509 declare 8510 Field : constant Entity_Id := Entity (Selector_Name (Pref)); 8511 begin 8512 if Present (Component_Clause (Field)) 8513 and then 8514 (Unknown_Alignment (Styp) 8515 or else 8516 (Component_Bit_Offset (Field) mod 8517 (System_Storage_Unit * Alignment (Styp))) /= 0) 8518 then 8519 return True; 8520 end if; 8521 end; 8522 8523 -- For cases other than selected or indexed components we know we 8524 -- are OK, since no issues arise over alignment. 8525 8526 else 8527 return False; 8528 end if; 8529 8530 -- We processed an indexed component or selected component 8531 -- reference that looked safe, so keep checking prefixes. 8532 8533 Pref := Prefix (Pref); 8534 end loop; 8535 end; 8536 end Is_Possibly_Unaligned_Slice; 8537 8538 ------------------------------- 8539 -- Is_Related_To_Func_Return -- 8540 ------------------------------- 8541 8542 function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is 8543 Expr : constant Node_Id := Related_Expression (Id); 8544 begin 8545 return 8546 Present (Expr) 8547 and then Nkind (Expr) = N_Explicit_Dereference 8548 and then Nkind (Parent (Expr)) = N_Simple_Return_Statement; 8549 end Is_Related_To_Func_Return; 8550 8551 -------------------------------- 8552 -- Is_Ref_To_Bit_Packed_Array -- 8553 -------------------------------- 8554 8555 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is 8556 Result : Boolean; 8557 Expr : Node_Id; 8558 8559 begin 8560 if Is_Entity_Name (N) 8561 and then Is_Object (Entity (N)) 8562 and then Present (Renamed_Object (Entity (N))) 8563 then 8564 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N))); 8565 end if; 8566 8567 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then 8568 if Is_Bit_Packed_Array (Etype (Prefix (N))) then 8569 Result := True; 8570 else 8571 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N)); 8572 end if; 8573 8574 if Result and then Nkind (N) = N_Indexed_Component then 8575 Expr := First (Expressions (N)); 8576 while Present (Expr) loop 8577 Force_Evaluation (Expr); 8578 Next (Expr); 8579 end loop; 8580 end if; 8581 8582 return Result; 8583 8584 else 8585 return False; 8586 end if; 8587 end Is_Ref_To_Bit_Packed_Array; 8588 8589 -------------------------------- 8590 -- Is_Ref_To_Bit_Packed_Slice -- 8591 -------------------------------- 8592 8593 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is 8594 begin 8595 if Nkind (N) = N_Type_Conversion then 8596 return Is_Ref_To_Bit_Packed_Slice (Expression (N)); 8597 8598 elsif Is_Entity_Name (N) 8599 and then Is_Object (Entity (N)) 8600 and then Present (Renamed_Object (Entity (N))) 8601 then 8602 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N))); 8603 8604 elsif Nkind (N) = N_Slice 8605 and then Is_Bit_Packed_Array (Etype (Prefix (N))) 8606 then 8607 return True; 8608 8609 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then 8610 return Is_Ref_To_Bit_Packed_Slice (Prefix (N)); 8611 8612 else 8613 return False; 8614 end if; 8615 end Is_Ref_To_Bit_Packed_Slice; 8616 8617 ----------------------- 8618 -- Is_Renamed_Object -- 8619 ----------------------- 8620 8621 function Is_Renamed_Object (N : Node_Id) return Boolean is 8622 Pnod : constant Node_Id := Parent (N); 8623 Kind : constant Node_Kind := Nkind (Pnod); 8624 begin 8625 if Kind = N_Object_Renaming_Declaration then 8626 return True; 8627 elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then 8628 return Is_Renamed_Object (Pnod); 8629 else 8630 return False; 8631 end if; 8632 end Is_Renamed_Object; 8633 8634 -------------------------------------- 8635 -- Is_Secondary_Stack_BIP_Func_Call -- 8636 -------------------------------------- 8637 8638 function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is 8639 Alloc_Nam : Name_Id := No_Name; 8640 Actual : Node_Id; 8641 Call : Node_Id := Expr; 8642 Formal : Node_Id; 8643 Param : Node_Id; 8644 8645 begin 8646 -- Build-in-place calls usually appear in 'reference format. Note that 8647 -- the accessibility check machinery may add an extra 'reference due to 8648 -- side effect removal. 8649 8650 while Nkind (Call) = N_Reference loop 8651 Call := Prefix (Call); 8652 end loop; 8653 8654 Call := Unqual_Conv (Call); 8655 8656 if Is_Build_In_Place_Function_Call (Call) then 8657 8658 -- Examine all parameter associations of the function call 8659 8660 Param := First (Parameter_Associations (Call)); 8661 while Present (Param) loop 8662 if Nkind (Param) = N_Parameter_Association then 8663 Formal := Selector_Name (Param); 8664 Actual := Explicit_Actual_Parameter (Param); 8665 8666 -- Construct the name of formal BIPalloc. It is much easier to 8667 -- extract the name of the function using an arbitrary formal's 8668 -- scope rather than the Name field of Call. 8669 8670 if Alloc_Nam = No_Name and then Present (Entity (Formal)) then 8671 Alloc_Nam := 8672 New_External_Name 8673 (Chars (Scope (Entity (Formal))), 8674 BIP_Formal_Suffix (BIP_Alloc_Form)); 8675 end if; 8676 8677 -- A match for BIPalloc => 2 has been found 8678 8679 if Chars (Formal) = Alloc_Nam 8680 and then Nkind (Actual) = N_Integer_Literal 8681 and then Intval (Actual) = Uint_2 8682 then 8683 return True; 8684 end if; 8685 end if; 8686 8687 Next (Param); 8688 end loop; 8689 end if; 8690 8691 return False; 8692 end Is_Secondary_Stack_BIP_Func_Call; 8693 8694 ------------------------------------- 8695 -- Is_Tag_To_Class_Wide_Conversion -- 8696 ------------------------------------- 8697 8698 function Is_Tag_To_Class_Wide_Conversion 8699 (Obj_Id : Entity_Id) return Boolean 8700 is 8701 Expr : constant Node_Id := Expression (Parent (Obj_Id)); 8702 8703 begin 8704 return 8705 Is_Class_Wide_Type (Etype (Obj_Id)) 8706 and then Present (Expr) 8707 and then Nkind (Expr) = N_Unchecked_Type_Conversion 8708 and then Etype (Expression (Expr)) = RTE (RE_Tag); 8709 end Is_Tag_To_Class_Wide_Conversion; 8710 8711 ---------------------------- 8712 -- Is_Untagged_Derivation -- 8713 ---------------------------- 8714 8715 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is 8716 begin 8717 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T)) 8718 or else 8719 (Is_Private_Type (T) and then Present (Full_View (T)) 8720 and then not Is_Tagged_Type (Full_View (T)) 8721 and then Is_Derived_Type (Full_View (T)) 8722 and then Etype (Full_View (T)) /= T); 8723 end Is_Untagged_Derivation; 8724 8725 ------------------------------------ 8726 -- Is_Untagged_Private_Derivation -- 8727 ------------------------------------ 8728 8729 function Is_Untagged_Private_Derivation 8730 (Priv_Typ : Entity_Id; 8731 Full_Typ : Entity_Id) return Boolean 8732 is 8733 begin 8734 return 8735 Present (Priv_Typ) 8736 and then Is_Untagged_Derivation (Priv_Typ) 8737 and then Is_Private_Type (Etype (Priv_Typ)) 8738 and then Present (Full_Typ) 8739 and then Is_Itype (Full_Typ); 8740 end Is_Untagged_Private_Derivation; 8741 8742 ------------------------------ 8743 -- Is_Verifiable_DIC_Pragma -- 8744 ------------------------------ 8745 8746 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean is 8747 Args : constant List_Id := Pragma_Argument_Associations (Prag); 8748 8749 begin 8750 -- To qualify as verifiable, a DIC pragma must have a non-null argument 8751 8752 return 8753 Present (Args) 8754 and then Nkind (Get_Pragma_Arg (First (Args))) /= N_Null; 8755 end Is_Verifiable_DIC_Pragma; 8756 8757 --------------------------- 8758 -- Is_Volatile_Reference -- 8759 --------------------------- 8760 8761 function Is_Volatile_Reference (N : Node_Id) return Boolean is 8762 begin 8763 -- Only source references are to be treated as volatile, internally 8764 -- generated stuff cannot have volatile external effects. 8765 8766 if not Comes_From_Source (N) then 8767 return False; 8768 8769 -- Never true for reference to a type 8770 8771 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then 8772 return False; 8773 8774 -- Never true for a compile time known constant 8775 8776 elsif Compile_Time_Known_Value (N) then 8777 return False; 8778 8779 -- True if object reference with volatile type 8780 8781 elsif Is_Volatile_Object (N) then 8782 return True; 8783 8784 -- True if reference to volatile entity 8785 8786 elsif Is_Entity_Name (N) then 8787 return Treat_As_Volatile (Entity (N)); 8788 8789 -- True for slice of volatile array 8790 8791 elsif Nkind (N) = N_Slice then 8792 return Is_Volatile_Reference (Prefix (N)); 8793 8794 -- True if volatile component 8795 8796 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then 8797 if (Is_Entity_Name (Prefix (N)) 8798 and then Has_Volatile_Components (Entity (Prefix (N)))) 8799 or else (Present (Etype (Prefix (N))) 8800 and then Has_Volatile_Components (Etype (Prefix (N)))) 8801 then 8802 return True; 8803 else 8804 return Is_Volatile_Reference (Prefix (N)); 8805 end if; 8806 8807 -- Otherwise false 8808 8809 else 8810 return False; 8811 end if; 8812 end Is_Volatile_Reference; 8813 8814 -------------------- 8815 -- Kill_Dead_Code -- 8816 -------------------- 8817 8818 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is 8819 W : Boolean := Warn; 8820 -- Set False if warnings suppressed 8821 8822 begin 8823 if Present (N) then 8824 Remove_Warning_Messages (N); 8825 8826 -- Update the internal structures of the ABE mechanism in case the 8827 -- dead node is an elaboration scenario. 8828 8829 Kill_Elaboration_Scenario (N); 8830 8831 -- Generate warning if appropriate 8832 8833 if W then 8834 8835 -- We suppress the warning if this code is under control of an 8836 -- if statement, whose condition is a simple identifier, and 8837 -- either we are in an instance, or warnings off is set for this 8838 -- identifier. The reason for killing it in the instance case is 8839 -- that it is common and reasonable for code to be deleted in 8840 -- instances for various reasons. 8841 8842 -- Could we use Is_Statically_Unevaluated here??? 8843 8844 if Nkind (Parent (N)) = N_If_Statement then 8845 declare 8846 C : constant Node_Id := Condition (Parent (N)); 8847 begin 8848 if Nkind (C) = N_Identifier 8849 and then 8850 (In_Instance 8851 or else (Present (Entity (C)) 8852 and then Has_Warnings_Off (Entity (C)))) 8853 then 8854 W := False; 8855 end if; 8856 end; 8857 end if; 8858 8859 -- Generate warning if not suppressed 8860 8861 if W then 8862 Error_Msg_F 8863 ("?t?this code can never be executed and has been deleted!", 8864 N); 8865 end if; 8866 end if; 8867 8868 -- Recurse into block statements and bodies to process declarations 8869 -- and statements. 8870 8871 if Nkind (N) = N_Block_Statement 8872 or else Nkind (N) = N_Subprogram_Body 8873 or else Nkind (N) = N_Package_Body 8874 then 8875 Kill_Dead_Code (Declarations (N), False); 8876 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N))); 8877 8878 if Nkind (N) = N_Subprogram_Body then 8879 Set_Is_Eliminated (Defining_Entity (N)); 8880 end if; 8881 8882 elsif Nkind (N) = N_Package_Declaration then 8883 Kill_Dead_Code (Visible_Declarations (Specification (N))); 8884 Kill_Dead_Code (Private_Declarations (Specification (N))); 8885 8886 -- ??? After this point, Delete_Tree has been called on all 8887 -- declarations in Specification (N), so references to entities 8888 -- therein look suspicious. 8889 8890 declare 8891 E : Entity_Id := First_Entity (Defining_Entity (N)); 8892 8893 begin 8894 while Present (E) loop 8895 if Ekind (E) = E_Operator then 8896 Set_Is_Eliminated (E); 8897 end if; 8898 8899 Next_Entity (E); 8900 end loop; 8901 end; 8902 8903 -- Recurse into composite statement to kill individual statements in 8904 -- particular instantiations. 8905 8906 elsif Nkind (N) = N_If_Statement then 8907 Kill_Dead_Code (Then_Statements (N)); 8908 Kill_Dead_Code (Elsif_Parts (N)); 8909 Kill_Dead_Code (Else_Statements (N)); 8910 8911 elsif Nkind (N) = N_Loop_Statement then 8912 Kill_Dead_Code (Statements (N)); 8913 8914 elsif Nkind (N) = N_Case_Statement then 8915 declare 8916 Alt : Node_Id; 8917 begin 8918 Alt := First (Alternatives (N)); 8919 while Present (Alt) loop 8920 Kill_Dead_Code (Statements (Alt)); 8921 Next (Alt); 8922 end loop; 8923 end; 8924 8925 elsif Nkind (N) = N_Case_Statement_Alternative then 8926 Kill_Dead_Code (Statements (N)); 8927 8928 -- Deal with dead instances caused by deleting instantiations 8929 8930 elsif Nkind (N) in N_Generic_Instantiation then 8931 Remove_Dead_Instance (N); 8932 end if; 8933 end if; 8934 end Kill_Dead_Code; 8935 8936 -- Case where argument is a list of nodes to be killed 8937 8938 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is 8939 N : Node_Id; 8940 W : Boolean; 8941 8942 begin 8943 W := Warn; 8944 8945 if Is_Non_Empty_List (L) then 8946 N := First (L); 8947 while Present (N) loop 8948 Kill_Dead_Code (N, W); 8949 W := False; 8950 Next (N); 8951 end loop; 8952 end if; 8953 end Kill_Dead_Code; 8954 8955 ------------------------ 8956 -- Known_Non_Negative -- 8957 ------------------------ 8958 8959 function Known_Non_Negative (Opnd : Node_Id) return Boolean is 8960 begin 8961 if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then 8962 return True; 8963 8964 else 8965 declare 8966 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd)); 8967 begin 8968 return 8969 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0; 8970 end; 8971 end if; 8972 end Known_Non_Negative; 8973 8974 ----------------------------- 8975 -- Make_CW_Equivalent_Type -- 8976 ----------------------------- 8977 8978 -- Create a record type used as an equivalent of any member of the class 8979 -- which takes its size from exp. 8980 8981 -- Generate the following code: 8982 8983 -- type Equiv_T is record 8984 -- _parent : T (List of discriminant constraints taken from Exp); 8985 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8); 8986 -- end Equiv_T; 8987 -- 8988 -- ??? Note that this type does not guarantee same alignment as all 8989 -- derived types 8990 8991 function Make_CW_Equivalent_Type 8992 (T : Entity_Id; 8993 E : Node_Id) return Entity_Id 8994 is 8995 Loc : constant Source_Ptr := Sloc (E); 8996 Root_Typ : constant Entity_Id := Root_Type (T); 8997 List_Def : constant List_Id := Empty_List; 8998 Comp_List : constant List_Id := New_List; 8999 Equiv_Type : Entity_Id; 9000 Range_Type : Entity_Id; 9001 Str_Type : Entity_Id; 9002 Constr_Root : Entity_Id; 9003 Sizexpr : Node_Id; 9004 9005 begin 9006 -- If the root type is already constrained, there are no discriminants 9007 -- in the expression. 9008 9009 if not Has_Discriminants (Root_Typ) 9010 or else Is_Constrained (Root_Typ) 9011 then 9012 Constr_Root := Root_Typ; 9013 9014 -- At this point in the expansion, non-limited view of the type 9015 -- must be available, otherwise the error will be reported later. 9016 9017 if From_Limited_With (Constr_Root) 9018 and then Present (Non_Limited_View (Constr_Root)) 9019 then 9020 Constr_Root := Non_Limited_View (Constr_Root); 9021 end if; 9022 9023 else 9024 Constr_Root := Make_Temporary (Loc, 'R'); 9025 9026 -- subtype cstr__n is T (List of discr constraints taken from Exp) 9027 9028 Append_To (List_Def, 9029 Make_Subtype_Declaration (Loc, 9030 Defining_Identifier => Constr_Root, 9031 Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ))); 9032 end if; 9033 9034 -- Generate the range subtype declaration 9035 9036 Range_Type := Make_Temporary (Loc, 'G'); 9037 9038 if not Is_Interface (Root_Typ) then 9039 9040 -- subtype rg__xx is 9041 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit 9042 9043 Sizexpr := 9044 Make_Op_Subtract (Loc, 9045 Left_Opnd => 9046 Make_Attribute_Reference (Loc, 9047 Prefix => 9048 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)), 9049 Attribute_Name => Name_Size), 9050 Right_Opnd => 9051 Make_Attribute_Reference (Loc, 9052 Prefix => New_Occurrence_Of (Constr_Root, Loc), 9053 Attribute_Name => Name_Object_Size)); 9054 else 9055 -- subtype rg__xx is 9056 -- Storage_Offset range 1 .. Expr'size / Storage_Unit 9057 9058 Sizexpr := 9059 Make_Attribute_Reference (Loc, 9060 Prefix => 9061 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)), 9062 Attribute_Name => Name_Size); 9063 end if; 9064 9065 Set_Paren_Count (Sizexpr, 1); 9066 9067 Append_To (List_Def, 9068 Make_Subtype_Declaration (Loc, 9069 Defining_Identifier => Range_Type, 9070 Subtype_Indication => 9071 Make_Subtype_Indication (Loc, 9072 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc), 9073 Constraint => Make_Range_Constraint (Loc, 9074 Range_Expression => 9075 Make_Range (Loc, 9076 Low_Bound => Make_Integer_Literal (Loc, 1), 9077 High_Bound => 9078 Make_Op_Divide (Loc, 9079 Left_Opnd => Sizexpr, 9080 Right_Opnd => Make_Integer_Literal (Loc, 9081 Intval => System_Storage_Unit))))))); 9082 9083 -- subtype str__nn is Storage_Array (rg__x); 9084 9085 Str_Type := Make_Temporary (Loc, 'S'); 9086 Append_To (List_Def, 9087 Make_Subtype_Declaration (Loc, 9088 Defining_Identifier => Str_Type, 9089 Subtype_Indication => 9090 Make_Subtype_Indication (Loc, 9091 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc), 9092 Constraint => 9093 Make_Index_Or_Discriminant_Constraint (Loc, 9094 Constraints => 9095 New_List (New_Occurrence_Of (Range_Type, Loc)))))); 9096 9097 -- type Equiv_T is record 9098 -- [ _parent : Tnn; ] 9099 -- E : Str_Type; 9100 -- end Equiv_T; 9101 9102 Equiv_Type := Make_Temporary (Loc, 'T'); 9103 Set_Ekind (Equiv_Type, E_Record_Type); 9104 Set_Parent_Subtype (Equiv_Type, Constr_Root); 9105 9106 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special 9107 -- treatment for this type. In particular, even though _parent's type 9108 -- is a controlled type or contains controlled components, we do not 9109 -- want to set Has_Controlled_Component on it to avoid making it gain 9110 -- an unwanted _controller component. 9111 9112 Set_Is_Class_Wide_Equivalent_Type (Equiv_Type); 9113 9114 -- A class-wide equivalent type does not require initialization 9115 9116 Set_Suppress_Initialization (Equiv_Type); 9117 9118 if not Is_Interface (Root_Typ) then 9119 Append_To (Comp_List, 9120 Make_Component_Declaration (Loc, 9121 Defining_Identifier => 9122 Make_Defining_Identifier (Loc, Name_uParent), 9123 Component_Definition => 9124 Make_Component_Definition (Loc, 9125 Aliased_Present => False, 9126 Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc)))); 9127 end if; 9128 9129 Append_To (Comp_List, 9130 Make_Component_Declaration (Loc, 9131 Defining_Identifier => Make_Temporary (Loc, 'C'), 9132 Component_Definition => 9133 Make_Component_Definition (Loc, 9134 Aliased_Present => False, 9135 Subtype_Indication => New_Occurrence_Of (Str_Type, Loc)))); 9136 9137 Append_To (List_Def, 9138 Make_Full_Type_Declaration (Loc, 9139 Defining_Identifier => Equiv_Type, 9140 Type_Definition => 9141 Make_Record_Definition (Loc, 9142 Component_List => 9143 Make_Component_List (Loc, 9144 Component_Items => Comp_List, 9145 Variant_Part => Empty)))); 9146 9147 -- Suppress all checks during the analysis of the expanded code to avoid 9148 -- the generation of spurious warnings under ZFP run-time. 9149 9150 Insert_Actions (E, List_Def, Suppress => All_Checks); 9151 return Equiv_Type; 9152 end Make_CW_Equivalent_Type; 9153 9154 ------------------------- 9155 -- Make_Invariant_Call -- 9156 ------------------------- 9157 9158 function Make_Invariant_Call (Expr : Node_Id) return Node_Id is 9159 Loc : constant Source_Ptr := Sloc (Expr); 9160 Typ : constant Entity_Id := Base_Type (Etype (Expr)); 9161 9162 Proc_Id : Entity_Id; 9163 9164 begin 9165 pragma Assert (Has_Invariants (Typ)); 9166 9167 Proc_Id := Invariant_Procedure (Typ); 9168 pragma Assert (Present (Proc_Id)); 9169 9170 return 9171 Make_Procedure_Call_Statement (Loc, 9172 Name => New_Occurrence_Of (Proc_Id, Loc), 9173 Parameter_Associations => New_List (Relocate_Node (Expr))); 9174 end Make_Invariant_Call; 9175 9176 ------------------------ 9177 -- Make_Literal_Range -- 9178 ------------------------ 9179 9180 function Make_Literal_Range 9181 (Loc : Source_Ptr; 9182 Literal_Typ : Entity_Id) return Node_Id 9183 is 9184 Lo : constant Node_Id := 9185 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ)); 9186 Index : constant Entity_Id := Etype (Lo); 9187 Length_Expr : constant Node_Id := 9188 Make_Op_Subtract (Loc, 9189 Left_Opnd => 9190 Make_Integer_Literal (Loc, 9191 Intval => String_Literal_Length (Literal_Typ)), 9192 Right_Opnd => Make_Integer_Literal (Loc, 1)); 9193 9194 Hi : Node_Id; 9195 9196 begin 9197 Set_Analyzed (Lo, False); 9198 9199 if Is_Integer_Type (Index) then 9200 Hi := 9201 Make_Op_Add (Loc, 9202 Left_Opnd => New_Copy_Tree (Lo), 9203 Right_Opnd => Length_Expr); 9204 else 9205 Hi := 9206 Make_Attribute_Reference (Loc, 9207 Attribute_Name => Name_Val, 9208 Prefix => New_Occurrence_Of (Index, Loc), 9209 Expressions => New_List ( 9210 Make_Op_Add (Loc, 9211 Left_Opnd => 9212 Make_Attribute_Reference (Loc, 9213 Attribute_Name => Name_Pos, 9214 Prefix => New_Occurrence_Of (Index, Loc), 9215 Expressions => New_List (New_Copy_Tree (Lo))), 9216 Right_Opnd => Length_Expr))); 9217 end if; 9218 9219 return 9220 Make_Range (Loc, 9221 Low_Bound => Lo, 9222 High_Bound => Hi); 9223 end Make_Literal_Range; 9224 9225 -------------------------- 9226 -- Make_Non_Empty_Check -- 9227 -------------------------- 9228 9229 function Make_Non_Empty_Check 9230 (Loc : Source_Ptr; 9231 N : Node_Id) return Node_Id 9232 is 9233 begin 9234 return 9235 Make_Op_Ne (Loc, 9236 Left_Opnd => 9237 Make_Attribute_Reference (Loc, 9238 Attribute_Name => Name_Length, 9239 Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)), 9240 Right_Opnd => 9241 Make_Integer_Literal (Loc, 0)); 9242 end Make_Non_Empty_Check; 9243 9244 ------------------------- 9245 -- Make_Predicate_Call -- 9246 ------------------------- 9247 9248 -- WARNING: This routine manages Ghost regions. Return statements must be 9249 -- replaced by gotos which jump to the end of the routine and restore the 9250 -- Ghost mode. 9251 9252 function Make_Predicate_Call 9253 (Typ : Entity_Id; 9254 Expr : Node_Id; 9255 Mem : Boolean := False) return Node_Id 9256 is 9257 Loc : constant Source_Ptr := Sloc (Expr); 9258 9259 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; 9260 -- Save the Ghost mode to restore on exit 9261 9262 Call : Node_Id; 9263 Func_Id : Entity_Id; 9264 9265 begin 9266 pragma Assert (Present (Predicate_Function (Typ))); 9267 9268 -- The related type may be subject to pragma Ghost. Set the mode now to 9269 -- ensure that the call is properly marked as Ghost. 9270 9271 Set_Ghost_Mode (Typ); 9272 9273 -- Call special membership version if requested and available 9274 9275 if Mem and then Present (Predicate_Function_M (Typ)) then 9276 Func_Id := Predicate_Function_M (Typ); 9277 else 9278 Func_Id := Predicate_Function (Typ); 9279 end if; 9280 9281 -- Case of calling normal predicate function 9282 9283 -- If the type is tagged, the expression may be class-wide, in which 9284 -- case it has to be converted to its root type, given that the 9285 -- generated predicate function is not dispatching. 9286 9287 if Is_Tagged_Type (Typ) then 9288 Call := 9289 Make_Function_Call (Loc, 9290 Name => New_Occurrence_Of (Func_Id, Loc), 9291 Parameter_Associations => 9292 New_List (Convert_To (Typ, Relocate_Node (Expr)))); 9293 else 9294 Call := 9295 Make_Function_Call (Loc, 9296 Name => New_Occurrence_Of (Func_Id, Loc), 9297 Parameter_Associations => New_List (Relocate_Node (Expr))); 9298 end if; 9299 9300 Restore_Ghost_Mode (Saved_GM); 9301 9302 return Call; 9303 end Make_Predicate_Call; 9304 9305 -------------------------- 9306 -- Make_Predicate_Check -- 9307 -------------------------- 9308 9309 function Make_Predicate_Check 9310 (Typ : Entity_Id; 9311 Expr : Node_Id) return Node_Id 9312 is 9313 Loc : constant Source_Ptr := Sloc (Expr); 9314 9315 procedure Add_Failure_Expression (Args : List_Id); 9316 -- Add the failure expression of pragma Predicate_Failure (if any) to 9317 -- list Args. 9318 9319 ---------------------------- 9320 -- Add_Failure_Expression -- 9321 ---------------------------- 9322 9323 procedure Add_Failure_Expression (Args : List_Id) is 9324 function Failure_Expression return Node_Id; 9325 pragma Inline (Failure_Expression); 9326 -- Find aspect or pragma Predicate_Failure that applies to type Typ 9327 -- and return its expression. Return Empty if no such annotation is 9328 -- available. 9329 9330 function Is_OK_PF_Aspect (Asp : Node_Id) return Boolean; 9331 pragma Inline (Is_OK_PF_Aspect); 9332 -- Determine whether aspect Asp is a suitable Predicate_Failure 9333 -- aspect that applies to type Typ. 9334 9335 function Is_OK_PF_Pragma (Prag : Node_Id) return Boolean; 9336 pragma Inline (Is_OK_PF_Pragma); 9337 -- Determine whether pragma Prag is a suitable Predicate_Failure 9338 -- pragma that applies to type Typ. 9339 9340 procedure Replace_Subtype_Reference (N : Node_Id); 9341 -- Replace the current instance of type Typ denoted by N with 9342 -- expression Expr. 9343 9344 ------------------------ 9345 -- Failure_Expression -- 9346 ------------------------ 9347 9348 function Failure_Expression return Node_Id is 9349 Item : Node_Id; 9350 9351 begin 9352 -- The management of the rep item chain involves "inheritance" of 9353 -- parent type chains. If a parent [sub]type is already subject to 9354 -- pragma Predicate_Failure, then the pragma will also appear in 9355 -- the chain of the child [sub]type, which in turn may possess a 9356 -- pragma of its own. Avoid order-dependent issues by inspecting 9357 -- the rep item chain directly. Note that routine Get_Pragma may 9358 -- return a parent pragma. 9359 9360 Item := First_Rep_Item (Typ); 9361 while Present (Item) loop 9362 9363 -- Predicate_Failure appears as an aspect 9364 9365 if Nkind (Item) = N_Aspect_Specification 9366 and then Is_OK_PF_Aspect (Item) 9367 then 9368 return Expression (Item); 9369 9370 -- Predicate_Failure appears as a pragma 9371 9372 elsif Nkind (Item) = N_Pragma 9373 and then Is_OK_PF_Pragma (Item) 9374 then 9375 return 9376 Get_Pragma_Arg 9377 (Next (First (Pragma_Argument_Associations (Item)))); 9378 end if; 9379 9380 Item := Next_Rep_Item (Item); 9381 end loop; 9382 9383 return Empty; 9384 end Failure_Expression; 9385 9386 --------------------- 9387 -- Is_OK_PF_Aspect -- 9388 --------------------- 9389 9390 function Is_OK_PF_Aspect (Asp : Node_Id) return Boolean is 9391 begin 9392 -- To qualify, the aspect must apply to the type subjected to the 9393 -- predicate check. 9394 9395 return 9396 Chars (Identifier (Asp)) = Name_Predicate_Failure 9397 and then Present (Entity (Asp)) 9398 and then Entity (Asp) = Typ; 9399 end Is_OK_PF_Aspect; 9400 9401 --------------------- 9402 -- Is_OK_PF_Pragma -- 9403 --------------------- 9404 9405 function Is_OK_PF_Pragma (Prag : Node_Id) return Boolean is 9406 Args : constant List_Id := Pragma_Argument_Associations (Prag); 9407 Typ_Arg : Node_Id; 9408 9409 begin 9410 -- Nothing to do when the pragma does not denote Predicate_Failure 9411 9412 if Pragma_Name (Prag) /= Name_Predicate_Failure then 9413 return False; 9414 9415 -- Nothing to do when the pragma lacks arguments, in which case it 9416 -- is illegal. 9417 9418 elsif No (Args) or else Is_Empty_List (Args) then 9419 return False; 9420 end if; 9421 9422 Typ_Arg := Get_Pragma_Arg (First (Args)); 9423 9424 -- To qualify, the local name argument of the pragma must denote 9425 -- the type subjected to the predicate check. 9426 9427 return 9428 Is_Entity_Name (Typ_Arg) 9429 and then Present (Entity (Typ_Arg)) 9430 and then Entity (Typ_Arg) = Typ; 9431 end Is_OK_PF_Pragma; 9432 9433 -------------------------------- 9434 -- Replace_Subtype_Reference -- 9435 -------------------------------- 9436 9437 procedure Replace_Subtype_Reference (N : Node_Id) is 9438 begin 9439 Rewrite (N, New_Copy_Tree (Expr)); 9440 9441 -- We want to treat the node as if it comes from source, so that 9442 -- ASIS will not ignore it. 9443 9444 Set_Comes_From_Source (N, True); 9445 end Replace_Subtype_Reference; 9446 9447 procedure Replace_Subtype_References is 9448 new Replace_Type_References_Generic (Replace_Subtype_Reference); 9449 9450 -- Local variables 9451 9452 PF_Expr : constant Node_Id := Failure_Expression; 9453 Expr : Node_Id; 9454 9455 -- Start of processing for Add_Failure_Expression 9456 9457 begin 9458 if Present (PF_Expr) then 9459 9460 -- Replace any occurrences of the current instance of the type 9461 -- with the object subjected to the predicate check. 9462 9463 Expr := New_Copy_Tree (PF_Expr); 9464 Replace_Subtype_References (Expr, Typ); 9465 9466 -- The failure expression appears as the third argument of the 9467 -- Check pragma. 9468 9469 Append_To (Args, 9470 Make_Pragma_Argument_Association (Loc, 9471 Expression => Expr)); 9472 end if; 9473 end Add_Failure_Expression; 9474 9475 -- Local variables 9476 9477 Args : List_Id; 9478 Nam : Name_Id; 9479 9480 -- Start of processing for Make_Predicate_Check 9481 9482 begin 9483 -- If predicate checks are suppressed, then return a null statement. For 9484 -- this call, we check only the scope setting. If the caller wants to 9485 -- check a specific entity's setting, they must do it manually. 9486 9487 if Predicate_Checks_Suppressed (Empty) then 9488 return Make_Null_Statement (Loc); 9489 end if; 9490 9491 -- Do not generate a check within an internal subprogram (stream 9492 -- functions and the like, including including predicate functions). 9493 9494 if Within_Internal_Subprogram then 9495 return Make_Null_Statement (Loc); 9496 end if; 9497 9498 -- Compute proper name to use, we need to get this right so that the 9499 -- right set of check policies apply to the Check pragma we are making. 9500 9501 if Has_Dynamic_Predicate_Aspect (Typ) then 9502 Nam := Name_Dynamic_Predicate; 9503 elsif Has_Static_Predicate_Aspect (Typ) then 9504 Nam := Name_Static_Predicate; 9505 else 9506 Nam := Name_Predicate; 9507 end if; 9508 9509 Args := New_List ( 9510 Make_Pragma_Argument_Association (Loc, 9511 Expression => Make_Identifier (Loc, Nam)), 9512 Make_Pragma_Argument_Association (Loc, 9513 Expression => Make_Predicate_Call (Typ, Expr))); 9514 9515 -- If the subtype is subject to pragma Predicate_Failure, add the 9516 -- failure expression as an additional parameter. 9517 9518 Add_Failure_Expression (Args); 9519 9520 return 9521 Make_Pragma (Loc, 9522 Chars => Name_Check, 9523 Pragma_Argument_Associations => Args); 9524 end Make_Predicate_Check; 9525 9526 ---------------------------- 9527 -- Make_Subtype_From_Expr -- 9528 ---------------------------- 9529 9530 -- 1. If Expr is an unconstrained array expression, creates 9531 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n)) 9532 9533 -- 2. If Expr is a unconstrained discriminated type expression, creates 9534 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n) 9535 9536 -- 3. If Expr is class-wide, creates an implicit class-wide subtype 9537 9538 function Make_Subtype_From_Expr 9539 (E : Node_Id; 9540 Unc_Typ : Entity_Id; 9541 Related_Id : Entity_Id := Empty) return Node_Id 9542 is 9543 List_Constr : constant List_Id := New_List; 9544 Loc : constant Source_Ptr := Sloc (E); 9545 D : Entity_Id; 9546 Full_Exp : Node_Id; 9547 Full_Subtyp : Entity_Id; 9548 High_Bound : Entity_Id; 9549 Index_Typ : Entity_Id; 9550 Low_Bound : Entity_Id; 9551 Priv_Subtyp : Entity_Id; 9552 Utyp : Entity_Id; 9553 9554 begin 9555 if Is_Private_Type (Unc_Typ) 9556 and then Has_Unknown_Discriminants (Unc_Typ) 9557 then 9558 -- The caller requests a unique external name for both the private 9559 -- and the full subtype. 9560 9561 if Present (Related_Id) then 9562 Full_Subtyp := 9563 Make_Defining_Identifier (Loc, 9564 Chars => New_External_Name (Chars (Related_Id), 'C')); 9565 Priv_Subtyp := 9566 Make_Defining_Identifier (Loc, 9567 Chars => New_External_Name (Chars (Related_Id), 'P')); 9568 9569 else 9570 Full_Subtyp := Make_Temporary (Loc, 'C'); 9571 Priv_Subtyp := Make_Temporary (Loc, 'P'); 9572 end if; 9573 9574 -- Prepare the subtype completion. Use the base type to find the 9575 -- underlying type because the type may be a generic actual or an 9576 -- explicit subtype. 9577 9578 Utyp := Underlying_Type (Base_Type (Unc_Typ)); 9579 9580 Full_Exp := 9581 Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E)); 9582 Set_Parent (Full_Exp, Parent (E)); 9583 9584 Insert_Action (E, 9585 Make_Subtype_Declaration (Loc, 9586 Defining_Identifier => Full_Subtyp, 9587 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp))); 9588 9589 -- Define the dummy private subtype 9590 9591 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ))); 9592 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ)); 9593 Set_Scope (Priv_Subtyp, Full_Subtyp); 9594 Set_Is_Constrained (Priv_Subtyp); 9595 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ)); 9596 Set_Is_Itype (Priv_Subtyp); 9597 Set_Associated_Node_For_Itype (Priv_Subtyp, E); 9598 9599 if Is_Tagged_Type (Priv_Subtyp) then 9600 Set_Class_Wide_Type 9601 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ)); 9602 Set_Direct_Primitive_Operations (Priv_Subtyp, 9603 Direct_Primitive_Operations (Unc_Typ)); 9604 end if; 9605 9606 Set_Full_View (Priv_Subtyp, Full_Subtyp); 9607 9608 return New_Occurrence_Of (Priv_Subtyp, Loc); 9609 9610 elsif Is_Array_Type (Unc_Typ) then 9611 Index_Typ := First_Index (Unc_Typ); 9612 for J in 1 .. Number_Dimensions (Unc_Typ) loop 9613 9614 -- Capture the bounds of each index constraint in case the context 9615 -- is an object declaration of an unconstrained type initialized 9616 -- by a function call: 9617 9618 -- Obj : Unconstr_Typ := Func_Call; 9619 9620 -- This scenario requires secondary scope management and the index 9621 -- constraint cannot depend on the temporary used to capture the 9622 -- result of the function call. 9623 9624 -- SS_Mark; 9625 -- Temp : Unconstr_Typ_Ptr := Func_Call'reference; 9626 -- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last); 9627 -- Obj : S := Temp.all; 9628 -- SS_Release; -- Temp is gone at this point, bounds of S are 9629 -- -- non existent. 9630 9631 -- Generate: 9632 -- Low_Bound : constant Base_Type (Index_Typ) := E'First (J); 9633 9634 Low_Bound := Make_Temporary (Loc, 'B'); 9635 Insert_Action (E, 9636 Make_Object_Declaration (Loc, 9637 Defining_Identifier => Low_Bound, 9638 Object_Definition => 9639 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc), 9640 Constant_Present => True, 9641 Expression => 9642 Make_Attribute_Reference (Loc, 9643 Prefix => Duplicate_Subexpr_No_Checks (E), 9644 Attribute_Name => Name_First, 9645 Expressions => New_List ( 9646 Make_Integer_Literal (Loc, J))))); 9647 9648 -- Generate: 9649 -- High_Bound : constant Base_Type (Index_Typ) := E'Last (J); 9650 9651 High_Bound := Make_Temporary (Loc, 'B'); 9652 Insert_Action (E, 9653 Make_Object_Declaration (Loc, 9654 Defining_Identifier => High_Bound, 9655 Object_Definition => 9656 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc), 9657 Constant_Present => True, 9658 Expression => 9659 Make_Attribute_Reference (Loc, 9660 Prefix => Duplicate_Subexpr_No_Checks (E), 9661 Attribute_Name => Name_Last, 9662 Expressions => New_List ( 9663 Make_Integer_Literal (Loc, J))))); 9664 9665 Append_To (List_Constr, 9666 Make_Range (Loc, 9667 Low_Bound => New_Occurrence_Of (Low_Bound, Loc), 9668 High_Bound => New_Occurrence_Of (High_Bound, Loc))); 9669 9670 Index_Typ := Next_Index (Index_Typ); 9671 end loop; 9672 9673 elsif Is_Class_Wide_Type (Unc_Typ) then 9674 declare 9675 CW_Subtype : Entity_Id; 9676 EQ_Typ : Entity_Id := Empty; 9677 9678 begin 9679 -- A class-wide equivalent type is not needed on VM targets 9680 -- because the VM back-ends handle the class-wide object 9681 -- initialization itself (and doesn't need or want the 9682 -- additional intermediate type to handle the assignment). 9683 9684 if Expander_Active and then Tagged_Type_Expansion then 9685 9686 -- If this is the class-wide type of a completion that is a 9687 -- record subtype, set the type of the class-wide type to be 9688 -- the full base type, for use in the expanded code for the 9689 -- equivalent type. Should this be done earlier when the 9690 -- completion is analyzed ??? 9691 9692 if Is_Private_Type (Etype (Unc_Typ)) 9693 and then 9694 Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype 9695 then 9696 Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ)))); 9697 end if; 9698 9699 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E); 9700 end if; 9701 9702 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E); 9703 Set_Equivalent_Type (CW_Subtype, EQ_Typ); 9704 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ)); 9705 9706 return New_Occurrence_Of (CW_Subtype, Loc); 9707 end; 9708 9709 -- Indefinite record type with discriminants 9710 9711 else 9712 D := First_Discriminant (Unc_Typ); 9713 while Present (D) loop 9714 Append_To (List_Constr, 9715 Make_Selected_Component (Loc, 9716 Prefix => Duplicate_Subexpr_No_Checks (E), 9717 Selector_Name => New_Occurrence_Of (D, Loc))); 9718 9719 Next_Discriminant (D); 9720 end loop; 9721 end if; 9722 9723 return 9724 Make_Subtype_Indication (Loc, 9725 Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc), 9726 Constraint => 9727 Make_Index_Or_Discriminant_Constraint (Loc, 9728 Constraints => List_Constr)); 9729 end Make_Subtype_From_Expr; 9730 9731 --------------- 9732 -- Map_Types -- 9733 --------------- 9734 9735 procedure Map_Types (Parent_Type : Entity_Id; Derived_Type : Entity_Id) is 9736 9737 -- NOTE: Most of the routines in Map_Types are intentionally unnested to 9738 -- avoid deep indentation of code. 9739 9740 -- NOTE: Routines which deal with discriminant mapping operate on the 9741 -- [underlying/record] full view of various types because those views 9742 -- contain all discriminants and stored constraints. 9743 9744 procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id); 9745 -- Subsidiary to Map_Primitives. Find a primitive in the inheritance or 9746 -- overriding chain starting from Prim whose dispatching type is parent 9747 -- type Par_Typ and add a mapping between the result and primitive Prim. 9748 9749 function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id; 9750 -- Subsidiary to Map_Primitives. Return the next ancestor primitive in 9751 -- the inheritance or overriding chain of subprogram Subp. Return Empty 9752 -- if no such primitive is available. 9753 9754 function Build_Chain 9755 (Par_Typ : Entity_Id; 9756 Deriv_Typ : Entity_Id) return Elist_Id; 9757 -- Subsidiary to Map_Discriminants. Recreate the derivation chain from 9758 -- parent type Par_Typ leading down towards derived type Deriv_Typ. The 9759 -- list has the form: 9760 -- 9761 -- head tail 9762 -- v v 9763 -- <Ancestor_N> -> <Ancestor_N-1> -> <Ancestor_1> -> Deriv_Typ 9764 -- 9765 -- Note that Par_Typ is not part of the resulting derivation chain 9766 9767 function Discriminated_View (Typ : Entity_Id) return Entity_Id; 9768 -- Return the view of type Typ which could potentially contains either 9769 -- the discriminants or stored constraints of the type. 9770 9771 function Find_Discriminant_Value 9772 (Discr : Entity_Id; 9773 Par_Typ : Entity_Id; 9774 Deriv_Typ : Entity_Id; 9775 Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id; 9776 -- Subsidiary to Map_Discriminants. Find the value of discriminant Discr 9777 -- in the derivation chain starting from parent type Par_Typ leading to 9778 -- derived type Deriv_Typ. The returned value is one of the following: 9779 -- 9780 -- * An entity which is either a discriminant or a non-discriminant 9781 -- name, and renames/constraints Discr. 9782 -- 9783 -- * An expression which constraints Discr 9784 -- 9785 -- Typ_Elmt is an element of the derivation chain created by routine 9786 -- Build_Chain and denotes the current ancestor being examined. 9787 9788 procedure Map_Discriminants 9789 (Par_Typ : Entity_Id; 9790 Deriv_Typ : Entity_Id); 9791 -- Map each discriminant of type Par_Typ to a meaningful constraint 9792 -- from the point of view of type Deriv_Typ. 9793 9794 procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id); 9795 -- Map each primitive of type Par_Typ to a corresponding primitive of 9796 -- type Deriv_Typ. 9797 9798 ------------------- 9799 -- Add_Primitive -- 9800 ------------------- 9801 9802 procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id) is 9803 Par_Prim : Entity_Id; 9804 9805 begin 9806 -- Inspect the inheritance chain through the Alias attribute and the 9807 -- overriding chain through the Overridden_Operation looking for an 9808 -- ancestor primitive with the appropriate dispatching type. 9809 9810 Par_Prim := Prim; 9811 while Present (Par_Prim) loop 9812 exit when Find_Dispatching_Type (Par_Prim) = Par_Typ; 9813 Par_Prim := Ancestor_Primitive (Par_Prim); 9814 end loop; 9815 9816 -- Create a mapping of the form: 9817 9818 -- parent type primitive -> derived type primitive 9819 9820 if Present (Par_Prim) then 9821 Type_Map.Set (Par_Prim, Prim); 9822 end if; 9823 end Add_Primitive; 9824 9825 ------------------------ 9826 -- Ancestor_Primitive -- 9827 ------------------------ 9828 9829 function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id is 9830 Inher_Prim : constant Entity_Id := Alias (Subp); 9831 Over_Prim : constant Entity_Id := Overridden_Operation (Subp); 9832 9833 begin 9834 -- The current subprogram overrides an ancestor primitive 9835 9836 if Present (Over_Prim) then 9837 return Over_Prim; 9838 9839 -- The current subprogram is an internally generated alias of an 9840 -- inherited ancestor primitive. 9841 9842 elsif Present (Inher_Prim) then 9843 return Inher_Prim; 9844 9845 -- Otherwise the current subprogram is the root of the inheritance or 9846 -- overriding chain. 9847 9848 else 9849 return Empty; 9850 end if; 9851 end Ancestor_Primitive; 9852 9853 ----------------- 9854 -- Build_Chain -- 9855 ----------------- 9856 9857 function Build_Chain 9858 (Par_Typ : Entity_Id; 9859 Deriv_Typ : Entity_Id) return Elist_Id 9860 is 9861 Anc_Typ : Entity_Id; 9862 Chain : Elist_Id; 9863 Curr_Typ : Entity_Id; 9864 9865 begin 9866 Chain := New_Elmt_List; 9867 9868 -- Add the derived type to the derivation chain 9869 9870 Prepend_Elmt (Deriv_Typ, Chain); 9871 9872 -- Examine all ancestors starting from the derived type climbing 9873 -- towards parent type Par_Typ. 9874 9875 Curr_Typ := Deriv_Typ; 9876 loop 9877 -- Handle the case where the current type is a record which 9878 -- derives from a subtype. 9879 9880 -- subtype Sub_Typ is Par_Typ ... 9881 -- type Deriv_Typ is Sub_Typ ... 9882 9883 if Ekind (Curr_Typ) = E_Record_Type 9884 and then Present (Parent_Subtype (Curr_Typ)) 9885 then 9886 Anc_Typ := Parent_Subtype (Curr_Typ); 9887 9888 -- Handle the case where the current type is a record subtype of 9889 -- another subtype. 9890 9891 -- subtype Sub_Typ1 is Par_Typ ... 9892 -- subtype Sub_Typ2 is Sub_Typ1 ... 9893 9894 elsif Ekind (Curr_Typ) = E_Record_Subtype 9895 and then Present (Cloned_Subtype (Curr_Typ)) 9896 then 9897 Anc_Typ := Cloned_Subtype (Curr_Typ); 9898 9899 -- Otherwise use the direct parent type 9900 9901 else 9902 Anc_Typ := Etype (Curr_Typ); 9903 end if; 9904 9905 -- Use the first subtype when dealing with itypes 9906 9907 if Is_Itype (Anc_Typ) then 9908 Anc_Typ := First_Subtype (Anc_Typ); 9909 end if; 9910 9911 -- Work with the view which contains the discriminants and stored 9912 -- constraints. 9913 9914 Anc_Typ := Discriminated_View (Anc_Typ); 9915 9916 -- Stop the climb when either the parent type has been reached or 9917 -- there are no more ancestors left to examine. 9918 9919 exit when Anc_Typ = Curr_Typ or else Anc_Typ = Par_Typ; 9920 9921 Prepend_Unique_Elmt (Anc_Typ, Chain); 9922 Curr_Typ := Anc_Typ; 9923 end loop; 9924 9925 return Chain; 9926 end Build_Chain; 9927 9928 ------------------------ 9929 -- Discriminated_View -- 9930 ------------------------ 9931 9932 function Discriminated_View (Typ : Entity_Id) return Entity_Id is 9933 T : Entity_Id; 9934 9935 begin 9936 T := Typ; 9937 9938 -- Use the [underlying] full view when dealing with private types 9939 -- because the view contains all inherited discriminants or stored 9940 -- constraints. 9941 9942 if Is_Private_Type (T) then 9943 if Present (Underlying_Full_View (T)) then 9944 T := Underlying_Full_View (T); 9945 9946 elsif Present (Full_View (T)) then 9947 T := Full_View (T); 9948 end if; 9949 end if; 9950 9951 -- Use the underlying record view when the type is an extenstion of 9952 -- a parent type with unknown discriminants because the view contains 9953 -- all inherited discriminants or stored constraints. 9954 9955 if Ekind (T) = E_Record_Type 9956 and then Present (Underlying_Record_View (T)) 9957 then 9958 T := Underlying_Record_View (T); 9959 end if; 9960 9961 return T; 9962 end Discriminated_View; 9963 9964 ----------------------------- 9965 -- Find_Discriminant_Value -- 9966 ----------------------------- 9967 9968 function Find_Discriminant_Value 9969 (Discr : Entity_Id; 9970 Par_Typ : Entity_Id; 9971 Deriv_Typ : Entity_Id; 9972 Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id 9973 is 9974 Discr_Pos : constant Uint := Discriminant_Number (Discr); 9975 Typ : constant Entity_Id := Node (Typ_Elmt); 9976 9977 function Find_Constraint_Value 9978 (Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id; 9979 -- Given constraint Constr, find what it denotes. This is either: 9980 -- 9981 -- * An entity which is either a discriminant or a name 9982 -- 9983 -- * An expression 9984 9985 --------------------------- 9986 -- Find_Constraint_Value -- 9987 --------------------------- 9988 9989 function Find_Constraint_Value 9990 (Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id 9991 is 9992 begin 9993 if Nkind (Constr) in N_Entity then 9994 9995 -- The constraint denotes a discriminant of the curren type 9996 -- which renames the ancestor discriminant: 9997 9998 -- vv 9999 -- type Typ (D1 : ...; DN : ...) is 10000 -- new Anc (Discr => D1) with ... 10001 -- ^^ 10002 10003 if Ekind (Constr) = E_Discriminant then 10004 10005 -- The discriminant belongs to derived type Deriv_Typ. This 10006 -- is the final value for the ancestor discriminant as the 10007 -- derivations chain has been fully exhausted. 10008 10009 if Typ = Deriv_Typ then 10010 return Constr; 10011 10012 -- Otherwise the discriminant may be renamed or constrained 10013 -- at a lower level. Continue looking down the derivation 10014 -- chain. 10015 10016 else 10017 return 10018 Find_Discriminant_Value 10019 (Discr => Constr, 10020 Par_Typ => Par_Typ, 10021 Deriv_Typ => Deriv_Typ, 10022 Typ_Elmt => Next_Elmt (Typ_Elmt)); 10023 end if; 10024 10025 -- Otherwise the constraint denotes a reference to some name 10026 -- which results in a Girder discriminant: 10027 10028 -- vvvv 10029 -- Name : ...; 10030 -- type Typ (D1 : ...; DN : ...) is 10031 -- new Anc (Discr => Name) with ... 10032 -- ^^^^ 10033 10034 -- Return the name as this is the proper constraint of the 10035 -- discriminant. 10036 10037 else 10038 return Constr; 10039 end if; 10040 10041 -- The constraint denotes a reference to a name 10042 10043 elsif Is_Entity_Name (Constr) then 10044 return Find_Constraint_Value (Entity (Constr)); 10045 10046 -- Otherwise the current constraint is an expression which yields 10047 -- a Girder discriminant: 10048 10049 -- type Typ (D1 : ...; DN : ...) is 10050 -- new Anc (Discr => <expression>) with ... 10051 -- ^^^^^^^^^^ 10052 10053 -- Return the expression as this is the proper constraint of the 10054 -- discriminant. 10055 10056 else 10057 return Constr; 10058 end if; 10059 end Find_Constraint_Value; 10060 10061 -- Local variables 10062 10063 Constrs : constant Elist_Id := Stored_Constraint (Typ); 10064 10065 Constr_Elmt : Elmt_Id; 10066 Pos : Uint; 10067 Typ_Discr : Entity_Id; 10068 10069 -- Start of processing for Find_Discriminant_Value 10070 10071 begin 10072 -- The algorithm for finding the value of a discriminant works as 10073 -- follows. First, it recreates the derivation chain from Par_Typ 10074 -- to Deriv_Typ as a list: 10075 10076 -- Par_Typ (shown for completeness) 10077 -- v 10078 -- Ancestor_N <-- head of chain 10079 -- v 10080 -- Ancestor_1 10081 -- v 10082 -- Deriv_Typ <-- tail of chain 10083 10084 -- The algorithm then traces the fate of a parent discriminant down 10085 -- the derivation chain. At each derivation level, the discriminant 10086 -- may be either inherited or constrained. 10087 10088 -- 1) Discriminant is inherited: there are two cases, depending on 10089 -- which type is inheriting. 10090 10091 -- 1.1) Deriv_Typ is inheriting: 10092 10093 -- type Ancestor (D_1 : ...) is tagged ... 10094 -- type Deriv_Typ is new Ancestor ... 10095 10096 -- In this case the inherited discriminant is the final value of 10097 -- the parent discriminant because the end of the derivation chain 10098 -- has been reached. 10099 10100 -- 1.2) Some other type is inheriting: 10101 10102 -- type Ancestor_1 (D_1 : ...) is tagged ... 10103 -- type Ancestor_2 is new Ancestor_1 ... 10104 10105 -- In this case the algorithm continues to trace the fate of the 10106 -- inherited discriminant down the derivation chain because it may 10107 -- be further inherited or constrained. 10108 10109 -- 2) Discriminant is constrained: there are three cases, depending 10110 -- on what the constraint is. 10111 10112 -- 2.1) The constraint is another discriminant (aka renaming): 10113 10114 -- type Ancestor_1 (D_1 : ...) is tagged ... 10115 -- type Ancestor_2 (D_2 : ...) is new Ancestor_1 (D_1 => D_2) ... 10116 10117 -- In this case the constraining discriminant becomes the one to 10118 -- track down the derivation chain. The algorithm already knows 10119 -- that D_2 constrains D_1, therefore if the algorithm finds the 10120 -- value of D_2, then this would also be the value for D_1. 10121 10122 -- 2.2) The constraint is a name (aka Girder): 10123 10124 -- Name : ... 10125 -- type Ancestor_1 (D_1 : ...) is tagged ... 10126 -- type Ancestor_2 is new Ancestor_1 (D_1 => Name) ... 10127 10128 -- In this case the name is the final value of D_1 because the 10129 -- discriminant cannot be further constrained. 10130 10131 -- 2.3) The constraint is an expression (aka Girder): 10132 10133 -- type Ancestor_1 (D_1 : ...) is tagged ... 10134 -- type Ancestor_2 is new Ancestor_1 (D_1 => 1 + 2) ... 10135 10136 -- Similar to 2.2, the expression is the final value of D_1 10137 10138 Pos := Uint_1; 10139 10140 -- When a derived type constrains its parent type, all constaints 10141 -- appear in the Stored_Constraint list. Examine the list looking 10142 -- for a positional match. 10143 10144 if Present (Constrs) then 10145 Constr_Elmt := First_Elmt (Constrs); 10146 while Present (Constr_Elmt) loop 10147 10148 -- The position of the current constraint matches that of the 10149 -- ancestor discriminant. 10150 10151 if Pos = Discr_Pos then 10152 return Find_Constraint_Value (Node (Constr_Elmt)); 10153 end if; 10154 10155 Next_Elmt (Constr_Elmt); 10156 Pos := Pos + 1; 10157 end loop; 10158 10159 -- Otherwise the derived type does not constraint its parent type in 10160 -- which case it inherits the parent discriminants. 10161 10162 else 10163 Typ_Discr := First_Discriminant (Typ); 10164 while Present (Typ_Discr) loop 10165 10166 -- The position of the current discriminant matches that of the 10167 -- ancestor discriminant. 10168 10169 if Pos = Discr_Pos then 10170 return Find_Constraint_Value (Typ_Discr); 10171 end if; 10172 10173 Next_Discriminant (Typ_Discr); 10174 Pos := Pos + 1; 10175 end loop; 10176 end if; 10177 10178 -- A discriminant must always have a corresponding value. This is 10179 -- either another discriminant, a name, or an expression. If this 10180 -- point is reached, them most likely the derivation chain employs 10181 -- the wrong views of types. 10182 10183 pragma Assert (False); 10184 10185 return Empty; 10186 end Find_Discriminant_Value; 10187 10188 ----------------------- 10189 -- Map_Discriminants -- 10190 ----------------------- 10191 10192 procedure Map_Discriminants 10193 (Par_Typ : Entity_Id; 10194 Deriv_Typ : Entity_Id) 10195 is 10196 Deriv_Chain : constant Elist_Id := Build_Chain (Par_Typ, Deriv_Typ); 10197 10198 Discr : Entity_Id; 10199 Discr_Val : Node_Or_Entity_Id; 10200 10201 begin 10202 -- Examine each discriminant of parent type Par_Typ and find a 10203 -- suitable value for it from the point of view of derived type 10204 -- Deriv_Typ. 10205 10206 if Has_Discriminants (Par_Typ) then 10207 Discr := First_Discriminant (Par_Typ); 10208 while Present (Discr) loop 10209 Discr_Val := 10210 Find_Discriminant_Value 10211 (Discr => Discr, 10212 Par_Typ => Par_Typ, 10213 Deriv_Typ => Deriv_Typ, 10214 Typ_Elmt => First_Elmt (Deriv_Chain)); 10215 10216 -- Create a mapping of the form: 10217 10218 -- parent type discriminant -> value 10219 10220 Type_Map.Set (Discr, Discr_Val); 10221 10222 Next_Discriminant (Discr); 10223 end loop; 10224 end if; 10225 end Map_Discriminants; 10226 10227 -------------------- 10228 -- Map_Primitives -- 10229 -------------------- 10230 10231 procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id) is 10232 Deriv_Prim : Entity_Id; 10233 Par_Prim : Entity_Id; 10234 Par_Prims : Elist_Id; 10235 Prim_Elmt : Elmt_Id; 10236 10237 begin 10238 -- Inspect the primitives of the derived type and determine whether 10239 -- they relate to the primitives of the parent type. If there is a 10240 -- meaningful relation, create a mapping of the form: 10241 10242 -- parent type primitive -> perived type primitive 10243 10244 if Present (Direct_Primitive_Operations (Deriv_Typ)) then 10245 Prim_Elmt := First_Elmt (Direct_Primitive_Operations (Deriv_Typ)); 10246 while Present (Prim_Elmt) loop 10247 Deriv_Prim := Node (Prim_Elmt); 10248 10249 if Is_Subprogram (Deriv_Prim) 10250 and then Find_Dispatching_Type (Deriv_Prim) = Deriv_Typ 10251 then 10252 Add_Primitive (Deriv_Prim, Par_Typ); 10253 end if; 10254 10255 Next_Elmt (Prim_Elmt); 10256 end loop; 10257 end if; 10258 10259 -- If the parent operation is an interface operation, the overriding 10260 -- indicator is not present. Instead, we get from the interface 10261 -- operation the primitive of the current type that implements it. 10262 10263 if Is_Interface (Par_Typ) then 10264 Par_Prims := Collect_Primitive_Operations (Par_Typ); 10265 10266 if Present (Par_Prims) then 10267 Prim_Elmt := First_Elmt (Par_Prims); 10268 10269 while Present (Prim_Elmt) loop 10270 Par_Prim := Node (Prim_Elmt); 10271 Deriv_Prim := 10272 Find_Primitive_Covering_Interface (Deriv_Typ, Par_Prim); 10273 10274 if Present (Deriv_Prim) then 10275 Type_Map.Set (Par_Prim, Deriv_Prim); 10276 end if; 10277 10278 Next_Elmt (Prim_Elmt); 10279 end loop; 10280 end if; 10281 end if; 10282 end Map_Primitives; 10283 10284 -- Start of processing for Map_Types 10285 10286 begin 10287 -- Nothing to do if there are no types to work with 10288 10289 if No (Parent_Type) or else No (Derived_Type) then 10290 return; 10291 10292 -- Nothing to do if the mapping already exists 10293 10294 elsif Type_Map.Get (Parent_Type) = Derived_Type then 10295 return; 10296 10297 -- Nothing to do if both types are not tagged. Note that untagged types 10298 -- do not have primitive operations and their discriminants are already 10299 -- handled by gigi. 10300 10301 elsif not Is_Tagged_Type (Parent_Type) 10302 or else not Is_Tagged_Type (Derived_Type) 10303 then 10304 return; 10305 end if; 10306 10307 -- Create a mapping of the form 10308 10309 -- parent type -> derived type 10310 10311 -- to prevent any subsequent attempts to produce the same relations 10312 10313 Type_Map.Set (Parent_Type, Derived_Type); 10314 10315 -- Create mappings of the form 10316 10317 -- parent type discriminant -> derived type discriminant 10318 -- <or> 10319 -- parent type discriminant -> constraint 10320 10321 -- Note that mapping of discriminants breaks privacy because it needs to 10322 -- work with those views which contains the discriminants and any stored 10323 -- constraints. 10324 10325 Map_Discriminants 10326 (Par_Typ => Discriminated_View (Parent_Type), 10327 Deriv_Typ => Discriminated_View (Derived_Type)); 10328 10329 -- Create mappings of the form 10330 10331 -- parent type primitive -> derived type primitive 10332 10333 Map_Primitives 10334 (Par_Typ => Parent_Type, 10335 Deriv_Typ => Derived_Type); 10336 end Map_Types; 10337 10338 ---------------------------- 10339 -- Matching_Standard_Type -- 10340 ---------------------------- 10341 10342 function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is 10343 pragma Assert (Is_Scalar_Type (Typ)); 10344 Siz : constant Uint := Esize (Typ); 10345 10346 begin 10347 -- Floating-point cases 10348 10349 if Is_Floating_Point_Type (Typ) then 10350 if Siz <= Esize (Standard_Short_Float) then 10351 return Standard_Short_Float; 10352 elsif Siz <= Esize (Standard_Float) then 10353 return Standard_Float; 10354 elsif Siz <= Esize (Standard_Long_Float) then 10355 return Standard_Long_Float; 10356 elsif Siz <= Esize (Standard_Long_Long_Float) then 10357 return Standard_Long_Long_Float; 10358 else 10359 raise Program_Error; 10360 end if; 10361 10362 -- Integer cases (includes fixed-point types) 10363 10364 -- Unsigned integer cases (includes normal enumeration types) 10365 10366 elsif Is_Unsigned_Type (Typ) then 10367 if Siz <= Esize (Standard_Short_Short_Unsigned) then 10368 return Standard_Short_Short_Unsigned; 10369 elsif Siz <= Esize (Standard_Short_Unsigned) then 10370 return Standard_Short_Unsigned; 10371 elsif Siz <= Esize (Standard_Unsigned) then 10372 return Standard_Unsigned; 10373 elsif Siz <= Esize (Standard_Long_Unsigned) then 10374 return Standard_Long_Unsigned; 10375 elsif Siz <= Esize (Standard_Long_Long_Unsigned) then 10376 return Standard_Long_Long_Unsigned; 10377 else 10378 raise Program_Error; 10379 end if; 10380 10381 -- Signed integer cases 10382 10383 else 10384 if Siz <= Esize (Standard_Short_Short_Integer) then 10385 return Standard_Short_Short_Integer; 10386 elsif Siz <= Esize (Standard_Short_Integer) then 10387 return Standard_Short_Integer; 10388 elsif Siz <= Esize (Standard_Integer) then 10389 return Standard_Integer; 10390 elsif Siz <= Esize (Standard_Long_Integer) then 10391 return Standard_Long_Integer; 10392 elsif Siz <= Esize (Standard_Long_Long_Integer) then 10393 return Standard_Long_Long_Integer; 10394 else 10395 raise Program_Error; 10396 end if; 10397 end if; 10398 end Matching_Standard_Type; 10399 10400 ----------------------------- 10401 -- May_Generate_Large_Temp -- 10402 ----------------------------- 10403 10404 -- At the current time, the only types that we return False for (i.e. where 10405 -- we decide we know they cannot generate large temps) are ones where we 10406 -- know the size is 256 bits or less at compile time, and we are still not 10407 -- doing a thorough job on arrays and records ??? 10408 10409 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is 10410 begin 10411 if not Size_Known_At_Compile_Time (Typ) then 10412 return False; 10413 10414 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then 10415 return False; 10416 10417 elsif Is_Array_Type (Typ) 10418 and then Present (Packed_Array_Impl_Type (Typ)) 10419 then 10420 return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ)); 10421 10422 -- We could do more here to find other small types ??? 10423 10424 else 10425 return True; 10426 end if; 10427 end May_Generate_Large_Temp; 10428 10429 ------------------------ 10430 -- Needs_Finalization -- 10431 ------------------------ 10432 10433 function Needs_Finalization (Typ : Entity_Id) return Boolean is 10434 function Has_Some_Controlled_Component 10435 (Input_Typ : Entity_Id) return Boolean; 10436 -- Determine whether type Input_Typ has at least one controlled 10437 -- component. 10438 10439 ----------------------------------- 10440 -- Has_Some_Controlled_Component -- 10441 ----------------------------------- 10442 10443 function Has_Some_Controlled_Component 10444 (Input_Typ : Entity_Id) return Boolean 10445 is 10446 Comp : Entity_Id; 10447 10448 begin 10449 -- When a type is already frozen and has at least one controlled 10450 -- component, or is manually decorated, it is sufficient to inspect 10451 -- flag Has_Controlled_Component. 10452 10453 if Has_Controlled_Component (Input_Typ) then 10454 return True; 10455 10456 -- Otherwise inspect the internals of the type 10457 10458 elsif not Is_Frozen (Input_Typ) then 10459 if Is_Array_Type (Input_Typ) then 10460 return Needs_Finalization (Component_Type (Input_Typ)); 10461 10462 elsif Is_Record_Type (Input_Typ) then 10463 Comp := First_Component (Input_Typ); 10464 while Present (Comp) loop 10465 if Needs_Finalization (Etype (Comp)) then 10466 return True; 10467 end if; 10468 10469 Next_Component (Comp); 10470 end loop; 10471 end if; 10472 end if; 10473 10474 return False; 10475 end Has_Some_Controlled_Component; 10476 10477 -- Start of processing for Needs_Finalization 10478 10479 begin 10480 -- Certain run-time configurations and targets do not provide support 10481 -- for controlled types. 10482 10483 if Restriction_Active (No_Finalization) then 10484 return False; 10485 10486 -- C++ types are not considered controlled. It is assumed that the non- 10487 -- Ada side will handle their clean up. 10488 10489 elsif Convention (Typ) = Convention_CPP then 10490 return False; 10491 10492 -- Class-wide types are treated as controlled because derivations from 10493 -- the root type may introduce controlled components. 10494 10495 elsif Is_Class_Wide_Type (Typ) then 10496 return True; 10497 10498 -- Concurrent types are controlled as long as their corresponding record 10499 -- is controlled. 10500 10501 elsif Is_Concurrent_Type (Typ) 10502 and then Present (Corresponding_Record_Type (Typ)) 10503 and then Needs_Finalization (Corresponding_Record_Type (Typ)) 10504 then 10505 return True; 10506 10507 -- Otherwise the type is controlled when it is either derived from type 10508 -- [Limited_]Controlled and not subject to aspect Disable_Controlled, or 10509 -- contains at least one controlled component. 10510 10511 else 10512 return 10513 Is_Controlled (Typ) or else Has_Some_Controlled_Component (Typ); 10514 end if; 10515 end Needs_Finalization; 10516 10517 ---------------------------- 10518 -- Needs_Constant_Address -- 10519 ---------------------------- 10520 10521 function Needs_Constant_Address 10522 (Decl : Node_Id; 10523 Typ : Entity_Id) return Boolean 10524 is 10525 begin 10526 -- If we have no initialization of any kind, then we don't need to place 10527 -- any restrictions on the address clause, because the object will be 10528 -- elaborated after the address clause is evaluated. This happens if the 10529 -- declaration has no initial expression, or the type has no implicit 10530 -- initialization, or the object is imported. 10531 10532 -- The same holds for all initialized scalar types and all access types. 10533 -- Packed bit arrays of size up to 64 are represented using a modular 10534 -- type with an initialization (to zero) and can be processed like other 10535 -- initialized scalar types. 10536 10537 -- If the type is controlled, code to attach the object to a 10538 -- finalization chain is generated at the point of declaration, and 10539 -- therefore the elaboration of the object cannot be delayed: the 10540 -- address expression must be a constant. 10541 10542 if No (Expression (Decl)) 10543 and then not Needs_Finalization (Typ) 10544 and then 10545 (not Has_Non_Null_Base_Init_Proc (Typ) 10546 or else Is_Imported (Defining_Identifier (Decl))) 10547 then 10548 return False; 10549 10550 elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ)) 10551 or else Is_Access_Type (Typ) 10552 or else 10553 (Is_Bit_Packed_Array (Typ) 10554 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))) 10555 then 10556 return False; 10557 10558 else 10559 10560 -- Otherwise, we require the address clause to be constant because 10561 -- the call to the initialization procedure (or the attach code) has 10562 -- to happen at the point of the declaration. 10563 10564 -- Actually the IP call has been moved to the freeze actions anyway, 10565 -- so maybe we can relax this restriction??? 10566 10567 return True; 10568 end if; 10569 end Needs_Constant_Address; 10570 10571 ---------------------------- 10572 -- New_Class_Wide_Subtype -- 10573 ---------------------------- 10574 10575 function New_Class_Wide_Subtype 10576 (CW_Typ : Entity_Id; 10577 N : Node_Id) return Entity_Id 10578 is 10579 Res : constant Entity_Id := Create_Itype (E_Void, N); 10580 Res_Name : constant Name_Id := Chars (Res); 10581 Res_Scope : constant Entity_Id := Scope (Res); 10582 10583 begin 10584 Copy_Node (CW_Typ, Res); 10585 Set_Comes_From_Source (Res, False); 10586 Set_Sloc (Res, Sloc (N)); 10587 Set_Is_Itype (Res); 10588 Set_Associated_Node_For_Itype (Res, N); 10589 Set_Is_Public (Res, False); -- By default, may be changed below. 10590 Set_Public_Status (Res); 10591 Set_Chars (Res, Res_Name); 10592 Set_Scope (Res, Res_Scope); 10593 Set_Ekind (Res, E_Class_Wide_Subtype); 10594 Set_Next_Entity (Res, Empty); 10595 Set_Etype (Res, Base_Type (CW_Typ)); 10596 Set_Is_Frozen (Res, False); 10597 Set_Freeze_Node (Res, Empty); 10598 return (Res); 10599 end New_Class_Wide_Subtype; 10600 10601 -------------------------------- 10602 -- Non_Limited_Designated_Type -- 10603 --------------------------------- 10604 10605 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is 10606 Desig : constant Entity_Id := Designated_Type (T); 10607 begin 10608 if Has_Non_Limited_View (Desig) then 10609 return Non_Limited_View (Desig); 10610 else 10611 return Desig; 10612 end if; 10613 end Non_Limited_Designated_Type; 10614 10615 ----------------------------------- 10616 -- OK_To_Do_Constant_Replacement -- 10617 ----------------------------------- 10618 10619 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is 10620 ES : constant Entity_Id := Scope (E); 10621 CS : Entity_Id; 10622 10623 begin 10624 -- Do not replace statically allocated objects, because they may be 10625 -- modified outside the current scope. 10626 10627 if Is_Statically_Allocated (E) then 10628 return False; 10629 10630 -- Do not replace aliased or volatile objects, since we don't know what 10631 -- else might change the value. 10632 10633 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then 10634 return False; 10635 10636 -- Debug flag -gnatdM disconnects this optimization 10637 10638 elsif Debug_Flag_MM then 10639 return False; 10640 10641 -- Otherwise check scopes 10642 10643 else 10644 CS := Current_Scope; 10645 10646 loop 10647 -- If we are in right scope, replacement is safe 10648 10649 if CS = ES then 10650 return True; 10651 10652 -- Packages do not affect the determination of safety 10653 10654 elsif Ekind (CS) = E_Package then 10655 exit when CS = Standard_Standard; 10656 CS := Scope (CS); 10657 10658 -- Blocks do not affect the determination of safety 10659 10660 elsif Ekind (CS) = E_Block then 10661 CS := Scope (CS); 10662 10663 -- Loops do not affect the determination of safety. Note that we 10664 -- kill all current values on entry to a loop, so we are just 10665 -- talking about processing within a loop here. 10666 10667 elsif Ekind (CS) = E_Loop then 10668 CS := Scope (CS); 10669 10670 -- Otherwise, the reference is dubious, and we cannot be sure that 10671 -- it is safe to do the replacement. 10672 10673 else 10674 exit; 10675 end if; 10676 end loop; 10677 10678 return False; 10679 end if; 10680 end OK_To_Do_Constant_Replacement; 10681 10682 ------------------------------------ 10683 -- Possible_Bit_Aligned_Component -- 10684 ------------------------------------ 10685 10686 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is 10687 begin 10688 -- Do not process an unanalyzed node because it is not yet decorated and 10689 -- most checks performed below will fail. 10690 10691 if not Analyzed (N) then 10692 return False; 10693 end if; 10694 10695 case Nkind (N) is 10696 10697 -- Case of indexed component 10698 10699 when N_Indexed_Component => 10700 declare 10701 P : constant Node_Id := Prefix (N); 10702 Ptyp : constant Entity_Id := Etype (P); 10703 10704 begin 10705 -- If we know the component size and it is less than 64, then 10706 -- we are definitely OK. The back end always does assignment of 10707 -- misaligned small objects correctly. 10708 10709 if Known_Static_Component_Size (Ptyp) 10710 and then Component_Size (Ptyp) <= 64 10711 then 10712 return False; 10713 10714 -- Otherwise, we need to test the prefix, to see if we are 10715 -- indexing from a possibly unaligned component. 10716 10717 else 10718 return Possible_Bit_Aligned_Component (P); 10719 end if; 10720 end; 10721 10722 -- Case of selected component 10723 10724 when N_Selected_Component => 10725 declare 10726 P : constant Node_Id := Prefix (N); 10727 Comp : constant Entity_Id := Entity (Selector_Name (N)); 10728 10729 begin 10730 -- If there is no component clause, then we are in the clear 10731 -- since the back end will never misalign a large component 10732 -- unless it is forced to do so. In the clear means we need 10733 -- only the recursive test on the prefix. 10734 10735 if Component_May_Be_Bit_Aligned (Comp) then 10736 return True; 10737 else 10738 return Possible_Bit_Aligned_Component (P); 10739 end if; 10740 end; 10741 10742 -- For a slice, test the prefix, if that is possibly misaligned, 10743 -- then for sure the slice is. 10744 10745 when N_Slice => 10746 return Possible_Bit_Aligned_Component (Prefix (N)); 10747 10748 -- For an unchecked conversion, check whether the expression may 10749 -- be bit-aligned. 10750 10751 when N_Unchecked_Type_Conversion => 10752 return Possible_Bit_Aligned_Component (Expression (N)); 10753 10754 -- If we have none of the above, it means that we have fallen off the 10755 -- top testing prefixes recursively, and we now have a stand alone 10756 -- object, where we don't have a problem, unless this is a renaming, 10757 -- in which case we need to look into the renamed object. 10758 10759 when others => 10760 if Is_Entity_Name (N) 10761 and then Present (Renamed_Object (Entity (N))) 10762 then 10763 return 10764 Possible_Bit_Aligned_Component (Renamed_Object (Entity (N))); 10765 else 10766 return False; 10767 end if; 10768 end case; 10769 end Possible_Bit_Aligned_Component; 10770 10771 ----------------------------------------------- 10772 -- Process_Statements_For_Controlled_Objects -- 10773 ----------------------------------------------- 10774 10775 procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is 10776 Loc : constant Source_Ptr := Sloc (N); 10777 10778 function Are_Wrapped (L : List_Id) return Boolean; 10779 -- Determine whether list L contains only one statement which is a block 10780 10781 function Wrap_Statements_In_Block 10782 (L : List_Id; 10783 Scop : Entity_Id := Current_Scope) return Node_Id; 10784 -- Given a list of statements L, wrap it in a block statement and return 10785 -- the generated node. Scop is either the current scope or the scope of 10786 -- the context (if applicable). 10787 10788 ----------------- 10789 -- Are_Wrapped -- 10790 ----------------- 10791 10792 function Are_Wrapped (L : List_Id) return Boolean is 10793 Stmt : constant Node_Id := First (L); 10794 begin 10795 return 10796 Present (Stmt) 10797 and then No (Next (Stmt)) 10798 and then Nkind (Stmt) = N_Block_Statement; 10799 end Are_Wrapped; 10800 10801 ------------------------------ 10802 -- Wrap_Statements_In_Block -- 10803 ------------------------------ 10804 10805 function Wrap_Statements_In_Block 10806 (L : List_Id; 10807 Scop : Entity_Id := Current_Scope) return Node_Id 10808 is 10809 Block_Id : Entity_Id; 10810 Block_Nod : Node_Id; 10811 Iter_Loop : Entity_Id; 10812 10813 begin 10814 Block_Nod := 10815 Make_Block_Statement (Loc, 10816 Declarations => No_List, 10817 Handled_Statement_Sequence => 10818 Make_Handled_Sequence_Of_Statements (Loc, 10819 Statements => L)); 10820 10821 -- Create a label for the block in case the block needs to manage the 10822 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set. 10823 10824 Add_Block_Identifier (Block_Nod, Block_Id); 10825 10826 -- When wrapping the statements of an iterator loop, check whether 10827 -- the loop requires secondary stack management and if so, propagate 10828 -- the appropriate flags to the block. This ensures that the cursor 10829 -- is properly cleaned up at each iteration of the loop. 10830 10831 Iter_Loop := Find_Enclosing_Iterator_Loop (Scop); 10832 10833 if Present (Iter_Loop) then 10834 Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop)); 10835 10836 -- Secondary stack reclamation is suppressed when the associated 10837 -- iterator loop contains a return statement which uses the stack. 10838 10839 Set_Sec_Stack_Needed_For_Return 10840 (Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop)); 10841 end if; 10842 10843 return Block_Nod; 10844 end Wrap_Statements_In_Block; 10845 10846 -- Local variables 10847 10848 Block : Node_Id; 10849 10850 -- Start of processing for Process_Statements_For_Controlled_Objects 10851 10852 begin 10853 -- Whenever a non-handled statement list is wrapped in a block, the 10854 -- block must be explicitly analyzed to redecorate all entities in the 10855 -- list and ensure that a finalizer is properly built. 10856 10857 case Nkind (N) is 10858 when N_Conditional_Entry_Call 10859 | N_Elsif_Part 10860 | N_If_Statement 10861 | N_Selective_Accept 10862 => 10863 -- Check the "then statements" for elsif parts and if statements 10864 10865 if Nkind_In (N, N_Elsif_Part, N_If_Statement) 10866 and then not Is_Empty_List (Then_Statements (N)) 10867 and then not Are_Wrapped (Then_Statements (N)) 10868 and then Requires_Cleanup_Actions 10869 (L => Then_Statements (N), 10870 Lib_Level => False, 10871 Nested_Constructs => False) 10872 then 10873 Block := Wrap_Statements_In_Block (Then_Statements (N)); 10874 Set_Then_Statements (N, New_List (Block)); 10875 10876 Analyze (Block); 10877 end if; 10878 10879 -- Check the "else statements" for conditional entry calls, if 10880 -- statements and selective accepts. 10881 10882 if Nkind_In (N, N_Conditional_Entry_Call, 10883 N_If_Statement, 10884 N_Selective_Accept) 10885 and then not Is_Empty_List (Else_Statements (N)) 10886 and then not Are_Wrapped (Else_Statements (N)) 10887 and then Requires_Cleanup_Actions 10888 (L => Else_Statements (N), 10889 Lib_Level => False, 10890 Nested_Constructs => False) 10891 then 10892 Block := Wrap_Statements_In_Block (Else_Statements (N)); 10893 Set_Else_Statements (N, New_List (Block)); 10894 10895 Analyze (Block); 10896 end if; 10897 10898 when N_Abortable_Part 10899 | N_Accept_Alternative 10900 | N_Case_Statement_Alternative 10901 | N_Delay_Alternative 10902 | N_Entry_Call_Alternative 10903 | N_Exception_Handler 10904 | N_Loop_Statement 10905 | N_Triggering_Alternative 10906 => 10907 if not Is_Empty_List (Statements (N)) 10908 and then not Are_Wrapped (Statements (N)) 10909 and then Requires_Cleanup_Actions 10910 (L => Statements (N), 10911 Lib_Level => False, 10912 Nested_Constructs => False) 10913 then 10914 if Nkind (N) = N_Loop_Statement 10915 and then Present (Identifier (N)) 10916 then 10917 Block := 10918 Wrap_Statements_In_Block 10919 (L => Statements (N), 10920 Scop => Entity (Identifier (N))); 10921 else 10922 Block := Wrap_Statements_In_Block (Statements (N)); 10923 end if; 10924 10925 Set_Statements (N, New_List (Block)); 10926 Analyze (Block); 10927 end if; 10928 10929 -- Could be e.g. a loop that was transformed into a block or null 10930 -- statement. Do nothing for terminate alternatives. 10931 10932 when N_Block_Statement 10933 | N_Null_Statement 10934 | N_Terminate_Alternative 10935 => 10936 null; 10937 10938 when others => 10939 raise Program_Error; 10940 end case; 10941 end Process_Statements_For_Controlled_Objects; 10942 10943 ------------------ 10944 -- Power_Of_Two -- 10945 ------------------ 10946 10947 function Power_Of_Two (N : Node_Id) return Nat is 10948 Typ : constant Entity_Id := Etype (N); 10949 pragma Assert (Is_Integer_Type (Typ)); 10950 10951 Siz : constant Nat := UI_To_Int (Esize (Typ)); 10952 Val : Uint; 10953 10954 begin 10955 if not Compile_Time_Known_Value (N) then 10956 return 0; 10957 10958 else 10959 Val := Expr_Value (N); 10960 for J in 1 .. Siz - 1 loop 10961 if Val = Uint_2 ** J then 10962 return J; 10963 end if; 10964 end loop; 10965 10966 return 0; 10967 end if; 10968 end Power_Of_Two; 10969 10970 ---------------------- 10971 -- Remove_Init_Call -- 10972 ---------------------- 10973 10974 function Remove_Init_Call 10975 (Var : Entity_Id; 10976 Rep_Clause : Node_Id) return Node_Id 10977 is 10978 Par : constant Node_Id := Parent (Var); 10979 Typ : constant Entity_Id := Etype (Var); 10980 10981 Init_Proc : Entity_Id; 10982 -- Initialization procedure for Typ 10983 10984 function Find_Init_Call_In_List (From : Node_Id) return Node_Id; 10985 -- Look for init call for Var starting at From and scanning the 10986 -- enclosing list until Rep_Clause or the end of the list is reached. 10987 10988 ---------------------------- 10989 -- Find_Init_Call_In_List -- 10990 ---------------------------- 10991 10992 function Find_Init_Call_In_List (From : Node_Id) return Node_Id is 10993 Init_Call : Node_Id; 10994 10995 begin 10996 Init_Call := From; 10997 while Present (Init_Call) and then Init_Call /= Rep_Clause loop 10998 if Nkind (Init_Call) = N_Procedure_Call_Statement 10999 and then Is_Entity_Name (Name (Init_Call)) 11000 and then Entity (Name (Init_Call)) = Init_Proc 11001 then 11002 return Init_Call; 11003 end if; 11004 11005 Next (Init_Call); 11006 end loop; 11007 11008 return Empty; 11009 end Find_Init_Call_In_List; 11010 11011 Init_Call : Node_Id; 11012 11013 -- Start of processing for Find_Init_Call 11014 11015 begin 11016 if Present (Initialization_Statements (Var)) then 11017 Init_Call := Initialization_Statements (Var); 11018 Set_Initialization_Statements (Var, Empty); 11019 11020 elsif not Has_Non_Null_Base_Init_Proc (Typ) then 11021 11022 -- No init proc for the type, so obviously no call to be found 11023 11024 return Empty; 11025 11026 else 11027 -- We might be able to handle other cases below by just properly 11028 -- setting Initialization_Statements at the point where the init proc 11029 -- call is generated??? 11030 11031 Init_Proc := Base_Init_Proc (Typ); 11032 11033 -- First scan the list containing the declaration of Var 11034 11035 Init_Call := Find_Init_Call_In_List (From => Next (Par)); 11036 11037 -- If not found, also look on Var's freeze actions list, if any, 11038 -- since the init call may have been moved there (case of an address 11039 -- clause applying to Var). 11040 11041 if No (Init_Call) and then Present (Freeze_Node (Var)) then 11042 Init_Call := 11043 Find_Init_Call_In_List (First (Actions (Freeze_Node (Var)))); 11044 end if; 11045 11046 -- If the initialization call has actuals that use the secondary 11047 -- stack, the call may have been wrapped into a temporary block, in 11048 -- which case the block itself has to be removed. 11049 11050 if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then 11051 declare 11052 Blk : constant Node_Id := Next (Par); 11053 begin 11054 if Present 11055 (Find_Init_Call_In_List 11056 (First (Statements (Handled_Statement_Sequence (Blk))))) 11057 then 11058 Init_Call := Blk; 11059 end if; 11060 end; 11061 end if; 11062 end if; 11063 11064 if Present (Init_Call) then 11065 Remove (Init_Call); 11066 end if; 11067 return Init_Call; 11068 end Remove_Init_Call; 11069 11070 ------------------------- 11071 -- Remove_Side_Effects -- 11072 ------------------------- 11073 11074 procedure Remove_Side_Effects 11075 (Exp : Node_Id; 11076 Name_Req : Boolean := False; 11077 Renaming_Req : Boolean := False; 11078 Variable_Ref : Boolean := False; 11079 Related_Id : Entity_Id := Empty; 11080 Is_Low_Bound : Boolean := False; 11081 Is_High_Bound : Boolean := False; 11082 Check_Side_Effects : Boolean := True) 11083 is 11084 function Build_Temporary 11085 (Loc : Source_Ptr; 11086 Id : Character; 11087 Related_Nod : Node_Id := Empty) return Entity_Id; 11088 -- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod 11089 -- is present (xxx is taken from the Chars field of Related_Nod), 11090 -- otherwise it generates an internal temporary. The created temporary 11091 -- entity is marked as internal. 11092 11093 --------------------- 11094 -- Build_Temporary -- 11095 --------------------- 11096 11097 function Build_Temporary 11098 (Loc : Source_Ptr; 11099 Id : Character; 11100 Related_Nod : Node_Id := Empty) return Entity_Id 11101 is 11102 Temp_Id : Entity_Id; 11103 Temp_Nam : Name_Id; 11104 11105 begin 11106 -- The context requires an external symbol 11107 11108 if Present (Related_Id) then 11109 if Is_Low_Bound then 11110 Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST"); 11111 else pragma Assert (Is_High_Bound); 11112 Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST"); 11113 end if; 11114 11115 Temp_Id := Make_Defining_Identifier (Loc, Temp_Nam); 11116 11117 -- Otherwise generate an internal temporary 11118 11119 else 11120 Temp_Id := Make_Temporary (Loc, Id, Related_Nod); 11121 end if; 11122 11123 Set_Is_Internal (Temp_Id); 11124 11125 return Temp_Id; 11126 end Build_Temporary; 11127 11128 -- Local variables 11129 11130 Loc : constant Source_Ptr := Sloc (Exp); 11131 Exp_Type : constant Entity_Id := Etype (Exp); 11132 Svg_Suppress : constant Suppress_Record := Scope_Suppress; 11133 Def_Id : Entity_Id; 11134 E : Node_Id; 11135 New_Exp : Node_Id; 11136 Ptr_Typ_Decl : Node_Id; 11137 Ref_Type : Entity_Id; 11138 Res : Node_Id; 11139 11140 -- Start of processing for Remove_Side_Effects 11141 11142 begin 11143 -- Handle cases in which there is nothing to do. In GNATprove mode, 11144 -- removal of side effects is useful for the light expansion of 11145 -- renamings. This removal should only occur when not inside a 11146 -- generic and not doing a pre-analysis. 11147 11148 if not Expander_Active 11149 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode) 11150 then 11151 return; 11152 11153 -- Cannot generate temporaries if the invocation to remove side effects 11154 -- was issued too early and the type of the expression is not resolved 11155 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke 11156 -- Remove_Side_Effects). 11157 11158 elsif No (Exp_Type) 11159 or else Ekind (Exp_Type) = E_Access_Attribute_Type 11160 then 11161 return; 11162 11163 -- Nothing to do if prior expansion determined that a function call does 11164 -- not require side effect removal. 11165 11166 elsif Nkind (Exp) = N_Function_Call 11167 and then No_Side_Effect_Removal (Exp) 11168 then 11169 return; 11170 11171 -- No action needed for side-effect free expressions 11172 11173 elsif Check_Side_Effects 11174 and then Side_Effect_Free (Exp, Name_Req, Variable_Ref) 11175 then 11176 return; 11177 11178 -- Generating C code we cannot remove side effect of function returning 11179 -- class-wide types since there is no secondary stack (required to use 11180 -- 'reference). 11181 11182 elsif Modify_Tree_For_C 11183 and then Nkind (Exp) = N_Function_Call 11184 and then Is_Class_Wide_Type (Etype (Exp)) 11185 then 11186 return; 11187 end if; 11188 11189 -- The remaining processing is done with all checks suppressed 11190 11191 -- Note: from now on, don't use return statements, instead do a goto 11192 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress. 11193 11194 Scope_Suppress.Suppress := (others => True); 11195 11196 -- If this is an elementary or a small not-by-reference record type, and 11197 -- we need to capture the value, just make a constant; this is cheap and 11198 -- objects of both kinds of types can be bit aligned, so it might not be 11199 -- possible to generate a reference to them. Likewise if this is not a 11200 -- name reference, except for a type conversion, because we would enter 11201 -- an infinite recursion with Checks.Apply_Predicate_Check if the target 11202 -- type has predicates (and type conversions need a specific treatment 11203 -- anyway, see below). Also do it if we have a volatile reference and 11204 -- Name_Req is not set (see comments for Side_Effect_Free). 11205 11206 if (Is_Elementary_Type (Exp_Type) 11207 or else (Is_Record_Type (Exp_Type) 11208 and then Known_Static_RM_Size (Exp_Type) 11209 and then RM_Size (Exp_Type) <= 64 11210 and then not Has_Discriminants (Exp_Type) 11211 and then not Is_By_Reference_Type (Exp_Type))) 11212 and then (Variable_Ref 11213 or else (not Is_Name_Reference (Exp) 11214 and then Nkind (Exp) /= N_Type_Conversion) 11215 or else (not Name_Req 11216 and then Is_Volatile_Reference (Exp))) 11217 then 11218 Def_Id := Build_Temporary (Loc, 'R', Exp); 11219 Set_Etype (Def_Id, Exp_Type); 11220 Res := New_Occurrence_Of (Def_Id, Loc); 11221 11222 -- If the expression is a packed reference, it must be reanalyzed and 11223 -- expanded, depending on context. This is the case for actuals where 11224 -- a constraint check may capture the actual before expansion of the 11225 -- call is complete. 11226 11227 if Nkind (Exp) = N_Indexed_Component 11228 and then Is_Packed (Etype (Prefix (Exp))) 11229 then 11230 Set_Analyzed (Exp, False); 11231 Set_Analyzed (Prefix (Exp), False); 11232 end if; 11233 11234 -- Generate: 11235 -- Rnn : Exp_Type renames Expr; 11236 11237 if Renaming_Req then 11238 E := 11239 Make_Object_Renaming_Declaration (Loc, 11240 Defining_Identifier => Def_Id, 11241 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc), 11242 Name => Relocate_Node (Exp)); 11243 11244 -- Generate: 11245 -- Rnn : constant Exp_Type := Expr; 11246 11247 else 11248 E := 11249 Make_Object_Declaration (Loc, 11250 Defining_Identifier => Def_Id, 11251 Object_Definition => New_Occurrence_Of (Exp_Type, Loc), 11252 Constant_Present => True, 11253 Expression => Relocate_Node (Exp)); 11254 11255 Set_Assignment_OK (E); 11256 end if; 11257 11258 Insert_Action (Exp, E); 11259 11260 -- If the expression has the form v.all then we can just capture the 11261 -- pointer, and then do an explicit dereference on the result, but 11262 -- this is not right if this is a volatile reference. 11263 11264 elsif Nkind (Exp) = N_Explicit_Dereference 11265 and then not Is_Volatile_Reference (Exp) 11266 then 11267 Def_Id := Build_Temporary (Loc, 'R', Exp); 11268 Res := 11269 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc)); 11270 11271 Insert_Action (Exp, 11272 Make_Object_Declaration (Loc, 11273 Defining_Identifier => Def_Id, 11274 Object_Definition => 11275 New_Occurrence_Of (Etype (Prefix (Exp)), Loc), 11276 Constant_Present => True, 11277 Expression => Relocate_Node (Prefix (Exp)))); 11278 11279 -- Similar processing for an unchecked conversion of an expression of 11280 -- the form v.all, where we want the same kind of treatment. 11281 11282 elsif Nkind (Exp) = N_Unchecked_Type_Conversion 11283 and then Nkind (Expression (Exp)) = N_Explicit_Dereference 11284 then 11285 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref); 11286 goto Leave; 11287 11288 -- If this is a type conversion, leave the type conversion and remove 11289 -- the side effects in the expression. This is important in several 11290 -- circumstances: for change of representations, and also when this is a 11291 -- view conversion to a smaller object, where gigi can end up creating 11292 -- its own temporary of the wrong size. 11293 11294 elsif Nkind (Exp) = N_Type_Conversion then 11295 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref); 11296 11297 -- Generating C code the type conversion of an access to constrained 11298 -- array type into an access to unconstrained array type involves 11299 -- initializing a fat pointer and the expression must be free of 11300 -- side effects to safely compute its bounds. 11301 11302 if Modify_Tree_For_C 11303 and then Is_Access_Type (Etype (Exp)) 11304 and then Is_Array_Type (Designated_Type (Etype (Exp))) 11305 and then not Is_Constrained (Designated_Type (Etype (Exp))) 11306 then 11307 Def_Id := Build_Temporary (Loc, 'R', Exp); 11308 Set_Etype (Def_Id, Exp_Type); 11309 Res := New_Occurrence_Of (Def_Id, Loc); 11310 11311 Insert_Action (Exp, 11312 Make_Object_Declaration (Loc, 11313 Defining_Identifier => Def_Id, 11314 Object_Definition => New_Occurrence_Of (Exp_Type, Loc), 11315 Constant_Present => True, 11316 Expression => Relocate_Node (Exp))); 11317 else 11318 goto Leave; 11319 end if; 11320 11321 -- If this is an unchecked conversion that Gigi can't handle, make 11322 -- a copy or a use a renaming to capture the value. 11323 11324 elsif Nkind (Exp) = N_Unchecked_Type_Conversion 11325 and then not Safe_Unchecked_Type_Conversion (Exp) 11326 then 11327 if CW_Or_Has_Controlled_Part (Exp_Type) then 11328 11329 -- Use a renaming to capture the expression, rather than create 11330 -- a controlled temporary. 11331 11332 Def_Id := Build_Temporary (Loc, 'R', Exp); 11333 Res := New_Occurrence_Of (Def_Id, Loc); 11334 11335 Insert_Action (Exp, 11336 Make_Object_Renaming_Declaration (Loc, 11337 Defining_Identifier => Def_Id, 11338 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc), 11339 Name => Relocate_Node (Exp))); 11340 11341 else 11342 Def_Id := Build_Temporary (Loc, 'R', Exp); 11343 Set_Etype (Def_Id, Exp_Type); 11344 Res := New_Occurrence_Of (Def_Id, Loc); 11345 11346 E := 11347 Make_Object_Declaration (Loc, 11348 Defining_Identifier => Def_Id, 11349 Object_Definition => New_Occurrence_Of (Exp_Type, Loc), 11350 Constant_Present => not Is_Variable (Exp), 11351 Expression => Relocate_Node (Exp)); 11352 11353 Set_Assignment_OK (E); 11354 Insert_Action (Exp, E); 11355 end if; 11356 11357 -- For expressions that denote names, we can use a renaming scheme. 11358 -- This is needed for correctness in the case of a volatile object of 11359 -- a non-volatile type because the Make_Reference call of the "default" 11360 -- approach would generate an illegal access value (an access value 11361 -- cannot designate such an object - see Analyze_Reference). 11362 11363 elsif Is_Name_Reference (Exp) 11364 11365 -- We skip using this scheme if we have an object of a volatile 11366 -- type and we do not have Name_Req set true (see comments for 11367 -- Side_Effect_Free). 11368 11369 and then (Name_Req or else not Treat_As_Volatile (Exp_Type)) 11370 then 11371 Def_Id := Build_Temporary (Loc, 'R', Exp); 11372 Res := New_Occurrence_Of (Def_Id, Loc); 11373 11374 Insert_Action (Exp, 11375 Make_Object_Renaming_Declaration (Loc, 11376 Defining_Identifier => Def_Id, 11377 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc), 11378 Name => Relocate_Node (Exp))); 11379 11380 -- If this is a packed reference, or a selected component with 11381 -- a non-standard representation, a reference to the temporary 11382 -- will be replaced by a copy of the original expression (see 11383 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be 11384 -- elaborated by gigi, and is of course not to be replaced in-line 11385 -- by the expression it renames, which would defeat the purpose of 11386 -- removing the side effect. 11387 11388 if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component) 11389 and then Has_Non_Standard_Rep (Etype (Prefix (Exp))) 11390 then 11391 null; 11392 else 11393 Set_Is_Renaming_Of_Object (Def_Id, False); 11394 end if; 11395 11396 -- Avoid generating a variable-sized temporary, by generating the 11397 -- reference just for the function call. The transformation could be 11398 -- refined to apply only when the array component is constrained by a 11399 -- discriminant??? 11400 11401 elsif Nkind (Exp) = N_Selected_Component 11402 and then Nkind (Prefix (Exp)) = N_Function_Call 11403 and then Is_Array_Type (Exp_Type) 11404 then 11405 Remove_Side_Effects (Prefix (Exp), Name_Req, Variable_Ref); 11406 goto Leave; 11407 11408 -- Otherwise we generate a reference to the expression 11409 11410 else 11411 -- An expression which is in SPARK mode is considered side effect 11412 -- free if the resulting value is captured by a variable or a 11413 -- constant. 11414 11415 if GNATprove_Mode 11416 and then Nkind (Parent (Exp)) = N_Object_Declaration 11417 then 11418 goto Leave; 11419 11420 -- When generating C code we cannot consider side effect free object 11421 -- declarations that have discriminants and are initialized by means 11422 -- of a function call since on this target there is no secondary 11423 -- stack to store the return value and the expander may generate an 11424 -- extra call to the function to compute the discriminant value. In 11425 -- addition, for targets that have secondary stack, the expansion of 11426 -- functions with side effects involves the generation of an access 11427 -- type to capture the return value stored in the secondary stack; 11428 -- by contrast when generating C code such expansion generates an 11429 -- internal object declaration (no access type involved) which must 11430 -- be identified here to avoid entering into a never-ending loop 11431 -- generating internal object declarations. 11432 11433 elsif Modify_Tree_For_C 11434 and then Nkind (Parent (Exp)) = N_Object_Declaration 11435 and then 11436 (Nkind (Exp) /= N_Function_Call 11437 or else not Has_Discriminants (Exp_Type) 11438 or else Is_Internal_Name 11439 (Chars (Defining_Identifier (Parent (Exp))))) 11440 then 11441 goto Leave; 11442 end if; 11443 11444 -- Special processing for function calls that return a limited type. 11445 -- We need to build a declaration that will enable build-in-place 11446 -- expansion of the call. This is not done if the context is already 11447 -- an object declaration, to prevent infinite recursion. 11448 11449 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have 11450 -- to accommodate functions returning limited objects by reference. 11451 11452 if Ada_Version >= Ada_2005 11453 and then Nkind (Exp) = N_Function_Call 11454 and then Is_Limited_View (Etype (Exp)) 11455 and then Nkind (Parent (Exp)) /= N_Object_Declaration 11456 then 11457 declare 11458 Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp); 11459 Decl : Node_Id; 11460 11461 begin 11462 Decl := 11463 Make_Object_Declaration (Loc, 11464 Defining_Identifier => Obj, 11465 Object_Definition => New_Occurrence_Of (Exp_Type, Loc), 11466 Expression => Relocate_Node (Exp)); 11467 11468 Insert_Action (Exp, Decl); 11469 Set_Etype (Obj, Exp_Type); 11470 Rewrite (Exp, New_Occurrence_Of (Obj, Loc)); 11471 goto Leave; 11472 end; 11473 end if; 11474 11475 Def_Id := Build_Temporary (Loc, 'R', Exp); 11476 11477 -- The regular expansion of functions with side effects involves the 11478 -- generation of an access type to capture the return value found on 11479 -- the secondary stack. Since SPARK (and why) cannot process access 11480 -- types, use a different approach which ignores the secondary stack 11481 -- and "copies" the returned object. 11482 -- When generating C code, no need for a 'reference since the 11483 -- secondary stack is not supported. 11484 11485 if GNATprove_Mode or Modify_Tree_For_C then 11486 Res := New_Occurrence_Of (Def_Id, Loc); 11487 Ref_Type := Exp_Type; 11488 11489 -- Regular expansion utilizing an access type and 'reference 11490 11491 else 11492 Res := 11493 Make_Explicit_Dereference (Loc, 11494 Prefix => New_Occurrence_Of (Def_Id, Loc)); 11495 11496 -- Generate: 11497 -- type Ann is access all <Exp_Type>; 11498 11499 Ref_Type := Make_Temporary (Loc, 'A'); 11500 11501 Ptr_Typ_Decl := 11502 Make_Full_Type_Declaration (Loc, 11503 Defining_Identifier => Ref_Type, 11504 Type_Definition => 11505 Make_Access_To_Object_Definition (Loc, 11506 All_Present => True, 11507 Subtype_Indication => 11508 New_Occurrence_Of (Exp_Type, Loc))); 11509 11510 Insert_Action (Exp, Ptr_Typ_Decl); 11511 end if; 11512 11513 E := Exp; 11514 if Nkind (E) = N_Explicit_Dereference then 11515 New_Exp := Relocate_Node (Prefix (E)); 11516 11517 else 11518 E := Relocate_Node (E); 11519 11520 -- Do not generate a 'reference in SPARK mode or C generation 11521 -- since the access type is not created in the first place. 11522 11523 if GNATprove_Mode or Modify_Tree_For_C then 11524 New_Exp := E; 11525 11526 -- Otherwise generate reference, marking the value as non-null 11527 -- since we know it cannot be null and we don't want a check. 11528 11529 else 11530 New_Exp := Make_Reference (Loc, E); 11531 Set_Is_Known_Non_Null (Def_Id); 11532 end if; 11533 end if; 11534 11535 if Is_Delayed_Aggregate (E) then 11536 11537 -- The expansion of nested aggregates is delayed until the 11538 -- enclosing aggregate is expanded. As aggregates are often 11539 -- qualified, the predicate applies to qualified expressions as 11540 -- well, indicating that the enclosing aggregate has not been 11541 -- expanded yet. At this point the aggregate is part of a 11542 -- stand-alone declaration, and must be fully expanded. 11543 11544 if Nkind (E) = N_Qualified_Expression then 11545 Set_Expansion_Delayed (Expression (E), False); 11546 Set_Analyzed (Expression (E), False); 11547 else 11548 Set_Expansion_Delayed (E, False); 11549 end if; 11550 11551 Set_Analyzed (E, False); 11552 end if; 11553 11554 -- Generating C code of object declarations that have discriminants 11555 -- and are initialized by means of a function call we propagate the 11556 -- discriminants of the parent type to the internally built object. 11557 -- This is needed to avoid generating an extra call to the called 11558 -- function. 11559 11560 -- For example, if we generate here the following declaration, it 11561 -- will be expanded later adding an extra call to evaluate the value 11562 -- of the discriminant (needed to compute the size of the object). 11563 -- 11564 -- type Rec (D : Integer) is ... 11565 -- Obj : constant Rec := SomeFunc; 11566 11567 if Modify_Tree_For_C 11568 and then Nkind (Parent (Exp)) = N_Object_Declaration 11569 and then Has_Discriminants (Exp_Type) 11570 and then Nkind (Exp) = N_Function_Call 11571 then 11572 Insert_Action (Exp, 11573 Make_Object_Declaration (Loc, 11574 Defining_Identifier => Def_Id, 11575 Object_Definition => New_Copy_Tree 11576 (Object_Definition (Parent (Exp))), 11577 Constant_Present => True, 11578 Expression => New_Exp)); 11579 else 11580 Insert_Action (Exp, 11581 Make_Object_Declaration (Loc, 11582 Defining_Identifier => Def_Id, 11583 Object_Definition => New_Occurrence_Of (Ref_Type, Loc), 11584 Constant_Present => True, 11585 Expression => New_Exp)); 11586 end if; 11587 end if; 11588 11589 -- Preserve the Assignment_OK flag in all copies, since at least one 11590 -- copy may be used in a context where this flag must be set (otherwise 11591 -- why would the flag be set in the first place). 11592 11593 Set_Assignment_OK (Res, Assignment_OK (Exp)); 11594 11595 -- Finally rewrite the original expression and we are done 11596 11597 Rewrite (Exp, Res); 11598 Analyze_And_Resolve (Exp, Exp_Type); 11599 11600 <<Leave>> 11601 Scope_Suppress := Svg_Suppress; 11602 end Remove_Side_Effects; 11603 11604 ------------------------ 11605 -- Replace_References -- 11606 ------------------------ 11607 11608 procedure Replace_References 11609 (Expr : Node_Id; 11610 Par_Typ : Entity_Id; 11611 Deriv_Typ : Entity_Id; 11612 Par_Obj : Entity_Id := Empty; 11613 Deriv_Obj : Entity_Id := Empty) 11614 is 11615 function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean; 11616 -- Determine whether node Ref denotes some component of Deriv_Obj 11617 11618 function Replace_Ref (Ref : Node_Id) return Traverse_Result; 11619 -- Substitute a reference to an entity with the corresponding value 11620 -- stored in table Type_Map. 11621 11622 function Type_Of_Formal 11623 (Call : Node_Id; 11624 Actual : Node_Id) return Entity_Id; 11625 -- Find the type of the formal parameter which corresponds to actual 11626 -- parameter Actual in subprogram call Call. 11627 11628 ---------------------- 11629 -- Is_Deriv_Obj_Ref -- 11630 ---------------------- 11631 11632 function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean is 11633 Par : constant Node_Id := Parent (Ref); 11634 11635 begin 11636 -- Detect the folowing selected component form: 11637 11638 -- Deriv_Obj.(something) 11639 11640 return 11641 Nkind (Par) = N_Selected_Component 11642 and then Is_Entity_Name (Prefix (Par)) 11643 and then Entity (Prefix (Par)) = Deriv_Obj; 11644 end Is_Deriv_Obj_Ref; 11645 11646 ----------------- 11647 -- Replace_Ref -- 11648 ----------------- 11649 11650 function Replace_Ref (Ref : Node_Id) return Traverse_Result is 11651 procedure Remove_Controlling_Arguments (From_Arg : Node_Id); 11652 -- Reset the Controlling_Argument of all function calls that 11653 -- encapsulate node From_Arg. 11654 11655 ---------------------------------- 11656 -- Remove_Controlling_Arguments -- 11657 ---------------------------------- 11658 11659 procedure Remove_Controlling_Arguments (From_Arg : Node_Id) is 11660 Par : Node_Id; 11661 11662 begin 11663 Par := From_Arg; 11664 while Present (Par) loop 11665 if Nkind (Par) = N_Function_Call 11666 and then Present (Controlling_Argument (Par)) 11667 then 11668 Set_Controlling_Argument (Par, Empty); 11669 11670 -- Prevent the search from going too far 11671 11672 elsif Is_Body_Or_Package_Declaration (Par) then 11673 exit; 11674 end if; 11675 11676 Par := Parent (Par); 11677 end loop; 11678 end Remove_Controlling_Arguments; 11679 11680 -- Local variables 11681 11682 Context : constant Node_Id := Parent (Ref); 11683 Loc : constant Source_Ptr := Sloc (Ref); 11684 Ref_Id : Entity_Id; 11685 Result : Traverse_Result; 11686 11687 New_Ref : Node_Id; 11688 -- The new reference which is intended to substitute the old one 11689 11690 Old_Ref : Node_Id; 11691 -- The reference designated for replacement. In certain cases this 11692 -- may be a node other than Ref. 11693 11694 Val : Node_Or_Entity_Id; 11695 -- The corresponding value of Ref from the type map 11696 11697 -- Start of processing for Replace_Ref 11698 11699 begin 11700 -- Assume that the input reference is to be replaced and that the 11701 -- traversal should examine the children of the reference. 11702 11703 Old_Ref := Ref; 11704 Result := OK; 11705 11706 -- The input denotes a meaningful reference 11707 11708 if Nkind (Ref) in N_Has_Entity and then Present (Entity (Ref)) then 11709 Ref_Id := Entity (Ref); 11710 Val := Type_Map.Get (Ref_Id); 11711 11712 -- The reference has a corresponding value in the type map, a 11713 -- substitution is possible. 11714 11715 if Present (Val) then 11716 11717 -- The reference denotes a discriminant 11718 11719 if Ekind (Ref_Id) = E_Discriminant then 11720 if Nkind (Val) in N_Entity then 11721 11722 -- The value denotes another discriminant. Replace as 11723 -- follows: 11724 11725 -- _object.Discr -> _object.Val 11726 11727 if Ekind (Val) = E_Discriminant then 11728 New_Ref := New_Occurrence_Of (Val, Loc); 11729 11730 -- Otherwise the value denotes the entity of a name which 11731 -- constraints the discriminant. Replace as follows: 11732 11733 -- _object.Discr -> Val 11734 11735 else 11736 pragma Assert (Is_Deriv_Obj_Ref (Old_Ref)); 11737 11738 New_Ref := New_Occurrence_Of (Val, Loc); 11739 Old_Ref := Parent (Old_Ref); 11740 end if; 11741 11742 -- Otherwise the value denotes an arbitrary expression which 11743 -- constraints the discriminant. Replace as follows: 11744 11745 -- _object.Discr -> Val 11746 11747 else 11748 pragma Assert (Is_Deriv_Obj_Ref (Old_Ref)); 11749 11750 New_Ref := New_Copy_Tree (Val); 11751 Old_Ref := Parent (Old_Ref); 11752 end if; 11753 11754 -- Otherwise the reference denotes a primitive. Replace as 11755 -- follows: 11756 11757 -- Primitive -> Val 11758 11759 else 11760 pragma Assert (Nkind (Val) in N_Entity); 11761 New_Ref := New_Occurrence_Of (Val, Loc); 11762 end if; 11763 11764 -- The reference mentions the _object parameter of the parent 11765 -- type's DIC or type invariant procedure. Replace as follows: 11766 11767 -- _object -> _object 11768 11769 elsif Present (Par_Obj) 11770 and then Present (Deriv_Obj) 11771 and then Ref_Id = Par_Obj 11772 then 11773 New_Ref := New_Occurrence_Of (Deriv_Obj, Loc); 11774 11775 -- The type of the _object parameter is class-wide when the 11776 -- expression comes from an assertion pragma that applies to 11777 -- an abstract parent type or an interface. The class-wide type 11778 -- facilitates the preanalysis of the expression by treating 11779 -- calls to abstract primitives that mention the current 11780 -- instance of the type as dispatching. Once the calls are 11781 -- remapped to invoke overriding or inherited primitives, the 11782 -- calls no longer need to be dispatching. Examine all function 11783 -- calls that encapsulate the _object parameter and reset their 11784 -- Controlling_Argument attribute. 11785 11786 if Is_Class_Wide_Type (Etype (Par_Obj)) 11787 and then Is_Abstract_Type (Root_Type (Etype (Par_Obj))) 11788 then 11789 Remove_Controlling_Arguments (Old_Ref); 11790 end if; 11791 11792 -- The reference to _object acts as an actual parameter in a 11793 -- subprogram call which may be invoking a primitive of the 11794 -- parent type: 11795 11796 -- Primitive (... _object ...); 11797 11798 -- The parent type primitive may not be overridden nor 11799 -- inherited when it is declared after the derived type 11800 -- definition: 11801 11802 -- type Parent is tagged private; 11803 -- type Child is new Parent with private; 11804 -- procedure Primitive (Obj : Parent); 11805 11806 -- In this scenario the _object parameter is converted to the 11807 -- parent type. Due to complications with partial/full views 11808 -- and view swaps, the parent type is taken from the formal 11809 -- parameter of the subprogram being called. 11810 11811 if Nkind_In (Context, N_Function_Call, 11812 N_Procedure_Call_Statement) 11813 and then No (Type_Map.Get (Entity (Name (Context)))) 11814 then 11815 New_Ref := 11816 Convert_To (Type_Of_Formal (Context, Old_Ref), New_Ref); 11817 11818 -- Do not process the generated type conversion because 11819 -- both the parent type and the derived type are in the 11820 -- Type_Map table. This will clobber the type conversion 11821 -- by resetting its subtype mark. 11822 11823 Result := Skip; 11824 end if; 11825 11826 -- Otherwise there is nothing to replace 11827 11828 else 11829 New_Ref := Empty; 11830 end if; 11831 11832 if Present (New_Ref) then 11833 Rewrite (Old_Ref, New_Ref); 11834 11835 -- Update the return type when the context of the reference 11836 -- acts as the name of a function call. Note that the update 11837 -- should not be performed when the reference appears as an 11838 -- actual in the call. 11839 11840 if Nkind (Context) = N_Function_Call 11841 and then Name (Context) = Old_Ref 11842 then 11843 Set_Etype (Context, Etype (Val)); 11844 end if; 11845 end if; 11846 end if; 11847 11848 -- Reanalyze the reference due to potential replacements 11849 11850 if Nkind (Old_Ref) in N_Has_Etype then 11851 Set_Analyzed (Old_Ref, False); 11852 end if; 11853 11854 return Result; 11855 end Replace_Ref; 11856 11857 procedure Replace_Refs is new Traverse_Proc (Replace_Ref); 11858 11859 -------------------- 11860 -- Type_Of_Formal -- 11861 -------------------- 11862 11863 function Type_Of_Formal 11864 (Call : Node_Id; 11865 Actual : Node_Id) return Entity_Id 11866 is 11867 A : Node_Id; 11868 F : Entity_Id; 11869 11870 begin 11871 -- Examine the list of actual and formal parameters in parallel 11872 11873 A := First (Parameter_Associations (Call)); 11874 F := First_Formal (Entity (Name (Call))); 11875 while Present (A) and then Present (F) loop 11876 if A = Actual then 11877 return Etype (F); 11878 end if; 11879 11880 Next (A); 11881 Next_Formal (F); 11882 end loop; 11883 11884 -- The actual parameter must always have a corresponding formal 11885 11886 pragma Assert (False); 11887 11888 return Empty; 11889 end Type_Of_Formal; 11890 11891 -- Start of processing for Replace_References 11892 11893 begin 11894 -- Map the attributes of the parent type to the proper corresponding 11895 -- attributes of the derived type. 11896 11897 Map_Types 11898 (Parent_Type => Par_Typ, 11899 Derived_Type => Deriv_Typ); 11900 11901 -- Inspect the input expression and perform substitutions where 11902 -- necessary. 11903 11904 Replace_Refs (Expr); 11905 end Replace_References; 11906 11907 ----------------------------- 11908 -- Replace_Type_References -- 11909 ----------------------------- 11910 11911 procedure Replace_Type_References 11912 (Expr : Node_Id; 11913 Typ : Entity_Id; 11914 Obj_Id : Entity_Id) 11915 is 11916 procedure Replace_Type_Ref (N : Node_Id); 11917 -- Substitute a single reference of the current instance of type Typ 11918 -- with a reference to Obj_Id. 11919 11920 ---------------------- 11921 -- Replace_Type_Ref -- 11922 ---------------------- 11923 11924 procedure Replace_Type_Ref (N : Node_Id) is 11925 begin 11926 -- Decorate the reference to Typ even though it may be rewritten 11927 -- further down. This is done for two reasons: 11928 11929 -- * ASIS has all necessary semantic information in the original 11930 -- tree. 11931 11932 -- * Routines which examine properties of the Original_Node have 11933 -- some semantic information. 11934 11935 if Nkind (N) = N_Identifier then 11936 Set_Entity (N, Typ); 11937 Set_Etype (N, Typ); 11938 11939 elsif Nkind (N) = N_Selected_Component then 11940 Analyze (Prefix (N)); 11941 Set_Entity (Selector_Name (N), Typ); 11942 Set_Etype (Selector_Name (N), Typ); 11943 end if; 11944 11945 -- Perform the following substitution: 11946 11947 -- Typ --> _object 11948 11949 Rewrite (N, New_Occurrence_Of (Obj_Id, Sloc (N))); 11950 Set_Comes_From_Source (N, True); 11951 end Replace_Type_Ref; 11952 11953 procedure Replace_Type_Refs is 11954 new Replace_Type_References_Generic (Replace_Type_Ref); 11955 11956 -- Start of processing for Replace_Type_References 11957 11958 begin 11959 Replace_Type_Refs (Expr, Typ); 11960 end Replace_Type_References; 11961 11962 --------------------------- 11963 -- Represented_As_Scalar -- 11964 --------------------------- 11965 11966 function Represented_As_Scalar (T : Entity_Id) return Boolean is 11967 UT : constant Entity_Id := Underlying_Type (T); 11968 begin 11969 return Is_Scalar_Type (UT) 11970 or else (Is_Bit_Packed_Array (UT) 11971 and then Is_Scalar_Type (Packed_Array_Impl_Type (UT))); 11972 end Represented_As_Scalar; 11973 11974 ------------------------------ 11975 -- Requires_Cleanup_Actions -- 11976 ------------------------------ 11977 11978 function Requires_Cleanup_Actions 11979 (N : Node_Id; 11980 Lib_Level : Boolean) return Boolean 11981 is 11982 At_Lib_Level : constant Boolean := 11983 Lib_Level 11984 and then Nkind_In (N, N_Package_Body, 11985 N_Package_Specification); 11986 -- N is at the library level if the top-most context is a package and 11987 -- the path taken to reach N does not inlcude non-package constructs. 11988 11989 begin 11990 case Nkind (N) is 11991 when N_Accept_Statement 11992 | N_Block_Statement 11993 | N_Entry_Body 11994 | N_Package_Body 11995 | N_Protected_Body 11996 | N_Subprogram_Body 11997 | N_Task_Body 11998 => 11999 return 12000 Requires_Cleanup_Actions 12001 (L => Declarations (N), 12002 Lib_Level => At_Lib_Level, 12003 Nested_Constructs => True) 12004 or else 12005 (Present (Handled_Statement_Sequence (N)) 12006 and then 12007 Requires_Cleanup_Actions 12008 (L => 12009 Statements (Handled_Statement_Sequence (N)), 12010 Lib_Level => At_Lib_Level, 12011 Nested_Constructs => True)); 12012 12013 -- Extended return statements are the same as the above, except that 12014 -- there is no Declarations field. We do not want to clean up the 12015 -- Return_Object_Declarations. 12016 12017 when N_Extended_Return_Statement => 12018 return 12019 Present (Handled_Statement_Sequence (N)) 12020 and then Requires_Cleanup_Actions 12021 (L => 12022 Statements (Handled_Statement_Sequence (N)), 12023 Lib_Level => At_Lib_Level, 12024 Nested_Constructs => True); 12025 12026 when N_Package_Specification => 12027 return 12028 Requires_Cleanup_Actions 12029 (L => Visible_Declarations (N), 12030 Lib_Level => At_Lib_Level, 12031 Nested_Constructs => True) 12032 or else 12033 Requires_Cleanup_Actions 12034 (L => Private_Declarations (N), 12035 Lib_Level => At_Lib_Level, 12036 Nested_Constructs => True); 12037 12038 when others => 12039 raise Program_Error; 12040 end case; 12041 end Requires_Cleanup_Actions; 12042 12043 ------------------------------ 12044 -- Requires_Cleanup_Actions -- 12045 ------------------------------ 12046 12047 function Requires_Cleanup_Actions 12048 (L : List_Id; 12049 Lib_Level : Boolean; 12050 Nested_Constructs : Boolean) return Boolean 12051 is 12052 Decl : Node_Id; 12053 Expr : Node_Id; 12054 Obj_Id : Entity_Id; 12055 Obj_Typ : Entity_Id; 12056 Pack_Id : Entity_Id; 12057 Typ : Entity_Id; 12058 12059 begin 12060 if No (L) 12061 or else Is_Empty_List (L) 12062 then 12063 return False; 12064 end if; 12065 12066 Decl := First (L); 12067 while Present (Decl) loop 12068 12069 -- Library-level tagged types 12070 12071 if Nkind (Decl) = N_Full_Type_Declaration then 12072 Typ := Defining_Identifier (Decl); 12073 12074 -- Ignored Ghost types do not need any cleanup actions because 12075 -- they will not appear in the final tree. 12076 12077 if Is_Ignored_Ghost_Entity (Typ) then 12078 null; 12079 12080 elsif Is_Tagged_Type (Typ) 12081 and then Is_Library_Level_Entity (Typ) 12082 and then Convention (Typ) = Convention_Ada 12083 and then Present (Access_Disp_Table (Typ)) 12084 and then RTE_Available (RE_Unregister_Tag) 12085 and then not Is_Abstract_Type (Typ) 12086 and then not No_Run_Time_Mode 12087 then 12088 return True; 12089 end if; 12090 12091 -- Regular object declarations 12092 12093 elsif Nkind (Decl) = N_Object_Declaration then 12094 Obj_Id := Defining_Identifier (Decl); 12095 Obj_Typ := Base_Type (Etype (Obj_Id)); 12096 Expr := Expression (Decl); 12097 12098 -- Bypass any form of processing for objects which have their 12099 -- finalization disabled. This applies only to objects at the 12100 -- library level. 12101 12102 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then 12103 null; 12104 12105 -- Finalization of transient objects are treated separately in 12106 -- order to handle sensitive cases. These include: 12107 12108 -- * Aggregate expansion 12109 -- * If, case, and expression with actions expansion 12110 -- * Transient scopes 12111 12112 -- If one of those contexts has marked the transient object as 12113 -- ignored, do not generate finalization actions for it. 12114 12115 elsif Is_Finalized_Transient (Obj_Id) 12116 or else Is_Ignored_Transient (Obj_Id) 12117 then 12118 null; 12119 12120 -- Ignored Ghost objects do not need any cleanup actions because 12121 -- they will not appear in the final tree. 12122 12123 elsif Is_Ignored_Ghost_Entity (Obj_Id) then 12124 null; 12125 12126 -- The object is of the form: 12127 -- Obj : [constant] Typ [:= Expr]; 12128 -- 12129 -- Do not process tag-to-class-wide conversions because they do 12130 -- not yield an object. Do not process the incomplete view of a 12131 -- deferred constant. Note that an object initialized by means 12132 -- of a build-in-place function call may appear as a deferred 12133 -- constant after expansion activities. These kinds of objects 12134 -- must be finalized. 12135 12136 elsif not Is_Imported (Obj_Id) 12137 and then Needs_Finalization (Obj_Typ) 12138 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id) 12139 and then not (Ekind (Obj_Id) = E_Constant 12140 and then not Has_Completion (Obj_Id) 12141 and then No (BIP_Initialization_Call (Obj_Id))) 12142 then 12143 return True; 12144 12145 -- The object is of the form: 12146 -- Obj : Access_Typ := Non_BIP_Function_Call'reference; 12147 -- 12148 -- Obj : Access_Typ := 12149 -- BIP_Function_Call (BIPalloc => 2, ...)'reference; 12150 12151 elsif Is_Access_Type (Obj_Typ) 12152 and then Needs_Finalization 12153 (Available_View (Designated_Type (Obj_Typ))) 12154 and then Present (Expr) 12155 and then 12156 (Is_Secondary_Stack_BIP_Func_Call (Expr) 12157 or else 12158 (Is_Non_BIP_Func_Call (Expr) 12159 and then not Is_Related_To_Func_Return (Obj_Id))) 12160 then 12161 return True; 12162 12163 -- Processing for "hook" objects generated for transient objects 12164 -- declared inside an Expression_With_Actions. 12165 12166 elsif Is_Access_Type (Obj_Typ) 12167 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id)) 12168 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) = 12169 N_Object_Declaration 12170 then 12171 return True; 12172 12173 -- Processing for intermediate results of if expressions where 12174 -- one of the alternatives uses a controlled function call. 12175 12176 elsif Is_Access_Type (Obj_Typ) 12177 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id)) 12178 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) = 12179 N_Defining_Identifier 12180 and then Present (Expr) 12181 and then Nkind (Expr) = N_Null 12182 then 12183 return True; 12184 12185 -- Simple protected objects which use type System.Tasking. 12186 -- Protected_Objects.Protection to manage their locks should be 12187 -- treated as controlled since they require manual cleanup. 12188 12189 elsif Ekind (Obj_Id) = E_Variable 12190 and then (Is_Simple_Protected_Type (Obj_Typ) 12191 or else Has_Simple_Protected_Object (Obj_Typ)) 12192 then 12193 return True; 12194 end if; 12195 12196 -- Specific cases of object renamings 12197 12198 elsif Nkind (Decl) = N_Object_Renaming_Declaration then 12199 Obj_Id := Defining_Identifier (Decl); 12200 Obj_Typ := Base_Type (Etype (Obj_Id)); 12201 12202 -- Bypass any form of processing for objects which have their 12203 -- finalization disabled. This applies only to objects at the 12204 -- library level. 12205 12206 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then 12207 null; 12208 12209 -- Ignored Ghost object renamings do not need any cleanup actions 12210 -- because they will not appear in the final tree. 12211 12212 elsif Is_Ignored_Ghost_Entity (Obj_Id) then 12213 null; 12214 12215 -- Return object of a build-in-place function. This case is 12216 -- recognized and marked by the expansion of an extended return 12217 -- statement (see Expand_N_Extended_Return_Statement). 12218 12219 elsif Needs_Finalization (Obj_Typ) 12220 and then Is_Return_Object (Obj_Id) 12221 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id)) 12222 then 12223 return True; 12224 12225 -- Detect a case where a source object has been initialized by 12226 -- a controlled function call or another object which was later 12227 -- rewritten as a class-wide conversion of Ada.Tags.Displace. 12228 12229 -- Obj1 : CW_Type := Src_Obj; 12230 -- Obj2 : CW_Type := Function_Call (...); 12231 12232 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj)); 12233 -- Tmp : ... := Function_Call (...)'reference; 12234 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp)); 12235 12236 elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then 12237 return True; 12238 end if; 12239 12240 -- Inspect the freeze node of an access-to-controlled type and look 12241 -- for a delayed finalization master. This case arises when the 12242 -- freeze actions are inserted at a later time than the expansion of 12243 -- the context. Since Build_Finalizer is never called on a single 12244 -- construct twice, the master will be ultimately left out and never 12245 -- finalized. This is also needed for freeze actions of designated 12246 -- types themselves, since in some cases the finalization master is 12247 -- associated with a designated type's freeze node rather than that 12248 -- of the access type (see handling for freeze actions in 12249 -- Build_Finalization_Master). 12250 12251 elsif Nkind (Decl) = N_Freeze_Entity 12252 and then Present (Actions (Decl)) 12253 then 12254 Typ := Entity (Decl); 12255 12256 -- Freeze nodes for ignored Ghost types do not need cleanup 12257 -- actions because they will never appear in the final tree. 12258 12259 if Is_Ignored_Ghost_Entity (Typ) then 12260 null; 12261 12262 elsif ((Is_Access_Type (Typ) 12263 and then not Is_Access_Subprogram_Type (Typ) 12264 and then Needs_Finalization 12265 (Available_View (Designated_Type (Typ)))) 12266 or else (Is_Type (Typ) and then Needs_Finalization (Typ))) 12267 and then Requires_Cleanup_Actions 12268 (Actions (Decl), Lib_Level, Nested_Constructs) 12269 then 12270 return True; 12271 end if; 12272 12273 -- Nested package declarations 12274 12275 elsif Nested_Constructs 12276 and then Nkind (Decl) = N_Package_Declaration 12277 then 12278 Pack_Id := Defining_Entity (Decl); 12279 12280 -- Do not inspect an ignored Ghost package because all code found 12281 -- within will not appear in the final tree. 12282 12283 if Is_Ignored_Ghost_Entity (Pack_Id) then 12284 null; 12285 12286 elsif Ekind (Pack_Id) /= E_Generic_Package 12287 and then Requires_Cleanup_Actions 12288 (Specification (Decl), Lib_Level) 12289 then 12290 return True; 12291 end if; 12292 12293 -- Nested package bodies 12294 12295 elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then 12296 12297 -- Do not inspect an ignored Ghost package body because all code 12298 -- found within will not appear in the final tree. 12299 12300 if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then 12301 null; 12302 12303 elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package 12304 and then Requires_Cleanup_Actions (Decl, Lib_Level) 12305 then 12306 return True; 12307 end if; 12308 12309 elsif Nkind (Decl) = N_Block_Statement 12310 and then 12311 12312 -- Handle a rare case caused by a controlled transient object 12313 -- created as part of a record init proc. The variable is wrapped 12314 -- in a block, but the block is not associated with a transient 12315 -- scope. 12316 12317 (Inside_Init_Proc 12318 12319 -- Handle the case where the original context has been wrapped in 12320 -- a block to avoid interference between exception handlers and 12321 -- At_End handlers. Treat the block as transparent and process its 12322 -- contents. 12323 12324 or else Is_Finalization_Wrapper (Decl)) 12325 then 12326 if Requires_Cleanup_Actions (Decl, Lib_Level) then 12327 return True; 12328 end if; 12329 end if; 12330 12331 Next (Decl); 12332 end loop; 12333 12334 return False; 12335 end Requires_Cleanup_Actions; 12336 12337 ------------------------------------ 12338 -- Safe_Unchecked_Type_Conversion -- 12339 ------------------------------------ 12340 12341 -- Note: this function knows quite a bit about the exact requirements of 12342 -- Gigi with respect to unchecked type conversions, and its code must be 12343 -- coordinated with any changes in Gigi in this area. 12344 12345 -- The above requirements should be documented in Sinfo ??? 12346 12347 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is 12348 Otyp : Entity_Id; 12349 Ityp : Entity_Id; 12350 Oalign : Uint; 12351 Ialign : Uint; 12352 Pexp : constant Node_Id := Parent (Exp); 12353 12354 begin 12355 -- If the expression is the RHS of an assignment or object declaration 12356 -- we are always OK because there will always be a target. 12357 12358 -- Object renaming declarations, (generated for view conversions of 12359 -- actuals in inlined calls), like object declarations, provide an 12360 -- explicit type, and are safe as well. 12361 12362 if (Nkind (Pexp) = N_Assignment_Statement 12363 and then Expression (Pexp) = Exp) 12364 or else Nkind_In (Pexp, N_Object_Declaration, 12365 N_Object_Renaming_Declaration) 12366 then 12367 return True; 12368 12369 -- If the expression is the prefix of an N_Selected_Component we should 12370 -- also be OK because GCC knows to look inside the conversion except if 12371 -- the type is discriminated. We assume that we are OK anyway if the 12372 -- type is not set yet or if it is controlled since we can't afford to 12373 -- introduce a temporary in this case. 12374 12375 elsif Nkind (Pexp) = N_Selected_Component 12376 and then Prefix (Pexp) = Exp 12377 then 12378 if No (Etype (Pexp)) then 12379 return True; 12380 else 12381 return 12382 not Has_Discriminants (Etype (Pexp)) 12383 or else Is_Constrained (Etype (Pexp)); 12384 end if; 12385 end if; 12386 12387 -- Set the output type, this comes from Etype if it is set, otherwise we 12388 -- take it from the subtype mark, which we assume was already fully 12389 -- analyzed. 12390 12391 if Present (Etype (Exp)) then 12392 Otyp := Etype (Exp); 12393 else 12394 Otyp := Entity (Subtype_Mark (Exp)); 12395 end if; 12396 12397 -- The input type always comes from the expression, and we assume this 12398 -- is indeed always analyzed, so we can simply get the Etype. 12399 12400 Ityp := Etype (Expression (Exp)); 12401 12402 -- Initialize alignments to unknown so far 12403 12404 Oalign := No_Uint; 12405 Ialign := No_Uint; 12406 12407 -- Replace a concurrent type by its corresponding record type and each 12408 -- type by its underlying type and do the tests on those. The original 12409 -- type may be a private type whose completion is a concurrent type, so 12410 -- find the underlying type first. 12411 12412 if Present (Underlying_Type (Otyp)) then 12413 Otyp := Underlying_Type (Otyp); 12414 end if; 12415 12416 if Present (Underlying_Type (Ityp)) then 12417 Ityp := Underlying_Type (Ityp); 12418 end if; 12419 12420 if Is_Concurrent_Type (Otyp) then 12421 Otyp := Corresponding_Record_Type (Otyp); 12422 end if; 12423 12424 if Is_Concurrent_Type (Ityp) then 12425 Ityp := Corresponding_Record_Type (Ityp); 12426 end if; 12427 12428 -- If the base types are the same, we know there is no problem since 12429 -- this conversion will be a noop. 12430 12431 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then 12432 return True; 12433 12434 -- Same if this is an upwards conversion of an untagged type, and there 12435 -- are no constraints involved (could be more general???) 12436 12437 elsif Etype (Ityp) = Otyp 12438 and then not Is_Tagged_Type (Ityp) 12439 and then not Has_Discriminants (Ityp) 12440 and then No (First_Rep_Item (Base_Type (Ityp))) 12441 then 12442 return True; 12443 12444 -- If the expression has an access type (object or subprogram) we assume 12445 -- that the conversion is safe, because the size of the target is safe, 12446 -- even if it is a record (which might be treated as having unknown size 12447 -- at this point). 12448 12449 elsif Is_Access_Type (Ityp) then 12450 return True; 12451 12452 -- If the size of output type is known at compile time, there is never 12453 -- a problem. Note that unconstrained records are considered to be of 12454 -- known size, but we can't consider them that way here, because we are 12455 -- talking about the actual size of the object. 12456 12457 -- We also make sure that in addition to the size being known, we do not 12458 -- have a case which might generate an embarrassingly large temp in 12459 -- stack checking mode. 12460 12461 elsif Size_Known_At_Compile_Time (Otyp) 12462 and then 12463 (not Stack_Checking_Enabled 12464 or else not May_Generate_Large_Temp (Otyp)) 12465 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp)) 12466 then 12467 return True; 12468 12469 -- If either type is tagged, then we know the alignment is OK so Gigi 12470 -- will be able to use pointer punning. 12471 12472 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then 12473 return True; 12474 12475 -- If either type is a limited record type, we cannot do a copy, so say 12476 -- safe since there's nothing else we can do. 12477 12478 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then 12479 return True; 12480 12481 -- Conversions to and from packed array types are always ignored and 12482 -- hence are safe. 12483 12484 elsif Is_Packed_Array_Impl_Type (Otyp) 12485 or else Is_Packed_Array_Impl_Type (Ityp) 12486 then 12487 return True; 12488 end if; 12489 12490 -- The only other cases known to be safe is if the input type's 12491 -- alignment is known to be at least the maximum alignment for the 12492 -- target or if both alignments are known and the output type's 12493 -- alignment is no stricter than the input's. We can use the component 12494 -- type alignment for an array if a type is an unpacked array type. 12495 12496 if Present (Alignment_Clause (Otyp)) then 12497 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp))); 12498 12499 elsif Is_Array_Type (Otyp) 12500 and then Present (Alignment_Clause (Component_Type (Otyp))) 12501 then 12502 Oalign := Expr_Value (Expression (Alignment_Clause 12503 (Component_Type (Otyp)))); 12504 end if; 12505 12506 if Present (Alignment_Clause (Ityp)) then 12507 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp))); 12508 12509 elsif Is_Array_Type (Ityp) 12510 and then Present (Alignment_Clause (Component_Type (Ityp))) 12511 then 12512 Ialign := Expr_Value (Expression (Alignment_Clause 12513 (Component_Type (Ityp)))); 12514 end if; 12515 12516 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then 12517 return True; 12518 12519 elsif Ialign /= No_Uint 12520 and then Oalign /= No_Uint 12521 and then Ialign <= Oalign 12522 then 12523 return True; 12524 12525 -- Otherwise, Gigi cannot handle this and we must make a temporary 12526 12527 else 12528 return False; 12529 end if; 12530 end Safe_Unchecked_Type_Conversion; 12531 12532 --------------------------------- 12533 -- Set_Current_Value_Condition -- 12534 --------------------------------- 12535 12536 -- Note: the implementation of this procedure is very closely tied to the 12537 -- implementation of Get_Current_Value_Condition. Here we set required 12538 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret 12539 -- them, so they must have a consistent view. 12540 12541 procedure Set_Current_Value_Condition (Cnode : Node_Id) is 12542 12543 procedure Set_Entity_Current_Value (N : Node_Id); 12544 -- If N is an entity reference, where the entity is of an appropriate 12545 -- kind, then set the current value of this entity to Cnode, unless 12546 -- there is already a definite value set there. 12547 12548 procedure Set_Expression_Current_Value (N : Node_Id); 12549 -- If N is of an appropriate form, sets an appropriate entry in current 12550 -- value fields of relevant entities. Multiple entities can be affected 12551 -- in the case of an AND or AND THEN. 12552 12553 ------------------------------ 12554 -- Set_Entity_Current_Value -- 12555 ------------------------------ 12556 12557 procedure Set_Entity_Current_Value (N : Node_Id) is 12558 begin 12559 if Is_Entity_Name (N) then 12560 declare 12561 Ent : constant Entity_Id := Entity (N); 12562 12563 begin 12564 -- Don't capture if not safe to do so 12565 12566 if not Safe_To_Capture_Value (N, Ent, Cond => True) then 12567 return; 12568 end if; 12569 12570 -- Here we have a case where the Current_Value field may need 12571 -- to be set. We set it if it is not already set to a compile 12572 -- time expression value. 12573 12574 -- Note that this represents a decision that one condition 12575 -- blots out another previous one. That's certainly right if 12576 -- they occur at the same level. If the second one is nested, 12577 -- then the decision is neither right nor wrong (it would be 12578 -- equally OK to leave the outer one in place, or take the new 12579 -- inner one. Really we should record both, but our data 12580 -- structures are not that elaborate. 12581 12582 if Nkind (Current_Value (Ent)) not in N_Subexpr then 12583 Set_Current_Value (Ent, Cnode); 12584 end if; 12585 end; 12586 end if; 12587 end Set_Entity_Current_Value; 12588 12589 ---------------------------------- 12590 -- Set_Expression_Current_Value -- 12591 ---------------------------------- 12592 12593 procedure Set_Expression_Current_Value (N : Node_Id) is 12594 Cond : Node_Id; 12595 12596 begin 12597 Cond := N; 12598 12599 -- Loop to deal with (ignore for now) any NOT operators present. The 12600 -- presence of NOT operators will be handled properly when we call 12601 -- Get_Current_Value_Condition. 12602 12603 while Nkind (Cond) = N_Op_Not loop 12604 Cond := Right_Opnd (Cond); 12605 end loop; 12606 12607 -- For an AND or AND THEN, recursively process operands 12608 12609 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then 12610 Set_Expression_Current_Value (Left_Opnd (Cond)); 12611 Set_Expression_Current_Value (Right_Opnd (Cond)); 12612 return; 12613 end if; 12614 12615 -- Check possible relational operator 12616 12617 if Nkind (Cond) in N_Op_Compare then 12618 if Compile_Time_Known_Value (Right_Opnd (Cond)) then 12619 Set_Entity_Current_Value (Left_Opnd (Cond)); 12620 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then 12621 Set_Entity_Current_Value (Right_Opnd (Cond)); 12622 end if; 12623 12624 elsif Nkind_In (Cond, 12625 N_Type_Conversion, 12626 N_Qualified_Expression, 12627 N_Expression_With_Actions) 12628 then 12629 Set_Expression_Current_Value (Expression (Cond)); 12630 12631 -- Check possible boolean variable reference 12632 12633 else 12634 Set_Entity_Current_Value (Cond); 12635 end if; 12636 end Set_Expression_Current_Value; 12637 12638 -- Start of processing for Set_Current_Value_Condition 12639 12640 begin 12641 Set_Expression_Current_Value (Condition (Cnode)); 12642 end Set_Current_Value_Condition; 12643 12644 -------------------------- 12645 -- Set_Elaboration_Flag -- 12646 -------------------------- 12647 12648 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is 12649 Loc : constant Source_Ptr := Sloc (N); 12650 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id); 12651 Asn : Node_Id; 12652 12653 begin 12654 if Present (Ent) then 12655 12656 -- Nothing to do if at the compilation unit level, because in this 12657 -- case the flag is set by the binder generated elaboration routine. 12658 12659 if Nkind (Parent (N)) = N_Compilation_Unit then 12660 null; 12661 12662 -- Here we do need to generate an assignment statement 12663 12664 else 12665 Check_Restriction (No_Elaboration_Code, N); 12666 12667 Asn := 12668 Make_Assignment_Statement (Loc, 12669 Name => New_Occurrence_Of (Ent, Loc), 12670 Expression => Make_Integer_Literal (Loc, Uint_1)); 12671 12672 -- Mark the assignment statement as elaboration code. This allows 12673 -- the early call region mechanism (see Sem_Elab) to properly 12674 -- ignore such assignments even though they are non-preelaborable 12675 -- code. 12676 12677 Set_Is_Elaboration_Code (Asn); 12678 12679 if Nkind (Parent (N)) = N_Subunit then 12680 Insert_After (Corresponding_Stub (Parent (N)), Asn); 12681 else 12682 Insert_After (N, Asn); 12683 end if; 12684 12685 Analyze (Asn); 12686 12687 -- Kill current value indication. This is necessary because the 12688 -- tests of this flag are inserted out of sequence and must not 12689 -- pick up bogus indications of the wrong constant value. 12690 12691 Set_Current_Value (Ent, Empty); 12692 12693 -- If the subprogram is in the current declarative part and 12694 -- 'access has been applied to it, generate an elaboration 12695 -- check at the beginning of the declarations of the body. 12696 12697 if Nkind (N) = N_Subprogram_Body 12698 and then Address_Taken (Spec_Id) 12699 and then 12700 Ekind_In (Scope (Spec_Id), E_Block, E_Procedure, E_Function) 12701 then 12702 declare 12703 Loc : constant Source_Ptr := Sloc (N); 12704 Decls : constant List_Id := Declarations (N); 12705 Chk : Node_Id; 12706 12707 begin 12708 -- No need to generate this check if first entry in the 12709 -- declaration list is a raise of Program_Error now. 12710 12711 if Present (Decls) 12712 and then Nkind (First (Decls)) = N_Raise_Program_Error 12713 then 12714 return; 12715 end if; 12716 12717 -- Otherwise generate the check 12718 12719 Chk := 12720 Make_Raise_Program_Error (Loc, 12721 Condition => 12722 Make_Op_Eq (Loc, 12723 Left_Opnd => New_Occurrence_Of (Ent, Loc), 12724 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)), 12725 Reason => PE_Access_Before_Elaboration); 12726 12727 if No (Decls) then 12728 Set_Declarations (N, New_List (Chk)); 12729 else 12730 Prepend (Chk, Decls); 12731 end if; 12732 12733 Analyze (Chk); 12734 end; 12735 end if; 12736 end if; 12737 end if; 12738 end Set_Elaboration_Flag; 12739 12740 ---------------------------- 12741 -- Set_Renamed_Subprogram -- 12742 ---------------------------- 12743 12744 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is 12745 begin 12746 -- If input node is an identifier, we can just reset it 12747 12748 if Nkind (N) = N_Identifier then 12749 Set_Chars (N, Chars (E)); 12750 Set_Entity (N, E); 12751 12752 -- Otherwise we have to do a rewrite, preserving Comes_From_Source 12753 12754 else 12755 declare 12756 CS : constant Boolean := Comes_From_Source (N); 12757 begin 12758 Rewrite (N, Make_Identifier (Sloc (N), Chars (E))); 12759 Set_Entity (N, E); 12760 Set_Comes_From_Source (N, CS); 12761 Set_Analyzed (N, True); 12762 end; 12763 end if; 12764 end Set_Renamed_Subprogram; 12765 12766 ---------------------- 12767 -- Side_Effect_Free -- 12768 ---------------------- 12769 12770 function Side_Effect_Free 12771 (N : Node_Id; 12772 Name_Req : Boolean := False; 12773 Variable_Ref : Boolean := False) return Boolean 12774 is 12775 Typ : constant Entity_Id := Etype (N); 12776 -- Result type of the expression 12777 12778 function Safe_Prefixed_Reference (N : Node_Id) return Boolean; 12779 -- The argument N is a construct where the Prefix is dereferenced if it 12780 -- is an access type and the result is a variable. The call returns True 12781 -- if the construct is side effect free (not considering side effects in 12782 -- other than the prefix which are to be tested by the caller). 12783 12784 function Within_In_Parameter (N : Node_Id) return Boolean; 12785 -- Determines if N is a subcomponent of a composite in-parameter. If so, 12786 -- N is not side-effect free when the actual is global and modifiable 12787 -- indirectly from within a subprogram, because it may be passed by 12788 -- reference. The front-end must be conservative here and assume that 12789 -- this may happen with any array or record type. On the other hand, we 12790 -- cannot create temporaries for all expressions for which this 12791 -- condition is true, for various reasons that might require clearing up 12792 -- ??? For example, discriminant references that appear out of place, or 12793 -- spurious type errors with class-wide expressions. As a result, we 12794 -- limit the transformation to loop bounds, which is so far the only 12795 -- case that requires it. 12796 12797 ----------------------------- 12798 -- Safe_Prefixed_Reference -- 12799 ----------------------------- 12800 12801 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is 12802 begin 12803 -- If prefix is not side effect free, definitely not safe 12804 12805 if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then 12806 return False; 12807 12808 -- If the prefix is of an access type that is not access-to-constant, 12809 -- then this construct is a variable reference, which means it is to 12810 -- be considered to have side effects if Variable_Ref is set True. 12811 12812 elsif Is_Access_Type (Etype (Prefix (N))) 12813 and then not Is_Access_Constant (Etype (Prefix (N))) 12814 and then Variable_Ref 12815 then 12816 -- Exception is a prefix that is the result of a previous removal 12817 -- of side effects. 12818 12819 return Is_Entity_Name (Prefix (N)) 12820 and then not Comes_From_Source (Prefix (N)) 12821 and then Ekind (Entity (Prefix (N))) = E_Constant 12822 and then Is_Internal_Name (Chars (Entity (Prefix (N)))); 12823 12824 -- If the prefix is an explicit dereference then this construct is a 12825 -- variable reference, which means it is to be considered to have 12826 -- side effects if Variable_Ref is True. 12827 12828 -- We do NOT exclude dereferences of access-to-constant types because 12829 -- we handle them as constant view of variables. 12830 12831 elsif Nkind (Prefix (N)) = N_Explicit_Dereference 12832 and then Variable_Ref 12833 then 12834 return False; 12835 12836 -- Note: The following test is the simplest way of solving a complex 12837 -- problem uncovered by the following test (Side effect on loop bound 12838 -- that is a subcomponent of a global variable: 12839 12840 -- with Text_Io; use Text_Io; 12841 -- procedure Tloop is 12842 -- type X is 12843 -- record 12844 -- V : Natural := 4; 12845 -- S : String (1..5) := (others => 'a'); 12846 -- end record; 12847 -- X1 : X; 12848 12849 -- procedure Modi; 12850 12851 -- generic 12852 -- with procedure Action; 12853 -- procedure Loop_G (Arg : X; Msg : String) 12854 12855 -- procedure Loop_G (Arg : X; Msg : String) is 12856 -- begin 12857 -- Put_Line ("begin loop_g " & Msg & " will loop till: " 12858 -- & Natural'Image (Arg.V)); 12859 -- for Index in 1 .. Arg.V loop 12860 -- Text_Io.Put_Line 12861 -- (Natural'Image (Index) & " " & Arg.S (Index)); 12862 -- if Index > 2 then 12863 -- Modi; 12864 -- end if; 12865 -- end loop; 12866 -- Put_Line ("end loop_g " & Msg); 12867 -- end; 12868 12869 -- procedure Loop1 is new Loop_G (Modi); 12870 -- procedure Modi is 12871 -- begin 12872 -- X1.V := 1; 12873 -- Loop1 (X1, "from modi"); 12874 -- end; 12875 -- 12876 -- begin 12877 -- Loop1 (X1, "initial"); 12878 -- end; 12879 12880 -- The output of the above program should be: 12881 12882 -- begin loop_g initial will loop till: 4 12883 -- 1 a 12884 -- 2 a 12885 -- 3 a 12886 -- begin loop_g from modi will loop till: 1 12887 -- 1 a 12888 -- end loop_g from modi 12889 -- 4 a 12890 -- begin loop_g from modi will loop till: 1 12891 -- 1 a 12892 -- end loop_g from modi 12893 -- end loop_g initial 12894 12895 -- If a loop bound is a subcomponent of a global variable, a 12896 -- modification of that variable within the loop may incorrectly 12897 -- affect the execution of the loop. 12898 12899 elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification 12900 and then Within_In_Parameter (Prefix (N)) 12901 and then Variable_Ref 12902 then 12903 return False; 12904 12905 -- All other cases are side effect free 12906 12907 else 12908 return True; 12909 end if; 12910 end Safe_Prefixed_Reference; 12911 12912 ------------------------- 12913 -- Within_In_Parameter -- 12914 ------------------------- 12915 12916 function Within_In_Parameter (N : Node_Id) return Boolean is 12917 begin 12918 if not Comes_From_Source (N) then 12919 return False; 12920 12921 elsif Is_Entity_Name (N) then 12922 return Ekind (Entity (N)) = E_In_Parameter; 12923 12924 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then 12925 return Within_In_Parameter (Prefix (N)); 12926 12927 else 12928 return False; 12929 end if; 12930 end Within_In_Parameter; 12931 12932 -- Start of processing for Side_Effect_Free 12933 12934 begin 12935 -- If volatile reference, always consider it to have side effects 12936 12937 if Is_Volatile_Reference (N) then 12938 return False; 12939 end if; 12940 12941 -- Note on checks that could raise Constraint_Error. Strictly, if we 12942 -- take advantage of 11.6, these checks do not count as side effects. 12943 -- However, we would prefer to consider that they are side effects, 12944 -- since the back end CSE does not work very well on expressions which 12945 -- can raise Constraint_Error. On the other hand if we don't consider 12946 -- them to be side effect free, then we get some awkward expansions 12947 -- in -gnato mode, resulting in code insertions at a point where we 12948 -- do not have a clear model for performing the insertions. 12949 12950 -- Special handling for entity names 12951 12952 if Is_Entity_Name (N) then 12953 12954 -- A type reference is always side effect free 12955 12956 if Is_Type (Entity (N)) then 12957 return True; 12958 12959 -- Variables are considered to be a side effect if Variable_Ref 12960 -- is set or if we have a volatile reference and Name_Req is off. 12961 -- If Name_Req is True then we can't help returning a name which 12962 -- effectively allows multiple references in any case. 12963 12964 elsif Is_Variable (N, Use_Original_Node => False) then 12965 return not Variable_Ref 12966 and then (not Is_Volatile_Reference (N) or else Name_Req); 12967 12968 -- Any other entity (e.g. a subtype name) is definitely side 12969 -- effect free. 12970 12971 else 12972 return True; 12973 end if; 12974 12975 -- A value known at compile time is always side effect free 12976 12977 elsif Compile_Time_Known_Value (N) then 12978 return True; 12979 12980 -- A variable renaming is not side-effect free, because the renaming 12981 -- will function like a macro in the front-end in some cases, and an 12982 -- assignment can modify the component designated by N, so we need to 12983 -- create a temporary for it. 12984 12985 -- The guard testing for Entity being present is needed at least in 12986 -- the case of rewritten predicate expressions, and may well also be 12987 -- appropriate elsewhere. Obviously we can't go testing the entity 12988 -- field if it does not exist, so it's reasonable to say that this is 12989 -- not the renaming case if it does not exist. 12990 12991 elsif Is_Entity_Name (Original_Node (N)) 12992 and then Present (Entity (Original_Node (N))) 12993 and then Is_Renaming_Of_Object (Entity (Original_Node (N))) 12994 and then Ekind (Entity (Original_Node (N))) /= E_Constant 12995 then 12996 declare 12997 RO : constant Node_Id := 12998 Renamed_Object (Entity (Original_Node (N))); 12999 13000 begin 13001 -- If the renamed object is an indexed component, or an 13002 -- explicit dereference, then the designated object could 13003 -- be modified by an assignment. 13004 13005 if Nkind_In (RO, N_Indexed_Component, 13006 N_Explicit_Dereference) 13007 then 13008 return False; 13009 13010 -- A selected component must have a safe prefix 13011 13012 elsif Nkind (RO) = N_Selected_Component then 13013 return Safe_Prefixed_Reference (RO); 13014 13015 -- In all other cases, designated object cannot be changed so 13016 -- we are side effect free. 13017 13018 else 13019 return True; 13020 end if; 13021 end; 13022 13023 -- Remove_Side_Effects generates an object renaming declaration to 13024 -- capture the expression of a class-wide expression. In VM targets 13025 -- the frontend performs no expansion for dispatching calls to 13026 -- class- wide types since they are handled by the VM. Hence, we must 13027 -- locate here if this node corresponds to a previous invocation of 13028 -- Remove_Side_Effects to avoid a never ending loop in the frontend. 13029 13030 elsif not Tagged_Type_Expansion 13031 and then not Comes_From_Source (N) 13032 and then Nkind (Parent (N)) = N_Object_Renaming_Declaration 13033 and then Is_Class_Wide_Type (Typ) 13034 then 13035 return True; 13036 13037 -- Generating C the type conversion of an access to constrained array 13038 -- type into an access to unconstrained array type involves initializing 13039 -- a fat pointer and the expression cannot be assumed to be free of side 13040 -- effects since it must referenced several times to compute its bounds. 13041 13042 elsif Modify_Tree_For_C 13043 and then Nkind (N) = N_Type_Conversion 13044 and then Is_Access_Type (Typ) 13045 and then Is_Array_Type (Designated_Type (Typ)) 13046 and then not Is_Constrained (Designated_Type (Typ)) 13047 then 13048 return False; 13049 end if; 13050 13051 -- For other than entity names and compile time known values, 13052 -- check the node kind for special processing. 13053 13054 case Nkind (N) is 13055 13056 -- An attribute reference is side effect free if its expressions 13057 -- are side effect free and its prefix is side effect free or 13058 -- is an entity reference. 13059 13060 -- Is this right? what about x'first where x is a variable??? 13061 13062 when N_Attribute_Reference => 13063 Attribute_Reference : declare 13064 13065 function Side_Effect_Free_Attribute 13066 (Attribute_Name : Name_Id) return Boolean; 13067 -- Returns True if evaluation of the given attribute is 13068 -- considered side-effect free (independent of prefix and 13069 -- arguments). 13070 13071 -------------------------------- 13072 -- Side_Effect_Free_Attribute -- 13073 -------------------------------- 13074 13075 function Side_Effect_Free_Attribute 13076 (Attribute_Name : Name_Id) return Boolean 13077 is 13078 begin 13079 case Attribute_Name is 13080 when Name_Input => 13081 return False; 13082 13083 when Name_Image 13084 | Name_Img 13085 | Name_Wide_Image 13086 | Name_Wide_Wide_Image 13087 => 13088 -- CodePeer doesn't want to see replicated copies of 13089 -- 'Image calls. 13090 13091 return not CodePeer_Mode; 13092 13093 when others => 13094 return True; 13095 end case; 13096 end Side_Effect_Free_Attribute; 13097 13098 -- Start of processing for Attribute_Reference 13099 13100 begin 13101 return 13102 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref) 13103 and then Side_Effect_Free_Attribute (Attribute_Name (N)) 13104 and then (Is_Entity_Name (Prefix (N)) 13105 or else Side_Effect_Free 13106 (Prefix (N), Name_Req, Variable_Ref)); 13107 end Attribute_Reference; 13108 13109 -- A binary operator is side effect free if and both operands are 13110 -- side effect free. For this purpose binary operators include 13111 -- membership tests and short circuit forms. 13112 13113 when N_Binary_Op 13114 | N_Membership_Test 13115 | N_Short_Circuit 13116 => 13117 return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref) 13118 and then 13119 Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref); 13120 13121 -- An explicit dereference is side effect free only if it is 13122 -- a side effect free prefixed reference. 13123 13124 when N_Explicit_Dereference => 13125 return Safe_Prefixed_Reference (N); 13126 13127 -- An expression with action is side effect free if its expression 13128 -- is side effect free and it has no actions. 13129 13130 when N_Expression_With_Actions => 13131 return 13132 Is_Empty_List (Actions (N)) 13133 and then Side_Effect_Free 13134 (Expression (N), Name_Req, Variable_Ref); 13135 13136 -- A call to _rep_to_pos is side effect free, since we generate 13137 -- this pure function call ourselves. Moreover it is critically 13138 -- important to make this exception, since otherwise we can have 13139 -- discriminants in array components which don't look side effect 13140 -- free in the case of an array whose index type is an enumeration 13141 -- type with an enumeration rep clause. 13142 13143 -- All other function calls are not side effect free 13144 13145 when N_Function_Call => 13146 return 13147 Nkind (Name (N)) = N_Identifier 13148 and then Is_TSS (Name (N), TSS_Rep_To_Pos) 13149 and then Side_Effect_Free 13150 (First (Parameter_Associations (N)), 13151 Name_Req, Variable_Ref); 13152 13153 -- An IF expression is side effect free if it's of a scalar type, and 13154 -- all its components are all side effect free (conditions and then 13155 -- actions and else actions). We restrict to scalar types, since it 13156 -- is annoying to deal with things like (if A then B else C)'First 13157 -- where the type involved is a string type. 13158 13159 when N_If_Expression => 13160 return 13161 Is_Scalar_Type (Typ) 13162 and then Side_Effect_Free 13163 (Expressions (N), Name_Req, Variable_Ref); 13164 13165 -- An indexed component is side effect free if it is a side 13166 -- effect free prefixed reference and all the indexing 13167 -- expressions are side effect free. 13168 13169 when N_Indexed_Component => 13170 return 13171 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref) 13172 and then Safe_Prefixed_Reference (N); 13173 13174 -- A type qualification, type conversion, or unchecked expression is 13175 -- side effect free if the expression is side effect free. 13176 13177 when N_Qualified_Expression 13178 | N_Type_Conversion 13179 | N_Unchecked_Expression 13180 => 13181 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref); 13182 13183 -- A selected component is side effect free only if it is a side 13184 -- effect free prefixed reference. 13185 13186 when N_Selected_Component => 13187 return Safe_Prefixed_Reference (N); 13188 13189 -- A range is side effect free if the bounds are side effect free 13190 13191 when N_Range => 13192 return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref) 13193 and then 13194 Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref); 13195 13196 -- A slice is side effect free if it is a side effect free 13197 -- prefixed reference and the bounds are side effect free. 13198 13199 when N_Slice => 13200 return 13201 Side_Effect_Free (Discrete_Range (N), Name_Req, Variable_Ref) 13202 and then Safe_Prefixed_Reference (N); 13203 13204 -- A unary operator is side effect free if the operand 13205 -- is side effect free. 13206 13207 when N_Unary_Op => 13208 return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref); 13209 13210 -- An unchecked type conversion is side effect free only if it 13211 -- is safe and its argument is side effect free. 13212 13213 when N_Unchecked_Type_Conversion => 13214 return 13215 Safe_Unchecked_Type_Conversion (N) 13216 and then Side_Effect_Free 13217 (Expression (N), Name_Req, Variable_Ref); 13218 13219 -- A literal is side effect free 13220 13221 when N_Character_Literal 13222 | N_Integer_Literal 13223 | N_Real_Literal 13224 | N_String_Literal 13225 => 13226 return True; 13227 13228 -- We consider that anything else has side effects. This is a bit 13229 -- crude, but we are pretty close for most common cases, and we 13230 -- are certainly correct (i.e. we never return True when the 13231 -- answer should be False). 13232 13233 when others => 13234 return False; 13235 end case; 13236 end Side_Effect_Free; 13237 13238 -- A list is side effect free if all elements of the list are side 13239 -- effect free. 13240 13241 function Side_Effect_Free 13242 (L : List_Id; 13243 Name_Req : Boolean := False; 13244 Variable_Ref : Boolean := False) return Boolean 13245 is 13246 N : Node_Id; 13247 13248 begin 13249 if L = No_List or else L = Error_List then 13250 return True; 13251 13252 else 13253 N := First (L); 13254 while Present (N) loop 13255 if not Side_Effect_Free (N, Name_Req, Variable_Ref) then 13256 return False; 13257 else 13258 Next (N); 13259 end if; 13260 end loop; 13261 13262 return True; 13263 end if; 13264 end Side_Effect_Free; 13265 13266 ---------------------------------- 13267 -- Silly_Boolean_Array_Not_Test -- 13268 ---------------------------------- 13269 13270 -- This procedure implements an odd and silly test. We explicitly check 13271 -- for the case where the 'First of the component type is equal to the 13272 -- 'Last of this component type, and if this is the case, we make sure 13273 -- that constraint error is raised. The reason is that the NOT is bound 13274 -- to cause CE in this case, and we will not otherwise catch it. 13275 13276 -- No such check is required for AND and OR, since for both these cases 13277 -- False op False = False, and True op True = True. For the XOR case, 13278 -- see Silly_Boolean_Array_Xor_Test. 13279 13280 -- Believe it or not, this was reported as a bug. Note that nearly always, 13281 -- the test will evaluate statically to False, so the code will be 13282 -- statically removed, and no extra overhead caused. 13283 13284 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is 13285 Loc : constant Source_Ptr := Sloc (N); 13286 CT : constant Entity_Id := Component_Type (T); 13287 13288 begin 13289 -- The check we install is 13290 13291 -- constraint_error when 13292 -- component_type'first = component_type'last 13293 -- and then array_type'Length /= 0) 13294 13295 -- We need the last guard because we don't want to raise CE for empty 13296 -- arrays since no out of range values result. (Empty arrays with a 13297 -- component type of True .. True -- very useful -- even the ACATS 13298 -- does not test that marginal case). 13299 13300 Insert_Action (N, 13301 Make_Raise_Constraint_Error (Loc, 13302 Condition => 13303 Make_And_Then (Loc, 13304 Left_Opnd => 13305 Make_Op_Eq (Loc, 13306 Left_Opnd => 13307 Make_Attribute_Reference (Loc, 13308 Prefix => New_Occurrence_Of (CT, Loc), 13309 Attribute_Name => Name_First), 13310 13311 Right_Opnd => 13312 Make_Attribute_Reference (Loc, 13313 Prefix => New_Occurrence_Of (CT, Loc), 13314 Attribute_Name => Name_Last)), 13315 13316 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))), 13317 Reason => CE_Range_Check_Failed)); 13318 end Silly_Boolean_Array_Not_Test; 13319 13320 ---------------------------------- 13321 -- Silly_Boolean_Array_Xor_Test -- 13322 ---------------------------------- 13323 13324 -- This procedure implements an odd and silly test. We explicitly check 13325 -- for the XOR case where the component type is True .. True, since this 13326 -- will raise constraint error. A special check is required since CE 13327 -- will not be generated otherwise (cf Expand_Packed_Not). 13328 13329 -- No such check is required for AND and OR, since for both these cases 13330 -- False op False = False, and True op True = True, and no check is 13331 -- required for the case of False .. False, since False xor False = False. 13332 -- See also Silly_Boolean_Array_Not_Test 13333 13334 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is 13335 Loc : constant Source_Ptr := Sloc (N); 13336 CT : constant Entity_Id := Component_Type (T); 13337 13338 begin 13339 -- The check we install is 13340 13341 -- constraint_error when 13342 -- Boolean (component_type'First) 13343 -- and then Boolean (component_type'Last) 13344 -- and then array_type'Length /= 0) 13345 13346 -- We need the last guard because we don't want to raise CE for empty 13347 -- arrays since no out of range values result (Empty arrays with a 13348 -- component type of True .. True -- very useful -- even the ACATS 13349 -- does not test that marginal case). 13350 13351 Insert_Action (N, 13352 Make_Raise_Constraint_Error (Loc, 13353 Condition => 13354 Make_And_Then (Loc, 13355 Left_Opnd => 13356 Make_And_Then (Loc, 13357 Left_Opnd => 13358 Convert_To (Standard_Boolean, 13359 Make_Attribute_Reference (Loc, 13360 Prefix => New_Occurrence_Of (CT, Loc), 13361 Attribute_Name => Name_First)), 13362 13363 Right_Opnd => 13364 Convert_To (Standard_Boolean, 13365 Make_Attribute_Reference (Loc, 13366 Prefix => New_Occurrence_Of (CT, Loc), 13367 Attribute_Name => Name_Last))), 13368 13369 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))), 13370 Reason => CE_Range_Check_Failed)); 13371 end Silly_Boolean_Array_Xor_Test; 13372 13373 -------------------------- 13374 -- Target_Has_Fixed_Ops -- 13375 -------------------------- 13376 13377 Integer_Sized_Small : Ureal; 13378 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is 13379 -- called (we don't want to compute it more than once). 13380 13381 Long_Integer_Sized_Small : Ureal; 13382 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function 13383 -- is called (we don't want to compute it more than once) 13384 13385 First_Time_For_THFO : Boolean := True; 13386 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target) 13387 13388 function Target_Has_Fixed_Ops 13389 (Left_Typ : Entity_Id; 13390 Right_Typ : Entity_Id; 13391 Result_Typ : Entity_Id) return Boolean 13392 is 13393 function Is_Fractional_Type (Typ : Entity_Id) return Boolean; 13394 -- Return True if the given type is a fixed-point type with a small 13395 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have 13396 -- an absolute value less than 1.0. This is currently limited to 13397 -- fixed-point types that map to Integer or Long_Integer. 13398 13399 ------------------------ 13400 -- Is_Fractional_Type -- 13401 ------------------------ 13402 13403 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is 13404 begin 13405 if Esize (Typ) = Standard_Integer_Size then 13406 return Small_Value (Typ) = Integer_Sized_Small; 13407 13408 elsif Esize (Typ) = Standard_Long_Integer_Size then 13409 return Small_Value (Typ) = Long_Integer_Sized_Small; 13410 13411 else 13412 return False; 13413 end if; 13414 end Is_Fractional_Type; 13415 13416 -- Start of processing for Target_Has_Fixed_Ops 13417 13418 begin 13419 -- Return False if Fractional_Fixed_Ops_On_Target is false 13420 13421 if not Fractional_Fixed_Ops_On_Target then 13422 return False; 13423 end if; 13424 13425 -- Here the target has Fractional_Fixed_Ops, if first time, compute 13426 -- standard constants used by Is_Fractional_Type. 13427 13428 if First_Time_For_THFO then 13429 First_Time_For_THFO := False; 13430 13431 Integer_Sized_Small := 13432 UR_From_Components 13433 (Num => Uint_1, 13434 Den => UI_From_Int (Standard_Integer_Size - 1), 13435 Rbase => 2); 13436 13437 Long_Integer_Sized_Small := 13438 UR_From_Components 13439 (Num => Uint_1, 13440 Den => UI_From_Int (Standard_Long_Integer_Size - 1), 13441 Rbase => 2); 13442 end if; 13443 13444 -- Return True if target supports fixed-by-fixed multiply/divide for 13445 -- fractional fixed-point types (see Is_Fractional_Type) and the operand 13446 -- and result types are equivalent fractional types. 13447 13448 return Is_Fractional_Type (Base_Type (Left_Typ)) 13449 and then Is_Fractional_Type (Base_Type (Right_Typ)) 13450 and then Is_Fractional_Type (Base_Type (Result_Typ)) 13451 and then Esize (Left_Typ) = Esize (Right_Typ) 13452 and then Esize (Left_Typ) = Esize (Result_Typ); 13453 end Target_Has_Fixed_Ops; 13454 13455 ------------------- 13456 -- Type_Map_Hash -- 13457 ------------------- 13458 13459 function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header is 13460 begin 13461 return Type_Map_Header (Id mod Type_Map_Size); 13462 end Type_Map_Hash; 13463 13464 ------------------------------------------ 13465 -- Type_May_Have_Bit_Aligned_Components -- 13466 ------------------------------------------ 13467 13468 function Type_May_Have_Bit_Aligned_Components 13469 (Typ : Entity_Id) return Boolean 13470 is 13471 begin 13472 -- Array type, check component type 13473 13474 if Is_Array_Type (Typ) then 13475 return 13476 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)); 13477 13478 -- Record type, check components 13479 13480 elsif Is_Record_Type (Typ) then 13481 declare 13482 E : Entity_Id; 13483 13484 begin 13485 E := First_Component_Or_Discriminant (Typ); 13486 while Present (E) loop 13487 if Component_May_Be_Bit_Aligned (E) 13488 or else Type_May_Have_Bit_Aligned_Components (Etype (E)) 13489 then 13490 return True; 13491 end if; 13492 13493 Next_Component_Or_Discriminant (E); 13494 end loop; 13495 13496 return False; 13497 end; 13498 13499 -- Type other than array or record is always OK 13500 13501 else 13502 return False; 13503 end if; 13504 end Type_May_Have_Bit_Aligned_Components; 13505 13506 ------------------------------- 13507 -- Update_Primitives_Mapping -- 13508 ------------------------------- 13509 13510 procedure Update_Primitives_Mapping 13511 (Inher_Id : Entity_Id; 13512 Subp_Id : Entity_Id) 13513 is 13514 begin 13515 Map_Types 13516 (Parent_Type => Find_Dispatching_Type (Inher_Id), 13517 Derived_Type => Find_Dispatching_Type (Subp_Id)); 13518 end Update_Primitives_Mapping; 13519 13520 ---------------------------------- 13521 -- Within_Case_Or_If_Expression -- 13522 ---------------------------------- 13523 13524 function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is 13525 Par : Node_Id; 13526 13527 begin 13528 -- Locate an enclosing case or if expression. Note that these constructs 13529 -- can be expanded into Expression_With_Actions, hence the test of the 13530 -- original node. 13531 13532 Par := Parent (N); 13533 while Present (Par) loop 13534 if Nkind_In (Original_Node (Par), N_Case_Expression, 13535 N_If_Expression) 13536 then 13537 return True; 13538 13539 -- Prevent the search from going too far 13540 13541 elsif Is_Body_Or_Package_Declaration (Par) then 13542 return False; 13543 end if; 13544 13545 Par := Parent (Par); 13546 end loop; 13547 13548 return False; 13549 end Within_Case_Or_If_Expression; 13550 13551 -------------------------------- 13552 -- Within_Internal_Subprogram -- 13553 -------------------------------- 13554 13555 function Within_Internal_Subprogram return Boolean is 13556 S : Entity_Id; 13557 13558 begin 13559 S := Current_Scope; 13560 while Present (S) and then not Is_Subprogram (S) loop 13561 S := Scope (S); 13562 end loop; 13563 13564 return Present (S) 13565 and then Get_TSS_Name (S) /= TSS_Null 13566 and then not Is_Predicate_Function (S) 13567 and then not Is_Predicate_Function_M (S); 13568 end Within_Internal_Subprogram; 13569 13570end Exp_Util; 13571