1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "reload.h"
35 #include "alias.h"
36 #include "addresses.h"
37 #include "dumpfile.h"
38 #include "rtl-iter.h"
39 #include "target.h"
40
41 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
42
43 #define regno_save_mode \
44 (this_target_reload->x_regno_save_mode)
45 #define cached_reg_save_code \
46 (this_target_reload->x_cached_reg_save_code)
47 #define cached_reg_restore_code \
48 (this_target_reload->x_cached_reg_restore_code)
49
50 /* For each hard register, a place on the stack where it can be saved,
51 if needed. */
52
53 static rtx
54 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
55
56 /* The number of elements in the subsequent array. */
57 static int save_slots_num;
58
59 /* Allocated slots so far. */
60 static rtx save_slots[FIRST_PSEUDO_REGISTER];
61
62 /* Set of hard regs currently residing in save area (during insn scan). */
63
64 static HARD_REG_SET hard_regs_saved;
65
66 /* Number of registers currently in hard_regs_saved. */
67
68 static int n_regs_saved;
69
70 /* Computed by mark_referenced_regs, all regs referenced in a given
71 insn. */
72 static HARD_REG_SET referenced_regs;
73
74
75 typedef void refmarker_fn (rtx *loc, machine_mode mode, int hardregno,
76 void *mark_arg);
77
78 static int reg_save_code (int, machine_mode);
79 static int reg_restore_code (int, machine_mode);
80
81 struct saved_hard_reg;
82 static void initiate_saved_hard_regs (void);
83 static void new_saved_hard_reg (int, int);
84 static void finish_saved_hard_regs (void);
85 static int saved_hard_reg_compare_func (const void *, const void *);
86
87 static void mark_set_regs (rtx, const_rtx, void *);
88 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
89 static refmarker_fn mark_reg_as_referenced;
90 static refmarker_fn replace_reg_with_saved_mem;
91 static int insert_save (struct insn_chain *, int, HARD_REG_SET *,
92 machine_mode *);
93 static int insert_restore (struct insn_chain *, int, int, int,
94 machine_mode *);
95 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
96 rtx);
97 static void add_stored_regs (rtx, const_rtx, void *);
98
99
100
101 static GTY(()) rtx savepat;
102 static GTY(()) rtx restpat;
103 static GTY(()) rtx test_reg;
104 static GTY(()) rtx test_mem;
105 static GTY(()) rtx_insn *saveinsn;
106 static GTY(()) rtx_insn *restinsn;
107
108 /* Return the INSN_CODE used to save register REG in mode MODE. */
109 static int
reg_save_code(int reg,machine_mode mode)110 reg_save_code (int reg, machine_mode mode)
111 {
112 bool ok;
113 if (cached_reg_save_code[reg][mode])
114 return cached_reg_save_code[reg][mode];
115 if (!targetm.hard_regno_mode_ok (reg, mode))
116 {
117 /* Depending on how targetm.hard_regno_mode_ok is defined, range
118 propagation might deduce here that reg >= FIRST_PSEUDO_REGISTER.
119 So the assert below silences a warning. */
120 gcc_assert (reg < FIRST_PSEUDO_REGISTER);
121 cached_reg_save_code[reg][mode] = -1;
122 cached_reg_restore_code[reg][mode] = -1;
123 return -1;
124 }
125
126 /* Update the register number and modes of the register
127 and memory operand. */
128 set_mode_and_regno (test_reg, mode, reg);
129 PUT_MODE (test_mem, mode);
130
131 /* Force re-recognition of the modified insns. */
132 INSN_CODE (saveinsn) = -1;
133 INSN_CODE (restinsn) = -1;
134
135 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
136 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
137
138 /* Now extract both insns and see if we can meet their
139 constraints. We don't know here whether the save and restore will
140 be in size- or speed-tuned code, so just use the set of enabled
141 alternatives. */
142 ok = (cached_reg_save_code[reg][mode] != -1
143 && cached_reg_restore_code[reg][mode] != -1);
144 if (ok)
145 {
146 extract_insn (saveinsn);
147 ok = constrain_operands (1, get_enabled_alternatives (saveinsn));
148 extract_insn (restinsn);
149 ok &= constrain_operands (1, get_enabled_alternatives (restinsn));
150 }
151
152 if (! ok)
153 {
154 cached_reg_save_code[reg][mode] = -1;
155 cached_reg_restore_code[reg][mode] = -1;
156 }
157 gcc_assert (cached_reg_save_code[reg][mode]);
158 return cached_reg_save_code[reg][mode];
159 }
160
161 /* Return the INSN_CODE used to restore register REG in mode MODE. */
162 static int
reg_restore_code(int reg,machine_mode mode)163 reg_restore_code (int reg, machine_mode mode)
164 {
165 if (cached_reg_restore_code[reg][mode])
166 return cached_reg_restore_code[reg][mode];
167 /* Populate our cache. */
168 reg_save_code (reg, mode);
169 return cached_reg_restore_code[reg][mode];
170 }
171
172 /* Initialize for caller-save.
173
174 Look at all the hard registers that are used by a call and for which
175 reginfo.c has not already excluded from being used across a call.
176
177 Ensure that we can find a mode to save the register and that there is a
178 simple insn to save and restore the register. This latter check avoids
179 problems that would occur if we tried to save the MQ register of some
180 machines directly into memory. */
181
182 void
init_caller_save(void)183 init_caller_save (void)
184 {
185 rtx addr_reg;
186 int offset;
187 rtx address;
188 int i, j;
189
190 if (caller_save_initialized_p)
191 return;
192
193 caller_save_initialized_p = true;
194
195 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
196 /* First find all the registers that we need to deal with and all
197 the modes that they can have. If we can't find a mode to use,
198 we can't have the register live over calls. */
199
200 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
201 {
202 if (call_used_regs[i]
203 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
204 {
205 for (j = 1; j <= MOVE_MAX_WORDS; j++)
206 {
207 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
208 VOIDmode);
209 if (regno_save_mode[i][j] == VOIDmode && j == 1)
210 {
211 SET_HARD_REG_BIT (call_fixed_reg_set, i);
212 }
213 }
214 }
215 else
216 regno_save_mode[i][1] = VOIDmode;
217 }
218
219 /* The following code tries to approximate the conditions under which
220 we can easily save and restore a register without scratch registers or
221 other complexities. It will usually work, except under conditions where
222 the validity of an insn operand is dependent on the address offset.
223 No such cases are currently known.
224
225 We first find a typical offset from some BASE_REG_CLASS register.
226 This address is chosen by finding the first register in the class
227 and by finding the smallest power of two that is a valid offset from
228 that register in every mode we will use to save registers. */
229
230 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
231 if (TEST_HARD_REG_BIT
232 (reg_class_contents
233 [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
234 PLUS, CONST_INT)], i))
235 break;
236
237 gcc_assert (i < FIRST_PSEUDO_REGISTER);
238
239 addr_reg = gen_rtx_REG (Pmode, i);
240
241 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
242 {
243 address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
244
245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
246 if (regno_save_mode[i][1] != VOIDmode
247 && ! strict_memory_address_p (regno_save_mode[i][1], address))
248 break;
249
250 if (i == FIRST_PSEUDO_REGISTER)
251 break;
252 }
253
254 /* If we didn't find a valid address, we must use register indirect. */
255 if (offset == 0)
256 address = addr_reg;
257
258 /* Next we try to form an insn to save and restore the register. We
259 see if such an insn is recognized and meets its constraints.
260
261 To avoid lots of unnecessary RTL allocation, we construct all the RTL
262 once, then modify the memory and register operands in-place. */
263
264 test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
265 test_mem = gen_rtx_MEM (word_mode, address);
266 savepat = gen_rtx_SET (test_mem, test_reg);
267 restpat = gen_rtx_SET (test_reg, test_mem);
268
269 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, savepat, 0, -1, 0);
270 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, restpat, 0, -1, 0);
271
272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
273 for (j = 1; j <= MOVE_MAX_WORDS; j++)
274 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
275 {
276 regno_save_mode[i][j] = VOIDmode;
277 if (j == 1)
278 {
279 SET_HARD_REG_BIT (call_fixed_reg_set, i);
280 if (call_used_regs[i])
281 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
282 }
283 }
284 }
285
286
287
288 /* Initialize save areas by showing that we haven't allocated any yet. */
289
290 void
init_save_areas(void)291 init_save_areas (void)
292 {
293 int i, j;
294
295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
296 for (j = 1; j <= MOVE_MAX_WORDS; j++)
297 regno_save_mem[i][j] = 0;
298 save_slots_num = 0;
299
300 }
301
302 /* The structure represents a hard register which should be saved
303 through the call. It is used when the integrated register
304 allocator (IRA) is used and sharing save slots is on. */
305 struct saved_hard_reg
306 {
307 /* Order number starting with 0. */
308 int num;
309 /* The hard regno. */
310 int hard_regno;
311 /* Execution frequency of all calls through which given hard
312 register should be saved. */
313 int call_freq;
314 /* Stack slot reserved to save the hard register through calls. */
315 rtx slot;
316 /* True if it is first hard register in the chain of hard registers
317 sharing the same stack slot. */
318 int first_p;
319 /* Order number of the next hard register structure with the same
320 slot in the chain. -1 represents end of the chain. */
321 int next;
322 };
323
324 /* Map: hard register number to the corresponding structure. */
325 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
326
327 /* The number of all structures representing hard registers should be
328 saved, in order words, the number of used elements in the following
329 array. */
330 static int saved_regs_num;
331
332 /* Pointers to all the structures. Index is the order number of the
333 corresponding structure. */
334 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
335
336 /* First called function for work with saved hard registers. */
337 static void
initiate_saved_hard_regs(void)338 initiate_saved_hard_regs (void)
339 {
340 int i;
341
342 saved_regs_num = 0;
343 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
344 hard_reg_map[i] = NULL;
345 }
346
347 /* Allocate and return new saved hard register with given REGNO and
348 CALL_FREQ. */
349 static void
new_saved_hard_reg(int regno,int call_freq)350 new_saved_hard_reg (int regno, int call_freq)
351 {
352 struct saved_hard_reg *saved_reg;
353
354 saved_reg
355 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
356 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
357 saved_reg->num = saved_regs_num++;
358 saved_reg->hard_regno = regno;
359 saved_reg->call_freq = call_freq;
360 saved_reg->first_p = FALSE;
361 saved_reg->next = -1;
362 }
363
364 /* Free memory allocated for the saved hard registers. */
365 static void
finish_saved_hard_regs(void)366 finish_saved_hard_regs (void)
367 {
368 int i;
369
370 for (i = 0; i < saved_regs_num; i++)
371 free (all_saved_regs[i]);
372 }
373
374 /* The function is used to sort the saved hard register structures
375 according their frequency. */
376 static int
saved_hard_reg_compare_func(const void * v1p,const void * v2p)377 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
378 {
379 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
380 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
381
382 if (flag_omit_frame_pointer)
383 {
384 if (p1->call_freq - p2->call_freq != 0)
385 return p1->call_freq - p2->call_freq;
386 }
387 else if (p2->call_freq - p1->call_freq != 0)
388 return p2->call_freq - p1->call_freq;
389
390 return p1->num - p2->num;
391 }
392
393 /* Allocate save areas for any hard registers that might need saving.
394 We take a conservative approach here and look for call-clobbered hard
395 registers that are assigned to pseudos that cross calls. This may
396 overestimate slightly (especially if some of these registers are later
397 used as spill registers), but it should not be significant.
398
399 For IRA we use priority coloring to decrease stack slots needed for
400 saving hard registers through calls. We build conflicts for them
401 to do coloring.
402
403 Future work:
404
405 In the fallback case we should iterate backwards across all possible
406 modes for the save, choosing the largest available one instead of
407 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
408
409 We do not try to use "move multiple" instructions that exist
410 on some machines (such as the 68k moveml). It could be a win to try
411 and use them when possible. The hard part is doing it in a way that is
412 machine independent since they might be saving non-consecutive
413 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
414
415 void
setup_save_areas(void)416 setup_save_areas (void)
417 {
418 int i, j, k, freq;
419 HARD_REG_SET hard_regs_used;
420 struct saved_hard_reg *saved_reg;
421 rtx_insn *insn;
422 struct insn_chain *chain, *next;
423 unsigned int regno;
424 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
425 reg_set_iterator rsi;
426
427 CLEAR_HARD_REG_SET (hard_regs_used);
428
429 /* Find every CALL_INSN and record which hard regs are live across the
430 call into HARD_REG_MAP and HARD_REGS_USED. */
431 initiate_saved_hard_regs ();
432 /* Create hard reg saved regs. */
433 for (chain = reload_insn_chain; chain != 0; chain = next)
434 {
435 rtx cheap;
436
437 insn = chain->insn;
438 next = chain->next;
439 if (!CALL_P (insn)
440 || find_reg_note (insn, REG_NORETURN, NULL))
441 continue;
442 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
443 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
444 &chain->live_throughout);
445 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
446
447 /* Record all registers set in this call insn. These don't
448 need to be saved. N.B. the call insn might set a subreg
449 of a multi-hard-reg pseudo; then the pseudo is considered
450 live during the call, but the subreg that is set
451 isn't. */
452 CLEAR_HARD_REG_SET (this_insn_sets);
453 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
454 /* Sibcalls are considered to set the return value. */
455 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
456 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
457
458 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
459 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
460 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
461 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
462 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
463 {
464 if (hard_reg_map[regno] != NULL)
465 hard_reg_map[regno]->call_freq += freq;
466 else
467 new_saved_hard_reg (regno, freq);
468 SET_HARD_REG_BIT (hard_regs_used, regno);
469 }
470 cheap = find_reg_note (insn, REG_RETURNED, NULL);
471 if (cheap)
472 cheap = XEXP (cheap, 0);
473 /* Look through all live pseudos, mark their hard registers. */
474 EXECUTE_IF_SET_IN_REG_SET
475 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
476 {
477 int r = reg_renumber[regno];
478 int bound;
479
480 if (r < 0 || regno_reg_rtx[regno] == cheap)
481 continue;
482
483 bound = r + hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
484 for (; r < bound; r++)
485 if (TEST_HARD_REG_BIT (used_regs, r))
486 {
487 if (hard_reg_map[r] != NULL)
488 hard_reg_map[r]->call_freq += freq;
489 else
490 new_saved_hard_reg (r, freq);
491 SET_HARD_REG_BIT (hard_regs_to_save, r);
492 SET_HARD_REG_BIT (hard_regs_used, r);
493 }
494 }
495 }
496
497 /* If requested, figure out which hard regs can share save slots. */
498 if (optimize && flag_ira_share_save_slots)
499 {
500 rtx slot;
501 char *saved_reg_conflicts;
502 int next_k;
503 struct saved_hard_reg *saved_reg2, *saved_reg3;
504 int call_saved_regs_num;
505 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
506 int best_slot_num;
507 int prev_save_slots_num;
508 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
509
510 /* Find saved hard register conflicts. */
511 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
512 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
513 for (chain = reload_insn_chain; chain != 0; chain = next)
514 {
515 rtx cheap;
516 call_saved_regs_num = 0;
517 insn = chain->insn;
518 next = chain->next;
519 if (!CALL_P (insn)
520 || find_reg_note (insn, REG_NORETURN, NULL))
521 continue;
522
523 cheap = find_reg_note (insn, REG_RETURNED, NULL);
524 if (cheap)
525 cheap = XEXP (cheap, 0);
526
527 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
528 &chain->live_throughout);
529 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
530
531 /* Record all registers set in this call insn. These don't
532 need to be saved. N.B. the call insn might set a subreg
533 of a multi-hard-reg pseudo; then the pseudo is considered
534 live during the call, but the subreg that is set
535 isn't. */
536 CLEAR_HARD_REG_SET (this_insn_sets);
537 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
538 /* Sibcalls are considered to set the return value,
539 compare df-scan.c:df_get_call_refs. */
540 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
541 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
542
543 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
544 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
545 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
546 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
547 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
548 {
549 gcc_assert (hard_reg_map[regno] != NULL);
550 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
551 }
552 /* Look through all live pseudos, mark their hard registers. */
553 EXECUTE_IF_SET_IN_REG_SET
554 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
555 {
556 int r = reg_renumber[regno];
557 int bound;
558
559 if (r < 0 || regno_reg_rtx[regno] == cheap)
560 continue;
561
562 bound = r + hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
563 for (; r < bound; r++)
564 if (TEST_HARD_REG_BIT (used_regs, r))
565 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
566 }
567 for (i = 0; i < call_saved_regs_num; i++)
568 {
569 saved_reg = call_saved_regs[i];
570 for (j = 0; j < call_saved_regs_num; j++)
571 if (i != j)
572 {
573 saved_reg2 = call_saved_regs[j];
574 saved_reg_conflicts[saved_reg->num * saved_regs_num
575 + saved_reg2->num]
576 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
577 + saved_reg->num]
578 = TRUE;
579 }
580 }
581 }
582 /* Sort saved hard regs. */
583 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
584 saved_hard_reg_compare_func);
585 /* Initiate slots available from the previous reload
586 iteration. */
587 prev_save_slots_num = save_slots_num;
588 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
589 save_slots_num = 0;
590 /* Allocate stack slots for the saved hard registers. */
591 for (i = 0; i < saved_regs_num; i++)
592 {
593 saved_reg = all_saved_regs[i];
594 regno = saved_reg->hard_regno;
595 for (j = 0; j < i; j++)
596 {
597 saved_reg2 = all_saved_regs[j];
598 if (! saved_reg2->first_p)
599 continue;
600 slot = saved_reg2->slot;
601 for (k = j; k >= 0; k = next_k)
602 {
603 saved_reg3 = all_saved_regs[k];
604 next_k = saved_reg3->next;
605 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
606 + saved_reg3->num])
607 break;
608 }
609 if (k < 0
610 && known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
611 GET_MODE_SIZE (regno_save_mode
612 [saved_reg2->hard_regno][1])))
613 {
614 saved_reg->slot
615 = adjust_address_nv
616 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
617 regno_save_mem[regno][1] = saved_reg->slot;
618 saved_reg->next = saved_reg2->next;
619 saved_reg2->next = i;
620 if (dump_file != NULL)
621 fprintf (dump_file, "%d uses slot of %d\n",
622 regno, saved_reg2->hard_regno);
623 break;
624 }
625 }
626 if (j == i)
627 {
628 saved_reg->first_p = TRUE;
629 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
630 {
631 slot = prev_save_slots[j];
632 if (slot == NULL_RTX)
633 continue;
634 if (known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
635 GET_MODE_SIZE (GET_MODE (slot)))
636 && best_slot_num < 0)
637 best_slot_num = j;
638 if (GET_MODE (slot) == regno_save_mode[regno][1])
639 break;
640 }
641 if (best_slot_num >= 0)
642 {
643 saved_reg->slot = prev_save_slots[best_slot_num];
644 saved_reg->slot
645 = adjust_address_nv
646 (saved_reg->slot,
647 regno_save_mode[saved_reg->hard_regno][1], 0);
648 if (dump_file != NULL)
649 fprintf (dump_file,
650 "%d uses a slot from prev iteration\n", regno);
651 prev_save_slots[best_slot_num] = NULL_RTX;
652 if (best_slot_num + 1 == prev_save_slots_num)
653 prev_save_slots_num--;
654 }
655 else
656 {
657 saved_reg->slot
658 = assign_stack_local_1
659 (regno_save_mode[regno][1],
660 GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
661 ASLK_REDUCE_ALIGN);
662 if (dump_file != NULL)
663 fprintf (dump_file, "%d uses a new slot\n", regno);
664 }
665 regno_save_mem[regno][1] = saved_reg->slot;
666 save_slots[save_slots_num++] = saved_reg->slot;
667 }
668 }
669 free (saved_reg_conflicts);
670 finish_saved_hard_regs ();
671 }
672 else
673 {
674 /* We are not sharing slots.
675
676 Run through all the call-used hard-registers and allocate
677 space for each in the caller-save area. Try to allocate space
678 in a manner which allows multi-register saves/restores to be done. */
679
680 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
681 for (j = MOVE_MAX_WORDS; j > 0; j--)
682 {
683 int do_save = 1;
684
685 /* If no mode exists for this size, try another. Also break out
686 if we have already saved this hard register. */
687 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
688 continue;
689
690 /* See if any register in this group has been saved. */
691 for (k = 0; k < j; k++)
692 if (regno_save_mem[i + k][1])
693 {
694 do_save = 0;
695 break;
696 }
697 if (! do_save)
698 continue;
699
700 for (k = 0; k < j; k++)
701 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
702 {
703 do_save = 0;
704 break;
705 }
706 if (! do_save)
707 continue;
708
709 /* We have found an acceptable mode to store in. Since
710 hard register is always saved in the widest mode
711 available, the mode may be wider than necessary, it is
712 OK to reduce the alignment of spill space. We will
713 verify that it is equal to or greater than required
714 when we restore and save the hard register in
715 insert_restore and insert_save. */
716 regno_save_mem[i][j]
717 = assign_stack_local_1 (regno_save_mode[i][j],
718 GET_MODE_SIZE (regno_save_mode[i][j]),
719 0, ASLK_REDUCE_ALIGN);
720
721 /* Setup single word save area just in case... */
722 for (k = 0; k < j; k++)
723 /* This should not depend on WORDS_BIG_ENDIAN.
724 The order of words in regs is the same as in memory. */
725 regno_save_mem[i + k][1]
726 = adjust_address_nv (regno_save_mem[i][j],
727 regno_save_mode[i + k][1],
728 k * UNITS_PER_WORD);
729 }
730 }
731
732 /* Now loop again and set the alias set of any save areas we made to
733 the alias set used to represent frame objects. */
734 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
735 for (j = MOVE_MAX_WORDS; j > 0; j--)
736 if (regno_save_mem[i][j] != 0)
737 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
738 }
739
740
741
742 /* Find the places where hard regs are live across calls and save them. */
743
744 void
save_call_clobbered_regs(void)745 save_call_clobbered_regs (void)
746 {
747 struct insn_chain *chain, *next, *last = NULL;
748 machine_mode save_mode [FIRST_PSEUDO_REGISTER];
749
750 /* Computed in mark_set_regs, holds all registers set by the current
751 instruction. */
752 HARD_REG_SET this_insn_sets;
753
754 CLEAR_HARD_REG_SET (hard_regs_saved);
755 n_regs_saved = 0;
756
757 for (chain = reload_insn_chain; chain != 0; chain = next)
758 {
759 rtx_insn *insn = chain->insn;
760 enum rtx_code code = GET_CODE (insn);
761
762 next = chain->next;
763
764 gcc_assert (!chain->is_caller_save_insn);
765
766 if (NONDEBUG_INSN_P (insn))
767 {
768 /* If some registers have been saved, see if INSN references
769 any of them. We must restore them before the insn if so. */
770
771 if (n_regs_saved)
772 {
773 int regno;
774 HARD_REG_SET this_insn_sets;
775
776 if (code == JUMP_INSN)
777 /* Restore all registers if this is a JUMP_INSN. */
778 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
779 else
780 {
781 CLEAR_HARD_REG_SET (referenced_regs);
782 mark_referenced_regs (&PATTERN (insn),
783 mark_reg_as_referenced, NULL);
784 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
785 }
786
787 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
788 if (TEST_HARD_REG_BIT (referenced_regs, regno))
789 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
790 save_mode);
791 /* If a saved register is set after the call, this means we no
792 longer should restore it. This can happen when parts of a
793 multi-word pseudo do not conflict with other pseudos, so
794 IRA may allocate the same hard register for both. One may
795 be live across the call, while the other is set
796 afterwards. */
797 CLEAR_HARD_REG_SET (this_insn_sets);
798 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
799 AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
800 }
801
802 if (code == CALL_INSN
803 && ! SIBLING_CALL_P (insn)
804 && ! find_reg_note (insn, REG_NORETURN, NULL))
805 {
806 unsigned regno;
807 HARD_REG_SET hard_regs_to_save;
808 HARD_REG_SET call_def_reg_set;
809 reg_set_iterator rsi;
810 rtx cheap;
811
812 cheap = find_reg_note (insn, REG_RETURNED, NULL);
813 if (cheap)
814 cheap = XEXP (cheap, 0);
815
816 /* Use the register life information in CHAIN to compute which
817 regs are live during the call. */
818 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
819 &chain->live_throughout);
820 /* Save hard registers always in the widest mode available. */
821 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
822 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
823 save_mode [regno] = regno_save_mode [regno][1];
824 else
825 save_mode [regno] = VOIDmode;
826
827 /* Look through all live pseudos, mark their hard registers
828 and choose proper mode for saving. */
829 EXECUTE_IF_SET_IN_REG_SET
830 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
831 {
832 int r = reg_renumber[regno];
833 int nregs;
834 machine_mode mode;
835
836 if (r < 0 || regno_reg_rtx[regno] == cheap)
837 continue;
838 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
839 mode = HARD_REGNO_CALLER_SAVE_MODE
840 (r, nregs, PSEUDO_REGNO_MODE (regno));
841 if (partial_subreg_p (save_mode[r], mode))
842 save_mode[r] = mode;
843 while (nregs-- > 0)
844 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
845 }
846
847 /* Record all registers set in this call insn. These don't need
848 to be saved. N.B. the call insn might set a subreg of a
849 multi-hard-reg pseudo; then the pseudo is considered live
850 during the call, but the subreg that is set isn't. */
851 CLEAR_HARD_REG_SET (this_insn_sets);
852 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
853
854 /* Compute which hard regs must be saved before this call. */
855 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
856 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
857 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
858 get_call_reg_set_usage (insn, &call_def_reg_set,
859 call_used_reg_set);
860 AND_HARD_REG_SET (hard_regs_to_save, call_def_reg_set);
861
862 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
863 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
864 regno += insert_save (chain, regno,
865 &hard_regs_to_save, save_mode);
866
867 /* Must recompute n_regs_saved. */
868 n_regs_saved = 0;
869 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
870 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
871 n_regs_saved++;
872
873 if (cheap
874 && HARD_REGISTER_P (cheap)
875 && TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
876 {
877 rtx dest, newpat;
878 rtx pat = PATTERN (insn);
879 if (GET_CODE (pat) == PARALLEL)
880 pat = XVECEXP (pat, 0, 0);
881 dest = SET_DEST (pat);
882 /* For multiple return values dest is PARALLEL.
883 Currently we handle only single return value case. */
884 if (REG_P (dest))
885 {
886 newpat = gen_rtx_SET (cheap, copy_rtx (dest));
887 chain = insert_one_insn (chain, 0, -1, newpat);
888 }
889 }
890 }
891 last = chain;
892 }
893 else if (DEBUG_INSN_P (insn) && n_regs_saved)
894 mark_referenced_regs (&PATTERN (insn),
895 replace_reg_with_saved_mem,
896 save_mode);
897
898 if (chain->next == 0 || chain->next->block != chain->block)
899 {
900 int regno;
901 /* At the end of the basic block, we must restore any registers that
902 remain saved. If the last insn in the block is a JUMP_INSN, put
903 the restore before the insn, otherwise, put it after the insn. */
904
905 if (n_regs_saved
906 && DEBUG_INSN_P (insn)
907 && last
908 && last->block == chain->block)
909 {
910 rtx_insn *ins, *prev;
911 basic_block bb = BLOCK_FOR_INSN (insn);
912
913 /* When adding hard reg restores after a DEBUG_INSN, move
914 all notes between last real insn and this DEBUG_INSN after
915 the DEBUG_INSN, otherwise we could get code
916 -g/-g0 differences. */
917 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
918 {
919 prev = PREV_INSN (ins);
920 if (NOTE_P (ins))
921 {
922 SET_NEXT_INSN (prev) = NEXT_INSN (ins);
923 SET_PREV_INSN (NEXT_INSN (ins)) = prev;
924 SET_PREV_INSN (ins) = insn;
925 SET_NEXT_INSN (ins) = NEXT_INSN (insn);
926 SET_NEXT_INSN (insn) = ins;
927 if (NEXT_INSN (ins))
928 SET_PREV_INSN (NEXT_INSN (ins)) = ins;
929 if (BB_END (bb) == insn)
930 BB_END (bb) = ins;
931 }
932 else
933 gcc_assert (DEBUG_INSN_P (ins));
934 }
935 }
936 last = NULL;
937
938 if (n_regs_saved)
939 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
940 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
941 regno += insert_restore (chain, JUMP_P (insn),
942 regno, MOVE_MAX_WORDS, save_mode);
943 }
944 }
945 }
946
947 /* Here from note_stores, or directly from save_call_clobbered_regs, when
948 an insn stores a value in a register.
949 Set the proper bit or bits in this_insn_sets. All pseudos that have
950 been assigned hard regs have had their register number changed already,
951 so we can ignore pseudos. */
952 static void
mark_set_regs(rtx reg,const_rtx setter ATTRIBUTE_UNUSED,void * data)953 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
954 {
955 int regno, endregno, i;
956 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
957
958 if (GET_CODE (reg) == SUBREG)
959 {
960 rtx inner = SUBREG_REG (reg);
961 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
962 return;
963 regno = subreg_regno (reg);
964 endregno = regno + subreg_nregs (reg);
965 }
966 else if (REG_P (reg)
967 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
968 {
969 regno = REGNO (reg);
970 endregno = END_REGNO (reg);
971 }
972 else
973 return;
974
975 for (i = regno; i < endregno; i++)
976 SET_HARD_REG_BIT (*this_insn_sets, i);
977 }
978
979 /* Here from note_stores when an insn stores a value in a register.
980 Set the proper bit or bits in the passed regset. All pseudos that have
981 been assigned hard regs have had their register number changed already,
982 so we can ignore pseudos. */
983 static void
add_stored_regs(rtx reg,const_rtx setter,void * data)984 add_stored_regs (rtx reg, const_rtx setter, void *data)
985 {
986 int regno, endregno, i;
987 machine_mode mode = GET_MODE (reg);
988 int offset = 0;
989
990 if (GET_CODE (setter) == CLOBBER)
991 return;
992
993 if (GET_CODE (reg) == SUBREG
994 && REG_P (SUBREG_REG (reg))
995 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
996 {
997 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
998 GET_MODE (SUBREG_REG (reg)),
999 SUBREG_BYTE (reg),
1000 GET_MODE (reg));
1001 regno = REGNO (SUBREG_REG (reg)) + offset;
1002 endregno = regno + subreg_nregs (reg);
1003 }
1004 else
1005 {
1006 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1007 return;
1008
1009 regno = REGNO (reg) + offset;
1010 endregno = end_hard_regno (mode, regno);
1011 }
1012
1013 for (i = regno; i < endregno; i++)
1014 SET_REGNO_REG_SET ((regset) data, i);
1015 }
1016
1017 /* Walk X and record all referenced registers in REFERENCED_REGS. */
1018 static void
mark_referenced_regs(rtx * loc,refmarker_fn * mark,void * arg)1019 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
1020 {
1021 enum rtx_code code = GET_CODE (*loc);
1022 const char *fmt;
1023 int i, j;
1024
1025 if (code == SET)
1026 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
1027 if (code == SET || code == CLOBBER)
1028 {
1029 loc = &SET_DEST (*loc);
1030 code = GET_CODE (*loc);
1031 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
1032 || code == PC || code == CC0
1033 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1034 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1035 /* If we're setting only part of a multi-word register,
1036 we shall mark it as referenced, because the words
1037 that are not being set should be restored. */
1038 && !read_modify_subreg_p (*loc)))
1039 return;
1040 }
1041 if (code == MEM || code == SUBREG)
1042 {
1043 loc = &XEXP (*loc, 0);
1044 code = GET_CODE (*loc);
1045 }
1046
1047 if (code == REG)
1048 {
1049 int regno = REGNO (*loc);
1050 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1051 : reg_renumber[regno]);
1052
1053 if (hardregno >= 0)
1054 mark (loc, GET_MODE (*loc), hardregno, arg);
1055 else if (arg)
1056 /* ??? Will we ever end up with an equiv expression in a debug
1057 insn, that would have required restoring a reg, or will
1058 reload take care of it for us? */
1059 return;
1060 /* If this is a pseudo that did not get a hard register, scan its
1061 memory location, since it might involve the use of another
1062 register, which might be saved. */
1063 else if (reg_equiv_mem (regno) != 0)
1064 mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
1065 else if (reg_equiv_address (regno) != 0)
1066 mark_referenced_regs (®_equiv_address (regno), mark, arg);
1067 return;
1068 }
1069
1070 fmt = GET_RTX_FORMAT (code);
1071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1072 {
1073 if (fmt[i] == 'e')
1074 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1075 else if (fmt[i] == 'E')
1076 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1077 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1078 }
1079 }
1080
1081 /* Parameter function for mark_referenced_regs() that adds registers
1082 present in the insn and in equivalent mems and addresses to
1083 referenced_regs. */
1084
1085 static void
mark_reg_as_referenced(rtx * loc ATTRIBUTE_UNUSED,machine_mode mode,int hardregno,void * arg ATTRIBUTE_UNUSED)1086 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1087 machine_mode mode,
1088 int hardregno,
1089 void *arg ATTRIBUTE_UNUSED)
1090 {
1091 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1092 }
1093
1094 /* Parameter function for mark_referenced_regs() that replaces
1095 registers referenced in a debug_insn that would have been restored,
1096 should it be a non-debug_insn, with their save locations. */
1097
1098 static void
replace_reg_with_saved_mem(rtx * loc,machine_mode mode,int regno,void * arg)1099 replace_reg_with_saved_mem (rtx *loc,
1100 machine_mode mode,
1101 int regno,
1102 void *arg)
1103 {
1104 unsigned int i, nregs = hard_regno_nregs (regno, mode);
1105 rtx mem;
1106 machine_mode *save_mode = (machine_mode *)arg;
1107
1108 for (i = 0; i < nregs; i++)
1109 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1110 break;
1111
1112 /* If none of the registers in the range would need restoring, we're
1113 all set. */
1114 if (i == nregs)
1115 return;
1116
1117 while (++i < nregs)
1118 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1119 break;
1120
1121 if (i == nregs
1122 && regno_save_mem[regno][nregs])
1123 {
1124 mem = copy_rtx (regno_save_mem[regno][nregs]);
1125
1126 if (nregs == hard_regno_nregs (regno, save_mode[regno]))
1127 mem = adjust_address_nv (mem, save_mode[regno], 0);
1128
1129 if (GET_MODE (mem) != mode)
1130 {
1131 /* This is gen_lowpart_if_possible(), but without validating
1132 the newly-formed address. */
1133 poly_int64 offset = byte_lowpart_offset (mode, GET_MODE (mem));
1134 mem = adjust_address_nv (mem, mode, offset);
1135 }
1136 }
1137 else
1138 {
1139 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1140 for (i = 0; i < nregs; i++)
1141 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1142 {
1143 gcc_assert (regno_save_mem[regno + i][1]);
1144 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1145 }
1146 else
1147 {
1148 machine_mode smode = save_mode[regno];
1149 gcc_assert (smode != VOIDmode);
1150 if (hard_regno_nregs (regno, smode) > 1)
1151 smode = mode_for_size (exact_div (GET_MODE_BITSIZE (mode),
1152 nregs),
1153 GET_MODE_CLASS (mode), 0).require ();
1154 XVECEXP (mem, 0, i) = gen_rtx_REG (smode, regno + i);
1155 }
1156 }
1157
1158 gcc_assert (GET_MODE (mem) == mode);
1159 *loc = mem;
1160 }
1161
1162
1163 /* Insert a sequence of insns to restore. Place these insns in front of
1164 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1165 the maximum number of registers which should be restored during this call.
1166 It should never be less than 1 since we only work with entire registers.
1167
1168 Note that we have verified in init_caller_save that we can do this
1169 with a simple SET, so use it. Set INSN_CODE to what we save there
1170 since the address might not be valid so the insn might not be recognized.
1171 These insns will be reloaded and have register elimination done by
1172 find_reload, so we need not worry about that here.
1173
1174 Return the extra number of registers saved. */
1175
1176 static int
insert_restore(struct insn_chain * chain,int before_p,int regno,int maxrestore,machine_mode * save_mode)1177 insert_restore (struct insn_chain *chain, int before_p, int regno,
1178 int maxrestore, machine_mode *save_mode)
1179 {
1180 int i, k;
1181 rtx pat = NULL_RTX;
1182 int code;
1183 unsigned int numregs = 0;
1184 struct insn_chain *new_chain;
1185 rtx mem;
1186
1187 /* A common failure mode if register status is not correct in the
1188 RTL is for this routine to be called with a REGNO we didn't
1189 expect to save. That will cause us to write an insn with a (nil)
1190 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1191 later, check for this common case here instead. This will remove
1192 one step in debugging such problems. */
1193 gcc_assert (regno_save_mem[regno][1]);
1194
1195 /* Get the pattern to emit and update our status.
1196
1197 See if we can restore `maxrestore' registers at once. Work
1198 backwards to the single register case. */
1199 for (i = maxrestore; i > 0; i--)
1200 {
1201 int j;
1202 int ok = 1;
1203
1204 if (regno_save_mem[regno][i] == 0)
1205 continue;
1206
1207 for (j = 0; j < i; j++)
1208 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1209 {
1210 ok = 0;
1211 break;
1212 }
1213 /* Must do this one restore at a time. */
1214 if (! ok)
1215 continue;
1216
1217 numregs = i;
1218 break;
1219 }
1220
1221 mem = regno_save_mem [regno][numregs];
1222 if (save_mode [regno] != VOIDmode
1223 && save_mode [regno] != GET_MODE (mem)
1224 && numregs == hard_regno_nregs (regno, save_mode [regno])
1225 /* Check that insn to restore REGNO in save_mode[regno] is
1226 correct. */
1227 && reg_save_code (regno, save_mode[regno]) >= 0)
1228 mem = adjust_address_nv (mem, save_mode[regno], 0);
1229 else
1230 mem = copy_rtx (mem);
1231
1232 /* Verify that the alignment of spill space is equal to or greater
1233 than required. */
1234 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1235 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1236
1237 pat = gen_rtx_SET (gen_rtx_REG (GET_MODE (mem), regno), mem);
1238 code = reg_restore_code (regno, GET_MODE (mem));
1239 new_chain = insert_one_insn (chain, before_p, code, pat);
1240
1241 /* Clear status for all registers we restored. */
1242 for (k = 0; k < i; k++)
1243 {
1244 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1245 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1246 n_regs_saved--;
1247 }
1248
1249 /* Tell our callers how many extra registers we saved/restored. */
1250 return numregs - 1;
1251 }
1252
1253 /* Like insert_restore above, but save registers instead. */
1254
1255 static int
insert_save(struct insn_chain * chain,int regno,HARD_REG_SET * to_save,machine_mode * save_mode)1256 insert_save (struct insn_chain *chain, int regno,
1257 HARD_REG_SET *to_save, machine_mode *save_mode)
1258 {
1259 int i;
1260 unsigned int k;
1261 rtx pat = NULL_RTX;
1262 int code;
1263 unsigned int numregs = 0;
1264 struct insn_chain *new_chain;
1265 rtx mem;
1266
1267 /* A common failure mode if register status is not correct in the
1268 RTL is for this routine to be called with a REGNO we didn't
1269 expect to save. That will cause us to write an insn with a (nil)
1270 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1271 later, check for this common case here. This will remove one
1272 step in debugging such problems. */
1273 gcc_assert (regno_save_mem[regno][1]);
1274
1275 /* Get the pattern to emit and update our status.
1276
1277 See if we can save several registers with a single instruction.
1278 Work backwards to the single register case. */
1279 for (i = MOVE_MAX_WORDS; i > 0; i--)
1280 {
1281 int j;
1282 int ok = 1;
1283 if (regno_save_mem[regno][i] == 0)
1284 continue;
1285
1286 for (j = 0; j < i; j++)
1287 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1288 {
1289 ok = 0;
1290 break;
1291 }
1292 /* Must do this one save at a time. */
1293 if (! ok)
1294 continue;
1295
1296 numregs = i;
1297 break;
1298 }
1299
1300 mem = regno_save_mem [regno][numregs];
1301 if (save_mode [regno] != VOIDmode
1302 && save_mode [regno] != GET_MODE (mem)
1303 && numregs == hard_regno_nregs (regno, save_mode [regno])
1304 /* Check that insn to save REGNO in save_mode[regno] is
1305 correct. */
1306 && reg_save_code (regno, save_mode[regno]) >= 0)
1307 mem = adjust_address_nv (mem, save_mode[regno], 0);
1308 else
1309 mem = copy_rtx (mem);
1310
1311 /* Verify that the alignment of spill space is equal to or greater
1312 than required. */
1313 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1314 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1315
1316 pat = gen_rtx_SET (mem, gen_rtx_REG (GET_MODE (mem), regno));
1317 code = reg_save_code (regno, GET_MODE (mem));
1318 new_chain = insert_one_insn (chain, 1, code, pat);
1319
1320 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1321 for (k = 0; k < numregs; k++)
1322 {
1323 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1324 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1325 n_regs_saved++;
1326 }
1327
1328 /* Tell our callers how many extra registers we saved/restored. */
1329 return numregs - 1;
1330 }
1331
1332 /* A note_uses callback used by insert_one_insn. Add the hard-register
1333 equivalent of each REG to regset DATA. */
1334
1335 static void
add_used_regs(rtx * loc,void * data)1336 add_used_regs (rtx *loc, void *data)
1337 {
1338 subrtx_iterator::array_type array;
1339 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
1340 {
1341 const_rtx x = *iter;
1342 if (REG_P (x))
1343 {
1344 unsigned int regno = REGNO (x);
1345 if (HARD_REGISTER_NUM_P (regno))
1346 bitmap_set_range ((regset) data, regno, REG_NREGS (x));
1347 else
1348 gcc_checking_assert (reg_renumber[regno] < 0);
1349 }
1350 }
1351 }
1352
1353 /* Emit a new caller-save insn and set the code. */
1354 static struct insn_chain *
insert_one_insn(struct insn_chain * chain,int before_p,int code,rtx pat)1355 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1356 {
1357 rtx_insn *insn = chain->insn;
1358 struct insn_chain *new_chain;
1359
1360 /* If INSN references CC0, put our insns in front of the insn that sets
1361 CC0. This is always safe, since the only way we could be passed an
1362 insn that references CC0 is for a restore, and doing a restore earlier
1363 isn't a problem. We do, however, assume here that CALL_INSNs don't
1364 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1365
1366 if (HAVE_cc0 && (NONJUMP_INSN_P (insn) || JUMP_P (insn))
1367 && before_p
1368 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1369 chain = chain->prev, insn = chain->insn;
1370
1371 new_chain = new_insn_chain ();
1372 if (before_p)
1373 {
1374 rtx link;
1375
1376 new_chain->prev = chain->prev;
1377 if (new_chain->prev != 0)
1378 new_chain->prev->next = new_chain;
1379 else
1380 reload_insn_chain = new_chain;
1381
1382 chain->prev = new_chain;
1383 new_chain->next = chain;
1384 new_chain->insn = emit_insn_before (pat, insn);
1385 /* ??? It would be nice if we could exclude the already / still saved
1386 registers from the live sets. */
1387 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1388 note_uses (&PATTERN (chain->insn), add_used_regs,
1389 &new_chain->live_throughout);
1390 /* If CHAIN->INSN is a call, then the registers which contain
1391 the arguments to the function are live in the new insn. */
1392 if (CALL_P (chain->insn))
1393 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1394 link != NULL_RTX;
1395 link = XEXP (link, 1))
1396 note_uses (&XEXP (link, 0), add_used_regs,
1397 &new_chain->live_throughout);
1398
1399 CLEAR_REG_SET (&new_chain->dead_or_set);
1400 if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1401 BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1402 }
1403 else
1404 {
1405 new_chain->next = chain->next;
1406 if (new_chain->next != 0)
1407 new_chain->next->prev = new_chain;
1408 chain->next = new_chain;
1409 new_chain->prev = chain;
1410 new_chain->insn = emit_insn_after (pat, insn);
1411 /* ??? It would be nice if we could exclude the already / still saved
1412 registers from the live sets, and observe REG_UNUSED notes. */
1413 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1414 /* Registers that are set in CHAIN->INSN live in the new insn.
1415 (Unless there is a REG_UNUSED note for them, but we don't
1416 look for them here.) */
1417 note_stores (PATTERN (chain->insn), add_stored_regs,
1418 &new_chain->live_throughout);
1419 CLEAR_REG_SET (&new_chain->dead_or_set);
1420 if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1421 BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1422 }
1423 new_chain->block = chain->block;
1424 new_chain->is_caller_save_insn = 1;
1425
1426 INSN_CODE (new_chain->insn) = code;
1427 return new_chain;
1428 }
1429 #include "gt-caller-save.h"
1430