1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992-2014 Free Software Foundation, Inc.
3    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    Under Section 7 of GPL version 3, you are granted additional
18    permissions described in the GCC Runtime Library Exception, version
19    3.1, as published by the Free Software Foundation.
20 
21    You should have received a copy of the GNU General Public License and
22    a copy of the GCC Runtime Library Exception along with this program;
23    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24    <http://www.gnu.org/licenses/>.  */
25 
26 /* Note that some other tm.h files include this one and then override
27    many of the definitions.  */
28 
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32 
33 /* Definitions for the object file format.  These are set at
34    compile-time.  */
35 
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
40 
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
45 
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
49 
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
53 
54 /* Control whether function entry points use a "dot" symbol when
55    ABI_AIX.  */
56 #define DOT_SYMBOLS 1
57 
58 /* Default string to use for cpu if not specified.  */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
62 
63 /* If configured for PPC405, support PPC405CR Erratum77.  */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
69 
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
73 
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
79 
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
85 
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
91 
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
97 
98 #ifdef HAVE_AS_DCI
99 #define ASM_CPU_476_SPEC "-m476"
100 #else
101 #define ASM_CPU_476_SPEC "-mpower4"
102 #endif
103 
104 /* Common ASM definitions used by ASM_SPEC among the various targets for
105    handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
106    provide the default assembler options if the user uses -mcpu=native, so if
107    you make changes here, make them also there.  */
108 #define ASM_CPU_SPEC \
109 "%{!mcpu*: \
110   %{mpowerpc64*: -mppc64} \
111   %{!mpowerpc64*: %(asm_default)}} \
112 %{mcpu=native: %(asm_cpu_native)} \
113 %{mcpu=cell: -mcell} \
114 %{mcpu=power3: -mppc64} \
115 %{mcpu=power4: -mpower4} \
116 %{mcpu=power5: %(asm_cpu_power5)} \
117 %{mcpu=power5+: %(asm_cpu_power5)} \
118 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
119 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
120 %{mcpu=power7: %(asm_cpu_power7)} \
121 %{mcpu=power8: %(asm_cpu_power8)} \
122 %{mcpu=a2: -ma2} \
123 %{mcpu=powerpc: -mppc} \
124 %{mcpu=rs64a: -mppc64} \
125 %{mcpu=401: -mppc} \
126 %{mcpu=403: -m403} \
127 %{mcpu=405: -m405} \
128 %{mcpu=405fp: -m405} \
129 %{mcpu=440: -m440} \
130 %{mcpu=440fp: -m440} \
131 %{mcpu=464: -m440} \
132 %{mcpu=464fp: -m440} \
133 %{mcpu=476: %(asm_cpu_476)} \
134 %{mcpu=476fp: %(asm_cpu_476)} \
135 %{mcpu=505: -mppc} \
136 %{mcpu=601: -m601} \
137 %{mcpu=602: -mppc} \
138 %{mcpu=603: -mppc} \
139 %{mcpu=603e: -mppc} \
140 %{mcpu=ec603e: -mppc} \
141 %{mcpu=604: -mppc} \
142 %{mcpu=604e: -mppc} \
143 %{mcpu=620: -mppc64} \
144 %{mcpu=630: -mppc64} \
145 %{mcpu=740: -mppc} \
146 %{mcpu=750: -mppc} \
147 %{mcpu=G3: -mppc} \
148 %{mcpu=7400: -mppc -maltivec} \
149 %{mcpu=7450: -mppc -maltivec} \
150 %{mcpu=G4: -mppc -maltivec} \
151 %{mcpu=801: -mppc} \
152 %{mcpu=821: -mppc} \
153 %{mcpu=823: -mppc} \
154 %{mcpu=860: -mppc} \
155 %{mcpu=970: -mpower4 -maltivec} \
156 %{mcpu=G5: -mpower4 -maltivec} \
157 %{mcpu=8540: -me500} \
158 %{mcpu=8548: -me500} \
159 %{mcpu=e300c2: -me300} \
160 %{mcpu=e300c3: -me300} \
161 %{mcpu=e500mc: -me500mc} \
162 %{mcpu=e500mc64: -me500mc64} \
163 %{mcpu=e5500: -me5500} \
164 %{mcpu=e6500: -me6500} \
165 %{maltivec: -maltivec} \
166 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
167 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
168 -many"
169 
170 #define CPP_DEFAULT_SPEC ""
171 
172 #define ASM_DEFAULT_SPEC ""
173 
174 /* This macro defines names of additional specifications to put in the specs
175    that can be used in various specifications like CC1_SPEC.  Its definition
176    is an initializer with a subgrouping for each command option.
177 
178    Each subgrouping contains a string constant, that defines the
179    specification name, and a string constant that used by the GCC driver
180    program.
181 
182    Do not define this macro if it does not need to do anything.  */
183 
184 #define SUBTARGET_EXTRA_SPECS
185 
186 #define EXTRA_SPECS							\
187   { "cpp_default",		CPP_DEFAULT_SPEC },			\
188   { "asm_cpu",			ASM_CPU_SPEC },				\
189   { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
190   { "asm_default",		ASM_DEFAULT_SPEC },			\
191   { "cc1_cpu",			CC1_CPU_SPEC },				\
192   { "asm_cpu_power5",		ASM_CPU_POWER5_SPEC },			\
193   { "asm_cpu_power6",		ASM_CPU_POWER6_SPEC },			\
194   { "asm_cpu_power7",		ASM_CPU_POWER7_SPEC },			\
195   { "asm_cpu_power8",		ASM_CPU_POWER8_SPEC },			\
196   { "asm_cpu_476",		ASM_CPU_476_SPEC },			\
197   SUBTARGET_EXTRA_SPECS
198 
199 /* -mcpu=native handling only makes sense with compiler running on
200    an PowerPC chip.  If changing this condition, also change
201    the condition in driver-rs6000.c.  */
202 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203 /* In driver-rs6000.c.  */
204 extern const char *host_detect_local_cpu (int argc, const char **argv);
205 #define EXTRA_SPEC_FUNCTIONS \
206   { "local_cpu_detect", host_detect_local_cpu },
207 #define HAVE_LOCAL_CPU_DETECT
208 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
209 
210 #else
211 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212 #endif
213 
214 #ifndef CC1_CPU_SPEC
215 #ifdef HAVE_LOCAL_CPU_DETECT
216 #define CC1_CPU_SPEC \
217 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218  %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219 #else
220 #define CC1_CPU_SPEC ""
221 #endif
222 #endif
223 
224 /* Architecture type.  */
225 
226 /* Define TARGET_MFCRF if the target assembler does not support the
227    optional field operand for mfcr.  */
228 
229 #ifndef HAVE_AS_MFCRF
230 #undef  TARGET_MFCRF
231 #define TARGET_MFCRF 0
232 #endif
233 
234 /* Define TARGET_POPCNTB if the target assembler does not support the
235    popcount byte instruction.  */
236 
237 #ifndef HAVE_AS_POPCNTB
238 #undef  TARGET_POPCNTB
239 #define TARGET_POPCNTB 0
240 #endif
241 
242 /* Define TARGET_FPRND if the target assembler does not support the
243    fp rounding instructions.  */
244 
245 #ifndef HAVE_AS_FPRND
246 #undef  TARGET_FPRND
247 #define TARGET_FPRND 0
248 #endif
249 
250 /* Define TARGET_CMPB if the target assembler does not support the
251    cmpb instruction.  */
252 
253 #ifndef HAVE_AS_CMPB
254 #undef  TARGET_CMPB
255 #define TARGET_CMPB 0
256 #endif
257 
258 /* Define TARGET_MFPGPR if the target assembler does not support the
259    mffpr and mftgpr instructions. */
260 
261 #ifndef HAVE_AS_MFPGPR
262 #undef  TARGET_MFPGPR
263 #define TARGET_MFPGPR 0
264 #endif
265 
266 /* Define TARGET_DFP if the target assembler does not support decimal
267    floating point instructions.  */
268 #ifndef HAVE_AS_DFP
269 #undef  TARGET_DFP
270 #define TARGET_DFP 0
271 #endif
272 
273 /* Define TARGET_POPCNTD if the target assembler does not support the
274    popcount word and double word instructions.  */
275 
276 #ifndef HAVE_AS_POPCNTD
277 #undef  TARGET_POPCNTD
278 #define TARGET_POPCNTD 0
279 #endif
280 
281 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
282    waitasecond instruction.  Allow -mpower8-fusion, since it does not add new
283    instructions.  */
284 
285 #ifndef HAVE_AS_POWER8
286 #undef  TARGET_DIRECT_MOVE
287 #undef  TARGET_CRYPTO
288 #undef  TARGET_HTM
289 #undef  TARGET_P8_VECTOR
290 #define TARGET_DIRECT_MOVE 0
291 #define TARGET_CRYPTO 0
292 #define TARGET_HTM 0
293 #define TARGET_P8_VECTOR 0
294 #endif
295 
296 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync.  If
297    not, generate the lwsync code as an integer constant.  */
298 #ifdef HAVE_AS_LWSYNC
299 #define TARGET_LWSYNC_INSTRUCTION 1
300 #else
301 #define TARGET_LWSYNC_INSTRUCTION 0
302 #endif
303 
304 /* Define TARGET_TLS_MARKERS if the target assembler does not support
305    arg markers for __tls_get_addr calls.  */
306 #ifndef HAVE_AS_TLS_MARKERS
307 #undef  TARGET_TLS_MARKERS
308 #define TARGET_TLS_MARKERS 0
309 #else
310 #define TARGET_TLS_MARKERS tls_markers
311 #endif
312 
313 #ifndef TARGET_SECURE_PLT
314 #define TARGET_SECURE_PLT 0
315 #endif
316 
317 #ifndef TARGET_CMODEL
318 #define TARGET_CMODEL CMODEL_SMALL
319 #endif
320 
321 #define TARGET_32BIT		(! TARGET_64BIT)
322 
323 #ifndef HAVE_AS_TLS
324 #define HAVE_AS_TLS 0
325 #endif
326 
327 #ifndef TARGET_LINK_STACK
328 #define TARGET_LINK_STACK 0
329 #endif
330 
331 #ifndef SET_TARGET_LINK_STACK
332 #define SET_TARGET_LINK_STACK(X) do { } while (0)
333 #endif
334 
335 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
336 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
337   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
338 
339 #ifdef IN_LIBGCC2
340 /* For libgcc2 we make sure this is a compile time constant */
341 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
342 #undef TARGET_POWERPC64
343 #define TARGET_POWERPC64	1
344 #else
345 #undef TARGET_POWERPC64
346 #define TARGET_POWERPC64	0
347 #endif
348 #else
349     /* The option machinery will define this.  */
350 #endif
351 
352 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
353 
354 /* FPU operations supported.
355    Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
356    also test TARGET_HARD_FLOAT.  */
357 #define TARGET_SINGLE_FLOAT 1
358 #define TARGET_DOUBLE_FLOAT 1
359 #define TARGET_SINGLE_FPU   0
360 #define TARGET_SIMPLE_FPU   0
361 #define TARGET_XILINX_FPU   0
362 
363 /* Recast the processor type to the cpu attribute.  */
364 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
365 
366 /* Define generic processor types based upon current deployment.  */
367 #define PROCESSOR_COMMON    PROCESSOR_PPC601
368 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
369 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
370 
371 /* Define the default processor.  This is overridden by other tm.h files.  */
372 #define PROCESSOR_DEFAULT   PROCESSOR_PPC603
373 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
374 
375 /* Specify the dialect of assembler to use.  Only new mnemonics are supported
376    starting with GCC 4.8, i.e. just one dialect, but for backwards
377    compatibility with older inline asm ASSEMBLER_DIALECT needs to be
378    defined.  */
379 #define ASSEMBLER_DIALECT 1
380 
381 /* Debug support */
382 #define MASK_DEBUG_STACK	0x01	/* debug stack applications */
383 #define	MASK_DEBUG_ARG		0x02	/* debug argument handling */
384 #define MASK_DEBUG_REG		0x04	/* debug register handling */
385 #define MASK_DEBUG_ADDR		0x08	/* debug memory addressing */
386 #define MASK_DEBUG_COST		0x10	/* debug rtx codes */
387 #define MASK_DEBUG_TARGET	0x20	/* debug target attribute/pragma */
388 #define MASK_DEBUG_BUILTIN	0x40	/* debug builtins */
389 #define MASK_DEBUG_ALL		(MASK_DEBUG_STACK \
390 				 | MASK_DEBUG_ARG \
391 				 | MASK_DEBUG_REG \
392 				 | MASK_DEBUG_ADDR \
393 				 | MASK_DEBUG_COST \
394 				 | MASK_DEBUG_TARGET \
395 				 | MASK_DEBUG_BUILTIN)
396 
397 #define	TARGET_DEBUG_STACK	(rs6000_debug & MASK_DEBUG_STACK)
398 #define	TARGET_DEBUG_ARG	(rs6000_debug & MASK_DEBUG_ARG)
399 #define TARGET_DEBUG_REG	(rs6000_debug & MASK_DEBUG_REG)
400 #define TARGET_DEBUG_ADDR	(rs6000_debug & MASK_DEBUG_ADDR)
401 #define TARGET_DEBUG_COST	(rs6000_debug & MASK_DEBUG_COST)
402 #define TARGET_DEBUG_TARGET	(rs6000_debug & MASK_DEBUG_TARGET)
403 #define TARGET_DEBUG_BUILTIN	(rs6000_debug & MASK_DEBUG_BUILTIN)
404 
405 /* Describe the vector unit used for arithmetic operations.  */
406 extern enum rs6000_vector rs6000_vector_unit[];
407 
408 #define VECTOR_UNIT_NONE_P(MODE)			\
409   (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
410 
411 #define VECTOR_UNIT_VSX_P(MODE)				\
412   (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
413 
414 #define VECTOR_UNIT_P8_VECTOR_P(MODE)			\
415   (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
416 
417 #define VECTOR_UNIT_ALTIVEC_P(MODE)			\
418   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
419 
420 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE)		\
421   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
422 	     (int)VECTOR_VSX,				\
423 	     (int)VECTOR_P8_VECTOR))
424 
425 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
426    altivec (VMX) or VSX vector instructions.  P8 vector support is upwards
427    compatible, so allow it as well, rather than changing all of the uses of the
428    macro.  */
429 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
430   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
431 	     (int)VECTOR_ALTIVEC,			\
432 	     (int)VECTOR_P8_VECTOR))
433 
434 /* Describe whether to use VSX loads or Altivec loads.  For now, just use the
435    same unit as the vector unit we are using, but we may want to migrate to
436    using VSX style loads even for types handled by altivec.  */
437 extern enum rs6000_vector rs6000_vector_mem[];
438 
439 #define VECTOR_MEM_NONE_P(MODE)				\
440   (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
441 
442 #define VECTOR_MEM_VSX_P(MODE)				\
443   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
444 
445 #define VECTOR_MEM_P8_VECTOR_P(MODE)			\
446   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
447 
448 #define VECTOR_MEM_ALTIVEC_P(MODE)			\
449   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
450 
451 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE)		\
452   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
453 	     (int)VECTOR_VSX,				\
454 	     (int)VECTOR_P8_VECTOR))
455 
456 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
457   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
458 	     (int)VECTOR_ALTIVEC,			\
459 	     (int)VECTOR_P8_VECTOR))
460 
461 /* Return the alignment of a given vector type, which is set based on the
462    vector unit use.  VSX for instance can load 32 or 64 bit aligned words
463    without problems, while Altivec requires 128-bit aligned vectors.  */
464 extern int rs6000_vector_align[];
465 
466 #define VECTOR_ALIGN(MODE)						\
467   ((rs6000_vector_align[(MODE)] != 0)					\
468    ? rs6000_vector_align[(MODE)]					\
469    : (int)GET_MODE_BITSIZE ((MODE)))
470 
471 /* Determine the element order to use for vector instructions.  By
472    default we use big-endian element order when targeting big-endian,
473    and little-endian element order when targeting little-endian.  For
474    programs being ported from BE Power to LE Power, it can sometimes
475    be useful to use big-endian element order when targeting little-endian.
476    This is set via -maltivec=be, for example.  */
477 #define VECTOR_ELT_ORDER_BIG                                  \
478   (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
479 
480 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
481    with scalar instructions.  */
482 #define VECTOR_ELEMENT_SCALAR_64BIT	((BYTES_BIG_ENDIAN) ? 0 : 1)
483 
484 /* Alignment options for fields in structures for sub-targets following
485    AIX-like ABI.
486    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
487    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
488 
489    Override the macro definitions when compiling libobjc to avoid undefined
490    reference to rs6000_alignment_flags due to library's use of GCC alignment
491    macros which use the macros below.  */
492 
493 #ifndef IN_TARGET_LIBS
494 #define MASK_ALIGN_POWER   0x00000000
495 #define MASK_ALIGN_NATURAL 0x00000001
496 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
497 #else
498 #define TARGET_ALIGN_NATURAL 0
499 #endif
500 
501 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
502 #define TARGET_IEEEQUAD rs6000_ieeequad
503 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
504 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
505 
506 #define TARGET_SPE_ABI 0
507 #define TARGET_SPE 0
508 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
509 #define TARGET_FPRS 1
510 #define TARGET_E500_SINGLE 0
511 #define TARGET_E500_DOUBLE 0
512 #define CHECK_E500_OPTIONS do { } while (0)
513 
514 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
515    Enable 32-bit fcfid's on any of the switches for newer ISA machines or
516    XILINX.  */
517 #define TARGET_FCFID	(TARGET_POWERPC64				\
518 			 || TARGET_PPC_GPOPT	/* 970/power4 */	\
519 			 || TARGET_POPCNTB	/* ISA 2.02 */		\
520 			 || TARGET_CMPB		/* ISA 2.05 */		\
521 			 || TARGET_POPCNTD	/* ISA 2.06 */		\
522 			 || TARGET_XILINX_FPU)
523 
524 #define TARGET_FCTIDZ	TARGET_FCFID
525 #define TARGET_STFIWX	TARGET_PPC_GFXOPT
526 #define TARGET_LFIWAX	TARGET_CMPB
527 #define TARGET_LFIWZX	TARGET_POPCNTD
528 #define TARGET_FCFIDS	TARGET_POPCNTD
529 #define TARGET_FCFIDU	TARGET_POPCNTD
530 #define TARGET_FCFIDUS	TARGET_POPCNTD
531 #define TARGET_FCTIDUZ	TARGET_POPCNTD
532 #define TARGET_FCTIWUZ	TARGET_POPCNTD
533 
534 #define TARGET_XSCVDPSPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
535 #define TARGET_XSCVSPDPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
536 #define TARGET_VADDUQM		(TARGET_P8_VECTOR && TARGET_POWERPC64)
537 
538 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
539    in power7, so conditionalize them on p8 features.  TImode syncs need quad
540    memory support.  */
541 #define TARGET_SYNC_HI_QI	(TARGET_QUAD_MEMORY			\
542 				 || TARGET_QUAD_MEMORY_ATOMIC		\
543 				 || TARGET_DIRECT_MOVE)
544 
545 #define TARGET_SYNC_TI		TARGET_QUAD_MEMORY_ATOMIC
546 
547 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
548    to allocate the SDmode stack slot to get the value into the proper location
549    in the register.  */
550 #define TARGET_NO_SDMODE_STACK	(TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
551 
552 /* In switching from using target_flags to using rs6000_isa_flags, the options
553    machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>.  For now map
554    OPTION_MASK_<xxx> back into MASK_<xxx>.  */
555 #define MASK_ALTIVEC			OPTION_MASK_ALTIVEC
556 #define MASK_CMPB			OPTION_MASK_CMPB
557 #define MASK_CRYPTO			OPTION_MASK_CRYPTO
558 #define MASK_DFP			OPTION_MASK_DFP
559 #define MASK_DIRECT_MOVE		OPTION_MASK_DIRECT_MOVE
560 #define MASK_DLMZB			OPTION_MASK_DLMZB
561 #define MASK_EABI			OPTION_MASK_EABI
562 #define MASK_FPRND			OPTION_MASK_FPRND
563 #define MASK_P8_FUSION			OPTION_MASK_P8_FUSION
564 #define MASK_HARD_FLOAT			OPTION_MASK_HARD_FLOAT
565 #define MASK_HTM			OPTION_MASK_HTM
566 #define MASK_ISEL			OPTION_MASK_ISEL
567 #define MASK_MFCRF			OPTION_MASK_MFCRF
568 #define MASK_MFPGPR			OPTION_MASK_MFPGPR
569 #define MASK_MULHW			OPTION_MASK_MULHW
570 #define MASK_MULTIPLE			OPTION_MASK_MULTIPLE
571 #define MASK_NO_UPDATE			OPTION_MASK_NO_UPDATE
572 #define MASK_P8_VECTOR			OPTION_MASK_P8_VECTOR
573 #define MASK_POPCNTB			OPTION_MASK_POPCNTB
574 #define MASK_POPCNTD			OPTION_MASK_POPCNTD
575 #define MASK_PPC_GFXOPT			OPTION_MASK_PPC_GFXOPT
576 #define MASK_PPC_GPOPT			OPTION_MASK_PPC_GPOPT
577 #define MASK_RECIP_PRECISION		OPTION_MASK_RECIP_PRECISION
578 #define MASK_SOFT_FLOAT			OPTION_MASK_SOFT_FLOAT
579 #define MASK_STRICT_ALIGN		OPTION_MASK_STRICT_ALIGN
580 #define MASK_STRING			OPTION_MASK_STRING
581 #define MASK_UPDATE			OPTION_MASK_UPDATE
582 #define MASK_VSX			OPTION_MASK_VSX
583 #define MASK_VSX_TIMODE			OPTION_MASK_VSX_TIMODE
584 
585 #ifndef IN_LIBGCC2
586 #define MASK_POWERPC64			OPTION_MASK_POWERPC64
587 #endif
588 
589 #ifdef TARGET_64BIT
590 #define MASK_64BIT			OPTION_MASK_64BIT
591 #endif
592 
593 #ifdef TARGET_RELOCATABLE
594 #define MASK_RELOCATABLE		OPTION_MASK_RELOCATABLE
595 #endif
596 
597 #ifdef TARGET_LITTLE_ENDIAN
598 #define MASK_LITTLE_ENDIAN		OPTION_MASK_LITTLE_ENDIAN
599 #endif
600 
601 #ifdef TARGET_MINIMAL_TOC
602 #define MASK_MINIMAL_TOC		OPTION_MASK_MINIMAL_TOC
603 #endif
604 
605 #ifdef TARGET_REGNAMES
606 #define MASK_REGNAMES			OPTION_MASK_REGNAMES
607 #endif
608 
609 #ifdef TARGET_PROTOTYPE
610 #define MASK_PROTOTYPE			OPTION_MASK_PROTOTYPE
611 #endif
612 
613 /* For power systems, we want to enable Altivec and VSX builtins even if the
614    user did not use -maltivec or -mvsx to allow the builtins to be used inside
615    of #pragma GCC target or the target attribute to change the code level for a
616    given system.  The SPE and Paired builtins are only enabled if you configure
617    the compiler for those builtins, and those machines don't support altivec or
618    VSX.  */
619 
620 #define TARGET_EXTRA_BUILTINS	(!TARGET_SPE && !TARGET_PAIRED_FLOAT	 \
621 				 && ((TARGET_POWERPC64			 \
622 				      || TARGET_PPC_GPOPT /* 970/power4 */ \
623 				      || TARGET_POPCNTB	  /* ISA 2.02 */ \
624 				      || TARGET_CMPB	  /* ISA 2.05 */ \
625 				      || TARGET_POPCNTD	  /* ISA 2.06 */ \
626 				      || TARGET_ALTIVEC			 \
627 				      || TARGET_VSX			 \
628 				      || TARGET_HARD_FLOAT)))
629 
630 /* E500 cores only support plain "sync", not lwsync.  */
631 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
632 			  || rs6000_cpu == PROCESSOR_PPC8548)
633 
634 
635 /* Whether SF/DF operations are supported on the E500.  */
636 #define TARGET_SF_SPE	(TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT	\
637 			 && !TARGET_FPRS)
638 
639 #define TARGET_DF_SPE	(TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT	\
640 			 && !TARGET_FPRS && TARGET_E500_DOUBLE)
641 
642 /* Whether SF/DF operations are supported by by the normal floating point unit
643    (or the vector/scalar unit).  */
644 #define TARGET_SF_FPR	(TARGET_HARD_FLOAT && TARGET_FPRS		\
645 			 && TARGET_SINGLE_FLOAT)
646 
647 #define TARGET_DF_FPR	(TARGET_HARD_FLOAT && TARGET_FPRS		\
648 			 && TARGET_DOUBLE_FLOAT)
649 
650 /* Whether SF/DF operations are supported by any hardware.  */
651 #define TARGET_SF_INSN	(TARGET_SF_FPR || TARGET_SF_SPE)
652 #define TARGET_DF_INSN	(TARGET_DF_FPR || TARGET_DF_SPE)
653 
654 /* Which machine supports the various reciprocal estimate instructions.  */
655 #define TARGET_FRES	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
656 			 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
657 
658 #define TARGET_FRE	(TARGET_HARD_FLOAT && TARGET_FPRS \
659 			 && TARGET_DOUBLE_FLOAT \
660 			 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
661 
662 #define TARGET_FRSQRTES	(TARGET_HARD_FLOAT && TARGET_POPCNTB \
663 			 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
664 
665 #define TARGET_FRSQRTE	(TARGET_HARD_FLOAT && TARGET_FPRS \
666 			 && TARGET_DOUBLE_FLOAT \
667 			 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
668 
669 /* Whether the various reciprocal divide/square root estimate instructions
670    exist, and whether we should automatically generate code for the instruction
671    by default.  */
672 #define RS6000_RECIP_MASK_HAVE_RE	0x1	/* have RE instruction.  */
673 #define RS6000_RECIP_MASK_AUTO_RE	0x2	/* generate RE by default.  */
674 #define RS6000_RECIP_MASK_HAVE_RSQRTE	0x4	/* have RSQRTE instruction.  */
675 #define RS6000_RECIP_MASK_AUTO_RSQRTE	0x8	/* gen. RSQRTE by default.  */
676 
677 extern unsigned char rs6000_recip_bits[];
678 
679 #define RS6000_RECIP_HAVE_RE_P(MODE) \
680   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
681 
682 #define RS6000_RECIP_AUTO_RE_P(MODE) \
683   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
684 
685 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
686   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
687 
688 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
689   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
690 
691 /* The default CPU for TARGET_OPTION_OVERRIDE.  */
692 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
693 
694 /* Target pragma.  */
695 #define REGISTER_TARGET_PRAGMAS() do {				\
696   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
697   targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
698   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
699   rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
700 } while (0)
701 
702 /* Target #defines.  */
703 #define TARGET_CPU_CPP_BUILTINS() \
704   rs6000_cpu_cpp_builtins (pfile)
705 
706 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
707    we're compiling for.  Some configurations may need to override it.  */
708 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
709   do						\
710     {						\
711       if (BYTES_BIG_ENDIAN)			\
712 	{					\
713 	  builtin_define ("__BIG_ENDIAN__");	\
714 	  builtin_define ("_BIG_ENDIAN");	\
715 	  builtin_assert ("machine=bigendian");	\
716 	}					\
717       else					\
718 	{					\
719 	  builtin_define ("__LITTLE_ENDIAN__");	\
720 	  builtin_define ("_LITTLE_ENDIAN");	\
721 	  builtin_assert ("machine=littleendian"); \
722 	}					\
723     }						\
724   while (0)
725 
726 /* Target machine storage layout.  */
727 
728 /* Define this macro if it is advisable to hold scalars in registers
729    in a wider mode than that declared by the program.  In such cases,
730    the value is constrained to be within the bounds of the declared
731    type, but kept valid in the wider mode.  The signedness of the
732    extension may differ from that of the type.  */
733 
734 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
735   if (GET_MODE_CLASS (MODE) == MODE_INT		\
736       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
737     (MODE) = TARGET_32BIT ? SImode : DImode;
738 
739 /* Define this if most significant bit is lowest numbered
740    in instructions that operate on numbered bit-fields.  */
741 /* That is true on RS/6000.  */
742 #define BITS_BIG_ENDIAN 1
743 
744 /* Define this if most significant byte of a word is the lowest numbered.  */
745 /* That is true on RS/6000.  */
746 #define BYTES_BIG_ENDIAN 1
747 
748 /* Define this if most significant word of a multiword number is lowest
749    numbered.
750 
751    For RS/6000 we can decide arbitrarily since there are no machine
752    instructions for them.  Might as well be consistent with bits and bytes.  */
753 #define WORDS_BIG_ENDIAN 1
754 
755 /* This says that for the IBM long double the larger magnitude double
756    comes first.  It's really a two element double array, and arrays
757    don't index differently between little- and big-endian.  */
758 #define LONG_DOUBLE_LARGE_FIRST 1
759 
760 #define MAX_BITS_PER_WORD 64
761 
762 /* Width of a word, in units (bytes).  */
763 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
764 #ifdef IN_LIBGCC2
765 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
766 #else
767 #define MIN_UNITS_PER_WORD 4
768 #endif
769 #define UNITS_PER_FP_WORD 8
770 #define UNITS_PER_ALTIVEC_WORD 16
771 #define UNITS_PER_VSX_WORD 16
772 #define UNITS_PER_SPE_WORD 8
773 #define UNITS_PER_PAIRED_WORD 8
774 
775 /* Type used for ptrdiff_t, as a string used in a declaration.  */
776 #define PTRDIFF_TYPE "int"
777 
778 /* Type used for size_t, as a string used in a declaration.  */
779 #define SIZE_TYPE "long unsigned int"
780 
781 /* Type used for wchar_t, as a string used in a declaration.  */
782 #define WCHAR_TYPE "short unsigned int"
783 
784 /* Width of wchar_t in bits.  */
785 #define WCHAR_TYPE_SIZE 16
786 
787 /* A C expression for the size in bits of the type `short' on the
788    target machine.  If you don't define this, the default is half a
789    word.  (If this would be less than one storage unit, it is
790    rounded up to one unit.)  */
791 #define SHORT_TYPE_SIZE 16
792 
793 /* A C expression for the size in bits of the type `int' on the
794    target machine.  If you don't define this, the default is one
795    word.  */
796 #define INT_TYPE_SIZE 32
797 
798 /* A C expression for the size in bits of the type `long' on the
799    target machine.  If you don't define this, the default is one
800    word.  */
801 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
802 
803 /* A C expression for the size in bits of the type `long long' on the
804    target machine.  If you don't define this, the default is two
805    words.  */
806 #define LONG_LONG_TYPE_SIZE 64
807 
808 /* A C expression for the size in bits of the type `float' on the
809    target machine.  If you don't define this, the default is one
810    word.  */
811 #define FLOAT_TYPE_SIZE 32
812 
813 /* A C expression for the size in bits of the type `double' on the
814    target machine.  If you don't define this, the default is two
815    words.  */
816 #define DOUBLE_TYPE_SIZE 64
817 
818 /* A C expression for the size in bits of the type `long double' on
819    the target machine.  If you don't define this, the default is two
820    words.  */
821 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
822 
823 /* Define this to set long double type size to use in libgcc2.c, which can
824    not depend on target_flags.  */
825 #ifdef __LONG_DOUBLE_128__
826 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
827 #else
828 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
829 #endif
830 
831 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
832 #define WIDEST_HARDWARE_FP_SIZE 64
833 
834 /* Width in bits of a pointer.
835    See also the macro `Pmode' defined below.  */
836 extern unsigned rs6000_pointer_size;
837 #define POINTER_SIZE rs6000_pointer_size
838 
839 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
840 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
841 
842 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
843 #define STACK_BOUNDARY	\
844   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
845     ? 64 : 128)
846 
847 /* Allocation boundary (in *bits*) for the code of a function.  */
848 #define FUNCTION_BOUNDARY 32
849 
850 /* No data type wants to be aligned rounder than this.  */
851 #define BIGGEST_ALIGNMENT 128
852 
853 /* Alignment of field after `int : 0' in a structure.  */
854 #define EMPTY_FIELD_BOUNDARY 32
855 
856 /* Every structure's size must be a multiple of this.  */
857 #define STRUCTURE_SIZE_BOUNDARY 8
858 
859 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
860 #define PCC_BITFIELD_TYPE_MATTERS 1
861 
862 enum data_align { align_abi, align_opt, align_both };
863 
864 /* A C expression to compute the alignment for a variables in the
865    local store.  TYPE is the data type, and ALIGN is the alignment
866    that the object would ordinarily have.  */
867 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
868   rs6000_data_alignment (TYPE, ALIGN, align_both)
869 
870 /* Make strings word-aligned so strcpy from constants will be faster.  */
871 #define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
872   (TREE_CODE (EXP) == STRING_CST	                         \
873    && (STRICT_ALIGNMENT || !optimize_size)                       \
874    && (ALIGN) < BITS_PER_WORD                                    \
875    ? BITS_PER_WORD                                               \
876    : (ALIGN))
877 
878 /* Make arrays of chars word-aligned for the same reasons.  */
879 #define DATA_ALIGNMENT(TYPE, ALIGN) \
880   rs6000_data_alignment (TYPE, ALIGN, align_opt)
881 
882 /* Align vectors to 128 bits.  Align SPE vectors and E500 v2 doubles to
883    64 bits.  */
884 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
885   rs6000_data_alignment (TYPE, ALIGN, align_abi)
886 
887 /* Nonzero if move instructions will actually fail to work
888    when given unaligned data.  */
889 #define STRICT_ALIGNMENT 0
890 
891 /* Define this macro to be the value 1 if unaligned accesses have a cost
892    many times greater than aligned accesses, for example if they are
893    emulated in a trap handler.  */
894 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
895    memory instructions trap on unaligned accesses; VSX memory instructions are
896    aligned to 4 or 8 bytes.  */
897 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
898   (STRICT_ALIGNMENT							\
899    || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
900 	|| (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)	\
901        && (ALIGN) < 32)							\
902    || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
903 
904 
905 /* Standard register usage.  */
906 
907 /* Number of actual hardware registers.
908    The hardware registers are assigned numbers for the compiler
909    from 0 to just below FIRST_PSEUDO_REGISTER.
910    All registers that the compiler knows about must be given numbers,
911    even those that are not normally considered general registers.
912 
913    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
914    a count register, a link register, and 8 condition register fields,
915    which we view here as separate registers.  AltiVec adds 32 vector
916    registers and a VRsave register.
917 
918    In addition, the difference between the frame and argument pointers is
919    a function of the number of registers saved, so we need to have a
920    register for AP that will later be eliminated in favor of SP or FP.
921    This is a normal register, but it is fixed.
922 
923    We also create a pseudo register for float/int conversions, that will
924    really represent the memory location used.  It is represented here as
925    a register, in order to work around problems in allocating stack storage
926    in inline functions.
927 
928    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
929    pointer, which is eventually eliminated in favor of SP or FP.
930 
931    The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS.  */
932 
933 #define FIRST_PSEUDO_REGISTER 149
934 
935 /* This must be included for pre gcc 3.0 glibc compatibility.  */
936 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
937 
938 /* True if register is an SPE High register.  */
939 #define SPE_HIGH_REGNO_P(N) \
940   ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
941 
942 /* SPE high registers added as hard regs.
943    The sfp register and 3 HTM registers
944    aren't included in DWARF_FRAME_REGISTERS.  */
945 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
946 
947 /* The SPE has an additional 32 synthetic registers, with DWARF debug
948    info numbering for these registers starting at 1200.  While eh_frame
949    register numbering need not be the same as the debug info numbering,
950    we choose to number these regs for eh_frame at 1200 too.
951 
952    We must map them here to avoid huge unwinder tables mostly consisting
953    of unused space.  */
954 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
955   ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
956 
957 /* Use standard DWARF numbering for DWARF debugging information.  */
958 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
959 
960 /* Use gcc hard register numbering for eh_frame.  */
961 #define DWARF_FRAME_REGNUM(REGNO) \
962   (SPE_HIGH_REGNO_P (REGNO) ? ((REGNO) - FIRST_SPE_HIGH_REGNO + 1200) : (REGNO))
963 
964 /* Map register numbers held in the call frame info that gcc has
965    collected using DWARF_FRAME_REGNUM to those that should be output in
966    .debug_frame and .eh_frame.  We continue to use gcc hard reg numbers
967    for .eh_frame, but use the numbers mandated by the various ABIs for
968    .debug_frame.  rs6000_emit_prologue has translated any combination of
969    CR2, CR3, CR4 saves to a save of CR2.  The actual code emitted saves
970    the whole of CR, so we map CR2_REGNO to the DWARF reg for CR.  */
971 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)	\
972   ((FOR_EH) ? (REGNO)				\
973    : (REGNO) == CR2_REGNO ? 64			\
974    : DBX_REGISTER_NUMBER (REGNO))
975 
976 /* 1 for registers that have pervasive standard uses
977    and are not available for the register allocator.
978 
979    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
980    as a local register; for all other OS's r2 is the TOC pointer.
981 
982    cr5 is not supposed to be used.
983 
984    On System V implementations, r13 is fixed and not available for use.  */
985 
986 #define FIXED_REGISTERS  \
987   {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
988    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
989    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
990    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
991    0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
992    /* AltiVec registers.  */			   \
993    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
994    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
995    1, 1						   \
996    , 1, 1, 1, 1, 1, 1,				   \
997    /* SPE High registers.  */			   \
998    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
999    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1  \
1000 }
1001 
1002 /* 1 for registers not available across function calls.
1003    These must include the FIXED_REGISTERS and also any
1004    registers that can be used without being saved.
1005    The latter must include the registers where values are returned
1006    and the register where structure-value addresses are passed.
1007    Aside from that, you can include as many other registers as you like.  */
1008 
1009 #define CALL_USED_REGISTERS  \
1010   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1011    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1012    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1013    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1014    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
1015    /* AltiVec registers.  */			   \
1016    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1017    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1018    1, 1						   \
1019    , 1, 1, 1, 1, 1, 1,				   \
1020    /* SPE High registers.  */			   \
1021    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1022    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1  \
1023 }
1024 
1025 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1026    the entire set of `FIXED_REGISTERS' be included.
1027    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1028    This macro is optional.  If not specified, it defaults to the value
1029    of `CALL_USED_REGISTERS'.  */
1030 
1031 #define CALL_REALLY_USED_REGISTERS  \
1032   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1033    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1034    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1035    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1036    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
1037    /* AltiVec registers.  */			   \
1038    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1039    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1040    0, 0						   \
1041    , 0, 0, 0, 0, 0, 0,				   \
1042    /* SPE High registers.  */			   \
1043    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1044    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  \
1045 }
1046 
1047 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1048 
1049 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1050 #define FIRST_SAVED_FP_REGNO	  (14+32)
1051 #define FIRST_SAVED_GP_REGNO	  (FIXED_R13 ? 14 : 13)
1052 
1053 /* List the order in which to allocate registers.  Each register must be
1054    listed once, even those in FIXED_REGISTERS.
1055 
1056    We allocate in the following order:
1057 	fp0		(not saved or used for anything)
1058 	fp13 - fp2	(not saved; incoming fp arg registers)
1059 	fp1		(not saved; return value)
1060 	fp31 - fp14	(saved; order given to save least number)
1061 	cr7, cr6	(not saved or special)
1062 	cr1		(not saved, but used for FP operations)
1063 	cr0		(not saved, but used for arithmetic operations)
1064 	cr4, cr3, cr2	(saved)
1065 	r9		(not saved; best for TImode)
1066 	r10, r8-r4	(not saved; highest first for less conflict with params)
1067 	r3		(not saved; return value register)
1068 	r11		(not saved; later alloc to help shrink-wrap)
1069 	r0		(not saved; cannot be base reg)
1070 	r31 - r13	(saved; order given to save least number)
1071 	r12		(not saved; if used for DImode or DFmode would use r13)
1072 	ctr		(not saved; when we have the choice ctr is better)
1073 	lr		(saved)
1074 	cr5, r1, r2, ap, ca (fixed)
1075 	v0 - v1		(not saved or used for anything)
1076 	v13 - v3	(not saved; incoming vector arg registers)
1077 	v2		(not saved; incoming vector arg reg; return value)
1078 	v19 - v14	(not saved or used for anything)
1079 	v31 - v20	(saved; order given to save least number)
1080 	vrsave, vscr	(fixed)
1081 	spe_acc, spefscr (fixed)
1082 	sfp		(fixed)
1083 	tfhar		(fixed)
1084 	tfiar		(fixed)
1085 	texasr		(fixed)
1086 */
1087 
1088 #if FIXED_R2 == 1
1089 #define MAYBE_R2_AVAILABLE
1090 #define MAYBE_R2_FIXED 2,
1091 #else
1092 #define MAYBE_R2_AVAILABLE 2,
1093 #define MAYBE_R2_FIXED
1094 #endif
1095 
1096 #if FIXED_R13 == 1
1097 #define EARLY_R12 12,
1098 #define LATE_R12
1099 #else
1100 #define EARLY_R12
1101 #define LATE_R12 12,
1102 #endif
1103 
1104 #define REG_ALLOC_ORDER						\
1105   {32,								\
1106    /* move fr13 (ie 45) later, so if we need TFmode, it does */	\
1107    /* not use fr14 which is a saved register.  */		\
1108    44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45,		\
1109    33,								\
1110    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
1111    50, 49, 48, 47, 46,						\
1112    75, 74, 69, 68, 72, 71, 70,					\
1113    MAYBE_R2_AVAILABLE						\
1114    9, 10, 8, 7, 6, 5, 4,					\
1115    3, EARLY_R12 11, 0,						\
1116    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
1117    18, 17, 16, 15, 14, 13, LATE_R12				\
1118    66, 65,							\
1119    73, 1, MAYBE_R2_FIXED 67, 76,				\
1120    /* AltiVec registers.  */					\
1121    77, 78,							\
1122    90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,			\
1123    79,								\
1124    96, 95, 94, 93, 92, 91,					\
1125    108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,	\
1126    109, 110,							\
1127    111, 112, 113, 114, 115, 116,				\
1128    117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,  \
1129    129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,  \
1130    141, 142, 143, 144, 145, 146, 147, 148			\
1131 }
1132 
1133 /* True if register is floating-point.  */
1134 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1135 
1136 /* True if register is a condition register.  */
1137 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1138 
1139 /* True if register is a condition register, but not cr0.  */
1140 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1141 
1142 /* True if register is an integer register.  */
1143 #define INT_REGNO_P(N) \
1144   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1145 
1146 /* SPE SIMD registers are just the GPRs.  */
1147 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1148 
1149 /* PAIRED SIMD registers are just the FPRs.  */
1150 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1151 
1152 /* True if register is the CA register.  */
1153 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1154 
1155 /* True if register is an AltiVec register.  */
1156 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1157 
1158 /* True if register is a VSX register.  */
1159 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1160 
1161 /* Alternate name for any vector register supporting floating point, no matter
1162    which instruction set(s) are available.  */
1163 #define VFLOAT_REGNO_P(N) \
1164   (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1165 
1166 /* Alternate name for any vector register supporting integer, no matter which
1167    instruction set(s) are available.  */
1168 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1169 
1170 /* Alternate name for any vector register supporting logical operations, no
1171    matter which instruction set(s) are available.  Allow GPRs as well as the
1172    vector registers.  */
1173 #define VLOGICAL_REGNO_P(N)						\
1174   (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N)				\
1175    || (TARGET_VSX && FP_REGNO_P (N)))					\
1176 
1177 /* Return number of consecutive hard regs needed starting at reg REGNO
1178    to hold something of mode MODE.  */
1179 
1180 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1181 
1182 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1183    enough space to account for vectors in FP regs.  However, TFmode/TDmode
1184    should not use VSX instructions to do a caller save. */
1185 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1186   (TARGET_VSX								\
1187    && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))		\
1188    && FP_REGNO_P (REGNO)						\
1189    ? V2DFmode								\
1190    : ((MODE) == TFmode && FP_REGNO_P (REGNO))				\
1191    ? DFmode								\
1192    : ((MODE) == TDmode && FP_REGNO_P (REGNO))				\
1193    ? DImode								\
1194    : choose_hard_reg_mode ((REGNO), (NREGS), false))
1195 
1196 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)			\
1197   (((TARGET_32BIT && TARGET_POWERPC64					\
1198      && (GET_MODE_SIZE (MODE) > 4)					\
1199      && INT_REGNO_P (REGNO)) ? 1 : 0)					\
1200    || (TARGET_VSX && FP_REGNO_P (REGNO)					\
1201        && GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) 		\
1202        && ((MODE) != TFmode)))
1203 
1204 #define VSX_VECTOR_MODE(MODE)		\
1205 	 ((MODE) == V4SFmode		\
1206 	  || (MODE) == V2DFmode)	\
1207 
1208 #define ALTIVEC_VECTOR_MODE(MODE)	\
1209 	 ((MODE) == V16QImode		\
1210 	  || (MODE) == V8HImode		\
1211 	  || (MODE) == V4SFmode		\
1212 	  || (MODE) == V4SImode)
1213 
1214 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1215   (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1216    || (MODE) == V2DImode || (MODE) == V1TImode)
1217 
1218 #define SPE_VECTOR_MODE(MODE)		\
1219 	((MODE) == V4HImode          	\
1220          || (MODE) == V2SFmode          \
1221          || (MODE) == V1DImode          \
1222          || (MODE) == V2SImode)
1223 
1224 #define PAIRED_VECTOR_MODE(MODE)        \
1225          ((MODE) == V2SFmode)
1226 
1227 /* Value is TRUE if hard register REGNO can hold a value of
1228    machine-mode MODE.  */
1229 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1230   rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1231 
1232 /* Value is 1 if it is a good idea to tie two pseudo registers
1233    when one has mode MODE1 and one has mode MODE2.
1234    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1235    for any hard reg, then this must be 0 for correct output.
1236 
1237    PTImode cannot tie with other modes because PTImode is restricted to even
1238    GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1239    57744).  */
1240 #define MODES_TIEABLE_P(MODE1, MODE2)		\
1241   ((MODE1) == PTImode				\
1242    ? (MODE2) == PTImode				\
1243    : (MODE2) == PTImode				\
1244    ? 0						\
1245    : SCALAR_FLOAT_MODE_P (MODE1)		\
1246    ? SCALAR_FLOAT_MODE_P (MODE2)		\
1247    : SCALAR_FLOAT_MODE_P (MODE2)		\
1248    ? 0						\
1249    : GET_MODE_CLASS (MODE1) == MODE_CC		\
1250    ? GET_MODE_CLASS (MODE2) == MODE_CC		\
1251    : GET_MODE_CLASS (MODE2) == MODE_CC		\
1252    ? 0						\
1253    : SPE_VECTOR_MODE (MODE1)			\
1254    ? SPE_VECTOR_MODE (MODE2)			\
1255    : SPE_VECTOR_MODE (MODE2)			\
1256    ? 0						\
1257    : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1)		\
1258    ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2)		\
1259    : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2)		\
1260    ? 0						\
1261    : 1)
1262 
1263 /* Post-reload, we can't use any new AltiVec registers, as we already
1264    emitted the vrsave mask.  */
1265 
1266 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1267   (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1268 
1269 /* Specify the cost of a branch insn; roughly the number of extra insns that
1270    should be added to avoid a branch.
1271 
1272    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1273    unscheduled conditional branch.  */
1274 
1275 #define BRANCH_COST(speed_p, predictable_p) 3
1276 
1277 /* Override BRANCH_COST heuristic which empirically produces worse
1278    performance for removing short circuiting from the logical ops.  */
1279 
1280 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1281 
1282 /* A fixed register used at epilogue generation to address SPE registers
1283    with negative offsets.  The 64-bit load/store instructions on the SPE
1284    only take positive offsets (and small ones at that), so we need to
1285    reserve a register for consing up negative offsets.  */
1286 
1287 #define FIXED_SCRATCH 0
1288 
1289 /* Specify the registers used for certain standard purposes.
1290    The values of these macros are register numbers.  */
1291 
1292 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1293 /* #define PC_REGNUM  */
1294 
1295 /* Register to use for pushing function arguments.  */
1296 #define STACK_POINTER_REGNUM 1
1297 
1298 /* Base register for access to local variables of the function.  */
1299 #define HARD_FRAME_POINTER_REGNUM 31
1300 
1301 /* Base register for access to local variables of the function.  */
1302 #define FRAME_POINTER_REGNUM 113
1303 
1304 /* Base register for access to arguments of the function.  */
1305 #define ARG_POINTER_REGNUM 67
1306 
1307 /* Place to put static chain when calling a function that requires it.  */
1308 #define STATIC_CHAIN_REGNUM 11
1309 
1310 
1311 /* Define the classes of registers for register constraints in the
1312    machine description.  Also define ranges of constants.
1313 
1314    One of the classes must always be named ALL_REGS and include all hard regs.
1315    If there is more than one class, another class must be named NO_REGS
1316    and contain no registers.
1317 
1318    The name GENERAL_REGS must be the name of a class (or an alias for
1319    another name such as ALL_REGS).  This is the class of registers
1320    that is allowed by "g" or "r" in a register constraint.
1321    Also, registers outside this class are allocated only when
1322    instructions express preferences for them.
1323 
1324    The classes must be numbered in nondecreasing order; that is,
1325    a larger-numbered class must never be contained completely
1326    in a smaller-numbered class.
1327 
1328    For any two classes, it is very desirable that there be another
1329    class that represents their union.  */
1330 
1331 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1332    condition registers, plus three special registers, CTR, and the link
1333    register.  AltiVec adds a vector register class.  VSX registers overlap the
1334    FPR registers and the Altivec registers.
1335 
1336    However, r0 is special in that it cannot be used as a base register.
1337    So make a class for registers valid as base registers.
1338 
1339    Also, cr0 is the only condition code register that can be used in
1340    arithmetic insns, so make a separate class for it.  */
1341 
1342 enum reg_class
1343 {
1344   NO_REGS,
1345   BASE_REGS,
1346   GENERAL_REGS,
1347   FLOAT_REGS,
1348   ALTIVEC_REGS,
1349   VSX_REGS,
1350   VRSAVE_REGS,
1351   VSCR_REGS,
1352   SPE_ACC_REGS,
1353   SPEFSCR_REGS,
1354   SPR_REGS,
1355   NON_SPECIAL_REGS,
1356   LINK_REGS,
1357   CTR_REGS,
1358   LINK_OR_CTR_REGS,
1359   SPECIAL_REGS,
1360   SPEC_OR_GEN_REGS,
1361   CR0_REGS,
1362   CR_REGS,
1363   NON_FLOAT_REGS,
1364   CA_REGS,
1365   SPE_HIGH_REGS,
1366   ALL_REGS,
1367   LIM_REG_CLASSES
1368 };
1369 
1370 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1371 
1372 /* Give names of register classes as strings for dump file.  */
1373 
1374 #define REG_CLASS_NAMES							\
1375 {									\
1376   "NO_REGS",								\
1377   "BASE_REGS",								\
1378   "GENERAL_REGS",							\
1379   "FLOAT_REGS",								\
1380   "ALTIVEC_REGS",							\
1381   "VSX_REGS",								\
1382   "VRSAVE_REGS",							\
1383   "VSCR_REGS",								\
1384   "SPE_ACC_REGS",                                                       \
1385   "SPEFSCR_REGS",                                                       \
1386   "SPR_REGS",								\
1387   "NON_SPECIAL_REGS",							\
1388   "LINK_REGS",								\
1389   "CTR_REGS",								\
1390   "LINK_OR_CTR_REGS",							\
1391   "SPECIAL_REGS",							\
1392   "SPEC_OR_GEN_REGS",							\
1393   "CR0_REGS",								\
1394   "CR_REGS",								\
1395   "NON_FLOAT_REGS",							\
1396   "CA_REGS",								\
1397   "SPE_HIGH_REGS",							\
1398   "ALL_REGS"								\
1399 }
1400 
1401 /* Define which registers fit in which classes.
1402    This is an initializer for a vector of HARD_REG_SET
1403    of length N_REG_CLASSES.  */
1404 
1405 #define REG_CLASS_CONTENTS						\
1406 {									\
1407   /* NO_REGS.  */							\
1408   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
1409   /* BASE_REGS.  */							\
1410   { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 },	\
1411   /* GENERAL_REGS.  */							\
1412   { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 },	\
1413   /* FLOAT_REGS.  */							\
1414   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 },	\
1415   /* ALTIVEC_REGS.  */							\
1416   { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 },	\
1417   /* VSX_REGS.  */							\
1418   { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 },	\
1419   /* VRSAVE_REGS.  */							\
1420   { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 },	\
1421   /* VSCR_REGS.  */							\
1422   { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 },	\
1423   /* SPE_ACC_REGS.  */							\
1424   { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 },	\
1425   /* SPEFSCR_REGS.  */							\
1426   { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 },	\
1427   /* SPR_REGS.  */							\
1428   { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 },	\
1429   /* NON_SPECIAL_REGS.  */						\
1430   { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 },	\
1431   /* LINK_REGS.  */							\
1432   { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 },	\
1433   /* CTR_REGS.  */							\
1434   { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 },	\
1435   /* LINK_OR_CTR_REGS.  */						\
1436   { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 },	\
1437   /* SPECIAL_REGS.  */							\
1438   { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 },	\
1439   /* SPEC_OR_GEN_REGS.  */						\
1440   { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 },	\
1441   /* CR0_REGS.  */							\
1442   { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 },	\
1443   /* CR_REGS.  */							\
1444   { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 },	\
1445   /* NON_FLOAT_REGS.  */						\
1446   { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 },	\
1447   /* CA_REGS.  */							\
1448   { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 },	\
1449   /* SPE_HIGH_REGS.  */							\
1450   { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff },	\
1451   /* ALL_REGS.  */							\
1452   { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff }	\
1453 }
1454 
1455 /* The same information, inverted:
1456    Return the class number of the smallest class containing
1457    reg number REGNO.  This could be a conditional expression
1458    or could index an array.  */
1459 
1460 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1461 
1462 #if ENABLE_CHECKING
1463 #define REGNO_REG_CLASS(REGNO) 						\
1464   (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),		\
1465    rs6000_regno_regclass[(REGNO)])
1466 
1467 #else
1468 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1469 #endif
1470 
1471 /* Register classes for various constraints that are based on the target
1472    switches.  */
1473 enum r6000_reg_class_enum {
1474   RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1475   RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1476   RS6000_CONSTRAINT_v,		/* Altivec registers */
1477   RS6000_CONSTRAINT_wa,		/* Any VSX register */
1478   RS6000_CONSTRAINT_wd,		/* VSX register for V2DF */
1479   RS6000_CONSTRAINT_wf,		/* VSX register for V4SF */
1480   RS6000_CONSTRAINT_wg,		/* FPR register for -mmfpgpr */
1481   RS6000_CONSTRAINT_wh,		/* FPR register for direct moves.  */
1482   RS6000_CONSTRAINT_wi,		/* FPR/VSX register to hold DImode */
1483   RS6000_CONSTRAINT_wj,		/* FPR/VSX register for DImode direct moves. */
1484   RS6000_CONSTRAINT_wk,		/* FPR/VSX register for DFmode direct moves. */
1485   RS6000_CONSTRAINT_wl,		/* FPR register for LFIWAX */
1486   RS6000_CONSTRAINT_wm,		/* VSX register for direct move */
1487   RS6000_CONSTRAINT_wr,		/* GPR register if 64-bit  */
1488   RS6000_CONSTRAINT_ws,		/* VSX register for DF */
1489   RS6000_CONSTRAINT_wt,		/* VSX register for TImode */
1490   RS6000_CONSTRAINT_wu,		/* Altivec register for float load/stores.  */
1491   RS6000_CONSTRAINT_wv,		/* Altivec register for double load/stores.  */
1492   RS6000_CONSTRAINT_ww,		/* FP or VSX register for vsx float ops.  */
1493   RS6000_CONSTRAINT_wx,		/* FPR register for STFIWX */
1494   RS6000_CONSTRAINT_wy,		/* VSX register for SF */
1495   RS6000_CONSTRAINT_wz,		/* FPR register for LFIWZX */
1496   RS6000_CONSTRAINT_MAX
1497 };
1498 
1499 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1500 
1501 /* The class value for index registers, and the one for base regs.  */
1502 #define INDEX_REG_CLASS GENERAL_REGS
1503 #define BASE_REG_CLASS BASE_REGS
1504 
1505 /* Return whether a given register class can hold VSX objects.  */
1506 #define VSX_REG_CLASS_P(CLASS)			\
1507   ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1508 
1509 /* Return whether a given register class targets general purpose registers.  */
1510 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1511 
1512 /* Given an rtx X being reloaded into a reg required to be
1513    in class CLASS, return the class of reg to actually use.
1514    In general this is just CLASS; but on some machines
1515    in some cases it is preferable to use a more restrictive class.
1516 
1517    On the RS/6000, we have to return NO_REGS when we want to reload a
1518    floating-point CONST_DOUBLE to force it to be copied to memory.
1519 
1520    We also don't want to reload integer values into floating-point
1521    registers if we can at all help it.  In fact, this can
1522    cause reload to die, if it tries to generate a reload of CTR
1523    into a FP register and discovers it doesn't have the memory location
1524    required.
1525 
1526    ??? Would it be a good idea to have reload do the converse, that is
1527    try to reload floating modes into FP registers if possible?
1528  */
1529 
1530 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1531   rs6000_preferred_reload_class_ptr (X, CLASS)
1532 
1533 /* Return the register class of a scratch register needed to copy IN into
1534    or out of a register in CLASS in MODE.  If it can be done directly,
1535    NO_REGS is returned.  */
1536 
1537 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1538   rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1539 
1540 /* If we are copying between FP or AltiVec registers and anything
1541    else, we need a memory location.  The exception is when we are
1542    targeting ppc64 and the move to/from fpr to gpr instructions
1543    are available.*/
1544 
1545 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE)			\
1546   rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1547 
1548 /* For cpus that cannot load/store SDmode values from the 64-bit
1549    FP registers without using a full 64-bit load/store, we need
1550    to allocate a full 64-bit stack slot for them.  */
1551 
1552 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1553   rs6000_secondary_memory_needed_rtx (MODE)
1554 
1555 /* Specify the mode to be used for memory when a secondary memory
1556    location is needed.  For cpus that cannot load/store SDmode values
1557    from the 64-bit FP registers without using a full 64-bit
1558    load/store, we need a wider mode.  */
1559 #define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
1560   rs6000_secondary_memory_needed_mode (MODE)
1561 
1562 /* Return the maximum number of consecutive registers
1563    needed to represent mode MODE in a register of class CLASS.
1564 
1565    On RS/6000, this is the size of MODE in words, except in the FP regs, where
1566    a single reg is enough for two words, unless we have VSX, where the FP
1567    registers can hold 128 bits.  */
1568 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1569 
1570 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */
1571 
1572 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			\
1573   rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1574 
1575 /* Stack layout; function entry, exit and calling.  */
1576 
1577 /* Define this if pushing a word on the stack
1578    makes the stack pointer a smaller address.  */
1579 #define STACK_GROWS_DOWNWARD
1580 
1581 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1582 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1583 
1584 /* Define this to nonzero if the nominal address of the stack frame
1585    is at the high-address end of the local variables;
1586    that is, each additional local variable allocated
1587    goes at a more negative offset in the frame.
1588 
1589    On the RS/6000, we grow upwards, from the area after the outgoing
1590    arguments.  */
1591 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
1592 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1593 
1594 /* Size of the fixed area on the stack */
1595 #define RS6000_SAVE_AREA \
1596   ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24)	\
1597    << (TARGET_64BIT ? 1 : 0))
1598 
1599 /* Stack offset for toc save slot.  */
1600 #define RS6000_TOC_SAVE_SLOT \
1601   ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1602 
1603 /* Align an address */
1604 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1605 
1606 /* Offset within stack frame to start allocating local variables at.
1607    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1608    first local allocated.  Otherwise, it is the offset to the BEGINNING
1609    of the first local allocated.
1610 
1611    On the RS/6000, the frame pointer is the same as the stack pointer,
1612    except for dynamic allocations.  So we start after the fixed area and
1613    outgoing parameter area.  */
1614 
1615 #define STARTING_FRAME_OFFSET						\
1616   (FRAME_GROWS_DOWNWARD							\
1617    ? 0									\
1618    : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1619 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1620       + RS6000_SAVE_AREA))
1621 
1622 /* Offset from the stack pointer register to an item dynamically
1623    allocated on the stack, e.g., by `alloca'.
1624 
1625    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1626    length of the outgoing arguments.  The default is correct for most
1627    machines.  See `function.c' for details.  */
1628 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1629   (RS6000_ALIGN (crtl->outgoing_args_size,				\
1630 		 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1631    + (STACK_POINTER_OFFSET))
1632 
1633 /* If we generate an insn to push BYTES bytes,
1634    this says how many the stack pointer really advances by.
1635    On RS/6000, don't define this because there are no push insns.  */
1636 /*  #define PUSH_ROUNDING(BYTES) */
1637 
1638 /* Offset of first parameter from the argument pointer register value.
1639    On the RS/6000, we define the argument pointer to the start of the fixed
1640    area.  */
1641 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1642 
1643 /* Offset from the argument pointer register value to the top of
1644    stack.  This is different from FIRST_PARM_OFFSET because of the
1645    register save area.  */
1646 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1647 
1648 /* Define this if stack space is still allocated for a parameter passed
1649    in a register.  The value is the number of bytes allocated to this
1650    area.  */
1651 #define REG_PARM_STACK_SPACE(FNDECL) \
1652   rs6000_reg_parm_stack_space ((FNDECL), false)
1653 
1654 /* Define this macro if space guaranteed when compiling a function body
1655    is different to space required when making a call, a situation that
1656    can arise with K&R style function definitions.  */
1657 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1658   rs6000_reg_parm_stack_space ((FNDECL), true)
1659 
1660 /* Define this if the above stack space is to be considered part of the
1661    space allocated by the caller.  */
1662 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1663 
1664 /* This is the difference between the logical top of stack and the actual sp.
1665 
1666    For the RS/6000, sp points past the fixed area.  */
1667 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1668 
1669 /* Define this if the maximum size of all the outgoing args is to be
1670    accumulated and pushed during the prologue.  The amount can be
1671    found in the variable crtl->outgoing_args_size.  */
1672 #define ACCUMULATE_OUTGOING_ARGS 1
1673 
1674 /* Define how to find the value returned by a library function
1675    assuming the value has mode MODE.  */
1676 
1677 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1678 
1679 /* DRAFT_V4_STRUCT_RET defaults off.  */
1680 #define DRAFT_V4_STRUCT_RET 0
1681 
1682 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1683 #define DEFAULT_PCC_STRUCT_RETURN 0
1684 
1685 /* Mode of stack savearea.
1686    FUNCTION is VOIDmode because calling convention maintains SP.
1687    BLOCK needs Pmode for SP.
1688    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1689 #define STACK_SAVEAREA_MODE(LEVEL)	\
1690   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1691   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1692 
1693 /* Minimum and maximum general purpose registers used to hold arguments.  */
1694 #define GP_ARG_MIN_REG 3
1695 #define GP_ARG_MAX_REG 10
1696 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1697 
1698 /* Minimum and maximum floating point registers used to hold arguments.  */
1699 #define FP_ARG_MIN_REG 33
1700 #define	FP_ARG_AIX_MAX_REG 45
1701 #define	FP_ARG_V4_MAX_REG  40
1702 #define	FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4				\
1703 			? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1704 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1705 
1706 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1707 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1708 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1709 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1710 
1711 /* Maximum number of registers per ELFv2 homogeneous aggregate argument.  */
1712 #define AGGR_ARG_NUM_REG 8
1713 
1714 /* Return registers */
1715 #define GP_ARG_RETURN GP_ARG_MIN_REG
1716 #define FP_ARG_RETURN FP_ARG_MIN_REG
1717 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1718 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN	\
1719 			   : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1720 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? ALTIVEC_ARG_RETURN \
1721 			        : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1722 
1723 /* Flags for the call/call_value rtl operations set up by function_arg */
1724 #define CALL_NORMAL		0x00000000	/* no special processing */
1725 /* Bits in 0x00000001 are unused.  */
1726 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1727 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1728 #define CALL_LONG		0x00000008	/* always call indirect */
1729 #define CALL_LIBCALL		0x00000010	/* libcall */
1730 
1731 /* We don't have prologue and epilogue functions to save/restore
1732    everything for most ABIs.  */
1733 #define WORLD_SAVE_P(INFO) 0
1734 
1735 /* 1 if N is a possible register number for a function value
1736    as seen by the caller.
1737 
1738    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1739 #define FUNCTION_VALUE_REGNO_P(N)					\
1740   ((N) == GP_ARG_RETURN							\
1741    || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN			\
1742        && TARGET_HARD_FLOAT && TARGET_FPRS)				\
1743    || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN	\
1744        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1745 
1746 /* 1 if N is a possible register number for function argument passing.
1747    On RS/6000, these are r3-r10 and fp1-fp13.
1748    On AltiVec, v2 - v13 are used for passing vectors.  */
1749 #define FUNCTION_ARG_REGNO_P(N)						\
1750   ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1751    || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1752        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1753    || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1754        && TARGET_HARD_FLOAT && TARGET_FPRS))
1755 
1756 /* Define a data type for recording info about an argument list
1757    during the scan of that argument list.  This data type should
1758    hold all necessary information about the function itself
1759    and about the args processed so far, enough to enable macros
1760    such as FUNCTION_ARG to determine where the next arg should go.
1761 
1762    On the RS/6000, this is a structure.  The first element is the number of
1763    total argument words, the second is used to store the next
1764    floating-point register number, and the third says how many more args we
1765    have prototype types for.
1766 
1767    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1768    the next available GP register, `fregno' is the next available FP
1769    register, and `words' is the number of words used on the stack.
1770 
1771    The varargs/stdarg support requires that this structure's size
1772    be a multiple of sizeof(int).  */
1773 
1774 typedef struct rs6000_args
1775 {
1776   int words;			/* # words used for passing GP registers */
1777   int fregno;			/* next available FP register */
1778   int vregno;			/* next available AltiVec register */
1779   int nargs_prototype;		/* # args left in the current prototype */
1780   int prototype;		/* Whether a prototype was defined */
1781   int stdarg;			/* Whether function is a stdarg function.  */
1782   int call_cookie;		/* Do special things for this call */
1783   int sysv_gregno;		/* next available GP register */
1784   int intoffset;		/* running offset in struct (darwin64) */
1785   int use_stack;		/* any part of struct on stack (darwin64) */
1786   int floats_in_gpr;		/* count of SFmode floats taking up
1787 				   GPR space (darwin64) */
1788   int named;			/* false for varargs params */
1789   int escapes;			/* if function visible outside tu */
1790 } CUMULATIVE_ARGS;
1791 
1792 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1793    for a call to a function whose data type is FNTYPE.
1794    For a library call, FNTYPE is 0.  */
1795 
1796 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1797   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1798 			N_NAMED_ARGS, FNDECL, VOIDmode)
1799 
1800 /* Similar, but when scanning the definition of a procedure.  We always
1801    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1802 
1803 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1804   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1805 			1000, current_function_decl, VOIDmode)
1806 
1807 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1808 
1809 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1810   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1811 			0, NULL_TREE, MODE)
1812 
1813 /* If defined, a C expression which determines whether, and in which
1814    direction, to pad out an argument with extra space.  The value
1815    should be of type `enum direction': either `upward' to pad above
1816    the argument, `downward' to pad below, or `none' to inhibit
1817    padding.  */
1818 
1819 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1820 
1821 #define PAD_VARARGS_DOWN \
1822    (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1823 
1824 /* Output assembler code to FILE to increment profiler label # LABELNO
1825    for profiling a function entry.  */
1826 
1827 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1828   output_function_profiler ((FILE), (LABELNO));
1829 
1830 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1831    the stack pointer does not matter. No definition is equivalent to
1832    always zero.
1833 
1834    On the RS/6000, this is nonzero because we can restore the stack from
1835    its backpointer, which we maintain.  */
1836 #define EXIT_IGNORE_STACK	1
1837 
1838 /* Define this macro as a C expression that is nonzero for registers
1839    that are used by the epilogue or the return' pattern.  The stack
1840    and frame pointer registers are already be assumed to be used as
1841    needed.  */
1842 
1843 #define	EPILOGUE_USES(REGNO)					\
1844   ((reload_completed && (REGNO) == LR_REGNO)			\
1845    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1846    || (crtl->calls_eh_return					\
1847        && TARGET_AIX						\
1848        && (REGNO) == 2))
1849 
1850 
1851 /* Length in units of the trampoline for entering a nested function.  */
1852 
1853 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1854 
1855 /* Definitions for __builtin_return_address and __builtin_frame_address.
1856    __builtin_return_address (0) should give link register (65), enable
1857    this.  */
1858 /* This should be uncommented, so that the link register is used, but
1859    currently this would result in unmatched insns and spilling fixed
1860    registers so we'll leave it for another day.  When these problems are
1861    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1862    (mrs) */
1863 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1864 
1865 /* Number of bytes into the frame return addresses can be found.  See
1866    rs6000_stack_info in rs6000.c for more information on how the different
1867    abi's store the return address.  */
1868 #define RETURN_ADDRESS_OFFSET \
1869   ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1870 
1871 /* The current return address is in link register (65).  The return address
1872    of anything farther back is accessed normally at an offset of 8 from the
1873    frame pointer.  */
1874 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1875   (rs6000_return_addr (COUNT, FRAME))
1876 
1877 
1878 /* Definitions for register eliminations.
1879 
1880    We have two registers that can be eliminated on the RS/6000.  First, the
1881    frame pointer register can often be eliminated in favor of the stack
1882    pointer register.  Secondly, the argument pointer register can always be
1883    eliminated; it is replaced with either the stack or frame pointer.
1884 
1885    In addition, we use the elimination mechanism to see if r30 is needed
1886    Initially we assume that it isn't.  If it is, we spill it.  This is done
1887    by making it an eliminable register.  We replace it with itself so that
1888    if it isn't needed, then existing uses won't be modified.  */
1889 
1890 /* This is an array of structures.  Each structure initializes one pair
1891    of eliminable registers.  The "from" register number is given first,
1892    followed by "to".  Eliminations of the same "from" register are listed
1893    in order of preference.  */
1894 #define ELIMINABLE_REGS					\
1895 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1896  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1897  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1898  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1899  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1900  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1901 
1902 /* Define the offset between two registers, one to be eliminated, and the other
1903    its replacement, at the start of a routine.  */
1904 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1905   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1906 
1907 /* Addressing modes, and classification of registers for them.  */
1908 
1909 #define HAVE_PRE_DECREMENT 1
1910 #define HAVE_PRE_INCREMENT 1
1911 #define HAVE_PRE_MODIFY_DISP 1
1912 #define HAVE_PRE_MODIFY_REG 1
1913 
1914 /* Macros to check register numbers against specific register classes.  */
1915 
1916 /* These assume that REGNO is a hard or pseudo reg number.
1917    They give nonzero only if REGNO is a hard reg of the suitable class
1918    or a pseudo reg currently allocated to a suitable hard reg.
1919    Since they use reg_renumber, they are safe only once reg_renumber
1920    has been allocated, which happens in reginfo.c during register
1921    allocation.  */
1922 
1923 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1924 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1925  ? (REGNO) <= 31 || (REGNO) == 67				\
1926    || (REGNO) == FRAME_POINTER_REGNUM				\
1927  : (reg_renumber[REGNO] >= 0					\
1928     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1929 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1930 
1931 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1932 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1933  ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1934    || (REGNO) == FRAME_POINTER_REGNUM				\
1935  : (reg_renumber[REGNO] > 0					\
1936     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1937 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1938 
1939 /* Nonzero if X is a hard reg that can be used as an index
1940    or if it is a pseudo reg in the non-strict case.  */
1941 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1942   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1943    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1944 
1945 /* Nonzero if X is a hard reg that can be used as a base reg
1946    or if it is a pseudo reg in the non-strict case.  */
1947 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1948   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1949    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1950 
1951 
1952 /* Maximum number of registers that can appear in a valid memory address.  */
1953 
1954 #define MAX_REGS_PER_ADDRESS 2
1955 
1956 /* Recognize any constant value that is a valid address.  */
1957 
1958 #define CONSTANT_ADDRESS_P(X)   \
1959   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1960    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1961    || GET_CODE (X) == HIGH)
1962 
1963 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1964 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1965 				    && EASY_VECTOR_15((n) >> 1) \
1966 				    && ((n) & 1) == 0)
1967 
1968 #define EASY_VECTOR_MSB(n,mode)						\
1969   (((unsigned HOST_WIDE_INT)n) ==					\
1970    ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1971 
1972 
1973 /* Try a machine-dependent way of reloading an illegitimate address
1974    operand.  If we find one, push the reload and jump to WIN.  This
1975    macro is used in only one place: `find_reloads_address' in reload.c.
1976 
1977    Implemented on rs6000 by rs6000_legitimize_reload_address.
1978    Note that (X) is evaluated twice; this is safe in current usage.  */
1979 
1980 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
1981 do {									     \
1982   int win;								     \
1983   (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM),	     \
1984 			(int)(TYPE), (IND_LEVELS), &win);		     \
1985   if ( win )								     \
1986     goto WIN;								     \
1987 } while (0)
1988 
1989 #define FIND_BASE_TERM rs6000_find_base_term
1990 
1991 /* The register number of the register used to address a table of
1992    static data addresses in memory.  In some cases this register is
1993    defined by a processor's "application binary interface" (ABI).
1994    When this macro is defined, RTL is generated for this register
1995    once, as with the stack pointer and frame pointer registers.  If
1996    this macro is not defined, it is up to the machine-dependent files
1997    to allocate such a register (if necessary).  */
1998 
1999 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2000 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2001 
2002 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2003 
2004 /* Define this macro if the register defined by
2005    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
2006    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
2007 
2008 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2009 
2010 /* A C expression that is nonzero if X is a legitimate immediate
2011    operand on the target machine when generating position independent
2012    code.  You can assume that X satisfies `CONSTANT_P', so you need
2013    not check this.  You can also assume FLAG_PIC is true, so you need
2014    not check it either.  You need not define this macro if all
2015    constants (including `SYMBOL_REF') can be immediate operands when
2016    generating position independent code.  */
2017 
2018 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2019 
2020 /* Define this if some processing needs to be done immediately before
2021    emitting code for an insn.  */
2022 
2023 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2024   rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
2025 
2026 /* Specify the machine mode that this machine uses
2027    for the index in the tablejump instruction.  */
2028 #define CASE_VECTOR_MODE SImode
2029 
2030 /* Define as C expression which evaluates to nonzero if the tablejump
2031    instruction expects the table to contain offsets from the address of the
2032    table.
2033    Do not define this if the table should contain absolute addresses.  */
2034 #define CASE_VECTOR_PC_RELATIVE 1
2035 
2036 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2037 #define DEFAULT_SIGNED_CHAR 0
2038 
2039 /* An integer expression for the size in bits of the largest integer machine
2040    mode that should actually be used.  */
2041 
2042 /* Allow pairs of registers to be used, which is the intent of the default.  */
2043 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2044 
2045 /* Max number of bytes we can move from memory to memory
2046    in one reasonably fast instruction.  */
2047 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2048 #define MAX_MOVE_MAX 8
2049 
2050 /* Nonzero if access to memory by bytes is no faster than for words.
2051    Also nonzero if doing byte operations (specifically shifts) in registers
2052    is undesirable.  */
2053 #define SLOW_BYTE_ACCESS 1
2054 
2055 /* Define if operations between registers always perform the operation
2056    on the full register even if a narrower mode is specified.  */
2057 #define WORD_REGISTER_OPERATIONS
2058 
2059 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2060    will either zero-extend or sign-extend.  The value of this macro should
2061    be the code that says which one of the two operations is implicitly
2062    done, UNKNOWN if none.  */
2063 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2064 
2065 /* Define if loading short immediate values into registers sign extends.  */
2066 #define SHORT_IMMEDIATES_SIGN_EXTEND
2067 
2068 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2069    is done just by pretending it is already truncated.  */
2070 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2071 
2072 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
2073 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2074   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
2075 
2076 /* The CTZ patterns return -1 for input of zero.  */
2077 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
2078 
2079 /* Specify the machine mode that pointers have.
2080    After generation of rtl, the compiler makes no further distinction
2081    between pointers and any other objects of this machine mode.  */
2082 extern unsigned rs6000_pmode;
2083 #define Pmode ((enum machine_mode)rs6000_pmode)
2084 
2085 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
2086 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2087 
2088 /* Mode of a function address in a call instruction (for indexing purposes).
2089    Doesn't matter on RS/6000.  */
2090 #define FUNCTION_MODE SImode
2091 
2092 /* Define this if addresses of constant functions
2093    shouldn't be put through pseudo regs where they can be cse'd.
2094    Desirable on machines where ordinary constants are expensive
2095    but a CALL with constant address is cheap.  */
2096 #define NO_FUNCTION_CSE
2097 
2098 /* Define this to be nonzero if shift instructions ignore all but the low-order
2099    few bits.
2100 
2101    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2102    have been dropped from the PowerPC architecture.  */
2103 #define SHIFT_COUNT_TRUNCATED 0
2104 
2105 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2106    should be adjusted to reflect any required changes.  This macro is used when
2107    there is some systematic length adjustment required that would be difficult
2108    to express in the length attribute.  */
2109 
2110 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2111 
2112 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2113    COMPARE, return the mode to be used for the comparison.  For
2114    floating-point, CCFPmode should be used.  CCUNSmode should be used
2115    for unsigned comparisons.  CCEQmode should be used when we are
2116    doing an inequality comparison on the result of a
2117    comparison.  CCmode should be used in all other cases.  */
2118 
2119 #define SELECT_CC_MODE(OP,X,Y) \
2120   (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
2121    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2122    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
2123       ? CCEQmode : CCmode))
2124 
2125 /* Can the condition code MODE be safely reversed?  This is safe in
2126    all cases on this port, because at present it doesn't use the
2127    trapping FP comparisons (fcmpo).  */
2128 #define REVERSIBLE_CC_MODE(MODE) 1
2129 
2130 /* Given a condition code and a mode, return the inverse condition.  */
2131 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2132 
2133 
2134 /* Control the assembler format that we output.  */
2135 
2136 /* A C string constant describing how to begin a comment in the target
2137    assembler language.  The compiler assumes that the comment will end at
2138    the end of the line.  */
2139 #define ASM_COMMENT_START " #"
2140 
2141 /* Flag to say the TOC is initialized */
2142 extern int toc_initialized;
2143 
2144 /* Macro to output a special constant pool entry.  Go to WIN if we output
2145    it.  Otherwise, it is written the usual way.
2146 
2147    On the RS/6000, toc entries are handled this way.  */
2148 
2149 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2150 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2151     {									  \
2152       output_toc (FILE, X, LABELNO, MODE);				  \
2153       goto WIN;								  \
2154     }									  \
2155 }
2156 
2157 #ifdef HAVE_GAS_WEAK
2158 #define RS6000_WEAK 1
2159 #else
2160 #define RS6000_WEAK 0
2161 #endif
2162 
2163 #if RS6000_WEAK
2164 /* Used in lieu of ASM_WEAKEN_LABEL.  */
2165 #define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
2166   do									\
2167     {									\
2168       fputs ("\t.weak\t", (FILE));					\
2169       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
2170       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2171 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2172 	{								\
2173 	  if (TARGET_XCOFF)						\
2174 	    fputs ("[DS]", (FILE));					\
2175 	  fputs ("\n\t.weak\t.", (FILE));				\
2176 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2177 	}								\
2178       fputc ('\n', (FILE));						\
2179       if (VAL)								\
2180 	{								\
2181 	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
2182 	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
2183 	      && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2184 	    {								\
2185 	      fputs ("\t.set\t.", (FILE));				\
2186 	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
2187 	      fputs (",.", (FILE));					\
2188 	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
2189 	      fputc ('\n', (FILE));					\
2190 	    }								\
2191 	}								\
2192     }									\
2193   while (0)
2194 #endif
2195 
2196 #if HAVE_GAS_WEAKREF
2197 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
2198   do									\
2199     {									\
2200       fputs ("\t.weakref\t", (FILE));					\
2201       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
2202       fputs (", ", (FILE));						\
2203       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
2204       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2205 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2206 	{								\
2207 	  fputs ("\n\t.weakref\t.", (FILE));				\
2208 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2209 	  fputs (", .", (FILE));					\
2210 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
2211 	}								\
2212       fputc ('\n', (FILE));						\
2213     } while (0)
2214 #endif
2215 
2216 /* This implements the `alias' attribute.  */
2217 #undef	ASM_OUTPUT_DEF_FROM_DECLS
2218 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2219   do									\
2220     {									\
2221       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2222       const char *name = IDENTIFIER_POINTER (TARGET);			\
2223       if (TREE_CODE (DECL) == FUNCTION_DECL				\
2224 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2225 	{								\
2226 	  if (TREE_PUBLIC (DECL))					\
2227 	    {								\
2228 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2229 		{							\
2230 		  fputs ("\t.globl\t.", FILE);				\
2231 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2232 		  putc ('\n', FILE);					\
2233 		}							\
2234 	    }								\
2235 	  else if (TARGET_XCOFF)					\
2236 	    {								\
2237 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2238 		{							\
2239 		  fputs ("\t.lglobl\t.", FILE);				\
2240 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2241 		  putc ('\n', FILE);					\
2242 		  fputs ("\t.lglobl\t", FILE);				\
2243 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2244 		  putc ('\n', FILE);					\
2245 		}							\
2246 	    }								\
2247 	  fputs ("\t.set\t.", FILE);					\
2248 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2249 	  fputs (",.", FILE);						\
2250 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2251 	  fputc ('\n', FILE);						\
2252 	}								\
2253       ASM_OUTPUT_DEF (FILE, alias, name);				\
2254     }									\
2255    while (0)
2256 
2257 #define TARGET_ASM_FILE_START rs6000_file_start
2258 
2259 /* Output to assembler file text saying following lines
2260    may contain character constants, extra white space, comments, etc.  */
2261 
2262 #define ASM_APP_ON ""
2263 
2264 /* Output to assembler file text saying following lines
2265    no longer contain unusual constructs.  */
2266 
2267 #define ASM_APP_OFF ""
2268 
2269 /* How to refer to registers in assembler output.
2270    This sequence is indexed by compiler's hard-register-number (see above).  */
2271 
2272 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2273 
2274 #define REGISTER_NAMES							\
2275 {									\
2276   &rs6000_reg_names[ 0][0],	/* r0   */				\
2277   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2278   &rs6000_reg_names[ 2][0],     /* r2	*/				\
2279   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2280   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2281   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2282   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2283   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2284   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2285   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2286   &rs6000_reg_names[10][0],	/* r10  */				\
2287   &rs6000_reg_names[11][0],	/* r11  */				\
2288   &rs6000_reg_names[12][0],	/* r12  */				\
2289   &rs6000_reg_names[13][0],	/* r13  */				\
2290   &rs6000_reg_names[14][0],	/* r14  */				\
2291   &rs6000_reg_names[15][0],	/* r15  */				\
2292   &rs6000_reg_names[16][0],	/* r16  */				\
2293   &rs6000_reg_names[17][0],	/* r17  */				\
2294   &rs6000_reg_names[18][0],	/* r18  */				\
2295   &rs6000_reg_names[19][0],	/* r19  */				\
2296   &rs6000_reg_names[20][0],	/* r20  */				\
2297   &rs6000_reg_names[21][0],	/* r21  */				\
2298   &rs6000_reg_names[22][0],	/* r22  */				\
2299   &rs6000_reg_names[23][0],	/* r23  */				\
2300   &rs6000_reg_names[24][0],	/* r24  */				\
2301   &rs6000_reg_names[25][0],	/* r25  */				\
2302   &rs6000_reg_names[26][0],	/* r26  */				\
2303   &rs6000_reg_names[27][0],	/* r27  */				\
2304   &rs6000_reg_names[28][0],	/* r28  */				\
2305   &rs6000_reg_names[29][0],	/* r29  */				\
2306   &rs6000_reg_names[30][0],	/* r30  */				\
2307   &rs6000_reg_names[31][0],	/* r31  */				\
2308 									\
2309   &rs6000_reg_names[32][0],     /* fr0  */				\
2310   &rs6000_reg_names[33][0],	/* fr1  */				\
2311   &rs6000_reg_names[34][0],	/* fr2  */				\
2312   &rs6000_reg_names[35][0],	/* fr3  */				\
2313   &rs6000_reg_names[36][0],	/* fr4  */				\
2314   &rs6000_reg_names[37][0],	/* fr5  */				\
2315   &rs6000_reg_names[38][0],	/* fr6  */				\
2316   &rs6000_reg_names[39][0],	/* fr7  */				\
2317   &rs6000_reg_names[40][0],	/* fr8  */				\
2318   &rs6000_reg_names[41][0],	/* fr9  */				\
2319   &rs6000_reg_names[42][0],	/* fr10 */				\
2320   &rs6000_reg_names[43][0],	/* fr11 */				\
2321   &rs6000_reg_names[44][0],	/* fr12 */				\
2322   &rs6000_reg_names[45][0],	/* fr13 */				\
2323   &rs6000_reg_names[46][0],	/* fr14 */				\
2324   &rs6000_reg_names[47][0],	/* fr15 */				\
2325   &rs6000_reg_names[48][0],	/* fr16 */				\
2326   &rs6000_reg_names[49][0],	/* fr17 */				\
2327   &rs6000_reg_names[50][0],	/* fr18 */				\
2328   &rs6000_reg_names[51][0],	/* fr19 */				\
2329   &rs6000_reg_names[52][0],	/* fr20 */				\
2330   &rs6000_reg_names[53][0],	/* fr21 */				\
2331   &rs6000_reg_names[54][0],	/* fr22 */				\
2332   &rs6000_reg_names[55][0],	/* fr23 */				\
2333   &rs6000_reg_names[56][0],	/* fr24 */				\
2334   &rs6000_reg_names[57][0],	/* fr25 */				\
2335   &rs6000_reg_names[58][0],	/* fr26 */				\
2336   &rs6000_reg_names[59][0],	/* fr27 */				\
2337   &rs6000_reg_names[60][0],	/* fr28 */				\
2338   &rs6000_reg_names[61][0],	/* fr29 */				\
2339   &rs6000_reg_names[62][0],	/* fr30 */				\
2340   &rs6000_reg_names[63][0],	/* fr31 */				\
2341 									\
2342   &rs6000_reg_names[64][0],     /* was mq  */				\
2343   &rs6000_reg_names[65][0],	/* lr   */				\
2344   &rs6000_reg_names[66][0],	/* ctr  */				\
2345   &rs6000_reg_names[67][0],	/* ap   */				\
2346 									\
2347   &rs6000_reg_names[68][0],	/* cr0  */				\
2348   &rs6000_reg_names[69][0],	/* cr1  */				\
2349   &rs6000_reg_names[70][0],	/* cr2  */				\
2350   &rs6000_reg_names[71][0],	/* cr3  */				\
2351   &rs6000_reg_names[72][0],	/* cr4  */				\
2352   &rs6000_reg_names[73][0],	/* cr5  */				\
2353   &rs6000_reg_names[74][0],	/* cr6  */				\
2354   &rs6000_reg_names[75][0],	/* cr7  */				\
2355 									\
2356   &rs6000_reg_names[76][0],	/* ca  */				\
2357 									\
2358   &rs6000_reg_names[77][0],	/* v0  */				\
2359   &rs6000_reg_names[78][0],	/* v1  */				\
2360   &rs6000_reg_names[79][0],	/* v2  */				\
2361   &rs6000_reg_names[80][0],	/* v3  */				\
2362   &rs6000_reg_names[81][0],	/* v4  */				\
2363   &rs6000_reg_names[82][0],	/* v5  */				\
2364   &rs6000_reg_names[83][0],	/* v6  */				\
2365   &rs6000_reg_names[84][0],	/* v7  */				\
2366   &rs6000_reg_names[85][0],	/* v8  */				\
2367   &rs6000_reg_names[86][0],	/* v9  */				\
2368   &rs6000_reg_names[87][0],	/* v10  */				\
2369   &rs6000_reg_names[88][0],	/* v11  */				\
2370   &rs6000_reg_names[89][0],	/* v12  */				\
2371   &rs6000_reg_names[90][0],	/* v13  */				\
2372   &rs6000_reg_names[91][0],	/* v14  */				\
2373   &rs6000_reg_names[92][0],	/* v15  */				\
2374   &rs6000_reg_names[93][0],	/* v16  */				\
2375   &rs6000_reg_names[94][0],	/* v17  */				\
2376   &rs6000_reg_names[95][0],	/* v18  */				\
2377   &rs6000_reg_names[96][0],	/* v19  */				\
2378   &rs6000_reg_names[97][0],	/* v20  */				\
2379   &rs6000_reg_names[98][0],	/* v21  */				\
2380   &rs6000_reg_names[99][0],	/* v22  */				\
2381   &rs6000_reg_names[100][0],	/* v23  */				\
2382   &rs6000_reg_names[101][0],	/* v24  */				\
2383   &rs6000_reg_names[102][0],	/* v25  */				\
2384   &rs6000_reg_names[103][0],	/* v26  */				\
2385   &rs6000_reg_names[104][0],	/* v27  */				\
2386   &rs6000_reg_names[105][0],	/* v28  */				\
2387   &rs6000_reg_names[106][0],	/* v29  */				\
2388   &rs6000_reg_names[107][0],	/* v30  */				\
2389   &rs6000_reg_names[108][0],	/* v31  */				\
2390   &rs6000_reg_names[109][0],	/* vrsave  */				\
2391   &rs6000_reg_names[110][0],	/* vscr  */				\
2392   &rs6000_reg_names[111][0],	/* spe_acc */				\
2393   &rs6000_reg_names[112][0],	/* spefscr */				\
2394   &rs6000_reg_names[113][0],	/* sfp  */				\
2395   &rs6000_reg_names[114][0],	/* tfhar  */				\
2396   &rs6000_reg_names[115][0],	/* tfiar  */				\
2397   &rs6000_reg_names[116][0],	/* texasr  */				\
2398 									\
2399   &rs6000_reg_names[117][0],	/* SPE rh0.  */				\
2400   &rs6000_reg_names[118][0],	/* SPE rh1.  */				\
2401   &rs6000_reg_names[119][0],	/* SPE rh2.  */				\
2402   &rs6000_reg_names[120][0],	/* SPE rh3.  */				\
2403   &rs6000_reg_names[121][0],	/* SPE rh4.  */				\
2404   &rs6000_reg_names[122][0],	/* SPE rh5.  */				\
2405   &rs6000_reg_names[123][0],	/* SPE rh6.  */				\
2406   &rs6000_reg_names[124][0],	/* SPE rh7.  */				\
2407   &rs6000_reg_names[125][0],	/* SPE rh8.  */				\
2408   &rs6000_reg_names[126][0],	/* SPE rh9.  */				\
2409   &rs6000_reg_names[127][0],	/* SPE rh10.  */			\
2410   &rs6000_reg_names[128][0],	/* SPE rh11.  */			\
2411   &rs6000_reg_names[129][0],	/* SPE rh12.  */			\
2412   &rs6000_reg_names[130][0],	/* SPE rh13.  */			\
2413   &rs6000_reg_names[131][0],	/* SPE rh14.  */			\
2414   &rs6000_reg_names[132][0],	/* SPE rh15.  */			\
2415   &rs6000_reg_names[133][0],	/* SPE rh16.  */			\
2416   &rs6000_reg_names[134][0],	/* SPE rh17.  */			\
2417   &rs6000_reg_names[135][0],	/* SPE rh18.  */			\
2418   &rs6000_reg_names[136][0],	/* SPE rh19.  */			\
2419   &rs6000_reg_names[137][0],	/* SPE rh20.  */			\
2420   &rs6000_reg_names[138][0],	/* SPE rh21.  */			\
2421   &rs6000_reg_names[139][0],	/* SPE rh22.  */			\
2422   &rs6000_reg_names[140][0],	/* SPE rh22.  */			\
2423   &rs6000_reg_names[141][0],	/* SPE rh24.  */			\
2424   &rs6000_reg_names[142][0],	/* SPE rh25.  */			\
2425   &rs6000_reg_names[143][0],	/* SPE rh26.  */			\
2426   &rs6000_reg_names[144][0],	/* SPE rh27.  */			\
2427   &rs6000_reg_names[145][0],	/* SPE rh28.  */			\
2428   &rs6000_reg_names[146][0],	/* SPE rh29.  */			\
2429   &rs6000_reg_names[147][0],	/* SPE rh30.  */			\
2430   &rs6000_reg_names[148][0],	/* SPE rh31.  */			\
2431 }
2432 
2433 /* Table of additional register names to use in user input.  */
2434 
2435 #define ADDITIONAL_REGISTER_NAMES \
2436  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2437   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2438   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2439   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2440   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2441   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2442   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2443   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2444   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2445   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2446   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2447   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2448   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2449   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2450   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2451   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2452   {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2453   {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2454   {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2455   {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2456   {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2457   {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2458   {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2459   {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2460   {"vrsave", 109}, {"vscr", 110},				\
2461   {"spe_acc", 111}, {"spefscr", 112},				\
2462   /* no additional names for: lr, ctr, ap */			\
2463   {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2464   {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2465   {"cc",   68}, {"sp",    1}, {"toc",   2},			\
2466   /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2467   {"xer",  76},							\
2468   /* VSX registers overlaid on top of FR, Altivec registers */	\
2469   {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2470   {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2471   {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2472   {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2473   {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2474   {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2475   {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2476   {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2477   {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80},       \
2478   {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84},       \
2479   {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88},       \
2480   {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92},       \
2481   {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96},       \
2482   {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100},	\
2483   {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104},      \
2484   {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108},	\
2485   /* Transactional Memory Facility (HTM) Registers.  */		\
2486   {"tfhar",  114}, {"tfiar",  115}, {"texasr",  116},		\
2487   /* SPE high registers.  */					\
2488   {"rh0",  117}, {"rh1",  118}, {"rh2",  119}, {"rh3",  120},	\
2489   {"rh4",  121}, {"rh5",  122}, {"rh6",  123}, {"rh7",  124},	\
2490   {"rh8",  125}, {"rh9",  126}, {"rh10", 127}, {"rh11", 128},	\
2491   {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132},	\
2492   {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136},	\
2493   {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140},	\
2494   {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144},	\
2495   {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148},	\
2496 }
2497 
2498 /* This is how to output an element of a case-vector that is relative.  */
2499 
2500 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2501   do { char buf[100];					\
2502        fputs ("\t.long ", FILE);			\
2503        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2504        assemble_name (FILE, buf);			\
2505        putc ('-', FILE);				\
2506        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2507        assemble_name (FILE, buf);			\
2508        putc ('\n', FILE);				\
2509      } while (0)
2510 
2511 /* This is how to output an assembler line
2512    that says to advance the location counter
2513    to a multiple of 2**LOG bytes.  */
2514 
2515 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2516   if ((LOG) != 0)			\
2517     fprintf (FILE, "\t.align %d\n", (LOG))
2518 
2519 /* How to align the given loop. */
2520 #define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2521 
2522 /* Alignment guaranteed by __builtin_malloc.  */
2523 /* FIXME:  128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2524    However, specifying the stronger guarantee currently leads to
2525    a regression in SPEC CPU2006 437.leslie3d.  The stronger
2526    guarantee should be implemented here once that's fixed.  */
2527 #define MALLOC_ABI_ALIGNMENT (64)
2528 
2529 /* Pick up the return address upon entry to a procedure. Used for
2530    dwarf2 unwind information.  This also enables the table driven
2531    mechanism.  */
2532 
2533 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2534 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2535 
2536 /* Describe how we implement __builtin_eh_return.  */
2537 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2538 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2539 
2540 /* Print operand X (an rtx) in assembler syntax to file FILE.
2541    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2542    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2543 
2544 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2545 
2546 /* Define which CODE values are valid.  */
2547 
2548 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  ((CODE) == '&')
2549 
2550 /* Print a memory address as an operand to reference that memory location.  */
2551 
2552 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2553 
2554 /* For switching between functions with different target attributes.  */
2555 #define SWITCHABLE_TARGET 1
2556 
2557 /* uncomment for disabling the corresponding default options */
2558 /* #define  MACHINE_no_sched_interblock */
2559 /* #define  MACHINE_no_sched_speculative */
2560 /* #define  MACHINE_no_sched_speculative_load */
2561 
2562 /* General flags.  */
2563 extern int frame_pointer_needed;
2564 
2565 /* Classification of the builtin functions as to which switches enable the
2566    builtin, and what attributes it should have.  We used to use the target
2567    flags macros, but we've run out of bits, so we now map the options into new
2568    settings used here.  */
2569 
2570 /* Builtin attributes.  */
2571 #define RS6000_BTC_SPECIAL	0x00000000	/* Special function.  */
2572 #define RS6000_BTC_UNARY	0x00000001	/* normal unary function.  */
2573 #define RS6000_BTC_BINARY	0x00000002	/* normal binary function.  */
2574 #define RS6000_BTC_TERNARY	0x00000003	/* normal ternary function.  */
2575 #define RS6000_BTC_PREDICATE	0x00000004	/* predicate function.  */
2576 #define RS6000_BTC_ABS		0x00000005	/* Altivec/VSX ABS function.  */
2577 #define RS6000_BTC_EVSEL	0x00000006	/* SPE EVSEL function.  */
2578 #define RS6000_BTC_DST		0x00000007	/* Altivec DST function.  */
2579 #define RS6000_BTC_TYPE_MASK	0x0000000f	/* Mask to isolate types */
2580 
2581 #define RS6000_BTC_MISC		0x00000000	/* No special attributes.  */
2582 #define RS6000_BTC_CONST	0x00000100	/* uses no global state.  */
2583 #define RS6000_BTC_PURE		0x00000200	/* reads global state/mem.  */
2584 #define RS6000_BTC_FP		0x00000400	/* depends on rounding mode.  */
2585 #define RS6000_BTC_ATTR_MASK	0x00000700	/* Mask of the attributes.  */
2586 
2587 /* Miscellaneous information.  */
2588 #define RS6000_BTC_SPR		0x01000000	/* function references SPRs.  */
2589 #define RS6000_BTC_VOID		0x02000000	/* function has no return value.  */
2590 #define RS6000_BTC_OVERLOADED	0x04000000	/* function is overloaded.  */
2591 #define RS6000_BTC_32BIT	0x08000000	/* function references SPRs.  */
2592 #define RS6000_BTC_64BIT	0x10000000	/* function references SPRs.  */
2593 #define RS6000_BTC_MISC_MASK	0x1f000000	/* Mask of the misc info.  */
2594 
2595 /* Convenience macros to document the instruction type.  */
2596 #define RS6000_BTC_MEM		RS6000_BTC_MISC	/* load/store touches mem.  */
2597 #define RS6000_BTC_SAT		RS6000_BTC_MISC	/* saturate sets VSCR.  */
2598 
2599 /* Builtin targets.  For now, we reuse the masks for those options that are in
2600    target flags, and pick three random bits for SPE, paired and ldbl128 which
2601    aren't in target_flags.  */
2602 #define RS6000_BTM_ALWAYS	0		/* Always enabled.  */
2603 #define RS6000_BTM_ALTIVEC	MASK_ALTIVEC	/* VMX/altivec vectors.  */
2604 #define RS6000_BTM_VSX		MASK_VSX	/* VSX (vector/scalar).  */
2605 #define RS6000_BTM_P8_VECTOR	MASK_P8_VECTOR	/* ISA 2.07 vector.  */
2606 #define RS6000_BTM_CRYPTO	MASK_CRYPTO	/* crypto funcs.  */
2607 #define RS6000_BTM_HTM		MASK_HTM	/* hardware TM funcs.  */
2608 #define RS6000_BTM_SPE		MASK_STRING	/* E500 */
2609 #define RS6000_BTM_PAIRED	MASK_MULHW	/* 750CL paired insns.  */
2610 #define RS6000_BTM_FRE		MASK_POPCNTB	/* FRE instruction.  */
2611 #define RS6000_BTM_FRES		MASK_PPC_GFXOPT	/* FRES instruction.  */
2612 #define RS6000_BTM_FRSQRTE	MASK_PPC_GFXOPT	/* FRSQRTE instruction.  */
2613 #define RS6000_BTM_FRSQRTES	MASK_POPCNTB	/* FRSQRTES instruction.  */
2614 #define RS6000_BTM_POPCNTD	MASK_POPCNTD	/* Target supports ISA 2.06.  */
2615 #define RS6000_BTM_CELL		MASK_FPRND	/* Target is cell powerpc.  */
2616 #define RS6000_BTM_DFP		MASK_DFP	/* Decimal floating point.  */
2617 #define RS6000_BTM_HARD_FLOAT	MASK_SOFT_FLOAT	/* Hardware floating point.  */
2618 #define RS6000_BTM_LDBL128	MASK_MULTIPLE	/* 128-bit long double.  */
2619 
2620 #define RS6000_BTM_COMMON	(RS6000_BTM_ALTIVEC			\
2621 				 | RS6000_BTM_VSX			\
2622 				 | RS6000_BTM_P8_VECTOR			\
2623 				 | RS6000_BTM_CRYPTO			\
2624 				 | RS6000_BTM_FRE			\
2625 				 | RS6000_BTM_FRES			\
2626 				 | RS6000_BTM_FRSQRTE			\
2627 				 | RS6000_BTM_FRSQRTES			\
2628 				 | RS6000_BTM_HTM			\
2629 				 | RS6000_BTM_POPCNTD			\
2630 				 | RS6000_BTM_CELL			\
2631 				 | RS6000_BTM_DFP			\
2632 				 | RS6000_BTM_HARD_FLOAT		\
2633 				 | RS6000_BTM_LDBL128)
2634 
2635 /* Define builtin enum index.  */
2636 
2637 #undef RS6000_BUILTIN_1
2638 #undef RS6000_BUILTIN_2
2639 #undef RS6000_BUILTIN_3
2640 #undef RS6000_BUILTIN_A
2641 #undef RS6000_BUILTIN_D
2642 #undef RS6000_BUILTIN_E
2643 #undef RS6000_BUILTIN_H
2644 #undef RS6000_BUILTIN_P
2645 #undef RS6000_BUILTIN_Q
2646 #undef RS6000_BUILTIN_S
2647 #undef RS6000_BUILTIN_X
2648 
2649 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2650 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2651 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2652 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2653 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2654 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2655 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2656 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2657 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2658 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2659 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2660 
2661 enum rs6000_builtins
2662 {
2663 #include "rs6000-builtin.def"
2664 
2665   RS6000_BUILTIN_COUNT
2666 };
2667 
2668 #undef RS6000_BUILTIN_1
2669 #undef RS6000_BUILTIN_2
2670 #undef RS6000_BUILTIN_3
2671 #undef RS6000_BUILTIN_A
2672 #undef RS6000_BUILTIN_D
2673 #undef RS6000_BUILTIN_E
2674 #undef RS6000_BUILTIN_H
2675 #undef RS6000_BUILTIN_P
2676 #undef RS6000_BUILTIN_Q
2677 #undef RS6000_BUILTIN_S
2678 #undef RS6000_BUILTIN_X
2679 
2680 enum rs6000_builtin_type_index
2681 {
2682   RS6000_BTI_NOT_OPAQUE,
2683   RS6000_BTI_opaque_V2SI,
2684   RS6000_BTI_opaque_V2SF,
2685   RS6000_BTI_opaque_p_V2SI,
2686   RS6000_BTI_opaque_V4SI,
2687   RS6000_BTI_V16QI,
2688   RS6000_BTI_V1TI,
2689   RS6000_BTI_V2SI,
2690   RS6000_BTI_V2SF,
2691   RS6000_BTI_V2DI,
2692   RS6000_BTI_V2DF,
2693   RS6000_BTI_V4HI,
2694   RS6000_BTI_V4SI,
2695   RS6000_BTI_V4SF,
2696   RS6000_BTI_V8HI,
2697   RS6000_BTI_unsigned_V16QI,
2698   RS6000_BTI_unsigned_V1TI,
2699   RS6000_BTI_unsigned_V8HI,
2700   RS6000_BTI_unsigned_V4SI,
2701   RS6000_BTI_unsigned_V2DI,
2702   RS6000_BTI_bool_char,          /* __bool char */
2703   RS6000_BTI_bool_short,         /* __bool short */
2704   RS6000_BTI_bool_int,           /* __bool int */
2705   RS6000_BTI_bool_long,		 /* __bool long */
2706   RS6000_BTI_pixel,              /* __pixel */
2707   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2708   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2709   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2710   RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2711   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2712   RS6000_BTI_long,	         /* long_integer_type_node */
2713   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2714   RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2715   RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2716   RS6000_BTI_INTQI,	         /* intQI_type_node */
2717   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2718   RS6000_BTI_INTHI,	         /* intHI_type_node */
2719   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2720   RS6000_BTI_INTSI,		 /* intSI_type_node */
2721   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2722   RS6000_BTI_INTDI,		 /* intDI_type_node */
2723   RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2724   RS6000_BTI_INTTI,		 /* intTI_type_node */
2725   RS6000_BTI_UINTTI,		 /* unsigned_intTI_type_node */
2726   RS6000_BTI_float,	         /* float_type_node */
2727   RS6000_BTI_double,	         /* double_type_node */
2728   RS6000_BTI_long_double,        /* long_double_type_node */
2729   RS6000_BTI_dfloat64,		 /* dfloat64_type_node */
2730   RS6000_BTI_dfloat128,		 /* dfloat128_type_node */
2731   RS6000_BTI_void,	         /* void_type_node */
2732   RS6000_BTI_MAX
2733 };
2734 
2735 
2736 #define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2737 #define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2738 #define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2739 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2740 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2741 #define V1TI_type_node                (rs6000_builtin_types[RS6000_BTI_V1TI])
2742 #define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2743 #define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2744 #define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
2745 #define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
2746 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2747 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2748 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2749 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2750 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2751 #define unsigned_V1TI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2752 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2753 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2754 #define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2755 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2756 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2757 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2758 #define bool_long_type_node           (rs6000_builtin_types[RS6000_BTI_bool_long])
2759 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2760 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2761 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2762 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2763 #define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2764 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2765 
2766 #define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2767 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2768 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2769 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2770 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2771 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2772 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2773 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2774 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2775 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2776 #define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2777 #define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2778 #define intTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTTI])
2779 #define uintTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTTI])
2780 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2781 #define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2782 #define long_double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_long_double])
2783 #define dfloat64_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat64])
2784 #define dfloat128_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat128])
2785 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2786 
2787 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2788 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2789 
2790