1 /* RTL dead store elimination.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hash-table.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
42 #include "alias.h"
43 #include "insn-config.h"
44 #include "expr.h"
45 #include "recog.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
48 #include "target.h"
49 #include "params.h"
50 #include "pointer-set.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
54 #include "is-a.h"
55 #include "gimple.h"
56 #include "gimple-ssa.h"
57
58 /* This file contains three techniques for performing Dead Store
59 Elimination (dse).
60
61 * The first technique performs dse locally on any base address. It
62 is based on the cselib which is a local value numbering technique.
63 This technique is local to a basic block but deals with a fairly
64 general addresses.
65
66 * The second technique performs dse globally but is restricted to
67 base addresses that are either constant or are relative to the
68 frame_pointer.
69
70 * The third technique, (which is only done after register allocation)
71 processes the spill spill slots. This differs from the second
72 technique because it takes advantage of the fact that spilling is
73 completely free from the effects of aliasing.
74
75 Logically, dse is a backwards dataflow problem. A store can be
76 deleted if it if cannot be reached in the backward direction by any
77 use of the value being stored. However, the local technique uses a
78 forwards scan of the basic block because cselib requires that the
79 block be processed in that order.
80
81 The pass is logically broken into 7 steps:
82
83 0) Initialization.
84
85 1) The local algorithm, as well as scanning the insns for the two
86 global algorithms.
87
88 2) Analysis to see if the global algs are necessary. In the case
89 of stores base on a constant address, there must be at least two
90 stores to that address, to make it possible to delete some of the
91 stores. In the case of stores off of the frame or spill related
92 stores, only one store to an address is necessary because those
93 stores die at the end of the function.
94
95 3) Set up the global dataflow equations based on processing the
96 info parsed in the first step.
97
98 4) Solve the dataflow equations.
99
100 5) Delete the insns that the global analysis has indicated are
101 unnecessary.
102
103 6) Delete insns that store the same value as preceding store
104 where the earlier store couldn't be eliminated.
105
106 7) Cleanup.
107
108 This step uses cselib and canon_rtx to build the largest expression
109 possible for each address. This pass is a forwards pass through
110 each basic block. From the point of view of the global technique,
111 the first pass could examine a block in either direction. The
112 forwards ordering is to accommodate cselib.
113
114 We make a simplifying assumption: addresses fall into four broad
115 categories:
116
117 1) base has rtx_varies_p == false, offset is constant.
118 2) base has rtx_varies_p == false, offset variable.
119 3) base has rtx_varies_p == true, offset constant.
120 4) base has rtx_varies_p == true, offset variable.
121
122 The local passes are able to process all 4 kinds of addresses. The
123 global pass only handles 1).
124
125 The global problem is formulated as follows:
126
127 A store, S1, to address A, where A is not relative to the stack
128 frame, can be eliminated if all paths from S1 to the end of the
129 function contain another store to A before a read to A.
130
131 If the address A is relative to the stack frame, a store S2 to A
132 can be eliminated if there are no paths from S2 that reach the
133 end of the function that read A before another store to A. In
134 this case S2 can be deleted if there are paths from S2 to the
135 end of the function that have no reads or writes to A. This
136 second case allows stores to the stack frame to be deleted that
137 would otherwise die when the function returns. This cannot be
138 done if stores_off_frame_dead_at_return is not true. See the doc
139 for that variable for when this variable is false.
140
141 The global problem is formulated as a backwards set union
142 dataflow problem where the stores are the gens and reads are the
143 kills. Set union problems are rare and require some special
144 handling given our representation of bitmaps. A straightforward
145 implementation requires a lot of bitmaps filled with 1s.
146 These are expensive and cumbersome in our bitmap formulation so
147 care has been taken to avoid large vectors filled with 1s. See
148 the comments in bb_info and in the dataflow confluence functions
149 for details.
150
151 There are two places for further enhancements to this algorithm:
152
153 1) The original dse which was embedded in a pass called flow also
154 did local address forwarding. For example in
155
156 A <- r100
157 ... <- A
158
159 flow would replace the right hand side of the second insn with a
160 reference to r100. Most of the information is available to add this
161 to this pass. It has not done it because it is a lot of work in
162 the case that either r100 is assigned to between the first and
163 second insn and/or the second insn is a load of part of the value
164 stored by the first insn.
165
166 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
167 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
168 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
169 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
170
171 2) The cleaning up of spill code is quite profitable. It currently
172 depends on reading tea leaves and chicken entrails left by reload.
173 This pass depends on reload creating a singleton alias set for each
174 spill slot and telling the next dse pass which of these alias sets
175 are the singletons. Rather than analyze the addresses of the
176 spills, dse's spill processing just does analysis of the loads and
177 stores that use those alias sets. There are three cases where this
178 falls short:
179
180 a) Reload sometimes creates the slot for one mode of access, and
181 then inserts loads and/or stores for a smaller mode. In this
182 case, the current code just punts on the slot. The proper thing
183 to do is to back out and use one bit vector position for each
184 byte of the entity associated with the slot. This depends on
185 KNOWING that reload always generates the accesses for each of the
186 bytes in some canonical (read that easy to understand several
187 passes after reload happens) way.
188
189 b) Reload sometimes decides that spill slot it allocated was not
190 large enough for the mode and goes back and allocates more slots
191 with the same mode and alias set. The backout in this case is a
192 little more graceful than (a). In this case the slot is unmarked
193 as being a spill slot and if final address comes out to be based
194 off the frame pointer, the global algorithm handles this slot.
195
196 c) For any pass that may prespill, there is currently no
197 mechanism to tell the dse pass that the slot being used has the
198 special properties that reload uses. It may be that all that is
199 required is to have those passes make the same calls that reload
200 does, assuming that the alias sets can be manipulated in the same
201 way. */
202
203 /* There are limits to the size of constant offsets we model for the
204 global problem. There are certainly test cases, that exceed this
205 limit, however, it is unlikely that there are important programs
206 that really have constant offsets this size. */
207 #define MAX_OFFSET (64 * 1024)
208
209 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
210 on the default obstack because these bitmaps can grow quite large
211 (~2GB for the small (!) test case of PR54146) and we'll hold on to
212 all that memory until the end of the compiler run.
213 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
214 releasing the whole obstack. */
215 static bitmap_obstack dse_bitmap_obstack;
216
217 /* Obstack for other data. As for above: Kinda nice to be able to
218 throw it all away at the end in one big sweep. */
219 static struct obstack dse_obstack;
220
221 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
222 static bitmap scratch = NULL;
223
224 struct insn_info;
225
226 /* This structure holds information about a candidate store. */
227 struct store_info
228 {
229
230 /* False means this is a clobber. */
231 bool is_set;
232
233 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
234 bool is_large;
235
236 /* The id of the mem group of the base address. If rtx_varies_p is
237 true, this is -1. Otherwise, it is the index into the group
238 table. */
239 int group_id;
240
241 /* This is the cselib value. */
242 cselib_val *cse_base;
243
244 /* This canonized mem. */
245 rtx mem;
246
247 /* Canonized MEM address for use by canon_true_dependence. */
248 rtx mem_addr;
249
250 /* If this is non-zero, it is the alias set of a spill location. */
251 alias_set_type alias_set;
252
253 /* The offset of the first and byte before the last byte associated
254 with the operation. */
255 HOST_WIDE_INT begin, end;
256
257 union
258 {
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask;
263
264 struct
265 {
266 /* A bitmap with one bit per byte. Cleared bit means the position
267 is needed. Used if IS_LARGE is false. */
268 bitmap bmap;
269
270 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
271 equal to END - BEGIN, the whole store is unused. */
272 int count;
273 } large;
274 } positions_needed;
275
276 /* The next store info for this insn. */
277 struct store_info *next;
278
279 /* The right hand side of the store. This is used if there is a
280 subsequent reload of the mems address somewhere later in the
281 basic block. */
282 rtx rhs;
283
284 /* If rhs is or holds a constant, this contains that constant,
285 otherwise NULL. */
286 rtx const_rhs;
287
288 /* Set if this store stores the same constant value as REDUNDANT_REASON
289 insn stored. These aren't eliminated early, because doing that
290 might prevent the earlier larger store to be eliminated. */
291 struct insn_info *redundant_reason;
292 };
293
294 /* Return a bitmask with the first N low bits set. */
295
296 static unsigned HOST_WIDE_INT
lowpart_bitmask(int n)297 lowpart_bitmask (int n)
298 {
299 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
300 return mask >> (HOST_BITS_PER_WIDE_INT - n);
301 }
302
303 typedef struct store_info *store_info_t;
304 static alloc_pool cse_store_info_pool;
305 static alloc_pool rtx_store_info_pool;
306
307 /* This structure holds information about a load. These are only
308 built for rtx bases. */
309 struct read_info
310 {
311 /* The id of the mem group of the base address. */
312 int group_id;
313
314 /* If this is non-zero, it is the alias set of a spill location. */
315 alias_set_type alias_set;
316
317 /* The offset of the first and byte after the last byte associated
318 with the operation. If begin == end == 0, the read did not have
319 a constant offset. */
320 int begin, end;
321
322 /* The mem being read. */
323 rtx mem;
324
325 /* The next read_info for this insn. */
326 struct read_info *next;
327 };
328 typedef struct read_info *read_info_t;
329 static alloc_pool read_info_pool;
330
331
332 /* One of these records is created for each insn. */
333
334 struct insn_info
335 {
336 /* Set true if the insn contains a store but the insn itself cannot
337 be deleted. This is set if the insn is a parallel and there is
338 more than one non dead output or if the insn is in some way
339 volatile. */
340 bool cannot_delete;
341
342 /* This field is only used by the global algorithm. It is set true
343 if the insn contains any read of mem except for a (1). This is
344 also set if the insn is a call or has a clobber mem. If the insn
345 contains a wild read, the use_rec will be null. */
346 bool wild_read;
347
348 /* This is true only for CALL instructions which could potentially read
349 any non-frame memory location. This field is used by the global
350 algorithm. */
351 bool non_frame_wild_read;
352
353 /* This field is only used for the processing of const functions.
354 These functions cannot read memory, but they can read the stack
355 because that is where they may get their parms. We need to be
356 this conservative because, like the store motion pass, we don't
357 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
358 Moreover, we need to distinguish two cases:
359 1. Before reload (register elimination), the stores related to
360 outgoing arguments are stack pointer based and thus deemed
361 of non-constant base in this pass. This requires special
362 handling but also means that the frame pointer based stores
363 need not be killed upon encountering a const function call.
364 2. After reload, the stores related to outgoing arguments can be
365 either stack pointer or hard frame pointer based. This means
366 that we have no other choice than also killing all the frame
367 pointer based stores upon encountering a const function call.
368 This field is set after reload for const function calls. Having
369 this set is less severe than a wild read, it just means that all
370 the frame related stores are killed rather than all the stores. */
371 bool frame_read;
372
373 /* This field is only used for the processing of const functions.
374 It is set if the insn may contain a stack pointer based store. */
375 bool stack_pointer_based;
376
377 /* This is true if any of the sets within the store contains a
378 cselib base. Such stores can only be deleted by the local
379 algorithm. */
380 bool contains_cselib_groups;
381
382 /* The insn. */
383 rtx insn;
384
385 /* The list of mem sets or mem clobbers that are contained in this
386 insn. If the insn is deletable, it contains only one mem set.
387 But it could also contain clobbers. Insns that contain more than
388 one mem set are not deletable, but each of those mems are here in
389 order to provide info to delete other insns. */
390 store_info_t store_rec;
391
392 /* The linked list of mem uses in this insn. Only the reads from
393 rtx bases are listed here. The reads to cselib bases are
394 completely processed during the first scan and so are never
395 created. */
396 read_info_t read_rec;
397
398 /* The live fixed registers. We assume only fixed registers can
399 cause trouble by being clobbered from an expanded pattern;
400 storing only the live fixed registers (rather than all registers)
401 means less memory needs to be allocated / copied for the individual
402 stores. */
403 regset fixed_regs_live;
404
405 /* The prev insn in the basic block. */
406 struct insn_info * prev_insn;
407
408 /* The linked list of insns that are in consideration for removal in
409 the forwards pass through the basic block. This pointer may be
410 trash as it is not cleared when a wild read occurs. The only
411 time it is guaranteed to be correct is when the traversal starts
412 at active_local_stores. */
413 struct insn_info * next_local_store;
414 };
415
416 typedef struct insn_info *insn_info_t;
417 static alloc_pool insn_info_pool;
418
419 /* The linked list of stores that are under consideration in this
420 basic block. */
421 static insn_info_t active_local_stores;
422 static int active_local_stores_len;
423
424 struct bb_info
425 {
426
427 /* Pointer to the insn info for the last insn in the block. These
428 are linked so this is how all of the insns are reached. During
429 scanning this is the current insn being scanned. */
430 insn_info_t last_insn;
431
432 /* The info for the global dataflow problem. */
433
434
435 /* This is set if the transfer function should and in the wild_read
436 bitmap before applying the kill and gen sets. That vector knocks
437 out most of the bits in the bitmap and thus speeds up the
438 operations. */
439 bool apply_wild_read;
440
441 /* The following 4 bitvectors hold information about which positions
442 of which stores are live or dead. They are indexed by
443 get_bitmap_index. */
444
445 /* The set of store positions that exist in this block before a wild read. */
446 bitmap gen;
447
448 /* The set of load positions that exist in this block above the
449 same position of a store. */
450 bitmap kill;
451
452 /* The set of stores that reach the top of the block without being
453 killed by a read.
454
455 Do not represent the in if it is all ones. Note that this is
456 what the bitvector should logically be initialized to for a set
457 intersection problem. However, like the kill set, this is too
458 expensive. So initially, the in set will only be created for the
459 exit block and any block that contains a wild read. */
460 bitmap in;
461
462 /* The set of stores that reach the bottom of the block from it's
463 successors.
464
465 Do not represent the in if it is all ones. Note that this is
466 what the bitvector should logically be initialized to for a set
467 intersection problem. However, like the kill and in set, this is
468 too expensive. So what is done is that the confluence operator
469 just initializes the vector from one of the out sets of the
470 successors of the block. */
471 bitmap out;
472
473 /* The following bitvector is indexed by the reg number. It
474 contains the set of regs that are live at the current instruction
475 being processed. While it contains info for all of the
476 registers, only the hard registers are actually examined. It is used
477 to assure that shift and/or add sequences that are inserted do not
478 accidentally clobber live hard regs. */
479 bitmap regs_live;
480 };
481
482 typedef struct bb_info *bb_info_t;
483 static alloc_pool bb_info_pool;
484
485 /* Table to hold all bb_infos. */
486 static bb_info_t *bb_table;
487
488 /* There is a group_info for each rtx base that is used to reference
489 memory. There are also not many of the rtx bases because they are
490 very limited in scope. */
491
492 struct group_info
493 {
494 /* The actual base of the address. */
495 rtx rtx_base;
496
497 /* The sequential id of the base. This allows us to have a
498 canonical ordering of these that is not based on addresses. */
499 int id;
500
501 /* True if there are any positions that are to be processed
502 globally. */
503 bool process_globally;
504
505 /* True if the base of this group is either the frame_pointer or
506 hard_frame_pointer. */
507 bool frame_related;
508
509 /* A mem wrapped around the base pointer for the group in order to do
510 read dependency. It must be given BLKmode in order to encompass all
511 the possible offsets from the base. */
512 rtx base_mem;
513
514 /* Canonized version of base_mem's address. */
515 rtx canon_base_addr;
516
517 /* These two sets of two bitmaps are used to keep track of how many
518 stores are actually referencing that position from this base. We
519 only do this for rtx bases as this will be used to assign
520 positions in the bitmaps for the global problem. Bit N is set in
521 store1 on the first store for offset N. Bit N is set in store2
522 for the second store to offset N. This is all we need since we
523 only care about offsets that have two or more stores for them.
524
525 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
526 for 0 and greater offsets.
527
528 There is one special case here, for stores into the stack frame,
529 we will or store1 into store2 before deciding which stores look
530 at globally. This is because stores to the stack frame that have
531 no other reads before the end of the function can also be
532 deleted. */
533 bitmap store1_n, store1_p, store2_n, store2_p;
534
535 /* These bitmaps keep track of offsets in this group escape this function.
536 An offset escapes if it corresponds to a named variable whose
537 addressable flag is set. */
538 bitmap escaped_n, escaped_p;
539
540 /* The positions in this bitmap have the same assignments as the in,
541 out, gen and kill bitmaps. This bitmap is all zeros except for
542 the positions that are occupied by stores for this group. */
543 bitmap group_kill;
544
545 /* The offset_map is used to map the offsets from this base into
546 positions in the global bitmaps. It is only created after all of
547 the all of stores have been scanned and we know which ones we
548 care about. */
549 int *offset_map_n, *offset_map_p;
550 int offset_map_size_n, offset_map_size_p;
551 };
552 typedef struct group_info *group_info_t;
553 typedef const struct group_info *const_group_info_t;
554 static alloc_pool rtx_group_info_pool;
555
556 /* Index into the rtx_group_vec. */
557 static int rtx_group_next_id;
558
559
560 static vec<group_info_t> rtx_group_vec;
561
562
563 /* This structure holds the set of changes that are being deferred
564 when removing read operation. See replace_read. */
565 struct deferred_change
566 {
567
568 /* The mem that is being replaced. */
569 rtx *loc;
570
571 /* The reg it is being replaced with. */
572 rtx reg;
573
574 struct deferred_change *next;
575 };
576
577 typedef struct deferred_change *deferred_change_t;
578 static alloc_pool deferred_change_pool;
579
580 static deferred_change_t deferred_change_list = NULL;
581
582 /* The group that holds all of the clear_alias_sets. */
583 static group_info_t clear_alias_group;
584
585 /* The modes of the clear_alias_sets. */
586 static htab_t clear_alias_mode_table;
587
588 /* Hash table element to look up the mode for an alias set. */
589 struct clear_alias_mode_holder
590 {
591 alias_set_type alias_set;
592 enum machine_mode mode;
593 };
594
595 /* This is true except if cfun->stdarg -- i.e. we cannot do
596 this for vararg functions because they play games with the frame. */
597 static bool stores_off_frame_dead_at_return;
598
599 /* Counter for stats. */
600 static int globally_deleted;
601 static int locally_deleted;
602 static int spill_deleted;
603
604 static bitmap all_blocks;
605
606 /* Locations that are killed by calls in the global phase. */
607 static bitmap kill_on_calls;
608
609 /* The number of bits used in the global bitmaps. */
610 static unsigned int current_position;
611
612
613 static bool gate_dse1 (void);
614 static bool gate_dse2 (void);
615
616
617 /*----------------------------------------------------------------------------
618 Zeroth step.
619
620 Initialization.
621 ----------------------------------------------------------------------------*/
622
623
624 /* Find the entry associated with ALIAS_SET. */
625
626 static struct clear_alias_mode_holder *
clear_alias_set_lookup(alias_set_type alias_set)627 clear_alias_set_lookup (alias_set_type alias_set)
628 {
629 struct clear_alias_mode_holder tmp_holder;
630 void **slot;
631
632 tmp_holder.alias_set = alias_set;
633 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
634 gcc_assert (*slot);
635
636 return (struct clear_alias_mode_holder *) *slot;
637 }
638
639
640 /* Hashtable callbacks for maintaining the "bases" field of
641 store_group_info, given that the addresses are function invariants. */
642
643 struct invariant_group_base_hasher : typed_noop_remove <group_info>
644 {
645 typedef group_info value_type;
646 typedef group_info compare_type;
647 static inline hashval_t hash (const value_type *);
648 static inline bool equal (const value_type *, const compare_type *);
649 };
650
651 inline bool
equal(const value_type * gi1,const compare_type * gi2)652 invariant_group_base_hasher::equal (const value_type *gi1,
653 const compare_type *gi2)
654 {
655 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
656 }
657
658 inline hashval_t
hash(const value_type * gi)659 invariant_group_base_hasher::hash (const value_type *gi)
660 {
661 int do_not_record;
662 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
663 }
664
665 /* Tables of group_info structures, hashed by base value. */
666 static hash_table <invariant_group_base_hasher> rtx_group_table;
667
668
669 /* Get the GROUP for BASE. Add a new group if it is not there. */
670
671 static group_info_t
get_group_info(rtx base)672 get_group_info (rtx base)
673 {
674 struct group_info tmp_gi;
675 group_info_t gi;
676 group_info **slot;
677
678 if (base)
679 {
680 /* Find the store_base_info structure for BASE, creating a new one
681 if necessary. */
682 tmp_gi.rtx_base = base;
683 slot = rtx_group_table.find_slot (&tmp_gi, INSERT);
684 gi = (group_info_t) *slot;
685 }
686 else
687 {
688 if (!clear_alias_group)
689 {
690 clear_alias_group = gi =
691 (group_info_t) pool_alloc (rtx_group_info_pool);
692 memset (gi, 0, sizeof (struct group_info));
693 gi->id = rtx_group_next_id++;
694 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
695 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
696 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
697 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
698 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
699 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
700 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
701 gi->process_globally = false;
702 gi->offset_map_size_n = 0;
703 gi->offset_map_size_p = 0;
704 gi->offset_map_n = NULL;
705 gi->offset_map_p = NULL;
706 rtx_group_vec.safe_push (gi);
707 }
708 return clear_alias_group;
709 }
710
711 if (gi == NULL)
712 {
713 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
714 gi->rtx_base = base;
715 gi->id = rtx_group_next_id++;
716 gi->base_mem = gen_rtx_MEM (BLKmode, base);
717 gi->canon_base_addr = canon_rtx (base);
718 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
719 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
720 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
721 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
722 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
723 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
724 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
725 gi->process_globally = false;
726 gi->frame_related =
727 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
728 gi->offset_map_size_n = 0;
729 gi->offset_map_size_p = 0;
730 gi->offset_map_n = NULL;
731 gi->offset_map_p = NULL;
732 rtx_group_vec.safe_push (gi);
733 }
734
735 return gi;
736 }
737
738
739 /* Initialization of data structures. */
740
741 static void
dse_step0(void)742 dse_step0 (void)
743 {
744 locally_deleted = 0;
745 globally_deleted = 0;
746 spill_deleted = 0;
747
748 bitmap_obstack_initialize (&dse_bitmap_obstack);
749 gcc_obstack_init (&dse_obstack);
750
751 scratch = BITMAP_ALLOC (®_obstack);
752 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
753
754 rtx_store_info_pool
755 = create_alloc_pool ("rtx_store_info_pool",
756 sizeof (struct store_info), 100);
757 read_info_pool
758 = create_alloc_pool ("read_info_pool",
759 sizeof (struct read_info), 100);
760 insn_info_pool
761 = create_alloc_pool ("insn_info_pool",
762 sizeof (struct insn_info), 100);
763 bb_info_pool
764 = create_alloc_pool ("bb_info_pool",
765 sizeof (struct bb_info), 100);
766 rtx_group_info_pool
767 = create_alloc_pool ("rtx_group_info_pool",
768 sizeof (struct group_info), 100);
769 deferred_change_pool
770 = create_alloc_pool ("deferred_change_pool",
771 sizeof (struct deferred_change), 10);
772
773 rtx_group_table.create (11);
774
775 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
776 rtx_group_next_id = 0;
777
778 stores_off_frame_dead_at_return = !cfun->stdarg;
779
780 init_alias_analysis ();
781
782 clear_alias_group = NULL;
783 }
784
785
786
787 /*----------------------------------------------------------------------------
788 First step.
789
790 Scan all of the insns. Any random ordering of the blocks is fine.
791 Each block is scanned in forward order to accommodate cselib which
792 is used to remove stores with non-constant bases.
793 ----------------------------------------------------------------------------*/
794
795 /* Delete all of the store_info recs from INSN_INFO. */
796
797 static void
free_store_info(insn_info_t insn_info)798 free_store_info (insn_info_t insn_info)
799 {
800 store_info_t store_info = insn_info->store_rec;
801 while (store_info)
802 {
803 store_info_t next = store_info->next;
804 if (store_info->is_large)
805 BITMAP_FREE (store_info->positions_needed.large.bmap);
806 if (store_info->cse_base)
807 pool_free (cse_store_info_pool, store_info);
808 else
809 pool_free (rtx_store_info_pool, store_info);
810 store_info = next;
811 }
812
813 insn_info->cannot_delete = true;
814 insn_info->contains_cselib_groups = false;
815 insn_info->store_rec = NULL;
816 }
817
818 typedef struct
819 {
820 rtx first, current;
821 regset fixed_regs_live;
822 bool failure;
823 } note_add_store_info;
824
825 /* Callback for emit_inc_dec_insn_before via note_stores.
826 Check if a register is clobbered which is live afterwards. */
827
828 static void
note_add_store(rtx loc,const_rtx expr ATTRIBUTE_UNUSED,void * data)829 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
830 {
831 rtx insn;
832 note_add_store_info *info = (note_add_store_info *) data;
833 int r, n;
834
835 if (!REG_P (loc))
836 return;
837
838 /* If this register is referenced by the current or an earlier insn,
839 that's OK. E.g. this applies to the register that is being incremented
840 with this addition. */
841 for (insn = info->first;
842 insn != NEXT_INSN (info->current);
843 insn = NEXT_INSN (insn))
844 if (reg_referenced_p (loc, PATTERN (insn)))
845 return;
846
847 /* If we come here, we have a clobber of a register that's only OK
848 if that register is not live. If we don't have liveness information
849 available, fail now. */
850 if (!info->fixed_regs_live)
851 {
852 info->failure = true;
853 return;
854 }
855 /* Now check if this is a live fixed register. */
856 r = REGNO (loc);
857 n = hard_regno_nregs[r][GET_MODE (loc)];
858 while (--n >= 0)
859 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
860 info->failure = true;
861 }
862
863 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
864 SRC + SRCOFF before insn ARG. */
865
866 static int
emit_inc_dec_insn_before(rtx mem ATTRIBUTE_UNUSED,rtx op ATTRIBUTE_UNUSED,rtx dest,rtx src,rtx srcoff,void * arg)867 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
868 rtx op ATTRIBUTE_UNUSED,
869 rtx dest, rtx src, rtx srcoff, void *arg)
870 {
871 insn_info_t insn_info = (insn_info_t) arg;
872 rtx insn = insn_info->insn, new_insn, cur;
873 note_add_store_info info;
874
875 /* We can reuse all operands without copying, because we are about
876 to delete the insn that contained it. */
877 if (srcoff)
878 {
879 start_sequence ();
880 emit_insn (gen_add3_insn (dest, src, srcoff));
881 new_insn = get_insns ();
882 end_sequence ();
883 }
884 else
885 new_insn = gen_move_insn (dest, src);
886 info.first = new_insn;
887 info.fixed_regs_live = insn_info->fixed_regs_live;
888 info.failure = false;
889 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
890 {
891 info.current = cur;
892 note_stores (PATTERN (cur), note_add_store, &info);
893 }
894
895 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
896 return it immediately, communicating the failure to its caller. */
897 if (info.failure)
898 return 1;
899
900 emit_insn_before (new_insn, insn);
901
902 return -1;
903 }
904
905 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
906 is there, is split into a separate insn.
907 Return true on success (or if there was nothing to do), false on failure. */
908
909 static bool
check_for_inc_dec_1(insn_info_t insn_info)910 check_for_inc_dec_1 (insn_info_t insn_info)
911 {
912 rtx insn = insn_info->insn;
913 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
914 if (note)
915 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
916 return true;
917 }
918
919
920 /* Entry point for postreload. If you work on reload_cse, or you need this
921 anywhere else, consider if you can provide register liveness information
922 and add a parameter to this function so that it can be passed down in
923 insn_info.fixed_regs_live. */
924 bool
check_for_inc_dec(rtx insn)925 check_for_inc_dec (rtx insn)
926 {
927 struct insn_info insn_info;
928 rtx note;
929
930 insn_info.insn = insn;
931 insn_info.fixed_regs_live = NULL;
932 note = find_reg_note (insn, REG_INC, NULL_RTX);
933 if (note)
934 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
935 return true;
936 }
937
938 /* Delete the insn and free all of the fields inside INSN_INFO. */
939
940 static void
delete_dead_store_insn(insn_info_t insn_info)941 delete_dead_store_insn (insn_info_t insn_info)
942 {
943 read_info_t read_info;
944
945 if (!dbg_cnt (dse))
946 return;
947
948 if (!check_for_inc_dec_1 (insn_info))
949 return;
950 if (dump_file && (dump_flags & TDF_DETAILS))
951 {
952 fprintf (dump_file, "Locally deleting insn %d ",
953 INSN_UID (insn_info->insn));
954 if (insn_info->store_rec->alias_set)
955 fprintf (dump_file, "alias set %d\n",
956 (int) insn_info->store_rec->alias_set);
957 else
958 fprintf (dump_file, "\n");
959 }
960
961 free_store_info (insn_info);
962 read_info = insn_info->read_rec;
963
964 while (read_info)
965 {
966 read_info_t next = read_info->next;
967 pool_free (read_info_pool, read_info);
968 read_info = next;
969 }
970 insn_info->read_rec = NULL;
971
972 delete_insn (insn_info->insn);
973 locally_deleted++;
974 insn_info->insn = NULL;
975
976 insn_info->wild_read = false;
977 }
978
979 /* Return whether DECL, a local variable, can possibly escape the current
980 function scope. */
981
982 static bool
local_variable_can_escape(tree decl)983 local_variable_can_escape (tree decl)
984 {
985 if (TREE_ADDRESSABLE (decl))
986 return true;
987
988 /* If this is a partitioned variable, we need to consider all the variables
989 in the partition. This is necessary because a store into one of them can
990 be replaced with a store into another and this may not change the outcome
991 of the escape analysis. */
992 if (cfun->gimple_df->decls_to_pointers != NULL)
993 {
994 void *namep
995 = pointer_map_contains (cfun->gimple_df->decls_to_pointers, decl);
996 if (namep)
997 return TREE_ADDRESSABLE (*(tree *)namep);
998 }
999
1000 return false;
1001 }
1002
1003 /* Return whether EXPR can possibly escape the current function scope. */
1004
1005 static bool
can_escape(tree expr)1006 can_escape (tree expr)
1007 {
1008 tree base;
1009 if (!expr)
1010 return true;
1011 base = get_base_address (expr);
1012 if (DECL_P (base)
1013 && !may_be_aliased (base)
1014 && !(TREE_CODE (base) == VAR_DECL
1015 && !DECL_EXTERNAL (base)
1016 && !TREE_STATIC (base)
1017 && local_variable_can_escape (base)))
1018 return false;
1019 return true;
1020 }
1021
1022 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1023 OFFSET and WIDTH. */
1024
1025 static void
set_usage_bits(group_info_t group,HOST_WIDE_INT offset,HOST_WIDE_INT width,tree expr)1026 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1027 tree expr)
1028 {
1029 HOST_WIDE_INT i;
1030 bool expr_escapes = can_escape (expr);
1031 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1032 for (i=offset; i<offset+width; i++)
1033 {
1034 bitmap store1;
1035 bitmap store2;
1036 bitmap escaped;
1037 int ai;
1038 if (i < 0)
1039 {
1040 store1 = group->store1_n;
1041 store2 = group->store2_n;
1042 escaped = group->escaped_n;
1043 ai = -i;
1044 }
1045 else
1046 {
1047 store1 = group->store1_p;
1048 store2 = group->store2_p;
1049 escaped = group->escaped_p;
1050 ai = i;
1051 }
1052
1053 if (!bitmap_set_bit (store1, ai))
1054 bitmap_set_bit (store2, ai);
1055 else
1056 {
1057 if (i < 0)
1058 {
1059 if (group->offset_map_size_n < ai)
1060 group->offset_map_size_n = ai;
1061 }
1062 else
1063 {
1064 if (group->offset_map_size_p < ai)
1065 group->offset_map_size_p = ai;
1066 }
1067 }
1068 if (expr_escapes)
1069 bitmap_set_bit (escaped, ai);
1070 }
1071 }
1072
1073 static void
reset_active_stores(void)1074 reset_active_stores (void)
1075 {
1076 active_local_stores = NULL;
1077 active_local_stores_len = 0;
1078 }
1079
1080 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1081
1082 static void
free_read_records(bb_info_t bb_info)1083 free_read_records (bb_info_t bb_info)
1084 {
1085 insn_info_t insn_info = bb_info->last_insn;
1086 read_info_t *ptr = &insn_info->read_rec;
1087 while (*ptr)
1088 {
1089 read_info_t next = (*ptr)->next;
1090 if ((*ptr)->alias_set == 0)
1091 {
1092 pool_free (read_info_pool, *ptr);
1093 *ptr = next;
1094 }
1095 else
1096 ptr = &(*ptr)->next;
1097 }
1098 }
1099
1100 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1101
1102 static void
add_wild_read(bb_info_t bb_info)1103 add_wild_read (bb_info_t bb_info)
1104 {
1105 insn_info_t insn_info = bb_info->last_insn;
1106 insn_info->wild_read = true;
1107 free_read_records (bb_info);
1108 reset_active_stores ();
1109 }
1110
1111 /* Set the BB_INFO so that the last insn is marked as a wild read of
1112 non-frame locations. */
1113
1114 static void
add_non_frame_wild_read(bb_info_t bb_info)1115 add_non_frame_wild_read (bb_info_t bb_info)
1116 {
1117 insn_info_t insn_info = bb_info->last_insn;
1118 insn_info->non_frame_wild_read = true;
1119 free_read_records (bb_info);
1120 reset_active_stores ();
1121 }
1122
1123 /* Return true if X is a constant or one of the registers that behave
1124 as a constant over the life of a function. This is equivalent to
1125 !rtx_varies_p for memory addresses. */
1126
1127 static bool
const_or_frame_p(rtx x)1128 const_or_frame_p (rtx x)
1129 {
1130 if (CONSTANT_P (x))
1131 return true;
1132
1133 if (GET_CODE (x) == REG)
1134 {
1135 /* Note that we have to test for the actual rtx used for the frame
1136 and arg pointers and not just the register number in case we have
1137 eliminated the frame and/or arg pointer and are using it
1138 for pseudos. */
1139 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1140 /* The arg pointer varies if it is not a fixed register. */
1141 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1142 || x == pic_offset_table_rtx)
1143 return true;
1144 return false;
1145 }
1146
1147 return false;
1148 }
1149
1150 /* Take all reasonable action to put the address of MEM into the form
1151 that we can do analysis on.
1152
1153 The gold standard is to get the address into the form: address +
1154 OFFSET where address is something that rtx_varies_p considers a
1155 constant. When we can get the address in this form, we can do
1156 global analysis on it. Note that for constant bases, address is
1157 not actually returned, only the group_id. The address can be
1158 obtained from that.
1159
1160 If that fails, we try cselib to get a value we can at least use
1161 locally. If that fails we return false.
1162
1163 The GROUP_ID is set to -1 for cselib bases and the index of the
1164 group for non_varying bases.
1165
1166 FOR_READ is true if this is a mem read and false if not. */
1167
1168 static bool
canon_address(rtx mem,alias_set_type * alias_set_out,int * group_id,HOST_WIDE_INT * offset,cselib_val ** base)1169 canon_address (rtx mem,
1170 alias_set_type *alias_set_out,
1171 int *group_id,
1172 HOST_WIDE_INT *offset,
1173 cselib_val **base)
1174 {
1175 enum machine_mode address_mode = get_address_mode (mem);
1176 rtx mem_address = XEXP (mem, 0);
1177 rtx expanded_address, address;
1178 int expanded;
1179
1180 *alias_set_out = 0;
1181
1182 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1183
1184 if (dump_file && (dump_flags & TDF_DETAILS))
1185 {
1186 fprintf (dump_file, " mem: ");
1187 print_inline_rtx (dump_file, mem_address, 0);
1188 fprintf (dump_file, "\n");
1189 }
1190
1191 /* First see if just canon_rtx (mem_address) is const or frame,
1192 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1193 address = NULL_RTX;
1194 for (expanded = 0; expanded < 2; expanded++)
1195 {
1196 if (expanded)
1197 {
1198 /* Use cselib to replace all of the reg references with the full
1199 expression. This will take care of the case where we have
1200
1201 r_x = base + offset;
1202 val = *r_x;
1203
1204 by making it into
1205
1206 val = *(base + offset); */
1207
1208 expanded_address = cselib_expand_value_rtx (mem_address,
1209 scratch, 5);
1210
1211 /* If this fails, just go with the address from first
1212 iteration. */
1213 if (!expanded_address)
1214 break;
1215 }
1216 else
1217 expanded_address = mem_address;
1218
1219 /* Split the address into canonical BASE + OFFSET terms. */
1220 address = canon_rtx (expanded_address);
1221
1222 *offset = 0;
1223
1224 if (dump_file && (dump_flags & TDF_DETAILS))
1225 {
1226 if (expanded)
1227 {
1228 fprintf (dump_file, "\n after cselib_expand address: ");
1229 print_inline_rtx (dump_file, expanded_address, 0);
1230 fprintf (dump_file, "\n");
1231 }
1232
1233 fprintf (dump_file, "\n after canon_rtx address: ");
1234 print_inline_rtx (dump_file, address, 0);
1235 fprintf (dump_file, "\n");
1236 }
1237
1238 if (GET_CODE (address) == CONST)
1239 address = XEXP (address, 0);
1240
1241 if (GET_CODE (address) == PLUS
1242 && CONST_INT_P (XEXP (address, 1)))
1243 {
1244 *offset = INTVAL (XEXP (address, 1));
1245 address = XEXP (address, 0);
1246 }
1247
1248 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1249 && const_or_frame_p (address))
1250 {
1251 group_info_t group = get_group_info (address);
1252
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1254 fprintf (dump_file, " gid=%d offset=%d \n",
1255 group->id, (int)*offset);
1256 *base = NULL;
1257 *group_id = group->id;
1258 return true;
1259 }
1260 }
1261
1262 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1263 *group_id = -1;
1264
1265 if (*base == NULL)
1266 {
1267 if (dump_file && (dump_flags & TDF_DETAILS))
1268 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1269 return false;
1270 }
1271 if (dump_file && (dump_flags & TDF_DETAILS))
1272 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1273 (*base)->uid, (*base)->hash, (int)*offset);
1274 return true;
1275 }
1276
1277
1278 /* Clear the rhs field from the active_local_stores array. */
1279
1280 static void
clear_rhs_from_active_local_stores(void)1281 clear_rhs_from_active_local_stores (void)
1282 {
1283 insn_info_t ptr = active_local_stores;
1284
1285 while (ptr)
1286 {
1287 store_info_t store_info = ptr->store_rec;
1288 /* Skip the clobbers. */
1289 while (!store_info->is_set)
1290 store_info = store_info->next;
1291
1292 store_info->rhs = NULL;
1293 store_info->const_rhs = NULL;
1294
1295 ptr = ptr->next_local_store;
1296 }
1297 }
1298
1299
1300 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1301
1302 static inline void
set_position_unneeded(store_info_t s_info,int pos)1303 set_position_unneeded (store_info_t s_info, int pos)
1304 {
1305 if (__builtin_expect (s_info->is_large, false))
1306 {
1307 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1308 s_info->positions_needed.large.count++;
1309 }
1310 else
1311 s_info->positions_needed.small_bitmask
1312 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1313 }
1314
1315 /* Mark the whole store S_INFO as unneeded. */
1316
1317 static inline void
set_all_positions_unneeded(store_info_t s_info)1318 set_all_positions_unneeded (store_info_t s_info)
1319 {
1320 if (__builtin_expect (s_info->is_large, false))
1321 {
1322 int pos, end = s_info->end - s_info->begin;
1323 for (pos = 0; pos < end; pos++)
1324 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1325 s_info->positions_needed.large.count = end;
1326 }
1327 else
1328 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1329 }
1330
1331 /* Return TRUE if any bytes from S_INFO store are needed. */
1332
1333 static inline bool
any_positions_needed_p(store_info_t s_info)1334 any_positions_needed_p (store_info_t s_info)
1335 {
1336 if (__builtin_expect (s_info->is_large, false))
1337 return (s_info->positions_needed.large.count
1338 < s_info->end - s_info->begin);
1339 else
1340 return (s_info->positions_needed.small_bitmask
1341 != (unsigned HOST_WIDE_INT) 0);
1342 }
1343
1344 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1345 store are needed. */
1346
1347 static inline bool
all_positions_needed_p(store_info_t s_info,int start,int width)1348 all_positions_needed_p (store_info_t s_info, int start, int width)
1349 {
1350 if (__builtin_expect (s_info->is_large, false))
1351 {
1352 int end = start + width;
1353 while (start < end)
1354 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1355 return false;
1356 return true;
1357 }
1358 else
1359 {
1360 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1361 return (s_info->positions_needed.small_bitmask & mask) == mask;
1362 }
1363 }
1364
1365
1366 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1367 HOST_WIDE_INT, basic_block, bool);
1368
1369
1370 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1371 there is a candidate store, after adding it to the appropriate
1372 local store group if so. */
1373
1374 static int
record_store(rtx body,bb_info_t bb_info)1375 record_store (rtx body, bb_info_t bb_info)
1376 {
1377 rtx mem, rhs, const_rhs, mem_addr;
1378 HOST_WIDE_INT offset = 0;
1379 HOST_WIDE_INT width = 0;
1380 alias_set_type spill_alias_set;
1381 insn_info_t insn_info = bb_info->last_insn;
1382 store_info_t store_info = NULL;
1383 int group_id;
1384 cselib_val *base = NULL;
1385 insn_info_t ptr, last, redundant_reason;
1386 bool store_is_unused;
1387
1388 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1389 return 0;
1390
1391 mem = SET_DEST (body);
1392
1393 /* If this is not used, then this cannot be used to keep the insn
1394 from being deleted. On the other hand, it does provide something
1395 that can be used to prove that another store is dead. */
1396 store_is_unused
1397 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1398
1399 /* Check whether that value is a suitable memory location. */
1400 if (!MEM_P (mem))
1401 {
1402 /* If the set or clobber is unused, then it does not effect our
1403 ability to get rid of the entire insn. */
1404 if (!store_is_unused)
1405 insn_info->cannot_delete = true;
1406 return 0;
1407 }
1408
1409 /* At this point we know mem is a mem. */
1410 if (GET_MODE (mem) == BLKmode)
1411 {
1412 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1413 {
1414 if (dump_file && (dump_flags & TDF_DETAILS))
1415 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1416 add_wild_read (bb_info);
1417 insn_info->cannot_delete = true;
1418 return 0;
1419 }
1420 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1421 as memset (addr, 0, 36); */
1422 else if (!MEM_SIZE_KNOWN_P (mem)
1423 || MEM_SIZE (mem) <= 0
1424 || MEM_SIZE (mem) > MAX_OFFSET
1425 || GET_CODE (body) != SET
1426 || !CONST_INT_P (SET_SRC (body)))
1427 {
1428 if (!store_is_unused)
1429 {
1430 /* If the set or clobber is unused, then it does not effect our
1431 ability to get rid of the entire insn. */
1432 insn_info->cannot_delete = true;
1433 clear_rhs_from_active_local_stores ();
1434 }
1435 return 0;
1436 }
1437 }
1438
1439 /* We can still process a volatile mem, we just cannot delete it. */
1440 if (MEM_VOLATILE_P (mem))
1441 insn_info->cannot_delete = true;
1442
1443 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1444 {
1445 clear_rhs_from_active_local_stores ();
1446 return 0;
1447 }
1448
1449 if (GET_MODE (mem) == BLKmode)
1450 width = MEM_SIZE (mem);
1451 else
1452 width = GET_MODE_SIZE (GET_MODE (mem));
1453
1454 if (spill_alias_set)
1455 {
1456 bitmap store1 = clear_alias_group->store1_p;
1457 bitmap store2 = clear_alias_group->store2_p;
1458
1459 gcc_assert (GET_MODE (mem) != BLKmode);
1460
1461 if (!bitmap_set_bit (store1, spill_alias_set))
1462 bitmap_set_bit (store2, spill_alias_set);
1463
1464 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1465 clear_alias_group->offset_map_size_p = spill_alias_set;
1466
1467 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1468
1469 if (dump_file && (dump_flags & TDF_DETAILS))
1470 fprintf (dump_file, " processing spill store %d(%s)\n",
1471 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1472 }
1473 else if (group_id >= 0)
1474 {
1475 /* In the restrictive case where the base is a constant or the
1476 frame pointer we can do global analysis. */
1477
1478 group_info_t group
1479 = rtx_group_vec[group_id];
1480 tree expr = MEM_EXPR (mem);
1481
1482 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1483 set_usage_bits (group, offset, width, expr);
1484
1485 if (dump_file && (dump_flags & TDF_DETAILS))
1486 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1487 group_id, (int)offset, (int)(offset+width));
1488 }
1489 else
1490 {
1491 if (may_be_sp_based_p (XEXP (mem, 0)))
1492 insn_info->stack_pointer_based = true;
1493 insn_info->contains_cselib_groups = true;
1494
1495 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1496 group_id = -1;
1497
1498 if (dump_file && (dump_flags & TDF_DETAILS))
1499 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1500 (int)offset, (int)(offset+width));
1501 }
1502
1503 const_rhs = rhs = NULL_RTX;
1504 if (GET_CODE (body) == SET
1505 /* No place to keep the value after ra. */
1506 && !reload_completed
1507 && (REG_P (SET_SRC (body))
1508 || GET_CODE (SET_SRC (body)) == SUBREG
1509 || CONSTANT_P (SET_SRC (body)))
1510 && !MEM_VOLATILE_P (mem)
1511 /* Sometimes the store and reload is used for truncation and
1512 rounding. */
1513 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1514 {
1515 rhs = SET_SRC (body);
1516 if (CONSTANT_P (rhs))
1517 const_rhs = rhs;
1518 else if (body == PATTERN (insn_info->insn))
1519 {
1520 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1521 if (tem && CONSTANT_P (XEXP (tem, 0)))
1522 const_rhs = XEXP (tem, 0);
1523 }
1524 if (const_rhs == NULL_RTX && REG_P (rhs))
1525 {
1526 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1527
1528 if (tem && CONSTANT_P (tem))
1529 const_rhs = tem;
1530 }
1531 }
1532
1533 /* Check to see if this stores causes some other stores to be
1534 dead. */
1535 ptr = active_local_stores;
1536 last = NULL;
1537 redundant_reason = NULL;
1538 mem = canon_rtx (mem);
1539 /* For alias_set != 0 canon_true_dependence should be never called. */
1540 if (spill_alias_set)
1541 mem_addr = NULL_RTX;
1542 else
1543 {
1544 if (group_id < 0)
1545 mem_addr = base->val_rtx;
1546 else
1547 {
1548 group_info_t group
1549 = rtx_group_vec[group_id];
1550 mem_addr = group->canon_base_addr;
1551 }
1552 if (offset)
1553 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1554 }
1555
1556 while (ptr)
1557 {
1558 insn_info_t next = ptr->next_local_store;
1559 store_info_t s_info = ptr->store_rec;
1560 bool del = true;
1561
1562 /* Skip the clobbers. We delete the active insn if this insn
1563 shadows the set. To have been put on the active list, it
1564 has exactly on set. */
1565 while (!s_info->is_set)
1566 s_info = s_info->next;
1567
1568 if (s_info->alias_set != spill_alias_set)
1569 del = false;
1570 else if (s_info->alias_set)
1571 {
1572 struct clear_alias_mode_holder *entry
1573 = clear_alias_set_lookup (s_info->alias_set);
1574 /* Generally, spills cannot be processed if and of the
1575 references to the slot have a different mode. But if
1576 we are in the same block and mode is exactly the same
1577 between this store and one before in the same block,
1578 we can still delete it. */
1579 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1580 && (GET_MODE (mem) == entry->mode))
1581 {
1582 del = true;
1583 set_all_positions_unneeded (s_info);
1584 }
1585 if (dump_file && (dump_flags & TDF_DETAILS))
1586 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1587 INSN_UID (ptr->insn), (int) s_info->alias_set);
1588 }
1589 else if ((s_info->group_id == group_id)
1590 && (s_info->cse_base == base))
1591 {
1592 HOST_WIDE_INT i;
1593 if (dump_file && (dump_flags & TDF_DETAILS))
1594 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1595 INSN_UID (ptr->insn), s_info->group_id,
1596 (int)s_info->begin, (int)s_info->end);
1597
1598 /* Even if PTR won't be eliminated as unneeded, if both
1599 PTR and this insn store the same constant value, we might
1600 eliminate this insn instead. */
1601 if (s_info->const_rhs
1602 && const_rhs
1603 && offset >= s_info->begin
1604 && offset + width <= s_info->end
1605 && all_positions_needed_p (s_info, offset - s_info->begin,
1606 width))
1607 {
1608 if (GET_MODE (mem) == BLKmode)
1609 {
1610 if (GET_MODE (s_info->mem) == BLKmode
1611 && s_info->const_rhs == const_rhs)
1612 redundant_reason = ptr;
1613 }
1614 else if (s_info->const_rhs == const0_rtx
1615 && const_rhs == const0_rtx)
1616 redundant_reason = ptr;
1617 else
1618 {
1619 rtx val;
1620 start_sequence ();
1621 val = get_stored_val (s_info, GET_MODE (mem),
1622 offset, offset + width,
1623 BLOCK_FOR_INSN (insn_info->insn),
1624 true);
1625 if (get_insns () != NULL)
1626 val = NULL_RTX;
1627 end_sequence ();
1628 if (val && rtx_equal_p (val, const_rhs))
1629 redundant_reason = ptr;
1630 }
1631 }
1632
1633 for (i = MAX (offset, s_info->begin);
1634 i < offset + width && i < s_info->end;
1635 i++)
1636 set_position_unneeded (s_info, i - s_info->begin);
1637 }
1638 else if (s_info->rhs)
1639 /* Need to see if it is possible for this store to overwrite
1640 the value of store_info. If it is, set the rhs to NULL to
1641 keep it from being used to remove a load. */
1642 {
1643 if (canon_true_dependence (s_info->mem,
1644 GET_MODE (s_info->mem),
1645 s_info->mem_addr,
1646 mem, mem_addr))
1647 {
1648 s_info->rhs = NULL;
1649 s_info->const_rhs = NULL;
1650 }
1651 }
1652
1653 /* An insn can be deleted if every position of every one of
1654 its s_infos is zero. */
1655 if (any_positions_needed_p (s_info))
1656 del = false;
1657
1658 if (del)
1659 {
1660 insn_info_t insn_to_delete = ptr;
1661
1662 active_local_stores_len--;
1663 if (last)
1664 last->next_local_store = ptr->next_local_store;
1665 else
1666 active_local_stores = ptr->next_local_store;
1667
1668 if (!insn_to_delete->cannot_delete)
1669 delete_dead_store_insn (insn_to_delete);
1670 }
1671 else
1672 last = ptr;
1673
1674 ptr = next;
1675 }
1676
1677 /* Finish filling in the store_info. */
1678 store_info->next = insn_info->store_rec;
1679 insn_info->store_rec = store_info;
1680 store_info->mem = mem;
1681 store_info->alias_set = spill_alias_set;
1682 store_info->mem_addr = mem_addr;
1683 store_info->cse_base = base;
1684 if (width > HOST_BITS_PER_WIDE_INT)
1685 {
1686 store_info->is_large = true;
1687 store_info->positions_needed.large.count = 0;
1688 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1689 }
1690 else
1691 {
1692 store_info->is_large = false;
1693 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1694 }
1695 store_info->group_id = group_id;
1696 store_info->begin = offset;
1697 store_info->end = offset + width;
1698 store_info->is_set = GET_CODE (body) == SET;
1699 store_info->rhs = rhs;
1700 store_info->const_rhs = const_rhs;
1701 store_info->redundant_reason = redundant_reason;
1702
1703 /* If this is a clobber, we return 0. We will only be able to
1704 delete this insn if there is only one store USED store, but we
1705 can use the clobber to delete other stores earlier. */
1706 return store_info->is_set ? 1 : 0;
1707 }
1708
1709
1710 static void
dump_insn_info(const char * start,insn_info_t insn_info)1711 dump_insn_info (const char * start, insn_info_t insn_info)
1712 {
1713 fprintf (dump_file, "%s insn=%d %s\n", start,
1714 INSN_UID (insn_info->insn),
1715 insn_info->store_rec ? "has store" : "naked");
1716 }
1717
1718
1719 /* If the modes are different and the value's source and target do not
1720 line up, we need to extract the value from lower part of the rhs of
1721 the store, shift it, and then put it into a form that can be shoved
1722 into the read_insn. This function generates a right SHIFT of a
1723 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1724 shift sequence is returned or NULL if we failed to find a
1725 shift. */
1726
1727 static rtx
find_shift_sequence(int access_size,store_info_t store_info,enum machine_mode read_mode,int shift,bool speed,bool require_cst)1728 find_shift_sequence (int access_size,
1729 store_info_t store_info,
1730 enum machine_mode read_mode,
1731 int shift, bool speed, bool require_cst)
1732 {
1733 enum machine_mode store_mode = GET_MODE (store_info->mem);
1734 enum machine_mode new_mode;
1735 rtx read_reg = NULL;
1736
1737 /* Some machines like the x86 have shift insns for each size of
1738 operand. Other machines like the ppc or the ia-64 may only have
1739 shift insns that shift values within 32 or 64 bit registers.
1740 This loop tries to find the smallest shift insn that will right
1741 justify the value we want to read but is available in one insn on
1742 the machine. */
1743
1744 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1745 MODE_INT);
1746 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1747 new_mode = GET_MODE_WIDER_MODE (new_mode))
1748 {
1749 rtx target, new_reg, shift_seq, insn, new_lhs;
1750 int cost;
1751
1752 /* If a constant was stored into memory, try to simplify it here,
1753 otherwise the cost of the shift might preclude this optimization
1754 e.g. at -Os, even when no actual shift will be needed. */
1755 if (store_info->const_rhs)
1756 {
1757 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1758 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1759 store_mode, byte);
1760 if (ret && CONSTANT_P (ret))
1761 {
1762 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1763 ret, GEN_INT (shift));
1764 if (ret && CONSTANT_P (ret))
1765 {
1766 byte = subreg_lowpart_offset (read_mode, new_mode);
1767 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1768 if (ret && CONSTANT_P (ret)
1769 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1770 return ret;
1771 }
1772 }
1773 }
1774
1775 if (require_cst)
1776 return NULL_RTX;
1777
1778 /* Try a wider mode if truncating the store mode to NEW_MODE
1779 requires a real instruction. */
1780 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1781 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1782 continue;
1783
1784 /* Also try a wider mode if the necessary punning is either not
1785 desirable or not possible. */
1786 if (!CONSTANT_P (store_info->rhs)
1787 && !MODES_TIEABLE_P (new_mode, store_mode))
1788 continue;
1789
1790 new_reg = gen_reg_rtx (new_mode);
1791
1792 start_sequence ();
1793
1794 /* In theory we could also check for an ashr. Ian Taylor knows
1795 of one dsp where the cost of these two was not the same. But
1796 this really is a rare case anyway. */
1797 target = expand_binop (new_mode, lshr_optab, new_reg,
1798 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1799
1800 shift_seq = get_insns ();
1801 end_sequence ();
1802
1803 if (target != new_reg || shift_seq == NULL)
1804 continue;
1805
1806 cost = 0;
1807 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1808 if (INSN_P (insn))
1809 cost += insn_rtx_cost (PATTERN (insn), speed);
1810
1811 /* The computation up to here is essentially independent
1812 of the arguments and could be precomputed. It may
1813 not be worth doing so. We could precompute if
1814 worthwhile or at least cache the results. The result
1815 technically depends on both SHIFT and ACCESS_SIZE,
1816 but in practice the answer will depend only on ACCESS_SIZE. */
1817
1818 if (cost > COSTS_N_INSNS (1))
1819 continue;
1820
1821 new_lhs = extract_low_bits (new_mode, store_mode,
1822 copy_rtx (store_info->rhs));
1823 if (new_lhs == NULL_RTX)
1824 continue;
1825
1826 /* We found an acceptable shift. Generate a move to
1827 take the value from the store and put it into the
1828 shift pseudo, then shift it, then generate another
1829 move to put in into the target of the read. */
1830 emit_move_insn (new_reg, new_lhs);
1831 emit_insn (shift_seq);
1832 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1833 break;
1834 }
1835
1836 return read_reg;
1837 }
1838
1839
1840 /* Call back for note_stores to find the hard regs set or clobbered by
1841 insn. Data is a bitmap of the hardregs set so far. */
1842
1843 static void
look_for_hardregs(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)1844 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1845 {
1846 bitmap regs_set = (bitmap) data;
1847
1848 if (REG_P (x)
1849 && HARD_REGISTER_P (x))
1850 {
1851 unsigned int regno = REGNO (x);
1852 bitmap_set_range (regs_set, regno,
1853 hard_regno_nregs[regno][GET_MODE (x)]);
1854 }
1855 }
1856
1857 /* Helper function for replace_read and record_store.
1858 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1859 to one before READ_END bytes read in READ_MODE. Return NULL
1860 if not successful. If REQUIRE_CST is true, return always constant. */
1861
1862 static rtx
get_stored_val(store_info_t store_info,enum machine_mode read_mode,HOST_WIDE_INT read_begin,HOST_WIDE_INT read_end,basic_block bb,bool require_cst)1863 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1864 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1865 basic_block bb, bool require_cst)
1866 {
1867 enum machine_mode store_mode = GET_MODE (store_info->mem);
1868 int shift;
1869 int access_size; /* In bytes. */
1870 rtx read_reg;
1871
1872 /* To get here the read is within the boundaries of the write so
1873 shift will never be negative. Start out with the shift being in
1874 bytes. */
1875 if (store_mode == BLKmode)
1876 shift = 0;
1877 else if (BYTES_BIG_ENDIAN)
1878 shift = store_info->end - read_end;
1879 else
1880 shift = read_begin - store_info->begin;
1881
1882 access_size = shift + GET_MODE_SIZE (read_mode);
1883
1884 /* From now on it is bits. */
1885 shift *= BITS_PER_UNIT;
1886
1887 if (shift)
1888 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1889 optimize_bb_for_speed_p (bb),
1890 require_cst);
1891 else if (store_mode == BLKmode)
1892 {
1893 /* The store is a memset (addr, const_val, const_size). */
1894 gcc_assert (CONST_INT_P (store_info->rhs));
1895 store_mode = int_mode_for_mode (read_mode);
1896 if (store_mode == BLKmode)
1897 read_reg = NULL_RTX;
1898 else if (store_info->rhs == const0_rtx)
1899 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1900 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1901 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1902 read_reg = NULL_RTX;
1903 else
1904 {
1905 unsigned HOST_WIDE_INT c
1906 = INTVAL (store_info->rhs)
1907 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1908 int shift = BITS_PER_UNIT;
1909 while (shift < HOST_BITS_PER_WIDE_INT)
1910 {
1911 c |= (c << shift);
1912 shift <<= 1;
1913 }
1914 read_reg = gen_int_mode (c, store_mode);
1915 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1916 }
1917 }
1918 else if (store_info->const_rhs
1919 && (require_cst
1920 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1921 read_reg = extract_low_bits (read_mode, store_mode,
1922 copy_rtx (store_info->const_rhs));
1923 else
1924 read_reg = extract_low_bits (read_mode, store_mode,
1925 copy_rtx (store_info->rhs));
1926 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1927 read_reg = NULL_RTX;
1928 return read_reg;
1929 }
1930
1931 /* Take a sequence of:
1932 A <- r1
1933 ...
1934 ... <- A
1935
1936 and change it into
1937 r2 <- r1
1938 A <- r1
1939 ...
1940 ... <- r2
1941
1942 or
1943
1944 r3 <- extract (r1)
1945 r3 <- r3 >> shift
1946 r2 <- extract (r3)
1947 ... <- r2
1948
1949 or
1950
1951 r2 <- extract (r1)
1952 ... <- r2
1953
1954 Depending on the alignment and the mode of the store and
1955 subsequent load.
1956
1957
1958 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1959 and READ_INSN are for the read. Return true if the replacement
1960 went ok. */
1961
1962 static bool
replace_read(store_info_t store_info,insn_info_t store_insn,read_info_t read_info,insn_info_t read_insn,rtx * loc,bitmap regs_live)1963 replace_read (store_info_t store_info, insn_info_t store_insn,
1964 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1965 bitmap regs_live)
1966 {
1967 enum machine_mode store_mode = GET_MODE (store_info->mem);
1968 enum machine_mode read_mode = GET_MODE (read_info->mem);
1969 rtx insns, this_insn, read_reg;
1970 basic_block bb;
1971
1972 if (!dbg_cnt (dse))
1973 return false;
1974
1975 /* Create a sequence of instructions to set up the read register.
1976 This sequence goes immediately before the store and its result
1977 is read by the load.
1978
1979 We need to keep this in perspective. We are replacing a read
1980 with a sequence of insns, but the read will almost certainly be
1981 in cache, so it is not going to be an expensive one. Thus, we
1982 are not willing to do a multi insn shift or worse a subroutine
1983 call to get rid of the read. */
1984 if (dump_file && (dump_flags & TDF_DETAILS))
1985 fprintf (dump_file, "trying to replace %smode load in insn %d"
1986 " from %smode store in insn %d\n",
1987 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1988 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1989 start_sequence ();
1990 bb = BLOCK_FOR_INSN (read_insn->insn);
1991 read_reg = get_stored_val (store_info,
1992 read_mode, read_info->begin, read_info->end,
1993 bb, false);
1994 if (read_reg == NULL_RTX)
1995 {
1996 end_sequence ();
1997 if (dump_file && (dump_flags & TDF_DETAILS))
1998 fprintf (dump_file, " -- could not extract bits of stored value\n");
1999 return false;
2000 }
2001 /* Force the value into a new register so that it won't be clobbered
2002 between the store and the load. */
2003 read_reg = copy_to_mode_reg (read_mode, read_reg);
2004 insns = get_insns ();
2005 end_sequence ();
2006
2007 if (insns != NULL_RTX)
2008 {
2009 /* Now we have to scan the set of new instructions to see if the
2010 sequence contains and sets of hardregs that happened to be
2011 live at this point. For instance, this can happen if one of
2012 the insns sets the CC and the CC happened to be live at that
2013 point. This does occasionally happen, see PR 37922. */
2014 bitmap regs_set = BITMAP_ALLOC (®_obstack);
2015
2016 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2017 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2018
2019 bitmap_and_into (regs_set, regs_live);
2020 if (!bitmap_empty_p (regs_set))
2021 {
2022 if (dump_file && (dump_flags & TDF_DETAILS))
2023 {
2024 fprintf (dump_file,
2025 "abandoning replacement because sequence clobbers live hardregs:");
2026 df_print_regset (dump_file, regs_set);
2027 }
2028
2029 BITMAP_FREE (regs_set);
2030 return false;
2031 }
2032 BITMAP_FREE (regs_set);
2033 }
2034
2035 if (validate_change (read_insn->insn, loc, read_reg, 0))
2036 {
2037 deferred_change_t deferred_change =
2038 (deferred_change_t) pool_alloc (deferred_change_pool);
2039
2040 /* Insert this right before the store insn where it will be safe
2041 from later insns that might change it before the read. */
2042 emit_insn_before (insns, store_insn->insn);
2043
2044 /* And now for the kludge part: cselib croaks if you just
2045 return at this point. There are two reasons for this:
2046
2047 1) Cselib has an idea of how many pseudos there are and
2048 that does not include the new ones we just added.
2049
2050 2) Cselib does not know about the move insn we added
2051 above the store_info, and there is no way to tell it
2052 about it, because it has "moved on".
2053
2054 Problem (1) is fixable with a certain amount of engineering.
2055 Problem (2) is requires starting the bb from scratch. This
2056 could be expensive.
2057
2058 So we are just going to have to lie. The move/extraction
2059 insns are not really an issue, cselib did not see them. But
2060 the use of the new pseudo read_insn is a real problem because
2061 cselib has not scanned this insn. The way that we solve this
2062 problem is that we are just going to put the mem back for now
2063 and when we are finished with the block, we undo this. We
2064 keep a table of mems to get rid of. At the end of the basic
2065 block we can put them back. */
2066
2067 *loc = read_info->mem;
2068 deferred_change->next = deferred_change_list;
2069 deferred_change_list = deferred_change;
2070 deferred_change->loc = loc;
2071 deferred_change->reg = read_reg;
2072
2073 /* Get rid of the read_info, from the point of view of the
2074 rest of dse, play like this read never happened. */
2075 read_insn->read_rec = read_info->next;
2076 pool_free (read_info_pool, read_info);
2077 if (dump_file && (dump_flags & TDF_DETAILS))
2078 {
2079 fprintf (dump_file, " -- replaced the loaded MEM with ");
2080 print_simple_rtl (dump_file, read_reg);
2081 fprintf (dump_file, "\n");
2082 }
2083 return true;
2084 }
2085 else
2086 {
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2088 {
2089 fprintf (dump_file, " -- replacing the loaded MEM with ");
2090 print_simple_rtl (dump_file, read_reg);
2091 fprintf (dump_file, " led to an invalid instruction\n");
2092 }
2093 return false;
2094 }
2095 }
2096
2097 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2098 if LOC is a mem and if it is look at the address and kill any
2099 appropriate stores that may be active. */
2100
2101 static int
check_mem_read_rtx(rtx * loc,void * data)2102 check_mem_read_rtx (rtx *loc, void *data)
2103 {
2104 rtx mem = *loc, mem_addr;
2105 bb_info_t bb_info;
2106 insn_info_t insn_info;
2107 HOST_WIDE_INT offset = 0;
2108 HOST_WIDE_INT width = 0;
2109 alias_set_type spill_alias_set = 0;
2110 cselib_val *base = NULL;
2111 int group_id;
2112 read_info_t read_info;
2113
2114 if (!mem || !MEM_P (mem))
2115 return 0;
2116
2117 bb_info = (bb_info_t) data;
2118 insn_info = bb_info->last_insn;
2119
2120 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2121 || (MEM_VOLATILE_P (mem)))
2122 {
2123 if (dump_file && (dump_flags & TDF_DETAILS))
2124 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2125 add_wild_read (bb_info);
2126 insn_info->cannot_delete = true;
2127 return 0;
2128 }
2129
2130 /* If it is reading readonly mem, then there can be no conflict with
2131 another write. */
2132 if (MEM_READONLY_P (mem))
2133 return 0;
2134
2135 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2136 {
2137 if (dump_file && (dump_flags & TDF_DETAILS))
2138 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2139 add_wild_read (bb_info);
2140 return 0;
2141 }
2142
2143 if (GET_MODE (mem) == BLKmode)
2144 width = -1;
2145 else
2146 width = GET_MODE_SIZE (GET_MODE (mem));
2147
2148 read_info = (read_info_t) pool_alloc (read_info_pool);
2149 read_info->group_id = group_id;
2150 read_info->mem = mem;
2151 read_info->alias_set = spill_alias_set;
2152 read_info->begin = offset;
2153 read_info->end = offset + width;
2154 read_info->next = insn_info->read_rec;
2155 insn_info->read_rec = read_info;
2156 /* For alias_set != 0 canon_true_dependence should be never called. */
2157 if (spill_alias_set)
2158 mem_addr = NULL_RTX;
2159 else
2160 {
2161 if (group_id < 0)
2162 mem_addr = base->val_rtx;
2163 else
2164 {
2165 group_info_t group
2166 = rtx_group_vec[group_id];
2167 mem_addr = group->canon_base_addr;
2168 }
2169 if (offset)
2170 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2171 }
2172
2173 /* We ignore the clobbers in store_info. The is mildly aggressive,
2174 but there really should not be a clobber followed by a read. */
2175
2176 if (spill_alias_set)
2177 {
2178 insn_info_t i_ptr = active_local_stores;
2179 insn_info_t last = NULL;
2180
2181 if (dump_file && (dump_flags & TDF_DETAILS))
2182 fprintf (dump_file, " processing spill load %d\n",
2183 (int) spill_alias_set);
2184
2185 while (i_ptr)
2186 {
2187 store_info_t store_info = i_ptr->store_rec;
2188
2189 /* Skip the clobbers. */
2190 while (!store_info->is_set)
2191 store_info = store_info->next;
2192
2193 if (store_info->alias_set == spill_alias_set)
2194 {
2195 if (dump_file && (dump_flags & TDF_DETAILS))
2196 dump_insn_info ("removing from active", i_ptr);
2197
2198 active_local_stores_len--;
2199 if (last)
2200 last->next_local_store = i_ptr->next_local_store;
2201 else
2202 active_local_stores = i_ptr->next_local_store;
2203 }
2204 else
2205 last = i_ptr;
2206 i_ptr = i_ptr->next_local_store;
2207 }
2208 }
2209 else if (group_id >= 0)
2210 {
2211 /* This is the restricted case where the base is a constant or
2212 the frame pointer and offset is a constant. */
2213 insn_info_t i_ptr = active_local_stores;
2214 insn_info_t last = NULL;
2215
2216 if (dump_file && (dump_flags & TDF_DETAILS))
2217 {
2218 if (width == -1)
2219 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2220 group_id);
2221 else
2222 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2223 group_id, (int)offset, (int)(offset+width));
2224 }
2225
2226 while (i_ptr)
2227 {
2228 bool remove = false;
2229 store_info_t store_info = i_ptr->store_rec;
2230
2231 /* Skip the clobbers. */
2232 while (!store_info->is_set)
2233 store_info = store_info->next;
2234
2235 /* There are three cases here. */
2236 if (store_info->group_id < 0)
2237 /* We have a cselib store followed by a read from a
2238 const base. */
2239 remove
2240 = canon_true_dependence (store_info->mem,
2241 GET_MODE (store_info->mem),
2242 store_info->mem_addr,
2243 mem, mem_addr);
2244
2245 else if (group_id == store_info->group_id)
2246 {
2247 /* This is a block mode load. We may get lucky and
2248 canon_true_dependence may save the day. */
2249 if (width == -1)
2250 remove
2251 = canon_true_dependence (store_info->mem,
2252 GET_MODE (store_info->mem),
2253 store_info->mem_addr,
2254 mem, mem_addr);
2255
2256 /* If this read is just reading back something that we just
2257 stored, rewrite the read. */
2258 else
2259 {
2260 if (store_info->rhs
2261 && offset >= store_info->begin
2262 && offset + width <= store_info->end
2263 && all_positions_needed_p (store_info,
2264 offset - store_info->begin,
2265 width)
2266 && replace_read (store_info, i_ptr, read_info,
2267 insn_info, loc, bb_info->regs_live))
2268 return 0;
2269
2270 /* The bases are the same, just see if the offsets
2271 overlap. */
2272 if ((offset < store_info->end)
2273 && (offset + width > store_info->begin))
2274 remove = true;
2275 }
2276 }
2277
2278 /* else
2279 The else case that is missing here is that the
2280 bases are constant but different. There is nothing
2281 to do here because there is no overlap. */
2282
2283 if (remove)
2284 {
2285 if (dump_file && (dump_flags & TDF_DETAILS))
2286 dump_insn_info ("removing from active", i_ptr);
2287
2288 active_local_stores_len--;
2289 if (last)
2290 last->next_local_store = i_ptr->next_local_store;
2291 else
2292 active_local_stores = i_ptr->next_local_store;
2293 }
2294 else
2295 last = i_ptr;
2296 i_ptr = i_ptr->next_local_store;
2297 }
2298 }
2299 else
2300 {
2301 insn_info_t i_ptr = active_local_stores;
2302 insn_info_t last = NULL;
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2304 {
2305 fprintf (dump_file, " processing cselib load mem:");
2306 print_inline_rtx (dump_file, mem, 0);
2307 fprintf (dump_file, "\n");
2308 }
2309
2310 while (i_ptr)
2311 {
2312 bool remove = false;
2313 store_info_t store_info = i_ptr->store_rec;
2314
2315 if (dump_file && (dump_flags & TDF_DETAILS))
2316 fprintf (dump_file, " processing cselib load against insn %d\n",
2317 INSN_UID (i_ptr->insn));
2318
2319 /* Skip the clobbers. */
2320 while (!store_info->is_set)
2321 store_info = store_info->next;
2322
2323 /* If this read is just reading back something that we just
2324 stored, rewrite the read. */
2325 if (store_info->rhs
2326 && store_info->group_id == -1
2327 && store_info->cse_base == base
2328 && width != -1
2329 && offset >= store_info->begin
2330 && offset + width <= store_info->end
2331 && all_positions_needed_p (store_info,
2332 offset - store_info->begin, width)
2333 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2334 bb_info->regs_live))
2335 return 0;
2336
2337 if (!store_info->alias_set)
2338 remove = canon_true_dependence (store_info->mem,
2339 GET_MODE (store_info->mem),
2340 store_info->mem_addr,
2341 mem, mem_addr);
2342
2343 if (remove)
2344 {
2345 if (dump_file && (dump_flags & TDF_DETAILS))
2346 dump_insn_info ("removing from active", i_ptr);
2347
2348 active_local_stores_len--;
2349 if (last)
2350 last->next_local_store = i_ptr->next_local_store;
2351 else
2352 active_local_stores = i_ptr->next_local_store;
2353 }
2354 else
2355 last = i_ptr;
2356 i_ptr = i_ptr->next_local_store;
2357 }
2358 }
2359 return 0;
2360 }
2361
2362 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2363 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2364 true for any part of *LOC. */
2365
2366 static void
check_mem_read_use(rtx * loc,void * data)2367 check_mem_read_use (rtx *loc, void *data)
2368 {
2369 for_each_rtx (loc, check_mem_read_rtx, data);
2370 }
2371
2372
2373 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2374 So far it only handles arguments passed in registers. */
2375
2376 static bool
get_call_args(rtx call_insn,tree fn,rtx * args,int nargs)2377 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2378 {
2379 CUMULATIVE_ARGS args_so_far_v;
2380 cumulative_args_t args_so_far;
2381 tree arg;
2382 int idx;
2383
2384 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2385 args_so_far = pack_cumulative_args (&args_so_far_v);
2386
2387 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2388 for (idx = 0;
2389 arg != void_list_node && idx < nargs;
2390 arg = TREE_CHAIN (arg), idx++)
2391 {
2392 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2393 rtx reg, link, tmp;
2394 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2395 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2396 || GET_MODE_CLASS (mode) != MODE_INT)
2397 return false;
2398
2399 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2400 link;
2401 link = XEXP (link, 1))
2402 if (GET_CODE (XEXP (link, 0)) == USE)
2403 {
2404 args[idx] = XEXP (XEXP (link, 0), 0);
2405 if (REG_P (args[idx])
2406 && REGNO (args[idx]) == REGNO (reg)
2407 && (GET_MODE (args[idx]) == mode
2408 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2409 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2410 <= UNITS_PER_WORD)
2411 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2412 > GET_MODE_SIZE (mode)))))
2413 break;
2414 }
2415 if (!link)
2416 return false;
2417
2418 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2419 if (GET_MODE (args[idx]) != mode)
2420 {
2421 if (!tmp || !CONST_INT_P (tmp))
2422 return false;
2423 tmp = gen_int_mode (INTVAL (tmp), mode);
2424 }
2425 if (tmp)
2426 args[idx] = tmp;
2427
2428 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2429 }
2430 if (arg != void_list_node || idx != nargs)
2431 return false;
2432 return true;
2433 }
2434
2435 /* Return a bitmap of the fixed registers contained in IN. */
2436
2437 static bitmap
copy_fixed_regs(const_bitmap in)2438 copy_fixed_regs (const_bitmap in)
2439 {
2440 bitmap ret;
2441
2442 ret = ALLOC_REG_SET (NULL);
2443 bitmap_and (ret, in, fixed_reg_set_regset);
2444 return ret;
2445 }
2446
2447 /* Apply record_store to all candidate stores in INSN. Mark INSN
2448 if some part of it is not a candidate store and assigns to a
2449 non-register target. */
2450
2451 static void
scan_insn(bb_info_t bb_info,rtx insn)2452 scan_insn (bb_info_t bb_info, rtx insn)
2453 {
2454 rtx body;
2455 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2456 int mems_found = 0;
2457 memset (insn_info, 0, sizeof (struct insn_info));
2458
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 fprintf (dump_file, "\n**scanning insn=%d\n",
2461 INSN_UID (insn));
2462
2463 insn_info->prev_insn = bb_info->last_insn;
2464 insn_info->insn = insn;
2465 bb_info->last_insn = insn_info;
2466
2467 if (DEBUG_INSN_P (insn))
2468 {
2469 insn_info->cannot_delete = true;
2470 return;
2471 }
2472
2473 /* Look at all of the uses in the insn. */
2474 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2475
2476 if (CALL_P (insn))
2477 {
2478 bool const_call;
2479 tree memset_call = NULL_TREE;
2480
2481 insn_info->cannot_delete = true;
2482
2483 /* Const functions cannot do anything bad i.e. read memory,
2484 however, they can read their parameters which may have
2485 been pushed onto the stack.
2486 memset and bzero don't read memory either. */
2487 const_call = RTL_CONST_CALL_P (insn);
2488 if (!const_call)
2489 {
2490 rtx call = get_call_rtx_from (insn);
2491 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2492 {
2493 rtx symbol = XEXP (XEXP (call, 0), 0);
2494 if (SYMBOL_REF_DECL (symbol)
2495 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2496 {
2497 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2498 == BUILT_IN_NORMAL
2499 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2500 == BUILT_IN_MEMSET))
2501 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2502 memset_call = SYMBOL_REF_DECL (symbol);
2503 }
2504 }
2505 }
2506 if (const_call || memset_call)
2507 {
2508 insn_info_t i_ptr = active_local_stores;
2509 insn_info_t last = NULL;
2510
2511 if (dump_file && (dump_flags & TDF_DETAILS))
2512 fprintf (dump_file, "%s call %d\n",
2513 const_call ? "const" : "memset", INSN_UID (insn));
2514
2515 /* See the head comment of the frame_read field. */
2516 if (reload_completed)
2517 insn_info->frame_read = true;
2518
2519 /* Loop over the active stores and remove those which are
2520 killed by the const function call. */
2521 while (i_ptr)
2522 {
2523 bool remove_store = false;
2524
2525 /* The stack pointer based stores are always killed. */
2526 if (i_ptr->stack_pointer_based)
2527 remove_store = true;
2528
2529 /* If the frame is read, the frame related stores are killed. */
2530 else if (insn_info->frame_read)
2531 {
2532 store_info_t store_info = i_ptr->store_rec;
2533
2534 /* Skip the clobbers. */
2535 while (!store_info->is_set)
2536 store_info = store_info->next;
2537
2538 if (store_info->group_id >= 0
2539 && rtx_group_vec[store_info->group_id]->frame_related)
2540 remove_store = true;
2541 }
2542
2543 if (remove_store)
2544 {
2545 if (dump_file && (dump_flags & TDF_DETAILS))
2546 dump_insn_info ("removing from active", i_ptr);
2547
2548 active_local_stores_len--;
2549 if (last)
2550 last->next_local_store = i_ptr->next_local_store;
2551 else
2552 active_local_stores = i_ptr->next_local_store;
2553 }
2554 else
2555 last = i_ptr;
2556
2557 i_ptr = i_ptr->next_local_store;
2558 }
2559
2560 if (memset_call)
2561 {
2562 rtx args[3];
2563 if (get_call_args (insn, memset_call, args, 3)
2564 && CONST_INT_P (args[1])
2565 && CONST_INT_P (args[2])
2566 && INTVAL (args[2]) > 0)
2567 {
2568 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2569 set_mem_size (mem, INTVAL (args[2]));
2570 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2571 mems_found += record_store (body, bb_info);
2572 if (dump_file && (dump_flags & TDF_DETAILS))
2573 fprintf (dump_file, "handling memset as BLKmode store\n");
2574 if (mems_found == 1)
2575 {
2576 if (active_local_stores_len++
2577 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2578 {
2579 active_local_stores_len = 1;
2580 active_local_stores = NULL;
2581 }
2582 insn_info->fixed_regs_live
2583 = copy_fixed_regs (bb_info->regs_live);
2584 insn_info->next_local_store = active_local_stores;
2585 active_local_stores = insn_info;
2586 }
2587 }
2588 }
2589 }
2590
2591 else
2592 /* Every other call, including pure functions, may read any memory
2593 that is not relative to the frame. */
2594 add_non_frame_wild_read (bb_info);
2595
2596 return;
2597 }
2598
2599 /* Assuming that there are sets in these insns, we cannot delete
2600 them. */
2601 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2602 || volatile_refs_p (PATTERN (insn))
2603 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2604 || (RTX_FRAME_RELATED_P (insn))
2605 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2606 insn_info->cannot_delete = true;
2607
2608 body = PATTERN (insn);
2609 if (GET_CODE (body) == PARALLEL)
2610 {
2611 int i;
2612 for (i = 0; i < XVECLEN (body, 0); i++)
2613 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2614 }
2615 else
2616 mems_found += record_store (body, bb_info);
2617
2618 if (dump_file && (dump_flags & TDF_DETAILS))
2619 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2620 mems_found, insn_info->cannot_delete ? "true" : "false");
2621
2622 /* If we found some sets of mems, add it into the active_local_stores so
2623 that it can be locally deleted if found dead or used for
2624 replace_read and redundant constant store elimination. Otherwise mark
2625 it as cannot delete. This simplifies the processing later. */
2626 if (mems_found == 1)
2627 {
2628 if (active_local_stores_len++
2629 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2630 {
2631 active_local_stores_len = 1;
2632 active_local_stores = NULL;
2633 }
2634 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2635 insn_info->next_local_store = active_local_stores;
2636 active_local_stores = insn_info;
2637 }
2638 else
2639 insn_info->cannot_delete = true;
2640 }
2641
2642
2643 /* Remove BASE from the set of active_local_stores. This is a
2644 callback from cselib that is used to get rid of the stores in
2645 active_local_stores. */
2646
2647 static void
remove_useless_values(cselib_val * base)2648 remove_useless_values (cselib_val *base)
2649 {
2650 insn_info_t insn_info = active_local_stores;
2651 insn_info_t last = NULL;
2652
2653 while (insn_info)
2654 {
2655 store_info_t store_info = insn_info->store_rec;
2656 bool del = false;
2657
2658 /* If ANY of the store_infos match the cselib group that is
2659 being deleted, then the insn can not be deleted. */
2660 while (store_info)
2661 {
2662 if ((store_info->group_id == -1)
2663 && (store_info->cse_base == base))
2664 {
2665 del = true;
2666 break;
2667 }
2668 store_info = store_info->next;
2669 }
2670
2671 if (del)
2672 {
2673 active_local_stores_len--;
2674 if (last)
2675 last->next_local_store = insn_info->next_local_store;
2676 else
2677 active_local_stores = insn_info->next_local_store;
2678 free_store_info (insn_info);
2679 }
2680 else
2681 last = insn_info;
2682
2683 insn_info = insn_info->next_local_store;
2684 }
2685 }
2686
2687
2688 /* Do all of step 1. */
2689
2690 static void
dse_step1(void)2691 dse_step1 (void)
2692 {
2693 basic_block bb;
2694 bitmap regs_live = BITMAP_ALLOC (®_obstack);
2695
2696 cselib_init (0);
2697 all_blocks = BITMAP_ALLOC (NULL);
2698 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2699 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2700
2701 FOR_ALL_BB_FN (bb, cfun)
2702 {
2703 insn_info_t ptr;
2704 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2705
2706 memset (bb_info, 0, sizeof (struct bb_info));
2707 bitmap_set_bit (all_blocks, bb->index);
2708 bb_info->regs_live = regs_live;
2709
2710 bitmap_copy (regs_live, DF_LR_IN (bb));
2711 df_simulate_initialize_forwards (bb, regs_live);
2712
2713 bb_table[bb->index] = bb_info;
2714 cselib_discard_hook = remove_useless_values;
2715
2716 if (bb->index >= NUM_FIXED_BLOCKS)
2717 {
2718 rtx insn;
2719
2720 cse_store_info_pool
2721 = create_alloc_pool ("cse_store_info_pool",
2722 sizeof (struct store_info), 100);
2723 active_local_stores = NULL;
2724 active_local_stores_len = 0;
2725 cselib_clear_table ();
2726
2727 /* Scan the insns. */
2728 FOR_BB_INSNS (bb, insn)
2729 {
2730 if (INSN_P (insn))
2731 scan_insn (bb_info, insn);
2732 cselib_process_insn (insn);
2733 if (INSN_P (insn))
2734 df_simulate_one_insn_forwards (bb, insn, regs_live);
2735 }
2736
2737 /* This is something of a hack, because the global algorithm
2738 is supposed to take care of the case where stores go dead
2739 at the end of the function. However, the global
2740 algorithm must take a more conservative view of block
2741 mode reads than the local alg does. So to get the case
2742 where you have a store to the frame followed by a non
2743 overlapping block more read, we look at the active local
2744 stores at the end of the function and delete all of the
2745 frame and spill based ones. */
2746 if (stores_off_frame_dead_at_return
2747 && (EDGE_COUNT (bb->succs) == 0
2748 || (single_succ_p (bb)
2749 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2750 && ! crtl->calls_eh_return)))
2751 {
2752 insn_info_t i_ptr = active_local_stores;
2753 while (i_ptr)
2754 {
2755 store_info_t store_info = i_ptr->store_rec;
2756
2757 /* Skip the clobbers. */
2758 while (!store_info->is_set)
2759 store_info = store_info->next;
2760 if (store_info->alias_set && !i_ptr->cannot_delete)
2761 delete_dead_store_insn (i_ptr);
2762 else
2763 if (store_info->group_id >= 0)
2764 {
2765 group_info_t group
2766 = rtx_group_vec[store_info->group_id];
2767 if (group->frame_related && !i_ptr->cannot_delete)
2768 delete_dead_store_insn (i_ptr);
2769 }
2770
2771 i_ptr = i_ptr->next_local_store;
2772 }
2773 }
2774
2775 /* Get rid of the loads that were discovered in
2776 replace_read. Cselib is finished with this block. */
2777 while (deferred_change_list)
2778 {
2779 deferred_change_t next = deferred_change_list->next;
2780
2781 /* There is no reason to validate this change. That was
2782 done earlier. */
2783 *deferred_change_list->loc = deferred_change_list->reg;
2784 pool_free (deferred_change_pool, deferred_change_list);
2785 deferred_change_list = next;
2786 }
2787
2788 /* Get rid of all of the cselib based store_infos in this
2789 block and mark the containing insns as not being
2790 deletable. */
2791 ptr = bb_info->last_insn;
2792 while (ptr)
2793 {
2794 if (ptr->contains_cselib_groups)
2795 {
2796 store_info_t s_info = ptr->store_rec;
2797 while (s_info && !s_info->is_set)
2798 s_info = s_info->next;
2799 if (s_info
2800 && s_info->redundant_reason
2801 && s_info->redundant_reason->insn
2802 && !ptr->cannot_delete)
2803 {
2804 if (dump_file && (dump_flags & TDF_DETAILS))
2805 fprintf (dump_file, "Locally deleting insn %d "
2806 "because insn %d stores the "
2807 "same value and couldn't be "
2808 "eliminated\n",
2809 INSN_UID (ptr->insn),
2810 INSN_UID (s_info->redundant_reason->insn));
2811 delete_dead_store_insn (ptr);
2812 }
2813 free_store_info (ptr);
2814 }
2815 else
2816 {
2817 store_info_t s_info;
2818
2819 /* Free at least positions_needed bitmaps. */
2820 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2821 if (s_info->is_large)
2822 {
2823 BITMAP_FREE (s_info->positions_needed.large.bmap);
2824 s_info->is_large = false;
2825 }
2826 }
2827 ptr = ptr->prev_insn;
2828 }
2829
2830 free_alloc_pool (cse_store_info_pool);
2831 }
2832 bb_info->regs_live = NULL;
2833 }
2834
2835 BITMAP_FREE (regs_live);
2836 cselib_finish ();
2837 rtx_group_table.empty ();
2838 }
2839
2840
2841 /*----------------------------------------------------------------------------
2842 Second step.
2843
2844 Assign each byte position in the stores that we are going to
2845 analyze globally to a position in the bitmaps. Returns true if
2846 there are any bit positions assigned.
2847 ----------------------------------------------------------------------------*/
2848
2849 static void
dse_step2_init(void)2850 dse_step2_init (void)
2851 {
2852 unsigned int i;
2853 group_info_t group;
2854
2855 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2856 {
2857 /* For all non stack related bases, we only consider a store to
2858 be deletable if there are two or more stores for that
2859 position. This is because it takes one store to make the
2860 other store redundant. However, for the stores that are
2861 stack related, we consider them if there is only one store
2862 for the position. We do this because the stack related
2863 stores can be deleted if their is no read between them and
2864 the end of the function.
2865
2866 To make this work in the current framework, we take the stack
2867 related bases add all of the bits from store1 into store2.
2868 This has the effect of making the eligible even if there is
2869 only one store. */
2870
2871 if (stores_off_frame_dead_at_return && group->frame_related)
2872 {
2873 bitmap_ior_into (group->store2_n, group->store1_n);
2874 bitmap_ior_into (group->store2_p, group->store1_p);
2875 if (dump_file && (dump_flags & TDF_DETAILS))
2876 fprintf (dump_file, "group %d is frame related ", i);
2877 }
2878
2879 group->offset_map_size_n++;
2880 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2881 group->offset_map_size_n);
2882 group->offset_map_size_p++;
2883 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2884 group->offset_map_size_p);
2885 group->process_globally = false;
2886 if (dump_file && (dump_flags & TDF_DETAILS))
2887 {
2888 fprintf (dump_file, "group %d(%d+%d): ", i,
2889 (int)bitmap_count_bits (group->store2_n),
2890 (int)bitmap_count_bits (group->store2_p));
2891 bitmap_print (dump_file, group->store2_n, "n ", " ");
2892 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2893 }
2894 }
2895 }
2896
2897
2898 /* Init the offset tables for the normal case. */
2899
2900 static bool
dse_step2_nospill(void)2901 dse_step2_nospill (void)
2902 {
2903 unsigned int i;
2904 group_info_t group;
2905 /* Position 0 is unused because 0 is used in the maps to mean
2906 unused. */
2907 current_position = 1;
2908 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2909 {
2910 bitmap_iterator bi;
2911 unsigned int j;
2912
2913 if (group == clear_alias_group)
2914 continue;
2915
2916 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2917 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2918 bitmap_clear (group->group_kill);
2919
2920 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2921 {
2922 bitmap_set_bit (group->group_kill, current_position);
2923 if (bitmap_bit_p (group->escaped_n, j))
2924 bitmap_set_bit (kill_on_calls, current_position);
2925 group->offset_map_n[j] = current_position++;
2926 group->process_globally = true;
2927 }
2928 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2929 {
2930 bitmap_set_bit (group->group_kill, current_position);
2931 if (bitmap_bit_p (group->escaped_p, j))
2932 bitmap_set_bit (kill_on_calls, current_position);
2933 group->offset_map_p[j] = current_position++;
2934 group->process_globally = true;
2935 }
2936 }
2937 return current_position != 1;
2938 }
2939
2940
2941
2942 /*----------------------------------------------------------------------------
2943 Third step.
2944
2945 Build the bit vectors for the transfer functions.
2946 ----------------------------------------------------------------------------*/
2947
2948
2949 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2950 there, return 0. */
2951
2952 static int
get_bitmap_index(group_info_t group_info,HOST_WIDE_INT offset)2953 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2954 {
2955 if (offset < 0)
2956 {
2957 HOST_WIDE_INT offset_p = -offset;
2958 if (offset_p >= group_info->offset_map_size_n)
2959 return 0;
2960 return group_info->offset_map_n[offset_p];
2961 }
2962 else
2963 {
2964 if (offset >= group_info->offset_map_size_p)
2965 return 0;
2966 return group_info->offset_map_p[offset];
2967 }
2968 }
2969
2970
2971 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2972 may be NULL. */
2973
2974 static void
scan_stores_nospill(store_info_t store_info,bitmap gen,bitmap kill)2975 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2976 {
2977 while (store_info)
2978 {
2979 HOST_WIDE_INT i;
2980 group_info_t group_info
2981 = rtx_group_vec[store_info->group_id];
2982 if (group_info->process_globally)
2983 for (i = store_info->begin; i < store_info->end; i++)
2984 {
2985 int index = get_bitmap_index (group_info, i);
2986 if (index != 0)
2987 {
2988 bitmap_set_bit (gen, index);
2989 if (kill)
2990 bitmap_clear_bit (kill, index);
2991 }
2992 }
2993 store_info = store_info->next;
2994 }
2995 }
2996
2997
2998 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2999 may be NULL. */
3000
3001 static void
scan_stores_spill(store_info_t store_info,bitmap gen,bitmap kill)3002 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3003 {
3004 while (store_info)
3005 {
3006 if (store_info->alias_set)
3007 {
3008 int index = get_bitmap_index (clear_alias_group,
3009 store_info->alias_set);
3010 if (index != 0)
3011 {
3012 bitmap_set_bit (gen, index);
3013 if (kill)
3014 bitmap_clear_bit (kill, index);
3015 }
3016 }
3017 store_info = store_info->next;
3018 }
3019 }
3020
3021
3022 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3023 may be NULL. */
3024
3025 static void
scan_reads_nospill(insn_info_t insn_info,bitmap gen,bitmap kill)3026 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3027 {
3028 read_info_t read_info = insn_info->read_rec;
3029 int i;
3030 group_info_t group;
3031
3032 /* If this insn reads the frame, kill all the frame related stores. */
3033 if (insn_info->frame_read)
3034 {
3035 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3036 if (group->process_globally && group->frame_related)
3037 {
3038 if (kill)
3039 bitmap_ior_into (kill, group->group_kill);
3040 bitmap_and_compl_into (gen, group->group_kill);
3041 }
3042 }
3043 if (insn_info->non_frame_wild_read)
3044 {
3045 /* Kill all non-frame related stores. Kill all stores of variables that
3046 escape. */
3047 if (kill)
3048 bitmap_ior_into (kill, kill_on_calls);
3049 bitmap_and_compl_into (gen, kill_on_calls);
3050 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3051 if (group->process_globally && !group->frame_related)
3052 {
3053 if (kill)
3054 bitmap_ior_into (kill, group->group_kill);
3055 bitmap_and_compl_into (gen, group->group_kill);
3056 }
3057 }
3058 while (read_info)
3059 {
3060 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3061 {
3062 if (group->process_globally)
3063 {
3064 if (i == read_info->group_id)
3065 {
3066 if (read_info->begin > read_info->end)
3067 {
3068 /* Begin > end for block mode reads. */
3069 if (kill)
3070 bitmap_ior_into (kill, group->group_kill);
3071 bitmap_and_compl_into (gen, group->group_kill);
3072 }
3073 else
3074 {
3075 /* The groups are the same, just process the
3076 offsets. */
3077 HOST_WIDE_INT j;
3078 for (j = read_info->begin; j < read_info->end; j++)
3079 {
3080 int index = get_bitmap_index (group, j);
3081 if (index != 0)
3082 {
3083 if (kill)
3084 bitmap_set_bit (kill, index);
3085 bitmap_clear_bit (gen, index);
3086 }
3087 }
3088 }
3089 }
3090 else
3091 {
3092 /* The groups are different, if the alias sets
3093 conflict, clear the entire group. We only need
3094 to apply this test if the read_info is a cselib
3095 read. Anything with a constant base cannot alias
3096 something else with a different constant
3097 base. */
3098 if ((read_info->group_id < 0)
3099 && canon_true_dependence (group->base_mem,
3100 GET_MODE (group->base_mem),
3101 group->canon_base_addr,
3102 read_info->mem, NULL_RTX))
3103 {
3104 if (kill)
3105 bitmap_ior_into (kill, group->group_kill);
3106 bitmap_and_compl_into (gen, group->group_kill);
3107 }
3108 }
3109 }
3110 }
3111
3112 read_info = read_info->next;
3113 }
3114 }
3115
3116 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3117 may be NULL. */
3118
3119 static void
scan_reads_spill(read_info_t read_info,bitmap gen,bitmap kill)3120 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3121 {
3122 while (read_info)
3123 {
3124 if (read_info->alias_set)
3125 {
3126 int index = get_bitmap_index (clear_alias_group,
3127 read_info->alias_set);
3128 if (index != 0)
3129 {
3130 if (kill)
3131 bitmap_set_bit (kill, index);
3132 bitmap_clear_bit (gen, index);
3133 }
3134 }
3135
3136 read_info = read_info->next;
3137 }
3138 }
3139
3140
3141 /* Return the insn in BB_INFO before the first wild read or if there
3142 are no wild reads in the block, return the last insn. */
3143
3144 static insn_info_t
find_insn_before_first_wild_read(bb_info_t bb_info)3145 find_insn_before_first_wild_read (bb_info_t bb_info)
3146 {
3147 insn_info_t insn_info = bb_info->last_insn;
3148 insn_info_t last_wild_read = NULL;
3149
3150 while (insn_info)
3151 {
3152 if (insn_info->wild_read)
3153 {
3154 last_wild_read = insn_info->prev_insn;
3155 /* Block starts with wild read. */
3156 if (!last_wild_read)
3157 return NULL;
3158 }
3159
3160 insn_info = insn_info->prev_insn;
3161 }
3162
3163 if (last_wild_read)
3164 return last_wild_read;
3165 else
3166 return bb_info->last_insn;
3167 }
3168
3169
3170 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3171 the block in order to build the gen and kill sets for the block.
3172 We start at ptr which may be the last insn in the block or may be
3173 the first insn with a wild read. In the latter case we are able to
3174 skip the rest of the block because it just does not matter:
3175 anything that happens is hidden by the wild read. */
3176
3177 static void
dse_step3_scan(bool for_spills,basic_block bb)3178 dse_step3_scan (bool for_spills, basic_block bb)
3179 {
3180 bb_info_t bb_info = bb_table[bb->index];
3181 insn_info_t insn_info;
3182
3183 if (for_spills)
3184 /* There are no wild reads in the spill case. */
3185 insn_info = bb_info->last_insn;
3186 else
3187 insn_info = find_insn_before_first_wild_read (bb_info);
3188
3189 /* In the spill case or in the no_spill case if there is no wild
3190 read in the block, we will need a kill set. */
3191 if (insn_info == bb_info->last_insn)
3192 {
3193 if (bb_info->kill)
3194 bitmap_clear (bb_info->kill);
3195 else
3196 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3197 }
3198 else
3199 if (bb_info->kill)
3200 BITMAP_FREE (bb_info->kill);
3201
3202 while (insn_info)
3203 {
3204 /* There may have been code deleted by the dce pass run before
3205 this phase. */
3206 if (insn_info->insn && INSN_P (insn_info->insn))
3207 {
3208 /* Process the read(s) last. */
3209 if (for_spills)
3210 {
3211 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3212 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3213 }
3214 else
3215 {
3216 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3217 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3218 }
3219 }
3220
3221 insn_info = insn_info->prev_insn;
3222 }
3223 }
3224
3225
3226 /* Set the gen set of the exit block, and also any block with no
3227 successors that does not have a wild read. */
3228
3229 static void
dse_step3_exit_block_scan(bb_info_t bb_info)3230 dse_step3_exit_block_scan (bb_info_t bb_info)
3231 {
3232 /* The gen set is all 0's for the exit block except for the
3233 frame_pointer_group. */
3234
3235 if (stores_off_frame_dead_at_return)
3236 {
3237 unsigned int i;
3238 group_info_t group;
3239
3240 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3241 {
3242 if (group->process_globally && group->frame_related)
3243 bitmap_ior_into (bb_info->gen, group->group_kill);
3244 }
3245 }
3246 }
3247
3248
3249 /* Find all of the blocks that are not backwards reachable from the
3250 exit block or any block with no successors (BB). These are the
3251 infinite loops or infinite self loops. These blocks will still
3252 have their bits set in UNREACHABLE_BLOCKS. */
3253
3254 static void
mark_reachable_blocks(sbitmap unreachable_blocks,basic_block bb)3255 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3256 {
3257 edge e;
3258 edge_iterator ei;
3259
3260 if (bitmap_bit_p (unreachable_blocks, bb->index))
3261 {
3262 bitmap_clear_bit (unreachable_blocks, bb->index);
3263 FOR_EACH_EDGE (e, ei, bb->preds)
3264 {
3265 mark_reachable_blocks (unreachable_blocks, e->src);
3266 }
3267 }
3268 }
3269
3270 /* Build the transfer functions for the function. */
3271
3272 static void
dse_step3(bool for_spills)3273 dse_step3 (bool for_spills)
3274 {
3275 basic_block bb;
3276 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3277 sbitmap_iterator sbi;
3278 bitmap all_ones = NULL;
3279 unsigned int i;
3280
3281 bitmap_ones (unreachable_blocks);
3282
3283 FOR_ALL_BB_FN (bb, cfun)
3284 {
3285 bb_info_t bb_info = bb_table[bb->index];
3286 if (bb_info->gen)
3287 bitmap_clear (bb_info->gen);
3288 else
3289 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3290
3291 if (bb->index == ENTRY_BLOCK)
3292 ;
3293 else if (bb->index == EXIT_BLOCK)
3294 dse_step3_exit_block_scan (bb_info);
3295 else
3296 dse_step3_scan (for_spills, bb);
3297 if (EDGE_COUNT (bb->succs) == 0)
3298 mark_reachable_blocks (unreachable_blocks, bb);
3299
3300 /* If this is the second time dataflow is run, delete the old
3301 sets. */
3302 if (bb_info->in)
3303 BITMAP_FREE (bb_info->in);
3304 if (bb_info->out)
3305 BITMAP_FREE (bb_info->out);
3306 }
3307
3308 /* For any block in an infinite loop, we must initialize the out set
3309 to all ones. This could be expensive, but almost never occurs in
3310 practice. However, it is common in regression tests. */
3311 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3312 {
3313 if (bitmap_bit_p (all_blocks, i))
3314 {
3315 bb_info_t bb_info = bb_table[i];
3316 if (!all_ones)
3317 {
3318 unsigned int j;
3319 group_info_t group;
3320
3321 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3322 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3323 bitmap_ior_into (all_ones, group->group_kill);
3324 }
3325 if (!bb_info->out)
3326 {
3327 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3328 bitmap_copy (bb_info->out, all_ones);
3329 }
3330 }
3331 }
3332
3333 if (all_ones)
3334 BITMAP_FREE (all_ones);
3335 sbitmap_free (unreachable_blocks);
3336 }
3337
3338
3339
3340 /*----------------------------------------------------------------------------
3341 Fourth step.
3342
3343 Solve the bitvector equations.
3344 ----------------------------------------------------------------------------*/
3345
3346
3347 /* Confluence function for blocks with no successors. Create an out
3348 set from the gen set of the exit block. This block logically has
3349 the exit block as a successor. */
3350
3351
3352
3353 static void
dse_confluence_0(basic_block bb)3354 dse_confluence_0 (basic_block bb)
3355 {
3356 bb_info_t bb_info = bb_table[bb->index];
3357
3358 if (bb->index == EXIT_BLOCK)
3359 return;
3360
3361 if (!bb_info->out)
3362 {
3363 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3364 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3365 }
3366 }
3367
3368 /* Propagate the information from the in set of the dest of E to the
3369 out set of the src of E. If the various in or out sets are not
3370 there, that means they are all ones. */
3371
3372 static bool
dse_confluence_n(edge e)3373 dse_confluence_n (edge e)
3374 {
3375 bb_info_t src_info = bb_table[e->src->index];
3376 bb_info_t dest_info = bb_table[e->dest->index];
3377
3378 if (dest_info->in)
3379 {
3380 if (src_info->out)
3381 bitmap_and_into (src_info->out, dest_info->in);
3382 else
3383 {
3384 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3385 bitmap_copy (src_info->out, dest_info->in);
3386 }
3387 }
3388 return true;
3389 }
3390
3391
3392 /* Propagate the info from the out to the in set of BB_INDEX's basic
3393 block. There are three cases:
3394
3395 1) The block has no kill set. In this case the kill set is all
3396 ones. It does not matter what the out set of the block is, none of
3397 the info can reach the top. The only thing that reaches the top is
3398 the gen set and we just copy the set.
3399
3400 2) There is a kill set but no out set and bb has successors. In
3401 this case we just return. Eventually an out set will be created and
3402 it is better to wait than to create a set of ones.
3403
3404 3) There is both a kill and out set. We apply the obvious transfer
3405 function.
3406 */
3407
3408 static bool
dse_transfer_function(int bb_index)3409 dse_transfer_function (int bb_index)
3410 {
3411 bb_info_t bb_info = bb_table[bb_index];
3412
3413 if (bb_info->kill)
3414 {
3415 if (bb_info->out)
3416 {
3417 /* Case 3 above. */
3418 if (bb_info->in)
3419 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3420 bb_info->out, bb_info->kill);
3421 else
3422 {
3423 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3424 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3425 bb_info->out, bb_info->kill);
3426 return true;
3427 }
3428 }
3429 else
3430 /* Case 2 above. */
3431 return false;
3432 }
3433 else
3434 {
3435 /* Case 1 above. If there is already an in set, nothing
3436 happens. */
3437 if (bb_info->in)
3438 return false;
3439 else
3440 {
3441 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3442 bitmap_copy (bb_info->in, bb_info->gen);
3443 return true;
3444 }
3445 }
3446 }
3447
3448 /* Solve the dataflow equations. */
3449
3450 static void
dse_step4(void)3451 dse_step4 (void)
3452 {
3453 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3454 dse_confluence_n, dse_transfer_function,
3455 all_blocks, df_get_postorder (DF_BACKWARD),
3456 df_get_n_blocks (DF_BACKWARD));
3457 if (dump_file && (dump_flags & TDF_DETAILS))
3458 {
3459 basic_block bb;
3460
3461 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3462 FOR_ALL_BB_FN (bb, cfun)
3463 {
3464 bb_info_t bb_info = bb_table[bb->index];
3465
3466 df_print_bb_index (bb, dump_file);
3467 if (bb_info->in)
3468 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3469 else
3470 fprintf (dump_file, " in: *MISSING*\n");
3471 if (bb_info->gen)
3472 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3473 else
3474 fprintf (dump_file, " gen: *MISSING*\n");
3475 if (bb_info->kill)
3476 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3477 else
3478 fprintf (dump_file, " kill: *MISSING*\n");
3479 if (bb_info->out)
3480 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3481 else
3482 fprintf (dump_file, " out: *MISSING*\n\n");
3483 }
3484 }
3485 }
3486
3487
3488
3489 /*----------------------------------------------------------------------------
3490 Fifth step.
3491
3492 Delete the stores that can only be deleted using the global information.
3493 ----------------------------------------------------------------------------*/
3494
3495
3496 static void
dse_step5_nospill(void)3497 dse_step5_nospill (void)
3498 {
3499 basic_block bb;
3500 FOR_EACH_BB_FN (bb, cfun)
3501 {
3502 bb_info_t bb_info = bb_table[bb->index];
3503 insn_info_t insn_info = bb_info->last_insn;
3504 bitmap v = bb_info->out;
3505
3506 while (insn_info)
3507 {
3508 bool deleted = false;
3509 if (dump_file && insn_info->insn)
3510 {
3511 fprintf (dump_file, "starting to process insn %d\n",
3512 INSN_UID (insn_info->insn));
3513 bitmap_print (dump_file, v, " v: ", "\n");
3514 }
3515
3516 /* There may have been code deleted by the dce pass run before
3517 this phase. */
3518 if (insn_info->insn
3519 && INSN_P (insn_info->insn)
3520 && (!insn_info->cannot_delete)
3521 && (!bitmap_empty_p (v)))
3522 {
3523 store_info_t store_info = insn_info->store_rec;
3524
3525 /* Try to delete the current insn. */
3526 deleted = true;
3527
3528 /* Skip the clobbers. */
3529 while (!store_info->is_set)
3530 store_info = store_info->next;
3531
3532 if (store_info->alias_set)
3533 deleted = false;
3534 else
3535 {
3536 HOST_WIDE_INT i;
3537 group_info_t group_info
3538 = rtx_group_vec[store_info->group_id];
3539
3540 for (i = store_info->begin; i < store_info->end; i++)
3541 {
3542 int index = get_bitmap_index (group_info, i);
3543
3544 if (dump_file && (dump_flags & TDF_DETAILS))
3545 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3546 if (index == 0 || !bitmap_bit_p (v, index))
3547 {
3548 if (dump_file && (dump_flags & TDF_DETAILS))
3549 fprintf (dump_file, "failing at i = %d\n", (int)i);
3550 deleted = false;
3551 break;
3552 }
3553 }
3554 }
3555 if (deleted)
3556 {
3557 if (dbg_cnt (dse)
3558 && check_for_inc_dec_1 (insn_info))
3559 {
3560 delete_insn (insn_info->insn);
3561 insn_info->insn = NULL;
3562 globally_deleted++;
3563 }
3564 }
3565 }
3566 /* We do want to process the local info if the insn was
3567 deleted. For instance, if the insn did a wild read, we
3568 no longer need to trash the info. */
3569 if (insn_info->insn
3570 && INSN_P (insn_info->insn)
3571 && (!deleted))
3572 {
3573 scan_stores_nospill (insn_info->store_rec, v, NULL);
3574 if (insn_info->wild_read)
3575 {
3576 if (dump_file && (dump_flags & TDF_DETAILS))
3577 fprintf (dump_file, "wild read\n");
3578 bitmap_clear (v);
3579 }
3580 else if (insn_info->read_rec
3581 || insn_info->non_frame_wild_read)
3582 {
3583 if (dump_file && !insn_info->non_frame_wild_read)
3584 fprintf (dump_file, "regular read\n");
3585 else if (dump_file && (dump_flags & TDF_DETAILS))
3586 fprintf (dump_file, "non-frame wild read\n");
3587 scan_reads_nospill (insn_info, v, NULL);
3588 }
3589 }
3590
3591 insn_info = insn_info->prev_insn;
3592 }
3593 }
3594 }
3595
3596
3597
3598 /*----------------------------------------------------------------------------
3599 Sixth step.
3600
3601 Delete stores made redundant by earlier stores (which store the same
3602 value) that couldn't be eliminated.
3603 ----------------------------------------------------------------------------*/
3604
3605 static void
dse_step6(void)3606 dse_step6 (void)
3607 {
3608 basic_block bb;
3609
3610 FOR_ALL_BB_FN (bb, cfun)
3611 {
3612 bb_info_t bb_info = bb_table[bb->index];
3613 insn_info_t insn_info = bb_info->last_insn;
3614
3615 while (insn_info)
3616 {
3617 /* There may have been code deleted by the dce pass run before
3618 this phase. */
3619 if (insn_info->insn
3620 && INSN_P (insn_info->insn)
3621 && !insn_info->cannot_delete)
3622 {
3623 store_info_t s_info = insn_info->store_rec;
3624
3625 while (s_info && !s_info->is_set)
3626 s_info = s_info->next;
3627 if (s_info
3628 && s_info->redundant_reason
3629 && s_info->redundant_reason->insn
3630 && INSN_P (s_info->redundant_reason->insn))
3631 {
3632 rtx rinsn = s_info->redundant_reason->insn;
3633 if (dump_file && (dump_flags & TDF_DETAILS))
3634 fprintf (dump_file, "Locally deleting insn %d "
3635 "because insn %d stores the "
3636 "same value and couldn't be "
3637 "eliminated\n",
3638 INSN_UID (insn_info->insn),
3639 INSN_UID (rinsn));
3640 delete_dead_store_insn (insn_info);
3641 }
3642 }
3643 insn_info = insn_info->prev_insn;
3644 }
3645 }
3646 }
3647
3648 /*----------------------------------------------------------------------------
3649 Seventh step.
3650
3651 Destroy everything left standing.
3652 ----------------------------------------------------------------------------*/
3653
3654 static void
dse_step7(void)3655 dse_step7 (void)
3656 {
3657 bitmap_obstack_release (&dse_bitmap_obstack);
3658 obstack_free (&dse_obstack, NULL);
3659
3660 end_alias_analysis ();
3661 free (bb_table);
3662 rtx_group_table.dispose ();
3663 rtx_group_vec.release ();
3664 BITMAP_FREE (all_blocks);
3665 BITMAP_FREE (scratch);
3666
3667 free_alloc_pool (rtx_store_info_pool);
3668 free_alloc_pool (read_info_pool);
3669 free_alloc_pool (insn_info_pool);
3670 free_alloc_pool (bb_info_pool);
3671 free_alloc_pool (rtx_group_info_pool);
3672 free_alloc_pool (deferred_change_pool);
3673 }
3674
3675
3676 /* -------------------------------------------------------------------------
3677 DSE
3678 ------------------------------------------------------------------------- */
3679
3680 /* Callback for running pass_rtl_dse. */
3681
3682 static unsigned int
rest_of_handle_dse(void)3683 rest_of_handle_dse (void)
3684 {
3685 df_set_flags (DF_DEFER_INSN_RESCAN);
3686
3687 /* Need the notes since we must track live hardregs in the forwards
3688 direction. */
3689 df_note_add_problem ();
3690 df_analyze ();
3691
3692 dse_step0 ();
3693 dse_step1 ();
3694 dse_step2_init ();
3695 if (dse_step2_nospill ())
3696 {
3697 df_set_flags (DF_LR_RUN_DCE);
3698 df_analyze ();
3699 if (dump_file && (dump_flags & TDF_DETAILS))
3700 fprintf (dump_file, "doing global processing\n");
3701 dse_step3 (false);
3702 dse_step4 ();
3703 dse_step5_nospill ();
3704 }
3705
3706 dse_step6 ();
3707 dse_step7 ();
3708
3709 if (dump_file)
3710 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3711 locally_deleted, globally_deleted, spill_deleted);
3712 return 0;
3713 }
3714
3715 static bool
gate_dse1(void)3716 gate_dse1 (void)
3717 {
3718 return optimize > 0 && flag_dse
3719 && dbg_cnt (dse1);
3720 }
3721
3722 static bool
gate_dse2(void)3723 gate_dse2 (void)
3724 {
3725 return optimize > 0 && flag_dse
3726 && dbg_cnt (dse2);
3727 }
3728
3729 namespace {
3730
3731 const pass_data pass_data_rtl_dse1 =
3732 {
3733 RTL_PASS, /* type */
3734 "dse1", /* name */
3735 OPTGROUP_NONE, /* optinfo_flags */
3736 true, /* has_gate */
3737 true, /* has_execute */
3738 TV_DSE1, /* tv_id */
3739 0, /* properties_required */
3740 0, /* properties_provided */
3741 0, /* properties_destroyed */
3742 0, /* todo_flags_start */
3743 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3744 };
3745
3746 class pass_rtl_dse1 : public rtl_opt_pass
3747 {
3748 public:
pass_rtl_dse1(gcc::context * ctxt)3749 pass_rtl_dse1 (gcc::context *ctxt)
3750 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3751 {}
3752
3753 /* opt_pass methods: */
gate()3754 bool gate () { return gate_dse1 (); }
execute()3755 unsigned int execute () { return rest_of_handle_dse (); }
3756
3757 }; // class pass_rtl_dse1
3758
3759 } // anon namespace
3760
3761 rtl_opt_pass *
make_pass_rtl_dse1(gcc::context * ctxt)3762 make_pass_rtl_dse1 (gcc::context *ctxt)
3763 {
3764 return new pass_rtl_dse1 (ctxt);
3765 }
3766
3767 namespace {
3768
3769 const pass_data pass_data_rtl_dse2 =
3770 {
3771 RTL_PASS, /* type */
3772 "dse2", /* name */
3773 OPTGROUP_NONE, /* optinfo_flags */
3774 true, /* has_gate */
3775 true, /* has_execute */
3776 TV_DSE2, /* tv_id */
3777 0, /* properties_required */
3778 0, /* properties_provided */
3779 0, /* properties_destroyed */
3780 0, /* todo_flags_start */
3781 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3782 };
3783
3784 class pass_rtl_dse2 : public rtl_opt_pass
3785 {
3786 public:
pass_rtl_dse2(gcc::context * ctxt)3787 pass_rtl_dse2 (gcc::context *ctxt)
3788 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3789 {}
3790
3791 /* opt_pass methods: */
gate()3792 bool gate () { return gate_dse2 (); }
execute()3793 unsigned int execute () { return rest_of_handle_dse (); }
3794
3795 }; // class pass_rtl_dse2
3796
3797 } // anon namespace
3798
3799 rtl_opt_pass *
make_pass_rtl_dse2(gcc::context * ctxt)3800 make_pass_rtl_dse2 (gcc::context *ctxt)
3801 {
3802 return new pass_rtl_dse2 (ctxt);
3803 }
3804