1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2    Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains subroutines used only from the file reload1.c.
21    It knows how to scan one insn for operands and values
22    that need to be copied into registers to make valid code.
23    It also finds other operands and values which are valid
24    but for which equivalent values in registers exist and
25    ought to be used instead.
26 
27    Before processing the first insn of the function, call `init_reload'.
28    init_reload actually has to be called earlier anyway.
29 
30    To scan an insn, call `find_reloads'.  This does two things:
31    1. sets up tables describing which values must be reloaded
32    for this insn, and what kind of hard regs they must be reloaded into;
33    2. optionally record the locations where those values appear in
34    the data, so they can be replaced properly later.
35    This is done only if the second arg to `find_reloads' is nonzero.
36 
37    The third arg to `find_reloads' specifies the number of levels
38    of indirect addressing supported by the machine.  If it is zero,
39    indirect addressing is not valid.  If it is one, (MEM (REG n))
40    is valid even if (REG n) did not get a hard register; if it is two,
41    (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42    hard register, and similarly for higher values.
43 
44    Then you must choose the hard regs to reload those pseudo regs into,
45    and generate appropriate load insns before this insn and perhaps
46    also store insns after this insn.  Set up the array `reload_reg_rtx'
47    to contain the REG rtx's for the registers you used.  In some
48    cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49    for certain reloads.  Then that tells you which register to use,
50    so you do not need to allocate one.  But you still do need to add extra
51    instructions to copy the value into and out of that register.
52 
53    Finally you must call `subst_reloads' to substitute the reload reg rtx's
54    into the locations already recorded.
55 
56 NOTE SIDE EFFECTS:
57 
58    find_reloads can alter the operands of the instruction it is called on.
59 
60    1. Two operands of any sort may be interchanged, if they are in a
61    commutative instruction.
62    This happens only if find_reloads thinks the instruction will compile
63    better that way.
64 
65    2. Pseudo-registers that are equivalent to constants are replaced
66    with those constants if they are not in hard registers.
67 
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
71 
72 Using a reload register for several reloads in one insn:
73 
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
77 
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
81 
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload.  */
85 
86 #define REG_OK_STRICT
87 
88 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow.  */
89 #undef DEBUG_RELOAD
90 
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl-error.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "df.h"
102 #include "reload.h"
103 #include "regs.h"
104 #include "addresses.h"
105 #include "hard-reg-set.h"
106 #include "flags.h"
107 #include "function.h"
108 #include "params.h"
109 #include "target.h"
110 #include "ira.h"
111 
112 /* True if X is a constant that can be forced into the constant pool.
113    MODE is the mode of the operand, or VOIDmode if not known.  */
114 #define CONST_POOL_OK_P(MODE, X)		\
115   ((MODE) != VOIDmode				\
116    && CONSTANT_P (X)				\
117    && GET_CODE (X) != HIGH			\
118    && !targetm.cannot_force_const_mem (MODE, X))
119 
120 /* True if C is a non-empty register class that has too few registers
121    to be safely used as a reload target class.  */
122 
123 static inline bool
small_register_class_p(reg_class_t rclass)124 small_register_class_p (reg_class_t rclass)
125 {
126   return (reg_class_size [(int) rclass] == 1
127 	  || (reg_class_size [(int) rclass] >= 1
128 	      && targetm.class_likely_spilled_p (rclass)));
129 }
130 
131 
132 /* All reloads of the current insn are recorded here.  See reload.h for
133    comments.  */
134 int n_reloads;
135 struct reload rld[MAX_RELOADS];
136 
137 /* All the "earlyclobber" operands of the current insn
138    are recorded here.  */
139 int n_earlyclobbers;
140 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
141 
142 int reload_n_operands;
143 
144 /* Replacing reloads.
145 
146    If `replace_reloads' is nonzero, then as each reload is recorded
147    an entry is made for it in the table `replacements'.
148    Then later `subst_reloads' can look through that table and
149    perform all the replacements needed.  */
150 
151 /* Nonzero means record the places to replace.  */
152 static int replace_reloads;
153 
154 /* Each replacement is recorded with a structure like this.  */
155 struct replacement
156 {
157   rtx *where;			/* Location to store in */
158   int what;			/* which reload this is for */
159   enum machine_mode mode;	/* mode it must have */
160 };
161 
162 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163 
164 /* Number of replacements currently recorded.  */
165 static int n_replacements;
166 
167 /* Used to track what is modified by an operand.  */
168 struct decomposition
169 {
170   int reg_flag;		/* Nonzero if referencing a register.  */
171   int safe;		/* Nonzero if this can't conflict with anything.  */
172   rtx base;		/* Base address for MEM.  */
173   HOST_WIDE_INT start;	/* Starting offset or register number.  */
174   HOST_WIDE_INT end;	/* Ending offset or register number.  */
175 };
176 
177 #ifdef SECONDARY_MEMORY_NEEDED
178 
179 /* Save MEMs needed to copy from one class of registers to another.  One MEM
180    is used per mode, but normally only one or two modes are ever used.
181 
182    We keep two versions, before and after register elimination.  The one
183    after register elimination is record separately for each operand.  This
184    is done in case the address is not valid to be sure that we separately
185    reload each.  */
186 
187 static rtx secondary_memlocs[NUM_MACHINE_MODES];
188 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
189 static int secondary_memlocs_elim_used = 0;
190 #endif
191 
192 /* The instruction we are doing reloads for;
193    so we can test whether a register dies in it.  */
194 static rtx this_insn;
195 
196 /* Nonzero if this instruction is a user-specified asm with operands.  */
197 static int this_insn_is_asm;
198 
199 /* If hard_regs_live_known is nonzero,
200    we can tell which hard regs are currently live,
201    at least enough to succeed in choosing dummy reloads.  */
202 static int hard_regs_live_known;
203 
204 /* Indexed by hard reg number,
205    element is nonnegative if hard reg has been spilled.
206    This vector is passed to `find_reloads' as an argument
207    and is not changed here.  */
208 static short *static_reload_reg_p;
209 
210 /* Set to 1 in subst_reg_equivs if it changes anything.  */
211 static int subst_reg_equivs_changed;
212 
213 /* On return from push_reload, holds the reload-number for the OUT
214    operand, which can be different for that from the input operand.  */
215 static int output_reloadnum;
216 
217   /* Compare two RTX's.  */
218 #define MATCHES(x, y) \
219  (x == y || (x != 0 && (REG_P (x)				\
220 			? REG_P (y) && REGNO (x) == REGNO (y)	\
221 			: rtx_equal_p (x, y) && ! side_effects_p (x))))
222 
223   /* Indicates if two reloads purposes are for similar enough things that we
224      can merge their reloads.  */
225 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
226   ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
227    || ((when1) == (when2) && (op1) == (op2))		\
228    || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
229    || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
230        && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
231    || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
232        && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 
234   /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
235 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
236   ((when1) != (when2)					\
237    || ! ((op1) == (op2)					\
238 	 || (when1) == RELOAD_FOR_INPUT			\
239 	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
240 	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 
242   /* If we are going to reload an address, compute the reload type to
243      use.  */
244 #define ADDR_TYPE(type)					\
245   ((type) == RELOAD_FOR_INPUT_ADDRESS			\
246    ? RELOAD_FOR_INPADDR_ADDRESS				\
247    : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
248       ? RELOAD_FOR_OUTADDR_ADDRESS			\
249       : (type)))
250 
251 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
252 				  enum machine_mode, enum reload_type,
253 				  enum insn_code *, secondary_reload_info *);
254 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
255 					int, unsigned int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 				 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 			      enum machine_mode, reg_class_t, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 				int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
271 					      addr_space_t, rtx *);
272 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
273 				 int, enum reload_type, int, rtx);
274 static rtx subst_reg_equivs (rtx, rtx);
275 static rtx subst_indexed_address (rtx);
276 static void update_auto_inc_notes (rtx, int, int);
277 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
278 				   enum rtx_code, enum rtx_code, rtx *,
279 				   int, enum reload_type,int, rtx);
280 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
281 				       enum machine_mode, int,
282 				       enum reload_type, int);
283 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
284 					int, rtx, int *);
285 static void copy_replacements_1 (rtx *, rtx *, int);
286 static int find_inc_amount (rtx, rtx);
287 static int refers_to_mem_for_reload_p (rtx);
288 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
289 					 rtx, rtx *);
290 
291 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
292    list yet.  */
293 
294 static void
push_reg_equiv_alt_mem(int regno,rtx mem)295 push_reg_equiv_alt_mem (int regno, rtx mem)
296 {
297   rtx it;
298 
299   for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
300     if (rtx_equal_p (XEXP (it, 0), mem))
301       return;
302 
303   reg_equiv_alt_mem_list (regno)
304     = alloc_EXPR_LIST (REG_EQUIV, mem,
305 		       reg_equiv_alt_mem_list (regno));
306 }
307 
308 /* Determine if any secondary reloads are needed for loading (if IN_P is
309    nonzero) or storing (if IN_P is zero) X to or from a reload register of
310    register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
311    are needed, push them.
312 
313    Return the reload number of the secondary reload we made, or -1 if
314    we didn't need one.  *PICODE is set to the insn_code to use if we do
315    need a secondary reload.  */
316 
317 static int
push_secondary_reload(int in_p,rtx x,int opnum,int optional,enum reg_class reload_class,enum machine_mode reload_mode,enum reload_type type,enum insn_code * picode,secondary_reload_info * prev_sri)318 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
319 		       enum reg_class reload_class,
320 		       enum machine_mode reload_mode, enum reload_type type,
321 		       enum insn_code *picode, secondary_reload_info *prev_sri)
322 {
323   enum reg_class rclass = NO_REGS;
324   enum reg_class scratch_class;
325   enum machine_mode mode = reload_mode;
326   enum insn_code icode = CODE_FOR_nothing;
327   enum insn_code t_icode = CODE_FOR_nothing;
328   enum reload_type secondary_type;
329   int s_reload, t_reload = -1;
330   const char *scratch_constraint;
331   char letter;
332   secondary_reload_info sri;
333 
334   if (type == RELOAD_FOR_INPUT_ADDRESS
335       || type == RELOAD_FOR_OUTPUT_ADDRESS
336       || type == RELOAD_FOR_INPADDR_ADDRESS
337       || type == RELOAD_FOR_OUTADDR_ADDRESS)
338     secondary_type = type;
339   else
340     secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
341 
342   *picode = CODE_FOR_nothing;
343 
344   /* If X is a paradoxical SUBREG, use the inner value to determine both the
345      mode and object being reloaded.  */
346   if (paradoxical_subreg_p (x))
347     {
348       x = SUBREG_REG (x);
349       reload_mode = GET_MODE (x);
350     }
351 
352   /* If X is a pseudo-register that has an equivalent MEM (actually, if it
353      is still a pseudo-register by now, it *must* have an equivalent MEM
354      but we don't want to assume that), use that equivalent when seeing if
355      a secondary reload is needed since whether or not a reload is needed
356      might be sensitive to the form of the MEM.  */
357 
358   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
359       && reg_equiv_mem (REGNO (x)))
360     x = reg_equiv_mem (REGNO (x));
361 
362   sri.icode = CODE_FOR_nothing;
363   sri.prev_sri = prev_sri;
364   rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
365 						      reload_mode, &sri);
366   icode = (enum insn_code) sri.icode;
367 
368   /* If we don't need any secondary registers, done.  */
369   if (rclass == NO_REGS && icode == CODE_FOR_nothing)
370     return -1;
371 
372   if (rclass != NO_REGS)
373     t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
374 				      reload_mode, type, &t_icode, &sri);
375 
376   /* If we will be using an insn, the secondary reload is for a
377      scratch register.  */
378 
379   if (icode != CODE_FOR_nothing)
380     {
381       /* If IN_P is nonzero, the reload register will be the output in
382 	 operand 0.  If IN_P is zero, the reload register will be the input
383 	 in operand 1.  Outputs should have an initial "=", which we must
384 	 skip.  */
385 
386       /* ??? It would be useful to be able to handle only two, or more than
387 	 three, operands, but for now we can only handle the case of having
388 	 exactly three: output, input and one temp/scratch.  */
389       gcc_assert (insn_data[(int) icode].n_operands == 3);
390 
391       /* ??? We currently have no way to represent a reload that needs
392 	 an icode to reload from an intermediate tertiary reload register.
393 	 We should probably have a new field in struct reload to tag a
394 	 chain of scratch operand reloads onto.   */
395       gcc_assert (rclass == NO_REGS);
396 
397       scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398       gcc_assert (*scratch_constraint == '=');
399       scratch_constraint++;
400       if (*scratch_constraint == '&')
401 	scratch_constraint++;
402       letter = *scratch_constraint;
403       scratch_class = (letter == 'r' ? GENERAL_REGS
404 		       : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
405 						   scratch_constraint));
406 
407       rclass = scratch_class;
408       mode = insn_data[(int) icode].operand[2].mode;
409     }
410 
411   /* This case isn't valid, so fail.  Reload is allowed to use the same
412      register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413      in the case of a secondary register, we actually need two different
414      registers for correct code.  We fail here to prevent the possibility of
415      silently generating incorrect code later.
416 
417      The convention is that secondary input reloads are valid only if the
418      secondary_class is different from class.  If you have such a case, you
419      can not use secondary reloads, you must work around the problem some
420      other way.
421 
422      Allow this when a reload_in/out pattern is being used.  I.e. assume
423      that the generated code handles this case.  */
424 
425   gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
426 	      || t_icode != CODE_FOR_nothing);
427 
428   /* See if we can reuse an existing secondary reload.  */
429   for (s_reload = 0; s_reload < n_reloads; s_reload++)
430     if (rld[s_reload].secondary_p
431 	&& (reg_class_subset_p (rclass, rld[s_reload].rclass)
432 	    || reg_class_subset_p (rld[s_reload].rclass, rclass))
433 	&& ((in_p && rld[s_reload].inmode == mode)
434 	    || (! in_p && rld[s_reload].outmode == mode))
435 	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 	&& (small_register_class_p (rclass)
440 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
441 	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
442 			     opnum, rld[s_reload].opnum))
443       {
444 	if (in_p)
445 	  rld[s_reload].inmode = mode;
446 	if (! in_p)
447 	  rld[s_reload].outmode = mode;
448 
449 	if (reg_class_subset_p (rclass, rld[s_reload].rclass))
450 	  rld[s_reload].rclass = rclass;
451 
452 	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
453 	rld[s_reload].optional &= optional;
454 	rld[s_reload].secondary_p = 1;
455 	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
456 			    opnum, rld[s_reload].opnum))
457 	  rld[s_reload].when_needed = RELOAD_OTHER;
458 
459 	break;
460       }
461 
462   if (s_reload == n_reloads)
463     {
464 #ifdef SECONDARY_MEMORY_NEEDED
465       /* If we need a memory location to copy between the two reload regs,
466 	 set it up now.  Note that we do the input case before making
467 	 the reload and the output case after.  This is due to the
468 	 way reloads are output.  */
469 
470       if (in_p && icode == CODE_FOR_nothing
471 	  && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
472 	{
473 	  get_secondary_mem (x, reload_mode, opnum, type);
474 
475 	  /* We may have just added new reloads.  Make sure we add
476 	     the new reload at the end.  */
477 	  s_reload = n_reloads;
478 	}
479 #endif
480 
481       /* We need to make a new secondary reload for this register class.  */
482       rld[s_reload].in = rld[s_reload].out = 0;
483       rld[s_reload].rclass = rclass;
484 
485       rld[s_reload].inmode = in_p ? mode : VOIDmode;
486       rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
487       rld[s_reload].reg_rtx = 0;
488       rld[s_reload].optional = optional;
489       rld[s_reload].inc = 0;
490       /* Maybe we could combine these, but it seems too tricky.  */
491       rld[s_reload].nocombine = 1;
492       rld[s_reload].in_reg = 0;
493       rld[s_reload].out_reg = 0;
494       rld[s_reload].opnum = opnum;
495       rld[s_reload].when_needed = secondary_type;
496       rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
497       rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
498       rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
499       rld[s_reload].secondary_out_icode
500 	= ! in_p ? t_icode : CODE_FOR_nothing;
501       rld[s_reload].secondary_p = 1;
502 
503       n_reloads++;
504 
505 #ifdef SECONDARY_MEMORY_NEEDED
506       if (! in_p && icode == CODE_FOR_nothing
507 	  && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
508 	get_secondary_mem (x, mode, opnum, type);
509 #endif
510     }
511 
512   *picode = icode;
513   return s_reload;
514 }
515 
516 /* If a secondary reload is needed, return its class.  If both an intermediate
517    register and a scratch register is needed, we return the class of the
518    intermediate register.  */
519 reg_class_t
secondary_reload_class(bool in_p,reg_class_t rclass,enum machine_mode mode,rtx x)520 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
521 			rtx x)
522 {
523   enum insn_code icode;
524   secondary_reload_info sri;
525 
526   sri.icode = CODE_FOR_nothing;
527   sri.prev_sri = NULL;
528   rclass
529     = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
530   icode = (enum insn_code) sri.icode;
531 
532   /* If there are no secondary reloads at all, we return NO_REGS.
533      If an intermediate register is needed, we return its class.  */
534   if (icode == CODE_FOR_nothing || rclass != NO_REGS)
535     return rclass;
536 
537   /* No intermediate register is needed, but we have a special reload
538      pattern, which we assume for now needs a scratch register.  */
539   return scratch_reload_class (icode);
540 }
541 
542 /* ICODE is the insn_code of a reload pattern.  Check that it has exactly
543    three operands, verify that operand 2 is an output operand, and return
544    its register class.
545    ??? We'd like to be able to handle any pattern with at least 2 operands,
546    for zero or more scratch registers, but that needs more infrastructure.  */
547 enum reg_class
scratch_reload_class(enum insn_code icode)548 scratch_reload_class (enum insn_code icode)
549 {
550   const char *scratch_constraint;
551   char scratch_letter;
552   enum reg_class rclass;
553 
554   gcc_assert (insn_data[(int) icode].n_operands == 3);
555   scratch_constraint = insn_data[(int) icode].operand[2].constraint;
556   gcc_assert (*scratch_constraint == '=');
557   scratch_constraint++;
558   if (*scratch_constraint == '&')
559     scratch_constraint++;
560   scratch_letter = *scratch_constraint;
561   if (scratch_letter == 'r')
562     return GENERAL_REGS;
563   rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
564 				     scratch_constraint);
565   gcc_assert (rclass != NO_REGS);
566   return rclass;
567 }
568 
569 #ifdef SECONDARY_MEMORY_NEEDED
570 
571 /* Return a memory location that will be used to copy X in mode MODE.
572    If we haven't already made a location for this mode in this insn,
573    call find_reloads_address on the location being returned.  */
574 
575 rtx
get_secondary_mem(rtx x ATTRIBUTE_UNUSED,enum machine_mode mode,int opnum,enum reload_type type)576 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
577 		   int opnum, enum reload_type type)
578 {
579   rtx loc;
580   int mem_valid;
581 
582   /* By default, if MODE is narrower than a word, widen it to a word.
583      This is required because most machines that require these memory
584      locations do not support short load and stores from all registers
585      (e.g., FP registers).  */
586 
587 #ifdef SECONDARY_MEMORY_NEEDED_MODE
588   mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
589 #else
590   if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
591     mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
592 #endif
593 
594   /* If we already have made a MEM for this operand in MODE, return it.  */
595   if (secondary_memlocs_elim[(int) mode][opnum] != 0)
596     return secondary_memlocs_elim[(int) mode][opnum];
597 
598   /* If this is the first time we've tried to get a MEM for this mode,
599      allocate a new one.  `something_changed' in reload will get set
600      by noticing that the frame size has changed.  */
601 
602   if (secondary_memlocs[(int) mode] == 0)
603     {
604 #ifdef SECONDARY_MEMORY_NEEDED_RTX
605       secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
606 #else
607       secondary_memlocs[(int) mode]
608 	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
609 #endif
610     }
611 
612   /* Get a version of the address doing any eliminations needed.  If that
613      didn't give us a new MEM, make a new one if it isn't valid.  */
614 
615   loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
616   mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
617 						  MEM_ADDR_SPACE (loc));
618 
619   if (! mem_valid && loc == secondary_memlocs[(int) mode])
620     loc = copy_rtx (loc);
621 
622   /* The only time the call below will do anything is if the stack
623      offset is too large.  In that case IND_LEVELS doesn't matter, so we
624      can just pass a zero.  Adjust the type to be the address of the
625      corresponding object.  If the address was valid, save the eliminated
626      address.  If it wasn't valid, we need to make a reload each time, so
627      don't save it.  */
628 
629   if (! mem_valid)
630     {
631       type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
632 	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
633 	       : RELOAD_OTHER);
634 
635       find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
636 			    opnum, type, 0, 0);
637     }
638 
639   secondary_memlocs_elim[(int) mode][opnum] = loc;
640   if (secondary_memlocs_elim_used <= (int)mode)
641     secondary_memlocs_elim_used = (int)mode + 1;
642   return loc;
643 }
644 
645 /* Clear any secondary memory locations we've made.  */
646 
647 void
clear_secondary_mem(void)648 clear_secondary_mem (void)
649 {
650   memset (secondary_memlocs, 0, sizeof secondary_memlocs);
651 }
652 #endif /* SECONDARY_MEMORY_NEEDED */
653 
654 
655 /* Find the largest class which has at least one register valid in
656    mode INNER, and which for every such register, that register number
657    plus N is also valid in OUTER (if in range) and is cheap to move
658    into REGNO.  Such a class must exist.  */
659 
660 static enum reg_class
find_valid_class(enum machine_mode outer ATTRIBUTE_UNUSED,enum machine_mode inner ATTRIBUTE_UNUSED,int n,unsigned int dest_regno ATTRIBUTE_UNUSED)661 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
662 		  enum machine_mode inner ATTRIBUTE_UNUSED, int n,
663 		  unsigned int dest_regno ATTRIBUTE_UNUSED)
664 {
665   int best_cost = -1;
666   int rclass;
667   int regno;
668   enum reg_class best_class = NO_REGS;
669   enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
670   unsigned int best_size = 0;
671   int cost;
672 
673   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
674     {
675       int bad = 0;
676       int good = 0;
677       for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
678 	if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
679 	  {
680 	    if (HARD_REGNO_MODE_OK (regno, inner))
681 	      {
682 		good = 1;
683 		if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
684 		    && ! HARD_REGNO_MODE_OK (regno + n, outer))
685 		  bad = 1;
686 	      }
687 	  }
688 
689       if (bad || !good)
690 	continue;
691       cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
692 
693       if ((reg_class_size[rclass] > best_size
694 	   && (best_cost < 0 || best_cost >= cost))
695 	  || best_cost > cost)
696 	{
697 	  best_class = (enum reg_class) rclass;
698 	  best_size = reg_class_size[rclass];
699 	  best_cost = register_move_cost (outer, (enum reg_class) rclass,
700 					  dest_class);
701 	}
702     }
703 
704   gcc_assert (best_size != 0);
705 
706   return best_class;
707 }
708 
709 /* We are trying to reload a subreg of something that is not a register.
710    Find the largest class which contains only registers valid in
711    mode MODE.  OUTER is the mode of the subreg, DEST_CLASS the class in
712    which we would eventually like to obtain the object.  */
713 
714 static enum reg_class
find_valid_class_1(enum machine_mode outer ATTRIBUTE_UNUSED,enum machine_mode mode ATTRIBUTE_UNUSED,enum reg_class dest_class ATTRIBUTE_UNUSED)715 find_valid_class_1 (enum machine_mode outer ATTRIBUTE_UNUSED,
716 		    enum machine_mode mode ATTRIBUTE_UNUSED,
717 		    enum reg_class dest_class ATTRIBUTE_UNUSED)
718 {
719   int best_cost = -1;
720   int rclass;
721   int regno;
722   enum reg_class best_class = NO_REGS;
723   unsigned int best_size = 0;
724   int cost;
725 
726   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
727     {
728       int bad = 0;
729       for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
730 	{
731 	  if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
732 	      && !HARD_REGNO_MODE_OK (regno, mode))
733 	    bad = 1;
734 	}
735 
736       if (bad)
737 	continue;
738 
739       cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
740 
741       if ((reg_class_size[rclass] > best_size
742 	   && (best_cost < 0 || best_cost >= cost))
743 	  || best_cost > cost)
744 	{
745 	  best_class = (enum reg_class) rclass;
746 	  best_size = reg_class_size[rclass];
747 	  best_cost = register_move_cost (outer, (enum reg_class) rclass,
748 					  dest_class);
749 	}
750     }
751 
752   gcc_assert (best_size != 0);
753 
754 #ifdef LIMIT_RELOAD_CLASS
755   best_class = LIMIT_RELOAD_CLASS (mode, best_class);
756 #endif
757   return best_class;
758 }
759 
760 /* Return the number of a previously made reload that can be combined with
761    a new one, or n_reloads if none of the existing reloads can be used.
762    OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
763    push_reload, they determine the kind of the new reload that we try to
764    combine.  P_IN points to the corresponding value of IN, which can be
765    modified by this function.
766    DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
767 
768 static int
find_reusable_reload(rtx * p_in,rtx out,enum reg_class rclass,enum reload_type type,int opnum,int dont_share)769 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
770 		      enum reload_type type, int opnum, int dont_share)
771 {
772   rtx in = *p_in;
773   int i;
774   /* We can't merge two reloads if the output of either one is
775      earlyclobbered.  */
776 
777   if (earlyclobber_operand_p (out))
778     return n_reloads;
779 
780   /* We can use an existing reload if the class is right
781      and at least one of IN and OUT is a match
782      and the other is at worst neutral.
783      (A zero compared against anything is neutral.)
784 
785      For targets with small register classes, don't use existing reloads
786      unless they are for the same thing since that can cause us to need
787      more reload registers than we otherwise would.  */
788 
789   for (i = 0; i < n_reloads; i++)
790     if ((reg_class_subset_p (rclass, rld[i].rclass)
791 	 || reg_class_subset_p (rld[i].rclass, rclass))
792 	/* If the existing reload has a register, it must fit our class.  */
793 	&& (rld[i].reg_rtx == 0
794 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
795 				  true_regnum (rld[i].reg_rtx)))
796 	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
797 	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
798 	    || (out != 0 && MATCHES (rld[i].out, out)
799 		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
800 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
801 	&& (small_register_class_p (rclass)
802 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
803 	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
804       return i;
805 
806   /* Reloading a plain reg for input can match a reload to postincrement
807      that reg, since the postincrement's value is the right value.
808      Likewise, it can match a preincrement reload, since we regard
809      the preincrementation as happening before any ref in this insn
810      to that register.  */
811   for (i = 0; i < n_reloads; i++)
812     if ((reg_class_subset_p (rclass, rld[i].rclass)
813 	 || reg_class_subset_p (rld[i].rclass, rclass))
814 	/* If the existing reload has a register, it must fit our
815 	   class.  */
816 	&& (rld[i].reg_rtx == 0
817 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
818 				  true_regnum (rld[i].reg_rtx)))
819 	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
820 	&& ((REG_P (in)
821 	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
822 	     && MATCHES (XEXP (rld[i].in, 0), in))
823 	    || (REG_P (rld[i].in)
824 		&& GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
825 		&& MATCHES (XEXP (in, 0), rld[i].in)))
826 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
827 	&& (small_register_class_p (rclass)
828 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
829 	&& MERGABLE_RELOADS (type, rld[i].when_needed,
830 			     opnum, rld[i].opnum))
831       {
832 	/* Make sure reload_in ultimately has the increment,
833 	   not the plain register.  */
834 	if (REG_P (in))
835 	  *p_in = rld[i].in;
836 	return i;
837       }
838   return n_reloads;
839 }
840 
841 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
842    expression.  MODE is the mode that X will be used in.  OUTPUT is true if
843    the function is invoked for the output part of an enclosing reload.  */
844 
845 static bool
reload_inner_reg_of_subreg(rtx x,enum machine_mode mode,bool output)846 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
847 {
848   rtx inner;
849 
850   /* Only SUBREGs are problematical.  */
851   if (GET_CODE (x) != SUBREG)
852     return false;
853 
854   inner = SUBREG_REG (x);
855 
856   /* If INNER is a constant or PLUS, then INNER will need reloading.  */
857   if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
858     return true;
859 
860   /* If INNER is not a hard register, then INNER will not need reloading.  */
861   if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
862     return false;
863 
864   /* If INNER is not ok for MODE, then INNER will need reloading.  */
865   if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
866     return true;
867 
868   /* If this is for an output, and the outer part is a word or smaller,
869      INNER is larger than a word and the number of registers in INNER is
870      not the same as the number of words in INNER, then INNER will need
871      reloading (with an in-out reload).  */
872   return (output
873 	  && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
874 	  && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
875 	  && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
876 	      != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
877 }
878 
879 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
880    requiring an extra reload register.  The caller has already found that
881    IN contains some reference to REGNO, so check that we can produce the
882    new value in a single step.  E.g. if we have
883    (set (reg r13) (plus (reg r13) (const int 1))), and there is an
884    instruction that adds one to a register, this should succeed.
885    However, if we have something like
886    (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
887    needs to be loaded into a register first, we need a separate reload
888    register.
889    Such PLUS reloads are generated by find_reload_address_part.
890    The out-of-range PLUS expressions are usually introduced in the instruction
891    patterns by register elimination and substituting pseudos without a home
892    by their function-invariant equivalences.  */
893 static int
can_reload_into(rtx in,int regno,enum machine_mode mode)894 can_reload_into (rtx in, int regno, enum machine_mode mode)
895 {
896   rtx dst, test_insn;
897   int r = 0;
898   struct recog_data_d save_recog_data;
899 
900   /* For matching constraints, we often get notional input reloads where
901      we want to use the original register as the reload register.  I.e.
902      technically this is a non-optional input-output reload, but IN is
903      already a valid register, and has been chosen as the reload register.
904      Speed this up, since it trivially works.  */
905   if (REG_P (in))
906     return 1;
907 
908   /* To test MEMs properly, we'd have to take into account all the reloads
909      that are already scheduled, which can become quite complicated.
910      And since we've already handled address reloads for this MEM, it
911      should always succeed anyway.  */
912   if (MEM_P (in))
913     return 1;
914 
915   /* If we can make a simple SET insn that does the job, everything should
916      be fine.  */
917   dst =  gen_rtx_REG (mode, regno);
918   test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
919   save_recog_data = recog_data;
920   if (recog_memoized (test_insn) >= 0)
921     {
922       extract_insn (test_insn);
923       r = constrain_operands (1);
924     }
925   recog_data = save_recog_data;
926   return r;
927 }
928 
929 /* Record one reload that needs to be performed.
930    IN is an rtx saying where the data are to be found before this instruction.
931    OUT says where they must be stored after the instruction.
932    (IN is zero for data not read, and OUT is zero for data not written.)
933    INLOC and OUTLOC point to the places in the instructions where
934    IN and OUT were found.
935    If IN and OUT are both nonzero, it means the same register must be used
936    to reload both IN and OUT.
937 
938    RCLASS is a register class required for the reloaded data.
939    INMODE is the machine mode that the instruction requires
940    for the reg that replaces IN and OUTMODE is likewise for OUT.
941 
942    If IN is zero, then OUT's location and mode should be passed as
943    INLOC and INMODE.
944 
945    STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
946 
947    OPTIONAL nonzero means this reload does not need to be performed:
948    it can be discarded if that is more convenient.
949 
950    OPNUM and TYPE say what the purpose of this reload is.
951 
952    The return value is the reload-number for this reload.
953 
954    If both IN and OUT are nonzero, in some rare cases we might
955    want to make two separate reloads.  (Actually we never do this now.)
956    Therefore, the reload-number for OUT is stored in
957    output_reloadnum when we return; the return value applies to IN.
958    Usually (presently always), when IN and OUT are nonzero,
959    the two reload-numbers are equal, but the caller should be careful to
960    distinguish them.  */
961 
962 int
push_reload(rtx in,rtx out,rtx * inloc,rtx * outloc,enum reg_class rclass,enum machine_mode inmode,enum machine_mode outmode,int strict_low,int optional,int opnum,enum reload_type type)963 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
964 	     enum reg_class rclass, enum machine_mode inmode,
965 	     enum machine_mode outmode, int strict_low, int optional,
966 	     int opnum, enum reload_type type)
967 {
968   int i;
969   int dont_share = 0;
970   int dont_remove_subreg = 0;
971 #ifdef LIMIT_RELOAD_CLASS
972   rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
973 #endif
974   int secondary_in_reload = -1, secondary_out_reload = -1;
975   enum insn_code secondary_in_icode = CODE_FOR_nothing;
976   enum insn_code secondary_out_icode = CODE_FOR_nothing;
977   enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
978   subreg_in_class = NO_REGS;
979 
980   /* INMODE and/or OUTMODE could be VOIDmode if no mode
981      has been specified for the operand.  In that case,
982      use the operand's mode as the mode to reload.  */
983   if (inmode == VOIDmode && in != 0)
984     inmode = GET_MODE (in);
985   if (outmode == VOIDmode && out != 0)
986     outmode = GET_MODE (out);
987 
988   /* If find_reloads and friends until now missed to replace a pseudo
989      with a constant of reg_equiv_constant something went wrong
990      beforehand.
991      Note that it can't simply be done here if we missed it earlier
992      since the constant might need to be pushed into the literal pool
993      and the resulting memref would probably need further
994      reloading.  */
995   if (in != 0 && REG_P (in))
996     {
997       int regno = REGNO (in);
998 
999       gcc_assert (regno < FIRST_PSEUDO_REGISTER
1000 		  || reg_renumber[regno] >= 0
1001 		  || reg_equiv_constant (regno) == NULL_RTX);
1002     }
1003 
1004   /* reg_equiv_constant only contains constants which are obviously
1005      not appropriate as destination.  So if we would need to replace
1006      the destination pseudo with a constant we are in real
1007      trouble.  */
1008   if (out != 0 && REG_P (out))
1009     {
1010       int regno = REGNO (out);
1011 
1012       gcc_assert (regno < FIRST_PSEUDO_REGISTER
1013 		  || reg_renumber[regno] >= 0
1014 		  || reg_equiv_constant (regno) == NULL_RTX);
1015     }
1016 
1017   /* If we have a read-write operand with an address side-effect,
1018      change either IN or OUT so the side-effect happens only once.  */
1019   if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1020     switch (GET_CODE (XEXP (in, 0)))
1021       {
1022       case POST_INC: case POST_DEC:   case POST_MODIFY:
1023 	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1024 	break;
1025 
1026       case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1027 	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1028 	break;
1029 
1030       default:
1031 	break;
1032       }
1033 
1034   /* If we are reloading a (SUBREG constant ...), really reload just the
1035      inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
1036      If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1037      a pseudo and hence will become a MEM) with M1 wider than M2 and the
1038      register is a pseudo, also reload the inside expression.
1039      For machines that extend byte loads, do this for any SUBREG of a pseudo
1040      where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1041      M2 is an integral mode that gets extended when loaded.
1042      Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1043      where either M1 is not valid for R or M2 is wider than a word but we
1044      only need one register to store an M2-sized quantity in R.
1045      (However, if OUT is nonzero, we need to reload the reg *and*
1046      the subreg, so do nothing here, and let following statement handle it.)
1047 
1048      Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1049      we can't handle it here because CONST_INT does not indicate a mode.
1050 
1051      Similarly, we must reload the inside expression if we have a
1052      STRICT_LOW_PART (presumably, in == out in this case).
1053 
1054      Also reload the inner expression if it does not require a secondary
1055      reload but the SUBREG does.
1056 
1057      Finally, reload the inner expression if it is a register that is in
1058      the class whose registers cannot be referenced in a different size
1059      and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
1060      cannot reload just the inside since we might end up with the wrong
1061      register class.  But if it is inside a STRICT_LOW_PART, we have
1062      no choice, so we hope we do get the right register class there.  */
1063 
1064   if (in != 0 && GET_CODE (in) == SUBREG
1065       && (subreg_lowpart_p (in) || strict_low)
1066 #ifdef CANNOT_CHANGE_MODE_CLASS
1067       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1068 #endif
1069       && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1070       && (CONSTANT_P (SUBREG_REG (in))
1071 	  || GET_CODE (SUBREG_REG (in)) == PLUS
1072 	  || strict_low
1073 	  || (((REG_P (SUBREG_REG (in))
1074 		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1075 	       || MEM_P (SUBREG_REG (in)))
1076 	      && ((GET_MODE_PRECISION (inmode)
1077 		   > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1078 #ifdef LOAD_EXTEND_OP
1079 		  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1080 		      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1081 			  <= UNITS_PER_WORD)
1082 		      && (GET_MODE_PRECISION (inmode)
1083 			  > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1084 		      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1085 		      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1086 #endif
1087 #ifdef WORD_REGISTER_OPERATIONS
1088 		  || ((GET_MODE_PRECISION (inmode)
1089 		       < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1090 		      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1091 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1092 			   / UNITS_PER_WORD)))
1093 #endif
1094 		  ))
1095 	  || (REG_P (SUBREG_REG (in))
1096 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1097 	      /* The case where out is nonzero
1098 		 is handled differently in the following statement.  */
1099 	      && (out == 0 || subreg_lowpart_p (in))
1100 	      && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1101 		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1102 		       > UNITS_PER_WORD)
1103 		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1104 			/ UNITS_PER_WORD)
1105 		       != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1106 						[GET_MODE (SUBREG_REG (in))]))
1107 		  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1108 	  || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1109 	      && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1110 					  SUBREG_REG (in))
1111 		  == NO_REGS))
1112 #ifdef CANNOT_CHANGE_MODE_CLASS
1113 	  || (REG_P (SUBREG_REG (in))
1114 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1115 	      && REG_CANNOT_CHANGE_MODE_P
1116 	      (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1117 #endif
1118 	  ))
1119     {
1120 #ifdef LIMIT_RELOAD_CLASS
1121       in_subreg_loc = inloc;
1122 #endif
1123       inloc = &SUBREG_REG (in);
1124       in = *inloc;
1125 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1126       if (MEM_P (in))
1127 	/* This is supposed to happen only for paradoxical subregs made by
1128 	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1129 	gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1130 #endif
1131       inmode = GET_MODE (in);
1132     }
1133 
1134   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1135      where M1 is not valid for R if it was not handled by the code above.
1136 
1137      Similar issue for (SUBREG constant ...) if it was not handled by the
1138      code above.  This can happen if SUBREG_BYTE != 0.
1139 
1140      However, we must reload the inner reg *as well as* the subreg in
1141      that case.  */
1142 
1143   if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1144     {
1145       if (REG_P (SUBREG_REG (in)))
1146 	subreg_in_class
1147 	  = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1148 			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1149 						   GET_MODE (SUBREG_REG (in)),
1150 						   SUBREG_BYTE (in),
1151 						   GET_MODE (in)),
1152 			      REGNO (SUBREG_REG (in)));
1153       else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1154 	subreg_in_class = find_valid_class_1 (inmode,
1155 					      GET_MODE (SUBREG_REG (in)),
1156 					      rclass);
1157 
1158       /* This relies on the fact that emit_reload_insns outputs the
1159 	 instructions for input reloads of type RELOAD_OTHER in the same
1160 	 order as the reloads.  Thus if the outer reload is also of type
1161 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1162 	 output before the outer reload.  */
1163       push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1164 		   subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1165       dont_remove_subreg = 1;
1166     }
1167 
1168   /* Similarly for paradoxical and problematical SUBREGs on the output.
1169      Note that there is no reason we need worry about the previous value
1170      of SUBREG_REG (out); even if wider than out, storing in a subreg is
1171      entitled to clobber it all (except in the case of a word mode subreg
1172      or of a STRICT_LOW_PART, in that latter case the constraint should
1173      label it input-output.)  */
1174   if (out != 0 && GET_CODE (out) == SUBREG
1175       && (subreg_lowpart_p (out) || strict_low)
1176 #ifdef CANNOT_CHANGE_MODE_CLASS
1177       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1178 #endif
1179       && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1180       && (CONSTANT_P (SUBREG_REG (out))
1181 	  || strict_low
1182 	  || (((REG_P (SUBREG_REG (out))
1183 		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1184 	       || MEM_P (SUBREG_REG (out)))
1185 	      && ((GET_MODE_PRECISION (outmode)
1186 		   > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1187 #ifdef WORD_REGISTER_OPERATIONS
1188 		  || ((GET_MODE_PRECISION (outmode)
1189 		       < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1190 		      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1191 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1192 			   / UNITS_PER_WORD)))
1193 #endif
1194 		  ))
1195 	  || (REG_P (SUBREG_REG (out))
1196 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1197 	      /* The case of a word mode subreg
1198 		 is handled differently in the following statement.  */
1199 	      && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1200 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1201 		        > UNITS_PER_WORD))
1202 	      && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1203 	  || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1204 	      && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1205 					  SUBREG_REG (out))
1206 		  == NO_REGS))
1207 #ifdef CANNOT_CHANGE_MODE_CLASS
1208 	  || (REG_P (SUBREG_REG (out))
1209 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1210 	      && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1211 					   GET_MODE (SUBREG_REG (out)),
1212 					   outmode))
1213 #endif
1214 	  ))
1215     {
1216 #ifdef LIMIT_RELOAD_CLASS
1217       out_subreg_loc = outloc;
1218 #endif
1219       outloc = &SUBREG_REG (out);
1220       out = *outloc;
1221 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1222       gcc_assert (!MEM_P (out)
1223 		  || GET_MODE_SIZE (GET_MODE (out))
1224 		     <= GET_MODE_SIZE (outmode));
1225 #endif
1226       outmode = GET_MODE (out);
1227     }
1228 
1229   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1230      where either M1 is not valid for R or M2 is wider than a word but we
1231      only need one register to store an M2-sized quantity in R.
1232 
1233      However, we must reload the inner reg *as well as* the subreg in
1234      that case and the inner reg is an in-out reload.  */
1235 
1236   if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1237     {
1238       enum reg_class in_out_class
1239 	= find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1240 			    subreg_regno_offset (REGNO (SUBREG_REG (out)),
1241 						 GET_MODE (SUBREG_REG (out)),
1242 						 SUBREG_BYTE (out),
1243 						 GET_MODE (out)),
1244 			    REGNO (SUBREG_REG (out)));
1245 
1246       /* This relies on the fact that emit_reload_insns outputs the
1247 	 instructions for output reloads of type RELOAD_OTHER in reverse
1248 	 order of the reloads.  Thus if the outer reload is also of type
1249 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1250 	 output after the outer reload.  */
1251       push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1252 		   &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1253 		   0, 0, opnum, RELOAD_OTHER);
1254       dont_remove_subreg = 1;
1255     }
1256 
1257   /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1258   if (in != 0 && out != 0 && MEM_P (out)
1259       && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1260       && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1261     dont_share = 1;
1262 
1263   /* If IN is a SUBREG of a hard register, make a new REG.  This
1264      simplifies some of the cases below.  */
1265 
1266   if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1267       && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1268       && ! dont_remove_subreg)
1269     in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1270 
1271   /* Similarly for OUT.  */
1272   if (out != 0 && GET_CODE (out) == SUBREG
1273       && REG_P (SUBREG_REG (out))
1274       && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1275       && ! dont_remove_subreg)
1276     out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1277 
1278   /* Narrow down the class of register wanted if that is
1279      desirable on this machine for efficiency.  */
1280   {
1281     reg_class_t preferred_class = rclass;
1282 
1283     if (in != 0)
1284       preferred_class = targetm.preferred_reload_class (in, rclass);
1285 
1286     /* Output reloads may need analogous treatment, different in detail.  */
1287     if (out != 0)
1288       preferred_class
1289 	= targetm.preferred_output_reload_class (out, preferred_class);
1290 
1291     /* Discard what the target said if we cannot do it.  */
1292     if (preferred_class != NO_REGS
1293 	|| (optional && type == RELOAD_FOR_OUTPUT))
1294       rclass = (enum reg_class) preferred_class;
1295   }
1296 
1297   /* Make sure we use a class that can handle the actual pseudo
1298      inside any subreg.  For example, on the 386, QImode regs
1299      can appear within SImode subregs.  Although GENERAL_REGS
1300      can handle SImode, QImode needs a smaller class.  */
1301 #ifdef LIMIT_RELOAD_CLASS
1302   if (in_subreg_loc)
1303     rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1304   else if (in != 0 && GET_CODE (in) == SUBREG)
1305     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1306 
1307   if (out_subreg_loc)
1308     rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1309   if (out != 0 && GET_CODE (out) == SUBREG)
1310     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1311 #endif
1312 
1313   /* Verify that this class is at least possible for the mode that
1314      is specified.  */
1315   if (this_insn_is_asm)
1316     {
1317       enum machine_mode mode;
1318       if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1319 	mode = inmode;
1320       else
1321 	mode = outmode;
1322       if (mode == VOIDmode)
1323 	{
1324 	  error_for_asm (this_insn, "cannot reload integer constant "
1325 			 "operand in %<asm%>");
1326 	  mode = word_mode;
1327 	  if (in != 0)
1328 	    inmode = word_mode;
1329 	  if (out != 0)
1330 	    outmode = word_mode;
1331 	}
1332       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1333 	if (HARD_REGNO_MODE_OK (i, mode)
1334 	    && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1335 	  break;
1336       if (i == FIRST_PSEUDO_REGISTER)
1337 	{
1338 	  error_for_asm (this_insn, "impossible register constraint "
1339 			 "in %<asm%>");
1340 	  /* Avoid further trouble with this insn.  */
1341 	  PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1342 	  /* We used to continue here setting class to ALL_REGS, but it triggers
1343 	     sanity check on i386 for:
1344 	     void foo(long double d)
1345 	     {
1346 	       asm("" :: "a" (d));
1347 	     }
1348 	     Returning zero here ought to be safe as we take care in
1349 	     find_reloads to not process the reloads when instruction was
1350 	     replaced by USE.  */
1351 
1352 	  return 0;
1353 	}
1354     }
1355 
1356   /* Optional output reloads are always OK even if we have no register class,
1357      since the function of these reloads is only to have spill_reg_store etc.
1358      set, so that the storing insn can be deleted later.  */
1359   gcc_assert (rclass != NO_REGS
1360 	      || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1361 
1362   i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1363 
1364   if (i == n_reloads)
1365     {
1366       /* See if we need a secondary reload register to move between CLASS
1367 	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1368 	 needed for each of them if so.  */
1369 
1370       if (in != 0)
1371 	secondary_in_reload
1372 	  = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1373 				   &secondary_in_icode, NULL);
1374       if (out != 0 && GET_CODE (out) != SCRATCH)
1375 	secondary_out_reload
1376 	  = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1377 				   type, &secondary_out_icode, NULL);
1378 
1379       /* We found no existing reload suitable for re-use.
1380 	 So add an additional reload.  */
1381 
1382 #ifdef SECONDARY_MEMORY_NEEDED
1383       if (subreg_in_class == NO_REGS
1384 	  && in != 0
1385 	  && (REG_P (in)
1386 	      || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1387 	  && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1388 	subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1389       /* If a memory location is needed for the copy, make one.  */
1390       if (subreg_in_class != NO_REGS
1391 	  && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1392 	get_secondary_mem (in, inmode, opnum, type);
1393 #endif
1394 
1395       i = n_reloads;
1396       rld[i].in = in;
1397       rld[i].out = out;
1398       rld[i].rclass = rclass;
1399       rld[i].inmode = inmode;
1400       rld[i].outmode = outmode;
1401       rld[i].reg_rtx = 0;
1402       rld[i].optional = optional;
1403       rld[i].inc = 0;
1404       rld[i].nocombine = 0;
1405       rld[i].in_reg = inloc ? *inloc : 0;
1406       rld[i].out_reg = outloc ? *outloc : 0;
1407       rld[i].opnum = opnum;
1408       rld[i].when_needed = type;
1409       rld[i].secondary_in_reload = secondary_in_reload;
1410       rld[i].secondary_out_reload = secondary_out_reload;
1411       rld[i].secondary_in_icode = secondary_in_icode;
1412       rld[i].secondary_out_icode = secondary_out_icode;
1413       rld[i].secondary_p = 0;
1414 
1415       n_reloads++;
1416 
1417 #ifdef SECONDARY_MEMORY_NEEDED
1418       if (out != 0
1419           && (REG_P (out)
1420 	      || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1421 	  && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1422 	  && SECONDARY_MEMORY_NEEDED (rclass,
1423 				      REGNO_REG_CLASS (reg_or_subregno (out)),
1424 				      outmode))
1425 	get_secondary_mem (out, outmode, opnum, type);
1426 #endif
1427     }
1428   else
1429     {
1430       /* We are reusing an existing reload,
1431 	 but we may have additional information for it.
1432 	 For example, we may now have both IN and OUT
1433 	 while the old one may have just one of them.  */
1434 
1435       /* The modes can be different.  If they are, we want to reload in
1436 	 the larger mode, so that the value is valid for both modes.  */
1437       if (inmode != VOIDmode
1438 	  && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1439 	rld[i].inmode = inmode;
1440       if (outmode != VOIDmode
1441 	  && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1442 	rld[i].outmode = outmode;
1443       if (in != 0)
1444 	{
1445 	  rtx in_reg = inloc ? *inloc : 0;
1446 	  /* If we merge reloads for two distinct rtl expressions that
1447 	     are identical in content, there might be duplicate address
1448 	     reloads.  Remove the extra set now, so that if we later find
1449 	     that we can inherit this reload, we can get rid of the
1450 	     address reloads altogether.
1451 
1452 	     Do not do this if both reloads are optional since the result
1453 	     would be an optional reload which could potentially leave
1454 	     unresolved address replacements.
1455 
1456 	     It is not sufficient to call transfer_replacements since
1457 	     choose_reload_regs will remove the replacements for address
1458 	     reloads of inherited reloads which results in the same
1459 	     problem.  */
1460 	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1461 	      && ! (rld[i].optional && optional))
1462 	    {
1463 	      /* We must keep the address reload with the lower operand
1464 		 number alive.  */
1465 	      if (opnum > rld[i].opnum)
1466 		{
1467 		  remove_address_replacements (in);
1468 		  in = rld[i].in;
1469 		  in_reg = rld[i].in_reg;
1470 		}
1471 	      else
1472 		remove_address_replacements (rld[i].in);
1473 	    }
1474 	  /* When emitting reloads we don't necessarily look at the in-
1475 	     and outmode, but also directly at the operands (in and out).
1476 	     So we can't simply overwrite them with whatever we have found
1477 	     for this (to-be-merged) reload, we have to "merge" that too.
1478 	     Reusing another reload already verified that we deal with the
1479 	     same operands, just possibly in different modes.  So we
1480 	     overwrite the operands only when the new mode is larger.
1481 	     See also PR33613.  */
1482 	  if (!rld[i].in
1483 	      || GET_MODE_SIZE (GET_MODE (in))
1484 	           > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1485 	    rld[i].in = in;
1486 	  if (!rld[i].in_reg
1487 	      || (in_reg
1488 		  && GET_MODE_SIZE (GET_MODE (in_reg))
1489 	             > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1490 	    rld[i].in_reg = in_reg;
1491 	}
1492       if (out != 0)
1493 	{
1494 	  if (!rld[i].out
1495 	      || (out
1496 		  && GET_MODE_SIZE (GET_MODE (out))
1497 	             > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1498 	    rld[i].out = out;
1499 	  if (outloc
1500 	      && (!rld[i].out_reg
1501 		  || GET_MODE_SIZE (GET_MODE (*outloc))
1502 		     > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1503 	    rld[i].out_reg = *outloc;
1504 	}
1505       if (reg_class_subset_p (rclass, rld[i].rclass))
1506 	rld[i].rclass = rclass;
1507       rld[i].optional &= optional;
1508       if (MERGE_TO_OTHER (type, rld[i].when_needed,
1509 			  opnum, rld[i].opnum))
1510 	rld[i].when_needed = RELOAD_OTHER;
1511       rld[i].opnum = MIN (rld[i].opnum, opnum);
1512     }
1513 
1514   /* If the ostensible rtx being reloaded differs from the rtx found
1515      in the location to substitute, this reload is not safe to combine
1516      because we cannot reliably tell whether it appears in the insn.  */
1517 
1518   if (in != 0 && in != *inloc)
1519     rld[i].nocombine = 1;
1520 
1521 #if 0
1522   /* This was replaced by changes in find_reloads_address_1 and the new
1523      function inc_for_reload, which go with a new meaning of reload_inc.  */
1524 
1525   /* If this is an IN/OUT reload in an insn that sets the CC,
1526      it must be for an autoincrement.  It doesn't work to store
1527      the incremented value after the insn because that would clobber the CC.
1528      So we must do the increment of the value reloaded from,
1529      increment it, store it back, then decrement again.  */
1530   if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1531     {
1532       out = 0;
1533       rld[i].out = 0;
1534       rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1535       /* If we did not find a nonzero amount-to-increment-by,
1536 	 that contradicts the belief that IN is being incremented
1537 	 in an address in this insn.  */
1538       gcc_assert (rld[i].inc != 0);
1539     }
1540 #endif
1541 
1542   /* If we will replace IN and OUT with the reload-reg,
1543      record where they are located so that substitution need
1544      not do a tree walk.  */
1545 
1546   if (replace_reloads)
1547     {
1548       if (inloc != 0)
1549 	{
1550 	  struct replacement *r = &replacements[n_replacements++];
1551 	  r->what = i;
1552 	  r->where = inloc;
1553 	  r->mode = inmode;
1554 	}
1555       if (outloc != 0 && outloc != inloc)
1556 	{
1557 	  struct replacement *r = &replacements[n_replacements++];
1558 	  r->what = i;
1559 	  r->where = outloc;
1560 	  r->mode = outmode;
1561 	}
1562     }
1563 
1564   /* If this reload is just being introduced and it has both
1565      an incoming quantity and an outgoing quantity that are
1566      supposed to be made to match, see if either one of the two
1567      can serve as the place to reload into.
1568 
1569      If one of them is acceptable, set rld[i].reg_rtx
1570      to that one.  */
1571 
1572   if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1573     {
1574       rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1575 					  inmode, outmode,
1576 					  rld[i].rclass, i,
1577 					  earlyclobber_operand_p (out));
1578 
1579       /* If the outgoing register already contains the same value
1580 	 as the incoming one, we can dispense with loading it.
1581 	 The easiest way to tell the caller that is to give a phony
1582 	 value for the incoming operand (same as outgoing one).  */
1583       if (rld[i].reg_rtx == out
1584 	  && (REG_P (in) || CONSTANT_P (in))
1585 	  && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1586 				  static_reload_reg_p, i, inmode))
1587 	rld[i].in = out;
1588     }
1589 
1590   /* If this is an input reload and the operand contains a register that
1591      dies in this insn and is used nowhere else, see if it is the right class
1592      to be used for this reload.  Use it if so.  (This occurs most commonly
1593      in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1594      this if it is also an output reload that mentions the register unless
1595      the output is a SUBREG that clobbers an entire register.
1596 
1597      Note that the operand might be one of the spill regs, if it is a
1598      pseudo reg and we are in a block where spilling has not taken place.
1599      But if there is no spilling in this block, that is OK.
1600      An explicitly used hard reg cannot be a spill reg.  */
1601 
1602   if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1603     {
1604       rtx note;
1605       int regno;
1606       enum machine_mode rel_mode = inmode;
1607 
1608       if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1609 	rel_mode = outmode;
1610 
1611       for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1612 	if (REG_NOTE_KIND (note) == REG_DEAD
1613 	    && REG_P (XEXP (note, 0))
1614 	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1615 	    && reg_mentioned_p (XEXP (note, 0), in)
1616 	    /* Check that a former pseudo is valid; see find_dummy_reload.  */
1617 	    && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1618 		|| (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1619 				    ORIGINAL_REGNO (XEXP (note, 0)))
1620 		    && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1621 	    && ! refers_to_regno_for_reload_p (regno,
1622 					       end_hard_regno (rel_mode,
1623 							       regno),
1624 					       PATTERN (this_insn), inloc)
1625 	    /* If this is also an output reload, IN cannot be used as
1626 	       the reload register if it is set in this insn unless IN
1627 	       is also OUT.  */
1628 	    && (out == 0 || in == out
1629 		|| ! hard_reg_set_here_p (regno,
1630 					  end_hard_regno (rel_mode, regno),
1631 					  PATTERN (this_insn)))
1632 	    /* ??? Why is this code so different from the previous?
1633 	       Is there any simple coherent way to describe the two together?
1634 	       What's going on here.  */
1635 	    && (in != out
1636 		|| (GET_CODE (in) == SUBREG
1637 		    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1638 			 / UNITS_PER_WORD)
1639 			== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1640 			     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1641 	    /* Make sure the operand fits in the reg that dies.  */
1642 	    && (GET_MODE_SIZE (rel_mode)
1643 		<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1644 	    && HARD_REGNO_MODE_OK (regno, inmode)
1645 	    && HARD_REGNO_MODE_OK (regno, outmode))
1646 	  {
1647 	    unsigned int offs;
1648 	    unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1649 				      hard_regno_nregs[regno][outmode]);
1650 
1651 	    for (offs = 0; offs < nregs; offs++)
1652 	      if (fixed_regs[regno + offs]
1653 		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1654 					  regno + offs))
1655 		break;
1656 
1657 	    if (offs == nregs
1658 		&& (! (refers_to_regno_for_reload_p
1659 		       (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1660 		    || can_reload_into (in, regno, inmode)))
1661 	      {
1662 		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1663 		break;
1664 	      }
1665 	  }
1666     }
1667 
1668   if (out)
1669     output_reloadnum = i;
1670 
1671   return i;
1672 }
1673 
1674 /* Record an additional place we must replace a value
1675    for which we have already recorded a reload.
1676    RELOADNUM is the value returned by push_reload
1677    when the reload was recorded.
1678    This is used in insn patterns that use match_dup.  */
1679 
1680 static void
push_replacement(rtx * loc,int reloadnum,enum machine_mode mode)1681 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1682 {
1683   if (replace_reloads)
1684     {
1685       struct replacement *r = &replacements[n_replacements++];
1686       r->what = reloadnum;
1687       r->where = loc;
1688       r->mode = mode;
1689     }
1690 }
1691 
1692 /* Duplicate any replacement we have recorded to apply at
1693    location ORIG_LOC to also be performed at DUP_LOC.
1694    This is used in insn patterns that use match_dup.  */
1695 
1696 static void
dup_replacements(rtx * dup_loc,rtx * orig_loc)1697 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1698 {
1699   int i, n = n_replacements;
1700 
1701   for (i = 0; i < n; i++)
1702     {
1703       struct replacement *r = &replacements[i];
1704       if (r->where == orig_loc)
1705 	push_replacement (dup_loc, r->what, r->mode);
1706     }
1707 }
1708 
1709 /* Transfer all replacements that used to be in reload FROM to be in
1710    reload TO.  */
1711 
1712 void
transfer_replacements(int to,int from)1713 transfer_replacements (int to, int from)
1714 {
1715   int i;
1716 
1717   for (i = 0; i < n_replacements; i++)
1718     if (replacements[i].what == from)
1719       replacements[i].what = to;
1720 }
1721 
1722 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1723    or a subpart of it.  If we have any replacements registered for IN_RTX,
1724    cancel the reloads that were supposed to load them.
1725    Return nonzero if we canceled any reloads.  */
1726 int
remove_address_replacements(rtx in_rtx)1727 remove_address_replacements (rtx in_rtx)
1728 {
1729   int i, j;
1730   char reload_flags[MAX_RELOADS];
1731   int something_changed = 0;
1732 
1733   memset (reload_flags, 0, sizeof reload_flags);
1734   for (i = 0, j = 0; i < n_replacements; i++)
1735     {
1736       if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1737 	reload_flags[replacements[i].what] |= 1;
1738       else
1739 	{
1740 	  replacements[j++] = replacements[i];
1741 	  reload_flags[replacements[i].what] |= 2;
1742 	}
1743     }
1744   /* Note that the following store must be done before the recursive calls.  */
1745   n_replacements = j;
1746 
1747   for (i = n_reloads - 1; i >= 0; i--)
1748     {
1749       if (reload_flags[i] == 1)
1750 	{
1751 	  deallocate_reload_reg (i);
1752 	  remove_address_replacements (rld[i].in);
1753 	  rld[i].in = 0;
1754 	  something_changed = 1;
1755 	}
1756     }
1757   return something_changed;
1758 }
1759 
1760 /* If there is only one output reload, and it is not for an earlyclobber
1761    operand, try to combine it with a (logically unrelated) input reload
1762    to reduce the number of reload registers needed.
1763 
1764    This is safe if the input reload does not appear in
1765    the value being output-reloaded, because this implies
1766    it is not needed any more once the original insn completes.
1767 
1768    If that doesn't work, see we can use any of the registers that
1769    die in this insn as a reload register.  We can if it is of the right
1770    class and does not appear in the value being output-reloaded.  */
1771 
1772 static void
combine_reloads(void)1773 combine_reloads (void)
1774 {
1775   int i, regno;
1776   int output_reload = -1;
1777   int secondary_out = -1;
1778   rtx note;
1779 
1780   /* Find the output reload; return unless there is exactly one
1781      and that one is mandatory.  */
1782 
1783   for (i = 0; i < n_reloads; i++)
1784     if (rld[i].out != 0)
1785       {
1786 	if (output_reload >= 0)
1787 	  return;
1788 	output_reload = i;
1789       }
1790 
1791   if (output_reload < 0 || rld[output_reload].optional)
1792     return;
1793 
1794   /* An input-output reload isn't combinable.  */
1795 
1796   if (rld[output_reload].in != 0)
1797     return;
1798 
1799   /* If this reload is for an earlyclobber operand, we can't do anything.  */
1800   if (earlyclobber_operand_p (rld[output_reload].out))
1801     return;
1802 
1803   /* If there is a reload for part of the address of this operand, we would
1804      need to change it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1805      its life to the point where doing this combine would not lower the
1806      number of spill registers needed.  */
1807   for (i = 0; i < n_reloads; i++)
1808     if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1809 	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1810 	&& rld[i].opnum == rld[output_reload].opnum)
1811       return;
1812 
1813   /* Check each input reload; can we combine it?  */
1814 
1815   for (i = 0; i < n_reloads; i++)
1816     if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1817 	/* Life span of this reload must not extend past main insn.  */
1818 	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1819 	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1820 	&& rld[i].when_needed != RELOAD_OTHER
1821 	&& (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1822 	    == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1823 				       [(int) rld[output_reload].outmode])
1824 	&& rld[i].inc == 0
1825 	&& rld[i].reg_rtx == 0
1826 #ifdef SECONDARY_MEMORY_NEEDED
1827 	/* Don't combine two reloads with different secondary
1828 	   memory locations.  */
1829 	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1830 	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1831 	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1832 			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1833 #endif
1834 	&& (targetm.small_register_classes_for_mode_p (VOIDmode)
1835 	    ? (rld[i].rclass == rld[output_reload].rclass)
1836 	    : (reg_class_subset_p (rld[i].rclass,
1837 				   rld[output_reload].rclass)
1838 	       || reg_class_subset_p (rld[output_reload].rclass,
1839 				      rld[i].rclass)))
1840 	&& (MATCHES (rld[i].in, rld[output_reload].out)
1841 	    /* Args reversed because the first arg seems to be
1842 	       the one that we imagine being modified
1843 	       while the second is the one that might be affected.  */
1844 	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1845 						      rld[i].in)
1846 		/* However, if the input is a register that appears inside
1847 		   the output, then we also can't share.
1848 		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1849 		   If the same reload reg is used for both reg 69 and the
1850 		   result to be stored in memory, then that result
1851 		   will clobber the address of the memory ref.  */
1852 		&& ! (REG_P (rld[i].in)
1853 		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1854 							     rld[output_reload].out))))
1855 	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1856 					 rld[i].when_needed != RELOAD_FOR_INPUT)
1857 	&& (reg_class_size[(int) rld[i].rclass]
1858 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
1859 	/* We will allow making things slightly worse by combining an
1860 	   input and an output, but no worse than that.  */
1861 	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1862 	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1863       {
1864 	int j;
1865 
1866 	/* We have found a reload to combine with!  */
1867 	rld[i].out = rld[output_reload].out;
1868 	rld[i].out_reg = rld[output_reload].out_reg;
1869 	rld[i].outmode = rld[output_reload].outmode;
1870 	/* Mark the old output reload as inoperative.  */
1871 	rld[output_reload].out = 0;
1872 	/* The combined reload is needed for the entire insn.  */
1873 	rld[i].when_needed = RELOAD_OTHER;
1874 	/* If the output reload had a secondary reload, copy it.  */
1875 	if (rld[output_reload].secondary_out_reload != -1)
1876 	  {
1877 	    rld[i].secondary_out_reload
1878 	      = rld[output_reload].secondary_out_reload;
1879 	    rld[i].secondary_out_icode
1880 	      = rld[output_reload].secondary_out_icode;
1881 	  }
1882 
1883 #ifdef SECONDARY_MEMORY_NEEDED
1884 	/* Copy any secondary MEM.  */
1885 	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1886 	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1887 	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1888 #endif
1889 	/* If required, minimize the register class.  */
1890 	if (reg_class_subset_p (rld[output_reload].rclass,
1891 				rld[i].rclass))
1892 	  rld[i].rclass = rld[output_reload].rclass;
1893 
1894 	/* Transfer all replacements from the old reload to the combined.  */
1895 	for (j = 0; j < n_replacements; j++)
1896 	  if (replacements[j].what == output_reload)
1897 	    replacements[j].what = i;
1898 
1899 	return;
1900       }
1901 
1902   /* If this insn has only one operand that is modified or written (assumed
1903      to be the first),  it must be the one corresponding to this reload.  It
1904      is safe to use anything that dies in this insn for that output provided
1905      that it does not occur in the output (we already know it isn't an
1906      earlyclobber.  If this is an asm insn, give up.  */
1907 
1908   if (INSN_CODE (this_insn) == -1)
1909     return;
1910 
1911   for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1912     if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1913 	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1914       return;
1915 
1916   /* See if some hard register that dies in this insn and is not used in
1917      the output is the right class.  Only works if the register we pick
1918      up can fully hold our output reload.  */
1919   for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1920     if (REG_NOTE_KIND (note) == REG_DEAD
1921 	&& REG_P (XEXP (note, 0))
1922 	&& !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1923 						rld[output_reload].out)
1924 	&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1925 	&& HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1926 	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1927 			      regno)
1928 	&& (hard_regno_nregs[regno][rld[output_reload].outmode]
1929 	    <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1930 	/* Ensure that a secondary or tertiary reload for this output
1931 	   won't want this register.  */
1932 	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1933 	    || (!(TEST_HARD_REG_BIT
1934 		  (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1935 		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1936 		    || !(TEST_HARD_REG_BIT
1937 			 (reg_class_contents[(int) rld[secondary_out].rclass],
1938 			  regno)))))
1939 	&& !fixed_regs[regno]
1940 	/* Check that a former pseudo is valid; see find_dummy_reload.  */
1941 	&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1942 	    || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1943 			       ORIGINAL_REGNO (XEXP (note, 0)))
1944 		&& hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1945       {
1946 	rld[output_reload].reg_rtx
1947 	  = gen_rtx_REG (rld[output_reload].outmode, regno);
1948 	return;
1949       }
1950 }
1951 
1952 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1953    See if one of IN and OUT is a register that may be used;
1954    this is desirable since a spill-register won't be needed.
1955    If so, return the register rtx that proves acceptable.
1956 
1957    INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1958    RCLASS is the register class required for the reload.
1959 
1960    If FOR_REAL is >= 0, it is the number of the reload,
1961    and in some cases when it can be discovered that OUT doesn't need
1962    to be computed, clear out rld[FOR_REAL].out.
1963 
1964    If FOR_REAL is -1, this should not be done, because this call
1965    is just to see if a register can be found, not to find and install it.
1966 
1967    EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
1968    puts an additional constraint on being able to use IN for OUT since
1969    IN must not appear elsewhere in the insn (it is assumed that IN itself
1970    is safe from the earlyclobber).  */
1971 
1972 static rtx
find_dummy_reload(rtx real_in,rtx real_out,rtx * inloc,rtx * outloc,enum machine_mode inmode,enum machine_mode outmode,reg_class_t rclass,int for_real,int earlyclobber)1973 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1974 		   enum machine_mode inmode, enum machine_mode outmode,
1975 		   reg_class_t rclass, int for_real, int earlyclobber)
1976 {
1977   rtx in = real_in;
1978   rtx out = real_out;
1979   int in_offset = 0;
1980   int out_offset = 0;
1981   rtx value = 0;
1982 
1983   /* If operands exceed a word, we can't use either of them
1984      unless they have the same size.  */
1985   if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1986       && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1987 	  || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1988     return 0;
1989 
1990   /* Note that {in,out}_offset are needed only when 'in' or 'out'
1991      respectively refers to a hard register.  */
1992 
1993   /* Find the inside of any subregs.  */
1994   while (GET_CODE (out) == SUBREG)
1995     {
1996       if (REG_P (SUBREG_REG (out))
1997 	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1998 	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1999 					   GET_MODE (SUBREG_REG (out)),
2000 					   SUBREG_BYTE (out),
2001 					   GET_MODE (out));
2002       out = SUBREG_REG (out);
2003     }
2004   while (GET_CODE (in) == SUBREG)
2005     {
2006       if (REG_P (SUBREG_REG (in))
2007 	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2008 	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2009 					  GET_MODE (SUBREG_REG (in)),
2010 					  SUBREG_BYTE (in),
2011 					  GET_MODE (in));
2012       in = SUBREG_REG (in);
2013     }
2014 
2015   /* Narrow down the reg class, the same way push_reload will;
2016      otherwise we might find a dummy now, but push_reload won't.  */
2017   {
2018     reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2019     if (preferred_class != NO_REGS)
2020       rclass = (enum reg_class) preferred_class;
2021   }
2022 
2023   /* See if OUT will do.  */
2024   if (REG_P (out)
2025       && REGNO (out) < FIRST_PSEUDO_REGISTER)
2026     {
2027       unsigned int regno = REGNO (out) + out_offset;
2028       unsigned int nwords = hard_regno_nregs[regno][outmode];
2029       rtx saved_rtx;
2030 
2031       /* When we consider whether the insn uses OUT,
2032 	 ignore references within IN.  They don't prevent us
2033 	 from copying IN into OUT, because those refs would
2034 	 move into the insn that reloads IN.
2035 
2036 	 However, we only ignore IN in its role as this reload.
2037 	 If the insn uses IN elsewhere and it contains OUT,
2038 	 that counts.  We can't be sure it's the "same" operand
2039 	 so it might not go through this reload.
2040 
2041          We also need to avoid using OUT if it, or part of it, is a
2042          fixed register.  Modifying such registers, even transiently,
2043          may have undefined effects on the machine, such as modifying
2044          the stack pointer.  */
2045       saved_rtx = *inloc;
2046       *inloc = const0_rtx;
2047 
2048       if (regno < FIRST_PSEUDO_REGISTER
2049 	  && HARD_REGNO_MODE_OK (regno, outmode)
2050 	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2051 					     PATTERN (this_insn), outloc))
2052 	{
2053 	  unsigned int i;
2054 
2055 	  for (i = 0; i < nwords; i++)
2056 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2057 				     regno + i)
2058 		|| fixed_regs[regno + i])
2059 	      break;
2060 
2061 	  if (i == nwords)
2062 	    {
2063 	      if (REG_P (real_out))
2064 		value = real_out;
2065 	      else
2066 		value = gen_rtx_REG (outmode, regno);
2067 	    }
2068 	}
2069 
2070       *inloc = saved_rtx;
2071     }
2072 
2073   /* Consider using IN if OUT was not acceptable
2074      or if OUT dies in this insn (like the quotient in a divmod insn).
2075      We can't use IN unless it is dies in this insn,
2076      which means we must know accurately which hard regs are live.
2077      Also, the result can't go in IN if IN is used within OUT,
2078      or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
2079   if (hard_regs_live_known
2080       && REG_P (in)
2081       && REGNO (in) < FIRST_PSEUDO_REGISTER
2082       && (value == 0
2083 	  || find_reg_note (this_insn, REG_UNUSED, real_out))
2084       && find_reg_note (this_insn, REG_DEAD, real_in)
2085       && !fixed_regs[REGNO (in)]
2086       && HARD_REGNO_MODE_OK (REGNO (in),
2087 			     /* The only case where out and real_out might
2088 				have different modes is where real_out
2089 				is a subreg, and in that case, out
2090 				has a real mode.  */
2091 			     (GET_MODE (out) != VOIDmode
2092 			      ? GET_MODE (out) : outmode))
2093       && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2094 	  /* However only do this if we can be sure that this input
2095 	     operand doesn't correspond with an uninitialized pseudo.
2096 	     global can assign some hardreg to it that is the same as
2097 	     the one assigned to a different, also live pseudo (as it
2098 	     can ignore the conflict).  We must never introduce writes
2099 	     to such hardregs, as they would clobber the other live
2100 	     pseudo.  See PR 20973.  */
2101 	  || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2102 			     ORIGINAL_REGNO (in))
2103 	      /* Similarly, only do this if we can be sure that the death
2104 		 note is still valid.  global can assign some hardreg to
2105 		 the pseudo referenced in the note and simultaneously a
2106 		 subword of this hardreg to a different, also live pseudo,
2107 		 because only another subword of the hardreg is actually
2108 		 used in the insn.  This cannot happen if the pseudo has
2109 		 been assigned exactly one hardreg.  See PR 33732.  */
2110 	      && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2111     {
2112       unsigned int regno = REGNO (in) + in_offset;
2113       unsigned int nwords = hard_regno_nregs[regno][inmode];
2114 
2115       if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2116 	  && ! hard_reg_set_here_p (regno, regno + nwords,
2117 				    PATTERN (this_insn))
2118 	  && (! earlyclobber
2119 	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2120 						 PATTERN (this_insn), inloc)))
2121 	{
2122 	  unsigned int i;
2123 
2124 	  for (i = 0; i < nwords; i++)
2125 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2126 				     regno + i))
2127 	      break;
2128 
2129 	  if (i == nwords)
2130 	    {
2131 	      /* If we were going to use OUT as the reload reg
2132 		 and changed our mind, it means OUT is a dummy that
2133 		 dies here.  So don't bother copying value to it.  */
2134 	      if (for_real >= 0 && value == real_out)
2135 		rld[for_real].out = 0;
2136 	      if (REG_P (real_in))
2137 		value = real_in;
2138 	      else
2139 		value = gen_rtx_REG (inmode, regno);
2140 	    }
2141 	}
2142     }
2143 
2144   return value;
2145 }
2146 
2147 /* This page contains subroutines used mainly for determining
2148    whether the IN or an OUT of a reload can serve as the
2149    reload register.  */
2150 
2151 /* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
2152 
2153 int
earlyclobber_operand_p(rtx x)2154 earlyclobber_operand_p (rtx x)
2155 {
2156   int i;
2157 
2158   for (i = 0; i < n_earlyclobbers; i++)
2159     if (reload_earlyclobbers[i] == x)
2160       return 1;
2161 
2162   return 0;
2163 }
2164 
2165 /* Return 1 if expression X alters a hard reg in the range
2166    from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2167    either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2168    X should be the body of an instruction.  */
2169 
2170 static int
hard_reg_set_here_p(unsigned int beg_regno,unsigned int end_regno,rtx x)2171 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2172 {
2173   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2174     {
2175       rtx op0 = SET_DEST (x);
2176 
2177       while (GET_CODE (op0) == SUBREG)
2178 	op0 = SUBREG_REG (op0);
2179       if (REG_P (op0))
2180 	{
2181 	  unsigned int r = REGNO (op0);
2182 
2183 	  /* See if this reg overlaps range under consideration.  */
2184 	  if (r < end_regno
2185 	      && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2186 	    return 1;
2187 	}
2188     }
2189   else if (GET_CODE (x) == PARALLEL)
2190     {
2191       int i = XVECLEN (x, 0) - 1;
2192 
2193       for (; i >= 0; i--)
2194 	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2195 	  return 1;
2196     }
2197 
2198   return 0;
2199 }
2200 
2201 /* Return 1 if ADDR is a valid memory address for mode MODE
2202    in address space AS, and check that each pseudo reg has the
2203    proper kind of hard reg.  */
2204 
2205 int
strict_memory_address_addr_space_p(enum machine_mode mode ATTRIBUTE_UNUSED,rtx addr,addr_space_t as)2206 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2207 				    rtx addr, addr_space_t as)
2208 {
2209 #ifdef GO_IF_LEGITIMATE_ADDRESS
2210   gcc_assert (ADDR_SPACE_GENERIC_P (as));
2211   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2212   return 0;
2213 
2214  win:
2215   return 1;
2216 #else
2217   return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2218 #endif
2219 }
2220 
2221 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2222    if they are the same hard reg, and has special hacks for
2223    autoincrement and autodecrement.
2224    This is specifically intended for find_reloads to use
2225    in determining whether two operands match.
2226    X is the operand whose number is the lower of the two.
2227 
2228    The value is 2 if Y contains a pre-increment that matches
2229    a non-incrementing address in X.  */
2230 
2231 /* ??? To be completely correct, we should arrange to pass
2232    for X the output operand and for Y the input operand.
2233    For now, we assume that the output operand has the lower number
2234    because that is natural in (SET output (... input ...)).  */
2235 
2236 int
operands_match_p(rtx x,rtx y)2237 operands_match_p (rtx x, rtx y)
2238 {
2239   int i;
2240   RTX_CODE code = GET_CODE (x);
2241   const char *fmt;
2242   int success_2;
2243 
2244   if (x == y)
2245     return 1;
2246   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2247       && (REG_P (y) || (GET_CODE (y) == SUBREG
2248 				  && REG_P (SUBREG_REG (y)))))
2249     {
2250       int j;
2251 
2252       if (code == SUBREG)
2253 	{
2254 	  i = REGNO (SUBREG_REG (x));
2255 	  if (i >= FIRST_PSEUDO_REGISTER)
2256 	    goto slow;
2257 	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2258 				    GET_MODE (SUBREG_REG (x)),
2259 				    SUBREG_BYTE (x),
2260 				    GET_MODE (x));
2261 	}
2262       else
2263 	i = REGNO (x);
2264 
2265       if (GET_CODE (y) == SUBREG)
2266 	{
2267 	  j = REGNO (SUBREG_REG (y));
2268 	  if (j >= FIRST_PSEUDO_REGISTER)
2269 	    goto slow;
2270 	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2271 				    GET_MODE (SUBREG_REG (y)),
2272 				    SUBREG_BYTE (y),
2273 				    GET_MODE (y));
2274 	}
2275       else
2276 	j = REGNO (y);
2277 
2278       /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2279 	 multiple hard register group of scalar integer registers, so that
2280 	 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2281 	 register.  */
2282       if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2283 	  && SCALAR_INT_MODE_P (GET_MODE (x))
2284 	  && i < FIRST_PSEUDO_REGISTER)
2285 	i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2286       if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2287 	  && SCALAR_INT_MODE_P (GET_MODE (y))
2288 	  && j < FIRST_PSEUDO_REGISTER)
2289 	j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2290 
2291       return i == j;
2292     }
2293   /* If two operands must match, because they are really a single
2294      operand of an assembler insn, then two postincrements are invalid
2295      because the assembler insn would increment only once.
2296      On the other hand, a postincrement matches ordinary indexing
2297      if the postincrement is the output operand.  */
2298   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2299     return operands_match_p (XEXP (x, 0), y);
2300   /* Two preincrements are invalid
2301      because the assembler insn would increment only once.
2302      On the other hand, a preincrement matches ordinary indexing
2303      if the preincrement is the input operand.
2304      In this case, return 2, since some callers need to do special
2305      things when this happens.  */
2306   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2307       || GET_CODE (y) == PRE_MODIFY)
2308     return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2309 
2310  slow:
2311 
2312   /* Now we have disposed of all the cases in which different rtx codes
2313      can match.  */
2314   if (code != GET_CODE (y))
2315     return 0;
2316 
2317   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2318   if (GET_MODE (x) != GET_MODE (y))
2319     return 0;
2320 
2321   /* MEMs referring to different address space are not equivalent.  */
2322   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2323     return 0;
2324 
2325   switch (code)
2326     {
2327     CASE_CONST_UNIQUE:
2328       return 0;
2329 
2330     case LABEL_REF:
2331       return XEXP (x, 0) == XEXP (y, 0);
2332     case SYMBOL_REF:
2333       return XSTR (x, 0) == XSTR (y, 0);
2334 
2335     default:
2336       break;
2337     }
2338 
2339   /* Compare the elements.  If any pair of corresponding elements
2340      fail to match, return 0 for the whole things.  */
2341 
2342   success_2 = 0;
2343   fmt = GET_RTX_FORMAT (code);
2344   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2345     {
2346       int val, j;
2347       switch (fmt[i])
2348 	{
2349 	case 'w':
2350 	  if (XWINT (x, i) != XWINT (y, i))
2351 	    return 0;
2352 	  break;
2353 
2354 	case 'i':
2355 	  if (XINT (x, i) != XINT (y, i))
2356 	    return 0;
2357 	  break;
2358 
2359 	case 'e':
2360 	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2361 	  if (val == 0)
2362 	    return 0;
2363 	  /* If any subexpression returns 2,
2364 	     we should return 2 if we are successful.  */
2365 	  if (val == 2)
2366 	    success_2 = 1;
2367 	  break;
2368 
2369 	case '0':
2370 	  break;
2371 
2372 	case 'E':
2373 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2374 	    return 0;
2375 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2376 	    {
2377 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2378 	      if (val == 0)
2379 		return 0;
2380 	      if (val == 2)
2381 		success_2 = 1;
2382 	    }
2383 	  break;
2384 
2385 	  /* It is believed that rtx's at this level will never
2386 	     contain anything but integers and other rtx's,
2387 	     except for within LABEL_REFs and SYMBOL_REFs.  */
2388 	default:
2389 	  gcc_unreachable ();
2390 	}
2391     }
2392   return 1 + success_2;
2393 }
2394 
2395 /* Describe the range of registers or memory referenced by X.
2396    If X is a register, set REG_FLAG and put the first register
2397    number into START and the last plus one into END.
2398    If X is a memory reference, put a base address into BASE
2399    and a range of integer offsets into START and END.
2400    If X is pushing on the stack, we can assume it causes no trouble,
2401    so we set the SAFE field.  */
2402 
2403 static struct decomposition
decompose(rtx x)2404 decompose (rtx x)
2405 {
2406   struct decomposition val;
2407   int all_const = 0;
2408 
2409   memset (&val, 0, sizeof (val));
2410 
2411   switch (GET_CODE (x))
2412     {
2413     case MEM:
2414       {
2415 	rtx base = NULL_RTX, offset = 0;
2416 	rtx addr = XEXP (x, 0);
2417 
2418 	if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2419 	    || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2420 	  {
2421 	    val.base = XEXP (addr, 0);
2422 	    val.start = -GET_MODE_SIZE (GET_MODE (x));
2423 	    val.end = GET_MODE_SIZE (GET_MODE (x));
2424 	    val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2425 	    return val;
2426 	  }
2427 
2428 	if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2429 	  {
2430 	    if (GET_CODE (XEXP (addr, 1)) == PLUS
2431 		&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2432 		&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2433 	      {
2434 		val.base  = XEXP (addr, 0);
2435 		val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2436 		val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2437 		val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2438 		return val;
2439 	      }
2440 	  }
2441 
2442 	if (GET_CODE (addr) == CONST)
2443 	  {
2444 	    addr = XEXP (addr, 0);
2445 	    all_const = 1;
2446 	  }
2447 	if (GET_CODE (addr) == PLUS)
2448 	  {
2449 	    if (CONSTANT_P (XEXP (addr, 0)))
2450 	      {
2451 		base = XEXP (addr, 1);
2452 		offset = XEXP (addr, 0);
2453 	      }
2454 	    else if (CONSTANT_P (XEXP (addr, 1)))
2455 	      {
2456 		base = XEXP (addr, 0);
2457 		offset = XEXP (addr, 1);
2458 	      }
2459 	  }
2460 
2461 	if (offset == 0)
2462 	  {
2463 	    base = addr;
2464 	    offset = const0_rtx;
2465 	  }
2466 	if (GET_CODE (offset) == CONST)
2467 	  offset = XEXP (offset, 0);
2468 	if (GET_CODE (offset) == PLUS)
2469 	  {
2470 	    if (CONST_INT_P (XEXP (offset, 0)))
2471 	      {
2472 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2473 		offset = XEXP (offset, 0);
2474 	      }
2475 	    else if (CONST_INT_P (XEXP (offset, 1)))
2476 	      {
2477 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2478 		offset = XEXP (offset, 1);
2479 	      }
2480 	    else
2481 	      {
2482 		base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2483 		offset = const0_rtx;
2484 	      }
2485 	  }
2486 	else if (!CONST_INT_P (offset))
2487 	  {
2488 	    base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2489 	    offset = const0_rtx;
2490 	  }
2491 
2492 	if (all_const && GET_CODE (base) == PLUS)
2493 	  base = gen_rtx_CONST (GET_MODE (base), base);
2494 
2495 	gcc_assert (CONST_INT_P (offset));
2496 
2497 	val.start = INTVAL (offset);
2498 	val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2499 	val.base = base;
2500       }
2501       break;
2502 
2503     case REG:
2504       val.reg_flag = 1;
2505       val.start = true_regnum (x);
2506       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2507 	{
2508 	  /* A pseudo with no hard reg.  */
2509 	  val.start = REGNO (x);
2510 	  val.end = val.start + 1;
2511 	}
2512       else
2513 	/* A hard reg.  */
2514 	val.end = end_hard_regno (GET_MODE (x), val.start);
2515       break;
2516 
2517     case SUBREG:
2518       if (!REG_P (SUBREG_REG (x)))
2519 	/* This could be more precise, but it's good enough.  */
2520 	return decompose (SUBREG_REG (x));
2521       val.reg_flag = 1;
2522       val.start = true_regnum (x);
2523       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2524 	return decompose (SUBREG_REG (x));
2525       else
2526 	/* A hard reg.  */
2527 	val.end = val.start + subreg_nregs (x);
2528       break;
2529 
2530     case SCRATCH:
2531       /* This hasn't been assigned yet, so it can't conflict yet.  */
2532       val.safe = 1;
2533       break;
2534 
2535     default:
2536       gcc_assert (CONSTANT_P (x));
2537       val.safe = 1;
2538       break;
2539     }
2540   return val;
2541 }
2542 
2543 /* Return 1 if altering Y will not modify the value of X.
2544    Y is also described by YDATA, which should be decompose (Y).  */
2545 
2546 static int
immune_p(rtx x,rtx y,struct decomposition ydata)2547 immune_p (rtx x, rtx y, struct decomposition ydata)
2548 {
2549   struct decomposition xdata;
2550 
2551   if (ydata.reg_flag)
2552     return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2553   if (ydata.safe)
2554     return 1;
2555 
2556   gcc_assert (MEM_P (y));
2557   /* If Y is memory and X is not, Y can't affect X.  */
2558   if (!MEM_P (x))
2559     return 1;
2560 
2561   xdata = decompose (x);
2562 
2563   if (! rtx_equal_p (xdata.base, ydata.base))
2564     {
2565       /* If bases are distinct symbolic constants, there is no overlap.  */
2566       if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2567 	return 1;
2568       /* Constants and stack slots never overlap.  */
2569       if (CONSTANT_P (xdata.base)
2570 	  && (ydata.base == frame_pointer_rtx
2571 	      || ydata.base == hard_frame_pointer_rtx
2572 	      || ydata.base == stack_pointer_rtx))
2573 	return 1;
2574       if (CONSTANT_P (ydata.base)
2575 	  && (xdata.base == frame_pointer_rtx
2576 	      || xdata.base == hard_frame_pointer_rtx
2577 	      || xdata.base == stack_pointer_rtx))
2578 	return 1;
2579       /* If either base is variable, we don't know anything.  */
2580       return 0;
2581     }
2582 
2583   return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2584 }
2585 
2586 /* Similar, but calls decompose.  */
2587 
2588 int
safe_from_earlyclobber(rtx op,rtx clobber)2589 safe_from_earlyclobber (rtx op, rtx clobber)
2590 {
2591   struct decomposition early_data;
2592 
2593   early_data = decompose (clobber);
2594   return immune_p (op, clobber, early_data);
2595 }
2596 
2597 /* Main entry point of this file: search the body of INSN
2598    for values that need reloading and record them with push_reload.
2599    REPLACE nonzero means record also where the values occur
2600    so that subst_reloads can be used.
2601 
2602    IND_LEVELS says how many levels of indirection are supported by this
2603    machine; a value of zero means that a memory reference is not a valid
2604    memory address.
2605 
2606    LIVE_KNOWN says we have valid information about which hard
2607    regs are live at each point in the program; this is true when
2608    we are called from global_alloc but false when stupid register
2609    allocation has been done.
2610 
2611    RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2612    which is nonnegative if the reg has been commandeered for reloading into.
2613    It is copied into STATIC_RELOAD_REG_P and referenced from there
2614    by various subroutines.
2615 
2616    Return TRUE if some operands need to be changed, because of swapping
2617    commutative operands, reg_equiv_address substitution, or whatever.  */
2618 
2619 int
find_reloads(rtx insn,int replace,int ind_levels,int live_known,short * reload_reg_p)2620 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2621 	      short *reload_reg_p)
2622 {
2623   int insn_code_number;
2624   int i, j;
2625   int noperands;
2626   /* These start out as the constraints for the insn
2627      and they are chewed up as we consider alternatives.  */
2628   const char *constraints[MAX_RECOG_OPERANDS];
2629   /* These are the preferred classes for an operand, or NO_REGS if it isn't
2630      a register.  */
2631   enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2632   char pref_or_nothing[MAX_RECOG_OPERANDS];
2633   /* Nonzero for a MEM operand whose entire address needs a reload.
2634      May be -1 to indicate the entire address may or may not need a reload.  */
2635   int address_reloaded[MAX_RECOG_OPERANDS];
2636   /* Nonzero for an address operand that needs to be completely reloaded.
2637      May be -1 to indicate the entire operand may or may not need a reload.  */
2638   int address_operand_reloaded[MAX_RECOG_OPERANDS];
2639   /* Value of enum reload_type to use for operand.  */
2640   enum reload_type operand_type[MAX_RECOG_OPERANDS];
2641   /* Value of enum reload_type to use within address of operand.  */
2642   enum reload_type address_type[MAX_RECOG_OPERANDS];
2643   /* Save the usage of each operand.  */
2644   enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2645   int no_input_reloads = 0, no_output_reloads = 0;
2646   int n_alternatives;
2647   reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2648   char this_alternative_match_win[MAX_RECOG_OPERANDS];
2649   char this_alternative_win[MAX_RECOG_OPERANDS];
2650   char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2651   char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2652   int this_alternative_matches[MAX_RECOG_OPERANDS];
2653   reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2654   int this_alternative_number;
2655   int goal_alternative_number = 0;
2656   int operand_reloadnum[MAX_RECOG_OPERANDS];
2657   int goal_alternative_matches[MAX_RECOG_OPERANDS];
2658   int goal_alternative_matched[MAX_RECOG_OPERANDS];
2659   char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2660   char goal_alternative_win[MAX_RECOG_OPERANDS];
2661   char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2662   char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2663   int goal_alternative_swapped;
2664   int best;
2665   int commutative;
2666   char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2667   rtx substed_operand[MAX_RECOG_OPERANDS];
2668   rtx body = PATTERN (insn);
2669   rtx set = single_set (insn);
2670   int goal_earlyclobber = 0, this_earlyclobber;
2671   enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2672   int retval = 0;
2673 
2674   this_insn = insn;
2675   n_reloads = 0;
2676   n_replacements = 0;
2677   n_earlyclobbers = 0;
2678   replace_reloads = replace;
2679   hard_regs_live_known = live_known;
2680   static_reload_reg_p = reload_reg_p;
2681 
2682   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2683      neither are insns that SET cc0.  Insns that use CC0 are not allowed
2684      to have any input reloads.  */
2685   if (JUMP_P (insn) || CALL_P (insn))
2686     no_output_reloads = 1;
2687 
2688 #ifdef HAVE_cc0
2689   if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2690     no_input_reloads = 1;
2691   if (reg_set_p (cc0_rtx, PATTERN (insn)))
2692     no_output_reloads = 1;
2693 #endif
2694 
2695 #ifdef SECONDARY_MEMORY_NEEDED
2696   /* The eliminated forms of any secondary memory locations are per-insn, so
2697      clear them out here.  */
2698 
2699   if (secondary_memlocs_elim_used)
2700     {
2701       memset (secondary_memlocs_elim, 0,
2702 	      sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2703       secondary_memlocs_elim_used = 0;
2704     }
2705 #endif
2706 
2707   /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2708      is cheap to move between them.  If it is not, there may not be an insn
2709      to do the copy, so we may need a reload.  */
2710   if (GET_CODE (body) == SET
2711       && REG_P (SET_DEST (body))
2712       && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2713       && REG_P (SET_SRC (body))
2714       && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2715       && register_move_cost (GET_MODE (SET_SRC (body)),
2716 			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2717 			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2718     return 0;
2719 
2720   extract_insn (insn);
2721 
2722   noperands = reload_n_operands = recog_data.n_operands;
2723   n_alternatives = recog_data.n_alternatives;
2724 
2725   /* Just return "no reloads" if insn has no operands with constraints.  */
2726   if (noperands == 0 || n_alternatives == 0)
2727     return 0;
2728 
2729   insn_code_number = INSN_CODE (insn);
2730   this_insn_is_asm = insn_code_number < 0;
2731 
2732   memcpy (operand_mode, recog_data.operand_mode,
2733 	  noperands * sizeof (enum machine_mode));
2734   memcpy (constraints, recog_data.constraints,
2735 	  noperands * sizeof (const char *));
2736 
2737   commutative = -1;
2738 
2739   /* If we will need to know, later, whether some pair of operands
2740      are the same, we must compare them now and save the result.
2741      Reloading the base and index registers will clobber them
2742      and afterward they will fail to match.  */
2743 
2744   for (i = 0; i < noperands; i++)
2745     {
2746       const char *p;
2747       int c;
2748       char *end;
2749 
2750       substed_operand[i] = recog_data.operand[i];
2751       p = constraints[i];
2752 
2753       modified[i] = RELOAD_READ;
2754 
2755       /* Scan this operand's constraint to see if it is an output operand,
2756 	 an in-out operand, is commutative, or should match another.  */
2757 
2758       while ((c = *p))
2759 	{
2760 	  p += CONSTRAINT_LEN (c, p);
2761 	  switch (c)
2762 	    {
2763 	    case '=':
2764 	      modified[i] = RELOAD_WRITE;
2765 	      break;
2766 	    case '+':
2767 	      modified[i] = RELOAD_READ_WRITE;
2768 	      break;
2769 	    case '%':
2770 	      {
2771 		/* The last operand should not be marked commutative.  */
2772 		gcc_assert (i != noperands - 1);
2773 
2774 		/* We currently only support one commutative pair of
2775 		   operands.  Some existing asm code currently uses more
2776 		   than one pair.  Previously, that would usually work,
2777 		   but sometimes it would crash the compiler.  We
2778 		   continue supporting that case as well as we can by
2779 		   silently ignoring all but the first pair.  In the
2780 		   future we may handle it correctly.  */
2781 		if (commutative < 0)
2782 		  commutative = i;
2783 		else
2784 		  gcc_assert (this_insn_is_asm);
2785 	      }
2786 	      break;
2787 	    /* Use of ISDIGIT is tempting here, but it may get expensive because
2788 	       of locale support we don't want.  */
2789 	    case '0': case '1': case '2': case '3': case '4':
2790 	    case '5': case '6': case '7': case '8': case '9':
2791 	      {
2792 		c = strtoul (p - 1, &end, 10);
2793 		p = end;
2794 
2795 		operands_match[c][i]
2796 		  = operands_match_p (recog_data.operand[c],
2797 				      recog_data.operand[i]);
2798 
2799 		/* An operand may not match itself.  */
2800 		gcc_assert (c != i);
2801 
2802 		/* If C can be commuted with C+1, and C might need to match I,
2803 		   then C+1 might also need to match I.  */
2804 		if (commutative >= 0)
2805 		  {
2806 		    if (c == commutative || c == commutative + 1)
2807 		      {
2808 			int other = c + (c == commutative ? 1 : -1);
2809 			operands_match[other][i]
2810 			  = operands_match_p (recog_data.operand[other],
2811 					      recog_data.operand[i]);
2812 		      }
2813 		    if (i == commutative || i == commutative + 1)
2814 		      {
2815 			int other = i + (i == commutative ? 1 : -1);
2816 			operands_match[c][other]
2817 			  = operands_match_p (recog_data.operand[c],
2818 					      recog_data.operand[other]);
2819 		      }
2820 		    /* Note that C is supposed to be less than I.
2821 		       No need to consider altering both C and I because in
2822 		       that case we would alter one into the other.  */
2823 		  }
2824 	      }
2825 	    }
2826 	}
2827     }
2828 
2829   /* Examine each operand that is a memory reference or memory address
2830      and reload parts of the addresses into index registers.
2831      Also here any references to pseudo regs that didn't get hard regs
2832      but are equivalent to constants get replaced in the insn itself
2833      with those constants.  Nobody will ever see them again.
2834 
2835      Finally, set up the preferred classes of each operand.  */
2836 
2837   for (i = 0; i < noperands; i++)
2838     {
2839       RTX_CODE code = GET_CODE (recog_data.operand[i]);
2840 
2841       address_reloaded[i] = 0;
2842       address_operand_reloaded[i] = 0;
2843       operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2844 			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2845 			 : RELOAD_OTHER);
2846       address_type[i]
2847 	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2848 	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2849 	   : RELOAD_OTHER);
2850 
2851       if (*constraints[i] == 0)
2852 	/* Ignore things like match_operator operands.  */
2853 	;
2854       else if (constraints[i][0] == 'p'
2855 	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2856 	{
2857 	  address_operand_reloaded[i]
2858 	    = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2859 				    recog_data.operand[i],
2860 				    recog_data.operand_loc[i],
2861 				    i, operand_type[i], ind_levels, insn);
2862 
2863 	  /* If we now have a simple operand where we used to have a
2864 	     PLUS or MULT, re-recognize and try again.  */
2865 	  if ((OBJECT_P (*recog_data.operand_loc[i])
2866 	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2867 	      && (GET_CODE (recog_data.operand[i]) == MULT
2868 		  || GET_CODE (recog_data.operand[i]) == PLUS))
2869 	    {
2870 	      INSN_CODE (insn) = -1;
2871 	      retval = find_reloads (insn, replace, ind_levels, live_known,
2872 				     reload_reg_p);
2873 	      return retval;
2874 	    }
2875 
2876 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2877 	  substed_operand[i] = recog_data.operand[i];
2878 
2879 	  /* Address operands are reloaded in their existing mode,
2880 	     no matter what is specified in the machine description.  */
2881 	  operand_mode[i] = GET_MODE (recog_data.operand[i]);
2882 
2883 	  /* If the address is a single CONST_INT pick address mode
2884 	     instead otherwise we will later not know in which mode
2885 	     the reload should be performed.  */
2886 	  if (operand_mode[i] == VOIDmode)
2887 	    operand_mode[i] = Pmode;
2888 
2889 	}
2890       else if (code == MEM)
2891 	{
2892 	  address_reloaded[i]
2893 	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2894 				    recog_data.operand_loc[i],
2895 				    XEXP (recog_data.operand[i], 0),
2896 				    &XEXP (recog_data.operand[i], 0),
2897 				    i, address_type[i], ind_levels, insn);
2898 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2899 	  substed_operand[i] = recog_data.operand[i];
2900 	}
2901       else if (code == SUBREG)
2902 	{
2903 	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2904 	  rtx op
2905 	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2906 				   ind_levels,
2907 				   set != 0
2908 				   && &SET_DEST (set) == recog_data.operand_loc[i],
2909 				   insn,
2910 				   &address_reloaded[i]);
2911 
2912 	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2913 	     that didn't get a hard register, emit a USE with a REG_EQUAL
2914 	     note in front so that we might inherit a previous, possibly
2915 	     wider reload.  */
2916 
2917 	  if (replace
2918 	      && MEM_P (op)
2919 	      && REG_P (reg)
2920 	      && (GET_MODE_SIZE (GET_MODE (reg))
2921 		  >= GET_MODE_SIZE (GET_MODE (op)))
2922 	      && reg_equiv_constant (REGNO (reg)) == 0)
2923 	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2924 						   insn),
2925 				 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2926 
2927 	  substed_operand[i] = recog_data.operand[i] = op;
2928 	}
2929       else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2930 	/* We can get a PLUS as an "operand" as a result of register
2931 	   elimination.  See eliminate_regs and gen_reload.  We handle
2932 	   a unary operator by reloading the operand.  */
2933 	substed_operand[i] = recog_data.operand[i]
2934 	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2935 				 ind_levels, 0, insn,
2936 				 &address_reloaded[i]);
2937       else if (code == REG)
2938 	{
2939 	  /* This is equivalent to calling find_reloads_toplev.
2940 	     The code is duplicated for speed.
2941 	     When we find a pseudo always equivalent to a constant,
2942 	     we replace it by the constant.  We must be sure, however,
2943 	     that we don't try to replace it in the insn in which it
2944 	     is being set.  */
2945 	  int regno = REGNO (recog_data.operand[i]);
2946 	  if (reg_equiv_constant (regno) != 0
2947 	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2948 	    {
2949 	      /* Record the existing mode so that the check if constants are
2950 		 allowed will work when operand_mode isn't specified.  */
2951 
2952 	      if (operand_mode[i] == VOIDmode)
2953 		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2954 
2955 	      substed_operand[i] = recog_data.operand[i]
2956 		= reg_equiv_constant (regno);
2957 	    }
2958 	  if (reg_equiv_memory_loc (regno) != 0
2959 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2960 	    /* We need not give a valid is_set_dest argument since the case
2961 	       of a constant equivalence was checked above.  */
2962 	    substed_operand[i] = recog_data.operand[i]
2963 	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2964 				     ind_levels, 0, insn,
2965 				     &address_reloaded[i]);
2966 	}
2967       /* If the operand is still a register (we didn't replace it with an
2968 	 equivalent), get the preferred class to reload it into.  */
2969       code = GET_CODE (recog_data.operand[i]);
2970       preferred_class[i]
2971 	= ((code == REG && REGNO (recog_data.operand[i])
2972 	    >= FIRST_PSEUDO_REGISTER)
2973 	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2974 	   : NO_REGS);
2975       pref_or_nothing[i]
2976 	= (code == REG
2977 	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2978 	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2979     }
2980 
2981   /* If this is simply a copy from operand 1 to operand 0, merge the
2982      preferred classes for the operands.  */
2983   if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2984       && recog_data.operand[1] == SET_SRC (set))
2985     {
2986       preferred_class[0] = preferred_class[1]
2987 	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2988       pref_or_nothing[0] |= pref_or_nothing[1];
2989       pref_or_nothing[1] |= pref_or_nothing[0];
2990     }
2991 
2992   /* Now see what we need for pseudo-regs that didn't get hard regs
2993      or got the wrong kind of hard reg.  For this, we must consider
2994      all the operands together against the register constraints.  */
2995 
2996   best = MAX_RECOG_OPERANDS * 2 + 600;
2997 
2998   goal_alternative_swapped = 0;
2999 
3000   /* The constraints are made of several alternatives.
3001      Each operand's constraint looks like foo,bar,... with commas
3002      separating the alternatives.  The first alternatives for all
3003      operands go together, the second alternatives go together, etc.
3004 
3005      First loop over alternatives.  */
3006 
3007   for (this_alternative_number = 0;
3008        this_alternative_number < n_alternatives;
3009        this_alternative_number++)
3010     {
3011       int swapped;
3012 
3013       if (!recog_data.alternative_enabled_p[this_alternative_number])
3014 	{
3015 	  int i;
3016 
3017 	  for (i = 0; i < recog_data.n_operands; i++)
3018 	    constraints[i] = skip_alternative (constraints[i]);
3019 
3020 	  continue;
3021 	}
3022 
3023       /* If insn is commutative (it's safe to exchange a certain pair
3024 	 of operands) then we need to try each alternative twice, the
3025 	 second time matching those two operands as if we had
3026 	 exchanged them.  To do this, really exchange them in
3027 	 operands.  */
3028       for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3029 	{
3030 	  /* Loop over operands for one constraint alternative.  */
3031 	  /* LOSERS counts those that don't fit this alternative
3032 	     and would require loading.  */
3033 	  int losers = 0;
3034 	  /* BAD is set to 1 if it some operand can't fit this alternative
3035 	     even after reloading.  */
3036 	  int bad = 0;
3037 	  /* REJECT is a count of how undesirable this alternative says it is
3038 	     if any reloading is required.  If the alternative matches exactly
3039 	     then REJECT is ignored, but otherwise it gets this much
3040 	     counted against it in addition to the reloading needed.  Each
3041 	     ? counts three times here since we want the disparaging caused by
3042 	     a bad register class to only count 1/3 as much.  */
3043 	  int reject = 0;
3044 
3045 	  if (swapped)
3046 	    {
3047 	      enum reg_class tclass;
3048 	      int t;
3049 
3050 	      recog_data.operand[commutative] = substed_operand[commutative + 1];
3051 	      recog_data.operand[commutative + 1] = substed_operand[commutative];
3052 	      /* Swap the duplicates too.  */
3053 	      for (i = 0; i < recog_data.n_dups; i++)
3054 		if (recog_data.dup_num[i] == commutative
3055 		    || recog_data.dup_num[i] == commutative + 1)
3056 		  *recog_data.dup_loc[i]
3057 		    = recog_data.operand[(int) recog_data.dup_num[i]];
3058 
3059 	      tclass = preferred_class[commutative];
3060 	      preferred_class[commutative] = preferred_class[commutative + 1];
3061 	      preferred_class[commutative + 1] = tclass;
3062 
3063 	      t = pref_or_nothing[commutative];
3064 	      pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3065 	      pref_or_nothing[commutative + 1] = t;
3066 
3067 	      t = address_reloaded[commutative];
3068 	      address_reloaded[commutative] = address_reloaded[commutative + 1];
3069 	      address_reloaded[commutative + 1] = t;
3070 	    }
3071 
3072 	  this_earlyclobber = 0;
3073 
3074 	  for (i = 0; i < noperands; i++)
3075 	    {
3076 	      const char *p = constraints[i];
3077 	      char *end;
3078 	      int len;
3079 	      int win = 0;
3080 	      int did_match = 0;
3081 	      /* 0 => this operand can be reloaded somehow for this alternative.  */
3082 	      int badop = 1;
3083 	      /* 0 => this operand can be reloaded if the alternative allows regs.  */
3084 	      int winreg = 0;
3085 	      int c;
3086 	      int m;
3087 	      rtx operand = recog_data.operand[i];
3088 	      int offset = 0;
3089 	      /* Nonzero means this is a MEM that must be reloaded into a reg
3090 		 regardless of what the constraint says.  */
3091 	      int force_reload = 0;
3092 	      int offmemok = 0;
3093 	      /* Nonzero if a constant forced into memory would be OK for this
3094 		 operand.  */
3095 	      int constmemok = 0;
3096 	      int earlyclobber = 0;
3097 
3098 	      /* If the predicate accepts a unary operator, it means that
3099 		 we need to reload the operand, but do not do this for
3100 		 match_operator and friends.  */
3101 	      if (UNARY_P (operand) && *p != 0)
3102 		operand = XEXP (operand, 0);
3103 
3104 	      /* If the operand is a SUBREG, extract
3105 		 the REG or MEM (or maybe even a constant) within.
3106 		 (Constants can occur as a result of reg_equiv_constant.)  */
3107 
3108 	      while (GET_CODE (operand) == SUBREG)
3109 		{
3110 		  /* Offset only matters when operand is a REG and
3111 		     it is a hard reg.  This is because it is passed
3112 		     to reg_fits_class_p if it is a REG and all pseudos
3113 		     return 0 from that function.  */
3114 		  if (REG_P (SUBREG_REG (operand))
3115 		      && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3116 		    {
3117 		      if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3118 						 GET_MODE (SUBREG_REG (operand)),
3119 						 SUBREG_BYTE (operand),
3120 						 GET_MODE (operand)) < 0)
3121 			force_reload = 1;
3122 		      offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3123 						     GET_MODE (SUBREG_REG (operand)),
3124 						     SUBREG_BYTE (operand),
3125 						     GET_MODE (operand));
3126 		    }
3127 		  operand = SUBREG_REG (operand);
3128 		  /* Force reload if this is a constant or PLUS or if there may
3129 		     be a problem accessing OPERAND in the outer mode.  */
3130 		  if (CONSTANT_P (operand)
3131 		      || GET_CODE (operand) == PLUS
3132 		      /* We must force a reload of paradoxical SUBREGs
3133 			 of a MEM because the alignment of the inner value
3134 			 may not be enough to do the outer reference.  On
3135 			 big-endian machines, it may also reference outside
3136 			 the object.
3137 
3138 			 On machines that extend byte operations and we have a
3139 			 SUBREG where both the inner and outer modes are no wider
3140 			 than a word and the inner mode is narrower, is integral,
3141 			 and gets extended when loaded from memory, combine.c has
3142 			 made assumptions about the behavior of the machine in such
3143 			 register access.  If the data is, in fact, in memory we
3144 			 must always load using the size assumed to be in the
3145 			 register and let the insn do the different-sized
3146 			 accesses.
3147 
3148 			 This is doubly true if WORD_REGISTER_OPERATIONS.  In
3149 			 this case eliminate_regs has left non-paradoxical
3150 			 subregs for push_reload to see.  Make sure it does
3151 			 by forcing the reload.
3152 
3153 			 ??? When is it right at this stage to have a subreg
3154 			 of a mem that is _not_ to be handled specially?  IMO
3155 			 those should have been reduced to just a mem.  */
3156 		      || ((MEM_P (operand)
3157 			   || (REG_P (operand)
3158 			       && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3159 #ifndef WORD_REGISTER_OPERATIONS
3160 			  && (((GET_MODE_BITSIZE (GET_MODE (operand))
3161 				< BIGGEST_ALIGNMENT)
3162 			       && (GET_MODE_SIZE (operand_mode[i])
3163 				   > GET_MODE_SIZE (GET_MODE (operand))))
3164 			      || BYTES_BIG_ENDIAN
3165 #ifdef LOAD_EXTEND_OP
3166 			      || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3167 				  && (GET_MODE_SIZE (GET_MODE (operand))
3168 				      <= UNITS_PER_WORD)
3169 				  && (GET_MODE_SIZE (operand_mode[i])
3170 				      > GET_MODE_SIZE (GET_MODE (operand)))
3171 				  && INTEGRAL_MODE_P (GET_MODE (operand))
3172 				  && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3173 #endif
3174 			      )
3175 #endif
3176 			  )
3177 		      )
3178 		    force_reload = 1;
3179 		}
3180 
3181 	      this_alternative[i] = NO_REGS;
3182 	      this_alternative_win[i] = 0;
3183 	      this_alternative_match_win[i] = 0;
3184 	      this_alternative_offmemok[i] = 0;
3185 	      this_alternative_earlyclobber[i] = 0;
3186 	      this_alternative_matches[i] = -1;
3187 
3188 	      /* An empty constraint or empty alternative
3189 		 allows anything which matched the pattern.  */
3190 	      if (*p == 0 || *p == ',')
3191 		win = 1, badop = 0;
3192 
3193 	      /* Scan this alternative's specs for this operand;
3194 		 set WIN if the operand fits any letter in this alternative.
3195 		 Otherwise, clear BADOP if this operand could
3196 		 fit some letter after reloads,
3197 		 or set WINREG if this operand could fit after reloads
3198 		 provided the constraint allows some registers.  */
3199 
3200 	      do
3201 		switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3202 		  {
3203 		  case '\0':
3204 		    len = 0;
3205 		    break;
3206 		  case ',':
3207 		    c = '\0';
3208 		    break;
3209 
3210 		  case '=':  case '+':  case '*':
3211 		    break;
3212 
3213 		  case '%':
3214 		    /* We only support one commutative marker, the first
3215 		       one.  We already set commutative above.  */
3216 		    break;
3217 
3218 		  case '?':
3219 		    reject += 6;
3220 		    break;
3221 
3222 		  case '!':
3223 		    reject = 600;
3224 		    break;
3225 
3226 		  case '#':
3227 		    /* Ignore rest of this alternative as far as
3228 		       reloading is concerned.  */
3229 		    do
3230 		      p++;
3231 		    while (*p && *p != ',');
3232 		    len = 0;
3233 		    break;
3234 
3235 		  case '0':  case '1':  case '2':  case '3':  case '4':
3236 		  case '5':  case '6':  case '7':  case '8':  case '9':
3237 		    m = strtoul (p, &end, 10);
3238 		    p = end;
3239 		    len = 0;
3240 
3241 		    this_alternative_matches[i] = m;
3242 		    /* We are supposed to match a previous operand.
3243 		       If we do, we win if that one did.
3244 		       If we do not, count both of the operands as losers.
3245 		       (This is too conservative, since most of the time
3246 		       only a single reload insn will be needed to make
3247 		       the two operands win.  As a result, this alternative
3248 		       may be rejected when it is actually desirable.)  */
3249 		    if ((swapped && (m != commutative || i != commutative + 1))
3250 			/* If we are matching as if two operands were swapped,
3251 			   also pretend that operands_match had been computed
3252 			   with swapped.
3253 			   But if I is the second of those and C is the first,
3254 			   don't exchange them, because operands_match is valid
3255 			   only on one side of its diagonal.  */
3256 			? (operands_match
3257 			   [(m == commutative || m == commutative + 1)
3258 			    ? 2 * commutative + 1 - m : m]
3259 			   [(i == commutative || i == commutative + 1)
3260 			    ? 2 * commutative + 1 - i : i])
3261 			: operands_match[m][i])
3262 		      {
3263 			/* If we are matching a non-offsettable address where an
3264 			   offsettable address was expected, then we must reject
3265 			   this combination, because we can't reload it.  */
3266 			if (this_alternative_offmemok[m]
3267 			    && MEM_P (recog_data.operand[m])
3268 			    && this_alternative[m] == NO_REGS
3269 			    && ! this_alternative_win[m])
3270 			  bad = 1;
3271 
3272 			did_match = this_alternative_win[m];
3273 		      }
3274 		    else
3275 		      {
3276 			/* Operands don't match.  */
3277 			rtx value;
3278 			int loc1, loc2;
3279 			/* Retroactively mark the operand we had to match
3280 			   as a loser, if it wasn't already.  */
3281 			if (this_alternative_win[m])
3282 			  losers++;
3283 			this_alternative_win[m] = 0;
3284 			if (this_alternative[m] == NO_REGS)
3285 			  bad = 1;
3286 			/* But count the pair only once in the total badness of
3287 			   this alternative, if the pair can be a dummy reload.
3288 			   The pointers in operand_loc are not swapped; swap
3289 			   them by hand if necessary.  */
3290 			if (swapped && i == commutative)
3291 			  loc1 = commutative + 1;
3292 			else if (swapped && i == commutative + 1)
3293 			  loc1 = commutative;
3294 			else
3295 			  loc1 = i;
3296 			if (swapped && m == commutative)
3297 			  loc2 = commutative + 1;
3298 			else if (swapped && m == commutative + 1)
3299 			  loc2 = commutative;
3300 			else
3301 			  loc2 = m;
3302 			value
3303 			  = find_dummy_reload (recog_data.operand[i],
3304 					       recog_data.operand[m],
3305 					       recog_data.operand_loc[loc1],
3306 					       recog_data.operand_loc[loc2],
3307 					       operand_mode[i], operand_mode[m],
3308 					       this_alternative[m], -1,
3309 					       this_alternative_earlyclobber[m]);
3310 
3311 			if (value != 0)
3312 			  losers--;
3313 		      }
3314 		    /* This can be fixed with reloads if the operand
3315 		       we are supposed to match can be fixed with reloads.  */
3316 		    badop = 0;
3317 		    this_alternative[i] = this_alternative[m];
3318 
3319 		    /* If we have to reload this operand and some previous
3320 		       operand also had to match the same thing as this
3321 		       operand, we don't know how to do that.  So reject this
3322 		       alternative.  */
3323 		    if (! did_match || force_reload)
3324 		      for (j = 0; j < i; j++)
3325 			if (this_alternative_matches[j]
3326 			    == this_alternative_matches[i])
3327 			  {
3328 			    badop = 1;
3329 			    break;
3330 			  }
3331 		    break;
3332 
3333 		  case 'p':
3334 		    /* All necessary reloads for an address_operand
3335 		       were handled in find_reloads_address.  */
3336 		    this_alternative[i]
3337 		      = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3338 					ADDRESS, SCRATCH);
3339 		    win = 1;
3340 		    badop = 0;
3341 		    break;
3342 
3343 		  case TARGET_MEM_CONSTRAINT:
3344 		    if (force_reload)
3345 		      break;
3346 		    if (MEM_P (operand)
3347 			|| (REG_P (operand)
3348 			    && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3349 			    && reg_renumber[REGNO (operand)] < 0))
3350 		      win = 1;
3351 		    if (CONST_POOL_OK_P (operand_mode[i], operand))
3352 		      badop = 0;
3353 		    constmemok = 1;
3354 		    break;
3355 
3356 		  case '<':
3357 		    if (MEM_P (operand)
3358 			&& ! address_reloaded[i]
3359 			&& (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3360 			    || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3361 		      win = 1;
3362 		    break;
3363 
3364 		  case '>':
3365 		    if (MEM_P (operand)
3366 			&& ! address_reloaded[i]
3367 			&& (GET_CODE (XEXP (operand, 0)) == PRE_INC
3368 			    || GET_CODE (XEXP (operand, 0)) == POST_INC))
3369 		      win = 1;
3370 		    break;
3371 
3372 		    /* Memory operand whose address is not offsettable.  */
3373 		  case 'V':
3374 		    if (force_reload)
3375 		      break;
3376 		    if (MEM_P (operand)
3377 			&& ! (ind_levels ? offsettable_memref_p (operand)
3378 			      : offsettable_nonstrict_memref_p (operand))
3379 			/* Certain mem addresses will become offsettable
3380 			   after they themselves are reloaded.  This is important;
3381 			   we don't want our own handling of unoffsettables
3382 			   to override the handling of reg_equiv_address.  */
3383 			&& !(REG_P (XEXP (operand, 0))
3384 			     && (ind_levels == 0
3385 				 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3386 		      win = 1;
3387 		    break;
3388 
3389 		    /* Memory operand whose address is offsettable.  */
3390 		  case 'o':
3391 		    if (force_reload)
3392 		      break;
3393 		    if ((MEM_P (operand)
3394 			 /* If IND_LEVELS, find_reloads_address won't reload a
3395 			    pseudo that didn't get a hard reg, so we have to
3396 			    reject that case.  */
3397 			 && ((ind_levels ? offsettable_memref_p (operand)
3398 			      : offsettable_nonstrict_memref_p (operand))
3399 			     /* A reloaded address is offsettable because it is now
3400 				just a simple register indirect.  */
3401 			     || address_reloaded[i] == 1))
3402 			|| (REG_P (operand)
3403 			    && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3404 			    && reg_renumber[REGNO (operand)] < 0
3405 			    /* If reg_equiv_address is nonzero, we will be
3406 			       loading it into a register; hence it will be
3407 			       offsettable, but we cannot say that reg_equiv_mem
3408 			       is offsettable without checking.  */
3409 			    && ((reg_equiv_mem (REGNO (operand)) != 0
3410 				 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3411 				|| (reg_equiv_address (REGNO (operand)) != 0))))
3412 		      win = 1;
3413 		    if (CONST_POOL_OK_P (operand_mode[i], operand)
3414 			|| MEM_P (operand))
3415 		      badop = 0;
3416 		    constmemok = 1;
3417 		    offmemok = 1;
3418 		    break;
3419 
3420 		  case '&':
3421 		    /* Output operand that is stored before the need for the
3422 		       input operands (and their index registers) is over.  */
3423 		    earlyclobber = 1, this_earlyclobber = 1;
3424 		    break;
3425 
3426 		  case 'E':
3427 		  case 'F':
3428 		    if (CONST_DOUBLE_AS_FLOAT_P (operand)
3429 			|| (GET_CODE (operand) == CONST_VECTOR
3430 			    && (GET_MODE_CLASS (GET_MODE (operand))
3431 				== MODE_VECTOR_FLOAT)))
3432 		      win = 1;
3433 		    break;
3434 
3435 		  case 'G':
3436 		  case 'H':
3437 		    if (CONST_DOUBLE_AS_FLOAT_P (operand)
3438 			&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3439 		      win = 1;
3440 		    break;
3441 
3442 		  case 's':
3443 		    if (CONST_SCALAR_INT_P (operand))
3444 		      break;
3445 		  case 'i':
3446 		    if (CONSTANT_P (operand)
3447 			&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3448 		      win = 1;
3449 		    break;
3450 
3451 		  case 'n':
3452 		    if (CONST_SCALAR_INT_P (operand))
3453 		      win = 1;
3454 		    break;
3455 
3456 		  case 'I':
3457 		  case 'J':
3458 		  case 'K':
3459 		  case 'L':
3460 		  case 'M':
3461 		  case 'N':
3462 		  case 'O':
3463 		  case 'P':
3464 		    if (CONST_INT_P (operand)
3465 			&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3466 		      win = 1;
3467 		    break;
3468 
3469 		  case 'X':
3470 		    force_reload = 0;
3471 		    win = 1;
3472 		    break;
3473 
3474 		  case 'g':
3475 		    if (! force_reload
3476 			/* A PLUS is never a valid operand, but reload can make
3477 			   it from a register when eliminating registers.  */
3478 			&& GET_CODE (operand) != PLUS
3479 			/* A SCRATCH is not a valid operand.  */
3480 			&& GET_CODE (operand) != SCRATCH
3481 			&& (! CONSTANT_P (operand)
3482 			    || ! flag_pic
3483 			    || LEGITIMATE_PIC_OPERAND_P (operand))
3484 			&& (GENERAL_REGS == ALL_REGS
3485 			    || !REG_P (operand)
3486 			    || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3487 				&& reg_renumber[REGNO (operand)] < 0)))
3488 		      win = 1;
3489 		    /* Drop through into 'r' case.  */
3490 
3491 		  case 'r':
3492 		    this_alternative[i]
3493 		      = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3494 		    goto reg;
3495 
3496 		  default:
3497 		    if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3498 		      {
3499 #ifdef EXTRA_CONSTRAINT_STR
3500 			if (EXTRA_MEMORY_CONSTRAINT (c, p))
3501 			  {
3502 			    if (force_reload)
3503 			      break;
3504 			    if (EXTRA_CONSTRAINT_STR (operand, c, p))
3505 			      win = 1;
3506 			    /* If the address was already reloaded,
3507 			       we win as well.  */
3508 			    else if (MEM_P (operand)
3509 				     && address_reloaded[i] == 1)
3510 			      win = 1;
3511 			    /* Likewise if the address will be reloaded because
3512 			       reg_equiv_address is nonzero.  For reg_equiv_mem
3513 			       we have to check.  */
3514 			    else if (REG_P (operand)
3515 				     && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3516 				     && reg_renumber[REGNO (operand)] < 0
3517 				     && ((reg_equiv_mem (REGNO (operand)) != 0
3518 					  && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3519 					 || (reg_equiv_address (REGNO (operand)) != 0)))
3520 			      win = 1;
3521 
3522 			    /* If we didn't already win, we can reload
3523 			       constants via force_const_mem, and other
3524 			       MEMs by reloading the address like for 'o'.  */
3525 			    if (CONST_POOL_OK_P (operand_mode[i], operand)
3526 				|| MEM_P (operand))
3527 			      badop = 0;
3528 			    constmemok = 1;
3529 			    offmemok = 1;
3530 			    break;
3531 			  }
3532 			if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3533 			  {
3534 			    if (EXTRA_CONSTRAINT_STR (operand, c, p))
3535 			      win = 1;
3536 
3537 			    /* If we didn't already win, we can reload
3538 			       the address into a base register.  */
3539 			    this_alternative[i]
3540 			      = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3541 						ADDRESS, SCRATCH);
3542 			    badop = 0;
3543 			    break;
3544 			  }
3545 
3546 			if (EXTRA_CONSTRAINT_STR (operand, c, p))
3547 			  win = 1;
3548 #endif
3549 			break;
3550 		      }
3551 
3552 		    this_alternative[i]
3553 		      = (reg_class_subunion
3554 			 [this_alternative[i]]
3555 			 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3556 		  reg:
3557 		    if (GET_MODE (operand) == BLKmode)
3558 		      break;
3559 		    winreg = 1;
3560 		    if (REG_P (operand)
3561 			&& reg_fits_class_p (operand, this_alternative[i],
3562   			             offset, GET_MODE (recog_data.operand[i])))
3563 		      win = 1;
3564 		    break;
3565 		  }
3566 	      while ((p += len), c);
3567 
3568 	      if (swapped == (commutative >= 0 ? 1 : 0))
3569 		constraints[i] = p;
3570 
3571 	      /* If this operand could be handled with a reg,
3572 		 and some reg is allowed, then this operand can be handled.  */
3573 	      if (winreg && this_alternative[i] != NO_REGS
3574 		  && (win || !class_only_fixed_regs[this_alternative[i]]))
3575 		badop = 0;
3576 
3577 	      /* Record which operands fit this alternative.  */
3578 	      this_alternative_earlyclobber[i] = earlyclobber;
3579 	      if (win && ! force_reload)
3580 		this_alternative_win[i] = 1;
3581 	      else if (did_match && ! force_reload)
3582 		this_alternative_match_win[i] = 1;
3583 	      else
3584 		{
3585 		  int const_to_mem = 0;
3586 
3587 		  this_alternative_offmemok[i] = offmemok;
3588 		  losers++;
3589 		  if (badop)
3590 		    bad = 1;
3591 		  /* Alternative loses if it has no regs for a reg operand.  */
3592 		  if (REG_P (operand)
3593 		      && this_alternative[i] == NO_REGS
3594 		      && this_alternative_matches[i] < 0)
3595 		    bad = 1;
3596 
3597 		  /* If this is a constant that is reloaded into the desired
3598 		     class by copying it to memory first, count that as another
3599 		     reload.  This is consistent with other code and is
3600 		     required to avoid choosing another alternative when
3601 		     the constant is moved into memory by this function on
3602 		     an early reload pass.  Note that the test here is
3603 		     precisely the same as in the code below that calls
3604 		     force_const_mem.  */
3605 		  if (CONST_POOL_OK_P (operand_mode[i], operand)
3606 		      && ((targetm.preferred_reload_class (operand,
3607 							   this_alternative[i])
3608 			   == NO_REGS)
3609 			  || no_input_reloads))
3610 		    {
3611 		      const_to_mem = 1;
3612 		      if (this_alternative[i] != NO_REGS)
3613 			losers++;
3614 		    }
3615 
3616 		  /* Alternative loses if it requires a type of reload not
3617 		     permitted for this insn.  We can always reload SCRATCH
3618 		     and objects with a REG_UNUSED note.  */
3619 		  if (GET_CODE (operand) != SCRATCH
3620 		      && modified[i] != RELOAD_READ && no_output_reloads
3621 		      && ! find_reg_note (insn, REG_UNUSED, operand))
3622 		    bad = 1;
3623 		  else if (modified[i] != RELOAD_WRITE && no_input_reloads
3624 			   && ! const_to_mem)
3625 		    bad = 1;
3626 
3627 		  /* If we can't reload this value at all, reject this
3628 		     alternative.  Note that we could also lose due to
3629 		     LIMIT_RELOAD_CLASS, but we don't check that
3630 		     here.  */
3631 
3632 		  if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3633 		    {
3634 		      if (targetm.preferred_reload_class (operand,
3635 							  this_alternative[i])
3636 			  == NO_REGS)
3637 			reject = 600;
3638 
3639 		      if (operand_type[i] == RELOAD_FOR_OUTPUT
3640 			  && (targetm.preferred_output_reload_class (operand,
3641 							    this_alternative[i])
3642 			      == NO_REGS))
3643 			reject = 600;
3644 		    }
3645 
3646 		  /* We prefer to reload pseudos over reloading other things,
3647 		     since such reloads may be able to be eliminated later.
3648 		     If we are reloading a SCRATCH, we won't be generating any
3649 		     insns, just using a register, so it is also preferred.
3650 		     So bump REJECT in other cases.  Don't do this in the
3651 		     case where we are forcing a constant into memory and
3652 		     it will then win since we don't want to have a different
3653 		     alternative match then.  */
3654 		  if (! (REG_P (operand)
3655 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3656 		      && GET_CODE (operand) != SCRATCH
3657 		      && ! (const_to_mem && constmemok))
3658 		    reject += 2;
3659 
3660 		  /* Input reloads can be inherited more often than output
3661 		     reloads can be removed, so penalize output reloads.  */
3662 		  if (operand_type[i] != RELOAD_FOR_INPUT
3663 		      && GET_CODE (operand) != SCRATCH)
3664 		    reject++;
3665 		}
3666 
3667 	      /* If this operand is a pseudo register that didn't get
3668 		 a hard reg and this alternative accepts some
3669 		 register, see if the class that we want is a subset
3670 		 of the preferred class for this register.  If not,
3671 		 but it intersects that class, use the preferred class
3672 		 instead.  If it does not intersect the preferred
3673 		 class, show that usage of this alternative should be
3674 		 discouraged; it will be discouraged more still if the
3675 		 register is `preferred or nothing'.  We do this
3676 		 because it increases the chance of reusing our spill
3677 		 register in a later insn and avoiding a pair of
3678 		 memory stores and loads.
3679 
3680 		 Don't bother with this if this alternative will
3681 		 accept this operand.
3682 
3683 		 Don't do this for a multiword operand, since it is
3684 		 only a small win and has the risk of requiring more
3685 		 spill registers, which could cause a large loss.
3686 
3687 		 Don't do this if the preferred class has only one
3688 		 register because we might otherwise exhaust the
3689 		 class.  */
3690 
3691 	      if (! win && ! did_match
3692 		  && this_alternative[i] != NO_REGS
3693 		  && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3694 		  && reg_class_size [(int) preferred_class[i]] > 0
3695 		  && ! small_register_class_p (preferred_class[i]))
3696 		{
3697 		  if (! reg_class_subset_p (this_alternative[i],
3698 					    preferred_class[i]))
3699 		    {
3700 		      /* Since we don't have a way of forming the intersection,
3701 			 we just do something special if the preferred class
3702 			 is a subset of the class we have; that's the most
3703 			 common case anyway.  */
3704 		      if (reg_class_subset_p (preferred_class[i],
3705 					      this_alternative[i]))
3706 			this_alternative[i] = preferred_class[i];
3707 		      else
3708 			reject += (2 + 2 * pref_or_nothing[i]);
3709 		    }
3710 		}
3711 	    }
3712 
3713 	  /* Now see if any output operands that are marked "earlyclobber"
3714 	     in this alternative conflict with any input operands
3715 	     or any memory addresses.  */
3716 
3717 	  for (i = 0; i < noperands; i++)
3718 	    if (this_alternative_earlyclobber[i]
3719 		&& (this_alternative_win[i] || this_alternative_match_win[i]))
3720 	      {
3721 		struct decomposition early_data;
3722 
3723 		early_data = decompose (recog_data.operand[i]);
3724 
3725 		gcc_assert (modified[i] != RELOAD_READ);
3726 
3727 		if (this_alternative[i] == NO_REGS)
3728 		  {
3729 		    this_alternative_earlyclobber[i] = 0;
3730 		    gcc_assert (this_insn_is_asm);
3731 		    error_for_asm (this_insn,
3732 			      "%<&%> constraint used with no register class");
3733 		  }
3734 
3735 		for (j = 0; j < noperands; j++)
3736 		  /* Is this an input operand or a memory ref?  */
3737 		  if ((MEM_P (recog_data.operand[j])
3738 		       || modified[j] != RELOAD_WRITE)
3739 		      && j != i
3740 		      /* Ignore things like match_operator operands.  */
3741 		      && !recog_data.is_operator[j]
3742 		      /* Don't count an input operand that is constrained to match
3743 			 the early clobber operand.  */
3744 		      && ! (this_alternative_matches[j] == i
3745 			    && rtx_equal_p (recog_data.operand[i],
3746 					    recog_data.operand[j]))
3747 		      /* Is it altered by storing the earlyclobber operand?  */
3748 		      && !immune_p (recog_data.operand[j], recog_data.operand[i],
3749 				    early_data))
3750 		    {
3751 		      /* If the output is in a non-empty few-regs class,
3752 			 it's costly to reload it, so reload the input instead.  */
3753 		      if (small_register_class_p (this_alternative[i])
3754 			  && (REG_P (recog_data.operand[j])
3755 			      || GET_CODE (recog_data.operand[j]) == SUBREG))
3756 			{
3757 			  losers++;
3758 			  this_alternative_win[j] = 0;
3759 			  this_alternative_match_win[j] = 0;
3760 			}
3761 		      else
3762 			break;
3763 		    }
3764 		/* If an earlyclobber operand conflicts with something,
3765 		   it must be reloaded, so request this and count the cost.  */
3766 		if (j != noperands)
3767 		  {
3768 		    losers++;
3769 		    this_alternative_win[i] = 0;
3770 		    this_alternative_match_win[j] = 0;
3771 		    for (j = 0; j < noperands; j++)
3772 		      if (this_alternative_matches[j] == i
3773 			  && this_alternative_match_win[j])
3774 			{
3775 			  this_alternative_win[j] = 0;
3776 			  this_alternative_match_win[j] = 0;
3777 			  losers++;
3778 			}
3779 		  }
3780 	      }
3781 
3782 	  /* If one alternative accepts all the operands, no reload required,
3783 	     choose that alternative; don't consider the remaining ones.  */
3784 	  if (losers == 0)
3785 	    {
3786 	      /* Unswap these so that they are never swapped at `finish'.  */
3787 	      if (swapped)
3788 		{
3789 		  recog_data.operand[commutative] = substed_operand[commutative];
3790 		  recog_data.operand[commutative + 1]
3791 		    = substed_operand[commutative + 1];
3792 		}
3793 	      for (i = 0; i < noperands; i++)
3794 		{
3795 		  goal_alternative_win[i] = this_alternative_win[i];
3796 		  goal_alternative_match_win[i] = this_alternative_match_win[i];
3797 		  goal_alternative[i] = this_alternative[i];
3798 		  goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3799 		  goal_alternative_matches[i] = this_alternative_matches[i];
3800 		  goal_alternative_earlyclobber[i]
3801 		    = this_alternative_earlyclobber[i];
3802 		}
3803 	      goal_alternative_number = this_alternative_number;
3804 	      goal_alternative_swapped = swapped;
3805 	      goal_earlyclobber = this_earlyclobber;
3806 	      goto finish;
3807 	    }
3808 
3809 	  /* REJECT, set by the ! and ? constraint characters and when a register
3810 	     would be reloaded into a non-preferred class, discourages the use of
3811 	     this alternative for a reload goal.  REJECT is incremented by six
3812 	     for each ? and two for each non-preferred class.  */
3813 	  losers = losers * 6 + reject;
3814 
3815 	  /* If this alternative can be made to work by reloading,
3816 	     and it needs less reloading than the others checked so far,
3817 	     record it as the chosen goal for reloading.  */
3818 	  if (! bad)
3819 	    {
3820 	      if (best > losers)
3821 		{
3822 		  for (i = 0; i < noperands; i++)
3823 		    {
3824 		      goal_alternative[i] = this_alternative[i];
3825 		      goal_alternative_win[i] = this_alternative_win[i];
3826 		      goal_alternative_match_win[i]
3827 			= this_alternative_match_win[i];
3828 		      goal_alternative_offmemok[i]
3829 			= this_alternative_offmemok[i];
3830 		      goal_alternative_matches[i] = this_alternative_matches[i];
3831 		      goal_alternative_earlyclobber[i]
3832 			= this_alternative_earlyclobber[i];
3833 		    }
3834 		  goal_alternative_swapped = swapped;
3835 		  best = losers;
3836 		  goal_alternative_number = this_alternative_number;
3837 		  goal_earlyclobber = this_earlyclobber;
3838 		}
3839 	    }
3840 
3841 	  if (swapped)
3842 	    {
3843 	      enum reg_class tclass;
3844 	      int t;
3845 
3846 	      /* If the commutative operands have been swapped, swap
3847 		 them back in order to check the next alternative.  */
3848 	      recog_data.operand[commutative] = substed_operand[commutative];
3849 	      recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3850 	      /* Unswap the duplicates too.  */
3851 	      for (i = 0; i < recog_data.n_dups; i++)
3852 		if (recog_data.dup_num[i] == commutative
3853 		    || recog_data.dup_num[i] == commutative + 1)
3854 		  *recog_data.dup_loc[i]
3855 		    = recog_data.operand[(int) recog_data.dup_num[i]];
3856 
3857 	      /* Unswap the operand related information as well.  */
3858 	      tclass = preferred_class[commutative];
3859 	      preferred_class[commutative] = preferred_class[commutative + 1];
3860 	      preferred_class[commutative + 1] = tclass;
3861 
3862 	      t = pref_or_nothing[commutative];
3863 	      pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3864 	      pref_or_nothing[commutative + 1] = t;
3865 
3866 	      t = address_reloaded[commutative];
3867 	      address_reloaded[commutative] = address_reloaded[commutative + 1];
3868 	      address_reloaded[commutative + 1] = t;
3869 	    }
3870 	}
3871     }
3872 
3873   /* The operands don't meet the constraints.
3874      goal_alternative describes the alternative
3875      that we could reach by reloading the fewest operands.
3876      Reload so as to fit it.  */
3877 
3878   if (best == MAX_RECOG_OPERANDS * 2 + 600)
3879     {
3880       /* No alternative works with reloads??  */
3881       if (insn_code_number >= 0)
3882 	fatal_insn ("unable to generate reloads for:", insn);
3883       error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3884       /* Avoid further trouble with this insn.  */
3885       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3886       n_reloads = 0;
3887       return 0;
3888     }
3889 
3890   /* Jump to `finish' from above if all operands are valid already.
3891      In that case, goal_alternative_win is all 1.  */
3892  finish:
3893 
3894   /* Right now, for any pair of operands I and J that are required to match,
3895      with I < J,
3896      goal_alternative_matches[J] is I.
3897      Set up goal_alternative_matched as the inverse function:
3898      goal_alternative_matched[I] = J.  */
3899 
3900   for (i = 0; i < noperands; i++)
3901     goal_alternative_matched[i] = -1;
3902 
3903   for (i = 0; i < noperands; i++)
3904     if (! goal_alternative_win[i]
3905 	&& goal_alternative_matches[i] >= 0)
3906       goal_alternative_matched[goal_alternative_matches[i]] = i;
3907 
3908   for (i = 0; i < noperands; i++)
3909     goal_alternative_win[i] |= goal_alternative_match_win[i];
3910 
3911   /* If the best alternative is with operands 1 and 2 swapped,
3912      consider them swapped before reporting the reloads.  Update the
3913      operand numbers of any reloads already pushed.  */
3914 
3915   if (goal_alternative_swapped)
3916     {
3917       rtx tem;
3918 
3919       tem = substed_operand[commutative];
3920       substed_operand[commutative] = substed_operand[commutative + 1];
3921       substed_operand[commutative + 1] = tem;
3922       tem = recog_data.operand[commutative];
3923       recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3924       recog_data.operand[commutative + 1] = tem;
3925       tem = *recog_data.operand_loc[commutative];
3926       *recog_data.operand_loc[commutative]
3927 	= *recog_data.operand_loc[commutative + 1];
3928       *recog_data.operand_loc[commutative + 1] = tem;
3929 
3930       for (i = 0; i < n_reloads; i++)
3931 	{
3932 	  if (rld[i].opnum == commutative)
3933 	    rld[i].opnum = commutative + 1;
3934 	  else if (rld[i].opnum == commutative + 1)
3935 	    rld[i].opnum = commutative;
3936 	}
3937     }
3938 
3939   for (i = 0; i < noperands; i++)
3940     {
3941       operand_reloadnum[i] = -1;
3942 
3943       /* If this is an earlyclobber operand, we need to widen the scope.
3944 	 The reload must remain valid from the start of the insn being
3945 	 reloaded until after the operand is stored into its destination.
3946 	 We approximate this with RELOAD_OTHER even though we know that we
3947 	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3948 
3949 	 One special case that is worth checking is when we have an
3950 	 output that is earlyclobber but isn't used past the insn (typically
3951 	 a SCRATCH).  In this case, we only need have the reload live
3952 	 through the insn itself, but not for any of our input or output
3953 	 reloads.
3954 	 But we must not accidentally narrow the scope of an existing
3955 	 RELOAD_OTHER reload - leave these alone.
3956 
3957 	 In any case, anything needed to address this operand can remain
3958 	 however they were previously categorized.  */
3959 
3960       if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3961 	operand_type[i]
3962 	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3963 	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3964     }
3965 
3966   /* Any constants that aren't allowed and can't be reloaded
3967      into registers are here changed into memory references.  */
3968   for (i = 0; i < noperands; i++)
3969     if (! goal_alternative_win[i])
3970       {
3971 	rtx op = recog_data.operand[i];
3972 	rtx subreg = NULL_RTX;
3973 	rtx plus = NULL_RTX;
3974 	enum machine_mode mode = operand_mode[i];
3975 
3976 	/* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3977 	   push_reload so we have to let them pass here.  */
3978 	if (GET_CODE (op) == SUBREG)
3979 	  {
3980 	    subreg = op;
3981 	    op = SUBREG_REG (op);
3982 	    mode = GET_MODE (op);
3983 	  }
3984 
3985 	if (GET_CODE (op) == PLUS)
3986 	  {
3987 	    plus = op;
3988 	    op = XEXP (op, 1);
3989 	  }
3990 
3991 	if (CONST_POOL_OK_P (mode, op)
3992 	    && ((targetm.preferred_reload_class (op, goal_alternative[i])
3993 		 == NO_REGS)
3994 		|| no_input_reloads))
3995 	  {
3996 	    int this_address_reloaded;
3997 	    rtx tem = force_const_mem (mode, op);
3998 
3999 	    /* If we stripped a SUBREG or a PLUS above add it back.  */
4000 	    if (plus != NULL_RTX)
4001 	      tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
4002 
4003 	    if (subreg != NULL_RTX)
4004 	      tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
4005 
4006 	    this_address_reloaded = 0;
4007 	    substed_operand[i] = recog_data.operand[i]
4008 	      = find_reloads_toplev (tem, i, address_type[i], ind_levels,
4009 				     0, insn, &this_address_reloaded);
4010 
4011 	    /* If the alternative accepts constant pool refs directly
4012 	       there will be no reload needed at all.  */
4013 	    if (plus == NULL_RTX
4014 		&& subreg == NULL_RTX
4015 		&& alternative_allows_const_pool_ref (this_address_reloaded == 0
4016 						      ? substed_operand[i]
4017 						      : NULL,
4018 						      recog_data.constraints[i],
4019 						      goal_alternative_number))
4020 	      goal_alternative_win[i] = 1;
4021 	  }
4022       }
4023 
4024   /* Record the values of the earlyclobber operands for the caller.  */
4025   if (goal_earlyclobber)
4026     for (i = 0; i < noperands; i++)
4027       if (goal_alternative_earlyclobber[i])
4028 	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4029 
4030   /* Now record reloads for all the operands that need them.  */
4031   for (i = 0; i < noperands; i++)
4032     if (! goal_alternative_win[i])
4033       {
4034 	/* Operands that match previous ones have already been handled.  */
4035 	if (goal_alternative_matches[i] >= 0)
4036 	  ;
4037 	/* Handle an operand with a nonoffsettable address
4038 	   appearing where an offsettable address will do
4039 	   by reloading the address into a base register.
4040 
4041 	   ??? We can also do this when the operand is a register and
4042 	   reg_equiv_mem is not offsettable, but this is a bit tricky,
4043 	   so we don't bother with it.  It may not be worth doing.  */
4044 	else if (goal_alternative_matched[i] == -1
4045 		 && goal_alternative_offmemok[i]
4046 		 && MEM_P (recog_data.operand[i]))
4047 	  {
4048 	    /* If the address to be reloaded is a VOIDmode constant,
4049 	       use the default address mode as mode of the reload register,
4050 	       as would have been done by find_reloads_address.  */
4051 	    addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4052 	    enum machine_mode address_mode;
4053 
4054 	    address_mode = get_address_mode (recog_data.operand[i]);
4055 	    operand_reloadnum[i]
4056 	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4057 			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4058 			     base_reg_class (VOIDmode, as, MEM, SCRATCH),
4059 			     address_mode,
4060 			     VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4061 	    rld[operand_reloadnum[i]].inc
4062 	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4063 
4064 	    /* If this operand is an output, we will have made any
4065 	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4066 	       now we are treating part of the operand as an input, so
4067 	       we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
4068 
4069 	    if (modified[i] == RELOAD_WRITE)
4070 	      {
4071 		for (j = 0; j < n_reloads; j++)
4072 		  {
4073 		    if (rld[j].opnum == i)
4074 		      {
4075 			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4076 			  rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4077 			else if (rld[j].when_needed
4078 				 == RELOAD_FOR_OUTADDR_ADDRESS)
4079 			  rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4080 		      }
4081 		  }
4082 	      }
4083 	  }
4084 	else if (goal_alternative_matched[i] == -1)
4085 	  {
4086 	    operand_reloadnum[i]
4087 	      = push_reload ((modified[i] != RELOAD_WRITE
4088 			      ? recog_data.operand[i] : 0),
4089 			     (modified[i] != RELOAD_READ
4090 			      ? recog_data.operand[i] : 0),
4091 			     (modified[i] != RELOAD_WRITE
4092 			      ? recog_data.operand_loc[i] : 0),
4093 			     (modified[i] != RELOAD_READ
4094 			      ? recog_data.operand_loc[i] : 0),
4095 			     (enum reg_class) goal_alternative[i],
4096 			     (modified[i] == RELOAD_WRITE
4097 			      ? VOIDmode : operand_mode[i]),
4098 			     (modified[i] == RELOAD_READ
4099 			      ? VOIDmode : operand_mode[i]),
4100 			     (insn_code_number < 0 ? 0
4101 			      : insn_data[insn_code_number].operand[i].strict_low),
4102 			     0, i, operand_type[i]);
4103 	  }
4104 	/* In a matching pair of operands, one must be input only
4105 	   and the other must be output only.
4106 	   Pass the input operand as IN and the other as OUT.  */
4107 	else if (modified[i] == RELOAD_READ
4108 		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4109 	  {
4110 	    operand_reloadnum[i]
4111 	      = push_reload (recog_data.operand[i],
4112 			     recog_data.operand[goal_alternative_matched[i]],
4113 			     recog_data.operand_loc[i],
4114 			     recog_data.operand_loc[goal_alternative_matched[i]],
4115 			     (enum reg_class) goal_alternative[i],
4116 			     operand_mode[i],
4117 			     operand_mode[goal_alternative_matched[i]],
4118 			     0, 0, i, RELOAD_OTHER);
4119 	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4120 	  }
4121 	else if (modified[i] == RELOAD_WRITE
4122 		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4123 	  {
4124 	    operand_reloadnum[goal_alternative_matched[i]]
4125 	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
4126 			     recog_data.operand[i],
4127 			     recog_data.operand_loc[goal_alternative_matched[i]],
4128 			     recog_data.operand_loc[i],
4129 			     (enum reg_class) goal_alternative[i],
4130 			     operand_mode[goal_alternative_matched[i]],
4131 			     operand_mode[i],
4132 			     0, 0, i, RELOAD_OTHER);
4133 	    operand_reloadnum[i] = output_reloadnum;
4134 	  }
4135 	else
4136 	  {
4137 	    gcc_assert (insn_code_number < 0);
4138 	    error_for_asm (insn, "inconsistent operand constraints "
4139 			   "in an %<asm%>");
4140 	    /* Avoid further trouble with this insn.  */
4141 	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4142 	    n_reloads = 0;
4143 	    return 0;
4144 	  }
4145       }
4146     else if (goal_alternative_matched[i] < 0
4147 	     && goal_alternative_matches[i] < 0
4148 	     && address_operand_reloaded[i] != 1
4149 	     && optimize)
4150       {
4151 	/* For each non-matching operand that's a MEM or a pseudo-register
4152 	   that didn't get a hard register, make an optional reload.
4153 	   This may get done even if the insn needs no reloads otherwise.  */
4154 
4155 	rtx operand = recog_data.operand[i];
4156 
4157 	while (GET_CODE (operand) == SUBREG)
4158 	  operand = SUBREG_REG (operand);
4159 	if ((MEM_P (operand)
4160 	     || (REG_P (operand)
4161 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4162 	    /* If this is only for an output, the optional reload would not
4163 	       actually cause us to use a register now, just note that
4164 	       something is stored here.  */
4165 	    && (goal_alternative[i] != NO_REGS
4166 		|| modified[i] == RELOAD_WRITE)
4167 	    && ! no_input_reloads
4168 	    /* An optional output reload might allow to delete INSN later.
4169 	       We mustn't make in-out reloads on insns that are not permitted
4170 	       output reloads.
4171 	       If this is an asm, we can't delete it; we must not even call
4172 	       push_reload for an optional output reload in this case,
4173 	       because we can't be sure that the constraint allows a register,
4174 	       and push_reload verifies the constraints for asms.  */
4175 	    && (modified[i] == RELOAD_READ
4176 		|| (! no_output_reloads && ! this_insn_is_asm)))
4177 	  operand_reloadnum[i]
4178 	    = push_reload ((modified[i] != RELOAD_WRITE
4179 			    ? recog_data.operand[i] : 0),
4180 			   (modified[i] != RELOAD_READ
4181 			    ? recog_data.operand[i] : 0),
4182 			   (modified[i] != RELOAD_WRITE
4183 			    ? recog_data.operand_loc[i] : 0),
4184 			   (modified[i] != RELOAD_READ
4185 			    ? recog_data.operand_loc[i] : 0),
4186 			   (enum reg_class) goal_alternative[i],
4187 			   (modified[i] == RELOAD_WRITE
4188 			    ? VOIDmode : operand_mode[i]),
4189 			   (modified[i] == RELOAD_READ
4190 			    ? VOIDmode : operand_mode[i]),
4191 			   (insn_code_number < 0 ? 0
4192 			    : insn_data[insn_code_number].operand[i].strict_low),
4193 			   1, i, operand_type[i]);
4194 	/* If a memory reference remains (either as a MEM or a pseudo that
4195 	   did not get a hard register), yet we can't make an optional
4196 	   reload, check if this is actually a pseudo register reference;
4197 	   we then need to emit a USE and/or a CLOBBER so that reload
4198 	   inheritance will do the right thing.  */
4199 	else if (replace
4200 		 && (MEM_P (operand)
4201 		     || (REG_P (operand)
4202 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4203 			 && reg_renumber [REGNO (operand)] < 0)))
4204 	  {
4205 	    operand = *recog_data.operand_loc[i];
4206 
4207 	    while (GET_CODE (operand) == SUBREG)
4208 	      operand = SUBREG_REG (operand);
4209 	    if (REG_P (operand))
4210 	      {
4211 		if (modified[i] != RELOAD_WRITE)
4212 		  /* We mark the USE with QImode so that we recognize
4213 		     it as one that can be safely deleted at the end
4214 		     of reload.  */
4215 		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4216 					      insn), QImode);
4217 		if (modified[i] != RELOAD_READ)
4218 		  emit_insn_after (gen_clobber (operand), insn);
4219 	      }
4220 	  }
4221       }
4222     else if (goal_alternative_matches[i] >= 0
4223 	     && goal_alternative_win[goal_alternative_matches[i]]
4224 	     && modified[i] == RELOAD_READ
4225 	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4226 	     && ! no_input_reloads && ! no_output_reloads
4227 	     && optimize)
4228       {
4229 	/* Similarly, make an optional reload for a pair of matching
4230 	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
4231 
4232 	rtx operand = recog_data.operand[i];
4233 
4234 	while (GET_CODE (operand) == SUBREG)
4235 	  operand = SUBREG_REG (operand);
4236 	if ((MEM_P (operand)
4237 	     || (REG_P (operand)
4238 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4239 	    && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4240 	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4241 	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
4242 			   recog_data.operand[i],
4243 			   recog_data.operand_loc[goal_alternative_matches[i]],
4244 			   recog_data.operand_loc[i],
4245 			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4246 			   operand_mode[goal_alternative_matches[i]],
4247 			   operand_mode[i],
4248 			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4249       }
4250 
4251   /* Perform whatever substitutions on the operands we are supposed
4252      to make due to commutativity or replacement of registers
4253      with equivalent constants or memory slots.  */
4254 
4255   for (i = 0; i < noperands; i++)
4256     {
4257       /* We only do this on the last pass through reload, because it is
4258 	 possible for some data (like reg_equiv_address) to be changed during
4259 	 later passes.  Moreover, we lose the opportunity to get a useful
4260 	 reload_{in,out}_reg when we do these replacements.  */
4261 
4262       if (replace)
4263 	{
4264 	  rtx substitution = substed_operand[i];
4265 
4266 	  *recog_data.operand_loc[i] = substitution;
4267 
4268 	  /* If we're replacing an operand with a LABEL_REF, we need to
4269 	     make sure that there's a REG_LABEL_OPERAND note attached to
4270 	     this instruction.  */
4271 	  if (GET_CODE (substitution) == LABEL_REF
4272 	      && !find_reg_note (insn, REG_LABEL_OPERAND,
4273 				 XEXP (substitution, 0))
4274 	      /* For a JUMP_P, if it was a branch target it must have
4275 		 already been recorded as such.  */
4276 	      && (!JUMP_P (insn)
4277 		  || !label_is_jump_target_p (XEXP (substitution, 0),
4278 					      insn)))
4279 	    {
4280 	      add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4281 	      if (LABEL_P (XEXP (substitution, 0)))
4282 		++LABEL_NUSES (XEXP (substitution, 0));
4283 	    }
4284 
4285 	}
4286       else
4287 	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4288     }
4289 
4290   /* If this insn pattern contains any MATCH_DUP's, make sure that
4291      they will be substituted if the operands they match are substituted.
4292      Also do now any substitutions we already did on the operands.
4293 
4294      Don't do this if we aren't making replacements because we might be
4295      propagating things allocated by frame pointer elimination into places
4296      it doesn't expect.  */
4297 
4298   if (insn_code_number >= 0 && replace)
4299     for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4300       {
4301 	int opno = recog_data.dup_num[i];
4302 	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4303 	dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4304       }
4305 
4306 #if 0
4307   /* This loses because reloading of prior insns can invalidate the equivalence
4308      (or at least find_equiv_reg isn't smart enough to find it any more),
4309      causing this insn to need more reload regs than it needed before.
4310      It may be too late to make the reload regs available.
4311      Now this optimization is done safely in choose_reload_regs.  */
4312 
4313   /* For each reload of a reg into some other class of reg,
4314      search for an existing equivalent reg (same value now) in the right class.
4315      We can use it as long as we don't need to change its contents.  */
4316   for (i = 0; i < n_reloads; i++)
4317     if (rld[i].reg_rtx == 0
4318 	&& rld[i].in != 0
4319 	&& REG_P (rld[i].in)
4320 	&& rld[i].out == 0)
4321       {
4322 	rld[i].reg_rtx
4323 	  = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4324 			    static_reload_reg_p, 0, rld[i].inmode);
4325 	/* Prevent generation of insn to load the value
4326 	   because the one we found already has the value.  */
4327 	if (rld[i].reg_rtx)
4328 	  rld[i].in = rld[i].reg_rtx;
4329       }
4330 #endif
4331 
4332   /* If we detected error and replaced asm instruction by USE, forget about the
4333      reloads.  */
4334   if (GET_CODE (PATTERN (insn)) == USE
4335       && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4336     n_reloads = 0;
4337 
4338   /* Perhaps an output reload can be combined with another
4339      to reduce needs by one.  */
4340   if (!goal_earlyclobber)
4341     combine_reloads ();
4342 
4343   /* If we have a pair of reloads for parts of an address, they are reloading
4344      the same object, the operands themselves were not reloaded, and they
4345      are for two operands that are supposed to match, merge the reloads and
4346      change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
4347 
4348   for (i = 0; i < n_reloads; i++)
4349     {
4350       int k;
4351 
4352       for (j = i + 1; j < n_reloads; j++)
4353 	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4354 	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4355 	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4356 	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4357 	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4358 		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4359 		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4360 		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4361 	    && rtx_equal_p (rld[i].in, rld[j].in)
4362 	    && (operand_reloadnum[rld[i].opnum] < 0
4363 		|| rld[operand_reloadnum[rld[i].opnum]].optional)
4364 	    && (operand_reloadnum[rld[j].opnum] < 0
4365 		|| rld[operand_reloadnum[rld[j].opnum]].optional)
4366 	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4367 		|| (goal_alternative_matches[rld[j].opnum]
4368 		    == rld[i].opnum)))
4369 	  {
4370 	    for (k = 0; k < n_replacements; k++)
4371 	      if (replacements[k].what == j)
4372 		replacements[k].what = i;
4373 
4374 	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4375 		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4376 	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4377 	    else
4378 	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4379 	    rld[j].in = 0;
4380 	  }
4381     }
4382 
4383   /* Scan all the reloads and update their type.
4384      If a reload is for the address of an operand and we didn't reload
4385      that operand, change the type.  Similarly, change the operand number
4386      of a reload when two operands match.  If a reload is optional, treat it
4387      as though the operand isn't reloaded.
4388 
4389      ??? This latter case is somewhat odd because if we do the optional
4390      reload, it means the object is hanging around.  Thus we need only
4391      do the address reload if the optional reload was NOT done.
4392 
4393      Change secondary reloads to be the address type of their operand, not
4394      the normal type.
4395 
4396      If an operand's reload is now RELOAD_OTHER, change any
4397      RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4398      RELOAD_FOR_OTHER_ADDRESS.  */
4399 
4400   for (i = 0; i < n_reloads; i++)
4401     {
4402       if (rld[i].secondary_p
4403 	  && rld[i].when_needed == operand_type[rld[i].opnum])
4404 	rld[i].when_needed = address_type[rld[i].opnum];
4405 
4406       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4407 	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4408 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4409 	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4410 	  && (operand_reloadnum[rld[i].opnum] < 0
4411 	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4412 	{
4413 	  /* If we have a secondary reload to go along with this reload,
4414 	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4415 
4416 	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4417 	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4418 	      && rld[i].secondary_in_reload != -1)
4419 	    {
4420 	      int secondary_in_reload = rld[i].secondary_in_reload;
4421 
4422 	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4423 
4424 	      /* If there's a tertiary reload we have to change it also.  */
4425 	      if (secondary_in_reload > 0
4426 		  && rld[secondary_in_reload].secondary_in_reload != -1)
4427 		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4428 		  = RELOAD_FOR_OPADDR_ADDR;
4429 	    }
4430 
4431 	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4432 	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4433 	      && rld[i].secondary_out_reload != -1)
4434 	    {
4435 	      int secondary_out_reload = rld[i].secondary_out_reload;
4436 
4437 	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4438 
4439 	      /* If there's a tertiary reload we have to change it also.  */
4440 	      if (secondary_out_reload
4441 		  && rld[secondary_out_reload].secondary_out_reload != -1)
4442 		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4443 		  = RELOAD_FOR_OPADDR_ADDR;
4444 	    }
4445 
4446 	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4447 	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4448 	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4449 	  else
4450 	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4451 	}
4452 
4453       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4454 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4455 	  && operand_reloadnum[rld[i].opnum] >= 0
4456 	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4457 	      == RELOAD_OTHER))
4458 	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4459 
4460       if (goal_alternative_matches[rld[i].opnum] >= 0)
4461 	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4462     }
4463 
4464   /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4465      If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4466      reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4467 
4468      choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4469      conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4470      single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4471      However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4472      then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4473      RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4474      This is complicated by the fact that a single operand can have more
4475      than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4476      choose_reload_regs without affecting code quality, and cases that
4477      actually fail are extremely rare, so it turns out to be better to fix
4478      the problem here by not generating cases that choose_reload_regs will
4479      fail for.  */
4480   /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4481      RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4482      a single operand.
4483      We can reduce the register pressure by exploiting that a
4484      RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4485      does not conflict with any of them, if it is only used for the first of
4486      the RELOAD_FOR_X_ADDRESS reloads.  */
4487   {
4488     int first_op_addr_num = -2;
4489     int first_inpaddr_num[MAX_RECOG_OPERANDS];
4490     int first_outpaddr_num[MAX_RECOG_OPERANDS];
4491     int need_change = 0;
4492     /* We use last_op_addr_reload and the contents of the above arrays
4493        first as flags - -2 means no instance encountered, -1 means exactly
4494        one instance encountered.
4495        If more than one instance has been encountered, we store the reload
4496        number of the first reload of the kind in question; reload numbers
4497        are known to be non-negative.  */
4498     for (i = 0; i < noperands; i++)
4499       first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4500     for (i = n_reloads - 1; i >= 0; i--)
4501       {
4502 	switch (rld[i].when_needed)
4503 	  {
4504 	  case RELOAD_FOR_OPERAND_ADDRESS:
4505 	    if (++first_op_addr_num >= 0)
4506 	      {
4507 		first_op_addr_num = i;
4508 		need_change = 1;
4509 	      }
4510 	    break;
4511 	  case RELOAD_FOR_INPUT_ADDRESS:
4512 	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4513 	      {
4514 		first_inpaddr_num[rld[i].opnum] = i;
4515 		need_change = 1;
4516 	      }
4517 	    break;
4518 	  case RELOAD_FOR_OUTPUT_ADDRESS:
4519 	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4520 	      {
4521 		first_outpaddr_num[rld[i].opnum] = i;
4522 		need_change = 1;
4523 	      }
4524 	    break;
4525 	  default:
4526 	    break;
4527 	  }
4528       }
4529 
4530     if (need_change)
4531       {
4532 	for (i = 0; i < n_reloads; i++)
4533 	  {
4534 	    int first_num;
4535 	    enum reload_type type;
4536 
4537 	    switch (rld[i].when_needed)
4538 	      {
4539 	      case RELOAD_FOR_OPADDR_ADDR:
4540 		first_num = first_op_addr_num;
4541 		type = RELOAD_FOR_OPERAND_ADDRESS;
4542 		break;
4543 	      case RELOAD_FOR_INPADDR_ADDRESS:
4544 		first_num = first_inpaddr_num[rld[i].opnum];
4545 		type = RELOAD_FOR_INPUT_ADDRESS;
4546 		break;
4547 	      case RELOAD_FOR_OUTADDR_ADDRESS:
4548 		first_num = first_outpaddr_num[rld[i].opnum];
4549 		type = RELOAD_FOR_OUTPUT_ADDRESS;
4550 		break;
4551 	      default:
4552 		continue;
4553 	      }
4554 	    if (first_num < 0)
4555 	      continue;
4556 	    else if (i > first_num)
4557 	      rld[i].when_needed = type;
4558 	    else
4559 	      {
4560 		/* Check if the only TYPE reload that uses reload I is
4561 		   reload FIRST_NUM.  */
4562 		for (j = n_reloads - 1; j > first_num; j--)
4563 		  {
4564 		    if (rld[j].when_needed == type
4565 			&& (rld[i].secondary_p
4566 			    ? rld[j].secondary_in_reload == i
4567 			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4568 		      {
4569 			rld[i].when_needed = type;
4570 			break;
4571 		      }
4572 		  }
4573 	      }
4574 	  }
4575       }
4576   }
4577 
4578   /* See if we have any reloads that are now allowed to be merged
4579      because we've changed when the reload is needed to
4580      RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4581      check for the most common cases.  */
4582 
4583   for (i = 0; i < n_reloads; i++)
4584     if (rld[i].in != 0 && rld[i].out == 0
4585 	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4586 	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4587 	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4588       for (j = 0; j < n_reloads; j++)
4589 	if (i != j && rld[j].in != 0 && rld[j].out == 0
4590 	    && rld[j].when_needed == rld[i].when_needed
4591 	    && MATCHES (rld[i].in, rld[j].in)
4592 	    && rld[i].rclass == rld[j].rclass
4593 	    && !rld[i].nocombine && !rld[j].nocombine
4594 	    && rld[i].reg_rtx == rld[j].reg_rtx)
4595 	  {
4596 	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4597 	    transfer_replacements (i, j);
4598 	    rld[j].in = 0;
4599 	  }
4600 
4601 #ifdef HAVE_cc0
4602   /* If we made any reloads for addresses, see if they violate a
4603      "no input reloads" requirement for this insn.  But loads that we
4604      do after the insn (such as for output addresses) are fine.  */
4605   if (no_input_reloads)
4606     for (i = 0; i < n_reloads; i++)
4607       gcc_assert (rld[i].in == 0
4608 		  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4609 		  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4610 #endif
4611 
4612   /* Compute reload_mode and reload_nregs.  */
4613   for (i = 0; i < n_reloads; i++)
4614     {
4615       rld[i].mode
4616 	= (rld[i].inmode == VOIDmode
4617 	   || (GET_MODE_SIZE (rld[i].outmode)
4618 	       > GET_MODE_SIZE (rld[i].inmode)))
4619 	  ? rld[i].outmode : rld[i].inmode;
4620 
4621       rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4622     }
4623 
4624   /* Special case a simple move with an input reload and a
4625      destination of a hard reg, if the hard reg is ok, use it.  */
4626   for (i = 0; i < n_reloads; i++)
4627     if (rld[i].when_needed == RELOAD_FOR_INPUT
4628 	&& GET_CODE (PATTERN (insn)) == SET
4629 	&& REG_P (SET_DEST (PATTERN (insn)))
4630 	&& (SET_SRC (PATTERN (insn)) == rld[i].in
4631 	    || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4632 	&& !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4633       {
4634 	rtx dest = SET_DEST (PATTERN (insn));
4635 	unsigned int regno = REGNO (dest);
4636 
4637 	if (regno < FIRST_PSEUDO_REGISTER
4638 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4639 	    && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4640 	  {
4641 	    int nr = hard_regno_nregs[regno][rld[i].mode];
4642 	    int ok = 1, nri;
4643 
4644 	    for (nri = 1; nri < nr; nri ++)
4645 	      if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4646 		{
4647 		  ok = 0;
4648 		  break;
4649 		}
4650 
4651 	    if (ok)
4652 	      rld[i].reg_rtx = dest;
4653 	  }
4654       }
4655 
4656   return retval;
4657 }
4658 
4659 /* Return true if alternative number ALTNUM in constraint-string
4660    CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4661    MEM gives the reference if it didn't need any reloads, otherwise it
4662    is null.  */
4663 
4664 static bool
alternative_allows_const_pool_ref(rtx mem ATTRIBUTE_UNUSED,const char * constraint,int altnum)4665 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4666 				   const char *constraint, int altnum)
4667 {
4668   int c;
4669 
4670   /* Skip alternatives before the one requested.  */
4671   while (altnum > 0)
4672     {
4673       while (*constraint++ != ',')
4674 	;
4675       altnum--;
4676     }
4677   /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4678      If one of them is present, this alternative accepts the result of
4679      passing a constant-pool reference through find_reloads_toplev.
4680 
4681      The same is true of extra memory constraints if the address
4682      was reloaded into a register.  However, the target may elect
4683      to disallow the original constant address, forcing it to be
4684      reloaded into a register instead.  */
4685   for (; (c = *constraint) && c != ',' && c != '#';
4686        constraint += CONSTRAINT_LEN (c, constraint))
4687     {
4688       if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4689 	return true;
4690 #ifdef EXTRA_CONSTRAINT_STR
4691       if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4692 	  && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4693 	return true;
4694 #endif
4695     }
4696   return false;
4697 }
4698 
4699 /* Scan X for memory references and scan the addresses for reloading.
4700    Also checks for references to "constant" regs that we want to eliminate
4701    and replaces them with the values they stand for.
4702    We may alter X destructively if it contains a reference to such.
4703    If X is just a constant reg, we return the equivalent value
4704    instead of X.
4705 
4706    IND_LEVELS says how many levels of indirect addressing this machine
4707    supports.
4708 
4709    OPNUM and TYPE identify the purpose of the reload.
4710 
4711    IS_SET_DEST is true if X is the destination of a SET, which is not
4712    appropriate to be replaced by a constant.
4713 
4714    INSN, if nonzero, is the insn in which we do the reload.  It is used
4715    to determine if we may generate output reloads, and where to put USEs
4716    for pseudos that we have to replace with stack slots.
4717 
4718    ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4719    result of find_reloads_address.  */
4720 
4721 static rtx
find_reloads_toplev(rtx x,int opnum,enum reload_type type,int ind_levels,int is_set_dest,rtx insn,int * address_reloaded)4722 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4723 		     int ind_levels, int is_set_dest, rtx insn,
4724 		     int *address_reloaded)
4725 {
4726   RTX_CODE code = GET_CODE (x);
4727 
4728   const char *fmt = GET_RTX_FORMAT (code);
4729   int i;
4730   int copied;
4731 
4732   if (code == REG)
4733     {
4734       /* This code is duplicated for speed in find_reloads.  */
4735       int regno = REGNO (x);
4736       if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4737 	x = reg_equiv_constant (regno);
4738 #if 0
4739       /*  This creates (subreg (mem...)) which would cause an unnecessary
4740 	  reload of the mem.  */
4741       else if (reg_equiv_mem (regno) != 0)
4742 	x = reg_equiv_mem (regno);
4743 #endif
4744       else if (reg_equiv_memory_loc (regno)
4745 	       && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4746 	{
4747 	  rtx mem = make_memloc (x, regno);
4748 	  if (reg_equiv_address (regno)
4749 	      || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4750 	    {
4751 	      /* If this is not a toplevel operand, find_reloads doesn't see
4752 		 this substitution.  We have to emit a USE of the pseudo so
4753 		 that delete_output_reload can see it.  */
4754 	      if (replace_reloads && recog_data.operand[opnum] != x)
4755 		/* We mark the USE with QImode so that we recognize it
4756 		   as one that can be safely deleted at the end of
4757 		   reload.  */
4758 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4759 			  QImode);
4760 	      x = mem;
4761 	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4762 					opnum, type, ind_levels, insn);
4763 	      if (!rtx_equal_p (x, mem))
4764 		push_reg_equiv_alt_mem (regno, x);
4765 	      if (address_reloaded)
4766 		*address_reloaded = i;
4767 	    }
4768 	}
4769       return x;
4770     }
4771   if (code == MEM)
4772     {
4773       rtx tem = x;
4774 
4775       i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4776 				opnum, type, ind_levels, insn);
4777       if (address_reloaded)
4778 	*address_reloaded = i;
4779 
4780       return tem;
4781     }
4782 
4783   if (code == SUBREG && REG_P (SUBREG_REG (x)))
4784     {
4785       /* Check for SUBREG containing a REG that's equivalent to a
4786 	 constant.  If the constant has a known value, truncate it
4787 	 right now.  Similarly if we are extracting a single-word of a
4788 	 multi-word constant.  If the constant is symbolic, allow it
4789 	 to be substituted normally.  push_reload will strip the
4790 	 subreg later.  The constant must not be VOIDmode, because we
4791 	 will lose the mode of the register (this should never happen
4792 	 because one of the cases above should handle it).  */
4793 
4794       int regno = REGNO (SUBREG_REG (x));
4795       rtx tem;
4796 
4797       if (regno >= FIRST_PSEUDO_REGISTER
4798 	  && reg_renumber[regno] < 0
4799 	  && reg_equiv_constant (regno) != 0)
4800 	{
4801 	  tem =
4802 	    simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4803 				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4804 	  gcc_assert (tem);
4805 	  if (CONSTANT_P (tem)
4806 	      && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4807 	    {
4808 	      tem = force_const_mem (GET_MODE (x), tem);
4809 	      i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4810 					&XEXP (tem, 0), opnum, type,
4811 					ind_levels, insn);
4812 	      if (address_reloaded)
4813 		*address_reloaded = i;
4814 	    }
4815 	  return tem;
4816 	}
4817 
4818       /* If the subreg contains a reg that will be converted to a mem,
4819 	 attempt to convert the whole subreg to a (narrower or wider)
4820 	 memory reference instead.  If this succeeds, we're done --
4821 	 otherwise fall through to check whether the inner reg still
4822 	 needs address reloads anyway.  */
4823 
4824       if (regno >= FIRST_PSEUDO_REGISTER
4825 	  && reg_equiv_memory_loc (regno) != 0)
4826 	{
4827 	  tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4828 					     insn, address_reloaded);
4829 	  if (tem)
4830 	    return tem;
4831 	}
4832     }
4833 
4834   for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4835     {
4836       if (fmt[i] == 'e')
4837 	{
4838 	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4839 					      ind_levels, is_set_dest, insn,
4840 					      address_reloaded);
4841 	  /* If we have replaced a reg with it's equivalent memory loc -
4842 	     that can still be handled here e.g. if it's in a paradoxical
4843 	     subreg - we must make the change in a copy, rather than using
4844 	     a destructive change.  This way, find_reloads can still elect
4845 	     not to do the change.  */
4846 	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4847 	    {
4848 	      x = shallow_copy_rtx (x);
4849 	      copied = 1;
4850 	    }
4851 	  XEXP (x, i) = new_part;
4852 	}
4853     }
4854   return x;
4855 }
4856 
4857 /* Return a mem ref for the memory equivalent of reg REGNO.
4858    This mem ref is not shared with anything.  */
4859 
4860 static rtx
make_memloc(rtx ad,int regno)4861 make_memloc (rtx ad, int regno)
4862 {
4863   /* We must rerun eliminate_regs, in case the elimination
4864      offsets have changed.  */
4865   rtx tem
4866     = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4867 	    0);
4868 
4869   /* If TEM might contain a pseudo, we must copy it to avoid
4870      modifying it when we do the substitution for the reload.  */
4871   if (rtx_varies_p (tem, 0))
4872     tem = copy_rtx (tem);
4873 
4874   tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4875   tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4876 
4877   /* Copy the result if it's still the same as the equivalence, to avoid
4878      modifying it when we do the substitution for the reload.  */
4879   if (tem == reg_equiv_memory_loc (regno))
4880     tem = copy_rtx (tem);
4881   return tem;
4882 }
4883 
4884 /* Returns true if AD could be turned into a valid memory reference
4885    to mode MODE in address space AS by reloading the part pointed to
4886    by PART into a register.  */
4887 
4888 static int
maybe_memory_address_addr_space_p(enum machine_mode mode,rtx ad,addr_space_t as,rtx * part)4889 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4890 				   addr_space_t as, rtx *part)
4891 {
4892   int retv;
4893   rtx tem = *part;
4894   rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4895 
4896   *part = reg;
4897   retv = memory_address_addr_space_p (mode, ad, as);
4898   *part = tem;
4899 
4900   return retv;
4901 }
4902 
4903 /* Record all reloads needed for handling memory address AD
4904    which appears in *LOC in a memory reference to mode MODE
4905    which itself is found in location  *MEMREFLOC.
4906    Note that we take shortcuts assuming that no multi-reg machine mode
4907    occurs as part of an address.
4908 
4909    OPNUM and TYPE specify the purpose of this reload.
4910 
4911    IND_LEVELS says how many levels of indirect addressing this machine
4912    supports.
4913 
4914    INSN, if nonzero, is the insn in which we do the reload.  It is used
4915    to determine if we may generate output reloads, and where to put USEs
4916    for pseudos that we have to replace with stack slots.
4917 
4918    Value is one if this address is reloaded or replaced as a whole; it is
4919    zero if the top level of this address was not reloaded or replaced, and
4920    it is -1 if it may or may not have been reloaded or replaced.
4921 
4922    Note that there is no verification that the address will be valid after
4923    this routine does its work.  Instead, we rely on the fact that the address
4924    was valid when reload started.  So we need only undo things that reload
4925    could have broken.  These are wrong register types, pseudos not allocated
4926    to a hard register, and frame pointer elimination.  */
4927 
4928 static int
find_reloads_address(enum machine_mode mode,rtx * memrefloc,rtx ad,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx insn)4929 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4930 		      rtx *loc, int opnum, enum reload_type type,
4931 		      int ind_levels, rtx insn)
4932 {
4933   addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4934 			     : ADDR_SPACE_GENERIC;
4935   int regno;
4936   int removed_and = 0;
4937   int op_index;
4938   rtx tem;
4939 
4940   /* If the address is a register, see if it is a legitimate address and
4941      reload if not.  We first handle the cases where we need not reload
4942      or where we must reload in a non-standard way.  */
4943 
4944   if (REG_P (ad))
4945     {
4946       regno = REGNO (ad);
4947 
4948       if (reg_equiv_constant (regno) != 0)
4949 	{
4950 	  find_reloads_address_part (reg_equiv_constant (regno), loc,
4951 				     base_reg_class (mode, as, MEM, SCRATCH),
4952 				     GET_MODE (ad), opnum, type, ind_levels);
4953 	  return 1;
4954 	}
4955 
4956       tem = reg_equiv_memory_loc (regno);
4957       if (tem != 0)
4958 	{
4959 	  if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4960 	    {
4961 	      tem = make_memloc (ad, regno);
4962 	      if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4963 							XEXP (tem, 0),
4964 							MEM_ADDR_SPACE (tem)))
4965 		{
4966 		  rtx orig = tem;
4967 
4968 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4969 					&XEXP (tem, 0), opnum,
4970 					ADDR_TYPE (type), ind_levels, insn);
4971 		  if (!rtx_equal_p (tem, orig))
4972 		    push_reg_equiv_alt_mem (regno, tem);
4973 		}
4974 	      /* We can avoid a reload if the register's equivalent memory
4975 		 expression is valid as an indirect memory address.
4976 		 But not all addresses are valid in a mem used as an indirect
4977 		 address: only reg or reg+constant.  */
4978 
4979 	      if (ind_levels > 0
4980 		  && strict_memory_address_addr_space_p (mode, tem, as)
4981 		  && (REG_P (XEXP (tem, 0))
4982 		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4983 			  && REG_P (XEXP (XEXP (tem, 0), 0))
4984 			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4985 		{
4986 		  /* TEM is not the same as what we'll be replacing the
4987 		     pseudo with after reload, put a USE in front of INSN
4988 		     in the final reload pass.  */
4989 		  if (replace_reloads
4990 		      && num_not_at_initial_offset
4991 		      && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4992 		    {
4993 		      *loc = tem;
4994 		      /* We mark the USE with QImode so that we
4995 			 recognize it as one that can be safely
4996 			 deleted at the end of reload.  */
4997 		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4998 						  insn), QImode);
4999 
5000 		      /* This doesn't really count as replacing the address
5001 			 as a whole, since it is still a memory access.  */
5002 		    }
5003 		  return 0;
5004 		}
5005 	      ad = tem;
5006 	    }
5007 	}
5008 
5009       /* The only remaining case where we can avoid a reload is if this is a
5010 	 hard register that is valid as a base register and which is not the
5011 	 subject of a CLOBBER in this insn.  */
5012 
5013       else if (regno < FIRST_PSEUDO_REGISTER
5014 	       && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
5015 	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
5016 	return 0;
5017 
5018       /* If we do not have one of the cases above, we must do the reload.  */
5019       push_reload (ad, NULL_RTX, loc, (rtx*) 0,
5020 		   base_reg_class (mode, as, MEM, SCRATCH),
5021 		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5022       return 1;
5023     }
5024 
5025   if (strict_memory_address_addr_space_p (mode, ad, as))
5026     {
5027       /* The address appears valid, so reloads are not needed.
5028 	 But the address may contain an eliminable register.
5029 	 This can happen because a machine with indirect addressing
5030 	 may consider a pseudo register by itself a valid address even when
5031 	 it has failed to get a hard reg.
5032 	 So do a tree-walk to find and eliminate all such regs.  */
5033 
5034       /* But first quickly dispose of a common case.  */
5035       if (GET_CODE (ad) == PLUS
5036 	  && CONST_INT_P (XEXP (ad, 1))
5037 	  && REG_P (XEXP (ad, 0))
5038 	  && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5039 	return 0;
5040 
5041       subst_reg_equivs_changed = 0;
5042       *loc = subst_reg_equivs (ad, insn);
5043 
5044       if (! subst_reg_equivs_changed)
5045 	return 0;
5046 
5047       /* Check result for validity after substitution.  */
5048       if (strict_memory_address_addr_space_p (mode, ad, as))
5049 	return 0;
5050     }
5051 
5052 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5053   do
5054     {
5055       if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5056 	{
5057 	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5058 				     ind_levels, win);
5059 	}
5060       break;
5061     win:
5062       *memrefloc = copy_rtx (*memrefloc);
5063       XEXP (*memrefloc, 0) = ad;
5064       move_replacements (&ad, &XEXP (*memrefloc, 0));
5065       return -1;
5066     }
5067   while (0);
5068 #endif
5069 
5070   /* The address is not valid.  We have to figure out why.  First see if
5071      we have an outer AND and remove it if so.  Then analyze what's inside.  */
5072 
5073   if (GET_CODE (ad) == AND)
5074     {
5075       removed_and = 1;
5076       loc = &XEXP (ad, 0);
5077       ad = *loc;
5078     }
5079 
5080   /* One possibility for why the address is invalid is that it is itself
5081      a MEM.  This can happen when the frame pointer is being eliminated, a
5082      pseudo is not allocated to a hard register, and the offset between the
5083      frame and stack pointers is not its initial value.  In that case the
5084      pseudo will have been replaced by a MEM referring to the
5085      stack pointer.  */
5086   if (MEM_P (ad))
5087     {
5088       /* First ensure that the address in this MEM is valid.  Then, unless
5089 	 indirect addresses are valid, reload the MEM into a register.  */
5090       tem = ad;
5091       find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5092 			    opnum, ADDR_TYPE (type),
5093 			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
5094 
5095       /* If tem was changed, then we must create a new memory reference to
5096 	 hold it and store it back into memrefloc.  */
5097       if (tem != ad && memrefloc)
5098 	{
5099 	  *memrefloc = copy_rtx (*memrefloc);
5100 	  copy_replacements (tem, XEXP (*memrefloc, 0));
5101 	  loc = &XEXP (*memrefloc, 0);
5102 	  if (removed_and)
5103 	    loc = &XEXP (*loc, 0);
5104 	}
5105 
5106       /* Check similar cases as for indirect addresses as above except
5107 	 that we can allow pseudos and a MEM since they should have been
5108 	 taken care of above.  */
5109 
5110       if (ind_levels == 0
5111 	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5112 	  || MEM_P (XEXP (tem, 0))
5113 	  || ! (REG_P (XEXP (tem, 0))
5114 		|| (GET_CODE (XEXP (tem, 0)) == PLUS
5115 		    && REG_P (XEXP (XEXP (tem, 0), 0))
5116 		    && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5117 	{
5118 	  /* Must use TEM here, not AD, since it is the one that will
5119 	     have any subexpressions reloaded, if needed.  */
5120 	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5121 		       base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5122 		       VOIDmode, 0,
5123 		       0, opnum, type);
5124 	  return ! removed_and;
5125 	}
5126       else
5127 	return 0;
5128     }
5129 
5130   /* If we have address of a stack slot but it's not valid because the
5131      displacement is too large, compute the sum in a register.
5132      Handle all base registers here, not just fp/ap/sp, because on some
5133      targets (namely SH) we can also get too large displacements from
5134      big-endian corrections.  */
5135   else if (GET_CODE (ad) == PLUS
5136 	   && REG_P (XEXP (ad, 0))
5137 	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5138 	   && CONST_INT_P (XEXP (ad, 1))
5139 	   && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5140 				    CONST_INT)
5141 	       /* Similarly, if we were to reload the base register and the
5142 		  mem+offset address is still invalid, then we want to reload
5143 		  the whole address, not just the base register.  */
5144 	       || ! maybe_memory_address_addr_space_p
5145 		     (mode, ad, as, &(XEXP (ad, 0)))))
5146 
5147     {
5148       /* Unshare the MEM rtx so we can safely alter it.  */
5149       if (memrefloc)
5150 	{
5151 	  *memrefloc = copy_rtx (*memrefloc);
5152 	  loc = &XEXP (*memrefloc, 0);
5153 	  if (removed_and)
5154 	    loc = &XEXP (*loc, 0);
5155 	}
5156 
5157       if (double_reg_address_ok
5158 	  && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5159 				  PLUS, CONST_INT))
5160 	{
5161 	  /* Unshare the sum as well.  */
5162 	  *loc = ad = copy_rtx (ad);
5163 
5164 	  /* Reload the displacement into an index reg.
5165 	     We assume the frame pointer or arg pointer is a base reg.  */
5166 	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5167 				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
5168 				     type, ind_levels);
5169 	  return 0;
5170 	}
5171       else
5172 	{
5173 	  /* If the sum of two regs is not necessarily valid,
5174 	     reload the sum into a base reg.
5175 	     That will at least work.  */
5176 	  find_reloads_address_part (ad, loc,
5177 				     base_reg_class (mode, as, MEM, SCRATCH),
5178 				     GET_MODE (ad), opnum, type, ind_levels);
5179 	}
5180       return ! removed_and;
5181     }
5182 
5183   /* If we have an indexed stack slot, there are three possible reasons why
5184      it might be invalid: The index might need to be reloaded, the address
5185      might have been made by frame pointer elimination and hence have a
5186      constant out of range, or both reasons might apply.
5187 
5188      We can easily check for an index needing reload, but even if that is the
5189      case, we might also have an invalid constant.  To avoid making the
5190      conservative assumption and requiring two reloads, we see if this address
5191      is valid when not interpreted strictly.  If it is, the only problem is
5192      that the index needs a reload and find_reloads_address_1 will take care
5193      of it.
5194 
5195      Handle all base registers here, not just fp/ap/sp, because on some
5196      targets (namely SPARC) we can also get invalid addresses from preventive
5197      subreg big-endian corrections made by find_reloads_toplev.  We
5198      can also get expressions involving LO_SUM (rather than PLUS) from
5199      find_reloads_subreg_address.
5200 
5201      If we decide to do something, it must be that `double_reg_address_ok'
5202      is true.  We generate a reload of the base register + constant and
5203      rework the sum so that the reload register will be added to the index.
5204      This is safe because we know the address isn't shared.
5205 
5206      We check for the base register as both the first and second operand of
5207      the innermost PLUS and/or LO_SUM.  */
5208 
5209   for (op_index = 0; op_index < 2; ++op_index)
5210     {
5211       rtx operand, addend;
5212       enum rtx_code inner_code;
5213 
5214       if (GET_CODE (ad) != PLUS)
5215 	  continue;
5216 
5217       inner_code = GET_CODE (XEXP (ad, 0));
5218       if (!(GET_CODE (ad) == PLUS
5219 	    && CONST_INT_P (XEXP (ad, 1))
5220 	    && (inner_code == PLUS || inner_code == LO_SUM)))
5221 	continue;
5222 
5223       operand = XEXP (XEXP (ad, 0), op_index);
5224       if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5225 	continue;
5226 
5227       addend = XEXP (XEXP (ad, 0), 1 - op_index);
5228 
5229       if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5230 				GET_CODE (addend))
5231 	   || operand == frame_pointer_rtx
5232 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5233 	   || operand == hard_frame_pointer_rtx
5234 #endif
5235 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5236 	   || operand == arg_pointer_rtx
5237 #endif
5238 	   || operand == stack_pointer_rtx)
5239 	  && ! maybe_memory_address_addr_space_p
5240 		(mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5241 	{
5242 	  rtx offset_reg;
5243 	  enum reg_class cls;
5244 
5245 	  offset_reg = plus_constant (GET_MODE (ad), operand,
5246 				      INTVAL (XEXP (ad, 1)));
5247 
5248 	  /* Form the adjusted address.  */
5249 	  if (GET_CODE (XEXP (ad, 0)) == PLUS)
5250 	    ad = gen_rtx_PLUS (GET_MODE (ad),
5251 			       op_index == 0 ? offset_reg : addend,
5252 			       op_index == 0 ? addend : offset_reg);
5253 	  else
5254 	    ad = gen_rtx_LO_SUM (GET_MODE (ad),
5255 				 op_index == 0 ? offset_reg : addend,
5256 				 op_index == 0 ? addend : offset_reg);
5257 	  *loc = ad;
5258 
5259 	  cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5260 	  find_reloads_address_part (XEXP (ad, op_index),
5261 				     &XEXP (ad, op_index), cls,
5262 				     GET_MODE (ad), opnum, type, ind_levels);
5263 	  find_reloads_address_1 (mode, as,
5264 				  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5265 				  GET_CODE (XEXP (ad, op_index)),
5266 				  &XEXP (ad, 1 - op_index), opnum,
5267 				  type, 0, insn);
5268 
5269 	  return 0;
5270 	}
5271     }
5272 
5273   /* See if address becomes valid when an eliminable register
5274      in a sum is replaced.  */
5275 
5276   tem = ad;
5277   if (GET_CODE (ad) == PLUS)
5278     tem = subst_indexed_address (ad);
5279   if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5280     {
5281       /* Ok, we win that way.  Replace any additional eliminable
5282 	 registers.  */
5283 
5284       subst_reg_equivs_changed = 0;
5285       tem = subst_reg_equivs (tem, insn);
5286 
5287       /* Make sure that didn't make the address invalid again.  */
5288 
5289       if (! subst_reg_equivs_changed
5290 	  || strict_memory_address_addr_space_p (mode, tem, as))
5291 	{
5292 	  *loc = tem;
5293 	  return 0;
5294 	}
5295     }
5296 
5297   /* If constants aren't valid addresses, reload the constant address
5298      into a register.  */
5299   if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5300     {
5301       enum machine_mode address_mode = GET_MODE (ad);
5302       if (address_mode == VOIDmode)
5303 	address_mode = targetm.addr_space.address_mode (as);
5304 
5305       /* If AD is an address in the constant pool, the MEM rtx may be shared.
5306 	 Unshare it so we can safely alter it.  */
5307       if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5308 	  && CONSTANT_POOL_ADDRESS_P (ad))
5309 	{
5310 	  *memrefloc = copy_rtx (*memrefloc);
5311 	  loc = &XEXP (*memrefloc, 0);
5312 	  if (removed_and)
5313 	    loc = &XEXP (*loc, 0);
5314 	}
5315 
5316       find_reloads_address_part (ad, loc,
5317 				 base_reg_class (mode, as, MEM, SCRATCH),
5318 				 address_mode, opnum, type, ind_levels);
5319       return ! removed_and;
5320     }
5321 
5322   return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5323 				 opnum, type, ind_levels, insn);
5324 }
5325 
5326 /* Find all pseudo regs appearing in AD
5327    that are eliminable in favor of equivalent values
5328    and do not have hard regs; replace them by their equivalents.
5329    INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
5330    front of it for pseudos that we have to replace with stack slots.  */
5331 
5332 static rtx
subst_reg_equivs(rtx ad,rtx insn)5333 subst_reg_equivs (rtx ad, rtx insn)
5334 {
5335   RTX_CODE code = GET_CODE (ad);
5336   int i;
5337   const char *fmt;
5338 
5339   switch (code)
5340     {
5341     case HIGH:
5342     case CONST:
5343     CASE_CONST_ANY:
5344     case SYMBOL_REF:
5345     case LABEL_REF:
5346     case PC:
5347     case CC0:
5348       return ad;
5349 
5350     case REG:
5351       {
5352 	int regno = REGNO (ad);
5353 
5354 	if (reg_equiv_constant (regno) != 0)
5355 	  {
5356 	    subst_reg_equivs_changed = 1;
5357 	    return reg_equiv_constant (regno);
5358 	  }
5359 	if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5360 	  {
5361 	    rtx mem = make_memloc (ad, regno);
5362 	    if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5363 	      {
5364 		subst_reg_equivs_changed = 1;
5365 		/* We mark the USE with QImode so that we recognize it
5366 		   as one that can be safely deleted at the end of
5367 		   reload.  */
5368 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5369 			  QImode);
5370 		return mem;
5371 	      }
5372 	  }
5373       }
5374       return ad;
5375 
5376     case PLUS:
5377       /* Quickly dispose of a common case.  */
5378       if (XEXP (ad, 0) == frame_pointer_rtx
5379 	  && CONST_INT_P (XEXP (ad, 1)))
5380 	return ad;
5381       break;
5382 
5383     default:
5384       break;
5385     }
5386 
5387   fmt = GET_RTX_FORMAT (code);
5388   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5389     if (fmt[i] == 'e')
5390       XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5391   return ad;
5392 }
5393 
5394 /* Compute the sum of X and Y, making canonicalizations assumed in an
5395    address, namely: sum constant integers, surround the sum of two
5396    constants with a CONST, put the constant as the second operand, and
5397    group the constant on the outermost sum.
5398 
5399    This routine assumes both inputs are already in canonical form.  */
5400 
5401 rtx
form_sum(enum machine_mode mode,rtx x,rtx y)5402 form_sum (enum machine_mode mode, rtx x, rtx y)
5403 {
5404   rtx tem;
5405 
5406   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5407   gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5408 
5409   if (CONST_INT_P (x))
5410     return plus_constant (mode, y, INTVAL (x));
5411   else if (CONST_INT_P (y))
5412     return plus_constant (mode, x, INTVAL (y));
5413   else if (CONSTANT_P (x))
5414     tem = x, x = y, y = tem;
5415 
5416   if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5417     return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5418 
5419   /* Note that if the operands of Y are specified in the opposite
5420      order in the recursive calls below, infinite recursion will occur.  */
5421   if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5422     return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5423 
5424   /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5425      constant will have been placed second.  */
5426   if (CONSTANT_P (x) && CONSTANT_P (y))
5427     {
5428       if (GET_CODE (x) == CONST)
5429 	x = XEXP (x, 0);
5430       if (GET_CODE (y) == CONST)
5431 	y = XEXP (y, 0);
5432 
5433       return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5434     }
5435 
5436   return gen_rtx_PLUS (mode, x, y);
5437 }
5438 
5439 /* If ADDR is a sum containing a pseudo register that should be
5440    replaced with a constant (from reg_equiv_constant),
5441    return the result of doing so, and also apply the associative
5442    law so that the result is more likely to be a valid address.
5443    (But it is not guaranteed to be one.)
5444 
5445    Note that at most one register is replaced, even if more are
5446    replaceable.  Also, we try to put the result into a canonical form
5447    so it is more likely to be a valid address.
5448 
5449    In all other cases, return ADDR.  */
5450 
5451 static rtx
subst_indexed_address(rtx addr)5452 subst_indexed_address (rtx addr)
5453 {
5454   rtx op0 = 0, op1 = 0, op2 = 0;
5455   rtx tem;
5456   int regno;
5457 
5458   if (GET_CODE (addr) == PLUS)
5459     {
5460       /* Try to find a register to replace.  */
5461       op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5462       if (REG_P (op0)
5463 	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5464 	  && reg_renumber[regno] < 0
5465 	  && reg_equiv_constant (regno) != 0)
5466 	op0 = reg_equiv_constant (regno);
5467       else if (REG_P (op1)
5468 	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5469 	       && reg_renumber[regno] < 0
5470 	       && reg_equiv_constant (regno) != 0)
5471 	op1 = reg_equiv_constant (regno);
5472       else if (GET_CODE (op0) == PLUS
5473 	       && (tem = subst_indexed_address (op0)) != op0)
5474 	op0 = tem;
5475       else if (GET_CODE (op1) == PLUS
5476 	       && (tem = subst_indexed_address (op1)) != op1)
5477 	op1 = tem;
5478       else
5479 	return addr;
5480 
5481       /* Pick out up to three things to add.  */
5482       if (GET_CODE (op1) == PLUS)
5483 	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5484       else if (GET_CODE (op0) == PLUS)
5485 	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5486 
5487       /* Compute the sum.  */
5488       if (op2 != 0)
5489 	op1 = form_sum (GET_MODE (addr), op1, op2);
5490       if (op1 != 0)
5491 	op0 = form_sum (GET_MODE (addr), op0, op1);
5492 
5493       return op0;
5494     }
5495   return addr;
5496 }
5497 
5498 /* Update the REG_INC notes for an insn.  It updates all REG_INC
5499    notes for the instruction which refer to REGNO the to refer
5500    to the reload number.
5501 
5502    INSN is the insn for which any REG_INC notes need updating.
5503 
5504    REGNO is the register number which has been reloaded.
5505 
5506    RELOADNUM is the reload number.  */
5507 
5508 static void
update_auto_inc_notes(rtx insn ATTRIBUTE_UNUSED,int regno ATTRIBUTE_UNUSED,int reloadnum ATTRIBUTE_UNUSED)5509 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5510 		       int reloadnum ATTRIBUTE_UNUSED)
5511 {
5512 #ifdef AUTO_INC_DEC
5513   rtx link;
5514 
5515   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5516     if (REG_NOTE_KIND (link) == REG_INC
5517         && (int) REGNO (XEXP (link, 0)) == regno)
5518       push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5519 #endif
5520 }
5521 
5522 /* Record the pseudo registers we must reload into hard registers in a
5523    subexpression of a would-be memory address, X referring to a value
5524    in mode MODE.  (This function is not called if the address we find
5525    is strictly valid.)
5526 
5527    CONTEXT = 1 means we are considering regs as index regs,
5528    = 0 means we are considering them as base regs.
5529    OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5530    or an autoinc code.
5531    If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5532    is the code of the index part of the address.  Otherwise, pass SCRATCH
5533    for this argument.
5534    OPNUM and TYPE specify the purpose of any reloads made.
5535 
5536    IND_LEVELS says how many levels of indirect addressing are
5537    supported at this point in the address.
5538 
5539    INSN, if nonzero, is the insn in which we do the reload.  It is used
5540    to determine if we may generate output reloads.
5541 
5542    We return nonzero if X, as a whole, is reloaded or replaced.  */
5543 
5544 /* Note that we take shortcuts assuming that no multi-reg machine mode
5545    occurs as part of an address.
5546    Also, this is not fully machine-customizable; it works for machines
5547    such as VAXen and 68000's and 32000's, but other possible machines
5548    could have addressing modes that this does not handle right.
5549    If you add push_reload calls here, you need to make sure gen_reload
5550    handles those cases gracefully.  */
5551 
5552 static int
find_reloads_address_1(enum machine_mode mode,addr_space_t as,rtx x,int context,enum rtx_code outer_code,enum rtx_code index_code,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx insn)5553 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5554 			rtx x, int context,
5555 			enum rtx_code outer_code, enum rtx_code index_code,
5556 			rtx *loc, int opnum, enum reload_type type,
5557 			int ind_levels, rtx insn)
5558 {
5559 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX)	\
5560   ((CONTEXT) == 0							\
5561    ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX)		\
5562    : REGNO_OK_FOR_INDEX_P (REGNO))
5563 
5564   enum reg_class context_reg_class;
5565   RTX_CODE code = GET_CODE (x);
5566   bool reloaded_inner_of_autoinc = false;
5567 
5568   if (context == 1)
5569     context_reg_class = INDEX_REG_CLASS;
5570   else
5571     context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5572 
5573   switch (code)
5574     {
5575     case PLUS:
5576       {
5577 	rtx orig_op0 = XEXP (x, 0);
5578 	rtx orig_op1 = XEXP (x, 1);
5579 	RTX_CODE code0 = GET_CODE (orig_op0);
5580 	RTX_CODE code1 = GET_CODE (orig_op1);
5581 	rtx op0 = orig_op0;
5582 	rtx op1 = orig_op1;
5583 
5584 	if (GET_CODE (op0) == SUBREG)
5585 	  {
5586 	    op0 = SUBREG_REG (op0);
5587 	    code0 = GET_CODE (op0);
5588 	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5589 	      op0 = gen_rtx_REG (word_mode,
5590 				 (REGNO (op0) +
5591 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5592 						       GET_MODE (SUBREG_REG (orig_op0)),
5593 						       SUBREG_BYTE (orig_op0),
5594 						       GET_MODE (orig_op0))));
5595 	  }
5596 
5597 	if (GET_CODE (op1) == SUBREG)
5598 	  {
5599 	    op1 = SUBREG_REG (op1);
5600 	    code1 = GET_CODE (op1);
5601 	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5602 	      /* ??? Why is this given op1's mode and above for
5603 		 ??? op0 SUBREGs we use word_mode?  */
5604 	      op1 = gen_rtx_REG (GET_MODE (op1),
5605 				 (REGNO (op1) +
5606 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5607 						       GET_MODE (SUBREG_REG (orig_op1)),
5608 						       SUBREG_BYTE (orig_op1),
5609 						       GET_MODE (orig_op1))));
5610 	  }
5611 	/* Plus in the index register may be created only as a result of
5612 	   register rematerialization for expression like &localvar*4.  Reload it.
5613 	   It may be possible to combine the displacement on the outer level,
5614 	   but it is probably not worthwhile to do so.  */
5615 	if (context == 1)
5616 	  {
5617 	    find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5618 				  opnum, ADDR_TYPE (type), ind_levels, insn);
5619 	    push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5620 			 context_reg_class,
5621 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5622 	    return 1;
5623 	  }
5624 
5625 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5626 	    || code0 == ZERO_EXTEND || code1 == MEM)
5627 	  {
5628 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5629 				    &XEXP (x, 0), opnum, type, ind_levels,
5630 				    insn);
5631 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5632 				    &XEXP (x, 1), opnum, type, ind_levels,
5633 				    insn);
5634 	  }
5635 
5636 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5637 		 || code1 == ZERO_EXTEND || code0 == MEM)
5638 	  {
5639 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5640 				    &XEXP (x, 0), opnum, type, ind_levels,
5641 				    insn);
5642 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5643 				    &XEXP (x, 1), opnum, type, ind_levels,
5644 				    insn);
5645 	  }
5646 
5647 	else if (code0 == CONST_INT || code0 == CONST
5648 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5649 	  find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5650 				  &XEXP (x, 1), opnum, type, ind_levels,
5651 				  insn);
5652 
5653 	else if (code1 == CONST_INT || code1 == CONST
5654 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5655 	  find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5656 				  &XEXP (x, 0), opnum, type, ind_levels,
5657 				  insn);
5658 
5659 	else if (code0 == REG && code1 == REG)
5660 	  {
5661 	    if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5662 		&& regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5663 	      return 0;
5664 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5665 		     && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5666 	      return 0;
5667 	    else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5668 	      find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5669 				      &XEXP (x, 1), opnum, type, ind_levels,
5670 				      insn);
5671 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5672 	      find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5673 				      &XEXP (x, 0), opnum, type, ind_levels,
5674 				      insn);
5675 	    else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5676 	      find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5677 				      &XEXP (x, 0), opnum, type, ind_levels,
5678 				      insn);
5679 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5680 	      find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5681 				      &XEXP (x, 1), opnum, type, ind_levels,
5682 				      insn);
5683 	    else
5684 	      {
5685 		find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5686 					&XEXP (x, 0), opnum, type, ind_levels,
5687 					insn);
5688 		find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5689 					&XEXP (x, 1), opnum, type, ind_levels,
5690 					insn);
5691 	      }
5692 	  }
5693 
5694 	else if (code0 == REG)
5695 	  {
5696 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5697 				    &XEXP (x, 0), opnum, type, ind_levels,
5698 				    insn);
5699 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5700 				    &XEXP (x, 1), opnum, type, ind_levels,
5701 				    insn);
5702 	  }
5703 
5704 	else if (code1 == REG)
5705 	  {
5706 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5707 				    &XEXP (x, 1), opnum, type, ind_levels,
5708 				    insn);
5709 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5710 				    &XEXP (x, 0), opnum, type, ind_levels,
5711 				    insn);
5712 	  }
5713       }
5714 
5715       return 0;
5716 
5717     case POST_MODIFY:
5718     case PRE_MODIFY:
5719       {
5720 	rtx op0 = XEXP (x, 0);
5721 	rtx op1 = XEXP (x, 1);
5722 	enum rtx_code index_code;
5723 	int regno;
5724 	int reloadnum;
5725 
5726 	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5727 	  return 0;
5728 
5729 	/* Currently, we only support {PRE,POST}_MODIFY constructs
5730 	   where a base register is {inc,dec}remented by the contents
5731 	   of another register or by a constant value.  Thus, these
5732 	   operands must match.  */
5733 	gcc_assert (op0 == XEXP (op1, 0));
5734 
5735 	/* Require index register (or constant).  Let's just handle the
5736 	   register case in the meantime... If the target allows
5737 	   auto-modify by a constant then we could try replacing a pseudo
5738 	   register with its equivalent constant where applicable.
5739 
5740 	   We also handle the case where the register was eliminated
5741 	   resulting in a PLUS subexpression.
5742 
5743 	   If we later decide to reload the whole PRE_MODIFY or
5744 	   POST_MODIFY, inc_for_reload might clobber the reload register
5745 	   before reading the index.  The index register might therefore
5746 	   need to live longer than a TYPE reload normally would, so be
5747 	   conservative and class it as RELOAD_OTHER.  */
5748 	if ((REG_P (XEXP (op1, 1))
5749 	     && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5750 	    || GET_CODE (XEXP (op1, 1)) == PLUS)
5751 	  find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5752 				  &XEXP (op1, 1), opnum, RELOAD_OTHER,
5753 				  ind_levels, insn);
5754 
5755 	gcc_assert (REG_P (XEXP (op1, 0)));
5756 
5757 	regno = REGNO (XEXP (op1, 0));
5758 	index_code = GET_CODE (XEXP (op1, 1));
5759 
5760 	/* A register that is incremented cannot be constant!  */
5761 	gcc_assert (regno < FIRST_PSEUDO_REGISTER
5762 		    || reg_equiv_constant (regno) == 0);
5763 
5764 	/* Handle a register that is equivalent to a memory location
5765 	    which cannot be addressed directly.  */
5766 	if (reg_equiv_memory_loc (regno) != 0
5767 	    && (reg_equiv_address (regno) != 0
5768 		|| num_not_at_initial_offset))
5769 	  {
5770 	    rtx tem = make_memloc (XEXP (x, 0), regno);
5771 
5772 	    if (reg_equiv_address (regno)
5773 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5774 	      {
5775 		rtx orig = tem;
5776 
5777 		/* First reload the memory location's address.
5778 		    We can't use ADDR_TYPE (type) here, because we need to
5779 		    write back the value after reading it, hence we actually
5780 		    need two registers.  */
5781 		find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5782 				      &XEXP (tem, 0), opnum,
5783 				      RELOAD_OTHER,
5784 				      ind_levels, insn);
5785 
5786 		if (!rtx_equal_p (tem, orig))
5787 		  push_reg_equiv_alt_mem (regno, tem);
5788 
5789 		/* Then reload the memory location into a base
5790 		   register.  */
5791 		reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5792 					 &XEXP (op1, 0),
5793 					 base_reg_class (mode, as,
5794 							 code, index_code),
5795 					 GET_MODE (x), GET_MODE (x), 0,
5796 					 0, opnum, RELOAD_OTHER);
5797 
5798 		update_auto_inc_notes (this_insn, regno, reloadnum);
5799 		return 0;
5800 	      }
5801 	  }
5802 
5803 	if (reg_renumber[regno] >= 0)
5804 	  regno = reg_renumber[regno];
5805 
5806 	/* We require a base register here...  */
5807 	if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5808 	  {
5809 	    reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5810 				     &XEXP (op1, 0), &XEXP (x, 0),
5811 				     base_reg_class (mode, as,
5812 						     code, index_code),
5813 				     GET_MODE (x), GET_MODE (x), 0, 0,
5814 				     opnum, RELOAD_OTHER);
5815 
5816 	    update_auto_inc_notes (this_insn, regno, reloadnum);
5817 	    return 0;
5818 	  }
5819       }
5820       return 0;
5821 
5822     case POST_INC:
5823     case POST_DEC:
5824     case PRE_INC:
5825     case PRE_DEC:
5826       if (REG_P (XEXP (x, 0)))
5827 	{
5828 	  int regno = REGNO (XEXP (x, 0));
5829 	  int value = 0;
5830 	  rtx x_orig = x;
5831 
5832 	  /* A register that is incremented cannot be constant!  */
5833 	  gcc_assert (regno < FIRST_PSEUDO_REGISTER
5834 		      || reg_equiv_constant (regno) == 0);
5835 
5836 	  /* Handle a register that is equivalent to a memory location
5837 	     which cannot be addressed directly.  */
5838 	  if (reg_equiv_memory_loc (regno) != 0
5839 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5840 	    {
5841 	      rtx tem = make_memloc (XEXP (x, 0), regno);
5842 	      if (reg_equiv_address (regno)
5843 		  || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5844 		{
5845 		  rtx orig = tem;
5846 
5847 		  /* First reload the memory location's address.
5848 		     We can't use ADDR_TYPE (type) here, because we need to
5849 		     write back the value after reading it, hence we actually
5850 		     need two registers.  */
5851 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5852 					&XEXP (tem, 0), opnum, type,
5853 					ind_levels, insn);
5854 		  reloaded_inner_of_autoinc = true;
5855 		  if (!rtx_equal_p (tem, orig))
5856 		    push_reg_equiv_alt_mem (regno, tem);
5857 		  /* Put this inside a new increment-expression.  */
5858 		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5859 		  /* Proceed to reload that, as if it contained a register.  */
5860 		}
5861 	    }
5862 
5863 	  /* If we have a hard register that is ok in this incdec context,
5864 	     don't make a reload.  If the register isn't nice enough for
5865 	     autoincdec, we can reload it.  But, if an autoincrement of a
5866 	     register that we here verified as playing nice, still outside
5867 	     isn't "valid", it must be that no autoincrement is "valid".
5868 	     If that is true and something made an autoincrement anyway,
5869 	     this must be a special context where one is allowed.
5870 	     (For example, a "push" instruction.)
5871 	     We can't improve this address, so leave it alone.  */
5872 
5873 	  /* Otherwise, reload the autoincrement into a suitable hard reg
5874 	     and record how much to increment by.  */
5875 
5876 	  if (reg_renumber[regno] >= 0)
5877 	    regno = reg_renumber[regno];
5878 	  if (regno >= FIRST_PSEUDO_REGISTER
5879 	      || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5880 				      index_code))
5881 	    {
5882 	      int reloadnum;
5883 
5884 	      /* If we can output the register afterwards, do so, this
5885 		 saves the extra update.
5886 		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5887 		 CALL_INSN - and it does not set CC0.
5888 		 But don't do this if we cannot directly address the
5889 		 memory location, since this will make it harder to
5890 		 reuse address reloads, and increases register pressure.
5891 		 Also don't do this if we can probably update x directly.  */
5892 	      rtx equiv = (MEM_P (XEXP (x, 0))
5893 			   ? XEXP (x, 0)
5894 			   : reg_equiv_mem (regno));
5895 	      enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5896 	      if (insn && NONJUMP_INSN_P (insn) && equiv
5897 		  && memory_operand (equiv, GET_MODE (equiv))
5898 #ifdef HAVE_cc0
5899 		  && ! sets_cc0_p (PATTERN (insn))
5900 #endif
5901 		  && ! (icode != CODE_FOR_nothing
5902 			&& insn_operand_matches (icode, 0, equiv)
5903 			&& insn_operand_matches (icode, 1, equiv))
5904 		  /* Using RELOAD_OTHER means we emit this and the reload we
5905 		     made earlier in the wrong order.  */
5906 		  && !reloaded_inner_of_autoinc)
5907 		{
5908 		  /* We use the original pseudo for loc, so that
5909 		     emit_reload_insns() knows which pseudo this
5910 		     reload refers to and updates the pseudo rtx, not
5911 		     its equivalent memory location, as well as the
5912 		     corresponding entry in reg_last_reload_reg.  */
5913 		  loc = &XEXP (x_orig, 0);
5914 		  x = XEXP (x, 0);
5915 		  reloadnum
5916 		    = push_reload (x, x, loc, loc,
5917 				   context_reg_class,
5918 				   GET_MODE (x), GET_MODE (x), 0, 0,
5919 				   opnum, RELOAD_OTHER);
5920 		}
5921 	      else
5922 		{
5923 		  reloadnum
5924 		    = push_reload (x, x, loc, (rtx*) 0,
5925 				   context_reg_class,
5926 				   GET_MODE (x), GET_MODE (x), 0, 0,
5927 				   opnum, type);
5928 		  rld[reloadnum].inc
5929 		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5930 
5931 		  value = 1;
5932 		}
5933 
5934 	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5935 				     reloadnum);
5936 	    }
5937 	  return value;
5938 	}
5939       return 0;
5940 
5941     case TRUNCATE:
5942     case SIGN_EXTEND:
5943     case ZERO_EXTEND:
5944       /* Look for parts to reload in the inner expression and reload them
5945 	 too, in addition to this operation.  Reloading all inner parts in
5946 	 addition to this one shouldn't be necessary, but at this point,
5947 	 we don't know if we can possibly omit any part that *can* be
5948 	 reloaded.  Targets that are better off reloading just either part
5949 	 (or perhaps even a different part of an outer expression), should
5950 	 define LEGITIMIZE_RELOAD_ADDRESS.  */
5951       find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5952 			      context, code, SCRATCH, &XEXP (x, 0), opnum,
5953 			      type, ind_levels, insn);
5954       push_reload (x, NULL_RTX, loc, (rtx*) 0,
5955 		   context_reg_class,
5956 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5957       return 1;
5958 
5959     case MEM:
5960       /* This is probably the result of a substitution, by eliminate_regs, of
5961 	 an equivalent address for a pseudo that was not allocated to a hard
5962 	 register.  Verify that the specified address is valid and reload it
5963 	 into a register.
5964 
5965 	 Since we know we are going to reload this item, don't decrement for
5966 	 the indirection level.
5967 
5968 	 Note that this is actually conservative:  it would be slightly more
5969 	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5970 	 reload1.c here.  */
5971 
5972       find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5973 			    opnum, ADDR_TYPE (type), ind_levels, insn);
5974       push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5975 		   context_reg_class,
5976 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5977       return 1;
5978 
5979     case REG:
5980       {
5981 	int regno = REGNO (x);
5982 
5983 	if (reg_equiv_constant (regno) != 0)
5984 	  {
5985 	    find_reloads_address_part (reg_equiv_constant (regno), loc,
5986 				       context_reg_class,
5987 				       GET_MODE (x), opnum, type, ind_levels);
5988 	    return 1;
5989 	  }
5990 
5991 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5992 	 that feeds this insn.  */
5993 	if (reg_equiv_mem (regno) != 0)
5994 	  {
5995 	    push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5996 			 context_reg_class,
5997 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5998 	    return 1;
5999 	  }
6000 #endif
6001 
6002 	if (reg_equiv_memory_loc (regno)
6003 	    && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
6004 	  {
6005 	    rtx tem = make_memloc (x, regno);
6006 	    if (reg_equiv_address (regno) != 0
6007 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6008 	      {
6009 		x = tem;
6010 		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
6011 				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
6012 				      ind_levels, insn);
6013 		if (!rtx_equal_p (x, tem))
6014 		  push_reg_equiv_alt_mem (regno, x);
6015 	      }
6016 	  }
6017 
6018 	if (reg_renumber[regno] >= 0)
6019 	  regno = reg_renumber[regno];
6020 
6021 	if (regno >= FIRST_PSEUDO_REGISTER
6022 	    || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6023 				    index_code))
6024 	  {
6025 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
6026 			 context_reg_class,
6027 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6028 	    return 1;
6029 	  }
6030 
6031 	/* If a register appearing in an address is the subject of a CLOBBER
6032 	   in this insn, reload it into some other register to be safe.
6033 	   The CLOBBER is supposed to make the register unavailable
6034 	   from before this insn to after it.  */
6035 	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6036 	  {
6037 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
6038 			 context_reg_class,
6039 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6040 	    return 1;
6041 	  }
6042       }
6043       return 0;
6044 
6045     case SUBREG:
6046       if (REG_P (SUBREG_REG (x)))
6047 	{
6048 	  /* If this is a SUBREG of a hard register and the resulting register
6049 	     is of the wrong class, reload the whole SUBREG.  This avoids
6050 	     needless copies if SUBREG_REG is multi-word.  */
6051 	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6052 	    {
6053 	      int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6054 
6055 	      if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6056 				       index_code))
6057 		{
6058 		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
6059 			       context_reg_class,
6060 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6061 		  return 1;
6062 		}
6063 	    }
6064 	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6065 	     is larger than the class size, then reload the whole SUBREG.  */
6066 	  else
6067 	    {
6068 	      enum reg_class rclass = context_reg_class;
6069 	      if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6070 		  > reg_class_size[(int) rclass])
6071 		{
6072 		  /* If the inner register will be replaced by a memory
6073 		     reference, we can do this only if we can replace the
6074 		     whole subreg by a (narrower) memory reference.  If
6075 		     this is not possible, fall through and reload just
6076 		     the inner register (including address reloads).  */
6077 		  if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6078 		    {
6079 		      rtx tem = find_reloads_subreg_address (x, opnum,
6080 							     ADDR_TYPE (type),
6081 							     ind_levels, insn,
6082 							     NULL);
6083 		      if (tem)
6084 			{
6085 			  push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6086 				       GET_MODE (tem), VOIDmode, 0, 0,
6087 				       opnum, type);
6088 			  return 1;
6089 			}
6090 		    }
6091 		  else
6092 		    {
6093 		      push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6094 				   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6095 		      return 1;
6096 		    }
6097 		}
6098 	    }
6099 	}
6100       break;
6101 
6102     default:
6103       break;
6104     }
6105 
6106   {
6107     const char *fmt = GET_RTX_FORMAT (code);
6108     int i;
6109 
6110     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6111       {
6112 	if (fmt[i] == 'e')
6113 	  /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6114 	     we get here.  */
6115 	  find_reloads_address_1 (mode, as, XEXP (x, i), context,
6116 				  code, SCRATCH, &XEXP (x, i),
6117 				  opnum, type, ind_levels, insn);
6118       }
6119   }
6120 
6121 #undef REG_OK_FOR_CONTEXT
6122   return 0;
6123 }
6124 
6125 /* X, which is found at *LOC, is a part of an address that needs to be
6126    reloaded into a register of class RCLASS.  If X is a constant, or if
6127    X is a PLUS that contains a constant, check that the constant is a
6128    legitimate operand and that we are supposed to be able to load
6129    it into the register.
6130 
6131    If not, force the constant into memory and reload the MEM instead.
6132 
6133    MODE is the mode to use, in case X is an integer constant.
6134 
6135    OPNUM and TYPE describe the purpose of any reloads made.
6136 
6137    IND_LEVELS says how many levels of indirect addressing this machine
6138    supports.  */
6139 
6140 static void
find_reloads_address_part(rtx x,rtx * loc,enum reg_class rclass,enum machine_mode mode,int opnum,enum reload_type type,int ind_levels)6141 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6142 			   enum machine_mode mode, int opnum,
6143 			   enum reload_type type, int ind_levels)
6144 {
6145   if (CONSTANT_P (x)
6146       && (!targetm.legitimate_constant_p (mode, x)
6147 	  || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6148     {
6149       x = force_const_mem (mode, x);
6150       find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6151 			    opnum, type, ind_levels, 0);
6152     }
6153 
6154   else if (GET_CODE (x) == PLUS
6155 	   && CONSTANT_P (XEXP (x, 1))
6156 	   && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6157 	       || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6158 		   == NO_REGS))
6159     {
6160       rtx tem;
6161 
6162       tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6163       x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6164       find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6165 			    opnum, type, ind_levels, 0);
6166     }
6167 
6168   push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6169 	       mode, VOIDmode, 0, 0, opnum, type);
6170 }
6171 
6172 /* X, a subreg of a pseudo, is a part of an address that needs to be
6173    reloaded, and the pseusdo is equivalent to a memory location.
6174 
6175    Attempt to replace the whole subreg by a (possibly narrower or wider)
6176    memory reference.  If this is possible, return this new memory
6177    reference, and push all required address reloads.  Otherwise,
6178    return NULL.
6179 
6180    OPNUM and TYPE identify the purpose of the reload.
6181 
6182    IND_LEVELS says how many levels of indirect addressing are
6183    supported at this point in the address.
6184 
6185    INSN, if nonzero, is the insn in which we do the reload.  It is used
6186    to determine where to put USEs for pseudos that we have to replace with
6187    stack slots.  */
6188 
6189 static rtx
find_reloads_subreg_address(rtx x,int opnum,enum reload_type type,int ind_levels,rtx insn,int * address_reloaded)6190 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6191 			     int ind_levels, rtx insn, int *address_reloaded)
6192 {
6193   enum machine_mode outer_mode = GET_MODE (x);
6194   enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6195   int regno = REGNO (SUBREG_REG (x));
6196   int reloaded = 0;
6197   rtx tem, orig;
6198   int offset;
6199 
6200   gcc_assert (reg_equiv_memory_loc (regno) != 0);
6201 
6202   /* We cannot replace the subreg with a modified memory reference if:
6203 
6204      - we have a paradoxical subreg that implicitly acts as a zero or
6205        sign extension operation due to LOAD_EXTEND_OP;
6206 
6207      - we have a subreg that is implicitly supposed to act on the full
6208        register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6209 
6210      - the address of the equivalent memory location is mode-dependent;  or
6211 
6212      - we have a paradoxical subreg and the resulting memory is not
6213        sufficiently aligned to allow access in the wider mode.
6214 
6215     In addition, we choose not to perform the replacement for *any*
6216     paradoxical subreg, even if it were possible in principle.  This
6217     is to avoid generating wider memory references than necessary.
6218 
6219     This corresponds to how previous versions of reload used to handle
6220     paradoxical subregs where no address reload was required.  */
6221 
6222   if (paradoxical_subreg_p (x))
6223     return NULL;
6224 
6225 #ifdef WORD_REGISTER_OPERATIONS
6226   if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)
6227       && ((GET_MODE_SIZE (outer_mode) - 1) / UNITS_PER_WORD
6228           == (GET_MODE_SIZE (inner_mode) - 1) / UNITS_PER_WORD))
6229     return NULL;
6230 #endif
6231 
6232   /* Since we don't attempt to handle paradoxical subregs, we can just
6233      call into simplify_subreg, which will handle all remaining checks
6234      for us.  */
6235   orig = make_memloc (SUBREG_REG (x), regno);
6236   offset = SUBREG_BYTE (x);
6237   tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6238   if (!tem || !MEM_P (tem))
6239     return NULL;
6240 
6241   /* Now push all required address reloads, if any.  */
6242   reloaded = find_reloads_address (GET_MODE (tem), &tem,
6243 				   XEXP (tem, 0), &XEXP (tem, 0),
6244 				   opnum, type, ind_levels, insn);
6245   /* ??? Do we need to handle nonzero offsets somehow?  */
6246   if (!offset && !rtx_equal_p (tem, orig))
6247     push_reg_equiv_alt_mem (regno, tem);
6248 
6249   /* For some processors an address may be valid in the original mode but
6250      not in a smaller mode.  For example, ARM accepts a scaled index register
6251      in SImode but not in HImode.  Note that this is only a problem if the
6252      address in reg_equiv_mem is already invalid in the new mode; other
6253      cases would be fixed by find_reloads_address as usual.
6254 
6255      ??? We attempt to handle such cases here by doing an additional reload
6256      of the full address after the usual processing by find_reloads_address.
6257      Note that this may not work in the general case, but it seems to cover
6258      the cases where this situation currently occurs.  A more general fix
6259      might be to reload the *value* instead of the address, but this would
6260      not be expected by the callers of this routine as-is.
6261 
6262      If find_reloads_address already completed replaced the address, there
6263      is nothing further to do.  */
6264   if (reloaded == 0
6265       && reg_equiv_mem (regno) != 0
6266       && !strict_memory_address_addr_space_p
6267 		(GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6268 		 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6269     {
6270       push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6271 		   base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6272 				   MEM, SCRATCH),
6273 		   GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6274       reloaded = 1;
6275     }
6276 
6277   /* If this is not a toplevel operand, find_reloads doesn't see this
6278      substitution.  We have to emit a USE of the pseudo so that
6279      delete_output_reload can see it.  */
6280   if (replace_reloads && recog_data.operand[opnum] != x)
6281     /* We mark the USE with QImode so that we recognize it as one that
6282        can be safely deleted at the end of reload.  */
6283     PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6284 	      QImode);
6285 
6286   if (address_reloaded)
6287     *address_reloaded = reloaded;
6288 
6289   return tem;
6290 }
6291 
6292 /* Substitute into the current INSN the registers into which we have reloaded
6293    the things that need reloading.  The array `replacements'
6294    contains the locations of all pointers that must be changed
6295    and says what to replace them with.
6296 
6297    Return the rtx that X translates into; usually X, but modified.  */
6298 
6299 void
subst_reloads(rtx insn)6300 subst_reloads (rtx insn)
6301 {
6302   int i;
6303 
6304   for (i = 0; i < n_replacements; i++)
6305     {
6306       struct replacement *r = &replacements[i];
6307       rtx reloadreg = rld[r->what].reg_rtx;
6308       if (reloadreg)
6309 	{
6310 #ifdef DEBUG_RELOAD
6311 	  /* This checking takes a very long time on some platforms
6312 	     causing the gcc.c-torture/compile/limits-fnargs.c test
6313 	     to time out during testing.  See PR 31850.
6314 
6315 	     Internal consistency test.  Check that we don't modify
6316 	     anything in the equivalence arrays.  Whenever something from
6317 	     those arrays needs to be reloaded, it must be unshared before
6318 	     being substituted into; the equivalence must not be modified.
6319 	     Otherwise, if the equivalence is used after that, it will
6320 	     have been modified, and the thing substituted (probably a
6321 	     register) is likely overwritten and not a usable equivalence.  */
6322 	  int check_regno;
6323 
6324 	  for (check_regno = 0; check_regno < max_regno; check_regno++)
6325 	    {
6326 #define CHECK_MODF(ARRAY)						\
6327 	      gcc_assert (!(*reg_equivs)[check_regno].ARRAY		\
6328 			  || !loc_mentioned_in_p (r->where,		\
6329 						  (*reg_equivs)[check_regno].ARRAY))
6330 
6331 	      CHECK_MODF (constant);
6332 	      CHECK_MODF (memory_loc);
6333 	      CHECK_MODF (address);
6334 	      CHECK_MODF (mem);
6335 #undef CHECK_MODF
6336 	    }
6337 #endif /* DEBUG_RELOAD */
6338 
6339 	  /* If we're replacing a LABEL_REF with a register, there must
6340 	     already be an indication (to e.g. flow) which label this
6341 	     register refers to.  */
6342 	  gcc_assert (GET_CODE (*r->where) != LABEL_REF
6343 		      || !JUMP_P (insn)
6344 		      || find_reg_note (insn,
6345 					REG_LABEL_OPERAND,
6346 					XEXP (*r->where, 0))
6347 		      || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6348 
6349 	  /* Encapsulate RELOADREG so its machine mode matches what
6350 	     used to be there.  Note that gen_lowpart_common will
6351 	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
6352 	     will always be a REG here.  */
6353 	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6354 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6355 
6356 	  *r->where = reloadreg;
6357 	}
6358       /* If reload got no reg and isn't optional, something's wrong.  */
6359       else
6360 	gcc_assert (rld[r->what].optional);
6361     }
6362 }
6363 
6364 /* Make a copy of any replacements being done into X and move those
6365    copies to locations in Y, a copy of X.  */
6366 
6367 void
copy_replacements(rtx x,rtx y)6368 copy_replacements (rtx x, rtx y)
6369 {
6370   copy_replacements_1 (&x, &y, n_replacements);
6371 }
6372 
6373 static void
copy_replacements_1(rtx * px,rtx * py,int orig_replacements)6374 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6375 {
6376   int i, j;
6377   rtx x, y;
6378   struct replacement *r;
6379   enum rtx_code code;
6380   const char *fmt;
6381 
6382   for (j = 0; j < orig_replacements; j++)
6383     if (replacements[j].where == px)
6384       {
6385 	r = &replacements[n_replacements++];
6386 	r->where = py;
6387 	r->what = replacements[j].what;
6388 	r->mode = replacements[j].mode;
6389       }
6390 
6391   x = *px;
6392   y = *py;
6393   code = GET_CODE (x);
6394   fmt = GET_RTX_FORMAT (code);
6395 
6396   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6397     {
6398       if (fmt[i] == 'e')
6399 	copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6400       else if (fmt[i] == 'E')
6401 	for (j = XVECLEN (x, i); --j >= 0; )
6402 	  copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6403 			       orig_replacements);
6404     }
6405 }
6406 
6407 /* Change any replacements being done to *X to be done to *Y.  */
6408 
6409 void
move_replacements(rtx * x,rtx * y)6410 move_replacements (rtx *x, rtx *y)
6411 {
6412   int i;
6413 
6414   for (i = 0; i < n_replacements; i++)
6415     if (replacements[i].where == x)
6416       replacements[i].where = y;
6417 }
6418 
6419 /* If LOC was scheduled to be replaced by something, return the replacement.
6420    Otherwise, return *LOC.  */
6421 
6422 rtx
find_replacement(rtx * loc)6423 find_replacement (rtx *loc)
6424 {
6425   struct replacement *r;
6426 
6427   for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6428     {
6429       rtx reloadreg = rld[r->what].reg_rtx;
6430 
6431       if (reloadreg && r->where == loc)
6432 	{
6433 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6434 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6435 
6436 	  return reloadreg;
6437 	}
6438       else if (reloadreg && GET_CODE (*loc) == SUBREG
6439 	       && r->where == &SUBREG_REG (*loc))
6440 	{
6441 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6442 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6443 
6444 	  return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6445 				      GET_MODE (SUBREG_REG (*loc)),
6446 				      SUBREG_BYTE (*loc));
6447 	}
6448     }
6449 
6450   /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6451      what's inside and make a new rtl if so.  */
6452   if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6453       || GET_CODE (*loc) == MULT)
6454     {
6455       rtx x = find_replacement (&XEXP (*loc, 0));
6456       rtx y = find_replacement (&XEXP (*loc, 1));
6457 
6458       if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6459 	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6460     }
6461 
6462   return *loc;
6463 }
6464 
6465 /* Return nonzero if register in range [REGNO, ENDREGNO)
6466    appears either explicitly or implicitly in X
6467    other than being stored into (except for earlyclobber operands).
6468 
6469    References contained within the substructure at LOC do not count.
6470    LOC may be zero, meaning don't ignore anything.
6471 
6472    This is similar to refers_to_regno_p in rtlanal.c except that we
6473    look at equivalences for pseudos that didn't get hard registers.  */
6474 
6475 static int
refers_to_regno_for_reload_p(unsigned int regno,unsigned int endregno,rtx x,rtx * loc)6476 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6477 			      rtx x, rtx *loc)
6478 {
6479   int i;
6480   unsigned int r;
6481   RTX_CODE code;
6482   const char *fmt;
6483 
6484   if (x == 0)
6485     return 0;
6486 
6487  repeat:
6488   code = GET_CODE (x);
6489 
6490   switch (code)
6491     {
6492     case REG:
6493       r = REGNO (x);
6494 
6495       /* If this is a pseudo, a hard register must not have been allocated.
6496 	 X must therefore either be a constant or be in memory.  */
6497       if (r >= FIRST_PSEUDO_REGISTER)
6498 	{
6499 	  if (reg_equiv_memory_loc (r))
6500 	    return refers_to_regno_for_reload_p (regno, endregno,
6501 						 reg_equiv_memory_loc (r),
6502 						 (rtx*) 0);
6503 
6504 	  gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6505 	  return 0;
6506 	}
6507 
6508       return (endregno > r
6509 	      && regno < r + (r < FIRST_PSEUDO_REGISTER
6510 			      ? hard_regno_nregs[r][GET_MODE (x)]
6511 			      : 1));
6512 
6513     case SUBREG:
6514       /* If this is a SUBREG of a hard reg, we can see exactly which
6515 	 registers are being modified.  Otherwise, handle normally.  */
6516       if (REG_P (SUBREG_REG (x))
6517 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6518 	{
6519 	  unsigned int inner_regno = subreg_regno (x);
6520 	  unsigned int inner_endregno
6521 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6522 			     ? subreg_nregs (x) : 1);
6523 
6524 	  return endregno > inner_regno && regno < inner_endregno;
6525 	}
6526       break;
6527 
6528     case CLOBBER:
6529     case SET:
6530       if (&SET_DEST (x) != loc
6531 	  /* Note setting a SUBREG counts as referring to the REG it is in for
6532 	     a pseudo but not for hard registers since we can
6533 	     treat each word individually.  */
6534 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6535 	       && loc != &SUBREG_REG (SET_DEST (x))
6536 	       && REG_P (SUBREG_REG (SET_DEST (x)))
6537 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6538 	       && refers_to_regno_for_reload_p (regno, endregno,
6539 						SUBREG_REG (SET_DEST (x)),
6540 						loc))
6541 	      /* If the output is an earlyclobber operand, this is
6542 		 a conflict.  */
6543 	      || ((!REG_P (SET_DEST (x))
6544 		   || earlyclobber_operand_p (SET_DEST (x)))
6545 		  && refers_to_regno_for_reload_p (regno, endregno,
6546 						   SET_DEST (x), loc))))
6547 	return 1;
6548 
6549       if (code == CLOBBER || loc == &SET_SRC (x))
6550 	return 0;
6551       x = SET_SRC (x);
6552       goto repeat;
6553 
6554     default:
6555       break;
6556     }
6557 
6558   /* X does not match, so try its subexpressions.  */
6559 
6560   fmt = GET_RTX_FORMAT (code);
6561   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6562     {
6563       if (fmt[i] == 'e' && loc != &XEXP (x, i))
6564 	{
6565 	  if (i == 0)
6566 	    {
6567 	      x = XEXP (x, 0);
6568 	      goto repeat;
6569 	    }
6570 	  else
6571 	    if (refers_to_regno_for_reload_p (regno, endregno,
6572 					      XEXP (x, i), loc))
6573 	      return 1;
6574 	}
6575       else if (fmt[i] == 'E')
6576 	{
6577 	  int j;
6578 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6579 	    if (loc != &XVECEXP (x, i, j)
6580 		&& refers_to_regno_for_reload_p (regno, endregno,
6581 						 XVECEXP (x, i, j), loc))
6582 	      return 1;
6583 	}
6584     }
6585   return 0;
6586 }
6587 
6588 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6589    we check if any register number in X conflicts with the relevant register
6590    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6591    contains a MEM (we don't bother checking for memory addresses that can't
6592    conflict because we expect this to be a rare case.
6593 
6594    This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6595    that we look at equivalences for pseudos that didn't get hard registers.  */
6596 
6597 int
reg_overlap_mentioned_for_reload_p(rtx x,rtx in)6598 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6599 {
6600   int regno, endregno;
6601 
6602   /* Overly conservative.  */
6603   if (GET_CODE (x) == STRICT_LOW_PART
6604       || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6605     x = XEXP (x, 0);
6606 
6607   /* If either argument is a constant, then modifying X can not affect IN.  */
6608   if (CONSTANT_P (x) || CONSTANT_P (in))
6609     return 0;
6610   else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6611     return refers_to_mem_for_reload_p (in);
6612   else if (GET_CODE (x) == SUBREG)
6613     {
6614       regno = REGNO (SUBREG_REG (x));
6615       if (regno < FIRST_PSEUDO_REGISTER)
6616 	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6617 				      GET_MODE (SUBREG_REG (x)),
6618 				      SUBREG_BYTE (x),
6619 				      GET_MODE (x));
6620       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6621 			  ? subreg_nregs (x) : 1);
6622 
6623       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6624     }
6625   else if (REG_P (x))
6626     {
6627       regno = REGNO (x);
6628 
6629       /* If this is a pseudo, it must not have been assigned a hard register.
6630 	 Therefore, it must either be in memory or be a constant.  */
6631 
6632       if (regno >= FIRST_PSEUDO_REGISTER)
6633 	{
6634 	  if (reg_equiv_memory_loc (regno))
6635 	    return refers_to_mem_for_reload_p (in);
6636 	  gcc_assert (reg_equiv_constant (regno));
6637 	  return 0;
6638 	}
6639 
6640       endregno = END_HARD_REGNO (x);
6641 
6642       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6643     }
6644   else if (MEM_P (x))
6645     return refers_to_mem_for_reload_p (in);
6646   else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6647 	   || GET_CODE (x) == CC0)
6648     return reg_mentioned_p (x, in);
6649   else
6650     {
6651       gcc_assert (GET_CODE (x) == PLUS);
6652 
6653       /* We actually want to know if X is mentioned somewhere inside IN.
6654 	 We must not say that (plus (sp) (const_int 124)) is in
6655 	 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6656 	 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6657 	 into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
6658       while (MEM_P (in))
6659 	in = XEXP (in, 0);
6660       if (REG_P (in))
6661 	return 0;
6662       else if (GET_CODE (in) == PLUS)
6663 	return (rtx_equal_p (x, in)
6664 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6665 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6666       else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6667 		   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6668     }
6669 
6670   gcc_unreachable ();
6671 }
6672 
6673 /* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6674    registers.  */
6675 
6676 static int
refers_to_mem_for_reload_p(rtx x)6677 refers_to_mem_for_reload_p (rtx x)
6678 {
6679   const char *fmt;
6680   int i;
6681 
6682   if (MEM_P (x))
6683     return 1;
6684 
6685   if (REG_P (x))
6686     return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6687 	    && reg_equiv_memory_loc (REGNO (x)));
6688 
6689   fmt = GET_RTX_FORMAT (GET_CODE (x));
6690   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6691     if (fmt[i] == 'e'
6692 	&& (MEM_P (XEXP (x, i))
6693 	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6694       return 1;
6695 
6696   return 0;
6697 }
6698 
6699 /* Check the insns before INSN to see if there is a suitable register
6700    containing the same value as GOAL.
6701    If OTHER is -1, look for a register in class RCLASS.
6702    Otherwise, just see if register number OTHER shares GOAL's value.
6703 
6704    Return an rtx for the register found, or zero if none is found.
6705 
6706    If RELOAD_REG_P is (short *)1,
6707    we reject any hard reg that appears in reload_reg_rtx
6708    because such a hard reg is also needed coming into this insn.
6709 
6710    If RELOAD_REG_P is any other nonzero value,
6711    it is a vector indexed by hard reg number
6712    and we reject any hard reg whose element in the vector is nonnegative
6713    as well as any that appears in reload_reg_rtx.
6714 
6715    If GOAL is zero, then GOALREG is a register number; we look
6716    for an equivalent for that register.
6717 
6718    MODE is the machine mode of the value we want an equivalence for.
6719    If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6720 
6721    This function is used by jump.c as well as in the reload pass.
6722 
6723    If GOAL is the sum of the stack pointer and a constant, we treat it
6724    as if it were a constant except that sp is required to be unchanging.  */
6725 
6726 rtx
find_equiv_reg(rtx goal,rtx insn,enum reg_class rclass,int other,short * reload_reg_p,int goalreg,enum machine_mode mode)6727 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6728 		short *reload_reg_p, int goalreg, enum machine_mode mode)
6729 {
6730   rtx p = insn;
6731   rtx goaltry, valtry, value, where;
6732   rtx pat;
6733   int regno = -1;
6734   int valueno;
6735   int goal_mem = 0;
6736   int goal_const = 0;
6737   int goal_mem_addr_varies = 0;
6738   int need_stable_sp = 0;
6739   int nregs;
6740   int valuenregs;
6741   int num = 0;
6742 
6743   if (goal == 0)
6744     regno = goalreg;
6745   else if (REG_P (goal))
6746     regno = REGNO (goal);
6747   else if (MEM_P (goal))
6748     {
6749       enum rtx_code code = GET_CODE (XEXP (goal, 0));
6750       if (MEM_VOLATILE_P (goal))
6751 	return 0;
6752       if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6753 	return 0;
6754       /* An address with side effects must be reexecuted.  */
6755       switch (code)
6756 	{
6757 	case POST_INC:
6758 	case PRE_INC:
6759 	case POST_DEC:
6760 	case PRE_DEC:
6761 	case POST_MODIFY:
6762 	case PRE_MODIFY:
6763 	  return 0;
6764 	default:
6765 	  break;
6766 	}
6767       goal_mem = 1;
6768     }
6769   else if (CONSTANT_P (goal))
6770     goal_const = 1;
6771   else if (GET_CODE (goal) == PLUS
6772 	   && XEXP (goal, 0) == stack_pointer_rtx
6773 	   && CONSTANT_P (XEXP (goal, 1)))
6774     goal_const = need_stable_sp = 1;
6775   else if (GET_CODE (goal) == PLUS
6776 	   && XEXP (goal, 0) == frame_pointer_rtx
6777 	   && CONSTANT_P (XEXP (goal, 1)))
6778     goal_const = 1;
6779   else
6780     return 0;
6781 
6782   num = 0;
6783   /* Scan insns back from INSN, looking for one that copies
6784      a value into or out of GOAL.
6785      Stop and give up if we reach a label.  */
6786 
6787   while (1)
6788     {
6789       p = PREV_INSN (p);
6790       if (p && DEBUG_INSN_P (p))
6791 	continue;
6792       num++;
6793       if (p == 0 || LABEL_P (p)
6794 	  || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6795 	return 0;
6796 
6797       /* Don't reuse register contents from before a setjmp-type
6798 	 function call; on the second return (from the longjmp) it
6799 	 might have been clobbered by a later reuse.  It doesn't
6800 	 seem worthwhile to actually go and see if it is actually
6801 	 reused even if that information would be readily available;
6802 	 just don't reuse it across the setjmp call.  */
6803       if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6804 	return 0;
6805 
6806       if (NONJUMP_INSN_P (p)
6807 	  /* If we don't want spill regs ...  */
6808 	  && (! (reload_reg_p != 0
6809 		 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6810 	      /* ... then ignore insns introduced by reload; they aren't
6811 		 useful and can cause results in reload_as_needed to be
6812 		 different from what they were when calculating the need for
6813 		 spills.  If we notice an input-reload insn here, we will
6814 		 reject it below, but it might hide a usable equivalent.
6815 		 That makes bad code.  It may even fail: perhaps no reg was
6816 		 spilled for this insn because it was assumed we would find
6817 		 that equivalent.  */
6818 	      || INSN_UID (p) < reload_first_uid))
6819 	{
6820 	  rtx tem;
6821 	  pat = single_set (p);
6822 
6823 	  /* First check for something that sets some reg equal to GOAL.  */
6824 	  if (pat != 0
6825 	      && ((regno >= 0
6826 		   && true_regnum (SET_SRC (pat)) == regno
6827 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6828 		  ||
6829 		  (regno >= 0
6830 		   && true_regnum (SET_DEST (pat)) == regno
6831 		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6832 		  ||
6833 		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6834 		   /* When looking for stack pointer + const,
6835 		      make sure we don't use a stack adjust.  */
6836 		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6837 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6838 		  || (goal_mem
6839 		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6840 		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6841 		  || (goal_mem
6842 		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6843 		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6844 		  /* If we are looking for a constant,
6845 		     and something equivalent to that constant was copied
6846 		     into a reg, we can use that reg.  */
6847 		  || (goal_const && REG_NOTES (p) != 0
6848 		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6849 		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6850 			   && (valueno
6851 			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6852 			  || (REG_P (SET_DEST (pat))
6853 			      && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6854 			      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6855 			      && CONST_INT_P (goal)
6856 			      && 0 != (goaltry
6857 				       = operand_subword (XEXP (tem, 0), 0, 0,
6858 							  VOIDmode))
6859 			      && rtx_equal_p (goal, goaltry)
6860 			      && (valtry
6861 				  = operand_subword (SET_DEST (pat), 0, 0,
6862 						     VOIDmode))
6863 			      && (valueno = true_regnum (valtry)) >= 0)))
6864 		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6865 							  NULL_RTX))
6866 		      && REG_P (SET_DEST (pat))
6867 		      && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6868 		      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6869 		      && CONST_INT_P (goal)
6870 		      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6871 							  VOIDmode))
6872 		      && rtx_equal_p (goal, goaltry)
6873 		      && (valtry
6874 			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6875 		      && (valueno = true_regnum (valtry)) >= 0)))
6876 	    {
6877 	      if (other >= 0)
6878 		{
6879 		  if (valueno != other)
6880 		    continue;
6881 		}
6882 	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6883 		continue;
6884 	      else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6885 					  mode, valueno))
6886 		continue;
6887 	      value = valtry;
6888 	      where = p;
6889 	      break;
6890 	    }
6891 	}
6892     }
6893 
6894   /* We found a previous insn copying GOAL into a suitable other reg VALUE
6895      (or copying VALUE into GOAL, if GOAL is also a register).
6896      Now verify that VALUE is really valid.  */
6897 
6898   /* VALUENO is the register number of VALUE; a hard register.  */
6899 
6900   /* Don't try to re-use something that is killed in this insn.  We want
6901      to be able to trust REG_UNUSED notes.  */
6902   if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6903     return 0;
6904 
6905   /* If we propose to get the value from the stack pointer or if GOAL is
6906      a MEM based on the stack pointer, we need a stable SP.  */
6907   if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6908       || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6909 							  goal)))
6910     need_stable_sp = 1;
6911 
6912   /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6913   if (GET_MODE (value) != mode)
6914     return 0;
6915 
6916   /* Reject VALUE if it was loaded from GOAL
6917      and is also a register that appears in the address of GOAL.  */
6918 
6919   if (goal_mem && value == SET_DEST (single_set (where))
6920       && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6921 				       goal, (rtx*) 0))
6922     return 0;
6923 
6924   /* Reject registers that overlap GOAL.  */
6925 
6926   if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6927     nregs = hard_regno_nregs[regno][mode];
6928   else
6929     nregs = 1;
6930   valuenregs = hard_regno_nregs[valueno][mode];
6931 
6932   if (!goal_mem && !goal_const
6933       && regno + nregs > valueno && regno < valueno + valuenregs)
6934     return 0;
6935 
6936   /* Reject VALUE if it is one of the regs reserved for reloads.
6937      Reload1 knows how to reuse them anyway, and it would get
6938      confused if we allocated one without its knowledge.
6939      (Now that insns introduced by reload are ignored above,
6940      this case shouldn't happen, but I'm not positive.)  */
6941 
6942   if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6943     {
6944       int i;
6945       for (i = 0; i < valuenregs; ++i)
6946 	if (reload_reg_p[valueno + i] >= 0)
6947 	  return 0;
6948     }
6949 
6950   /* Reject VALUE if it is a register being used for an input reload
6951      even if it is not one of those reserved.  */
6952 
6953   if (reload_reg_p != 0)
6954     {
6955       int i;
6956       for (i = 0; i < n_reloads; i++)
6957 	if (rld[i].reg_rtx != 0 && rld[i].in)
6958 	  {
6959 	    int regno1 = REGNO (rld[i].reg_rtx);
6960 	    int nregs1 = hard_regno_nregs[regno1]
6961 					 [GET_MODE (rld[i].reg_rtx)];
6962 	    if (regno1 < valueno + valuenregs
6963 		&& regno1 + nregs1 > valueno)
6964 	      return 0;
6965 	  }
6966     }
6967 
6968   if (goal_mem)
6969     /* We must treat frame pointer as varying here,
6970        since it can vary--in a nonlocal goto as generated by expand_goto.  */
6971     goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6972 
6973   /* Now verify that the values of GOAL and VALUE remain unaltered
6974      until INSN is reached.  */
6975 
6976   p = insn;
6977   while (1)
6978     {
6979       p = PREV_INSN (p);
6980       if (p == where)
6981 	return value;
6982 
6983       /* Don't trust the conversion past a function call
6984 	 if either of the two is in a call-clobbered register, or memory.  */
6985       if (CALL_P (p))
6986 	{
6987 	  int i;
6988 
6989 	  if (goal_mem || need_stable_sp)
6990 	    return 0;
6991 
6992 	  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6993 	    for (i = 0; i < nregs; ++i)
6994 	      if (call_used_regs[regno + i]
6995 		  || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6996 		return 0;
6997 
6998 	  if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6999 	    for (i = 0; i < valuenregs; ++i)
7000 	      if (call_used_regs[valueno + i]
7001 		  || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
7002 		return 0;
7003 	}
7004 
7005       if (INSN_P (p))
7006 	{
7007 	  pat = PATTERN (p);
7008 
7009 	  /* Watch out for unspec_volatile, and volatile asms.  */
7010 	  if (volatile_insn_p (pat))
7011 	    return 0;
7012 
7013 	  /* If this insn P stores in either GOAL or VALUE, return 0.
7014 	     If GOAL is a memory ref and this insn writes memory, return 0.
7015 	     If GOAL is a memory ref and its address is not constant,
7016 	     and this insn P changes a register used in GOAL, return 0.  */
7017 
7018 	  if (GET_CODE (pat) == COND_EXEC)
7019 	    pat = COND_EXEC_CODE (pat);
7020 	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7021 	    {
7022 	      rtx dest = SET_DEST (pat);
7023 	      while (GET_CODE (dest) == SUBREG
7024 		     || GET_CODE (dest) == ZERO_EXTRACT
7025 		     || GET_CODE (dest) == STRICT_LOW_PART)
7026 		dest = XEXP (dest, 0);
7027 	      if (REG_P (dest))
7028 		{
7029 		  int xregno = REGNO (dest);
7030 		  int xnregs;
7031 		  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7032 		    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7033 		  else
7034 		    xnregs = 1;
7035 		  if (xregno < regno + nregs && xregno + xnregs > regno)
7036 		    return 0;
7037 		  if (xregno < valueno + valuenregs
7038 		      && xregno + xnregs > valueno)
7039 		    return 0;
7040 		  if (goal_mem_addr_varies
7041 		      && reg_overlap_mentioned_for_reload_p (dest, goal))
7042 		    return 0;
7043 		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7044 		    return 0;
7045 		}
7046 	      else if (goal_mem && MEM_P (dest)
7047 		       && ! push_operand (dest, GET_MODE (dest)))
7048 		return 0;
7049 	      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7050 		       && reg_equiv_memory_loc (regno) != 0)
7051 		return 0;
7052 	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7053 		return 0;
7054 	    }
7055 	  else if (GET_CODE (pat) == PARALLEL)
7056 	    {
7057 	      int i;
7058 	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7059 		{
7060 		  rtx v1 = XVECEXP (pat, 0, i);
7061 		  if (GET_CODE (v1) == COND_EXEC)
7062 		    v1 = COND_EXEC_CODE (v1);
7063 		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7064 		    {
7065 		      rtx dest = SET_DEST (v1);
7066 		      while (GET_CODE (dest) == SUBREG
7067 			     || GET_CODE (dest) == ZERO_EXTRACT
7068 			     || GET_CODE (dest) == STRICT_LOW_PART)
7069 			dest = XEXP (dest, 0);
7070 		      if (REG_P (dest))
7071 			{
7072 			  int xregno = REGNO (dest);
7073 			  int xnregs;
7074 			  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7075 			    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7076 			  else
7077 			    xnregs = 1;
7078 			  if (xregno < regno + nregs
7079 			      && xregno + xnregs > regno)
7080 			    return 0;
7081 			  if (xregno < valueno + valuenregs
7082 			      && xregno + xnregs > valueno)
7083 			    return 0;
7084 			  if (goal_mem_addr_varies
7085 			      && reg_overlap_mentioned_for_reload_p (dest,
7086 								     goal))
7087 			    return 0;
7088 			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7089 			    return 0;
7090 			}
7091 		      else if (goal_mem && MEM_P (dest)
7092 			       && ! push_operand (dest, GET_MODE (dest)))
7093 			return 0;
7094 		      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7095 			       && reg_equiv_memory_loc (regno) != 0)
7096 			return 0;
7097 		      else if (need_stable_sp
7098 			       && push_operand (dest, GET_MODE (dest)))
7099 			return 0;
7100 		    }
7101 		}
7102 	    }
7103 
7104 	  if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7105 	    {
7106 	      rtx link;
7107 
7108 	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7109 		   link = XEXP (link, 1))
7110 		{
7111 		  pat = XEXP (link, 0);
7112 		  if (GET_CODE (pat) == CLOBBER)
7113 		    {
7114 		      rtx dest = SET_DEST (pat);
7115 
7116 		      if (REG_P (dest))
7117 			{
7118 			  int xregno = REGNO (dest);
7119 			  int xnregs
7120 			    = hard_regno_nregs[xregno][GET_MODE (dest)];
7121 
7122 			  if (xregno < regno + nregs
7123 			      && xregno + xnregs > regno)
7124 			    return 0;
7125 			  else if (xregno < valueno + valuenregs
7126 				   && xregno + xnregs > valueno)
7127 			    return 0;
7128 			  else if (goal_mem_addr_varies
7129 				   && reg_overlap_mentioned_for_reload_p (dest,
7130 								     goal))
7131 			    return 0;
7132 			}
7133 
7134 		      else if (goal_mem && MEM_P (dest)
7135 			       && ! push_operand (dest, GET_MODE (dest)))
7136 			return 0;
7137 		      else if (need_stable_sp
7138 			       && push_operand (dest, GET_MODE (dest)))
7139 			return 0;
7140 		    }
7141 		}
7142 	    }
7143 
7144 #ifdef AUTO_INC_DEC
7145 	  /* If this insn auto-increments or auto-decrements
7146 	     either regno or valueno, return 0 now.
7147 	     If GOAL is a memory ref and its address is not constant,
7148 	     and this insn P increments a register used in GOAL, return 0.  */
7149 	  {
7150 	    rtx link;
7151 
7152 	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7153 	      if (REG_NOTE_KIND (link) == REG_INC
7154 		  && REG_P (XEXP (link, 0)))
7155 		{
7156 		  int incno = REGNO (XEXP (link, 0));
7157 		  if (incno < regno + nregs && incno >= regno)
7158 		    return 0;
7159 		  if (incno < valueno + valuenregs && incno >= valueno)
7160 		    return 0;
7161 		  if (goal_mem_addr_varies
7162 		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7163 							     goal))
7164 		    return 0;
7165 		}
7166 	  }
7167 #endif
7168 	}
7169     }
7170 }
7171 
7172 /* Find a place where INCED appears in an increment or decrement operator
7173    within X, and return the amount INCED is incremented or decremented by.
7174    The value is always positive.  */
7175 
7176 static int
find_inc_amount(rtx x,rtx inced)7177 find_inc_amount (rtx x, rtx inced)
7178 {
7179   enum rtx_code code = GET_CODE (x);
7180   const char *fmt;
7181   int i;
7182 
7183   if (code == MEM)
7184     {
7185       rtx addr = XEXP (x, 0);
7186       if ((GET_CODE (addr) == PRE_DEC
7187 	   || GET_CODE (addr) == POST_DEC
7188 	   || GET_CODE (addr) == PRE_INC
7189 	   || GET_CODE (addr) == POST_INC)
7190 	  && XEXP (addr, 0) == inced)
7191 	return GET_MODE_SIZE (GET_MODE (x));
7192       else if ((GET_CODE (addr) == PRE_MODIFY
7193 		|| GET_CODE (addr) == POST_MODIFY)
7194 	       && GET_CODE (XEXP (addr, 1)) == PLUS
7195 	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7196 	       && XEXP (addr, 0) == inced
7197 	       && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7198 	{
7199 	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
7200 	  return i < 0 ? -i : i;
7201 	}
7202     }
7203 
7204   fmt = GET_RTX_FORMAT (code);
7205   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7206     {
7207       if (fmt[i] == 'e')
7208 	{
7209 	  int tem = find_inc_amount (XEXP (x, i), inced);
7210 	  if (tem != 0)
7211 	    return tem;
7212 	}
7213       if (fmt[i] == 'E')
7214 	{
7215 	  int j;
7216 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7217 	    {
7218 	      int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7219 	      if (tem != 0)
7220 		return tem;
7221 	    }
7222 	}
7223     }
7224 
7225   return 0;
7226 }
7227 
7228 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7229    REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
7230 
7231 #ifdef AUTO_INC_DEC
7232 static int
reg_inc_found_and_valid_p(unsigned int regno,unsigned int endregno,rtx insn)7233 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7234 			   rtx insn)
7235 {
7236   rtx link;
7237 
7238   gcc_assert (insn);
7239 
7240   if (! INSN_P (insn))
7241     return 0;
7242 
7243   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7244     if (REG_NOTE_KIND (link) == REG_INC)
7245       {
7246 	unsigned int test = (int) REGNO (XEXP (link, 0));
7247 	if (test >= regno && test < endregno)
7248 	  return 1;
7249       }
7250   return 0;
7251 }
7252 #else
7253 
7254 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7255 
7256 #endif
7257 
7258 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7259    If SETS is 1, also consider SETs.  If SETS is 2, enable checking
7260    REG_INC.  REGNO must refer to a hard register.  */
7261 
7262 int
regno_clobbered_p(unsigned int regno,rtx insn,enum machine_mode mode,int sets)7263 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7264 		   int sets)
7265 {
7266   unsigned int nregs, endregno;
7267 
7268   /* regno must be a hard register.  */
7269   gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7270 
7271   nregs = hard_regno_nregs[regno][mode];
7272   endregno = regno + nregs;
7273 
7274   if ((GET_CODE (PATTERN (insn)) == CLOBBER
7275        || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7276       && REG_P (XEXP (PATTERN (insn), 0)))
7277     {
7278       unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7279 
7280       return test >= regno && test < endregno;
7281     }
7282 
7283   if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7284     return 1;
7285 
7286   if (GET_CODE (PATTERN (insn)) == PARALLEL)
7287     {
7288       int i = XVECLEN (PATTERN (insn), 0) - 1;
7289 
7290       for (; i >= 0; i--)
7291 	{
7292 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7293 	  if ((GET_CODE (elt) == CLOBBER
7294 	       || (sets == 1 && GET_CODE (elt) == SET))
7295 	      && REG_P (XEXP (elt, 0)))
7296 	    {
7297 	      unsigned int test = REGNO (XEXP (elt, 0));
7298 
7299 	      if (test >= regno && test < endregno)
7300 		return 1;
7301 	    }
7302 	  if (sets == 2
7303 	      && reg_inc_found_and_valid_p (regno, endregno, elt))
7304 	    return 1;
7305 	}
7306     }
7307 
7308   return 0;
7309 }
7310 
7311 /* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
7312 rtx
reload_adjust_reg_for_mode(rtx reloadreg,enum machine_mode mode)7313 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7314 {
7315   int regno;
7316 
7317   if (GET_MODE (reloadreg) == mode)
7318     return reloadreg;
7319 
7320   regno = REGNO (reloadreg);
7321 
7322   if (REG_WORDS_BIG_ENDIAN)
7323     regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7324       - (int) hard_regno_nregs[regno][mode];
7325 
7326   return gen_rtx_REG (mode, regno);
7327 }
7328 
7329 static const char *const reload_when_needed_name[] =
7330 {
7331   "RELOAD_FOR_INPUT",
7332   "RELOAD_FOR_OUTPUT",
7333   "RELOAD_FOR_INSN",
7334   "RELOAD_FOR_INPUT_ADDRESS",
7335   "RELOAD_FOR_INPADDR_ADDRESS",
7336   "RELOAD_FOR_OUTPUT_ADDRESS",
7337   "RELOAD_FOR_OUTADDR_ADDRESS",
7338   "RELOAD_FOR_OPERAND_ADDRESS",
7339   "RELOAD_FOR_OPADDR_ADDR",
7340   "RELOAD_OTHER",
7341   "RELOAD_FOR_OTHER_ADDRESS"
7342 };
7343 
7344 /* These functions are used to print the variables set by 'find_reloads' */
7345 
7346 DEBUG_FUNCTION void
debug_reload_to_stream(FILE * f)7347 debug_reload_to_stream (FILE *f)
7348 {
7349   int r;
7350   const char *prefix;
7351 
7352   if (! f)
7353     f = stderr;
7354   for (r = 0; r < n_reloads; r++)
7355     {
7356       fprintf (f, "Reload %d: ", r);
7357 
7358       if (rld[r].in != 0)
7359 	{
7360 	  fprintf (f, "reload_in (%s) = ",
7361 		   GET_MODE_NAME (rld[r].inmode));
7362 	  print_inline_rtx (f, rld[r].in, 24);
7363 	  fprintf (f, "\n\t");
7364 	}
7365 
7366       if (rld[r].out != 0)
7367 	{
7368 	  fprintf (f, "reload_out (%s) = ",
7369 		   GET_MODE_NAME (rld[r].outmode));
7370 	  print_inline_rtx (f, rld[r].out, 24);
7371 	  fprintf (f, "\n\t");
7372 	}
7373 
7374       fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7375 
7376       fprintf (f, "%s (opnum = %d)",
7377 	       reload_when_needed_name[(int) rld[r].when_needed],
7378 	       rld[r].opnum);
7379 
7380       if (rld[r].optional)
7381 	fprintf (f, ", optional");
7382 
7383       if (rld[r].nongroup)
7384 	fprintf (f, ", nongroup");
7385 
7386       if (rld[r].inc != 0)
7387 	fprintf (f, ", inc by %d", rld[r].inc);
7388 
7389       if (rld[r].nocombine)
7390 	fprintf (f, ", can't combine");
7391 
7392       if (rld[r].secondary_p)
7393 	fprintf (f, ", secondary_reload_p");
7394 
7395       if (rld[r].in_reg != 0)
7396 	{
7397 	  fprintf (f, "\n\treload_in_reg: ");
7398 	  print_inline_rtx (f, rld[r].in_reg, 24);
7399 	}
7400 
7401       if (rld[r].out_reg != 0)
7402 	{
7403 	  fprintf (f, "\n\treload_out_reg: ");
7404 	  print_inline_rtx (f, rld[r].out_reg, 24);
7405 	}
7406 
7407       if (rld[r].reg_rtx != 0)
7408 	{
7409 	  fprintf (f, "\n\treload_reg_rtx: ");
7410 	  print_inline_rtx (f, rld[r].reg_rtx, 24);
7411 	}
7412 
7413       prefix = "\n\t";
7414       if (rld[r].secondary_in_reload != -1)
7415 	{
7416 	  fprintf (f, "%ssecondary_in_reload = %d",
7417 		   prefix, rld[r].secondary_in_reload);
7418 	  prefix = ", ";
7419 	}
7420 
7421       if (rld[r].secondary_out_reload != -1)
7422 	fprintf (f, "%ssecondary_out_reload = %d\n",
7423 		 prefix, rld[r].secondary_out_reload);
7424 
7425       prefix = "\n\t";
7426       if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7427 	{
7428 	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
7429 		   insn_data[rld[r].secondary_in_icode].name);
7430 	  prefix = ", ";
7431 	}
7432 
7433       if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7434 	fprintf (f, "%ssecondary_out_icode = %s", prefix,
7435 		 insn_data[rld[r].secondary_out_icode].name);
7436 
7437       fprintf (f, "\n");
7438     }
7439 }
7440 
7441 DEBUG_FUNCTION void
debug_reload(void)7442 debug_reload (void)
7443 {
7444   debug_reload_to_stream (stderr);
7445 }
7446