1 // verify.cc - verify bytecode
2 
3 /* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006  Free Software Foundation
4 
5    This file is part of libgcj.
6 
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
9 details.  */
10 
11 // Written by Tom Tromey <tromey@redhat.com>
12 
13 // Define VERIFY_DEBUG to enable debugging output.
14 
15 #include <config.h>
16 
17 #include <string.h>
18 
19 #include <jvm.h>
20 #include <gcj/cni.h>
21 #include <java-insns.h>
22 #include <java-interp.h>
23 
24 // On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which
25 // defines PC since g++ predefines __EXTENSIONS__.  Undef here to avoid clash
26 // with PC member of class _Jv_BytecodeVerifier below.
27 #undef PC
28 
29 #ifdef INTERPRETER
30 
31 #include <java/lang/Class.h>
32 #include <java/lang/VerifyError.h>
33 #include <java/lang/Throwable.h>
34 #include <java/lang/reflect/Modifier.h>
35 #include <java/lang/StringBuffer.h>
36 #include <java/lang/NoClassDefFoundError.h>
37 
38 #ifdef VERIFY_DEBUG
39 #include <stdio.h>
40 #endif /* VERIFY_DEBUG */
41 
42 
43 // This is used to mark states which are not scheduled for
44 // verification.
45 #define INVALID_STATE ((state *) -1)
46 
47 static void debug_print (const char *fmt, ...)
48   __attribute__ ((format (printf, 1, 2)));
49 
50 static inline void
debug_print(MAYBE_UNUSED const char * fmt,...)51 debug_print (MAYBE_UNUSED const char *fmt, ...)
52 {
53 #ifdef VERIFY_DEBUG
54   va_list ap;
55   va_start (ap, fmt);
56   vfprintf (stderr, fmt, ap);
57   va_end (ap);
58 #endif /* VERIFY_DEBUG */
59 }
60 
61 // This started as a fairly ordinary verifier, and for the most part
62 // it remains so.  It works in the obvious way, by modeling the effect
63 // of each opcode as it is encountered.  For most opcodes, this is a
64 // straightforward operation.
65 //
66 // This verifier does not do type merging.  It used to, but this
67 // results in difficulty verifying some relatively simple code
68 // involving interfaces, and it pushed some verification work into the
69 // interpreter.
70 //
71 // Instead of merging reference types, when we reach a point where two
72 // flows of control merge, we simply keep the union of reference types
73 // from each branch.  Then, when we need to verify a fact about a
74 // reference on the stack (e.g., that it is compatible with the
75 // argument type of a method), we check to ensure that all possible
76 // types satisfy the requirement.
77 //
78 // Another area this verifier differs from the norm is in its handling
79 // of subroutines.  The JVM specification has some confusing things to
80 // say about subroutines.  For instance, it makes claims about not
81 // allowing subroutines to merge and it rejects recursive subroutines.
82 // For the most part these are red herrings; we used to try to follow
83 // these things but they lead to problems.  For example, the notion of
84 // "being in a subroutine" is not well-defined: is an exception
85 // handler in a subroutine?  If you never execute the `ret' but
86 // instead `goto 1' do you remain in the subroutine?
87 //
88 // For clarity on what is really required for type safety, read
89 // "Simple Verification Technique for Complex Java Bytecode
90 // Subroutines" by Alessandro Coglio.  Among other things this paper
91 // shows that recursive subroutines are not harmful to type safety.
92 // We implement something similar to what he proposes.  Note that this
93 // means that this verifier will accept code that is rejected by some
94 // other verifiers.
95 //
96 // For those not wanting to read the paper, the basic observation is
97 // that we can maintain split states in subroutines.  We maintain one
98 // state for each calling `jsr'.  In other words, we re-verify a
99 // subroutine once for each caller, using the exact types held by the
100 // callers (as opposed to the old approach of merging types and
101 // keeping a bitmap registering what did or did not change).  This
102 // approach lets us continue to verify correctly even when a
103 // subroutine is exited via `goto' or `athrow' and not `ret'.
104 //
105 // In some other areas the JVM specification is (mildly) incorrect,
106 // so we diverge.  For instance, you cannot
107 // violate type safety by allocating an object with `new' and then
108 // failing to initialize it, no matter how one branches or where one
109 // stores the uninitialized reference.  See "Improving the official
110 // specification of Java bytecode verification" by Alessandro Coglio.
111 //
112 // Note that there's no real point in enforcing that padding bytes or
113 // the mystery byte of invokeinterface must be 0, but we do that
114 // regardless.
115 //
116 // The verifier is currently neither completely lazy nor eager when it
117 // comes to loading classes.  It tries to represent types by name when
118 // possible, and then loads them when it needs to verify a fact about
119 // the type.  Checking types by name is valid because we only use
120 // names which come from the current class' constant pool.  Since all
121 // such names are looked up using the same class loader, there is no
122 // danger that we might be fooled into comparing different types with
123 // the same name.
124 //
125 // In the future we plan to allow for a completely lazy mode of
126 // operation, where the verifier will construct a list of type
127 // assertions to be checked later.
128 //
129 // Some test cases for the verifier live in the "verify" module of the
130 // Mauve test suite.  However, some of these are presently
131 // (2004-01-20) believed to be incorrect.  (More precisely the notion
132 // of "correct" is not well-defined, and this verifier differs from
133 // others while remaining type-safe.)  Some other tests live in the
134 // libgcj test suite.
135 class _Jv_BytecodeVerifier
136 {
137 private:
138 
139   static const int FLAG_INSN_START = 1;
140   static const int FLAG_BRANCH_TARGET = 2;
141 
142   struct state;
143   struct type;
144   struct linked_utf8;
145   struct ref_intersection;
146 
147   template<typename T>
148   struct linked
149   {
150     T *val;
151     linked<T> *next;
152   };
153 
154   // The current PC.
155   int PC;
156   // The PC corresponding to the start of the current instruction.
157   int start_PC;
158 
159   // The current state of the stack, locals, etc.
160   state *current_state;
161 
162   // At each branch target we keep a linked list of all the states we
163   // can process at that point.  We'll only have multiple states at a
164   // given PC if they both have different return-address types in the
165   // same stack or local slot.  This array is indexed by PC and holds
166   // the list of all such states.
167   linked<state> **states;
168 
169   // We keep a linked list of all the states which we must reverify.
170   // This is the head of the list.
171   state *next_verify_state;
172 
173   // We keep some flags for each instruction.  The values are the
174   // FLAG_* constants defined above.  This is an array indexed by PC.
175   char *flags;
176 
177   // The bytecode itself.
178   unsigned char *bytecode;
179   // The exceptions.
180   _Jv_InterpException *exception;
181 
182   // Defining class.
183   jclass current_class;
184   // This method.
185   _Jv_InterpMethod *current_method;
186 
187   // A linked list of utf8 objects we allocate.
188   linked<_Jv_Utf8Const> *utf8_list;
189 
190   // A linked list of all ref_intersection objects we allocate.
191   ref_intersection *isect_list;
192 
193   // Create a new Utf-8 constant and return it.  We do this to avoid
194   // having our Utf-8 constants prematurely collected.
make_utf8_const(char * s,int len)195   _Jv_Utf8Const *make_utf8_const (char *s, int len)
196   {
197     linked<_Jv_Utf8Const> *lu = (linked<_Jv_Utf8Const> *)
198       _Jv_Malloc (sizeof (linked<_Jv_Utf8Const>)
199 		  + _Jv_Utf8Const::space_needed(s, len));
200     _Jv_Utf8Const *r = (_Jv_Utf8Const *) (lu + 1);
201     r->init(s, len);
202     lu->val = r;
203     lu->next = utf8_list;
204     utf8_list = lu;
205 
206     return r;
207   }
208 
verify_fail(const char * s,jint pc=-1)209   __attribute__ ((__noreturn__)) void verify_fail (const char *s, jint pc = -1)
210   {
211     using namespace java::lang;
212     StringBuffer *buf = new StringBuffer ();
213 
214     buf->append (JvNewStringLatin1 ("verification failed"));
215     if (pc == -1)
216       pc = start_PC;
217     if (pc != -1)
218       {
219 	buf->append (JvNewStringLatin1 (" at PC "));
220 	buf->append (pc);
221       }
222 
223     _Jv_InterpMethod *method = current_method;
224     buf->append (JvNewStringLatin1 (" in "));
225     buf->append (current_class->getName());
226     buf->append ((jchar) ':');
227     buf->append (method->get_method()->name->toString());
228     buf->append ((jchar) '(');
229     buf->append (method->get_method()->signature->toString());
230     buf->append ((jchar) ')');
231 
232     buf->append (JvNewStringLatin1 (": "));
233     buf->append (JvNewStringLatin1 (s));
234     throw new java::lang::VerifyError (buf->toString ());
235   }
236 
237   // This enum holds a list of tags for all the different types we
238   // need to handle.  Reference types are treated specially by the
239   // type class.
240   enum type_val
241   {
242     void_type,
243 
244     // The values for primitive types are chosen to correspond to values
245     // specified to newarray.
246     boolean_type = 4,
247     char_type = 5,
248     float_type = 6,
249     double_type = 7,
250     byte_type = 8,
251     short_type = 9,
252     int_type = 10,
253     long_type = 11,
254 
255     // Used when overwriting second word of a double or long in the
256     // local variables.  Also used after merging local variable states
257     // to indicate an unusable value.
258     unsuitable_type,
259     return_address_type,
260     // This is the second word of a two-word value, i.e., a double or
261     // a long.
262     continuation_type,
263 
264     // Everything after `reference_type' must be a reference type.
265     reference_type,
266     null_type,
267     uninitialized_reference_type
268   };
269 
270   // This represents a merged class type.  Some verifiers (including
271   // earlier versions of this one) will compute the intersection of
272   // two class types when merging states.  However, this loses
273   // critical information about interfaces implemented by the various
274   // classes.  So instead we keep track of all the actual classes that
275   // have been merged.
276   struct ref_intersection
277   {
278     // Whether or not this type has been resolved.
279     bool is_resolved;
280 
281     // Actual type data.
282     union
283     {
284       // For a resolved reference type, this is a pointer to the class.
285       jclass klass;
286       // For other reference types, this it the name of the class.
287       _Jv_Utf8Const *name;
288     } data;
289 
290     // Link to the next reference in the intersection.
291     ref_intersection *ref_next;
292 
293     // This is used to keep track of all the allocated
294     // ref_intersection objects, so we can free them.
295     // FIXME: we should allocate these in chunks.
296     ref_intersection *alloc_next;
297 
ref_intersection_Jv_BytecodeVerifier::ref_intersection298     ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier)
299       : ref_next (NULL)
300     {
301       is_resolved = true;
302       data.klass = klass;
303       alloc_next = verifier->isect_list;
304       verifier->isect_list = this;
305     }
306 
ref_intersection_Jv_BytecodeVerifier::ref_intersection307     ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier)
308       : ref_next (NULL)
309     {
310       is_resolved = false;
311       data.name = name;
312       alloc_next = verifier->isect_list;
313       verifier->isect_list = this;
314     }
315 
ref_intersection_Jv_BytecodeVerifier::ref_intersection316     ref_intersection (ref_intersection *dup, ref_intersection *tail,
317 		      _Jv_BytecodeVerifier *verifier)
318       : ref_next (tail)
319     {
320       is_resolved = dup->is_resolved;
321       data = dup->data;
322       alloc_next = verifier->isect_list;
323       verifier->isect_list = this;
324     }
325 
equals_Jv_BytecodeVerifier::ref_intersection326     bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier)
327     {
328       if (! is_resolved && ! other->is_resolved
329 	  && _Jv_equalUtf8Classnames (data.name, other->data.name))
330 	return true;
331       if (! is_resolved)
332 	resolve (verifier);
333       if (! other->is_resolved)
334 	other->resolve (verifier);
335       return data.klass == other->data.klass;
336     }
337 
338     // Merge THIS type into OTHER, returning the result.  This will
339     // return OTHER if all the classes in THIS already appear in
340     // OTHER.
merge_Jv_BytecodeVerifier::ref_intersection341     ref_intersection *merge (ref_intersection *other,
342 			     _Jv_BytecodeVerifier *verifier)
343     {
344       ref_intersection *tail = other;
345       for (ref_intersection *self = this; self != NULL; self = self->ref_next)
346 	{
347 	  bool add = true;
348 	  for (ref_intersection *iter = other; iter != NULL;
349 	       iter = iter->ref_next)
350 	    {
351 	      if (iter->equals (self, verifier))
352 		{
353 		  add = false;
354 		  break;
355 		}
356 	    }
357 
358 	  if (add)
359 	    tail = new ref_intersection (self, tail, verifier);
360 	}
361       return tail;
362     }
363 
resolve_Jv_BytecodeVerifier::ref_intersection364     void resolve (_Jv_BytecodeVerifier *verifier)
365     {
366       if (is_resolved)
367 	return;
368 
369       // This is useful if you want to see which classes have to be resolved
370       // while doing the class verification.
371       debug_print("resolving class: %s\n", data.name->chars());
372 
373       using namespace java::lang;
374       java::lang::ClassLoader *loader
375 	= verifier->current_class->getClassLoaderInternal();
376 
377       // Due to special handling in to_array() array classes will always
378       // be of the "L ... ;" kind. The separator char ('.' or '/' may vary
379       // however.
380       if (data.name->limit()[-1] == ';')
381 	{
382 	  data.klass = _Jv_FindClassFromSignature (data.name->chars(), loader);
383 	  if (data.klass == NULL)
384 	    throw new java::lang::NoClassDefFoundError(data.name->toString());
385 	}
386       else
387 	data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
388 				     false, loader);
389       is_resolved = true;
390     }
391 
392     // See if an object of type OTHER can be assigned to an object of
393     // type *THIS.  This might resolve classes in one chain or the
394     // other.
compatible_Jv_BytecodeVerifier::ref_intersection395     bool compatible (ref_intersection *other,
396 		     _Jv_BytecodeVerifier *verifier)
397     {
398       ref_intersection *self = this;
399 
400       for (; self != NULL; self = self->ref_next)
401 	{
402 	  ref_intersection *other_iter = other;
403 
404 	  for (; other_iter != NULL; other_iter = other_iter->ref_next)
405 	    {
406 	      // Avoid resolving if possible.
407 	      if (! self->is_resolved
408 		  && ! other_iter->is_resolved
409 		  && _Jv_equalUtf8Classnames (self->data.name,
410 		 			      other_iter->data.name))
411 		continue;
412 
413 	      if (! self->is_resolved)
414 		self->resolve(verifier);
415 
416               // If the LHS of the expression is of type
417               // java.lang.Object, assignment will succeed, no matter
418               // what the type of the RHS is. Using this short-cut we
419               // don't need to resolve the class of the RHS at
420               // verification time.
421               if (self->data.klass == &java::lang::Object::class$)
422                 continue;
423 
424 	      if (! other_iter->is_resolved)
425 		other_iter->resolve(verifier);
426 
427 	      if (! is_assignable_from_slow (self->data.klass,
428 					     other_iter->data.klass))
429 		return false;
430 	    }
431 	}
432 
433       return true;
434     }
435 
isarray_Jv_BytecodeVerifier::ref_intersection436     bool isarray ()
437     {
438       // assert (ref_next == NULL);
439       if (is_resolved)
440 	return data.klass->isArray ();
441       else
442 	return data.name->first() == '[';
443     }
444 
isinterface_Jv_BytecodeVerifier::ref_intersection445     bool isinterface (_Jv_BytecodeVerifier *verifier)
446     {
447       // assert (ref_next == NULL);
448       if (! is_resolved)
449 	resolve (verifier);
450       return data.klass->isInterface ();
451     }
452 
isabstract_Jv_BytecodeVerifier::ref_intersection453     bool isabstract (_Jv_BytecodeVerifier *verifier)
454     {
455       // assert (ref_next == NULL);
456       if (! is_resolved)
457 	resolve (verifier);
458       using namespace java::lang::reflect;
459       return Modifier::isAbstract (data.klass->getModifiers ());
460     }
461 
getclass_Jv_BytecodeVerifier::ref_intersection462     jclass getclass (_Jv_BytecodeVerifier *verifier)
463     {
464       if (! is_resolved)
465 	resolve (verifier);
466       return data.klass;
467     }
468 
count_dimensions_Jv_BytecodeVerifier::ref_intersection469     int count_dimensions ()
470     {
471       int ndims = 0;
472       if (is_resolved)
473 	{
474 	  jclass k = data.klass;
475 	  while (k->isArray ())
476 	    {
477 	      k = k->getComponentType ();
478 	      ++ndims;
479 	    }
480 	}
481       else
482 	{
483 	  char *p = data.name->chars();
484 	  while (*p++ == '[')
485 	    ++ndims;
486 	}
487       return ndims;
488     }
489 
operator new_Jv_BytecodeVerifier::ref_intersection490     void *operator new (size_t bytes)
491     {
492       return _Jv_Malloc (bytes);
493     }
494 
operator delete_Jv_BytecodeVerifier::ref_intersection495     void operator delete (void *mem)
496     {
497       _Jv_Free (mem);
498     }
499   };
500 
501   // Return the type_val corresponding to a primitive signature
502   // character.  For instance `I' returns `int.class'.
get_type_val_for_signature(jchar sig)503   type_val get_type_val_for_signature (jchar sig)
504   {
505     type_val rt;
506     switch (sig)
507       {
508       case 'Z':
509 	rt = boolean_type;
510 	break;
511       case 'B':
512 	rt = byte_type;
513 	break;
514       case 'C':
515 	rt = char_type;
516 	break;
517       case 'S':
518 	rt = short_type;
519 	break;
520       case 'I':
521 	rt = int_type;
522 	break;
523       case 'J':
524 	rt = long_type;
525 	break;
526       case 'F':
527 	rt = float_type;
528 	break;
529       case 'D':
530 	rt = double_type;
531 	break;
532       case 'V':
533 	rt = void_type;
534 	break;
535       default:
536 	verify_fail ("invalid signature");
537       }
538     return rt;
539   }
540 
541   // Return the type_val corresponding to a primitive class.
get_type_val_for_signature(jclass k)542   type_val get_type_val_for_signature (jclass k)
543   {
544     return get_type_val_for_signature ((jchar) k->method_count);
545   }
546 
547   // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
548   // TARGET haven't been prepared.
is_assignable_from_slow(jclass target,jclass source)549   static bool is_assignable_from_slow (jclass target, jclass source)
550   {
551     // First, strip arrays.
552     while (target->isArray ())
553       {
554 	// If target is array, source must be as well.
555 	if (! source->isArray ())
556 	  return false;
557 	target = target->getComponentType ();
558 	source = source->getComponentType ();
559       }
560 
561     // Quick success.
562     if (target == &java::lang::Object::class$)
563       return true;
564 
565     do
566       {
567 	if (source == target)
568 	  return true;
569 
570 	if (target->isPrimitive () || source->isPrimitive ())
571 	  return false;
572 
573 	if (target->isInterface ())
574 	  {
575 	    for (int i = 0; i < source->interface_count; ++i)
576 	      {
577 		// We use a recursive call because we also need to
578 		// check superinterfaces.
579 		if (is_assignable_from_slow (target, source->getInterface (i)))
580 		  return true;
581 	      }
582 	  }
583 	source = source->getSuperclass ();
584       }
585     while (source != NULL);
586 
587     return false;
588   }
589 
590   // The `type' class is used to represent a single type in the
591   // verifier.
592   struct type
593   {
594     // The type key.
595     type_val key;
596 
597     // For reference types, the representation of the type.
598     ref_intersection *klass;
599 
600     // This is used in two situations.
601     //
602     // First, when constructing a new object, it is the PC of the
603     // `new' instruction which created the object.  We use the special
604     // value UNINIT to mean that this is uninitialized.  The special
605     // value SELF is used for the case where the current method is
606     // itself the <init> method.  the special value EITHER is used
607     // when we may optionally allow either an uninitialized or
608     // initialized reference to match.
609     //
610     // Second, when the key is return_address_type, this holds the PC
611     // of the instruction following the `jsr'.
612     int pc;
613 
614     static const int UNINIT = -2;
615     static const int SELF = -1;
616     static const int EITHER = -3;
617 
618     // Basic constructor.
type_Jv_BytecodeVerifier::type619     type ()
620     {
621       key = unsuitable_type;
622       klass = NULL;
623       pc = UNINIT;
624     }
625 
626     // Make a new instance given the type tag.  We assume a generic
627     // `reference_type' means Object.
type_Jv_BytecodeVerifier::type628     type (type_val k)
629     {
630       key = k;
631       // For reference_type, if KLASS==NULL then that means we are
632       // looking for a generic object of any kind, including an
633       // uninitialized reference.
634       klass = NULL;
635       pc = UNINIT;
636     }
637 
638     // Make a new instance given a class.
type_Jv_BytecodeVerifier::type639     type (jclass k, _Jv_BytecodeVerifier *verifier)
640     {
641       key = reference_type;
642       klass = new ref_intersection (k, verifier);
643       pc = UNINIT;
644     }
645 
646     // Make a new instance given the name of a class.
type_Jv_BytecodeVerifier::type647     type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier)
648     {
649       key = reference_type;
650       klass = new ref_intersection (n, verifier);
651       pc = UNINIT;
652     }
653 
654     // Copy constructor.
type_Jv_BytecodeVerifier::type655     type (const type &t)
656     {
657       key = t.key;
658       klass = t.klass;
659       pc = t.pc;
660     }
661 
662     // These operators are required because libgcj can't link in
663     // -lstdc++.
operator new[]_Jv_BytecodeVerifier::type664     void *operator new[] (size_t bytes)
665     {
666       return _Jv_Malloc (bytes);
667     }
668 
operator delete[]_Jv_BytecodeVerifier::type669     void operator delete[] (void *mem)
670     {
671       _Jv_Free (mem);
672     }
673 
operator =_Jv_BytecodeVerifier::type674     type& operator= (type_val k)
675     {
676       key = k;
677       klass = NULL;
678       pc = UNINIT;
679       return *this;
680     }
681 
operator =_Jv_BytecodeVerifier::type682     type& operator= (const type& t)
683     {
684       key = t.key;
685       klass = t.klass;
686       pc = t.pc;
687       return *this;
688     }
689 
690     // Promote a numeric type.
promote_Jv_BytecodeVerifier::type691     type &promote ()
692     {
693       if (key == boolean_type || key == char_type
694 	  || key == byte_type || key == short_type)
695 	key = int_type;
696       return *this;
697     }
698 
699     // Mark this type as the uninitialized result of `new'.
set_uninitialized_Jv_BytecodeVerifier::type700     void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
701     {
702       if (key == reference_type)
703 	key = uninitialized_reference_type;
704       else
705 	verifier->verify_fail ("internal error in type::uninitialized");
706       pc = npc;
707     }
708 
709     // Mark this type as now initialized.
set_initialized_Jv_BytecodeVerifier::type710     void set_initialized (int npc)
711     {
712       if (npc != UNINIT && pc == npc && key == uninitialized_reference_type)
713 	{
714 	  key = reference_type;
715 	  pc = UNINIT;
716 	}
717     }
718 
719     // Mark this type as a particular return address.
set_return_address_Jv_BytecodeVerifier::type720     void set_return_address (int npc)
721     {
722       pc = npc;
723     }
724 
725     // Return true if this type and type OTHER are considered
726     // mergeable for the purposes of state merging.  This is related
727     // to subroutine handling.  For this purpose two types are
728     // considered unmergeable if they are both return-addresses but
729     // have different PCs.
state_mergeable_p_Jv_BytecodeVerifier::type730     bool state_mergeable_p (const type &other) const
731     {
732       return (key != return_address_type
733 	      || other.key != return_address_type
734 	      || pc == other.pc);
735     }
736 
737     // Return true if an object of type K can be assigned to a variable
738     // of type *THIS.  Handle various special cases too.  Might modify
739     // *THIS or K.  Note however that this does not perform numeric
740     // promotion.
compatible_Jv_BytecodeVerifier::type741     bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
742     {
743       // Any type is compatible with the unsuitable type.
744       if (key == unsuitable_type)
745 	return true;
746 
747       if (key < reference_type || k.key < reference_type)
748 	return key == k.key;
749 
750       // The `null' type is convertible to any initialized reference
751       // type.
752       if (key == null_type)
753 	return k.key != uninitialized_reference_type;
754       if (k.key == null_type)
755 	return key != uninitialized_reference_type;
756 
757       // A special case for a generic reference.
758       if (klass == NULL)
759 	return true;
760       if (k.klass == NULL)
761 	verifier->verify_fail ("programmer error in type::compatible");
762 
763       // Handle the special 'EITHER' case, which is only used in a
764       // special case of 'putfield'.  Note that we only need to handle
765       // this on the LHS of a check.
766       if (! isinitialized () && pc == EITHER)
767 	{
768 	  // If the RHS is uninitialized, it must be an uninitialized
769 	  // 'this'.
770 	  if (! k.isinitialized () && k.pc != SELF)
771 	    return false;
772 	}
773       else if (isinitialized () != k.isinitialized ())
774 	{
775 	  // An initialized type and an uninitialized type are not
776 	  // otherwise compatible.
777 	  return false;
778 	}
779       else
780 	{
781 	  // Two uninitialized objects are compatible if either:
782 	  // * The PCs are identical, or
783 	  // * One PC is UNINIT.
784 	  if (! isinitialized ())
785 	    {
786 	      if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
787 		return false;
788 	    }
789 	}
790 
791       return klass->compatible(k.klass, verifier);
792     }
793 
equals_Jv_BytecodeVerifier::type794     bool equals (const type &other, _Jv_BytecodeVerifier *vfy)
795     {
796       // Only works for reference types.
797       if ((key != reference_type
798 	   && key != uninitialized_reference_type)
799 	  || (other.key != reference_type
800 	      && other.key != uninitialized_reference_type))
801 	return false;
802       // Only for single-valued types.
803       if (klass->ref_next || other.klass->ref_next)
804 	return false;
805       return klass->equals (other.klass, vfy);
806     }
807 
isvoid_Jv_BytecodeVerifier::type808     bool isvoid () const
809     {
810       return key == void_type;
811     }
812 
iswide_Jv_BytecodeVerifier::type813     bool iswide () const
814     {
815       return key == long_type || key == double_type;
816     }
817 
818     // Return number of stack or local variable slots taken by this
819     // type.
depth_Jv_BytecodeVerifier::type820     int depth () const
821     {
822       return iswide () ? 2 : 1;
823     }
824 
isarray_Jv_BytecodeVerifier::type825     bool isarray () const
826     {
827       // We treat null_type as not an array.  This is ok based on the
828       // current uses of this method.
829       if (key == reference_type)
830 	return klass->isarray ();
831       return false;
832     }
833 
isnull_Jv_BytecodeVerifier::type834     bool isnull () const
835     {
836       return key == null_type;
837     }
838 
isinterface_Jv_BytecodeVerifier::type839     bool isinterface (_Jv_BytecodeVerifier *verifier)
840     {
841       if (key != reference_type)
842 	return false;
843       return klass->isinterface (verifier);
844     }
845 
isabstract_Jv_BytecodeVerifier::type846     bool isabstract (_Jv_BytecodeVerifier *verifier)
847     {
848       if (key != reference_type)
849 	return false;
850       return klass->isabstract (verifier);
851     }
852 
853     // Return the element type of an array.
element_type_Jv_BytecodeVerifier::type854     type element_type (_Jv_BytecodeVerifier *verifier)
855     {
856       if (key != reference_type)
857 	verifier->verify_fail ("programmer error in type::element_type()", -1);
858 
859       jclass k = klass->getclass (verifier)->getComponentType ();
860       if (k->isPrimitive ())
861 	return type (verifier->get_type_val_for_signature (k));
862       return type (k, verifier);
863     }
864 
865     // Return the array type corresponding to an initialized
866     // reference.  We could expand this to work for other kinds of
867     // types, but currently we don't need to.
to_array_Jv_BytecodeVerifier::type868     type to_array (_Jv_BytecodeVerifier *verifier)
869     {
870       if (key != reference_type)
871 	verifier->verify_fail ("internal error in type::to_array()");
872 
873       // In case the class is already resolved we can simply ask the runtime
874       // to give us the array version.
875       // If it is not resolved we prepend "[" to the classname to make the
876       // array usage verification more lazy. In other words: makes new Foo[300]
877       // pass the verifier if Foo.class is missing.
878       if (klass->is_resolved)
879         {
880           jclass k = klass->getclass (verifier);
881 
882           return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()),
883 		       verifier);
884         }
885       else
886         {
887           int len = klass->data.name->len();
888 
889           // If the classname is given in the Lp1/p2/cn; format we only need
890           // to add a leading '['. The same procedure has to be done for
891           // primitive arrays (ie. provided "[I", the result should be "[[I".
892           // If the classname is given as p1.p2.cn we have to embed it into
893           // "[L" and ';'.
894           if (klass->data.name->limit()[-1] == ';' ||
895                _Jv_isPrimitiveOrDerived(klass->data.name))
896             {
897               // Reserves space for leading '[' and trailing '\0' .
898               char arrayName[len + 2];
899 
900               arrayName[0] = '[';
901               strcpy(&arrayName[1], klass->data.name->chars());
902 
903 #ifdef VERIFY_DEBUG
904               // This is only needed when we want to print the string to the
905               // screen while debugging.
906               arrayName[len + 1] = '\0';
907 
908               debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
909 #endif
910 
911               return type (verifier->make_utf8_const( arrayName, len + 1 ),
912                            verifier);
913             }
914            else
915             {
916               // Reserves space for leading "[L" and trailing ';' and '\0' .
917               char arrayName[len + 4];
918 
919               arrayName[0] = '[';
920               arrayName[1] = 'L';
921               strcpy(&arrayName[2], klass->data.name->chars());
922               arrayName[len + 2] = ';';
923 
924 #ifdef VERIFY_DEBUG
925               // This is only needed when we want to print the string to the
926               // screen while debugging.
927               arrayName[len + 3] = '\0';
928 
929               debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
930 #endif
931 
932               return type (verifier->make_utf8_const( arrayName, len + 3 ),
933                            verifier);
934             }
935         }
936 
937     }
938 
isreference_Jv_BytecodeVerifier::type939     bool isreference () const
940     {
941       return key >= reference_type;
942     }
943 
get_pc_Jv_BytecodeVerifier::type944     int get_pc () const
945     {
946       return pc;
947     }
948 
isinitialized_Jv_BytecodeVerifier::type949     bool isinitialized () const
950     {
951       return key == reference_type || key == null_type;
952     }
953 
isresolved_Jv_BytecodeVerifier::type954     bool isresolved () const
955     {
956       return (key == reference_type
957 	      || key == null_type
958 	      || key == uninitialized_reference_type);
959     }
960 
verify_dimensions_Jv_BytecodeVerifier::type961     void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
962     {
963       // The way this is written, we don't need to check isarray().
964       if (key != reference_type)
965 	verifier->verify_fail ("internal error in verify_dimensions:"
966 			       " not a reference type");
967 
968       if (klass->count_dimensions () < ndims)
969 	verifier->verify_fail ("array type has fewer dimensions"
970 			       " than required");
971     }
972 
973     // Merge OLD_TYPE into this.  On error throw exception.  Return
974     // true if the merge caused a type change.
merge_Jv_BytecodeVerifier::type975     bool merge (type& old_type, bool local_semantics,
976 		_Jv_BytecodeVerifier *verifier)
977     {
978       bool changed = false;
979       bool refo = old_type.isreference ();
980       bool refn = isreference ();
981       if (refo && refn)
982 	{
983 	  if (old_type.key == null_type)
984 	    ;
985 	  else if (key == null_type)
986 	    {
987 	      *this = old_type;
988 	      changed = true;
989 	    }
990 	  else if (isinitialized () != old_type.isinitialized ())
991 	    verifier->verify_fail ("merging initialized and uninitialized types");
992 	  else
993 	    {
994 	      if (! isinitialized ())
995 		{
996 		  if (pc == UNINIT)
997 		    pc = old_type.pc;
998 		  else if (old_type.pc == UNINIT)
999 		    ;
1000 		  else if (pc != old_type.pc)
1001 		    verifier->verify_fail ("merging different uninitialized types");
1002 		}
1003 
1004 	      ref_intersection *merged = old_type.klass->merge (klass,
1005 								verifier);
1006 	      if (merged != klass)
1007 		{
1008 		  klass = merged;
1009 		  changed = true;
1010 		}
1011 	    }
1012 	}
1013       else if (refo || refn || key != old_type.key)
1014 	{
1015 	  if (local_semantics)
1016 	    {
1017 	      // If we already have an `unsuitable' type, then we
1018 	      // don't need to change again.
1019 	      if (key != unsuitable_type)
1020 		{
1021 		  key = unsuitable_type;
1022 		  changed = true;
1023 		}
1024 	    }
1025 	  else
1026 	    verifier->verify_fail ("unmergeable type");
1027 	}
1028       return changed;
1029     }
1030 
1031 #ifdef VERIFY_DEBUG
print_Jv_BytecodeVerifier::type1032     void print (void) const
1033     {
1034       char c = '?';
1035       switch (key)
1036 	{
1037 	case boolean_type: c = 'Z'; break;
1038 	case byte_type: c = 'B'; break;
1039 	case char_type: c = 'C'; break;
1040 	case short_type: c = 'S'; break;
1041 	case int_type: c = 'I'; break;
1042 	case long_type: c = 'J'; break;
1043 	case float_type: c = 'F'; break;
1044 	case double_type: c = 'D'; break;
1045 	case void_type: c = 'V'; break;
1046 	case unsuitable_type: c = '-'; break;
1047 	case return_address_type: c = 'r'; break;
1048 	case continuation_type: c = '+'; break;
1049 	case reference_type: c = 'L'; break;
1050 	case null_type: c = '@'; break;
1051 	case uninitialized_reference_type: c = 'U'; break;
1052 	}
1053       debug_print ("%c", c);
1054     }
1055 #endif /* VERIFY_DEBUG */
1056   };
1057 
1058   // This class holds all the state information we need for a given
1059   // location.
1060   struct state
1061   {
1062     // The current top of the stack, in terms of slots.
1063     int stacktop;
1064     // The current depth of the stack.  This will be larger than
1065     // STACKTOP when wide types are on the stack.
1066     int stackdepth;
1067     // The stack.
1068     type *stack;
1069     // The local variables.
1070     type *locals;
1071     // We keep track of the type of `this' specially.  This is used to
1072     // ensure that an instance initializer invokes another initializer
1073     // on `this' before returning.  We must keep track of this
1074     // specially because otherwise we might be confused by code which
1075     // assigns to locals[0] (overwriting `this') and then returns
1076     // without really initializing.
1077     type this_type;
1078 
1079     // The PC for this state.  This is only valid on states which are
1080     // permanently attached to a given PC.  For an object like
1081     // `current_state', which is used transiently, this has no
1082     // meaning.
1083     int pc;
1084     // We keep a linked list of all states requiring reverification.
1085     // If this is the special value INVALID_STATE then this state is
1086     // not on the list.  NULL marks the end of the linked list.
1087     state *next;
1088 
1089     // NO_NEXT is the PC value meaning that a new state must be
1090     // acquired from the verification list.
1091     static const int NO_NEXT = -1;
1092 
state_Jv_BytecodeVerifier::state1093     state ()
1094       : this_type ()
1095     {
1096       stack = NULL;
1097       locals = NULL;
1098       next = INVALID_STATE;
1099     }
1100 
state_Jv_BytecodeVerifier::state1101     state (int max_stack, int max_locals)
1102       : this_type ()
1103     {
1104       stacktop = 0;
1105       stackdepth = 0;
1106       stack = new type[max_stack];
1107       for (int i = 0; i < max_stack; ++i)
1108 	stack[i] = unsuitable_type;
1109       locals = new type[max_locals];
1110       for (int i = 0; i < max_locals; ++i)
1111 	locals[i] = unsuitable_type;
1112       pc = NO_NEXT;
1113       next = INVALID_STATE;
1114     }
1115 
state_Jv_BytecodeVerifier::state1116     state (const state *orig, int max_stack, int max_locals)
1117     {
1118       stack = new type[max_stack];
1119       locals = new type[max_locals];
1120       copy (orig, max_stack, max_locals);
1121       pc = NO_NEXT;
1122       next = INVALID_STATE;
1123     }
1124 
~state_Jv_BytecodeVerifier::state1125     ~state ()
1126     {
1127       if (stack)
1128 	delete[] stack;
1129       if (locals)
1130 	delete[] locals;
1131     }
1132 
operator new[]_Jv_BytecodeVerifier::state1133     void *operator new[] (size_t bytes)
1134     {
1135       return _Jv_Malloc (bytes);
1136     }
1137 
operator delete[]_Jv_BytecodeVerifier::state1138     void operator delete[] (void *mem)
1139     {
1140       _Jv_Free (mem);
1141     }
1142 
operator new_Jv_BytecodeVerifier::state1143     void *operator new (size_t bytes)
1144     {
1145       return _Jv_Malloc (bytes);
1146     }
1147 
operator delete_Jv_BytecodeVerifier::state1148     void operator delete (void *mem)
1149     {
1150       _Jv_Free (mem);
1151     }
1152 
copy_Jv_BytecodeVerifier::state1153     void copy (const state *copy, int max_stack, int max_locals)
1154     {
1155       stacktop = copy->stacktop;
1156       stackdepth = copy->stackdepth;
1157       for (int i = 0; i < max_stack; ++i)
1158 	stack[i] = copy->stack[i];
1159       for (int i = 0; i < max_locals; ++i)
1160 	locals[i] = copy->locals[i];
1161 
1162       this_type = copy->this_type;
1163       // Don't modify `next' or `pc'.
1164     }
1165 
1166     // Modify this state to reflect entry to an exception handler.
set_exception_Jv_BytecodeVerifier::state1167     void set_exception (type t, int max_stack)
1168     {
1169       stackdepth = 1;
1170       stacktop = 1;
1171       stack[0] = t;
1172       for (int i = stacktop; i < max_stack; ++i)
1173 	stack[i] = unsuitable_type;
1174     }
1175 
get_pc_Jv_BytecodeVerifier::state1176     inline int get_pc () const
1177     {
1178       return pc;
1179     }
1180 
set_pc_Jv_BytecodeVerifier::state1181     void set_pc (int npc)
1182     {
1183       pc = npc;
1184     }
1185 
1186     // Merge STATE_OLD into this state.  Destructively modifies this
1187     // state.  Returns true if the new state was in fact changed.
1188     // Will throw an exception if the states are not mergeable.
merge_Jv_BytecodeVerifier::state1189     bool merge (state *state_old, int max_locals,
1190 		_Jv_BytecodeVerifier *verifier)
1191     {
1192       bool changed = false;
1193 
1194       // Special handling for `this'.  If one or the other is
1195       // uninitialized, then the merge is uninitialized.
1196       if (this_type.isinitialized ())
1197 	this_type = state_old->this_type;
1198 
1199       // Merge stacks.
1200       if (state_old->stacktop != stacktop)  // FIXME stackdepth instead?
1201 	verifier->verify_fail ("stack sizes differ");
1202       for (int i = 0; i < state_old->stacktop; ++i)
1203 	{
1204 	  if (stack[i].merge (state_old->stack[i], false, verifier))
1205 	    changed = true;
1206 	}
1207 
1208       // Merge local variables.
1209       for (int i = 0; i < max_locals; ++i)
1210 	{
1211 	  if (locals[i].merge (state_old->locals[i], true, verifier))
1212 	    changed = true;
1213 	}
1214 
1215       return changed;
1216     }
1217 
1218     // Ensure that `this' has been initialized.
check_this_initialized_Jv_BytecodeVerifier::state1219     void check_this_initialized (_Jv_BytecodeVerifier *verifier)
1220     {
1221       if (this_type.isreference () && ! this_type.isinitialized ())
1222 	verifier->verify_fail ("`this' is uninitialized");
1223     }
1224 
1225     // Set type of `this'.
set_this_type_Jv_BytecodeVerifier::state1226     void set_this_type (const type &k)
1227     {
1228       this_type = k;
1229     }
1230 
1231     // Mark each `new'd object we know of that was allocated at PC as
1232     // initialized.
set_initialized_Jv_BytecodeVerifier::state1233     void set_initialized (int pc, int max_locals)
1234     {
1235       for (int i = 0; i < stacktop; ++i)
1236 	stack[i].set_initialized (pc);
1237       for (int i = 0; i < max_locals; ++i)
1238 	locals[i].set_initialized (pc);
1239       this_type.set_initialized (pc);
1240     }
1241 
1242     // This tests to see whether two states can be considered "merge
1243     // compatible".  If both states have a return-address in the same
1244     // slot, and the return addresses are different, then they are not
1245     // compatible and we must not try to merge them.
state_mergeable_p_Jv_BytecodeVerifier::state1246     bool state_mergeable_p (state *other, int max_locals,
1247 			    _Jv_BytecodeVerifier *verifier)
1248     {
1249       // This is tricky: if the stack sizes differ, then not only are
1250       // these not mergeable, but in fact we should give an error, as
1251       // we've found two execution paths that reach a branch target
1252       // with different stack depths.  FIXME stackdepth instead?
1253       if (stacktop != other->stacktop)
1254 	verifier->verify_fail ("stack sizes differ");
1255 
1256       for (int i = 0; i < stacktop; ++i)
1257 	if (! stack[i].state_mergeable_p (other->stack[i]))
1258 	  return false;
1259       for (int i = 0; i < max_locals; ++i)
1260 	if (! locals[i].state_mergeable_p (other->locals[i]))
1261 	  return false;
1262       return true;
1263     }
1264 
reverify_Jv_BytecodeVerifier::state1265     void reverify (_Jv_BytecodeVerifier *verifier)
1266     {
1267       if (next == INVALID_STATE)
1268 	{
1269 	  next = verifier->next_verify_state;
1270 	  verifier->next_verify_state = this;
1271 	}
1272     }
1273 
1274 #ifdef VERIFY_DEBUG
print_Jv_BytecodeVerifier::state1275     void print (const char *leader, int pc,
1276 		int max_stack, int max_locals) const
1277     {
1278       debug_print ("%s [%4d]:   [stack] ", leader, pc);
1279       int i;
1280       for (i = 0; i < stacktop; ++i)
1281 	stack[i].print ();
1282       for (; i < max_stack; ++i)
1283 	debug_print (".");
1284       debug_print ("    [local] ");
1285       for (i = 0; i < max_locals; ++i)
1286 	locals[i].print ();
1287       debug_print (" | %p\n", this);
1288     }
1289 #else
print_Jv_BytecodeVerifier::state1290     inline void print (const char *, int, int, int) const
1291     {
1292     }
1293 #endif /* VERIFY_DEBUG */
1294   };
1295 
pop_raw()1296   type pop_raw ()
1297   {
1298     if (current_state->stacktop <= 0)
1299       verify_fail ("stack empty");
1300     type r = current_state->stack[--current_state->stacktop];
1301     current_state->stackdepth -= r.depth ();
1302     if (current_state->stackdepth < 0)
1303       verify_fail ("stack empty", start_PC);
1304     return r;
1305   }
1306 
pop32()1307   type pop32 ()
1308   {
1309     type r = pop_raw ();
1310     if (r.iswide ())
1311       verify_fail ("narrow pop of wide type");
1312     return r;
1313   }
1314 
pop_type(type match)1315   type pop_type (type match)
1316   {
1317     match.promote ();
1318     type t = pop_raw ();
1319     if (! match.compatible (t, this))
1320       verify_fail ("incompatible type on stack");
1321     return t;
1322   }
1323 
1324   // Pop a reference which is guaranteed to be initialized.  MATCH
1325   // doesn't have to be a reference type; in this case this acts like
1326   // pop_type.
pop_init_ref(type match)1327   type pop_init_ref (type match)
1328   {
1329     type t = pop_raw ();
1330     if (t.isreference () && ! t.isinitialized ())
1331       verify_fail ("initialized reference required");
1332     else if (! match.compatible (t, this))
1333       verify_fail ("incompatible type on stack");
1334     return t;
1335   }
1336 
1337   // Pop a reference type or a return address.
pop_ref_or_return()1338   type pop_ref_or_return ()
1339   {
1340     type t = pop_raw ();
1341     if (! t.isreference () && t.key != return_address_type)
1342       verify_fail ("expected reference or return address on stack");
1343     return t;
1344   }
1345 
push_type(type t)1346   void push_type (type t)
1347   {
1348     // If T is a numeric type like short, promote it to int.
1349     t.promote ();
1350 
1351     int depth = t.depth ();
1352     if (current_state->stackdepth + depth > current_method->max_stack)
1353       verify_fail ("stack overflow");
1354     current_state->stack[current_state->stacktop++] = t;
1355     current_state->stackdepth += depth;
1356   }
1357 
set_variable(int index,type t)1358   void set_variable (int index, type t)
1359   {
1360     // If T is a numeric type like short, promote it to int.
1361     t.promote ();
1362 
1363     int depth = t.depth ();
1364     if (index > current_method->max_locals - depth)
1365       verify_fail ("invalid local variable");
1366     current_state->locals[index] = t;
1367 
1368     if (depth == 2)
1369       current_state->locals[index + 1] = continuation_type;
1370     if (index > 0 && current_state->locals[index - 1].iswide ())
1371       current_state->locals[index - 1] = unsuitable_type;
1372   }
1373 
get_variable(int index,type t)1374   type get_variable (int index, type t)
1375   {
1376     int depth = t.depth ();
1377     if (index > current_method->max_locals - depth)
1378       verify_fail ("invalid local variable");
1379     if (! t.compatible (current_state->locals[index], this))
1380       verify_fail ("incompatible type in local variable");
1381     if (depth == 2)
1382       {
1383 	type t (continuation_type);
1384 	if (! current_state->locals[index + 1].compatible (t, this))
1385 	  verify_fail ("invalid local variable");
1386       }
1387     return current_state->locals[index];
1388   }
1389 
1390   // Make sure ARRAY is an array type and that its elements are
1391   // compatible with type ELEMENT.  Returns the actual element type.
require_array_type(type array,type element)1392   type require_array_type (type array, type element)
1393   {
1394     // An odd case.  Here we just pretend that everything went ok.  If
1395     // the requested element type is some kind of reference, return
1396     // the null type instead.
1397     if (array.isnull ())
1398       return element.isreference () ? type (null_type) : element;
1399 
1400     if (! array.isarray ())
1401       verify_fail ("array required");
1402 
1403     type t = array.element_type (this);
1404     if (! element.compatible (t, this))
1405       {
1406 	// Special case for byte arrays, which must also be boolean
1407 	// arrays.
1408 	bool ok = true;
1409 	if (element.key == byte_type)
1410 	  {
1411 	    type e2 (boolean_type);
1412 	    ok = e2.compatible (t, this);
1413 	  }
1414 	if (! ok)
1415 	  verify_fail ("incompatible array element type");
1416       }
1417 
1418     // Return T and not ELEMENT, because T might be specialized.
1419     return t;
1420   }
1421 
get_byte()1422   jint get_byte ()
1423   {
1424     if (PC >= current_method->code_length)
1425       verify_fail ("premature end of bytecode");
1426     return (jint) bytecode[PC++] & 0xff;
1427   }
1428 
get_ushort()1429   jint get_ushort ()
1430   {
1431     jint b1 = get_byte ();
1432     jint b2 = get_byte ();
1433     return (jint) ((b1 << 8) | b2) & 0xffff;
1434   }
1435 
get_short()1436   jint get_short ()
1437   {
1438     jint b1 = get_byte ();
1439     jint b2 = get_byte ();
1440     jshort s = (b1 << 8) | b2;
1441     return (jint) s;
1442   }
1443 
get_int()1444   jint get_int ()
1445   {
1446     jint b1 = get_byte ();
1447     jint b2 = get_byte ();
1448     jint b3 = get_byte ();
1449     jint b4 = get_byte ();
1450     return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
1451   }
1452 
compute_jump(int offset)1453   int compute_jump (int offset)
1454   {
1455     int npc = start_PC + offset;
1456     if (npc < 0 || npc >= current_method->code_length)
1457       verify_fail ("branch out of range", start_PC);
1458     return npc;
1459   }
1460 
1461   // Add a new state to the state list at NPC.
add_new_state(int npc,state * old_state)1462   state *add_new_state (int npc, state *old_state)
1463   {
1464     state *new_state = new state (old_state, current_method->max_stack,
1465 				  current_method->max_locals);
1466     debug_print ("== New state in add_new_state\n");
1467     new_state->print ("New", npc, current_method->max_stack,
1468 		      current_method->max_locals);
1469     linked<state> *nlink
1470       = (linked<state> *) _Jv_Malloc (sizeof (linked<state>));
1471     nlink->val = new_state;
1472     nlink->next = states[npc];
1473     states[npc] = nlink;
1474     new_state->set_pc (npc);
1475     return new_state;
1476   }
1477 
1478   // Merge the indicated state into the state at the branch target and
1479   // schedule a new PC if there is a change.  NPC is the PC of the
1480   // branch target, and FROM_STATE is the state at the source of the
1481   // branch.  This method returns true if the destination state
1482   // changed and requires reverification, false otherwise.
merge_into(int npc,state * from_state)1483   void merge_into (int npc, state *from_state)
1484   {
1485     // Iterate over all target states and merge our state into each,
1486     // if applicable.  FIXME one improvement we could make here is
1487     // "state destruction".  Merging a new state into an existing one
1488     // might cause a return_address_type to be merged to
1489     // unsuitable_type.  In this case the resulting state may now be
1490     // mergeable with other states currently held in parallel at this
1491     // location.  So in this situation we could pairwise compare and
1492     // reduce the number of parallel states.
1493     bool applicable = false;
1494     for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next)
1495       {
1496 	state *new_state = iter->val;
1497 	if (new_state->state_mergeable_p (from_state,
1498 					  current_method->max_locals, this))
1499 	  {
1500 	    applicable = true;
1501 
1502 	    debug_print ("== Merge states in merge_into\n");
1503 	    from_state->print ("Frm", start_PC, current_method->max_stack,
1504 			       current_method->max_locals);
1505 	    new_state->print (" To", npc, current_method->max_stack,
1506 			      current_method->max_locals);
1507 	    bool changed = new_state->merge (from_state,
1508 					     current_method->max_locals,
1509 					     this);
1510 	    new_state->print ("New", npc, current_method->max_stack,
1511 			      current_method->max_locals);
1512 
1513 	    if (changed)
1514 	      new_state->reverify (this);
1515 	  }
1516       }
1517 
1518     if (! applicable)
1519       {
1520 	// Either we don't yet have a state at NPC, or we have a
1521 	// return-address type that is in conflict with all existing
1522 	// state.  So, we need to create a new entry.
1523 	state *new_state = add_new_state (npc, from_state);
1524 	// A new state added in this way must always be reverified.
1525 	new_state->reverify (this);
1526       }
1527   }
1528 
push_jump(int offset)1529   void push_jump (int offset)
1530   {
1531     int npc = compute_jump (offset);
1532     // According to the JVM Spec, we need to check for uninitialized
1533     // objects here.  However, this does not actually affect type
1534     // safety, and the Eclipse java compiler generates code that
1535     // violates this constraint.
1536     merge_into (npc, current_state);
1537   }
1538 
push_exception_jump(type t,int pc)1539   void push_exception_jump (type t, int pc)
1540   {
1541     // According to the JVM Spec, we need to check for uninitialized
1542     // objects here.  However, this does not actually affect type
1543     // safety, and the Eclipse java compiler generates code that
1544     // violates this constraint.
1545     state s (current_state, current_method->max_stack,
1546 	     current_method->max_locals);
1547     if (current_method->max_stack < 1)
1548       verify_fail ("stack overflow at exception handler");
1549     s.set_exception (t, current_method->max_stack);
1550     merge_into (pc, &s);
1551   }
1552 
pop_jump()1553   state *pop_jump ()
1554   {
1555     state *new_state = next_verify_state;
1556     if (new_state == INVALID_STATE)
1557       verify_fail ("programmer error in pop_jump");
1558     if (new_state != NULL)
1559       {
1560 	next_verify_state = new_state->next;
1561 	new_state->next = INVALID_STATE;
1562       }
1563     return new_state;
1564   }
1565 
invalidate_pc()1566   void invalidate_pc ()
1567   {
1568     PC = state::NO_NEXT;
1569   }
1570 
note_branch_target(int pc)1571   void note_branch_target (int pc)
1572   {
1573     // Don't check `pc <= PC', because we've advanced PC after
1574     // fetching the target and we haven't yet checked the next
1575     // instruction.
1576     if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
1577       verify_fail ("branch not to instruction start", start_PC);
1578     flags[pc] |= FLAG_BRANCH_TARGET;
1579   }
1580 
skip_padding()1581   void skip_padding ()
1582   {
1583     while ((PC % 4) > 0)
1584       if (get_byte () != 0)
1585 	verify_fail ("found nonzero padding byte");
1586   }
1587 
1588   // Do the work for a `ret' instruction.  INDEX is the index into the
1589   // local variables.
handle_ret_insn(int index)1590   void handle_ret_insn (int index)
1591   {
1592     type ret_addr = get_variable (index, return_address_type);
1593     // It would be nice if we could do this.  However, the JVM Spec
1594     // doesn't say that this is what happens.  It is implied that
1595     // reusing a return address is invalid, but there's no actual
1596     // prohibition against it.
1597     // set_variable (index, unsuitable_type);
1598 
1599     int npc = ret_addr.get_pc ();
1600     // We might be returning to a `jsr' that is at the end of the
1601     // bytecode.  This is ok if we never return from the called
1602     // subroutine, but if we see this here it is an error.
1603     if (npc >= current_method->code_length)
1604       verify_fail ("fell off end");
1605 
1606     // According to the JVM Spec, we need to check for uninitialized
1607     // objects here.  However, this does not actually affect type
1608     // safety, and the Eclipse java compiler generates code that
1609     // violates this constraint.
1610     merge_into (npc, current_state);
1611     invalidate_pc ();
1612   }
1613 
handle_jsr_insn(int offset)1614   void handle_jsr_insn (int offset)
1615   {
1616     int npc = compute_jump (offset);
1617 
1618     // According to the JVM Spec, we need to check for uninitialized
1619     // objects here.  However, this does not actually affect type
1620     // safety, and the Eclipse java compiler generates code that
1621     // violates this constraint.
1622 
1623     // Modify our state as appropriate for entry into a subroutine.
1624     type ret_addr (return_address_type);
1625     ret_addr.set_return_address (PC);
1626     push_type (ret_addr);
1627     merge_into (npc, current_state);
1628     invalidate_pc ();
1629   }
1630 
construct_primitive_array_type(type_val prim)1631   jclass construct_primitive_array_type (type_val prim)
1632   {
1633     jclass k = NULL;
1634     switch (prim)
1635       {
1636       case boolean_type:
1637 	k = JvPrimClass (boolean);
1638 	break;
1639       case char_type:
1640 	k = JvPrimClass (char);
1641 	break;
1642       case float_type:
1643 	k = JvPrimClass (float);
1644 	break;
1645       case double_type:
1646 	k = JvPrimClass (double);
1647 	break;
1648       case byte_type:
1649 	k = JvPrimClass (byte);
1650 	break;
1651       case short_type:
1652 	k = JvPrimClass (short);
1653 	break;
1654       case int_type:
1655 	k = JvPrimClass (int);
1656 	break;
1657       case long_type:
1658 	k = JvPrimClass (long);
1659 	break;
1660 
1661       // These aren't used here but we call them out to avoid
1662       // warnings.
1663       case void_type:
1664       case unsuitable_type:
1665       case return_address_type:
1666       case continuation_type:
1667       case reference_type:
1668       case null_type:
1669       case uninitialized_reference_type:
1670       default:
1671 	verify_fail ("unknown type in construct_primitive_array_type");
1672       }
1673     k = _Jv_GetArrayClass (k, NULL);
1674     return k;
1675   }
1676 
1677   // This pass computes the location of branch targets and also
1678   // instruction starts.
branch_prepass()1679   void branch_prepass ()
1680   {
1681     flags = (char *) _Jv_Malloc (current_method->code_length);
1682 
1683     for (int i = 0; i < current_method->code_length; ++i)
1684       flags[i] = 0;
1685 
1686     PC = 0;
1687     while (PC < current_method->code_length)
1688       {
1689 	// Set `start_PC' early so that error checking can have the
1690 	// correct value.
1691 	start_PC = PC;
1692 	flags[PC] |= FLAG_INSN_START;
1693 
1694 	java_opcode opcode = (java_opcode) bytecode[PC++];
1695 	switch (opcode)
1696 	  {
1697 	  case op_nop:
1698 	  case op_aconst_null:
1699 	  case op_iconst_m1:
1700 	  case op_iconst_0:
1701 	  case op_iconst_1:
1702 	  case op_iconst_2:
1703 	  case op_iconst_3:
1704 	  case op_iconst_4:
1705 	  case op_iconst_5:
1706 	  case op_lconst_0:
1707 	  case op_lconst_1:
1708 	  case op_fconst_0:
1709 	  case op_fconst_1:
1710 	  case op_fconst_2:
1711 	  case op_dconst_0:
1712 	  case op_dconst_1:
1713 	  case op_iload_0:
1714 	  case op_iload_1:
1715 	  case op_iload_2:
1716 	  case op_iload_3:
1717 	  case op_lload_0:
1718 	  case op_lload_1:
1719 	  case op_lload_2:
1720 	  case op_lload_3:
1721 	  case op_fload_0:
1722 	  case op_fload_1:
1723 	  case op_fload_2:
1724 	  case op_fload_3:
1725 	  case op_dload_0:
1726 	  case op_dload_1:
1727 	  case op_dload_2:
1728 	  case op_dload_3:
1729 	  case op_aload_0:
1730 	  case op_aload_1:
1731 	  case op_aload_2:
1732 	  case op_aload_3:
1733 	  case op_iaload:
1734 	  case op_laload:
1735 	  case op_faload:
1736 	  case op_daload:
1737 	  case op_aaload:
1738 	  case op_baload:
1739 	  case op_caload:
1740 	  case op_saload:
1741 	  case op_istore_0:
1742 	  case op_istore_1:
1743 	  case op_istore_2:
1744 	  case op_istore_3:
1745 	  case op_lstore_0:
1746 	  case op_lstore_1:
1747 	  case op_lstore_2:
1748 	  case op_lstore_3:
1749 	  case op_fstore_0:
1750 	  case op_fstore_1:
1751 	  case op_fstore_2:
1752 	  case op_fstore_3:
1753 	  case op_dstore_0:
1754 	  case op_dstore_1:
1755 	  case op_dstore_2:
1756 	  case op_dstore_3:
1757 	  case op_astore_0:
1758 	  case op_astore_1:
1759 	  case op_astore_2:
1760 	  case op_astore_3:
1761 	  case op_iastore:
1762 	  case op_lastore:
1763 	  case op_fastore:
1764 	  case op_dastore:
1765 	  case op_aastore:
1766 	  case op_bastore:
1767 	  case op_castore:
1768 	  case op_sastore:
1769 	  case op_pop:
1770 	  case op_pop2:
1771 	  case op_dup:
1772 	  case op_dup_x1:
1773 	  case op_dup_x2:
1774 	  case op_dup2:
1775 	  case op_dup2_x1:
1776 	  case op_dup2_x2:
1777 	  case op_swap:
1778 	  case op_iadd:
1779 	  case op_isub:
1780 	  case op_imul:
1781 	  case op_idiv:
1782 	  case op_irem:
1783 	  case op_ishl:
1784 	  case op_ishr:
1785 	  case op_iushr:
1786 	  case op_iand:
1787 	  case op_ior:
1788 	  case op_ixor:
1789 	  case op_ladd:
1790 	  case op_lsub:
1791 	  case op_lmul:
1792 	  case op_ldiv:
1793 	  case op_lrem:
1794 	  case op_lshl:
1795 	  case op_lshr:
1796 	  case op_lushr:
1797 	  case op_land:
1798 	  case op_lor:
1799 	  case op_lxor:
1800 	  case op_fadd:
1801 	  case op_fsub:
1802 	  case op_fmul:
1803 	  case op_fdiv:
1804 	  case op_frem:
1805 	  case op_dadd:
1806 	  case op_dsub:
1807 	  case op_dmul:
1808 	  case op_ddiv:
1809 	  case op_drem:
1810 	  case op_ineg:
1811 	  case op_i2b:
1812 	  case op_i2c:
1813 	  case op_i2s:
1814 	  case op_lneg:
1815 	  case op_fneg:
1816 	  case op_dneg:
1817 	  case op_i2l:
1818 	  case op_i2f:
1819 	  case op_i2d:
1820 	  case op_l2i:
1821 	  case op_l2f:
1822 	  case op_l2d:
1823 	  case op_f2i:
1824 	  case op_f2l:
1825 	  case op_f2d:
1826 	  case op_d2i:
1827 	  case op_d2l:
1828 	  case op_d2f:
1829 	  case op_lcmp:
1830 	  case op_fcmpl:
1831 	  case op_fcmpg:
1832 	  case op_dcmpl:
1833 	  case op_dcmpg:
1834 	  case op_monitorenter:
1835 	  case op_monitorexit:
1836 	  case op_ireturn:
1837 	  case op_lreturn:
1838 	  case op_freturn:
1839 	  case op_dreturn:
1840 	  case op_areturn:
1841 	  case op_return:
1842 	  case op_athrow:
1843 	  case op_arraylength:
1844 	    break;
1845 
1846 	  case op_bipush:
1847 	  case op_ldc:
1848 	  case op_iload:
1849 	  case op_lload:
1850 	  case op_fload:
1851 	  case op_dload:
1852 	  case op_aload:
1853 	  case op_istore:
1854 	  case op_lstore:
1855 	  case op_fstore:
1856 	  case op_dstore:
1857 	  case op_astore:
1858 	  case op_ret:
1859 	  case op_newarray:
1860 	    get_byte ();
1861 	    break;
1862 
1863 	  case op_iinc:
1864 	  case op_sipush:
1865 	  case op_ldc_w:
1866 	  case op_ldc2_w:
1867 	  case op_getstatic:
1868 	  case op_getfield:
1869 	  case op_putfield:
1870 	  case op_putstatic:
1871 	  case op_new:
1872 	  case op_anewarray:
1873 	  case op_instanceof:
1874 	  case op_checkcast:
1875 	  case op_invokespecial:
1876 	  case op_invokestatic:
1877 	  case op_invokevirtual:
1878 	    get_short ();
1879 	    break;
1880 
1881 	  case op_multianewarray:
1882 	    get_short ();
1883 	    get_byte ();
1884 	    break;
1885 
1886 	  case op_jsr:
1887 	  case op_ifeq:
1888 	  case op_ifne:
1889 	  case op_iflt:
1890 	  case op_ifge:
1891 	  case op_ifgt:
1892 	  case op_ifle:
1893 	  case op_if_icmpeq:
1894 	  case op_if_icmpne:
1895 	  case op_if_icmplt:
1896 	  case op_if_icmpge:
1897 	  case op_if_icmpgt:
1898 	  case op_if_icmple:
1899 	  case op_if_acmpeq:
1900 	  case op_if_acmpne:
1901 	  case op_ifnull:
1902 	  case op_ifnonnull:
1903 	  case op_goto:
1904 	    note_branch_target (compute_jump (get_short ()));
1905 	    break;
1906 
1907 	  case op_tableswitch:
1908 	    {
1909 	      skip_padding ();
1910 	      note_branch_target (compute_jump (get_int ()));
1911 	      jint low = get_int ();
1912 	      jint hi = get_int ();
1913 	      if (low > hi)
1914 		verify_fail ("invalid tableswitch", start_PC);
1915 	      for (int i = low; i <= hi; ++i)
1916 		note_branch_target (compute_jump (get_int ()));
1917 	    }
1918 	    break;
1919 
1920 	  case op_lookupswitch:
1921 	    {
1922 	      skip_padding ();
1923 	      note_branch_target (compute_jump (get_int ()));
1924 	      int npairs = get_int ();
1925 	      if (npairs < 0)
1926 		verify_fail ("too few pairs in lookupswitch", start_PC);
1927 	      while (npairs-- > 0)
1928 		{
1929 		  get_int ();
1930 		  note_branch_target (compute_jump (get_int ()));
1931 		}
1932 	    }
1933 	    break;
1934 
1935 	  case op_invokeinterface:
1936 	    get_short ();
1937 	    get_byte ();
1938 	    get_byte ();
1939 	    break;
1940 
1941 	  case op_wide:
1942 	    {
1943 	      opcode = (java_opcode) get_byte ();
1944 	      get_short ();
1945 	      if (opcode == op_iinc)
1946 		get_short ();
1947 	    }
1948 	    break;
1949 
1950 	  case op_jsr_w:
1951 	  case op_goto_w:
1952 	    note_branch_target (compute_jump (get_int ()));
1953 	    break;
1954 
1955 	  // These are unused here, but we call them out explicitly
1956 	  // so that -Wswitch-enum doesn't complain.
1957 	  case op_putfield_1:
1958 	  case op_putfield_2:
1959 	  case op_putfield_4:
1960 	  case op_putfield_8:
1961 	  case op_putfield_a:
1962 	  case op_putstatic_1:
1963 	  case op_putstatic_2:
1964 	  case op_putstatic_4:
1965 	  case op_putstatic_8:
1966 	  case op_putstatic_a:
1967 	  case op_getfield_1:
1968 	  case op_getfield_2s:
1969 	  case op_getfield_2u:
1970 	  case op_getfield_4:
1971 	  case op_getfield_8:
1972 	  case op_getfield_a:
1973 	  case op_getstatic_1:
1974 	  case op_getstatic_2s:
1975 	  case op_getstatic_2u:
1976 	  case op_getstatic_4:
1977 	  case op_getstatic_8:
1978 	  case op_getstatic_a:
1979 	  case op_breakpoint:
1980 	  default:
1981 	    verify_fail ("unrecognized instruction in branch_prepass",
1982 			 start_PC);
1983 	  }
1984 
1985 	// See if any previous branch tried to branch to the middle of
1986 	// this instruction.
1987 	for (int pc = start_PC + 1; pc < PC; ++pc)
1988 	  {
1989 	    if ((flags[pc] & FLAG_BRANCH_TARGET))
1990 	      verify_fail ("branch to middle of instruction", pc);
1991 	  }
1992       }
1993 
1994     // Verify exception handlers.
1995     for (int i = 0; i < current_method->exc_count; ++i)
1996       {
1997 	if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START))
1998 	  verify_fail ("exception handler not at instruction start",
1999 		       exception[i].handler_pc.i);
2000 	if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START))
2001 	  verify_fail ("exception start not at instruction start",
2002 		       exception[i].start_pc.i);
2003 	if (exception[i].end_pc.i != current_method->code_length
2004 	    && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START))
2005 	  verify_fail ("exception end not at instruction start",
2006 		       exception[i].end_pc.i);
2007 
2008 	flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET;
2009       }
2010   }
2011 
check_pool_index(int index)2012   void check_pool_index (int index)
2013   {
2014     if (index < 0 || index >= current_class->constants.size)
2015       verify_fail ("constant pool index out of range", start_PC);
2016   }
2017 
check_class_constant(int index)2018   type check_class_constant (int index)
2019   {
2020     check_pool_index (index);
2021     _Jv_Constants *pool = &current_class->constants;
2022     if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
2023       return type (pool->data[index].clazz, this);
2024     else if (pool->tags[index] == JV_CONSTANT_Class)
2025       return type (pool->data[index].utf8, this);
2026     verify_fail ("expected class constant", start_PC);
2027   }
2028 
check_constant(int index)2029   type check_constant (int index)
2030   {
2031     check_pool_index (index);
2032     _Jv_Constants *pool = &current_class->constants;
2033     int tag = pool->tags[index];
2034     if (tag == JV_CONSTANT_ResolvedString || tag == JV_CONSTANT_String)
2035       return type (&java::lang::String::class$, this);
2036     else if (tag == JV_CONSTANT_Integer)
2037       return type (int_type);
2038     else if (tag == JV_CONSTANT_Float)
2039       return type (float_type);
2040     else if (current_method->is_15
2041 	     && (tag == JV_CONSTANT_ResolvedClass || tag == JV_CONSTANT_Class))
2042       return type (&java::lang::Class::class$, this);
2043     verify_fail ("String, int, or float constant expected", start_PC);
2044   }
2045 
check_wide_constant(int index)2046   type check_wide_constant (int index)
2047   {
2048     check_pool_index (index);
2049     _Jv_Constants *pool = &current_class->constants;
2050     if (pool->tags[index] == JV_CONSTANT_Long)
2051       return type (long_type);
2052     else if (pool->tags[index] == JV_CONSTANT_Double)
2053       return type (double_type);
2054     verify_fail ("long or double constant expected", start_PC);
2055   }
2056 
2057   // Helper for both field and method.  These are laid out the same in
2058   // the constant pool.
handle_field_or_method(int index,int expected,_Jv_Utf8Const ** name,_Jv_Utf8Const ** fmtype)2059   type handle_field_or_method (int index, int expected,
2060 			       _Jv_Utf8Const **name,
2061 			       _Jv_Utf8Const **fmtype)
2062   {
2063     check_pool_index (index);
2064     _Jv_Constants *pool = &current_class->constants;
2065     if (pool->tags[index] != expected)
2066       verify_fail ("didn't see expected constant", start_PC);
2067     // Once we know we have a Fieldref or Methodref we assume that it
2068     // is correctly laid out in the constant pool.  I think the code
2069     // in defineclass.cc guarantees this.
2070     _Jv_ushort class_index, name_and_type_index;
2071     _Jv_loadIndexes (&pool->data[index],
2072 		     class_index,
2073 		     name_and_type_index);
2074     _Jv_ushort name_index, desc_index;
2075     _Jv_loadIndexes (&pool->data[name_and_type_index],
2076 		     name_index, desc_index);
2077 
2078     *name = pool->data[name_index].utf8;
2079     *fmtype = pool->data[desc_index].utf8;
2080 
2081     return check_class_constant (class_index);
2082   }
2083 
2084   // Return field's type, compute class' type if requested.
2085   // If PUTFIELD is true, use the special 'putfield' semantics.
check_field_constant(int index,type * class_type=NULL,bool putfield=false)2086   type check_field_constant (int index, type *class_type = NULL,
2087 			     bool putfield = false)
2088   {
2089     _Jv_Utf8Const *name, *field_type;
2090     type ct = handle_field_or_method (index,
2091 				      JV_CONSTANT_Fieldref,
2092 				      &name, &field_type);
2093     if (class_type)
2094       *class_type = ct;
2095     type result;
2096     if (field_type->first() == '[' || field_type->first() == 'L')
2097       result = type (field_type, this);
2098     else
2099       result = get_type_val_for_signature (field_type->first());
2100 
2101     // We have an obscure special case here: we can use `putfield' on
2102     // a field declared in this class, even if `this' has not yet been
2103     // initialized.
2104     if (putfield
2105 	&& ! current_state->this_type.isinitialized ()
2106 	&& current_state->this_type.pc == type::SELF
2107 	&& current_state->this_type.equals (ct, this)
2108 	// We don't look at the signature, figuring that if it is
2109 	// wrong we will fail during linking.  FIXME?
2110 	&& _Jv_Linker::has_field_p (current_class, name))
2111       // Note that we don't actually know whether we're going to match
2112       // against 'this' or some other object of the same type.  So,
2113       // here we set things up so that it doesn't matter.  This relies
2114       // on knowing what our caller is up to.
2115       class_type->set_uninitialized (type::EITHER, this);
2116 
2117     return result;
2118   }
2119 
check_method_constant(int index,bool is_interface,_Jv_Utf8Const ** method_name,_Jv_Utf8Const ** method_signature)2120   type check_method_constant (int index, bool is_interface,
2121 			      _Jv_Utf8Const **method_name,
2122 			      _Jv_Utf8Const **method_signature)
2123   {
2124     return handle_field_or_method (index,
2125 				   (is_interface
2126 				    ? JV_CONSTANT_InterfaceMethodref
2127 				    : JV_CONSTANT_Methodref),
2128 				   method_name, method_signature);
2129   }
2130 
get_one_type(char * & p)2131   type get_one_type (char *&p)
2132   {
2133     char *start = p;
2134 
2135     int arraycount = 0;
2136     while (*p == '[')
2137       {
2138 	++arraycount;
2139 	++p;
2140       }
2141 
2142     char v = *p++;
2143 
2144     if (v == 'L')
2145       {
2146 	while (*p != ';')
2147 	  ++p;
2148 	++p;
2149 	_Jv_Utf8Const *name = make_utf8_const (start, p - start);
2150 	return type (name, this);
2151       }
2152 
2153     // Casting to jchar here is ok since we are looking at an ASCII
2154     // character.
2155     type_val rt = get_type_val_for_signature (jchar (v));
2156 
2157     if (arraycount == 0)
2158       {
2159 	// Callers of this function eventually push their arguments on
2160 	// the stack.  So, promote them here.
2161 	return type (rt).promote ();
2162       }
2163 
2164     jclass k = construct_primitive_array_type (rt);
2165     while (--arraycount > 0)
2166       k = _Jv_GetArrayClass (k, NULL);
2167     return type (k, this);
2168   }
2169 
compute_argument_types(_Jv_Utf8Const * signature,type * types)2170   void compute_argument_types (_Jv_Utf8Const *signature,
2171 			       type *types)
2172   {
2173     char *p = signature->chars();
2174 
2175     // Skip `('.
2176     ++p;
2177 
2178     int i = 0;
2179     while (*p != ')')
2180       types[i++] = get_one_type (p);
2181   }
2182 
compute_return_type(_Jv_Utf8Const * signature)2183   type compute_return_type (_Jv_Utf8Const *signature)
2184   {
2185     char *p = signature->chars();
2186     while (*p != ')')
2187       ++p;
2188     ++p;
2189     return get_one_type (p);
2190   }
2191 
check_return_type(type onstack)2192   void check_return_type (type onstack)
2193   {
2194     type rt = compute_return_type (current_method->self->signature);
2195     if (! rt.compatible (onstack, this))
2196       verify_fail ("incompatible return type");
2197   }
2198 
2199   // Initialize the stack for the new method.  Returns true if this
2200   // method is an instance initializer.
initialize_stack()2201   bool initialize_stack ()
2202   {
2203     int var = 0;
2204     bool is_init = _Jv_equalUtf8Consts (current_method->self->name,
2205 					gcj::init_name);
2206     bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name,
2207 					  gcj::clinit_name);
2208 
2209     using namespace java::lang::reflect;
2210     if (! Modifier::isStatic (current_method->self->accflags))
2211       {
2212 	type kurr (current_class, this);
2213 	if (is_init)
2214 	  {
2215 	    kurr.set_uninitialized (type::SELF, this);
2216 	    is_init = true;
2217 	  }
2218 	else if (is_clinit)
2219 	  verify_fail ("<clinit> method must be static");
2220 	set_variable (0, kurr);
2221 	current_state->set_this_type (kurr);
2222 	++var;
2223       }
2224     else
2225       {
2226 	if (is_init)
2227 	  verify_fail ("<init> method must be non-static");
2228       }
2229 
2230     // We have to handle wide arguments specially here.
2231     int arg_count = _Jv_count_arguments (current_method->self->signature);
2232     type arg_types[arg_count];
2233     compute_argument_types (current_method->self->signature, arg_types);
2234     for (int i = 0; i < arg_count; ++i)
2235       {
2236 	set_variable (var, arg_types[i]);
2237 	++var;
2238 	if (arg_types[i].iswide ())
2239 	  ++var;
2240       }
2241 
2242     return is_init;
2243   }
2244 
verify_instructions_0()2245   void verify_instructions_0 ()
2246   {
2247     current_state = new state (current_method->max_stack,
2248 			       current_method->max_locals);
2249 
2250     PC = 0;
2251     start_PC = 0;
2252 
2253     // True if we are verifying an instance initializer.
2254     bool this_is_init = initialize_stack ();
2255 
2256     states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *)
2257 					    * current_method->code_length);
2258     for (int i = 0; i < current_method->code_length; ++i)
2259       states[i] = NULL;
2260 
2261     next_verify_state = NULL;
2262 
2263     while (true)
2264       {
2265 	// If the PC was invalidated, get a new one from the work list.
2266 	if (PC == state::NO_NEXT)
2267 	  {
2268 	    state *new_state = pop_jump ();
2269 	    // If it is null, we're done.
2270 	    if (new_state == NULL)
2271 	      break;
2272 
2273 	    PC = new_state->get_pc ();
2274 	    debug_print ("== State pop from pending list\n");
2275 	    // Set up the current state.
2276 	    current_state->copy (new_state, current_method->max_stack,
2277 				 current_method->max_locals);
2278 	  }
2279 	else
2280 	  {
2281 	    // We only have to do this checking in the situation where
2282 	    // control flow falls through from the previous
2283 	    // instruction.  Otherwise merging is done at the time we
2284 	    // push the branch.  Note that we'll catch the
2285 	    // off-the-end problem just below.
2286 	    if (PC < current_method->code_length && states[PC] != NULL)
2287 	      {
2288 		// We've already visited this instruction.  So merge
2289 		// the states together.  It is simplest, but not most
2290 		// efficient, to just always invalidate the PC here.
2291 		merge_into (PC, current_state);
2292 		invalidate_pc ();
2293 		continue;
2294 	      }
2295 	  }
2296 
2297 	// Control can't fall off the end of the bytecode.  We need to
2298 	// check this in both cases, not just the fall-through case,
2299 	// because we don't check to see whether a `jsr' appears at
2300 	// the end of the bytecode until we process a `ret'.
2301 	if (PC >= current_method->code_length)
2302 	  verify_fail ("fell off end");
2303 
2304 	// We only have to keep saved state at branch targets.  If
2305 	// we're at a branch target and the state here hasn't been set
2306 	// yet, we set it now.  You might notice that `ret' targets
2307 	// won't necessarily have FLAG_BRANCH_TARGET set.  This
2308 	// doesn't matter, since those states will be filled in by
2309 	// merge_into.
2310 	if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
2311 	  add_new_state (PC, current_state);
2312 
2313 	// Set this before handling exceptions so that debug output is
2314 	// sane.
2315 	start_PC = PC;
2316 
2317 	// Update states for all active exception handlers.  Ordinarily
2318 	// there are not many exception handlers.  So we simply run
2319 	// through them all.
2320 	for (int i = 0; i < current_method->exc_count; ++i)
2321 	  {
2322 	    if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i)
2323 	      {
2324 		type handler (&java::lang::Throwable::class$, this);
2325 		if (exception[i].handler_type.i != 0)
2326 		  handler = check_class_constant (exception[i].handler_type.i);
2327 		push_exception_jump (handler, exception[i].handler_pc.i);
2328 	      }
2329 	  }
2330 
2331 	current_state->print ("   ", PC, current_method->max_stack,
2332 			      current_method->max_locals);
2333 	java_opcode opcode = (java_opcode) bytecode[PC++];
2334 	switch (opcode)
2335 	  {
2336 	  case op_nop:
2337 	    break;
2338 
2339 	  case op_aconst_null:
2340 	    push_type (null_type);
2341 	    break;
2342 
2343 	  case op_iconst_m1:
2344 	  case op_iconst_0:
2345 	  case op_iconst_1:
2346 	  case op_iconst_2:
2347 	  case op_iconst_3:
2348 	  case op_iconst_4:
2349 	  case op_iconst_5:
2350 	    push_type (int_type);
2351 	    break;
2352 
2353 	  case op_lconst_0:
2354 	  case op_lconst_1:
2355 	    push_type (long_type);
2356 	    break;
2357 
2358 	  case op_fconst_0:
2359 	  case op_fconst_1:
2360 	  case op_fconst_2:
2361 	    push_type (float_type);
2362 	    break;
2363 
2364 	  case op_dconst_0:
2365 	  case op_dconst_1:
2366 	    push_type (double_type);
2367 	    break;
2368 
2369 	  case op_bipush:
2370 	    get_byte ();
2371 	    push_type (int_type);
2372 	    break;
2373 
2374 	  case op_sipush:
2375 	    get_short ();
2376 	    push_type (int_type);
2377 	    break;
2378 
2379 	  case op_ldc:
2380 	    push_type (check_constant (get_byte ()));
2381 	    break;
2382 	  case op_ldc_w:
2383 	    push_type (check_constant (get_ushort ()));
2384 	    break;
2385 	  case op_ldc2_w:
2386 	    push_type (check_wide_constant (get_ushort ()));
2387 	    break;
2388 
2389 	  case op_iload:
2390 	    push_type (get_variable (get_byte (), int_type));
2391 	    break;
2392 	  case op_lload:
2393 	    push_type (get_variable (get_byte (), long_type));
2394 	    break;
2395 	  case op_fload:
2396 	    push_type (get_variable (get_byte (), float_type));
2397 	    break;
2398 	  case op_dload:
2399 	    push_type (get_variable (get_byte (), double_type));
2400 	    break;
2401 	  case op_aload:
2402 	    push_type (get_variable (get_byte (), reference_type));
2403 	    break;
2404 
2405 	  case op_iload_0:
2406 	  case op_iload_1:
2407 	  case op_iload_2:
2408 	  case op_iload_3:
2409 	    push_type (get_variable (opcode - op_iload_0, int_type));
2410 	    break;
2411 	  case op_lload_0:
2412 	  case op_lload_1:
2413 	  case op_lload_2:
2414 	  case op_lload_3:
2415 	    push_type (get_variable (opcode - op_lload_0, long_type));
2416 	    break;
2417 	  case op_fload_0:
2418 	  case op_fload_1:
2419 	  case op_fload_2:
2420 	  case op_fload_3:
2421 	    push_type (get_variable (opcode - op_fload_0, float_type));
2422 	    break;
2423 	  case op_dload_0:
2424 	  case op_dload_1:
2425 	  case op_dload_2:
2426 	  case op_dload_3:
2427 	    push_type (get_variable (opcode - op_dload_0, double_type));
2428 	    break;
2429 	  case op_aload_0:
2430 	  case op_aload_1:
2431 	  case op_aload_2:
2432 	  case op_aload_3:
2433 	    push_type (get_variable (opcode - op_aload_0, reference_type));
2434 	    break;
2435 	  case op_iaload:
2436 	    pop_type (int_type);
2437 	    push_type (require_array_type (pop_init_ref (reference_type),
2438 					   int_type));
2439 	    break;
2440 	  case op_laload:
2441 	    pop_type (int_type);
2442 	    push_type (require_array_type (pop_init_ref (reference_type),
2443 					   long_type));
2444 	    break;
2445 	  case op_faload:
2446 	    pop_type (int_type);
2447 	    push_type (require_array_type (pop_init_ref (reference_type),
2448 					   float_type));
2449 	    break;
2450 	  case op_daload:
2451 	    pop_type (int_type);
2452 	    push_type (require_array_type (pop_init_ref (reference_type),
2453 					   double_type));
2454 	    break;
2455 	  case op_aaload:
2456 	    pop_type (int_type);
2457 	    push_type (require_array_type (pop_init_ref (reference_type),
2458 					   reference_type));
2459 	    break;
2460 	  case op_baload:
2461 	    pop_type (int_type);
2462 	    require_array_type (pop_init_ref (reference_type), byte_type);
2463 	    push_type (int_type);
2464 	    break;
2465 	  case op_caload:
2466 	    pop_type (int_type);
2467 	    require_array_type (pop_init_ref (reference_type), char_type);
2468 	    push_type (int_type);
2469 	    break;
2470 	  case op_saload:
2471 	    pop_type (int_type);
2472 	    require_array_type (pop_init_ref (reference_type), short_type);
2473 	    push_type (int_type);
2474 	    break;
2475 	  case op_istore:
2476 	    set_variable (get_byte (), pop_type (int_type));
2477 	    break;
2478 	  case op_lstore:
2479 	    set_variable (get_byte (), pop_type (long_type));
2480 	    break;
2481 	  case op_fstore:
2482 	    set_variable (get_byte (), pop_type (float_type));
2483 	    break;
2484 	  case op_dstore:
2485 	    set_variable (get_byte (), pop_type (double_type));
2486 	    break;
2487 	  case op_astore:
2488 	    set_variable (get_byte (), pop_ref_or_return ());
2489 	    break;
2490 	  case op_istore_0:
2491 	  case op_istore_1:
2492 	  case op_istore_2:
2493 	  case op_istore_3:
2494 	    set_variable (opcode - op_istore_0, pop_type (int_type));
2495 	    break;
2496 	  case op_lstore_0:
2497 	  case op_lstore_1:
2498 	  case op_lstore_2:
2499 	  case op_lstore_3:
2500 	    set_variable (opcode - op_lstore_0, pop_type (long_type));
2501 	    break;
2502 	  case op_fstore_0:
2503 	  case op_fstore_1:
2504 	  case op_fstore_2:
2505 	  case op_fstore_3:
2506 	    set_variable (opcode - op_fstore_0, pop_type (float_type));
2507 	    break;
2508 	  case op_dstore_0:
2509 	  case op_dstore_1:
2510 	  case op_dstore_2:
2511 	  case op_dstore_3:
2512 	    set_variable (opcode - op_dstore_0, pop_type (double_type));
2513 	    break;
2514 	  case op_astore_0:
2515 	  case op_astore_1:
2516 	  case op_astore_2:
2517 	  case op_astore_3:
2518 	    set_variable (opcode - op_astore_0, pop_ref_or_return ());
2519 	    break;
2520 	  case op_iastore:
2521 	    pop_type (int_type);
2522 	    pop_type (int_type);
2523 	    require_array_type (pop_init_ref (reference_type), int_type);
2524 	    break;
2525 	  case op_lastore:
2526 	    pop_type (long_type);
2527 	    pop_type (int_type);
2528 	    require_array_type (pop_init_ref (reference_type), long_type);
2529 	    break;
2530 	  case op_fastore:
2531 	    pop_type (float_type);
2532 	    pop_type (int_type);
2533 	    require_array_type (pop_init_ref (reference_type), float_type);
2534 	    break;
2535 	  case op_dastore:
2536 	    pop_type (double_type);
2537 	    pop_type (int_type);
2538 	    require_array_type (pop_init_ref (reference_type), double_type);
2539 	    break;
2540 	  case op_aastore:
2541 	    pop_type (reference_type);
2542 	    pop_type (int_type);
2543 	    require_array_type (pop_init_ref (reference_type), reference_type);
2544 	    break;
2545 	  case op_bastore:
2546 	    pop_type (int_type);
2547 	    pop_type (int_type);
2548 	    require_array_type (pop_init_ref (reference_type), byte_type);
2549 	    break;
2550 	  case op_castore:
2551 	    pop_type (int_type);
2552 	    pop_type (int_type);
2553 	    require_array_type (pop_init_ref (reference_type), char_type);
2554 	    break;
2555 	  case op_sastore:
2556 	    pop_type (int_type);
2557 	    pop_type (int_type);
2558 	    require_array_type (pop_init_ref (reference_type), short_type);
2559 	    break;
2560 	  case op_pop:
2561 	    pop32 ();
2562 	    break;
2563 	  case op_pop2:
2564 	    {
2565 	      type t = pop_raw ();
2566 	      if (! t.iswide ())
2567 		pop32 ();
2568 	    }
2569 	    break;
2570 	  case op_dup:
2571 	    {
2572 	      type t = pop32 ();
2573 	      push_type (t);
2574 	      push_type (t);
2575 	    }
2576 	    break;
2577 	  case op_dup_x1:
2578 	    {
2579 	      type t1 = pop32 ();
2580 	      type t2 = pop32 ();
2581 	      push_type (t1);
2582 	      push_type (t2);
2583 	      push_type (t1);
2584 	    }
2585 	    break;
2586 	  case op_dup_x2:
2587 	    {
2588 	      type t1 = pop32 ();
2589 	      type t2 = pop_raw ();
2590 	      if (! t2.iswide ())
2591 		{
2592 		  type t3 = pop32 ();
2593 		  push_type (t1);
2594 		  push_type (t3);
2595 		}
2596 	      else
2597 		push_type (t1);
2598 	      push_type (t2);
2599 	      push_type (t1);
2600 	    }
2601 	    break;
2602 	  case op_dup2:
2603 	    {
2604 	      type t = pop_raw ();
2605 	      if (! t.iswide ())
2606 		{
2607 		  type t2 = pop32 ();
2608 		  push_type (t2);
2609 		  push_type (t);
2610 		  push_type (t2);
2611 		}
2612 	      else
2613 		push_type (t);
2614 	      push_type (t);
2615 	    }
2616 	    break;
2617 	  case op_dup2_x1:
2618 	    {
2619 	      type t1 = pop_raw ();
2620 	      type t2 = pop32 ();
2621 	      if (! t1.iswide ())
2622 		{
2623 		  type t3 = pop32 ();
2624 		  push_type (t2);
2625 		  push_type (t1);
2626 		  push_type (t3);
2627 		}
2628 	      else
2629 		push_type (t1);
2630 	      push_type (t2);
2631 	      push_type (t1);
2632 	    }
2633 	    break;
2634 	  case op_dup2_x2:
2635 	    {
2636 	      type t1 = pop_raw ();
2637 	      if (t1.iswide ())
2638 		{
2639 		  type t2 = pop_raw ();
2640 		  if (t2.iswide ())
2641 		    {
2642 		      push_type (t1);
2643 		      push_type (t2);
2644 		    }
2645 		  else
2646 		    {
2647 		      type t3 = pop32 ();
2648 		      push_type (t1);
2649 		      push_type (t3);
2650 		      push_type (t2);
2651 		    }
2652 		  push_type (t1);
2653 		}
2654 	      else
2655 		{
2656 		  type t2 = pop32 ();
2657 		  type t3 = pop_raw ();
2658 		  if (t3.iswide ())
2659 		    {
2660 		      push_type (t2);
2661 		      push_type (t1);
2662 		    }
2663 		  else
2664 		    {
2665 		      type t4 = pop32 ();
2666 		      push_type (t2);
2667 		      push_type (t1);
2668 		      push_type (t4);
2669 		    }
2670 		  push_type (t3);
2671 		  push_type (t2);
2672 		  push_type (t1);
2673 		}
2674 	    }
2675 	    break;
2676 	  case op_swap:
2677 	    {
2678 	      type t1 = pop32 ();
2679 	      type t2 = pop32 ();
2680 	      push_type (t1);
2681 	      push_type (t2);
2682 	    }
2683 	    break;
2684 	  case op_iadd:
2685 	  case op_isub:
2686 	  case op_imul:
2687 	  case op_idiv:
2688 	  case op_irem:
2689 	  case op_ishl:
2690 	  case op_ishr:
2691 	  case op_iushr:
2692 	  case op_iand:
2693 	  case op_ior:
2694 	  case op_ixor:
2695 	    pop_type (int_type);
2696 	    push_type (pop_type (int_type));
2697 	    break;
2698 	  case op_ladd:
2699 	  case op_lsub:
2700 	  case op_lmul:
2701 	  case op_ldiv:
2702 	  case op_lrem:
2703 	  case op_land:
2704 	  case op_lor:
2705 	  case op_lxor:
2706 	    pop_type (long_type);
2707 	    push_type (pop_type (long_type));
2708 	    break;
2709 	  case op_lshl:
2710 	  case op_lshr:
2711 	  case op_lushr:
2712 	    pop_type (int_type);
2713 	    push_type (pop_type (long_type));
2714 	    break;
2715 	  case op_fadd:
2716 	  case op_fsub:
2717 	  case op_fmul:
2718 	  case op_fdiv:
2719 	  case op_frem:
2720 	    pop_type (float_type);
2721 	    push_type (pop_type (float_type));
2722 	    break;
2723 	  case op_dadd:
2724 	  case op_dsub:
2725 	  case op_dmul:
2726 	  case op_ddiv:
2727 	  case op_drem:
2728 	    pop_type (double_type);
2729 	    push_type (pop_type (double_type));
2730 	    break;
2731 	  case op_ineg:
2732 	  case op_i2b:
2733 	  case op_i2c:
2734 	  case op_i2s:
2735 	    push_type (pop_type (int_type));
2736 	    break;
2737 	  case op_lneg:
2738 	    push_type (pop_type (long_type));
2739 	    break;
2740 	  case op_fneg:
2741 	    push_type (pop_type (float_type));
2742 	    break;
2743 	  case op_dneg:
2744 	    push_type (pop_type (double_type));
2745 	    break;
2746 	  case op_iinc:
2747 	    get_variable (get_byte (), int_type);
2748 	    get_byte ();
2749 	    break;
2750 	  case op_i2l:
2751 	    pop_type (int_type);
2752 	    push_type (long_type);
2753 	    break;
2754 	  case op_i2f:
2755 	    pop_type (int_type);
2756 	    push_type (float_type);
2757 	    break;
2758 	  case op_i2d:
2759 	    pop_type (int_type);
2760 	    push_type (double_type);
2761 	    break;
2762 	  case op_l2i:
2763 	    pop_type (long_type);
2764 	    push_type (int_type);
2765 	    break;
2766 	  case op_l2f:
2767 	    pop_type (long_type);
2768 	    push_type (float_type);
2769 	    break;
2770 	  case op_l2d:
2771 	    pop_type (long_type);
2772 	    push_type (double_type);
2773 	    break;
2774 	  case op_f2i:
2775 	    pop_type (float_type);
2776 	    push_type (int_type);
2777 	    break;
2778 	  case op_f2l:
2779 	    pop_type (float_type);
2780 	    push_type (long_type);
2781 	    break;
2782 	  case op_f2d:
2783 	    pop_type (float_type);
2784 	    push_type (double_type);
2785 	    break;
2786 	  case op_d2i:
2787 	    pop_type (double_type);
2788 	    push_type (int_type);
2789 	    break;
2790 	  case op_d2l:
2791 	    pop_type (double_type);
2792 	    push_type (long_type);
2793 	    break;
2794 	  case op_d2f:
2795 	    pop_type (double_type);
2796 	    push_type (float_type);
2797 	    break;
2798 	  case op_lcmp:
2799 	    pop_type (long_type);
2800 	    pop_type (long_type);
2801 	    push_type (int_type);
2802 	    break;
2803 	  case op_fcmpl:
2804 	  case op_fcmpg:
2805 	    pop_type (float_type);
2806 	    pop_type (float_type);
2807 	    push_type (int_type);
2808 	    break;
2809 	  case op_dcmpl:
2810 	  case op_dcmpg:
2811 	    pop_type (double_type);
2812 	    pop_type (double_type);
2813 	    push_type (int_type);
2814 	    break;
2815 	  case op_ifeq:
2816 	  case op_ifne:
2817 	  case op_iflt:
2818 	  case op_ifge:
2819 	  case op_ifgt:
2820 	  case op_ifle:
2821 	    pop_type (int_type);
2822 	    push_jump (get_short ());
2823 	    break;
2824 	  case op_if_icmpeq:
2825 	  case op_if_icmpne:
2826 	  case op_if_icmplt:
2827 	  case op_if_icmpge:
2828 	  case op_if_icmpgt:
2829 	  case op_if_icmple:
2830 	    pop_type (int_type);
2831 	    pop_type (int_type);
2832 	    push_jump (get_short ());
2833 	    break;
2834 	  case op_if_acmpeq:
2835 	  case op_if_acmpne:
2836 	    pop_type (reference_type);
2837 	    pop_type (reference_type);
2838 	    push_jump (get_short ());
2839 	    break;
2840 	  case op_goto:
2841 	    push_jump (get_short ());
2842 	    invalidate_pc ();
2843 	    break;
2844 	  case op_jsr:
2845 	    handle_jsr_insn (get_short ());
2846 	    break;
2847 	  case op_ret:
2848 	    handle_ret_insn (get_byte ());
2849 	    break;
2850 	  case op_tableswitch:
2851 	    {
2852 	      pop_type (int_type);
2853 	      skip_padding ();
2854 	      push_jump (get_int ());
2855 	      jint low = get_int ();
2856 	      jint high = get_int ();
2857 	      // Already checked LOW -vs- HIGH.
2858 	      for (int i = low; i <= high; ++i)
2859 		push_jump (get_int ());
2860 	      invalidate_pc ();
2861 	    }
2862 	    break;
2863 
2864 	  case op_lookupswitch:
2865 	    {
2866 	      pop_type (int_type);
2867 	      skip_padding ();
2868 	      push_jump (get_int ());
2869 	      jint npairs = get_int ();
2870 	      // Already checked NPAIRS >= 0.
2871 	      jint lastkey = 0;
2872 	      for (int i = 0; i < npairs; ++i)
2873 		{
2874 		  jint key = get_int ();
2875 		  if (i > 0 && key <= lastkey)
2876 		    verify_fail ("lookupswitch pairs unsorted", start_PC);
2877 		  lastkey = key;
2878 		  push_jump (get_int ());
2879 		}
2880 	      invalidate_pc ();
2881 	    }
2882 	    break;
2883 	  case op_ireturn:
2884 	    check_return_type (pop_type (int_type));
2885 	    invalidate_pc ();
2886 	    break;
2887 	  case op_lreturn:
2888 	    check_return_type (pop_type (long_type));
2889 	    invalidate_pc ();
2890 	    break;
2891 	  case op_freturn:
2892 	    check_return_type (pop_type (float_type));
2893 	    invalidate_pc ();
2894 	    break;
2895 	  case op_dreturn:
2896 	    check_return_type (pop_type (double_type));
2897 	    invalidate_pc ();
2898 	    break;
2899 	  case op_areturn:
2900 	    check_return_type (pop_init_ref (reference_type));
2901 	    invalidate_pc ();
2902 	    break;
2903 	  case op_return:
2904 	    // We only need to check this when the return type is
2905 	    // void, because all instance initializers return void.
2906 	    if (this_is_init)
2907 	      current_state->check_this_initialized (this);
2908 	    check_return_type (void_type);
2909 	    invalidate_pc ();
2910 	    break;
2911 	  case op_getstatic:
2912 	    push_type (check_field_constant (get_ushort ()));
2913 	    break;
2914 	  case op_putstatic:
2915 	    pop_type (check_field_constant (get_ushort ()));
2916 	    break;
2917 	  case op_getfield:
2918 	    {
2919 	      type klass;
2920 	      type field = check_field_constant (get_ushort (), &klass);
2921 	      pop_type (klass);
2922 	      push_type (field);
2923 	    }
2924 	    break;
2925 	  case op_putfield:
2926 	    {
2927 	      type klass;
2928 	      type field = check_field_constant (get_ushort (), &klass, true);
2929 	      pop_type (field);
2930 	      pop_type (klass);
2931 	    }
2932 	    break;
2933 
2934 	  case op_invokevirtual:
2935 	  case op_invokespecial:
2936 	  case op_invokestatic:
2937 	  case op_invokeinterface:
2938 	    {
2939 	      _Jv_Utf8Const *method_name, *method_signature;
2940 	      type class_type
2941 		= check_method_constant (get_ushort (),
2942 					 opcode == op_invokeinterface,
2943 					 &method_name,
2944 					 &method_signature);
2945 	      // NARGS is only used when we're processing
2946 	      // invokeinterface.  It is simplest for us to compute it
2947 	      // here and then verify it later.
2948 	      int nargs = 0;
2949 	      if (opcode == op_invokeinterface)
2950 		{
2951 		  nargs = get_byte ();
2952 		  if (get_byte () != 0)
2953 		    verify_fail ("invokeinterface dummy byte is wrong");
2954 		}
2955 
2956 	      bool is_init = false;
2957 	      if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
2958 		{
2959 		  is_init = true;
2960 		  if (opcode != op_invokespecial)
2961 		    verify_fail ("can't invoke <init>");
2962 		}
2963 	      else if (method_name->first() == '<')
2964 		verify_fail ("can't invoke method starting with `<'");
2965 
2966 	      // Pop arguments and check types.
2967 	      int arg_count = _Jv_count_arguments (method_signature);
2968 	      type arg_types[arg_count];
2969 	      compute_argument_types (method_signature, arg_types);
2970 	      for (int i = arg_count - 1; i >= 0; --i)
2971 		{
2972 		  // This is only used for verifying the byte for
2973 		  // invokeinterface.
2974 		  nargs -= arg_types[i].depth ();
2975 		  pop_init_ref (arg_types[i]);
2976 		}
2977 
2978 	      if (opcode == op_invokeinterface
2979 		  && nargs != 1)
2980 		verify_fail ("wrong argument count for invokeinterface");
2981 
2982 	      if (opcode != op_invokestatic)
2983 		{
2984 		  type t = class_type;
2985 		  if (is_init)
2986 		    {
2987 		      // In this case the PC doesn't matter.
2988 		      t.set_uninitialized (type::UNINIT, this);
2989 		      // FIXME: check to make sure that the <init>
2990 		      // call is to the right class.
2991 		      // It must either be super or an exact class
2992 		      // match.
2993 		    }
2994 		  type raw = pop_raw ();
2995 		  if (! t.compatible (raw, this))
2996 		    verify_fail ("incompatible type on stack");
2997 
2998 		  if (is_init)
2999 		    current_state->set_initialized (raw.get_pc (),
3000 						    current_method->max_locals);
3001 		}
3002 
3003 	      type rt = compute_return_type (method_signature);
3004 	      if (! rt.isvoid ())
3005 		push_type (rt);
3006 	    }
3007 	    break;
3008 
3009 	  case op_new:
3010 	    {
3011 	      type t = check_class_constant (get_ushort ());
3012 	      if (t.isarray ())
3013 		verify_fail ("type is array");
3014 	      t.set_uninitialized (start_PC, this);
3015 	      push_type (t);
3016 	    }
3017 	    break;
3018 
3019 	  case op_newarray:
3020 	    {
3021 	      int atype = get_byte ();
3022 	      // We intentionally have chosen constants to make this
3023 	      // valid.
3024 	      if (atype < boolean_type || atype > long_type)
3025 		verify_fail ("type not primitive", start_PC);
3026 	      pop_type (int_type);
3027 	      type t (construct_primitive_array_type (type_val (atype)), this);
3028 	      push_type (t);
3029 	    }
3030 	    break;
3031 	  case op_anewarray:
3032 	    pop_type (int_type);
3033 	    push_type (check_class_constant (get_ushort ()).to_array (this));
3034 	    break;
3035 	  case op_arraylength:
3036 	    {
3037 	      type t = pop_init_ref (reference_type);
3038 	      if (! t.isarray () && ! t.isnull ())
3039 		verify_fail ("array type expected");
3040 	      push_type (int_type);
3041 	    }
3042 	    break;
3043 	  case op_athrow:
3044 	    pop_type (type (&java::lang::Throwable::class$, this));
3045 	    invalidate_pc ();
3046 	    break;
3047 	  case op_checkcast:
3048 	    pop_init_ref (reference_type);
3049 	    push_type (check_class_constant (get_ushort ()));
3050 	    break;
3051 	  case op_instanceof:
3052 	    pop_init_ref (reference_type);
3053 	    check_class_constant (get_ushort ());
3054 	    push_type (int_type);
3055 	    break;
3056 	  case op_monitorenter:
3057 	    pop_init_ref (reference_type);
3058 	    break;
3059 	  case op_monitorexit:
3060 	    pop_init_ref (reference_type);
3061 	    break;
3062 	  case op_wide:
3063 	    {
3064 	      switch (get_byte ())
3065 		{
3066 		case op_iload:
3067 		  push_type (get_variable (get_ushort (), int_type));
3068 		  break;
3069 		case op_lload:
3070 		  push_type (get_variable (get_ushort (), long_type));
3071 		  break;
3072 		case op_fload:
3073 		  push_type (get_variable (get_ushort (), float_type));
3074 		  break;
3075 		case op_dload:
3076 		  push_type (get_variable (get_ushort (), double_type));
3077 		  break;
3078 		case op_aload:
3079 		  push_type (get_variable (get_ushort (), reference_type));
3080 		  break;
3081 		case op_istore:
3082 		  set_variable (get_ushort (), pop_type (int_type));
3083 		  break;
3084 		case op_lstore:
3085 		  set_variable (get_ushort (), pop_type (long_type));
3086 		  break;
3087 		case op_fstore:
3088 		  set_variable (get_ushort (), pop_type (float_type));
3089 		  break;
3090 		case op_dstore:
3091 		  set_variable (get_ushort (), pop_type (double_type));
3092 		  break;
3093 		case op_astore:
3094 		  set_variable (get_ushort (), pop_init_ref (reference_type));
3095 		  break;
3096 		case op_ret:
3097 		  handle_ret_insn (get_short ());
3098 		  break;
3099 		case op_iinc:
3100 		  get_variable (get_ushort (), int_type);
3101 		  get_short ();
3102 		  break;
3103 		default:
3104 		  verify_fail ("unrecognized wide instruction", start_PC);
3105 		}
3106 	    }
3107 	    break;
3108 	  case op_multianewarray:
3109 	    {
3110 	      type atype = check_class_constant (get_ushort ());
3111 	      int dim = get_byte ();
3112 	      if (dim < 1)
3113 		verify_fail ("too few dimensions to multianewarray", start_PC);
3114 	      atype.verify_dimensions (dim, this);
3115 	      for (int i = 0; i < dim; ++i)
3116 		pop_type (int_type);
3117 	      push_type (atype);
3118 	    }
3119 	    break;
3120 	  case op_ifnull:
3121 	  case op_ifnonnull:
3122 	    pop_type (reference_type);
3123 	    push_jump (get_short ());
3124 	    break;
3125 	  case op_goto_w:
3126 	    push_jump (get_int ());
3127 	    invalidate_pc ();
3128 	    break;
3129 	  case op_jsr_w:
3130 	    handle_jsr_insn (get_int ());
3131 	    break;
3132 
3133 	  // These are unused here, but we call them out explicitly
3134 	  // so that -Wswitch-enum doesn't complain.
3135 	  case op_putfield_1:
3136 	  case op_putfield_2:
3137 	  case op_putfield_4:
3138 	  case op_putfield_8:
3139 	  case op_putfield_a:
3140 	  case op_putstatic_1:
3141 	  case op_putstatic_2:
3142 	  case op_putstatic_4:
3143 	  case op_putstatic_8:
3144 	  case op_putstatic_a:
3145 	  case op_getfield_1:
3146 	  case op_getfield_2s:
3147 	  case op_getfield_2u:
3148 	  case op_getfield_4:
3149 	  case op_getfield_8:
3150 	  case op_getfield_a:
3151 	  case op_getstatic_1:
3152 	  case op_getstatic_2s:
3153 	  case op_getstatic_2u:
3154 	  case op_getstatic_4:
3155 	  case op_getstatic_8:
3156 	  case op_getstatic_a:
3157 	  case op_breakpoint:
3158 	  default:
3159 	    // Unrecognized opcode.
3160 	    verify_fail ("unrecognized instruction in verify_instructions_0",
3161 			 start_PC);
3162 	  }
3163       }
3164   }
3165 
3166 public:
3167 
verify_instructions()3168   void verify_instructions ()
3169   {
3170     branch_prepass ();
3171     verify_instructions_0 ();
3172   }
3173 
_Jv_BytecodeVerifier(_Jv_InterpMethod * m)3174   _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
3175   {
3176     // We just print the text as utf-8.  This is just for debugging
3177     // anyway.
3178     debug_print ("--------------------------------\n");
3179     debug_print ("-- Verifying method `%s'\n", m->self->name->chars());
3180 
3181     current_method = m;
3182     bytecode = m->bytecode ();
3183     exception = m->exceptions ();
3184     current_class = m->defining_class;
3185 
3186     states = NULL;
3187     flags = NULL;
3188     utf8_list = NULL;
3189     isect_list = NULL;
3190   }
3191 
~_Jv_BytecodeVerifier()3192   ~_Jv_BytecodeVerifier ()
3193   {
3194     if (flags)
3195       _Jv_Free (flags);
3196 
3197     while (utf8_list != NULL)
3198       {
3199 	linked<_Jv_Utf8Const> *n = utf8_list->next;
3200 	_Jv_Free (utf8_list);
3201 	utf8_list = n;
3202       }
3203 
3204     while (isect_list != NULL)
3205       {
3206 	ref_intersection *next = isect_list->alloc_next;
3207 	delete isect_list;
3208 	isect_list = next;
3209       }
3210 
3211     if (states)
3212       {
3213 	for (int i = 0; i < current_method->code_length; ++i)
3214 	  {
3215 	    linked<state> *iter = states[i];
3216 	    while (iter != NULL)
3217 	      {
3218 		linked<state> *next = iter->next;
3219 		delete iter->val;
3220 		_Jv_Free (iter);
3221 		iter = next;
3222 	      }
3223 	  }
3224 	_Jv_Free (states);
3225       }
3226   }
3227 };
3228 
3229 void
_Jv_VerifyMethod(_Jv_InterpMethod * meth)3230 _Jv_VerifyMethod (_Jv_InterpMethod *meth)
3231 {
3232   _Jv_BytecodeVerifier v (meth);
3233   v.verify_instructions ();
3234 }
3235 
3236 #endif	/* INTERPRETER */
3237