1 // Vector implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this  software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_vector.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{vector}
54  */
55 
56 #ifndef _STL_VECTOR_H
57 #define _STL_VECTOR_H 1
58 
59 #include <bits/stl_iterator_base_funcs.h>
60 #include <bits/functexcept.h>
61 #include <bits/concept_check.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65 
_GLIBCXX_VISIBILITY(default)66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69 
70   /// See bits/stl_deque.h's _Deque_base for an explanation.
71   template<typename _Tp, typename _Alloc>
72     struct _Vector_base
73     {
74       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
75         rebind<_Tp>::other _Tp_alloc_type;
76       typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
77        	pointer;
78 
79       struct _Vector_impl
80       : public _Tp_alloc_type
81       {
82 	pointer _M_start;
83 	pointer _M_finish;
84 	pointer _M_end_of_storage;
85 
86 	_Vector_impl()
87 	: _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88 	{ }
89 
90 	_Vector_impl(_Tp_alloc_type const& __a) _GLIBCXX_NOEXCEPT
91 	: _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
92 	{ }
93 
94 #if __cplusplus >= 201103L
95 	_Vector_impl(_Tp_alloc_type&& __a) noexcept
96 	: _Tp_alloc_type(std::move(__a)),
97 	  _M_start(0), _M_finish(0), _M_end_of_storage(0)
98 	{ }
99 #endif
100 
101 	void _M_swap_data(_Vector_impl& __x) _GLIBCXX_NOEXCEPT
102 	{
103 	  std::swap(_M_start, __x._M_start);
104 	  std::swap(_M_finish, __x._M_finish);
105 	  std::swap(_M_end_of_storage, __x._M_end_of_storage);
106 	}
107       };
108 
109     public:
110       typedef _Alloc allocator_type;
111 
112       _Tp_alloc_type&
113       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
114       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
115 
116       const _Tp_alloc_type&
117       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
118       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
119 
120       allocator_type
121       get_allocator() const _GLIBCXX_NOEXCEPT
122       { return allocator_type(_M_get_Tp_allocator()); }
123 
124       _Vector_base()
125       : _M_impl() { }
126 
127       _Vector_base(const allocator_type& __a) _GLIBCXX_NOEXCEPT
128       : _M_impl(__a) { }
129 
130       _Vector_base(size_t __n)
131       : _M_impl()
132       { _M_create_storage(__n); }
133 
134       _Vector_base(size_t __n, const allocator_type& __a)
135       : _M_impl(__a)
136       { _M_create_storage(__n); }
137 
138 #if __cplusplus >= 201103L
139       _Vector_base(_Tp_alloc_type&& __a) noexcept
140       : _M_impl(std::move(__a)) { }
141 
142       _Vector_base(_Vector_base&& __x) noexcept
143       : _M_impl(std::move(__x._M_get_Tp_allocator()))
144       { this->_M_impl._M_swap_data(__x._M_impl); }
145 
146       _Vector_base(_Vector_base&& __x, const allocator_type& __a)
147       : _M_impl(__a)
148       {
149 	if (__x.get_allocator() == __a)
150 	  this->_M_impl._M_swap_data(__x._M_impl);
151 	else
152 	  {
153 	    size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
154 	    _M_create_storage(__n);
155 	  }
156       }
157 #endif
158 
159       ~_Vector_base() _GLIBCXX_NOEXCEPT
160       { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
161 		      - this->_M_impl._M_start); }
162 
163     public:
164       _Vector_impl _M_impl;
165 
166       pointer
167       _M_allocate(size_t __n)
168       {
169 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
170 	return __n != 0 ? _Tr::allocate(_M_impl, __n) : 0;
171       }
172 
173       void
174       _M_deallocate(pointer __p, size_t __n)
175       {
176 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
177 	if (__p)
178 	  _Tr::deallocate(_M_impl, __p, __n);
179       }
180 
181     private:
182       void
183       _M_create_storage(size_t __n)
184       {
185 	this->_M_impl._M_start = this->_M_allocate(__n);
186 	this->_M_impl._M_finish = this->_M_impl._M_start;
187 	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
188       }
189     };
190 
191 
192   /**
193    *  @brief A standard container which offers fixed time access to
194    *  individual elements in any order.
195    *
196    *  @ingroup sequences
197    *
198    *  @tparam _Tp  Type of element.
199    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
200    *
201    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
202    *  <a href="tables.html#66">reversible container</a>, and a
203    *  <a href="tables.html#67">sequence</a>, including the
204    *  <a href="tables.html#68">optional sequence requirements</a> with the
205    *  %exception of @c push_front and @c pop_front.
206    *
207    *  In some terminology a %vector can be described as a dynamic
208    *  C-style array, it offers fast and efficient access to individual
209    *  elements in any order and saves the user from worrying about
210    *  memory and size allocation.  Subscripting ( @c [] ) access is
211    *  also provided as with C-style arrays.
212   */
213   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
214     class vector : protected _Vector_base<_Tp, _Alloc>
215     {
216       // Concept requirements.
217       typedef typename _Alloc::value_type                _Alloc_value_type;
218       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
219       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
220 
221       typedef _Vector_base<_Tp, _Alloc>			 _Base;
222       typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
223       typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>  _Alloc_traits;
224 
225     public:
226       typedef _Tp					 value_type;
227       typedef typename _Base::pointer                    pointer;
228       typedef typename _Alloc_traits::const_pointer      const_pointer;
229       typedef typename _Alloc_traits::reference          reference;
230       typedef typename _Alloc_traits::const_reference    const_reference;
231       typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
232       typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
233       const_iterator;
234       typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
235       typedef std::reverse_iterator<iterator>		 reverse_iterator;
236       typedef size_t					 size_type;
237       typedef ptrdiff_t					 difference_type;
238       typedef _Alloc                        		 allocator_type;
239 
240     protected:
241       using _Base::_M_allocate;
242       using _Base::_M_deallocate;
243       using _Base::_M_impl;
244       using _Base::_M_get_Tp_allocator;
245 
246     public:
247       // [23.2.4.1] construct/copy/destroy
248       // (assign() and get_allocator() are also listed in this section)
249 
250       /**
251        *  @brief  Creates a %vector with no elements.
252        */
253       vector()
254 #if __cplusplus >= 201103L
255       noexcept(is_nothrow_default_constructible<_Alloc>::value)
256 #endif
257       : _Base() { }
258 
259       /**
260        *  @brief  Creates a %vector with no elements.
261        *  @param  __a  An allocator object.
262        */
263       explicit
264       vector(const allocator_type& __a) _GLIBCXX_NOEXCEPT
265       : _Base(__a) { }
266 
267 #if __cplusplus >= 201103L
268       /**
269        *  @brief  Creates a %vector with default constructed elements.
270        *  @param  __n  The number of elements to initially create.
271        *  @param  __a  An allocator.
272        *
273        *  This constructor fills the %vector with @a __n default
274        *  constructed elements.
275        */
276       explicit
277       vector(size_type __n, const allocator_type& __a = allocator_type())
278       : _Base(__n, __a)
279       { _M_default_initialize(__n); }
280 
281       /**
282        *  @brief  Creates a %vector with copies of an exemplar element.
283        *  @param  __n  The number of elements to initially create.
284        *  @param  __value  An element to copy.
285        *  @param  __a  An allocator.
286        *
287        *  This constructor fills the %vector with @a __n copies of @a __value.
288        */
289       vector(size_type __n, const value_type& __value,
290 	     const allocator_type& __a = allocator_type())
291       : _Base(__n, __a)
292       { _M_fill_initialize(__n, __value); }
293 #else
294       /**
295        *  @brief  Creates a %vector with copies of an exemplar element.
296        *  @param  __n  The number of elements to initially create.
297        *  @param  __value  An element to copy.
298        *  @param  __a  An allocator.
299        *
300        *  This constructor fills the %vector with @a __n copies of @a __value.
301        */
302       explicit
303       vector(size_type __n, const value_type& __value = value_type(),
304 	     const allocator_type& __a = allocator_type())
305       : _Base(__n, __a)
306       { _M_fill_initialize(__n, __value); }
307 #endif
308 
309       /**
310        *  @brief  %Vector copy constructor.
311        *  @param  __x  A %vector of identical element and allocator types.
312        *
313        *  The newly-created %vector uses a copy of the allocation
314        *  object used by @a __x.  All the elements of @a __x are copied,
315        *  but any extra memory in
316        *  @a __x (for fast expansion) will not be copied.
317        */
318       vector(const vector& __x)
319       : _Base(__x.size(),
320         _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
321       { this->_M_impl._M_finish =
322 	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
323 				      this->_M_impl._M_start,
324 				      _M_get_Tp_allocator());
325       }
326 
327 #if __cplusplus >= 201103L
328       /**
329        *  @brief  %Vector move constructor.
330        *  @param  __x  A %vector of identical element and allocator types.
331        *
332        *  The newly-created %vector contains the exact contents of @a __x.
333        *  The contents of @a __x are a valid, but unspecified %vector.
334        */
335       vector(vector&& __x) noexcept
336       : _Base(std::move(__x)) { }
337 
338       /// Copy constructor with alternative allocator
339       vector(const vector& __x, const allocator_type& __a)
340       : _Base(__x.size(), __a)
341       { this->_M_impl._M_finish =
342 	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
343 				      this->_M_impl._M_start,
344 				      _M_get_Tp_allocator());
345       }
346 
347       /// Move constructor with alternative allocator
348       vector(vector&& __rv, const allocator_type& __m)
349       noexcept(_Alloc_traits::_S_always_equal())
350       : _Base(std::move(__rv), __m)
351       {
352 	if (__rv.get_allocator() != __m)
353 	  {
354 	    this->_M_impl._M_finish =
355 	      std::__uninitialized_move_a(__rv.begin(), __rv.end(),
356 					  this->_M_impl._M_start,
357 					  _M_get_Tp_allocator());
358 	    __rv.clear();
359 	  }
360       }
361 
362       /**
363        *  @brief  Builds a %vector from an initializer list.
364        *  @param  __l  An initializer_list.
365        *  @param  __a  An allocator.
366        *
367        *  Create a %vector consisting of copies of the elements in the
368        *  initializer_list @a __l.
369        *
370        *  This will call the element type's copy constructor N times
371        *  (where N is @a __l.size()) and do no memory reallocation.
372        */
373       vector(initializer_list<value_type> __l,
374 	     const allocator_type& __a = allocator_type())
375       : _Base(__a)
376       {
377 	_M_range_initialize(__l.begin(), __l.end(),
378 			    random_access_iterator_tag());
379       }
380 #endif
381 
382       /**
383        *  @brief  Builds a %vector from a range.
384        *  @param  __first  An input iterator.
385        *  @param  __last  An input iterator.
386        *  @param  __a  An allocator.
387        *
388        *  Create a %vector consisting of copies of the elements from
389        *  [first,last).
390        *
391        *  If the iterators are forward, bidirectional, or
392        *  random-access, then this will call the elements' copy
393        *  constructor N times (where N is distance(first,last)) and do
394        *  no memory reallocation.  But if only input iterators are
395        *  used, then this will do at most 2N calls to the copy
396        *  constructor, and logN memory reallocations.
397        */
398 #if __cplusplus >= 201103L
399       template<typename _InputIterator,
400 	       typename = std::_RequireInputIter<_InputIterator>>
401         vector(_InputIterator __first, _InputIterator __last,
402 	       const allocator_type& __a = allocator_type())
403 	: _Base(__a)
404         { _M_initialize_dispatch(__first, __last, __false_type()); }
405 #else
406       template<typename _InputIterator>
407         vector(_InputIterator __first, _InputIterator __last,
408 	       const allocator_type& __a = allocator_type())
409 	: _Base(__a)
410         {
411 	  // Check whether it's an integral type.  If so, it's not an iterator.
412 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
413 	  _M_initialize_dispatch(__first, __last, _Integral());
414 	}
415 #endif
416 
417       /**
418        *  The dtor only erases the elements, and note that if the
419        *  elements themselves are pointers, the pointed-to memory is
420        *  not touched in any way.  Managing the pointer is the user's
421        *  responsibility.
422        */
423       ~vector() _GLIBCXX_NOEXCEPT
424       { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
425 		      _M_get_Tp_allocator()); }
426 
427       /**
428        *  @brief  %Vector assignment operator.
429        *  @param  __x  A %vector of identical element and allocator types.
430        *
431        *  All the elements of @a __x are copied, but any extra memory in
432        *  @a __x (for fast expansion) will not be copied.  Unlike the
433        *  copy constructor, the allocator object is not copied.
434        */
435       vector&
436       operator=(const vector& __x);
437 
438 #if __cplusplus >= 201103L
439       /**
440        *  @brief  %Vector move assignment operator.
441        *  @param  __x  A %vector of identical element and allocator types.
442        *
443        *  The contents of @a __x are moved into this %vector (without copying,
444        *  if the allocators permit it).
445        *  @a __x is a valid, but unspecified %vector.
446        */
447       vector&
448       operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
449       {
450         constexpr bool __move_storage =
451           _Alloc_traits::_S_propagate_on_move_assign()
452           || _Alloc_traits::_S_always_equal();
453         _M_move_assign(std::move(__x),
454                        integral_constant<bool, __move_storage>());
455 	return *this;
456       }
457 
458       /**
459        *  @brief  %Vector list assignment operator.
460        *  @param  __l  An initializer_list.
461        *
462        *  This function fills a %vector with copies of the elements in the
463        *  initializer list @a __l.
464        *
465        *  Note that the assignment completely changes the %vector and
466        *  that the resulting %vector's size is the same as the number
467        *  of elements assigned.  Old data may be lost.
468        */
469       vector&
470       operator=(initializer_list<value_type> __l)
471       {
472 	this->assign(__l.begin(), __l.end());
473 	return *this;
474       }
475 #endif
476 
477       /**
478        *  @brief  Assigns a given value to a %vector.
479        *  @param  __n  Number of elements to be assigned.
480        *  @param  __val  Value to be assigned.
481        *
482        *  This function fills a %vector with @a __n copies of the given
483        *  value.  Note that the assignment completely changes the
484        *  %vector and that the resulting %vector's size is the same as
485        *  the number of elements assigned.  Old data may be lost.
486        */
487       void
488       assign(size_type __n, const value_type& __val)
489       { _M_fill_assign(__n, __val); }
490 
491       /**
492        *  @brief  Assigns a range to a %vector.
493        *  @param  __first  An input iterator.
494        *  @param  __last   An input iterator.
495        *
496        *  This function fills a %vector with copies of the elements in the
497        *  range [__first,__last).
498        *
499        *  Note that the assignment completely changes the %vector and
500        *  that the resulting %vector's size is the same as the number
501        *  of elements assigned.  Old data may be lost.
502        */
503 #if __cplusplus >= 201103L
504       template<typename _InputIterator,
505 	       typename = std::_RequireInputIter<_InputIterator>>
506         void
507         assign(_InputIterator __first, _InputIterator __last)
508         { _M_assign_dispatch(__first, __last, __false_type()); }
509 #else
510       template<typename _InputIterator>
511         void
512         assign(_InputIterator __first, _InputIterator __last)
513         {
514 	  // Check whether it's an integral type.  If so, it's not an iterator.
515 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
516 	  _M_assign_dispatch(__first, __last, _Integral());
517 	}
518 #endif
519 
520 #if __cplusplus >= 201103L
521       /**
522        *  @brief  Assigns an initializer list to a %vector.
523        *  @param  __l  An initializer_list.
524        *
525        *  This function fills a %vector with copies of the elements in the
526        *  initializer list @a __l.
527        *
528        *  Note that the assignment completely changes the %vector and
529        *  that the resulting %vector's size is the same as the number
530        *  of elements assigned.  Old data may be lost.
531        */
532       void
533       assign(initializer_list<value_type> __l)
534       { this->assign(__l.begin(), __l.end()); }
535 #endif
536 
537       /// Get a copy of the memory allocation object.
538       using _Base::get_allocator;
539 
540       // iterators
541       /**
542        *  Returns a read/write iterator that points to the first
543        *  element in the %vector.  Iteration is done in ordinary
544        *  element order.
545        */
546       iterator
547       begin() _GLIBCXX_NOEXCEPT
548       { return iterator(this->_M_impl._M_start); }
549 
550       /**
551        *  Returns a read-only (constant) iterator that points to the
552        *  first element in the %vector.  Iteration is done in ordinary
553        *  element order.
554        */
555       const_iterator
556       begin() const _GLIBCXX_NOEXCEPT
557       { return const_iterator(this->_M_impl._M_start); }
558 
559       /**
560        *  Returns a read/write iterator that points one past the last
561        *  element in the %vector.  Iteration is done in ordinary
562        *  element order.
563        */
564       iterator
565       end() _GLIBCXX_NOEXCEPT
566       { return iterator(this->_M_impl._M_finish); }
567 
568       /**
569        *  Returns a read-only (constant) iterator that points one past
570        *  the last element in the %vector.  Iteration is done in
571        *  ordinary element order.
572        */
573       const_iterator
574       end() const _GLIBCXX_NOEXCEPT
575       { return const_iterator(this->_M_impl._M_finish); }
576 
577       /**
578        *  Returns a read/write reverse iterator that points to the
579        *  last element in the %vector.  Iteration is done in reverse
580        *  element order.
581        */
582       reverse_iterator
583       rbegin() _GLIBCXX_NOEXCEPT
584       { return reverse_iterator(end()); }
585 
586       /**
587        *  Returns a read-only (constant) reverse iterator that points
588        *  to the last element in the %vector.  Iteration is done in
589        *  reverse element order.
590        */
591       const_reverse_iterator
592       rbegin() const _GLIBCXX_NOEXCEPT
593       { return const_reverse_iterator(end()); }
594 
595       /**
596        *  Returns a read/write reverse iterator that points to one
597        *  before the first element in the %vector.  Iteration is done
598        *  in reverse element order.
599        */
600       reverse_iterator
601       rend() _GLIBCXX_NOEXCEPT
602       { return reverse_iterator(begin()); }
603 
604       /**
605        *  Returns a read-only (constant) reverse iterator that points
606        *  to one before the first element in the %vector.  Iteration
607        *  is done in reverse element order.
608        */
609       const_reverse_iterator
610       rend() const _GLIBCXX_NOEXCEPT
611       { return const_reverse_iterator(begin()); }
612 
613 #if __cplusplus >= 201103L
614       /**
615        *  Returns a read-only (constant) iterator that points to the
616        *  first element in the %vector.  Iteration is done in ordinary
617        *  element order.
618        */
619       const_iterator
620       cbegin() const noexcept
621       { return const_iterator(this->_M_impl._M_start); }
622 
623       /**
624        *  Returns a read-only (constant) iterator that points one past
625        *  the last element in the %vector.  Iteration is done in
626        *  ordinary element order.
627        */
628       const_iterator
629       cend() const noexcept
630       { return const_iterator(this->_M_impl._M_finish); }
631 
632       /**
633        *  Returns a read-only (constant) reverse iterator that points
634        *  to the last element in the %vector.  Iteration is done in
635        *  reverse element order.
636        */
637       const_reverse_iterator
638       crbegin() const noexcept
639       { return const_reverse_iterator(end()); }
640 
641       /**
642        *  Returns a read-only (constant) reverse iterator that points
643        *  to one before the first element in the %vector.  Iteration
644        *  is done in reverse element order.
645        */
646       const_reverse_iterator
647       crend() const noexcept
648       { return const_reverse_iterator(begin()); }
649 #endif
650 
651       // [23.2.4.2] capacity
652       /**  Returns the number of elements in the %vector.  */
653       size_type
654       size() const _GLIBCXX_NOEXCEPT
655       { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
656 
657       /**  Returns the size() of the largest possible %vector.  */
658       size_type
659       max_size() const _GLIBCXX_NOEXCEPT
660       { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
661 
662 #if __cplusplus >= 201103L
663       /**
664        *  @brief  Resizes the %vector to the specified number of elements.
665        *  @param  __new_size  Number of elements the %vector should contain.
666        *
667        *  This function will %resize the %vector to the specified
668        *  number of elements.  If the number is smaller than the
669        *  %vector's current size the %vector is truncated, otherwise
670        *  default constructed elements are appended.
671        */
672       void
673       resize(size_type __new_size)
674       {
675 	if (__new_size > size())
676 	  _M_default_append(__new_size - size());
677 	else if (__new_size < size())
678 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
679       }
680 
681       /**
682        *  @brief  Resizes the %vector to the specified number of elements.
683        *  @param  __new_size  Number of elements the %vector should contain.
684        *  @param  __x  Data with which new elements should be populated.
685        *
686        *  This function will %resize the %vector to the specified
687        *  number of elements.  If the number is smaller than the
688        *  %vector's current size the %vector is truncated, otherwise
689        *  the %vector is extended and new elements are populated with
690        *  given data.
691        */
692       void
693       resize(size_type __new_size, const value_type& __x)
694       {
695 	if (__new_size > size())
696 	  insert(end(), __new_size - size(), __x);
697 	else if (__new_size < size())
698 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
699       }
700 #else
701       /**
702        *  @brief  Resizes the %vector to the specified number of elements.
703        *  @param  __new_size  Number of elements the %vector should contain.
704        *  @param  __x  Data with which new elements should be populated.
705        *
706        *  This function will %resize the %vector to the specified
707        *  number of elements.  If the number is smaller than the
708        *  %vector's current size the %vector is truncated, otherwise
709        *  the %vector is extended and new elements are populated with
710        *  given data.
711        */
712       void
713       resize(size_type __new_size, value_type __x = value_type())
714       {
715 	if (__new_size > size())
716 	  insert(end(), __new_size - size(), __x);
717 	else if (__new_size < size())
718 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
719       }
720 #endif
721 
722 #if __cplusplus >= 201103L
723       /**  A non-binding request to reduce capacity() to size().  */
724       void
725       shrink_to_fit()
726       { _M_shrink_to_fit(); }
727 #endif
728 
729       /**
730        *  Returns the total number of elements that the %vector can
731        *  hold before needing to allocate more memory.
732        */
733       size_type
734       capacity() const _GLIBCXX_NOEXCEPT
735       { return size_type(this->_M_impl._M_end_of_storage
736 			 - this->_M_impl._M_start); }
737 
738       /**
739        *  Returns true if the %vector is empty.  (Thus begin() would
740        *  equal end().)
741        */
742       bool
743       empty() const _GLIBCXX_NOEXCEPT
744       { return begin() == end(); }
745 
746       /**
747        *  @brief  Attempt to preallocate enough memory for specified number of
748        *          elements.
749        *  @param  __n  Number of elements required.
750        *  @throw  std::length_error  If @a n exceeds @c max_size().
751        *
752        *  This function attempts to reserve enough memory for the
753        *  %vector to hold the specified number of elements.  If the
754        *  number requested is more than max_size(), length_error is
755        *  thrown.
756        *
757        *  The advantage of this function is that if optimal code is a
758        *  necessity and the user can determine the number of elements
759        *  that will be required, the user can reserve the memory in
760        *  %advance, and thus prevent a possible reallocation of memory
761        *  and copying of %vector data.
762        */
763       void
764       reserve(size_type __n);
765 
766       // element access
767       /**
768        *  @brief  Subscript access to the data contained in the %vector.
769        *  @param __n The index of the element for which data should be
770        *  accessed.
771        *  @return  Read/write reference to data.
772        *
773        *  This operator allows for easy, array-style, data access.
774        *  Note that data access with this operator is unchecked and
775        *  out_of_range lookups are not defined. (For checked lookups
776        *  see at().)
777        */
778       reference
779       operator[](size_type __n) _GLIBCXX_NOEXCEPT
780       { return *(this->_M_impl._M_start + __n); }
781 
782       /**
783        *  @brief  Subscript access to the data contained in the %vector.
784        *  @param __n The index of the element for which data should be
785        *  accessed.
786        *  @return  Read-only (constant) reference to data.
787        *
788        *  This operator allows for easy, array-style, data access.
789        *  Note that data access with this operator is unchecked and
790        *  out_of_range lookups are not defined. (For checked lookups
791        *  see at().)
792        */
793       const_reference
794       operator[](size_type __n) const _GLIBCXX_NOEXCEPT
795       { return *(this->_M_impl._M_start + __n); }
796 
797     protected:
798       /// Safety check used only from at().
799       void
800       _M_range_check(size_type __n) const
801       {
802 	if (__n >= this->size())
803 	  __throw_out_of_range_fmt(__N("vector::_M_range_check: __n "
804 				       "(which is %zu) >= this->size() "
805 				       "(which is %zu)"),
806 				   __n, this->size());
807       }
808 
809     public:
810       /**
811        *  @brief  Provides access to the data contained in the %vector.
812        *  @param __n The index of the element for which data should be
813        *  accessed.
814        *  @return  Read/write reference to data.
815        *  @throw  std::out_of_range  If @a __n is an invalid index.
816        *
817        *  This function provides for safer data access.  The parameter
818        *  is first checked that it is in the range of the vector.  The
819        *  function throws out_of_range if the check fails.
820        */
821       reference
822       at(size_type __n)
823       {
824 	_M_range_check(__n);
825 	return (*this)[__n];
826       }
827 
828       /**
829        *  @brief  Provides access to the data contained in the %vector.
830        *  @param __n The index of the element for which data should be
831        *  accessed.
832        *  @return  Read-only (constant) reference to data.
833        *  @throw  std::out_of_range  If @a __n is an invalid index.
834        *
835        *  This function provides for safer data access.  The parameter
836        *  is first checked that it is in the range of the vector.  The
837        *  function throws out_of_range if the check fails.
838        */
839       const_reference
840       at(size_type __n) const
841       {
842 	_M_range_check(__n);
843 	return (*this)[__n];
844       }
845 
846       /**
847        *  Returns a read/write reference to the data at the first
848        *  element of the %vector.
849        */
850       reference
851       front() _GLIBCXX_NOEXCEPT
852       { return *begin(); }
853 
854       /**
855        *  Returns a read-only (constant) reference to the data at the first
856        *  element of the %vector.
857        */
858       const_reference
859       front() const _GLIBCXX_NOEXCEPT
860       { return *begin(); }
861 
862       /**
863        *  Returns a read/write reference to the data at the last
864        *  element of the %vector.
865        */
866       reference
867       back() _GLIBCXX_NOEXCEPT
868       { return *(end() - 1); }
869 
870       /**
871        *  Returns a read-only (constant) reference to the data at the
872        *  last element of the %vector.
873        */
874       const_reference
875       back() const _GLIBCXX_NOEXCEPT
876       { return *(end() - 1); }
877 
878       // _GLIBCXX_RESOLVE_LIB_DEFECTS
879       // DR 464. Suggestion for new member functions in standard containers.
880       // data access
881       /**
882        *   Returns a pointer such that [data(), data() + size()) is a valid
883        *   range.  For a non-empty %vector, data() == &front().
884        */
885 #if __cplusplus >= 201103L
886       _Tp*
887 #else
888       pointer
889 #endif
890       data() _GLIBCXX_NOEXCEPT
891       { return _M_data_ptr(this->_M_impl._M_start); }
892 
893 #if __cplusplus >= 201103L
894       const _Tp*
895 #else
896       const_pointer
897 #endif
898       data() const _GLIBCXX_NOEXCEPT
899       { return _M_data_ptr(this->_M_impl._M_start); }
900 
901       // [23.2.4.3] modifiers
902       /**
903        *  @brief  Add data to the end of the %vector.
904        *  @param  __x  Data to be added.
905        *
906        *  This is a typical stack operation.  The function creates an
907        *  element at the end of the %vector and assigns the given data
908        *  to it.  Due to the nature of a %vector this operation can be
909        *  done in constant time if the %vector has preallocated space
910        *  available.
911        */
912       void
913       push_back(const value_type& __x)
914       {
915 	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
916 	  {
917 	    _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
918 	                             __x);
919 	    ++this->_M_impl._M_finish;
920 	  }
921 	else
922 #if __cplusplus >= 201103L
923 	  _M_emplace_back_aux(__x);
924 #else
925 	  _M_insert_aux(end(), __x);
926 #endif
927       }
928 
929 #if __cplusplus >= 201103L
930       void
931       push_back(value_type&& __x)
932       { emplace_back(std::move(__x)); }
933 
934       template<typename... _Args>
935         void
936         emplace_back(_Args&&... __args);
937 #endif
938 
939       /**
940        *  @brief  Removes last element.
941        *
942        *  This is a typical stack operation. It shrinks the %vector by one.
943        *
944        *  Note that no data is returned, and if the last element's
945        *  data is needed, it should be retrieved before pop_back() is
946        *  called.
947        */
948       void
949       pop_back() _GLIBCXX_NOEXCEPT
950       {
951 	--this->_M_impl._M_finish;
952 	_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
953       }
954 
955 #if __cplusplus >= 201103L
956       /**
957        *  @brief  Inserts an object in %vector before specified iterator.
958        *  @param  __position  A const_iterator into the %vector.
959        *  @param  __args  Arguments.
960        *  @return  An iterator that points to the inserted data.
961        *
962        *  This function will insert an object of type T constructed
963        *  with T(std::forward<Args>(args)...) before the specified location.
964        *  Note that this kind of operation could be expensive for a %vector
965        *  and if it is frequently used the user should consider using
966        *  std::list.
967        */
968       template<typename... _Args>
969         iterator
970         emplace(const_iterator __position, _Args&&... __args);
971 
972       /**
973        *  @brief  Inserts given value into %vector before specified iterator.
974        *  @param  __position  A const_iterator into the %vector.
975        *  @param  __x  Data to be inserted.
976        *  @return  An iterator that points to the inserted data.
977        *
978        *  This function will insert a copy of the given value before
979        *  the specified location.  Note that this kind of operation
980        *  could be expensive for a %vector and if it is frequently
981        *  used the user should consider using std::list.
982        */
983       iterator
984       insert(const_iterator __position, const value_type& __x);
985 #else
986       /**
987        *  @brief  Inserts given value into %vector before specified iterator.
988        *  @param  __position  An iterator into the %vector.
989        *  @param  __x  Data to be inserted.
990        *  @return  An iterator that points to the inserted data.
991        *
992        *  This function will insert a copy of the given value before
993        *  the specified location.  Note that this kind of operation
994        *  could be expensive for a %vector and if it is frequently
995        *  used the user should consider using std::list.
996        */
997       iterator
998       insert(iterator __position, const value_type& __x);
999 #endif
1000 
1001 #if __cplusplus >= 201103L
1002       /**
1003        *  @brief  Inserts given rvalue into %vector before specified iterator.
1004        *  @param  __position  A const_iterator into the %vector.
1005        *  @param  __x  Data to be inserted.
1006        *  @return  An iterator that points to the inserted data.
1007        *
1008        *  This function will insert a copy of the given rvalue before
1009        *  the specified location.  Note that this kind of operation
1010        *  could be expensive for a %vector and if it is frequently
1011        *  used the user should consider using std::list.
1012        */
1013       iterator
1014       insert(const_iterator __position, value_type&& __x)
1015       { return emplace(__position, std::move(__x)); }
1016 
1017       /**
1018        *  @brief  Inserts an initializer_list into the %vector.
1019        *  @param  __position  An iterator into the %vector.
1020        *  @param  __l  An initializer_list.
1021        *
1022        *  This function will insert copies of the data in the
1023        *  initializer_list @a l into the %vector before the location
1024        *  specified by @a position.
1025        *
1026        *  Note that this kind of operation could be expensive for a
1027        *  %vector and if it is frequently used the user should
1028        *  consider using std::list.
1029        */
1030       iterator
1031       insert(const_iterator __position, initializer_list<value_type> __l)
1032       { return this->insert(__position, __l.begin(), __l.end()); }
1033 #endif
1034 
1035 #if __cplusplus >= 201103L
1036       /**
1037        *  @brief  Inserts a number of copies of given data into the %vector.
1038        *  @param  __position  A const_iterator into the %vector.
1039        *  @param  __n  Number of elements to be inserted.
1040        *  @param  __x  Data to be inserted.
1041        *  @return  An iterator that points to the inserted data.
1042        *
1043        *  This function will insert a specified number of copies of
1044        *  the given data before the location specified by @a position.
1045        *
1046        *  Note that this kind of operation could be expensive for a
1047        *  %vector and if it is frequently used the user should
1048        *  consider using std::list.
1049        */
1050       iterator
1051       insert(const_iterator __position, size_type __n, const value_type& __x)
1052       {
1053 	difference_type __offset = __position - cbegin();
1054 	_M_fill_insert(begin() + __offset, __n, __x);
1055 	return begin() + __offset;
1056       }
1057 #else
1058       /**
1059        *  @brief  Inserts a number of copies of given data into the %vector.
1060        *  @param  __position  An iterator into the %vector.
1061        *  @param  __n  Number of elements to be inserted.
1062        *  @param  __x  Data to be inserted.
1063        *
1064        *  This function will insert a specified number of copies of
1065        *  the given data before the location specified by @a position.
1066        *
1067        *  Note that this kind of operation could be expensive for a
1068        *  %vector and if it is frequently used the user should
1069        *  consider using std::list.
1070        */
1071       void
1072       insert(iterator __position, size_type __n, const value_type& __x)
1073       { _M_fill_insert(__position, __n, __x); }
1074 #endif
1075 
1076 #if __cplusplus >= 201103L
1077       /**
1078        *  @brief  Inserts a range into the %vector.
1079        *  @param  __position  A const_iterator into the %vector.
1080        *  @param  __first  An input iterator.
1081        *  @param  __last   An input iterator.
1082        *  @return  An iterator that points to the inserted data.
1083        *
1084        *  This function will insert copies of the data in the range
1085        *  [__first,__last) into the %vector before the location specified
1086        *  by @a pos.
1087        *
1088        *  Note that this kind of operation could be expensive for a
1089        *  %vector and if it is frequently used the user should
1090        *  consider using std::list.
1091        */
1092       template<typename _InputIterator,
1093 	       typename = std::_RequireInputIter<_InputIterator>>
1094         iterator
1095         insert(const_iterator __position, _InputIterator __first,
1096 	       _InputIterator __last)
1097         {
1098 	  difference_type __offset = __position - cbegin();
1099 	  _M_insert_dispatch(begin() + __offset,
1100 			     __first, __last, __false_type());
1101 	  return begin() + __offset;
1102 	}
1103 #else
1104       /**
1105        *  @brief  Inserts a range into the %vector.
1106        *  @param  __position  An iterator into the %vector.
1107        *  @param  __first  An input iterator.
1108        *  @param  __last   An input iterator.
1109        *
1110        *  This function will insert copies of the data in the range
1111        *  [__first,__last) into the %vector before the location specified
1112        *  by @a pos.
1113        *
1114        *  Note that this kind of operation could be expensive for a
1115        *  %vector and if it is frequently used the user should
1116        *  consider using std::list.
1117        */
1118       template<typename _InputIterator>
1119         void
1120         insert(iterator __position, _InputIterator __first,
1121 	       _InputIterator __last)
1122         {
1123 	  // Check whether it's an integral type.  If so, it's not an iterator.
1124 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1125 	  _M_insert_dispatch(__position, __first, __last, _Integral());
1126 	}
1127 #endif
1128 
1129       /**
1130        *  @brief  Remove element at given position.
1131        *  @param  __position  Iterator pointing to element to be erased.
1132        *  @return  An iterator pointing to the next element (or end()).
1133        *
1134        *  This function will erase the element at the given position and thus
1135        *  shorten the %vector by one.
1136        *
1137        *  Note This operation could be expensive and if it is
1138        *  frequently used the user should consider using std::list.
1139        *  The user is also cautioned that this function only erases
1140        *  the element, and that if the element is itself a pointer,
1141        *  the pointed-to memory is not touched in any way.  Managing
1142        *  the pointer is the user's responsibility.
1143        */
1144       iterator
1145 #if __cplusplus >= 201103L
1146       erase(const_iterator __position)
1147       { return _M_erase(begin() + (__position - cbegin())); }
1148 #else
1149       erase(iterator __position)
1150       { return _M_erase(__position); }
1151 #endif
1152 
1153       /**
1154        *  @brief  Remove a range of elements.
1155        *  @param  __first  Iterator pointing to the first element to be erased.
1156        *  @param  __last  Iterator pointing to one past the last element to be
1157        *                  erased.
1158        *  @return  An iterator pointing to the element pointed to by @a __last
1159        *           prior to erasing (or end()).
1160        *
1161        *  This function will erase the elements in the range
1162        *  [__first,__last) and shorten the %vector accordingly.
1163        *
1164        *  Note This operation could be expensive and if it is
1165        *  frequently used the user should consider using std::list.
1166        *  The user is also cautioned that this function only erases
1167        *  the elements, and that if the elements themselves are
1168        *  pointers, the pointed-to memory is not touched in any way.
1169        *  Managing the pointer is the user's responsibility.
1170        */
1171       iterator
1172 #if __cplusplus >= 201103L
1173       erase(const_iterator __first, const_iterator __last)
1174       {
1175 	const auto __beg = begin();
1176 	const auto __cbeg = cbegin();
1177 	return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
1178       }
1179 #else
1180       erase(iterator __first, iterator __last)
1181       { return _M_erase(__first, __last); }
1182 #endif
1183 
1184       /**
1185        *  @brief  Swaps data with another %vector.
1186        *  @param  __x  A %vector of the same element and allocator types.
1187        *
1188        *  This exchanges the elements between two vectors in constant time.
1189        *  (Three pointers, so it should be quite fast.)
1190        *  Note that the global std::swap() function is specialized such that
1191        *  std::swap(v1,v2) will feed to this function.
1192        */
1193       void
1194       swap(vector& __x)
1195 #if __cplusplus >= 201103L
1196       noexcept(_Alloc_traits::_S_nothrow_swap())
1197 #endif
1198       {
1199 	this->_M_impl._M_swap_data(__x._M_impl);
1200 	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1201 	                          __x._M_get_Tp_allocator());
1202       }
1203 
1204       /**
1205        *  Erases all the elements.  Note that this function only erases the
1206        *  elements, and that if the elements themselves are pointers, the
1207        *  pointed-to memory is not touched in any way.  Managing the pointer is
1208        *  the user's responsibility.
1209        */
1210       void
1211       clear() _GLIBCXX_NOEXCEPT
1212       { _M_erase_at_end(this->_M_impl._M_start); }
1213 
1214     protected:
1215       /**
1216        *  Memory expansion handler.  Uses the member allocation function to
1217        *  obtain @a n bytes of memory, and then copies [first,last) into it.
1218        */
1219       template<typename _ForwardIterator>
1220         pointer
1221         _M_allocate_and_copy(size_type __n,
1222 			     _ForwardIterator __first, _ForwardIterator __last)
1223         {
1224 	  pointer __result = this->_M_allocate(__n);
1225 	  __try
1226 	    {
1227 	      std::__uninitialized_copy_a(__first, __last, __result,
1228 					  _M_get_Tp_allocator());
1229 	      return __result;
1230 	    }
1231 	  __catch(...)
1232 	    {
1233 	      _M_deallocate(__result, __n);
1234 	      __throw_exception_again;
1235 	    }
1236 	}
1237 
1238 
1239       // Internal constructor functions follow.
1240 
1241       // Called by the range constructor to implement [23.1.1]/9
1242 
1243       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1244       // 438. Ambiguity in the "do the right thing" clause
1245       template<typename _Integer>
1246         void
1247         _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1248         {
1249 	  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1250 	  this->_M_impl._M_end_of_storage =
1251 	    this->_M_impl._M_start + static_cast<size_type>(__n);
1252 	  _M_fill_initialize(static_cast<size_type>(__n), __value);
1253 	}
1254 
1255       // Called by the range constructor to implement [23.1.1]/9
1256       template<typename _InputIterator>
1257         void
1258         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1259 			       __false_type)
1260         {
1261 	  typedef typename std::iterator_traits<_InputIterator>::
1262 	    iterator_category _IterCategory;
1263 	  _M_range_initialize(__first, __last, _IterCategory());
1264 	}
1265 
1266       // Called by the second initialize_dispatch above
1267       template<typename _InputIterator>
1268         void
1269         _M_range_initialize(_InputIterator __first,
1270 			    _InputIterator __last, std::input_iterator_tag)
1271         {
1272 	  for (; __first != __last; ++__first)
1273 #if __cplusplus >= 201103L
1274 	    emplace_back(*__first);
1275 #else
1276 	    push_back(*__first);
1277 #endif
1278 	}
1279 
1280       // Called by the second initialize_dispatch above
1281       template<typename _ForwardIterator>
1282         void
1283         _M_range_initialize(_ForwardIterator __first,
1284 			    _ForwardIterator __last, std::forward_iterator_tag)
1285         {
1286 	  const size_type __n = std::distance(__first, __last);
1287 	  this->_M_impl._M_start = this->_M_allocate(__n);
1288 	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1289 	  this->_M_impl._M_finish =
1290 	    std::__uninitialized_copy_a(__first, __last,
1291 					this->_M_impl._M_start,
1292 					_M_get_Tp_allocator());
1293 	}
1294 
1295       // Called by the first initialize_dispatch above and by the
1296       // vector(n,value,a) constructor.
1297       void
1298       _M_fill_initialize(size_type __n, const value_type& __value)
1299       {
1300 	std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1301 				      _M_get_Tp_allocator());
1302 	this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1303       }
1304 
1305 #if __cplusplus >= 201103L
1306       // Called by the vector(n) constructor.
1307       void
1308       _M_default_initialize(size_type __n)
1309       {
1310 	std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1311 					 _M_get_Tp_allocator());
1312 	this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1313       }
1314 #endif
1315 
1316       // Internal assign functions follow.  The *_aux functions do the actual
1317       // assignment work for the range versions.
1318 
1319       // Called by the range assign to implement [23.1.1]/9
1320 
1321       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1322       // 438. Ambiguity in the "do the right thing" clause
1323       template<typename _Integer>
1324         void
1325         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1326         { _M_fill_assign(__n, __val); }
1327 
1328       // Called by the range assign to implement [23.1.1]/9
1329       template<typename _InputIterator>
1330         void
1331         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1332 			   __false_type)
1333         {
1334 	  typedef typename std::iterator_traits<_InputIterator>::
1335 	    iterator_category _IterCategory;
1336 	  _M_assign_aux(__first, __last, _IterCategory());
1337 	}
1338 
1339       // Called by the second assign_dispatch above
1340       template<typename _InputIterator>
1341         void
1342         _M_assign_aux(_InputIterator __first, _InputIterator __last,
1343 		      std::input_iterator_tag);
1344 
1345       // Called by the second assign_dispatch above
1346       template<typename _ForwardIterator>
1347         void
1348         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1349 		      std::forward_iterator_tag);
1350 
1351       // Called by assign(n,t), and the range assign when it turns out
1352       // to be the same thing.
1353       void
1354       _M_fill_assign(size_type __n, const value_type& __val);
1355 
1356 
1357       // Internal insert functions follow.
1358 
1359       // Called by the range insert to implement [23.1.1]/9
1360 
1361       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1362       // 438. Ambiguity in the "do the right thing" clause
1363       template<typename _Integer>
1364         void
1365         _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1366 			   __true_type)
1367         { _M_fill_insert(__pos, __n, __val); }
1368 
1369       // Called by the range insert to implement [23.1.1]/9
1370       template<typename _InputIterator>
1371         void
1372         _M_insert_dispatch(iterator __pos, _InputIterator __first,
1373 			   _InputIterator __last, __false_type)
1374         {
1375 	  typedef typename std::iterator_traits<_InputIterator>::
1376 	    iterator_category _IterCategory;
1377 	  _M_range_insert(__pos, __first, __last, _IterCategory());
1378 	}
1379 
1380       // Called by the second insert_dispatch above
1381       template<typename _InputIterator>
1382         void
1383         _M_range_insert(iterator __pos, _InputIterator __first,
1384 			_InputIterator __last, std::input_iterator_tag);
1385 
1386       // Called by the second insert_dispatch above
1387       template<typename _ForwardIterator>
1388         void
1389         _M_range_insert(iterator __pos, _ForwardIterator __first,
1390 			_ForwardIterator __last, std::forward_iterator_tag);
1391 
1392       // Called by insert(p,n,x), and the range insert when it turns out to be
1393       // the same thing.
1394       void
1395       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1396 
1397 #if __cplusplus >= 201103L
1398       // Called by resize(n).
1399       void
1400       _M_default_append(size_type __n);
1401 
1402       bool
1403       _M_shrink_to_fit();
1404 #endif
1405 
1406       // Called by insert(p,x)
1407 #if __cplusplus < 201103L
1408       void
1409       _M_insert_aux(iterator __position, const value_type& __x);
1410 #else
1411       template<typename... _Args>
1412         void
1413         _M_insert_aux(iterator __position, _Args&&... __args);
1414 
1415       template<typename... _Args>
1416         void
1417         _M_emplace_back_aux(_Args&&... __args);
1418 #endif
1419 
1420       // Called by the latter.
1421       size_type
1422       _M_check_len(size_type __n, const char* __s) const
1423       {
1424 	if (max_size() - size() < __n)
1425 	  __throw_length_error(__N(__s));
1426 
1427 	const size_type __len = size() + std::max(size(), __n);
1428 	return (__len < size() || __len > max_size()) ? max_size() : __len;
1429       }
1430 
1431       // Internal erase functions follow.
1432 
1433       // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1434       // _M_assign_aux.
1435       void
1436       _M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPT
1437       {
1438 	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1439 	this->_M_impl._M_finish = __pos;
1440       }
1441 
1442       iterator
1443       _M_erase(iterator __position);
1444 
1445       iterator
1446       _M_erase(iterator __first, iterator __last);
1447 
1448 #if __cplusplus >= 201103L
1449     private:
1450       // Constant-time move assignment when source object's memory can be
1451       // moved, either because the source's allocator will move too
1452       // or because the allocators are equal.
1453       void
1454       _M_move_assign(vector&& __x, std::true_type) noexcept
1455       {
1456 	vector __tmp(get_allocator());
1457 	this->_M_impl._M_swap_data(__tmp._M_impl);
1458 	this->_M_impl._M_swap_data(__x._M_impl);
1459 	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
1460       }
1461 
1462       // Do move assignment when it might not be possible to move source
1463       // object's memory, resulting in a linear-time operation.
1464       void
1465       _M_move_assign(vector&& __x, std::false_type)
1466       {
1467 	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1468 	  _M_move_assign(std::move(__x), std::true_type());
1469 	else
1470 	  {
1471 	    // The rvalue's allocator cannot be moved and is not equal,
1472 	    // so we need to individually move each element.
1473 	    this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1474 			 std::__make_move_if_noexcept_iterator(__x.end()));
1475 	    __x.clear();
1476 	  }
1477       }
1478 #endif
1479 
1480 #if __cplusplus >= 201103L
1481       template<typename _Up>
1482 	_Up*
1483 	_M_data_ptr(_Up* __ptr) const
1484 	{ return __ptr; }
1485 
1486       template<typename _Ptr>
1487 	typename std::pointer_traits<_Ptr>::element_type*
1488 	_M_data_ptr(_Ptr __ptr) const
1489 	{ return empty() ? nullptr : std::__addressof(*__ptr); }
1490 #else
1491       template<typename _Ptr>
1492 	_Ptr
1493 	_M_data_ptr(_Ptr __ptr) const
1494 	{ return __ptr; }
1495 #endif
1496     };
1497 
1498 
1499   /**
1500    *  @brief  Vector equality comparison.
1501    *  @param  __x  A %vector.
1502    *  @param  __y  A %vector of the same type as @a __x.
1503    *  @return  True iff the size and elements of the vectors are equal.
1504    *
1505    *  This is an equivalence relation.  It is linear in the size of the
1506    *  vectors.  Vectors are considered equivalent if their sizes are equal,
1507    *  and if corresponding elements compare equal.
1508   */
1509   template<typename _Tp, typename _Alloc>
1510     inline bool
1511     operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1512     { return (__x.size() == __y.size()
1513 	      && std::equal(__x.begin(), __x.end(), __y.begin())); }
1514 
1515   /**
1516    *  @brief  Vector ordering relation.
1517    *  @param  __x  A %vector.
1518    *  @param  __y  A %vector of the same type as @a __x.
1519    *  @return  True iff @a __x is lexicographically less than @a __y.
1520    *
1521    *  This is a total ordering relation.  It is linear in the size of the
1522    *  vectors.  The elements must be comparable with @c <.
1523    *
1524    *  See std::lexicographical_compare() for how the determination is made.
1525   */
1526   template<typename _Tp, typename _Alloc>
1527     inline bool
1528     operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1529     { return std::lexicographical_compare(__x.begin(), __x.end(),
1530 					  __y.begin(), __y.end()); }
1531 
1532   /// Based on operator==
1533   template<typename _Tp, typename _Alloc>
1534     inline bool
1535     operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1536     { return !(__x == __y); }
1537 
1538   /// Based on operator<
1539   template<typename _Tp, typename _Alloc>
1540     inline bool
1541     operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1542     { return __y < __x; }
1543 
1544   /// Based on operator<
1545   template<typename _Tp, typename _Alloc>
1546     inline bool
1547     operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1548     { return !(__y < __x); }
1549 
1550   /// Based on operator<
1551   template<typename _Tp, typename _Alloc>
1552     inline bool
1553     operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1554     { return !(__x < __y); }
1555 
1556   /// See std::vector::swap().
1557   template<typename _Tp, typename _Alloc>
1558     inline void
1559     swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1560     { __x.swap(__y); }
1561 
1562 _GLIBCXX_END_NAMESPACE_CONTAINER
1563 } // namespace std
1564 
1565 #endif /* _STL_VECTOR_H */
1566