1 
2 /* @(#)s_erf.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /*
15 FUNCTION
16         <<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function
17 INDEX
18 	erf
19 INDEX
20 	erff
21 INDEX
22 	erfc
23 INDEX
24 	erfcf
25 
26 ANSI_SYNOPSIS
27 	#include <math.h>
28 	double erf(double <[x]>);
29 	float erff(float <[x]>);
30 	double erfc(double <[x]>);
31 	float erfcf(float <[x]>);
32 TRAD_SYNOPSIS
33 	#include <math.h>
34 
35 	double erf(<[x]>)
36 	double <[x]>;
37 
38 	float erff(<[x]>)
39 	float <[x]>;
40 
41 	double erfc(<[x]>)
42 	double <[x]>;
43 
44 	float erfcf(<[x]>)
45 	float <[x]>;
46 
47 DESCRIPTION
48 	<<erf>> calculates an approximation to the ``error function'',
49 	which estimates the probability that an observation will fall within
50 	<[x]> standard deviations of the mean (assuming a normal
51 	distribution).
52 	@tex
53 	The error function is defined as
54 	$${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$
55 	 @end tex
56 
57 	<<erfc>> calculates the complementary probability; that is,
58 	<<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>.  <<erfc>> is computed directly,
59 	so that you can use it to avoid the loss of precision that would
60 	result from subtracting large probabilities (on large <[x]>) from 1.
61 
62 	<<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the
63 	argument and result types.
64 
65 RETURNS
66 	For positive arguments, <<erf>> and all its variants return a
67 	probability---a number between 0 and 1.
68 
69 PORTABILITY
70 	None of the variants of <<erf>> are ANSI C.
71 */
72 
73 /* double erf(double x)
74  * double erfc(double x)
75  *			     x
76  *		      2      |\
77  *     erf(x)  =  ---------  | exp(-t*t)dt
78  *	 	   sqrt(pi) \|
79  *			     0
80  *
81  *     erfc(x) =  1-erf(x)
82  *  Note that
83  *		erf(-x) = -erf(x)
84  *		erfc(-x) = 2 - erfc(x)
85  *
86  * Method:
87  *	1. For |x| in [0, 0.84375]
88  *	    erf(x)  = x + x*R(x^2)
89  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
90  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
91  *	   where R = P/Q where P is an odd poly of degree 8 and
92  *	   Q is an odd poly of degree 10.
93  *						 -57.90
94  *			| R - (erf(x)-x)/x | <= 2
95  *
96  *
97  *	   Remark. The formula is derived by noting
98  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
99  *	   and that
100  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
101  *	   is close to one. The interval is chosen because the fix
102  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
103  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
104  * 	   guarantee the error is less than one ulp for erf.
105  *
106  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
107  *         c = 0.84506291151 rounded to single (24 bits)
108  *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
109  *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
110  *			  1+(c+P1(s)/Q1(s))    if x < 0
111  *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
112  *	   Remark: here we use the taylor series expansion at x=1.
113  *		erf(1+s) = erf(1) + s*Poly(s)
114  *			 = 0.845.. + P1(s)/Q1(s)
115  *	   That is, we use rational approximation to approximate
116  *			erf(1+s) - (c = (single)0.84506291151)
117  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
118  *	   where
119  *		P1(s) = degree 6 poly in s
120  *		Q1(s) = degree 6 poly in s
121  *
122  *      3. For x in [1.25,1/0.35(~2.857143)],
123  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
124  *         	erf(x)  = 1 - erfc(x)
125  *	   where
126  *		R1(z) = degree 7 poly in z, (z=1/x^2)
127  *		S1(z) = degree 8 poly in z
128  *
129  *      4. For x in [1/0.35,28]
130  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
131  *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
132  *			= 2.0 - tiny		(if x <= -6)
133  *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
134  *         	erf(x)  = sign(x)*(1.0 - tiny)
135  *	   where
136  *		R2(z) = degree 6 poly in z, (z=1/x^2)
137  *		S2(z) = degree 7 poly in z
138  *
139  *      Note1:
140  *	   To compute exp(-x*x-0.5625+R/S), let s be a single
141  *	   precision number and s := x; then
142  *		-x*x = -s*s + (s-x)*(s+x)
143  *	        exp(-x*x-0.5626+R/S) =
144  *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
145  *      Note2:
146  *	   Here 4 and 5 make use of the asymptotic series
147  *			  exp(-x*x)
148  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
149  *			  x*sqrt(pi)
150  *	   We use rational approximation to approximate
151  *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
152  *	   Here is the error bound for R1/S1 and R2/S2
153  *      	|R1/S1 - f(x)|  < 2**(-62.57)
154  *      	|R2/S2 - f(x)|  < 2**(-61.52)
155  *
156  *      5. For inf > x >= 28
157  *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
158  *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
159  *			= 2 - tiny if x<0
160  *
161  *      7. Special case:
162  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
163  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
164  *	   	erfc/erf(NaN) is NaN
165  */
166 
167 
168 #include "fdlibm.h"
169 
170 #ifndef _DOUBLE_IS_32BITS
171 
172 #ifdef __STDC__
173 static const double
174 #else
175 static double
176 #endif
177 tiny	    = 1e-300,
178 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
179 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
180 two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
181 	/* c = (float)0.84506291151 */
182 erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
183 /*
184  * Coefficients for approximation to  erf on [0,0.84375]
185  */
186 efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
187 efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
188 pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
189 pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
190 pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
191 pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
192 pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
193 qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
194 qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
195 qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
196 qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
197 qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
198 /*
199  * Coefficients for approximation to  erf  in [0.84375,1.25]
200  */
201 pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
202 pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
203 pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
204 pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
205 pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
206 pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
207 pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
208 qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
209 qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
210 qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
211 qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
212 qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
213 qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
214 /*
215  * Coefficients for approximation to  erfc in [1.25,1/0.35]
216  */
217 ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
218 ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
219 ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
220 ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
221 ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
222 ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
223 ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
224 ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
225 sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
226 sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
227 sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
228 sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
229 sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
230 sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
231 sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
232 sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
233 /*
234  * Coefficients for approximation to  erfc in [1/.35,28]
235  */
236 rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
237 rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
238 rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
239 rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
240 rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
241 rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
242 rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
243 sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
244 sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
245 sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
246 sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
247 sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
248 sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
249 sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
250 
251 #ifdef __STDC__
erf(double x)252 	double erf(double x)
253 #else
254 	double erf(x)
255 	double x;
256 #endif
257 {
258 	__int32_t hx,ix,i;
259 	double R,S,P,Q,s,y,z,r;
260 	GET_HIGH_WORD(hx,x);
261 	ix = hx&0x7fffffff;
262 	if(ix>=0x7ff00000) {		/* erf(nan)=nan */
263 	    i = ((__uint32_t)hx>>31)<<1;
264 	    return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */
265 	}
266 
267 	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
268 	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */
269 	        if (ix < 0x00800000)
270 		    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
271 		return x + efx*x;
272 	    }
273 	    z = x*x;
274 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
275 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
276 	    y = r/s;
277 	    return x + x*y;
278 	}
279 	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
280 	    s = fabs(x)-one;
281 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
282 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
283 	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
284 	}
285 	if (ix >= 0x40180000) {		/* inf>|x|>=6 */
286 	    if(hx>=0) return one-tiny; else return tiny-one;
287 	}
288 	x = fabs(x);
289  	s = one/(x*x);
290 	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */
291 	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
292 				ra5+s*(ra6+s*ra7))))));
293 	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
294 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
295 	} else {	/* |x| >= 1/0.35 */
296 	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
297 				rb5+s*rb6)))));
298 	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
299 				sb5+s*(sb6+s*sb7))))));
300 	}
301 	z  = x;
302 	SET_LOW_WORD(z,0);
303 	r  =  exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
304 	if(hx>=0) return one-r/x; else return  r/x-one;
305 }
306 
307 #ifdef __STDC__
erfc(double x)308 	double erfc(double x)
309 #else
310 	double erfc(x)
311 	double x;
312 #endif
313 {
314 	__int32_t hx,ix;
315 	double R,S,P,Q,s,y,z,r;
316 	GET_HIGH_WORD(hx,x);
317 	ix = hx&0x7fffffff;
318 	if(ix>=0x7ff00000) {			/* erfc(nan)=nan */
319 						/* erfc(+-inf)=0,2 */
320 	    return (double)(((__uint32_t)hx>>31)<<1)+one/x;
321 	}
322 
323 	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
324 	    if(ix < 0x3c700000)  	/* |x|<2**-56 */
325 		return one-x;
326 	    z = x*x;
327 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
328 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
329 	    y = r/s;
330 	    if(hx < 0x3fd00000) {  	/* x<1/4 */
331 		return one-(x+x*y);
332 	    } else {
333 		r = x*y;
334 		r += (x-half);
335 	        return half - r ;
336 	    }
337 	}
338 	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
339 	    s = fabs(x)-one;
340 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
341 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
342 	    if(hx>=0) {
343 	        z  = one-erx; return z - P/Q;
344 	    } else {
345 		z = erx+P/Q; return one+z;
346 	    }
347 	}
348 	if (ix < 0x403c0000) {		/* |x|<28 */
349 	    x = fabs(x);
350  	    s = one/(x*x);
351 	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
352 	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
353 				ra5+s*(ra6+s*ra7))))));
354 	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
355 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
356 	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
357 		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
358 	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
359 				rb5+s*rb6)))));
360 	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
361 				sb5+s*(sb6+s*sb7))))));
362 	    }
363 	    z  = x;
364 	    SET_LOW_WORD(z,0);
365 	    r  =  exp(-z*z-0.5625)*
366 			exp((z-x)*(z+x)+R/S);
367 	    if(hx>0) return r/x; else return two-r/x;
368 	} else {
369 	    if(hx>0) return tiny*tiny; else return two-tiny;
370 	}
371 }
372 
373 #endif /* _DOUBLE_IS_32BITS */
374