1 2 /* @(#)z_sinehf.c 1.0 98/08/13 */ 3 /****************************************************************** 4 * The following routines are coded directly from the algorithms 5 * and coefficients given in "Software Manual for the Elementary 6 * Functions" by William J. Cody, Jr. and William Waite, Prentice 7 * Hall, 1980. 8 ******************************************************************/ 9 /****************************************************************** 10 * Hyperbolic Sine 11 * 12 * Input: 13 * x - floating point value 14 * 15 * Output: 16 * hyperbolic sine of x 17 * 18 * Description: 19 * This routine calculates hyperbolic sines. 20 * 21 *****************************************************************/ 22 23 #include <float.h> 24 #include "fdlibm.h" 25 #include "zmath.h" 26 27 static const float q[] = { -0.428277109e+2 }; 28 static const float p[] = { -0.713793159e+1, 29 -0.190333399 }; 30 static const float LNV = 0.6931610107; 31 static const float INV_V2 = 0.2499930850; 32 static const float V_OVER2_MINUS1 = 0.1383027787e-4; 33 34 float 35 _DEFUN (sinehf, (float, int), 36 float x _AND 37 int cosineh) 38 { 39 float y, f, P, Q, R, res, z, w; 40 int sgn = 1; 41 float WBAR = 18.55; 42 43 /* Check for special values. */ 44 switch (numtestf (x)) 45 { 46 case NAN: 47 errno = EDOM; 48 return (x); 49 case INF: 50 errno = ERANGE; 51 return (ispos (x) ? z_infinity_f.f : -z_infinity_f.f); 52 } 53 54 y = fabs (x); 55 56 if (!cosineh && x < 0.0) 57 sgn = -1; 58 59 if ((y > 1.0 && !cosineh) || cosineh) 60 { 61 if (y > BIGX) 62 { 63 w = y - LNV; 64 65 /* Check for w > maximum here. */ 66 if (w > BIGX) 67 { 68 errno = ERANGE; 69 return (x); 70 } 71 72 z = exp (w); 73 74 if (w > WBAR) 75 res = z * (V_OVER2_MINUS1 + 1.0); 76 } 77 78 else 79 { 80 z = exp (y); 81 if (cosineh) 82 res = (z + 1 / z) / 2.0; 83 else 84 res = (z - 1 / z) / 2.0; 85 } 86 87 if (sgn < 0) 88 res = -res; 89 } 90 else 91 { 92 /* Check for y being too small. */ 93 if (y < z_rooteps_f) 94 { 95 res = x; 96 } 97 /* Calculate the Taylor series. */ 98 else 99 { 100 f = x * x; 101 Q = f + q[0]; 102 P = p[1] * f + p[0]; 103 R = f * (P / Q); 104 105 res = x + x * R; 106 } 107 } 108 109 return (res); 110 } 111