1 /* Analyze RTL for GNU compiler.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
39 #include "function-abi.h"
40 
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int computed_jump_p_1 (const_rtx);
46 static void parms_set (rtx, const_rtx, void *);
47 
48 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
49                                                    const_rtx, machine_mode,
50                                                    unsigned HOST_WIDE_INT);
51 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
52 					     const_rtx, machine_mode,
53                                              unsigned HOST_WIDE_INT);
54 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
55 						const_rtx, machine_mode,
56                                                 unsigned int);
57 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
58 					  const_rtx, machine_mode,
59 					  unsigned int);
60 
61 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
62 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
63 
64 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
65    If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
66    SIGN_EXTEND then while narrowing we also have to enforce the
67    representation and sign-extend the value to mode DESTINATION_REP.
68 
69    If the value is already sign-extended to DESTINATION_REP mode we
70    can just switch to DESTINATION mode on it.  For each pair of
71    integral modes SOURCE and DESTINATION, when truncating from SOURCE
72    to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
73    contains the number of high-order bits in SOURCE that have to be
74    copies of the sign-bit so that we can do this mode-switch to
75    DESTINATION.  */
76 
77 static unsigned int
78 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
79 
80 /* Store X into index I of ARRAY.  ARRAY is known to have at least I
81    elements.  Return the new base of ARRAY.  */
82 
83 template <typename T>
84 typename T::value_type *
add_single_to_queue(array_type & array,value_type * base,size_t i,value_type x)85 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
86 						  value_type *base,
87 						  size_t i, value_type x)
88 {
89   if (base == array.stack)
90     {
91       if (i < LOCAL_ELEMS)
92 	{
93 	  base[i] = x;
94 	  return base;
95 	}
96       gcc_checking_assert (i == LOCAL_ELEMS);
97       /* A previous iteration might also have moved from the stack to the
98 	 heap, in which case the heap array will already be big enough.  */
99       if (vec_safe_length (array.heap) <= i)
100 	vec_safe_grow (array.heap, i + 1);
101       base = array.heap->address ();
102       memcpy (base, array.stack, sizeof (array.stack));
103       base[LOCAL_ELEMS] = x;
104       return base;
105     }
106   unsigned int length = array.heap->length ();
107   if (length > i)
108     {
109       gcc_checking_assert (base == array.heap->address ());
110       base[i] = x;
111       return base;
112     }
113   else
114     {
115       gcc_checking_assert (i == length);
116       vec_safe_push (array.heap, x);
117       return array.heap->address ();
118     }
119 }
120 
121 /* Add the subrtxes of X to worklist ARRAY, starting at END.  Return the
122    number of elements added to the worklist.  */
123 
124 template <typename T>
125 size_t
add_subrtxes_to_queue(array_type & array,value_type * base,size_t end,rtx_type x)126 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
127 						    value_type *base,
128 						    size_t end, rtx_type x)
129 {
130   enum rtx_code code = GET_CODE (x);
131   const char *format = GET_RTX_FORMAT (code);
132   size_t orig_end = end;
133   if (__builtin_expect (INSN_P (x), false))
134     {
135       /* Put the pattern at the top of the queue, since that's what
136 	 we're likely to want most.  It also allows for the SEQUENCE
137 	 code below.  */
138       for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
139 	if (format[i] == 'e')
140 	  {
141 	    value_type subx = T::get_value (x->u.fld[i].rt_rtx);
142 	    if (__builtin_expect (end < LOCAL_ELEMS, true))
143 	      base[end++] = subx;
144 	    else
145 	      base = add_single_to_queue (array, base, end++, subx);
146 	  }
147     }
148   else
149     for (int i = 0; format[i]; ++i)
150       if (format[i] == 'e')
151 	{
152 	  value_type subx = T::get_value (x->u.fld[i].rt_rtx);
153 	  if (__builtin_expect (end < LOCAL_ELEMS, true))
154 	    base[end++] = subx;
155 	  else
156 	    base = add_single_to_queue (array, base, end++, subx);
157 	}
158       else if (format[i] == 'E')
159 	{
160 	  unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
161 	  rtx *vec = x->u.fld[i].rt_rtvec->elem;
162 	  if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
163 	    for (unsigned int j = 0; j < length; j++)
164 	      base[end++] = T::get_value (vec[j]);
165 	  else
166 	    for (unsigned int j = 0; j < length; j++)
167 	      base = add_single_to_queue (array, base, end++,
168 					  T::get_value (vec[j]));
169 	  if (code == SEQUENCE && end == length)
170 	    /* If the subrtxes of the sequence fill the entire array then
171 	       we know that no other parts of a containing insn are queued.
172 	       The caller is therefore iterating over the sequence as a
173 	       PATTERN (...), so we also want the patterns of the
174 	       subinstructions.  */
175 	    for (unsigned int j = 0; j < length; j++)
176 	      {
177 		typename T::rtx_type x = T::get_rtx (base[j]);
178 		if (INSN_P (x))
179 		  base[j] = T::get_value (PATTERN (x));
180 	      }
181 	}
182   return end - orig_end;
183 }
184 
185 template <typename T>
186 void
free_array(array_type & array)187 generic_subrtx_iterator <T>::free_array (array_type &array)
188 {
189   vec_free (array.heap);
190 }
191 
192 template <typename T>
193 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
194 
195 template class generic_subrtx_iterator <const_rtx_accessor>;
196 template class generic_subrtx_iterator <rtx_var_accessor>;
197 template class generic_subrtx_iterator <rtx_ptr_accessor>;
198 
199 /* Return 1 if the value of X is unstable
200    (would be different at a different point in the program).
201    The frame pointer, arg pointer, etc. are considered stable
202    (within one function) and so is anything marked `unchanging'.  */
203 
204 int
rtx_unstable_p(const_rtx x)205 rtx_unstable_p (const_rtx x)
206 {
207   const RTX_CODE code = GET_CODE (x);
208   int i;
209   const char *fmt;
210 
211   switch (code)
212     {
213     case MEM:
214       return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
215 
216     case CONST:
217     CASE_CONST_ANY:
218     case SYMBOL_REF:
219     case LABEL_REF:
220       return 0;
221 
222     case REG:
223       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
224       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
225 	  /* The arg pointer varies if it is not a fixed register.  */
226 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
227 	return 0;
228       /* ??? When call-clobbered, the value is stable modulo the restore
229 	 that must happen after a call.  This currently screws up local-alloc
230 	 into believing that the restore is not needed.  */
231       if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
232 	return 0;
233       return 1;
234 
235     case ASM_OPERANDS:
236       if (MEM_VOLATILE_P (x))
237 	return 1;
238 
239       /* Fall through.  */
240 
241     default:
242       break;
243     }
244 
245   fmt = GET_RTX_FORMAT (code);
246   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
247     if (fmt[i] == 'e')
248       {
249 	if (rtx_unstable_p (XEXP (x, i)))
250 	  return 1;
251       }
252     else if (fmt[i] == 'E')
253       {
254 	int j;
255 	for (j = 0; j < XVECLEN (x, i); j++)
256 	  if (rtx_unstable_p (XVECEXP (x, i, j)))
257 	    return 1;
258       }
259 
260   return 0;
261 }
262 
263 /* Return 1 if X has a value that can vary even between two
264    executions of the program.  0 means X can be compared reliably
265    against certain constants or near-constants.
266    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
267    zero, we are slightly more conservative.
268    The frame pointer and the arg pointer are considered constant.  */
269 
270 bool
rtx_varies_p(const_rtx x,bool for_alias)271 rtx_varies_p (const_rtx x, bool for_alias)
272 {
273   RTX_CODE code;
274   int i;
275   const char *fmt;
276 
277   if (!x)
278     return 0;
279 
280   code = GET_CODE (x);
281   switch (code)
282     {
283     case MEM:
284       return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
285 
286     case CONST:
287     CASE_CONST_ANY:
288     case SYMBOL_REF:
289     case LABEL_REF:
290       return 0;
291 
292     case REG:
293       /* Note that we have to test for the actual rtx used for the frame
294 	 and arg pointers and not just the register number in case we have
295 	 eliminated the frame and/or arg pointer and are using it
296 	 for pseudos.  */
297       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
298 	  /* The arg pointer varies if it is not a fixed register.  */
299 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
300 	return 0;
301       if (x == pic_offset_table_rtx
302 	  /* ??? When call-clobbered, the value is stable modulo the restore
303 	     that must happen after a call.  This currently screws up
304 	     local-alloc into believing that the restore is not needed, so we
305 	     must return 0 only if we are called from alias analysis.  */
306 	  && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
307 	return 0;
308       return 1;
309 
310     case LO_SUM:
311       /* The operand 0 of a LO_SUM is considered constant
312 	 (in fact it is related specifically to operand 1)
313 	 during alias analysis.  */
314       return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
315 	     || rtx_varies_p (XEXP (x, 1), for_alias);
316 
317     case ASM_OPERANDS:
318       if (MEM_VOLATILE_P (x))
319 	return 1;
320 
321       /* Fall through.  */
322 
323     default:
324       break;
325     }
326 
327   fmt = GET_RTX_FORMAT (code);
328   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
329     if (fmt[i] == 'e')
330       {
331 	if (rtx_varies_p (XEXP (x, i), for_alias))
332 	  return 1;
333       }
334     else if (fmt[i] == 'E')
335       {
336 	int j;
337 	for (j = 0; j < XVECLEN (x, i); j++)
338 	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
339 	    return 1;
340       }
341 
342   return 0;
343 }
344 
345 /* Compute an approximation for the offset between the register
346    FROM and TO for the current function, as it was at the start
347    of the routine.  */
348 
349 static poly_int64
get_initial_register_offset(int from,int to)350 get_initial_register_offset (int from, int to)
351 {
352   static const struct elim_table_t
353   {
354     const int from;
355     const int to;
356   } table[] = ELIMINABLE_REGS;
357   poly_int64 offset1, offset2;
358   unsigned int i, j;
359 
360   if (to == from)
361     return 0;
362 
363   /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
364      is completed, but we need to give at least an estimate for the stack
365      pointer based on the frame size.  */
366   if (!epilogue_completed)
367     {
368       offset1 = crtl->outgoing_args_size + get_frame_size ();
369 #if !STACK_GROWS_DOWNWARD
370       offset1 = - offset1;
371 #endif
372       if (to == STACK_POINTER_REGNUM)
373 	return offset1;
374       else if (from == STACK_POINTER_REGNUM)
375 	return - offset1;
376       else
377 	return 0;
378      }
379 
380   for (i = 0; i < ARRAY_SIZE (table); i++)
381       if (table[i].from == from)
382 	{
383 	  if (table[i].to == to)
384 	    {
385 	      INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
386 					  offset1);
387 	      return offset1;
388 	    }
389 	  for (j = 0; j < ARRAY_SIZE (table); j++)
390 	    {
391 	      if (table[j].to == to
392 		  && table[j].from == table[i].to)
393 		{
394 		  INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
395 					      offset1);
396 		  INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
397 					      offset2);
398 		  return offset1 + offset2;
399 		}
400 	      if (table[j].from == to
401 		  && table[j].to == table[i].to)
402 		{
403 		  INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
404 					      offset1);
405 		  INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
406 					      offset2);
407 		  return offset1 - offset2;
408 		}
409 	    }
410 	}
411       else if (table[i].to == from)
412 	{
413 	  if (table[i].from == to)
414 	    {
415 	      INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
416 					  offset1);
417 	      return - offset1;
418 	    }
419 	  for (j = 0; j < ARRAY_SIZE (table); j++)
420 	    {
421 	      if (table[j].to == to
422 		  && table[j].from == table[i].from)
423 		{
424 		  INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
425 					      offset1);
426 		  INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
427 					      offset2);
428 		  return - offset1 + offset2;
429 		}
430 	      if (table[j].from == to
431 		  && table[j].to == table[i].from)
432 		{
433 		  INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
434 					      offset1);
435 		  INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
436 					      offset2);
437 		  return - offset1 - offset2;
438 		}
439 	    }
440 	}
441 
442   /* If the requested register combination was not found,
443      try a different more simple combination.  */
444   if (from == ARG_POINTER_REGNUM)
445     return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
446   else if (to == ARG_POINTER_REGNUM)
447     return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
448   else if (from == HARD_FRAME_POINTER_REGNUM)
449     return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
450   else if (to == HARD_FRAME_POINTER_REGNUM)
451     return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
452   else
453     return 0;
454 }
455 
456 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
457    bytes can cause a trap.  MODE is the mode of the MEM (not that of X) and
458    UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
459    references on strict alignment machines.  */
460 
461 static int
rtx_addr_can_trap_p_1(const_rtx x,poly_int64 offset,poly_int64 size,machine_mode mode,bool unaligned_mems)462 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
463 		       machine_mode mode, bool unaligned_mems)
464 {
465   enum rtx_code code = GET_CODE (x);
466   gcc_checking_assert (mode == BLKmode || known_size_p (size));
467   poly_int64 const_x1;
468 
469   /* The offset must be a multiple of the mode size if we are considering
470      unaligned memory references on strict alignment machines.  */
471   if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
472     {
473       poly_int64 actual_offset = offset;
474 
475 #ifdef SPARC_STACK_BOUNDARY_HACK
476       /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
477 	     the real alignment of %sp.  However, when it does this, the
478 	     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
479       if (SPARC_STACK_BOUNDARY_HACK
480 	  && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
481 	actual_offset -= STACK_POINTER_OFFSET;
482 #endif
483 
484       if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
485 	return 1;
486     }
487 
488   switch (code)
489     {
490     case SYMBOL_REF:
491       if (SYMBOL_REF_WEAK (x))
492 	return 1;
493       if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
494 	{
495 	  tree decl;
496 	  poly_int64 decl_size;
497 
498 	  if (maybe_lt (offset, 0))
499 	    return 1;
500 	  if (!known_size_p (size))
501 	    return maybe_ne (offset, 0);
502 
503 	  /* If the size of the access or of the symbol is unknown,
504 	     assume the worst.  */
505 	  decl = SYMBOL_REF_DECL (x);
506 
507 	  /* Else check that the access is in bounds.  TODO: restructure
508 	     expr_size/tree_expr_size/int_expr_size and just use the latter.  */
509 	  if (!decl)
510 	    decl_size = -1;
511 	  else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
512 	    {
513 	      if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
514 		decl_size = -1;
515 	    }
516 	  else if (TREE_CODE (decl) == STRING_CST)
517 	    decl_size = TREE_STRING_LENGTH (decl);
518 	  else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
519 	    decl_size = int_size_in_bytes (TREE_TYPE (decl));
520 	  else
521 	    decl_size = -1;
522 
523 	  return (!known_size_p (decl_size) || known_eq (decl_size, 0)
524 		  ? maybe_ne (offset, 0)
525 		  : !known_subrange_p (offset, size, 0, decl_size));
526         }
527 
528       return 0;
529 
530     case LABEL_REF:
531       return 0;
532 
533     case REG:
534       /* Stack references are assumed not to trap, but we need to deal with
535 	 nonsensical offsets.  */
536       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
537 	 || x == stack_pointer_rtx
538 	 /* The arg pointer varies if it is not a fixed register.  */
539 	 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
540 	{
541 #ifdef RED_ZONE_SIZE
542 	  poly_int64 red_zone_size = RED_ZONE_SIZE;
543 #else
544 	  poly_int64 red_zone_size = 0;
545 #endif
546 	  poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
547 	  poly_int64 low_bound, high_bound;
548 
549 	  if (!known_size_p (size))
550 	    return 1;
551 
552 	  if (x == frame_pointer_rtx)
553 	    {
554 	      if (FRAME_GROWS_DOWNWARD)
555 		{
556 		  high_bound = targetm.starting_frame_offset ();
557 		  low_bound  = high_bound - get_frame_size ();
558 		}
559 	      else
560 		{
561 		  low_bound  = targetm.starting_frame_offset ();
562 		  high_bound = low_bound + get_frame_size ();
563 		}
564 	    }
565 	  else if (x == hard_frame_pointer_rtx)
566 	    {
567 	      poly_int64 sp_offset
568 		= get_initial_register_offset (STACK_POINTER_REGNUM,
569 					       HARD_FRAME_POINTER_REGNUM);
570 	      poly_int64 ap_offset
571 		= get_initial_register_offset (ARG_POINTER_REGNUM,
572 					       HARD_FRAME_POINTER_REGNUM);
573 
574 #if STACK_GROWS_DOWNWARD
575 	      low_bound  = sp_offset - red_zone_size - stack_boundary;
576 	      high_bound = ap_offset
577 			   + FIRST_PARM_OFFSET (current_function_decl)
578 #if !ARGS_GROW_DOWNWARD
579 			   + crtl->args.size
580 #endif
581 			   + stack_boundary;
582 #else
583 	      high_bound = sp_offset + red_zone_size + stack_boundary;
584 	      low_bound  = ap_offset
585 			   + FIRST_PARM_OFFSET (current_function_decl)
586 #if ARGS_GROW_DOWNWARD
587 			   - crtl->args.size
588 #endif
589 			   - stack_boundary;
590 #endif
591 	    }
592 	  else if (x == stack_pointer_rtx)
593 	    {
594 	      poly_int64 ap_offset
595 		= get_initial_register_offset (ARG_POINTER_REGNUM,
596 					       STACK_POINTER_REGNUM);
597 
598 #if STACK_GROWS_DOWNWARD
599 	      low_bound  = - red_zone_size - stack_boundary;
600 	      high_bound = ap_offset
601 			   + FIRST_PARM_OFFSET (current_function_decl)
602 #if !ARGS_GROW_DOWNWARD
603 			   + crtl->args.size
604 #endif
605 			   + stack_boundary;
606 #else
607 	      high_bound = red_zone_size + stack_boundary;
608 	      low_bound  = ap_offset
609 			   + FIRST_PARM_OFFSET (current_function_decl)
610 #if ARGS_GROW_DOWNWARD
611 			   - crtl->args.size
612 #endif
613 			   - stack_boundary;
614 #endif
615 	    }
616 	  else
617 	    {
618 	      /* We assume that accesses are safe to at least the
619 		 next stack boundary.
620 		 Examples are varargs and __builtin_return_address.  */
621 #if ARGS_GROW_DOWNWARD
622 	      high_bound = FIRST_PARM_OFFSET (current_function_decl)
623 			   + stack_boundary;
624 	      low_bound  = FIRST_PARM_OFFSET (current_function_decl)
625 			   - crtl->args.size - stack_boundary;
626 #else
627 	      low_bound  = FIRST_PARM_OFFSET (current_function_decl)
628 			   - stack_boundary;
629 	      high_bound = FIRST_PARM_OFFSET (current_function_decl)
630 			   + crtl->args.size + stack_boundary;
631 #endif
632 	    }
633 
634 	  if (known_ge (offset, low_bound)
635 	      && known_le (offset, high_bound - size))
636 	    return 0;
637 	  return 1;
638 	}
639       /* All of the virtual frame registers are stack references.  */
640       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
641 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
642 	return 0;
643       return 1;
644 
645     case CONST:
646       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
647 				    mode, unaligned_mems);
648 
649     case PLUS:
650       /* An address is assumed not to trap if:
651 	 - it is the pic register plus a const unspec without offset.  */
652       if (XEXP (x, 0) == pic_offset_table_rtx
653 	  && GET_CODE (XEXP (x, 1)) == CONST
654 	  && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
655 	  && known_eq (offset, 0))
656 	return 0;
657 
658       /* - or it is an address that can't trap plus a constant integer.  */
659       if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
660 	  && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
661 				     size, mode, unaligned_mems))
662 	return 0;
663 
664       return 1;
665 
666     case LO_SUM:
667     case PRE_MODIFY:
668       return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
669 				    mode, unaligned_mems);
670 
671     case PRE_DEC:
672     case PRE_INC:
673     case POST_DEC:
674     case POST_INC:
675     case POST_MODIFY:
676       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
677 				    mode, unaligned_mems);
678 
679     default:
680       break;
681     }
682 
683   /* If it isn't one of the case above, it can cause a trap.  */
684   return 1;
685 }
686 
687 /* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
688 
689 int
rtx_addr_can_trap_p(const_rtx x)690 rtx_addr_can_trap_p (const_rtx x)
691 {
692   return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
693 }
694 
695 /* Return true if X contains a MEM subrtx.  */
696 
697 bool
contains_mem_rtx_p(rtx x)698 contains_mem_rtx_p (rtx x)
699 {
700   subrtx_iterator::array_type array;
701   FOR_EACH_SUBRTX (iter, array, x, ALL)
702     if (MEM_P (*iter))
703       return true;
704 
705   return false;
706 }
707 
708 /* Return true if X is an address that is known to not be zero.  */
709 
710 bool
nonzero_address_p(const_rtx x)711 nonzero_address_p (const_rtx x)
712 {
713   const enum rtx_code code = GET_CODE (x);
714 
715   switch (code)
716     {
717     case SYMBOL_REF:
718       return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
719 
720     case LABEL_REF:
721       return true;
722 
723     case REG:
724       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
725       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
726 	  || x == stack_pointer_rtx
727 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
728 	return true;
729       /* All of the virtual frame registers are stack references.  */
730       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
731 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
732 	return true;
733       return false;
734 
735     case CONST:
736       return nonzero_address_p (XEXP (x, 0));
737 
738     case PLUS:
739       /* Handle PIC references.  */
740       if (XEXP (x, 0) == pic_offset_table_rtx
741 	       && CONSTANT_P (XEXP (x, 1)))
742 	return true;
743       return false;
744 
745     case PRE_MODIFY:
746       /* Similar to the above; allow positive offsets.  Further, since
747 	 auto-inc is only allowed in memories, the register must be a
748 	 pointer.  */
749       if (CONST_INT_P (XEXP (x, 1))
750 	  && INTVAL (XEXP (x, 1)) > 0)
751 	return true;
752       return nonzero_address_p (XEXP (x, 0));
753 
754     case PRE_INC:
755       /* Similarly.  Further, the offset is always positive.  */
756       return true;
757 
758     case PRE_DEC:
759     case POST_DEC:
760     case POST_INC:
761     case POST_MODIFY:
762       return nonzero_address_p (XEXP (x, 0));
763 
764     case LO_SUM:
765       return nonzero_address_p (XEXP (x, 1));
766 
767     default:
768       break;
769     }
770 
771   /* If it isn't one of the case above, might be zero.  */
772   return false;
773 }
774 
775 /* Return 1 if X refers to a memory location whose address
776    cannot be compared reliably with constant addresses,
777    or if X refers to a BLKmode memory object.
778    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
779    zero, we are slightly more conservative.  */
780 
781 bool
rtx_addr_varies_p(const_rtx x,bool for_alias)782 rtx_addr_varies_p (const_rtx x, bool for_alias)
783 {
784   enum rtx_code code;
785   int i;
786   const char *fmt;
787 
788   if (x == 0)
789     return 0;
790 
791   code = GET_CODE (x);
792   if (code == MEM)
793     return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
794 
795   fmt = GET_RTX_FORMAT (code);
796   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
797     if (fmt[i] == 'e')
798       {
799 	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
800 	  return 1;
801       }
802     else if (fmt[i] == 'E')
803       {
804 	int j;
805 	for (j = 0; j < XVECLEN (x, i); j++)
806 	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
807 	    return 1;
808       }
809   return 0;
810 }
811 
812 /* Return the CALL in X if there is one.  */
813 
814 rtx
get_call_rtx_from(const rtx_insn * insn)815 get_call_rtx_from (const rtx_insn *insn)
816 {
817   rtx x = PATTERN (insn);
818   if (GET_CODE (x) == PARALLEL)
819     x = XVECEXP (x, 0, 0);
820   if (GET_CODE (x) == SET)
821     x = SET_SRC (x);
822   if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823     return x;
824   return NULL_RTX;
825 }
826 
827 /* Get the declaration of the function called by INSN.  */
828 
829 tree
get_call_fndecl(const rtx_insn * insn)830 get_call_fndecl (const rtx_insn *insn)
831 {
832   rtx note, datum;
833 
834   note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
835   if (note == NULL_RTX)
836     return NULL_TREE;
837 
838   datum = XEXP (note, 0);
839   if (datum != NULL_RTX)
840     return SYMBOL_REF_DECL (datum);
841 
842   return NULL_TREE;
843 }
844 
845 /* Return the value of the integer term in X, if one is apparent;
846    otherwise return 0.
847    Only obvious integer terms are detected.
848    This is used in cse.c with the `related_value' field.  */
849 
850 HOST_WIDE_INT
get_integer_term(const_rtx x)851 get_integer_term (const_rtx x)
852 {
853   if (GET_CODE (x) == CONST)
854     x = XEXP (x, 0);
855 
856   if (GET_CODE (x) == MINUS
857       && CONST_INT_P (XEXP (x, 1)))
858     return - INTVAL (XEXP (x, 1));
859   if (GET_CODE (x) == PLUS
860       && CONST_INT_P (XEXP (x, 1)))
861     return INTVAL (XEXP (x, 1));
862   return 0;
863 }
864 
865 /* If X is a constant, return the value sans apparent integer term;
866    otherwise return 0.
867    Only obvious integer terms are detected.  */
868 
869 rtx
get_related_value(const_rtx x)870 get_related_value (const_rtx x)
871 {
872   if (GET_CODE (x) != CONST)
873     return 0;
874   x = XEXP (x, 0);
875   if (GET_CODE (x) == PLUS
876       && CONST_INT_P (XEXP (x, 1)))
877     return XEXP (x, 0);
878   else if (GET_CODE (x) == MINUS
879 	   && CONST_INT_P (XEXP (x, 1)))
880     return XEXP (x, 0);
881   return 0;
882 }
883 
884 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
885    to somewhere in the same object or object_block as SYMBOL.  */
886 
887 bool
offset_within_block_p(const_rtx symbol,HOST_WIDE_INT offset)888 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
889 {
890   tree decl;
891 
892   if (GET_CODE (symbol) != SYMBOL_REF)
893     return false;
894 
895   if (offset == 0)
896     return true;
897 
898   if (offset > 0)
899     {
900       if (CONSTANT_POOL_ADDRESS_P (symbol)
901 	  && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
902 	return true;
903 
904       decl = SYMBOL_REF_DECL (symbol);
905       if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
906 	return true;
907     }
908 
909   if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
910       && SYMBOL_REF_BLOCK (symbol)
911       && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
912       && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
913 	  < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
914     return true;
915 
916   return false;
917 }
918 
919 /* Split X into a base and a constant offset, storing them in *BASE_OUT
920    and *OFFSET_OUT respectively.  */
921 
922 void
split_const(rtx x,rtx * base_out,rtx * offset_out)923 split_const (rtx x, rtx *base_out, rtx *offset_out)
924 {
925   if (GET_CODE (x) == CONST)
926     {
927       x = XEXP (x, 0);
928       if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
929 	{
930 	  *base_out = XEXP (x, 0);
931 	  *offset_out = XEXP (x, 1);
932 	  return;
933 	}
934     }
935   *base_out = x;
936   *offset_out = const0_rtx;
937 }
938 
939 /* Express integer value X as some value Y plus a polynomial offset,
940    where Y is either const0_rtx, X or something within X (as opposed
941    to a new rtx).  Return the Y and store the offset in *OFFSET_OUT.  */
942 
943 rtx
strip_offset(rtx x,poly_int64_pod * offset_out)944 strip_offset (rtx x, poly_int64_pod *offset_out)
945 {
946   rtx base = const0_rtx;
947   rtx test = x;
948   if (GET_CODE (test) == CONST)
949     test = XEXP (test, 0);
950   if (GET_CODE (test) == PLUS)
951     {
952       base = XEXP (test, 0);
953       test = XEXP (test, 1);
954     }
955   if (poly_int_rtx_p (test, offset_out))
956     return base;
957   *offset_out = 0;
958   return x;
959 }
960 
961 /* Return the argument size in REG_ARGS_SIZE note X.  */
962 
963 poly_int64
get_args_size(const_rtx x)964 get_args_size (const_rtx x)
965 {
966   gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
967   return rtx_to_poly_int64 (XEXP (x, 0));
968 }
969 
970 /* Return the number of places FIND appears within X.  If COUNT_DEST is
971    zero, we do not count occurrences inside the destination of a SET.  */
972 
973 int
count_occurrences(const_rtx x,const_rtx find,int count_dest)974 count_occurrences (const_rtx x, const_rtx find, int count_dest)
975 {
976   int i, j;
977   enum rtx_code code;
978   const char *format_ptr;
979   int count;
980 
981   if (x == find)
982     return 1;
983 
984   code = GET_CODE (x);
985 
986   switch (code)
987     {
988     case REG:
989     CASE_CONST_ANY:
990     case SYMBOL_REF:
991     case CODE_LABEL:
992     case PC:
993     case CC0:
994       return 0;
995 
996     case EXPR_LIST:
997       count = count_occurrences (XEXP (x, 0), find, count_dest);
998       if (XEXP (x, 1))
999 	count += count_occurrences (XEXP (x, 1), find, count_dest);
1000       return count;
1001 
1002     case MEM:
1003       if (MEM_P (find) && rtx_equal_p (x, find))
1004 	return 1;
1005       break;
1006 
1007     case SET:
1008       if (SET_DEST (x) == find && ! count_dest)
1009 	return count_occurrences (SET_SRC (x), find, count_dest);
1010       break;
1011 
1012     default:
1013       break;
1014     }
1015 
1016   format_ptr = GET_RTX_FORMAT (code);
1017   count = 0;
1018 
1019   for (i = 0; i < GET_RTX_LENGTH (code); i++)
1020     {
1021       switch (*format_ptr++)
1022 	{
1023 	case 'e':
1024 	  count += count_occurrences (XEXP (x, i), find, count_dest);
1025 	  break;
1026 
1027 	case 'E':
1028 	  for (j = 0; j < XVECLEN (x, i); j++)
1029 	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1030 	  break;
1031 	}
1032     }
1033   return count;
1034 }
1035 
1036 
1037 /* Return TRUE if OP is a register or subreg of a register that
1038    holds an unsigned quantity.  Otherwise, return FALSE.  */
1039 
1040 bool
unsigned_reg_p(rtx op)1041 unsigned_reg_p (rtx op)
1042 {
1043   if (REG_P (op)
1044       && REG_EXPR (op)
1045       && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1046     return true;
1047 
1048   if (GET_CODE (op) == SUBREG
1049       && SUBREG_PROMOTED_SIGN (op))
1050     return true;
1051 
1052   return false;
1053 }
1054 
1055 
1056 /* Nonzero if register REG appears somewhere within IN.
1057    Also works if REG is not a register; in this case it checks
1058    for a subexpression of IN that is Lisp "equal" to REG.  */
1059 
1060 int
reg_mentioned_p(const_rtx reg,const_rtx in)1061 reg_mentioned_p (const_rtx reg, const_rtx in)
1062 {
1063   const char *fmt;
1064   int i;
1065   enum rtx_code code;
1066 
1067   if (in == 0)
1068     return 0;
1069 
1070   if (reg == in)
1071     return 1;
1072 
1073   if (GET_CODE (in) == LABEL_REF)
1074     return reg == label_ref_label (in);
1075 
1076   code = GET_CODE (in);
1077 
1078   switch (code)
1079     {
1080       /* Compare registers by number.  */
1081     case REG:
1082       return REG_P (reg) && REGNO (in) == REGNO (reg);
1083 
1084       /* These codes have no constituent expressions
1085 	 and are unique.  */
1086     case SCRATCH:
1087     case CC0:
1088     case PC:
1089       return 0;
1090 
1091     CASE_CONST_ANY:
1092       /* These are kept unique for a given value.  */
1093       return 0;
1094 
1095     default:
1096       break;
1097     }
1098 
1099   if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1100     return 1;
1101 
1102   fmt = GET_RTX_FORMAT (code);
1103 
1104   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1105     {
1106       if (fmt[i] == 'E')
1107 	{
1108 	  int j;
1109 	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1110 	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1111 	      return 1;
1112 	}
1113       else if (fmt[i] == 'e'
1114 	       && reg_mentioned_p (reg, XEXP (in, i)))
1115 	return 1;
1116     }
1117   return 0;
1118 }
1119 
1120 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1121    no CODE_LABEL insn.  */
1122 
1123 int
no_labels_between_p(const rtx_insn * beg,const rtx_insn * end)1124 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1125 {
1126   rtx_insn *p;
1127   if (beg == end)
1128     return 0;
1129   for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1130     if (LABEL_P (p))
1131       return 0;
1132   return 1;
1133 }
1134 
1135 /* Nonzero if register REG is used in an insn between
1136    FROM_INSN and TO_INSN (exclusive of those two).  */
1137 
1138 int
reg_used_between_p(const_rtx reg,const rtx_insn * from_insn,const rtx_insn * to_insn)1139 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1140 		    const rtx_insn *to_insn)
1141 {
1142   rtx_insn *insn;
1143 
1144   if (from_insn == to_insn)
1145     return 0;
1146 
1147   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1148     if (NONDEBUG_INSN_P (insn)
1149 	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
1150 	   || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1151       return 1;
1152   return 0;
1153 }
1154 
1155 /* Nonzero if the old value of X, a register, is referenced in BODY.  If X
1156    is entirely replaced by a new value and the only use is as a SET_DEST,
1157    we do not consider it a reference.  */
1158 
1159 int
reg_referenced_p(const_rtx x,const_rtx body)1160 reg_referenced_p (const_rtx x, const_rtx body)
1161 {
1162   int i;
1163 
1164   switch (GET_CODE (body))
1165     {
1166     case SET:
1167       if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1168 	return 1;
1169 
1170       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1171 	 of a REG that occupies all of the REG, the insn references X if
1172 	 it is mentioned in the destination.  */
1173       if (GET_CODE (SET_DEST (body)) != CC0
1174 	  && GET_CODE (SET_DEST (body)) != PC
1175 	  && !REG_P (SET_DEST (body))
1176 	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
1177 		&& REG_P (SUBREG_REG (SET_DEST (body)))
1178 		&& !read_modify_subreg_p (SET_DEST (body)))
1179 	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
1180 	return 1;
1181       return 0;
1182 
1183     case ASM_OPERANDS:
1184       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1185 	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1186 	  return 1;
1187       return 0;
1188 
1189     case CALL:
1190     case USE:
1191     case IF_THEN_ELSE:
1192       return reg_overlap_mentioned_p (x, body);
1193 
1194     case TRAP_IF:
1195       return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1196 
1197     case PREFETCH:
1198       return reg_overlap_mentioned_p (x, XEXP (body, 0));
1199 
1200     case UNSPEC:
1201     case UNSPEC_VOLATILE:
1202       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1203 	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1204 	  return 1;
1205       return 0;
1206 
1207     case PARALLEL:
1208       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1209 	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1210 	  return 1;
1211       return 0;
1212 
1213     case CLOBBER:
1214       if (MEM_P (XEXP (body, 0)))
1215 	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1216 	  return 1;
1217       return 0;
1218 
1219     case COND_EXEC:
1220       if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1221 	return 1;
1222       return reg_referenced_p (x, COND_EXEC_CODE (body));
1223 
1224     default:
1225       return 0;
1226     }
1227 }
1228 
1229 /* Nonzero if register REG is set or clobbered in an insn between
1230    FROM_INSN and TO_INSN (exclusive of those two).  */
1231 
1232 int
reg_set_between_p(const_rtx reg,const rtx_insn * from_insn,const rtx_insn * to_insn)1233 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1234 		   const rtx_insn *to_insn)
1235 {
1236   const rtx_insn *insn;
1237 
1238   if (from_insn == to_insn)
1239     return 0;
1240 
1241   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1242     if (INSN_P (insn) && reg_set_p (reg, insn))
1243       return 1;
1244   return 0;
1245 }
1246 
1247 /* Return true if REG is set or clobbered inside INSN.  */
1248 
1249 int
reg_set_p(const_rtx reg,const_rtx insn)1250 reg_set_p (const_rtx reg, const_rtx insn)
1251 {
1252   /* After delay slot handling, call and branch insns might be in a
1253      sequence.  Check all the elements there.  */
1254   if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1255     {
1256       for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1257 	if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1258 	  return true;
1259 
1260       return false;
1261     }
1262 
1263   /* We can be passed an insn or part of one.  If we are passed an insn,
1264      check if a side-effect of the insn clobbers REG.  */
1265   if (INSN_P (insn)
1266       && (FIND_REG_INC_NOTE (insn, reg)
1267 	  || (CALL_P (insn)
1268 	      && ((REG_P (reg)
1269 		   && REGNO (reg) < FIRST_PSEUDO_REGISTER
1270 		   && (insn_callee_abi (as_a<const rtx_insn *> (insn))
1271 		       .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
1272 		  || MEM_P (reg)
1273 		  || find_reg_fusage (insn, CLOBBER, reg)))))
1274     return true;
1275 
1276   /* There are no REG_INC notes for SP autoinc.  */
1277   if (reg == stack_pointer_rtx && INSN_P (insn))
1278     {
1279       subrtx_var_iterator::array_type array;
1280       FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1281 	{
1282 	  rtx mem = *iter;
1283 	  if (mem
1284 	      && MEM_P (mem)
1285 	      && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1286 	    {
1287 	      if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1288 		return true;
1289 	      iter.skip_subrtxes ();
1290 	    }
1291 	}
1292     }
1293 
1294   return set_of (reg, insn) != NULL_RTX;
1295 }
1296 
1297 /* Similar to reg_set_between_p, but check all registers in X.  Return 0
1298    only if none of them are modified between START and END.  Return 1 if
1299    X contains a MEM; this routine does use memory aliasing.  */
1300 
1301 int
modified_between_p(const_rtx x,const rtx_insn * start,const rtx_insn * end)1302 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1303 {
1304   const enum rtx_code code = GET_CODE (x);
1305   const char *fmt;
1306   int i, j;
1307   rtx_insn *insn;
1308 
1309   if (start == end)
1310     return 0;
1311 
1312   switch (code)
1313     {
1314     CASE_CONST_ANY:
1315     case CONST:
1316     case SYMBOL_REF:
1317     case LABEL_REF:
1318       return 0;
1319 
1320     case PC:
1321     case CC0:
1322       return 1;
1323 
1324     case MEM:
1325       if (modified_between_p (XEXP (x, 0), start, end))
1326 	return 1;
1327       if (MEM_READONLY_P (x))
1328 	return 0;
1329       for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1330 	if (memory_modified_in_insn_p (x, insn))
1331 	  return 1;
1332       return 0;
1333 
1334     case REG:
1335       return reg_set_between_p (x, start, end);
1336 
1337     default:
1338       break;
1339     }
1340 
1341   fmt = GET_RTX_FORMAT (code);
1342   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1343     {
1344       if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1345 	return 1;
1346 
1347       else if (fmt[i] == 'E')
1348 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1349 	  if (modified_between_p (XVECEXP (x, i, j), start, end))
1350 	    return 1;
1351     }
1352 
1353   return 0;
1354 }
1355 
1356 /* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
1357    of them are modified in INSN.  Return 1 if X contains a MEM; this routine
1358    does use memory aliasing.  */
1359 
1360 int
modified_in_p(const_rtx x,const_rtx insn)1361 modified_in_p (const_rtx x, const_rtx insn)
1362 {
1363   const enum rtx_code code = GET_CODE (x);
1364   const char *fmt;
1365   int i, j;
1366 
1367   switch (code)
1368     {
1369     CASE_CONST_ANY:
1370     case CONST:
1371     case SYMBOL_REF:
1372     case LABEL_REF:
1373       return 0;
1374 
1375     case PC:
1376     case CC0:
1377       return 1;
1378 
1379     case MEM:
1380       if (modified_in_p (XEXP (x, 0), insn))
1381 	return 1;
1382       if (MEM_READONLY_P (x))
1383 	return 0;
1384       if (memory_modified_in_insn_p (x, insn))
1385 	return 1;
1386       return 0;
1387 
1388     case REG:
1389       return reg_set_p (x, insn);
1390 
1391     default:
1392       break;
1393     }
1394 
1395   fmt = GET_RTX_FORMAT (code);
1396   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1397     {
1398       if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1399 	return 1;
1400 
1401       else if (fmt[i] == 'E')
1402 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1403 	  if (modified_in_p (XVECEXP (x, i, j), insn))
1404 	    return 1;
1405     }
1406 
1407   return 0;
1408 }
1409 
1410 /* Return true if X is a SUBREG and if storing a value to X would
1411    preserve some of its SUBREG_REG.  For example, on a normal 32-bit
1412    target, using a SUBREG to store to one half of a DImode REG would
1413    preserve the other half.  */
1414 
1415 bool
read_modify_subreg_p(const_rtx x)1416 read_modify_subreg_p (const_rtx x)
1417 {
1418   if (GET_CODE (x) != SUBREG)
1419     return false;
1420   poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1421   poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1422   poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1423   /* The inner and outer modes of a subreg must be ordered, so that we
1424      can tell whether they're paradoxical or partial.  */
1425   gcc_checking_assert (ordered_p (isize, osize));
1426   return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1427 }
1428 
1429 /* Helper function for set_of.  */
1430 struct set_of_data
1431   {
1432     const_rtx found;
1433     const_rtx pat;
1434   };
1435 
1436 static void
set_of_1(rtx x,const_rtx pat,void * data1)1437 set_of_1 (rtx x, const_rtx pat, void *data1)
1438 {
1439   struct set_of_data *const data = (struct set_of_data *) (data1);
1440   if (rtx_equal_p (x, data->pat)
1441       || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1442     data->found = pat;
1443 }
1444 
1445 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1446    (either directly or via STRICT_LOW_PART and similar modifiers).  */
1447 const_rtx
set_of(const_rtx pat,const_rtx insn)1448 set_of (const_rtx pat, const_rtx insn)
1449 {
1450   struct set_of_data data;
1451   data.found = NULL_RTX;
1452   data.pat = pat;
1453   note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1454   return data.found;
1455 }
1456 
1457 /* Add all hard register in X to *PSET.  */
1458 void
find_all_hard_regs(const_rtx x,HARD_REG_SET * pset)1459 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1460 {
1461   subrtx_iterator::array_type array;
1462   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1463     {
1464       const_rtx x = *iter;
1465       if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1466 	add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1467     }
1468 }
1469 
1470 /* This function, called through note_stores, collects sets and
1471    clobbers of hard registers in a HARD_REG_SET, which is pointed to
1472    by DATA.  */
1473 void
record_hard_reg_sets(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)1474 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1475 {
1476   HARD_REG_SET *pset = (HARD_REG_SET *)data;
1477   if (REG_P (x) && HARD_REGISTER_P (x))
1478     add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1479 }
1480 
1481 /* Examine INSN, and compute the set of hard registers written by it.
1482    Store it in *PSET.  Should only be called after reload.
1483 
1484    IMPLICIT is true if we should include registers that are fully-clobbered
1485    by calls.  This should be used with caution, since it doesn't include
1486    partially-clobbered registers.  */
1487 void
find_all_hard_reg_sets(const rtx_insn * insn,HARD_REG_SET * pset,bool implicit)1488 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1489 {
1490   rtx link;
1491 
1492   CLEAR_HARD_REG_SET (*pset);
1493   note_stores (insn, record_hard_reg_sets, pset);
1494   if (CALL_P (insn) && implicit)
1495     *pset |= insn_callee_abi (insn).full_reg_clobbers ();
1496   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1497     if (REG_NOTE_KIND (link) == REG_INC)
1498       record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1499 }
1500 
1501 /* Like record_hard_reg_sets, but called through note_uses.  */
1502 void
record_hard_reg_uses(rtx * px,void * data)1503 record_hard_reg_uses (rtx *px, void *data)
1504 {
1505   find_all_hard_regs (*px, (HARD_REG_SET *) data);
1506 }
1507 
1508 /* Given an INSN, return a SET expression if this insn has only a single SET.
1509    It may also have CLOBBERs, USEs, or SET whose output
1510    will not be used, which we ignore.  */
1511 
1512 rtx
single_set_2(const rtx_insn * insn,const_rtx pat)1513 single_set_2 (const rtx_insn *insn, const_rtx pat)
1514 {
1515   rtx set = NULL;
1516   int set_verified = 1;
1517   int i;
1518 
1519   if (GET_CODE (pat) == PARALLEL)
1520     {
1521       for (i = 0; i < XVECLEN (pat, 0); i++)
1522 	{
1523 	  rtx sub = XVECEXP (pat, 0, i);
1524 	  switch (GET_CODE (sub))
1525 	    {
1526 	    case USE:
1527 	    case CLOBBER:
1528 	      break;
1529 
1530 	    case SET:
1531 	      /* We can consider insns having multiple sets, where all
1532 		 but one are dead as single set insns.  In common case
1533 		 only single set is present in the pattern so we want
1534 		 to avoid checking for REG_UNUSED notes unless necessary.
1535 
1536 		 When we reach set first time, we just expect this is
1537 		 the single set we are looking for and only when more
1538 		 sets are found in the insn, we check them.  */
1539 	      if (!set_verified)
1540 		{
1541 		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1542 		      && !side_effects_p (set))
1543 		    set = NULL;
1544 		  else
1545 		    set_verified = 1;
1546 		}
1547 	      if (!set)
1548 		set = sub, set_verified = 0;
1549 	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1550 		       || side_effects_p (sub))
1551 		return NULL_RTX;
1552 	      break;
1553 
1554 	    default:
1555 	      return NULL_RTX;
1556 	    }
1557 	}
1558     }
1559   return set;
1560 }
1561 
1562 /* Given an INSN, return nonzero if it has more than one SET, else return
1563    zero.  */
1564 
1565 int
multiple_sets(const_rtx insn)1566 multiple_sets (const_rtx insn)
1567 {
1568   int found;
1569   int i;
1570 
1571   /* INSN must be an insn.  */
1572   if (! INSN_P (insn))
1573     return 0;
1574 
1575   /* Only a PARALLEL can have multiple SETs.  */
1576   if (GET_CODE (PATTERN (insn)) == PARALLEL)
1577     {
1578       for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1579 	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1580 	  {
1581 	    /* If we have already found a SET, then return now.  */
1582 	    if (found)
1583 	      return 1;
1584 	    else
1585 	      found = 1;
1586 	  }
1587     }
1588 
1589   /* Either zero or one SET.  */
1590   return 0;
1591 }
1592 
1593 /* Return nonzero if the destination of SET equals the source
1594    and there are no side effects.  */
1595 
1596 int
set_noop_p(const_rtx set)1597 set_noop_p (const_rtx set)
1598 {
1599   rtx src = SET_SRC (set);
1600   rtx dst = SET_DEST (set);
1601 
1602   if (dst == pc_rtx && src == pc_rtx)
1603     return 1;
1604 
1605   if (MEM_P (dst) && MEM_P (src))
1606     return rtx_equal_p (dst, src) && !side_effects_p (dst);
1607 
1608   if (GET_CODE (dst) == ZERO_EXTRACT)
1609     return rtx_equal_p (XEXP (dst, 0), src)
1610 	   && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1611 	   && !side_effects_p (src);
1612 
1613   if (GET_CODE (dst) == STRICT_LOW_PART)
1614     dst = XEXP (dst, 0);
1615 
1616   if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1617     {
1618       if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1619 	return 0;
1620       src = SUBREG_REG (src);
1621       dst = SUBREG_REG (dst);
1622     }
1623 
1624   /* It is a NOOP if destination overlaps with selected src vector
1625      elements.  */
1626   if (GET_CODE (src) == VEC_SELECT
1627       && REG_P (XEXP (src, 0)) && REG_P (dst)
1628       && HARD_REGISTER_P (XEXP (src, 0))
1629       && HARD_REGISTER_P (dst))
1630     {
1631       int i;
1632       rtx par = XEXP (src, 1);
1633       rtx src0 = XEXP (src, 0);
1634       poly_int64 c0;
1635       if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
1636 	return 0;
1637       poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1638 
1639       for (i = 1; i < XVECLEN (par, 0); i++)
1640 	{
1641 	  poly_int64 c0i;
1642 	  if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
1643 	      || maybe_ne (c0i, c0 + i))
1644 	    return 0;
1645 	}
1646       return
1647 	REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1648 	&& simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1649 				  offset, GET_MODE (dst)) == (int) REGNO (dst);
1650     }
1651 
1652   return (REG_P (src) && REG_P (dst)
1653 	  && REGNO (src) == REGNO (dst));
1654 }
1655 
1656 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1657    value to itself.  */
1658 
1659 int
noop_move_p(const rtx_insn * insn)1660 noop_move_p (const rtx_insn *insn)
1661 {
1662   rtx pat = PATTERN (insn);
1663 
1664   if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1665     return 1;
1666 
1667   /* Insns carrying these notes are useful later on.  */
1668   if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1669     return 0;
1670 
1671   /* Check the code to be executed for COND_EXEC.  */
1672   if (GET_CODE (pat) == COND_EXEC)
1673     pat = COND_EXEC_CODE (pat);
1674 
1675   if (GET_CODE (pat) == SET && set_noop_p (pat))
1676     return 1;
1677 
1678   if (GET_CODE (pat) == PARALLEL)
1679     {
1680       int i;
1681       /* If nothing but SETs of registers to themselves,
1682 	 this insn can also be deleted.  */
1683       for (i = 0; i < XVECLEN (pat, 0); i++)
1684 	{
1685 	  rtx tem = XVECEXP (pat, 0, i);
1686 
1687 	  if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1688 	    continue;
1689 
1690 	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1691 	    return 0;
1692 	}
1693 
1694       return 1;
1695     }
1696   return 0;
1697 }
1698 
1699 
1700 /* Return nonzero if register in range [REGNO, ENDREGNO)
1701    appears either explicitly or implicitly in X
1702    other than being stored into.
1703 
1704    References contained within the substructure at LOC do not count.
1705    LOC may be zero, meaning don't ignore anything.  */
1706 
1707 bool
refers_to_regno_p(unsigned int regno,unsigned int endregno,const_rtx x,rtx * loc)1708 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1709 		   rtx *loc)
1710 {
1711   int i;
1712   unsigned int x_regno;
1713   RTX_CODE code;
1714   const char *fmt;
1715 
1716  repeat:
1717   /* The contents of a REG_NONNEG note is always zero, so we must come here
1718      upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1719   if (x == 0)
1720     return false;
1721 
1722   code = GET_CODE (x);
1723 
1724   switch (code)
1725     {
1726     case REG:
1727       x_regno = REGNO (x);
1728 
1729       /* If we modifying the stack, frame, or argument pointer, it will
1730 	 clobber a virtual register.  In fact, we could be more precise,
1731 	 but it isn't worth it.  */
1732       if ((x_regno == STACK_POINTER_REGNUM
1733 	   || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1734 	       && x_regno == ARG_POINTER_REGNUM)
1735 	   || x_regno == FRAME_POINTER_REGNUM)
1736 	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1737 	return true;
1738 
1739       return endregno > x_regno && regno < END_REGNO (x);
1740 
1741     case SUBREG:
1742       /* If this is a SUBREG of a hard reg, we can see exactly which
1743 	 registers are being modified.  Otherwise, handle normally.  */
1744       if (REG_P (SUBREG_REG (x))
1745 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1746 	{
1747 	  unsigned int inner_regno = subreg_regno (x);
1748 	  unsigned int inner_endregno
1749 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1750 			     ? subreg_nregs (x) : 1);
1751 
1752 	  return endregno > inner_regno && regno < inner_endregno;
1753 	}
1754       break;
1755 
1756     case CLOBBER:
1757     case SET:
1758       if (&SET_DEST (x) != loc
1759 	  /* Note setting a SUBREG counts as referring to the REG it is in for
1760 	     a pseudo but not for hard registers since we can
1761 	     treat each word individually.  */
1762 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
1763 	       && loc != &SUBREG_REG (SET_DEST (x))
1764 	       && REG_P (SUBREG_REG (SET_DEST (x)))
1765 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1766 	       && refers_to_regno_p (regno, endregno,
1767 				     SUBREG_REG (SET_DEST (x)), loc))
1768 	      || (!REG_P (SET_DEST (x))
1769 		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1770 	return true;
1771 
1772       if (code == CLOBBER || loc == &SET_SRC (x))
1773 	return false;
1774       x = SET_SRC (x);
1775       goto repeat;
1776 
1777     default:
1778       break;
1779     }
1780 
1781   /* X does not match, so try its subexpressions.  */
1782 
1783   fmt = GET_RTX_FORMAT (code);
1784   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1785     {
1786       if (fmt[i] == 'e' && loc != &XEXP (x, i))
1787 	{
1788 	  if (i == 0)
1789 	    {
1790 	      x = XEXP (x, 0);
1791 	      goto repeat;
1792 	    }
1793 	  else
1794 	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1795 	      return true;
1796 	}
1797       else if (fmt[i] == 'E')
1798 	{
1799 	  int j;
1800 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1801 	    if (loc != &XVECEXP (x, i, j)
1802 		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1803 	      return true;
1804 	}
1805     }
1806   return false;
1807 }
1808 
1809 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1810    we check if any register number in X conflicts with the relevant register
1811    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1812    contains a MEM (we don't bother checking for memory addresses that can't
1813    conflict because we expect this to be a rare case.  */
1814 
1815 int
reg_overlap_mentioned_p(const_rtx x,const_rtx in)1816 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1817 {
1818   unsigned int regno, endregno;
1819 
1820   /* If either argument is a constant, then modifying X cannot
1821      affect IN.  Here we look at IN, we can profitably combine
1822      CONSTANT_P (x) with the switch statement below.  */
1823   if (CONSTANT_P (in))
1824     return 0;
1825 
1826  recurse:
1827   switch (GET_CODE (x))
1828     {
1829     case CLOBBER:
1830     case STRICT_LOW_PART:
1831     case ZERO_EXTRACT:
1832     case SIGN_EXTRACT:
1833       /* Overly conservative.  */
1834       x = XEXP (x, 0);
1835       goto recurse;
1836 
1837     case SUBREG:
1838       regno = REGNO (SUBREG_REG (x));
1839       if (regno < FIRST_PSEUDO_REGISTER)
1840 	regno = subreg_regno (x);
1841       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1842 			  ? subreg_nregs (x) : 1);
1843       goto do_reg;
1844 
1845     case REG:
1846       regno = REGNO (x);
1847       endregno = END_REGNO (x);
1848     do_reg:
1849       return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1850 
1851     case MEM:
1852       {
1853 	const char *fmt;
1854 	int i;
1855 
1856 	if (MEM_P (in))
1857 	  return 1;
1858 
1859 	fmt = GET_RTX_FORMAT (GET_CODE (in));
1860 	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1861 	  if (fmt[i] == 'e')
1862 	    {
1863 	      if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1864 		return 1;
1865 	    }
1866 	  else if (fmt[i] == 'E')
1867 	    {
1868 	      int j;
1869 	      for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1870 		if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1871 		  return 1;
1872 	    }
1873 
1874 	return 0;
1875       }
1876 
1877     case SCRATCH:
1878     case PC:
1879     case CC0:
1880       return reg_mentioned_p (x, in);
1881 
1882     case PARALLEL:
1883       {
1884 	int i;
1885 
1886 	/* If any register in here refers to it we return true.  */
1887 	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1888 	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
1889 	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1890 	    return 1;
1891 	return 0;
1892       }
1893 
1894     default:
1895       gcc_assert (CONSTANT_P (x));
1896       return 0;
1897     }
1898 }
1899 
1900 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1901    (X would be the pattern of an insn).  DATA is an arbitrary pointer,
1902    ignored by note_stores, but passed to FUN.
1903 
1904    FUN receives three arguments:
1905    1. the REG, MEM, CC0 or PC being stored in or clobbered,
1906    2. the SET or CLOBBER rtx that does the store,
1907    3. the pointer DATA provided to note_stores.
1908 
1909   If the item being stored in or clobbered is a SUBREG of a hard register,
1910   the SUBREG will be passed.  */
1911 
1912 void
note_pattern_stores(const_rtx x,void (* fun)(rtx,const_rtx,void *),void * data)1913 note_pattern_stores (const_rtx x,
1914 		     void (*fun) (rtx, const_rtx, void *), void *data)
1915 {
1916   int i;
1917 
1918   if (GET_CODE (x) == COND_EXEC)
1919     x = COND_EXEC_CODE (x);
1920 
1921   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1922     {
1923       rtx dest = SET_DEST (x);
1924 
1925       while ((GET_CODE (dest) == SUBREG
1926 	      && (!REG_P (SUBREG_REG (dest))
1927 		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1928 	     || GET_CODE (dest) == ZERO_EXTRACT
1929 	     || GET_CODE (dest) == STRICT_LOW_PART)
1930 	dest = XEXP (dest, 0);
1931 
1932       /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1933 	 each of whose first operand is a register.  */
1934       if (GET_CODE (dest) == PARALLEL)
1935 	{
1936 	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1937 	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1938 	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1939 	}
1940       else
1941 	(*fun) (dest, x, data);
1942     }
1943 
1944   else if (GET_CODE (x) == PARALLEL)
1945     for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1946       note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1947 }
1948 
1949 /* Same, but for an instruction.  If the instruction is a call, include
1950    any CLOBBERs in its CALL_INSN_FUNCTION_USAGE.  */
1951 
1952 void
note_stores(const rtx_insn * insn,void (* fun)(rtx,const_rtx,void *),void * data)1953 note_stores (const rtx_insn *insn,
1954 	     void (*fun) (rtx, const_rtx, void *), void *data)
1955 {
1956   if (CALL_P (insn))
1957     for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1958 	 link; link = XEXP (link, 1))
1959       if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1960 	note_pattern_stores (XEXP (link, 0), fun, data);
1961   note_pattern_stores (PATTERN (insn), fun, data);
1962 }
1963 
1964 /* Like notes_stores, but call FUN for each expression that is being
1965    referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1966    FUN for each expression, not any interior subexpressions.  FUN receives a
1967    pointer to the expression and the DATA passed to this function.
1968 
1969    Note that this is not quite the same test as that done in reg_referenced_p
1970    since that considers something as being referenced if it is being
1971    partially set, while we do not.  */
1972 
1973 void
note_uses(rtx * pbody,void (* fun)(rtx *,void *),void * data)1974 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1975 {
1976   rtx body = *pbody;
1977   int i;
1978 
1979   switch (GET_CODE (body))
1980     {
1981     case COND_EXEC:
1982       (*fun) (&COND_EXEC_TEST (body), data);
1983       note_uses (&COND_EXEC_CODE (body), fun, data);
1984       return;
1985 
1986     case PARALLEL:
1987       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1988 	note_uses (&XVECEXP (body, 0, i), fun, data);
1989       return;
1990 
1991     case SEQUENCE:
1992       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1993 	note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1994       return;
1995 
1996     case USE:
1997       (*fun) (&XEXP (body, 0), data);
1998       return;
1999 
2000     case ASM_OPERANDS:
2001       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
2002 	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
2003       return;
2004 
2005     case TRAP_IF:
2006       (*fun) (&TRAP_CONDITION (body), data);
2007       return;
2008 
2009     case PREFETCH:
2010       (*fun) (&XEXP (body, 0), data);
2011       return;
2012 
2013     case UNSPEC:
2014     case UNSPEC_VOLATILE:
2015       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2016 	(*fun) (&XVECEXP (body, 0, i), data);
2017       return;
2018 
2019     case CLOBBER:
2020       if (MEM_P (XEXP (body, 0)))
2021 	(*fun) (&XEXP (XEXP (body, 0), 0), data);
2022       return;
2023 
2024     case SET:
2025       {
2026 	rtx dest = SET_DEST (body);
2027 
2028 	/* For sets we replace everything in source plus registers in memory
2029 	   expression in store and operands of a ZERO_EXTRACT.  */
2030 	(*fun) (&SET_SRC (body), data);
2031 
2032 	if (GET_CODE (dest) == ZERO_EXTRACT)
2033 	  {
2034 	    (*fun) (&XEXP (dest, 1), data);
2035 	    (*fun) (&XEXP (dest, 2), data);
2036 	  }
2037 
2038 	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2039 	  dest = XEXP (dest, 0);
2040 
2041 	if (MEM_P (dest))
2042 	  (*fun) (&XEXP (dest, 0), data);
2043       }
2044       return;
2045 
2046     default:
2047       /* All the other possibilities never store.  */
2048       (*fun) (pbody, data);
2049       return;
2050     }
2051 }
2052 
2053 /* Return nonzero if X's old contents don't survive after INSN.
2054    This will be true if X is (cc0) or if X is a register and
2055    X dies in INSN or because INSN entirely sets X.
2056 
2057    "Entirely set" means set directly and not through a SUBREG, or
2058    ZERO_EXTRACT, so no trace of the old contents remains.
2059    Likewise, REG_INC does not count.
2060 
2061    REG may be a hard or pseudo reg.  Renumbering is not taken into account,
2062    but for this use that makes no difference, since regs don't overlap
2063    during their lifetimes.  Therefore, this function may be used
2064    at any time after deaths have been computed.
2065 
2066    If REG is a hard reg that occupies multiple machine registers, this
2067    function will only return 1 if each of those registers will be replaced
2068    by INSN.  */
2069 
2070 int
dead_or_set_p(const rtx_insn * insn,const_rtx x)2071 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2072 {
2073   unsigned int regno, end_regno;
2074   unsigned int i;
2075 
2076   /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
2077   if (GET_CODE (x) == CC0)
2078     return 1;
2079 
2080   gcc_assert (REG_P (x));
2081 
2082   regno = REGNO (x);
2083   end_regno = END_REGNO (x);
2084   for (i = regno; i < end_regno; i++)
2085     if (! dead_or_set_regno_p (insn, i))
2086       return 0;
2087 
2088   return 1;
2089 }
2090 
2091 /* Return TRUE iff DEST is a register or subreg of a register, is a
2092    complete rather than read-modify-write destination, and contains
2093    register TEST_REGNO.  */
2094 
2095 static bool
covers_regno_no_parallel_p(const_rtx dest,unsigned int test_regno)2096 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2097 {
2098   unsigned int regno, endregno;
2099 
2100   if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2101     dest = SUBREG_REG (dest);
2102 
2103   if (!REG_P (dest))
2104     return false;
2105 
2106   regno = REGNO (dest);
2107   endregno = END_REGNO (dest);
2108   return (test_regno >= regno && test_regno < endregno);
2109 }
2110 
2111 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2112    any member matches the covers_regno_no_parallel_p criteria.  */
2113 
2114 static bool
covers_regno_p(const_rtx dest,unsigned int test_regno)2115 covers_regno_p (const_rtx dest, unsigned int test_regno)
2116 {
2117   if (GET_CODE (dest) == PARALLEL)
2118     {
2119       /* Some targets place small structures in registers for return
2120 	 values of functions, and those registers are wrapped in
2121 	 PARALLELs that we may see as the destination of a SET.  */
2122       int i;
2123 
2124       for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2125 	{
2126 	  rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2127 	  if (inner != NULL_RTX
2128 	      && covers_regno_no_parallel_p (inner, test_regno))
2129 	    return true;
2130 	}
2131 
2132       return false;
2133     }
2134   else
2135     return covers_regno_no_parallel_p (dest, test_regno);
2136 }
2137 
2138 /* Utility function for dead_or_set_p to check an individual register. */
2139 
2140 int
dead_or_set_regno_p(const rtx_insn * insn,unsigned int test_regno)2141 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2142 {
2143   const_rtx pattern;
2144 
2145   /* See if there is a death note for something that includes TEST_REGNO.  */
2146   if (find_regno_note (insn, REG_DEAD, test_regno))
2147     return 1;
2148 
2149   if (CALL_P (insn)
2150       && find_regno_fusage (insn, CLOBBER, test_regno))
2151     return 1;
2152 
2153   pattern = PATTERN (insn);
2154 
2155   /* If a COND_EXEC is not executed, the value survives.  */
2156   if (GET_CODE (pattern) == COND_EXEC)
2157     return 0;
2158 
2159   if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2160     return covers_regno_p (SET_DEST (pattern), test_regno);
2161   else if (GET_CODE (pattern) == PARALLEL)
2162     {
2163       int i;
2164 
2165       for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2166 	{
2167 	  rtx body = XVECEXP (pattern, 0, i);
2168 
2169 	  if (GET_CODE (body) == COND_EXEC)
2170 	    body = COND_EXEC_CODE (body);
2171 
2172 	  if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2173 	      && covers_regno_p (SET_DEST (body), test_regno))
2174 	    return 1;
2175 	}
2176     }
2177 
2178   return 0;
2179 }
2180 
2181 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2182    If DATUM is nonzero, look for one whose datum is DATUM.  */
2183 
2184 rtx
find_reg_note(const_rtx insn,enum reg_note kind,const_rtx datum)2185 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2186 {
2187   rtx link;
2188 
2189   gcc_checking_assert (insn);
2190 
2191   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
2192   if (! INSN_P (insn))
2193     return 0;
2194   if (datum == 0)
2195     {
2196       for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2197 	if (REG_NOTE_KIND (link) == kind)
2198 	  return link;
2199       return 0;
2200     }
2201 
2202   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2203     if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2204       return link;
2205   return 0;
2206 }
2207 
2208 /* Return the reg-note of kind KIND in insn INSN which applies to register
2209    number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
2210    the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2211    it might be the case that the note overlaps REGNO.  */
2212 
2213 rtx
find_regno_note(const_rtx insn,enum reg_note kind,unsigned int regno)2214 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2215 {
2216   rtx link;
2217 
2218   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
2219   if (! INSN_P (insn))
2220     return 0;
2221 
2222   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2223     if (REG_NOTE_KIND (link) == kind
2224 	/* Verify that it is a register, so that scratch and MEM won't cause a
2225 	   problem here.  */
2226 	&& REG_P (XEXP (link, 0))
2227 	&& REGNO (XEXP (link, 0)) <= regno
2228 	&& END_REGNO (XEXP (link, 0)) > regno)
2229       return link;
2230   return 0;
2231 }
2232 
2233 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2234    has such a note.  */
2235 
2236 rtx
find_reg_equal_equiv_note(const_rtx insn)2237 find_reg_equal_equiv_note (const_rtx insn)
2238 {
2239   rtx link;
2240 
2241   if (!INSN_P (insn))
2242     return 0;
2243 
2244   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2245     if (REG_NOTE_KIND (link) == REG_EQUAL
2246 	|| REG_NOTE_KIND (link) == REG_EQUIV)
2247       {
2248 	/* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2249 	   insns that have multiple sets.  Checking single_set to
2250 	   make sure of this is not the proper check, as explained
2251 	   in the comment in set_unique_reg_note.
2252 
2253 	   This should be changed into an assert.  */
2254 	if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2255 	  return 0;
2256 	return link;
2257       }
2258   return NULL;
2259 }
2260 
2261 /* Check whether INSN is a single_set whose source is known to be
2262    equivalent to a constant.  Return that constant if so, otherwise
2263    return null.  */
2264 
2265 rtx
find_constant_src(const rtx_insn * insn)2266 find_constant_src (const rtx_insn *insn)
2267 {
2268   rtx note, set, x;
2269 
2270   set = single_set (insn);
2271   if (set)
2272     {
2273       x = avoid_constant_pool_reference (SET_SRC (set));
2274       if (CONSTANT_P (x))
2275 	return x;
2276     }
2277 
2278   note = find_reg_equal_equiv_note (insn);
2279   if (note && CONSTANT_P (XEXP (note, 0)))
2280     return XEXP (note, 0);
2281 
2282   return NULL_RTX;
2283 }
2284 
2285 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2286    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
2287 
2288 int
find_reg_fusage(const_rtx insn,enum rtx_code code,const_rtx datum)2289 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2290 {
2291   /* If it's not a CALL_INSN, it can't possibly have a
2292      CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
2293   if (!CALL_P (insn))
2294     return 0;
2295 
2296   gcc_assert (datum);
2297 
2298   if (!REG_P (datum))
2299     {
2300       rtx link;
2301 
2302       for (link = CALL_INSN_FUNCTION_USAGE (insn);
2303 	   link;
2304 	   link = XEXP (link, 1))
2305 	if (GET_CODE (XEXP (link, 0)) == code
2306 	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2307 	  return 1;
2308     }
2309   else
2310     {
2311       unsigned int regno = REGNO (datum);
2312 
2313       /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2314 	 to pseudo registers, so don't bother checking.  */
2315 
2316       if (regno < FIRST_PSEUDO_REGISTER)
2317 	{
2318 	  unsigned int end_regno = END_REGNO (datum);
2319 	  unsigned int i;
2320 
2321 	  for (i = regno; i < end_regno; i++)
2322 	    if (find_regno_fusage (insn, code, i))
2323 	      return 1;
2324 	}
2325     }
2326 
2327   return 0;
2328 }
2329 
2330 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2331    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
2332 
2333 int
find_regno_fusage(const_rtx insn,enum rtx_code code,unsigned int regno)2334 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2335 {
2336   rtx link;
2337 
2338   /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2339      to pseudo registers, so don't bother checking.  */
2340 
2341   if (regno >= FIRST_PSEUDO_REGISTER
2342       || !CALL_P (insn) )
2343     return 0;
2344 
2345   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2346     {
2347       rtx op, reg;
2348 
2349       if (GET_CODE (op = XEXP (link, 0)) == code
2350 	  && REG_P (reg = XEXP (op, 0))
2351 	  && REGNO (reg) <= regno
2352 	  && END_REGNO (reg) > regno)
2353 	return 1;
2354     }
2355 
2356   return 0;
2357 }
2358 
2359 
2360 /* Return true if KIND is an integer REG_NOTE.  */
2361 
2362 static bool
int_reg_note_p(enum reg_note kind)2363 int_reg_note_p (enum reg_note kind)
2364 {
2365   return kind == REG_BR_PROB;
2366 }
2367 
2368 /* Allocate a register note with kind KIND and datum DATUM.  LIST is
2369    stored as the pointer to the next register note.  */
2370 
2371 rtx
alloc_reg_note(enum reg_note kind,rtx datum,rtx list)2372 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2373 {
2374   rtx note;
2375 
2376   gcc_checking_assert (!int_reg_note_p (kind));
2377   switch (kind)
2378     {
2379     case REG_CC_SETTER:
2380     case REG_CC_USER:
2381     case REG_LABEL_TARGET:
2382     case REG_LABEL_OPERAND:
2383     case REG_TM:
2384       /* These types of register notes use an INSN_LIST rather than an
2385 	 EXPR_LIST, so that copying is done right and dumps look
2386 	 better.  */
2387       note = alloc_INSN_LIST (datum, list);
2388       PUT_REG_NOTE_KIND (note, kind);
2389       break;
2390 
2391     default:
2392       note = alloc_EXPR_LIST (kind, datum, list);
2393       break;
2394     }
2395 
2396   return note;
2397 }
2398 
2399 /* Add register note with kind KIND and datum DATUM to INSN.  */
2400 
2401 void
add_reg_note(rtx insn,enum reg_note kind,rtx datum)2402 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2403 {
2404   REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2405 }
2406 
2407 /* Add an integer register note with kind KIND and datum DATUM to INSN.  */
2408 
2409 void
add_int_reg_note(rtx_insn * insn,enum reg_note kind,int datum)2410 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2411 {
2412   gcc_checking_assert (int_reg_note_p (kind));
2413   REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2414 				       datum, REG_NOTES (insn));
2415 }
2416 
2417 /* Add a REG_ARGS_SIZE note to INSN with value VALUE.  */
2418 
2419 void
add_args_size_note(rtx_insn * insn,poly_int64 value)2420 add_args_size_note (rtx_insn *insn, poly_int64 value)
2421 {
2422   gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2423   add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2424 }
2425 
2426 /* Add a register note like NOTE to INSN.  */
2427 
2428 void
add_shallow_copy_of_reg_note(rtx_insn * insn,rtx note)2429 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2430 {
2431   if (GET_CODE (note) == INT_LIST)
2432     add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2433   else
2434     add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2435 }
2436 
2437 /* Duplicate NOTE and return the copy.  */
2438 rtx
duplicate_reg_note(rtx note)2439 duplicate_reg_note (rtx note)
2440 {
2441   reg_note kind = REG_NOTE_KIND (note);
2442 
2443   if (GET_CODE (note) == INT_LIST)
2444     return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2445   else if (GET_CODE (note) == EXPR_LIST)
2446     return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2447   else
2448     return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2449 }
2450 
2451 /* Remove register note NOTE from the REG_NOTES of INSN.  */
2452 
2453 void
remove_note(rtx_insn * insn,const_rtx note)2454 remove_note (rtx_insn *insn, const_rtx note)
2455 {
2456   rtx link;
2457 
2458   if (note == NULL_RTX)
2459     return;
2460 
2461   if (REG_NOTES (insn) == note)
2462     REG_NOTES (insn) = XEXP (note, 1);
2463   else
2464     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2465       if (XEXP (link, 1) == note)
2466 	{
2467 	  XEXP (link, 1) = XEXP (note, 1);
2468 	  break;
2469 	}
2470 
2471   switch (REG_NOTE_KIND (note))
2472     {
2473     case REG_EQUAL:
2474     case REG_EQUIV:
2475       df_notes_rescan (insn);
2476       break;
2477     default:
2478       break;
2479     }
2480 }
2481 
2482 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2483    Return true if any note has been removed.  */
2484 
2485 bool
remove_reg_equal_equiv_notes(rtx_insn * insn)2486 remove_reg_equal_equiv_notes (rtx_insn *insn)
2487 {
2488   rtx *loc;
2489   bool ret = false;
2490 
2491   loc = &REG_NOTES (insn);
2492   while (*loc)
2493     {
2494       enum reg_note kind = REG_NOTE_KIND (*loc);
2495       if (kind == REG_EQUAL || kind == REG_EQUIV)
2496 	{
2497 	  *loc = XEXP (*loc, 1);
2498 	  ret = true;
2499 	}
2500       else
2501 	loc = &XEXP (*loc, 1);
2502     }
2503   return ret;
2504 }
2505 
2506 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO.  */
2507 
2508 void
remove_reg_equal_equiv_notes_for_regno(unsigned int regno)2509 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2510 {
2511   df_ref eq_use;
2512 
2513   if (!df)
2514     return;
2515 
2516   /* This loop is a little tricky.  We cannot just go down the chain because
2517      it is being modified by some actions in the loop.  So we just iterate
2518      over the head.  We plan to drain the list anyway.  */
2519   while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2520     {
2521       rtx_insn *insn = DF_REF_INSN (eq_use);
2522       rtx note = find_reg_equal_equiv_note (insn);
2523 
2524       /* This assert is generally triggered when someone deletes a REG_EQUAL
2525 	 or REG_EQUIV note by hacking the list manually rather than calling
2526 	 remove_note.  */
2527       gcc_assert (note);
2528 
2529       remove_note (insn, note);
2530     }
2531 }
2532 
2533 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2534    return 1 if it is found.  A simple equality test is used to determine if
2535    NODE matches.  */
2536 
2537 bool
in_insn_list_p(const rtx_insn_list * listp,const rtx_insn * node)2538 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2539 {
2540   const_rtx x;
2541 
2542   for (x = listp; x; x = XEXP (x, 1))
2543     if (node == XEXP (x, 0))
2544       return true;
2545 
2546   return false;
2547 }
2548 
2549 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2550    remove that entry from the list if it is found.
2551 
2552    A simple equality test is used to determine if NODE matches.  */
2553 
2554 void
remove_node_from_expr_list(const_rtx node,rtx_expr_list ** listp)2555 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2556 {
2557   rtx_expr_list *temp = *listp;
2558   rtx_expr_list *prev = NULL;
2559 
2560   while (temp)
2561     {
2562       if (node == temp->element ())
2563 	{
2564 	  /* Splice the node out of the list.  */
2565 	  if (prev)
2566 	    XEXP (prev, 1) = temp->next ();
2567 	  else
2568 	    *listp = temp->next ();
2569 
2570 	  return;
2571 	}
2572 
2573       prev = temp;
2574       temp = temp->next ();
2575     }
2576 }
2577 
2578 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2579    remove that entry from the list if it is found.
2580 
2581    A simple equality test is used to determine if NODE matches.  */
2582 
2583 void
remove_node_from_insn_list(const rtx_insn * node,rtx_insn_list ** listp)2584 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2585 {
2586   rtx_insn_list *temp = *listp;
2587   rtx_insn_list *prev = NULL;
2588 
2589   while (temp)
2590     {
2591       if (node == temp->insn ())
2592 	{
2593 	  /* Splice the node out of the list.  */
2594 	  if (prev)
2595 	    XEXP (prev, 1) = temp->next ();
2596 	  else
2597 	    *listp = temp->next ();
2598 
2599 	  return;
2600 	}
2601 
2602       prev = temp;
2603       temp = temp->next ();
2604     }
2605 }
2606 
2607 /* Nonzero if X contains any volatile instructions.  These are instructions
2608    which may cause unpredictable machine state instructions, and thus no
2609    instructions or register uses should be moved or combined across them.
2610    This includes only volatile asms and UNSPEC_VOLATILE instructions.  */
2611 
2612 int
volatile_insn_p(const_rtx x)2613 volatile_insn_p (const_rtx x)
2614 {
2615   const RTX_CODE code = GET_CODE (x);
2616   switch (code)
2617     {
2618     case LABEL_REF:
2619     case SYMBOL_REF:
2620     case CONST:
2621     CASE_CONST_ANY:
2622     case CC0:
2623     case PC:
2624     case REG:
2625     case SCRATCH:
2626     case CLOBBER:
2627     case ADDR_VEC:
2628     case ADDR_DIFF_VEC:
2629     case CALL:
2630     case MEM:
2631       return 0;
2632 
2633     case UNSPEC_VOLATILE:
2634       return 1;
2635 
2636     case ASM_INPUT:
2637     case ASM_OPERANDS:
2638       if (MEM_VOLATILE_P (x))
2639 	return 1;
2640 
2641     default:
2642       break;
2643     }
2644 
2645   /* Recursively scan the operands of this expression.  */
2646 
2647   {
2648     const char *const fmt = GET_RTX_FORMAT (code);
2649     int i;
2650 
2651     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2652       {
2653 	if (fmt[i] == 'e')
2654 	  {
2655 	    if (volatile_insn_p (XEXP (x, i)))
2656 	      return 1;
2657 	  }
2658 	else if (fmt[i] == 'E')
2659 	  {
2660 	    int j;
2661 	    for (j = 0; j < XVECLEN (x, i); j++)
2662 	      if (volatile_insn_p (XVECEXP (x, i, j)))
2663 		return 1;
2664 	  }
2665       }
2666   }
2667   return 0;
2668 }
2669 
2670 /* Nonzero if X contains any volatile memory references
2671    UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
2672 
2673 int
volatile_refs_p(const_rtx x)2674 volatile_refs_p (const_rtx x)
2675 {
2676   const RTX_CODE code = GET_CODE (x);
2677   switch (code)
2678     {
2679     case LABEL_REF:
2680     case SYMBOL_REF:
2681     case CONST:
2682     CASE_CONST_ANY:
2683     case CC0:
2684     case PC:
2685     case REG:
2686     case SCRATCH:
2687     case CLOBBER:
2688     case ADDR_VEC:
2689     case ADDR_DIFF_VEC:
2690       return 0;
2691 
2692     case UNSPEC_VOLATILE:
2693       return 1;
2694 
2695     case MEM:
2696     case ASM_INPUT:
2697     case ASM_OPERANDS:
2698       if (MEM_VOLATILE_P (x))
2699 	return 1;
2700 
2701     default:
2702       break;
2703     }
2704 
2705   /* Recursively scan the operands of this expression.  */
2706 
2707   {
2708     const char *const fmt = GET_RTX_FORMAT (code);
2709     int i;
2710 
2711     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2712       {
2713 	if (fmt[i] == 'e')
2714 	  {
2715 	    if (volatile_refs_p (XEXP (x, i)))
2716 	      return 1;
2717 	  }
2718 	else if (fmt[i] == 'E')
2719 	  {
2720 	    int j;
2721 	    for (j = 0; j < XVECLEN (x, i); j++)
2722 	      if (volatile_refs_p (XVECEXP (x, i, j)))
2723 		return 1;
2724 	  }
2725       }
2726   }
2727   return 0;
2728 }
2729 
2730 /* Similar to above, except that it also rejects register pre- and post-
2731    incrementing.  */
2732 
2733 int
side_effects_p(const_rtx x)2734 side_effects_p (const_rtx x)
2735 {
2736   const RTX_CODE code = GET_CODE (x);
2737   switch (code)
2738     {
2739     case LABEL_REF:
2740     case SYMBOL_REF:
2741     case CONST:
2742     CASE_CONST_ANY:
2743     case CC0:
2744     case PC:
2745     case REG:
2746     case SCRATCH:
2747     case ADDR_VEC:
2748     case ADDR_DIFF_VEC:
2749     case VAR_LOCATION:
2750       return 0;
2751 
2752     case CLOBBER:
2753       /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
2754 	 when some combination can't be done.  If we see one, don't think
2755 	 that we can simplify the expression.  */
2756       return (GET_MODE (x) != VOIDmode);
2757 
2758     case PRE_INC:
2759     case PRE_DEC:
2760     case POST_INC:
2761     case POST_DEC:
2762     case PRE_MODIFY:
2763     case POST_MODIFY:
2764     case CALL:
2765     case UNSPEC_VOLATILE:
2766       return 1;
2767 
2768     case MEM:
2769     case ASM_INPUT:
2770     case ASM_OPERANDS:
2771       if (MEM_VOLATILE_P (x))
2772 	return 1;
2773 
2774     default:
2775       break;
2776     }
2777 
2778   /* Recursively scan the operands of this expression.  */
2779 
2780   {
2781     const char *fmt = GET_RTX_FORMAT (code);
2782     int i;
2783 
2784     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2785       {
2786 	if (fmt[i] == 'e')
2787 	  {
2788 	    if (side_effects_p (XEXP (x, i)))
2789 	      return 1;
2790 	  }
2791 	else if (fmt[i] == 'E')
2792 	  {
2793 	    int j;
2794 	    for (j = 0; j < XVECLEN (x, i); j++)
2795 	      if (side_effects_p (XVECEXP (x, i, j)))
2796 		return 1;
2797 	  }
2798       }
2799   }
2800   return 0;
2801 }
2802 
2803 /* Return nonzero if evaluating rtx X might cause a trap.
2804    FLAGS controls how to consider MEMs.  A nonzero means the context
2805    of the access may have changed from the original, such that the
2806    address may have become invalid.  */
2807 
2808 int
may_trap_p_1(const_rtx x,unsigned flags)2809 may_trap_p_1 (const_rtx x, unsigned flags)
2810 {
2811   int i;
2812   enum rtx_code code;
2813   const char *fmt;
2814 
2815   /* We make no distinction currently, but this function is part of
2816      the internal target-hooks ABI so we keep the parameter as
2817      "unsigned flags".  */
2818   bool code_changed = flags != 0;
2819 
2820   if (x == 0)
2821     return 0;
2822   code = GET_CODE (x);
2823   switch (code)
2824     {
2825       /* Handle these cases quickly.  */
2826     CASE_CONST_ANY:
2827     case SYMBOL_REF:
2828     case LABEL_REF:
2829     case CONST:
2830     case PC:
2831     case CC0:
2832     case REG:
2833     case SCRATCH:
2834       return 0;
2835 
2836     case UNSPEC:
2837       return targetm.unspec_may_trap_p (x, flags);
2838 
2839     case UNSPEC_VOLATILE:
2840     case ASM_INPUT:
2841     case TRAP_IF:
2842       return 1;
2843 
2844     case ASM_OPERANDS:
2845       return MEM_VOLATILE_P (x);
2846 
2847       /* Memory ref can trap unless it's a static var or a stack slot.  */
2848     case MEM:
2849       /* Recognize specific pattern of stack checking probes.  */
2850       if (flag_stack_check
2851 	  && MEM_VOLATILE_P (x)
2852 	  && XEXP (x, 0) == stack_pointer_rtx)
2853 	return 1;
2854       if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2855 	     reference; moving it out of context such as when moving code
2856 	     when optimizing, might cause its address to become invalid.  */
2857 	  code_changed
2858 	  || !MEM_NOTRAP_P (x))
2859 	{
2860 	  poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2861 	  return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2862 					GET_MODE (x), code_changed);
2863 	}
2864 
2865       return 0;
2866 
2867       /* Division by a non-constant might trap.  */
2868     case DIV:
2869     case MOD:
2870     case UDIV:
2871     case UMOD:
2872       if (HONOR_SNANS (x))
2873 	return 1;
2874       if (FLOAT_MODE_P (GET_MODE (x)))
2875 	return flag_trapping_math;
2876       if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2877 	return 1;
2878       if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
2879 	{
2880 	  /* For CONST_VECTOR, return 1 if any element is or might be zero.  */
2881 	  unsigned int n_elts;
2882 	  rtx op = XEXP (x, 1);
2883 	  if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
2884 	    {
2885 	      if (!CONST_VECTOR_DUPLICATE_P (op))
2886 		return 1;
2887 	      for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
2888 		if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
2889 		  return 1;
2890 	    }
2891 	  else
2892 	    for (unsigned i = 0; i < n_elts; i++)
2893 	      if (CONST_VECTOR_ELT (op, i) == const0_rtx)
2894 		return 1;
2895 	}
2896       break;
2897 
2898     case EXPR_LIST:
2899       /* An EXPR_LIST is used to represent a function call.  This
2900 	 certainly may trap.  */
2901       return 1;
2902 
2903     case GE:
2904     case GT:
2905     case LE:
2906     case LT:
2907     case LTGT:
2908     case COMPARE:
2909       /* Some floating point comparisons may trap.  */
2910       if (!flag_trapping_math)
2911 	break;
2912       /* ??? There is no machine independent way to check for tests that trap
2913 	 when COMPARE is used, though many targets do make this distinction.
2914 	 For instance, sparc uses CCFPE for compares which generate exceptions
2915 	 and CCFP for compares which do not generate exceptions.  */
2916       if (HONOR_NANS (x))
2917 	return 1;
2918       /* But often the compare has some CC mode, so check operand
2919 	 modes as well.  */
2920       if (HONOR_NANS (XEXP (x, 0))
2921 	  || HONOR_NANS (XEXP (x, 1)))
2922 	return 1;
2923       break;
2924 
2925     case EQ:
2926     case NE:
2927       if (HONOR_SNANS (x))
2928 	return 1;
2929       /* Often comparison is CC mode, so check operand modes.  */
2930       if (HONOR_SNANS (XEXP (x, 0))
2931 	  || HONOR_SNANS (XEXP (x, 1)))
2932 	return 1;
2933       break;
2934 
2935     case FIX:
2936       /* Conversion of floating point might trap.  */
2937       if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2938 	return 1;
2939       break;
2940 
2941     case NEG:
2942     case ABS:
2943     case SUBREG:
2944     case VEC_MERGE:
2945     case VEC_SELECT:
2946     case VEC_CONCAT:
2947     case VEC_DUPLICATE:
2948       /* These operations don't trap even with floating point.  */
2949       break;
2950 
2951     default:
2952       /* Any floating arithmetic may trap.  */
2953       if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2954 	return 1;
2955     }
2956 
2957   fmt = GET_RTX_FORMAT (code);
2958   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2959     {
2960       if (fmt[i] == 'e')
2961 	{
2962 	  if (may_trap_p_1 (XEXP (x, i), flags))
2963 	    return 1;
2964 	}
2965       else if (fmt[i] == 'E')
2966 	{
2967 	  int j;
2968 	  for (j = 0; j < XVECLEN (x, i); j++)
2969 	    if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2970 	      return 1;
2971 	}
2972     }
2973   return 0;
2974 }
2975 
2976 /* Return nonzero if evaluating rtx X might cause a trap.  */
2977 
2978 int
may_trap_p(const_rtx x)2979 may_trap_p (const_rtx x)
2980 {
2981   return may_trap_p_1 (x, 0);
2982 }
2983 
2984 /* Same as above, but additionally return nonzero if evaluating rtx X might
2985    cause a fault.  We define a fault for the purpose of this function as a
2986    erroneous execution condition that cannot be encountered during the normal
2987    execution of a valid program; the typical example is an unaligned memory
2988    access on a strict alignment machine.  The compiler guarantees that it
2989    doesn't generate code that will fault from a valid program, but this
2990    guarantee doesn't mean anything for individual instructions.  Consider
2991    the following example:
2992 
2993       struct S { int d; union { char *cp; int *ip; }; };
2994 
2995       int foo(struct S *s)
2996       {
2997 	if (s->d == 1)
2998 	  return *s->ip;
2999 	else
3000 	  return *s->cp;
3001       }
3002 
3003    on a strict alignment machine.  In a valid program, foo will never be
3004    invoked on a structure for which d is equal to 1 and the underlying
3005    unique field of the union not aligned on a 4-byte boundary, but the
3006    expression *s->ip might cause a fault if considered individually.
3007 
3008    At the RTL level, potentially problematic expressions will almost always
3009    verify may_trap_p; for example, the above dereference can be emitted as
3010    (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
3011    However, suppose that foo is inlined in a caller that causes s->cp to
3012    point to a local character variable and guarantees that s->d is not set
3013    to 1; foo may have been effectively translated into pseudo-RTL as:
3014 
3015       if ((reg:SI) == 1)
3016 	(set (reg:SI) (mem:SI (%fp - 7)))
3017       else
3018 	(set (reg:QI) (mem:QI (%fp - 7)))
3019 
3020    Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3021    memory reference to a stack slot, but it will certainly cause a fault
3022    on a strict alignment machine.  */
3023 
3024 int
may_trap_or_fault_p(const_rtx x)3025 may_trap_or_fault_p (const_rtx x)
3026 {
3027   return may_trap_p_1 (x, 1);
3028 }
3029 
3030 /* Replace any occurrence of FROM in X with TO.  The function does
3031    not enter into CONST_DOUBLE for the replace.
3032 
3033    Note that copying is not done so X must not be shared unless all copies
3034    are to be modified.
3035 
3036    ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3037    those pointer-equal ones.  */
3038 
3039 rtx
replace_rtx(rtx x,rtx from,rtx to,bool all_regs)3040 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3041 {
3042   int i, j;
3043   const char *fmt;
3044 
3045   if (x == from)
3046     return to;
3047 
3048   /* Allow this function to make replacements in EXPR_LISTs.  */
3049   if (x == 0)
3050     return 0;
3051 
3052   if (all_regs
3053       && REG_P (x)
3054       && REG_P (from)
3055       && REGNO (x) == REGNO (from))
3056     {
3057       gcc_assert (GET_MODE (x) == GET_MODE (from));
3058       return to;
3059     }
3060   else if (GET_CODE (x) == SUBREG)
3061     {
3062       rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3063 
3064       if (CONST_INT_P (new_rtx))
3065 	{
3066 	  x = simplify_subreg (GET_MODE (x), new_rtx,
3067 			       GET_MODE (SUBREG_REG (x)),
3068 			       SUBREG_BYTE (x));
3069 	  gcc_assert (x);
3070 	}
3071       else
3072 	SUBREG_REG (x) = new_rtx;
3073 
3074       return x;
3075     }
3076   else if (GET_CODE (x) == ZERO_EXTEND)
3077     {
3078       rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3079 
3080       if (CONST_INT_P (new_rtx))
3081 	{
3082 	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3083 					new_rtx, GET_MODE (XEXP (x, 0)));
3084 	  gcc_assert (x);
3085 	}
3086       else
3087 	XEXP (x, 0) = new_rtx;
3088 
3089       return x;
3090     }
3091 
3092   fmt = GET_RTX_FORMAT (GET_CODE (x));
3093   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3094     {
3095       if (fmt[i] == 'e')
3096 	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3097       else if (fmt[i] == 'E')
3098 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3099 	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3100 					   from, to, all_regs);
3101     }
3102 
3103   return x;
3104 }
3105 
3106 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL.  Also track
3107    the change in LABEL_NUSES if UPDATE_LABEL_NUSES.  */
3108 
3109 void
replace_label(rtx * loc,rtx old_label,rtx new_label,bool update_label_nuses)3110 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3111 {
3112   /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long.  */
3113   rtx x = *loc;
3114   if (JUMP_TABLE_DATA_P (x))
3115     {
3116       x = PATTERN (x);
3117       rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3118       int len = GET_NUM_ELEM (vec);
3119       for (int i = 0; i < len; ++i)
3120 	{
3121 	  rtx ref = RTVEC_ELT (vec, i);
3122 	  if (XEXP (ref, 0) == old_label)
3123 	    {
3124 	      XEXP (ref, 0) = new_label;
3125 	      if (update_label_nuses)
3126 		{
3127 		  ++LABEL_NUSES (new_label);
3128 		  --LABEL_NUSES (old_label);
3129 		}
3130 	    }
3131 	}
3132       return;
3133     }
3134 
3135   /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3136      field.  This is not handled by the iterator because it doesn't
3137      handle unprinted ('0') fields.  */
3138   if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3139     JUMP_LABEL (x) = new_label;
3140 
3141   subrtx_ptr_iterator::array_type array;
3142   FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3143     {
3144       rtx *loc = *iter;
3145       if (rtx x = *loc)
3146 	{
3147 	  if (GET_CODE (x) == SYMBOL_REF
3148 	      && CONSTANT_POOL_ADDRESS_P (x))
3149 	    {
3150 	      rtx c = get_pool_constant (x);
3151 	      if (rtx_referenced_p (old_label, c))
3152 		{
3153 		  /* Create a copy of constant C; replace the label inside
3154 		     but do not update LABEL_NUSES because uses in constant pool
3155 		     are not counted.  */
3156 		  rtx new_c = copy_rtx (c);
3157 		  replace_label (&new_c, old_label, new_label, false);
3158 
3159 		  /* Add the new constant NEW_C to constant pool and replace
3160 		     the old reference to constant by new reference.  */
3161 		  rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3162 		  *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3163 		}
3164 	    }
3165 
3166 	  if ((GET_CODE (x) == LABEL_REF
3167 	       || GET_CODE (x) == INSN_LIST)
3168 	      && XEXP (x, 0) == old_label)
3169 	    {
3170 	      XEXP (x, 0) = new_label;
3171 	      if (update_label_nuses)
3172 		{
3173 		  ++LABEL_NUSES (new_label);
3174 		  --LABEL_NUSES (old_label);
3175 		}
3176 	    }
3177 	}
3178     }
3179 }
3180 
3181 void
replace_label_in_insn(rtx_insn * insn,rtx_insn * old_label,rtx_insn * new_label,bool update_label_nuses)3182 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3183 		       rtx_insn *new_label, bool update_label_nuses)
3184 {
3185   rtx insn_as_rtx = insn;
3186   replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3187   gcc_checking_assert (insn_as_rtx == insn);
3188 }
3189 
3190 /* Return true if X is referenced in BODY.  */
3191 
3192 bool
rtx_referenced_p(const_rtx x,const_rtx body)3193 rtx_referenced_p (const_rtx x, const_rtx body)
3194 {
3195   subrtx_iterator::array_type array;
3196   FOR_EACH_SUBRTX (iter, array, body, ALL)
3197     if (const_rtx y = *iter)
3198       {
3199 	/* Check if a label_ref Y refers to label X.  */
3200 	if (GET_CODE (y) == LABEL_REF
3201 	    && LABEL_P (x)
3202 	    && label_ref_label (y) == x)
3203 	  return true;
3204 
3205 	if (rtx_equal_p (x, y))
3206 	  return true;
3207 
3208 	/* If Y is a reference to pool constant traverse the constant.  */
3209 	if (GET_CODE (y) == SYMBOL_REF
3210 	    && CONSTANT_POOL_ADDRESS_P (y))
3211 	  iter.substitute (get_pool_constant (y));
3212       }
3213   return false;
3214 }
3215 
3216 /* If INSN is a tablejump return true and store the label (before jump table) to
3217    *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
3218 
3219 bool
tablejump_p(const rtx_insn * insn,rtx_insn ** labelp,rtx_jump_table_data ** tablep)3220 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3221 	     rtx_jump_table_data **tablep)
3222 {
3223   if (!JUMP_P (insn))
3224     return false;
3225 
3226   rtx target = JUMP_LABEL (insn);
3227   if (target == NULL_RTX || ANY_RETURN_P (target))
3228     return false;
3229 
3230   rtx_insn *label = as_a<rtx_insn *> (target);
3231   rtx_insn *table = next_insn (label);
3232   if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3233     return false;
3234 
3235   if (labelp)
3236     *labelp = label;
3237   if (tablep)
3238     *tablep = as_a <rtx_jump_table_data *> (table);
3239   return true;
3240 }
3241 
3242 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3243    CASESI.  Return the insn pattern if so, NULL_RTX otherwise.  */
3244 
3245 rtx
tablejump_casesi_pattern(const rtx_insn * insn)3246 tablejump_casesi_pattern (const rtx_insn *insn)
3247 {
3248   rtx tmp;
3249 
3250   if ((tmp = single_set (insn)) != NULL
3251       && SET_DEST (tmp) == pc_rtx
3252       && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3253       && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3254     return tmp;
3255 
3256   return NULL_RTX;
3257 }
3258 
3259 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3260    constant that is not in the constant pool and not in the condition
3261    of an IF_THEN_ELSE.  */
3262 
3263 static int
computed_jump_p_1(const_rtx x)3264 computed_jump_p_1 (const_rtx x)
3265 {
3266   const enum rtx_code code = GET_CODE (x);
3267   int i, j;
3268   const char *fmt;
3269 
3270   switch (code)
3271     {
3272     case LABEL_REF:
3273     case PC:
3274       return 0;
3275 
3276     case CONST:
3277     CASE_CONST_ANY:
3278     case SYMBOL_REF:
3279     case REG:
3280       return 1;
3281 
3282     case MEM:
3283       return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3284 		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3285 
3286     case IF_THEN_ELSE:
3287       return (computed_jump_p_1 (XEXP (x, 1))
3288 	      || computed_jump_p_1 (XEXP (x, 2)));
3289 
3290     default:
3291       break;
3292     }
3293 
3294   fmt = GET_RTX_FORMAT (code);
3295   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3296     {
3297       if (fmt[i] == 'e'
3298 	  && computed_jump_p_1 (XEXP (x, i)))
3299 	return 1;
3300 
3301       else if (fmt[i] == 'E')
3302 	for (j = 0; j < XVECLEN (x, i); j++)
3303 	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
3304 	    return 1;
3305     }
3306 
3307   return 0;
3308 }
3309 
3310 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3311 
3312    Tablejumps and casesi insns are not considered indirect jumps;
3313    we can recognize them by a (use (label_ref)).  */
3314 
3315 int
computed_jump_p(const rtx_insn * insn)3316 computed_jump_p (const rtx_insn *insn)
3317 {
3318   int i;
3319   if (JUMP_P (insn))
3320     {
3321       rtx pat = PATTERN (insn);
3322 
3323       /* If we have a JUMP_LABEL set, we're not a computed jump.  */
3324       if (JUMP_LABEL (insn) != NULL)
3325 	return 0;
3326 
3327       if (GET_CODE (pat) == PARALLEL)
3328 	{
3329 	  int len = XVECLEN (pat, 0);
3330 	  int has_use_labelref = 0;
3331 
3332 	  for (i = len - 1; i >= 0; i--)
3333 	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3334 		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3335 		    == LABEL_REF))
3336 	      {
3337 	        has_use_labelref = 1;
3338 	        break;
3339 	      }
3340 
3341 	  if (! has_use_labelref)
3342 	    for (i = len - 1; i >= 0; i--)
3343 	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3344 		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3345 		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3346 		return 1;
3347 	}
3348       else if (GET_CODE (pat) == SET
3349 	       && SET_DEST (pat) == pc_rtx
3350 	       && computed_jump_p_1 (SET_SRC (pat)))
3351 	return 1;
3352     }
3353   return 0;
3354 }
3355 
3356 
3357 
3358 /* MEM has a PRE/POST-INC/DEC/MODIFY address X.  Extract the operands of
3359    the equivalent add insn and pass the result to FN, using DATA as the
3360    final argument.  */
3361 
3362 static int
for_each_inc_dec_find_inc_dec(rtx mem,for_each_inc_dec_fn fn,void * data)3363 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3364 {
3365   rtx x = XEXP (mem, 0);
3366   switch (GET_CODE (x))
3367     {
3368     case PRE_INC:
3369     case POST_INC:
3370       {
3371 	poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3372 	rtx r1 = XEXP (x, 0);
3373 	rtx c = gen_int_mode (size, GET_MODE (r1));
3374 	return fn (mem, x, r1, r1, c, data);
3375       }
3376 
3377     case PRE_DEC:
3378     case POST_DEC:
3379       {
3380 	poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3381 	rtx r1 = XEXP (x, 0);
3382 	rtx c = gen_int_mode (-size, GET_MODE (r1));
3383 	return fn (mem, x, r1, r1, c, data);
3384       }
3385 
3386     case PRE_MODIFY:
3387     case POST_MODIFY:
3388       {
3389 	rtx r1 = XEXP (x, 0);
3390 	rtx add = XEXP (x, 1);
3391 	return fn (mem, x, r1, add, NULL, data);
3392       }
3393 
3394     default:
3395       gcc_unreachable ();
3396     }
3397 }
3398 
3399 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3400    For each such autoinc operation found, call FN, passing it
3401    the innermost enclosing MEM, the operation itself, the RTX modified
3402    by the operation, two RTXs (the second may be NULL) that, once
3403    added, represent the value to be held by the modified RTX
3404    afterwards, and DATA.  FN is to return 0 to continue the
3405    traversal or any other value to have it returned to the caller of
3406    for_each_inc_dec.  */
3407 
3408 int
for_each_inc_dec(rtx x,for_each_inc_dec_fn fn,void * data)3409 for_each_inc_dec (rtx x,
3410 		  for_each_inc_dec_fn fn,
3411 		  void *data)
3412 {
3413   subrtx_var_iterator::array_type array;
3414   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3415     {
3416       rtx mem = *iter;
3417       if (mem
3418 	  && MEM_P (mem)
3419 	  && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3420 	{
3421 	  int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3422 	  if (res != 0)
3423 	    return res;
3424 	  iter.skip_subrtxes ();
3425 	}
3426     }
3427   return 0;
3428 }
3429 
3430 
3431 /* Searches X for any reference to REGNO, returning the rtx of the
3432    reference found if any.  Otherwise, returns NULL_RTX.  */
3433 
3434 rtx
regno_use_in(unsigned int regno,rtx x)3435 regno_use_in (unsigned int regno, rtx x)
3436 {
3437   const char *fmt;
3438   int i, j;
3439   rtx tem;
3440 
3441   if (REG_P (x) && REGNO (x) == regno)
3442     return x;
3443 
3444   fmt = GET_RTX_FORMAT (GET_CODE (x));
3445   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3446     {
3447       if (fmt[i] == 'e')
3448 	{
3449 	  if ((tem = regno_use_in (regno, XEXP (x, i))))
3450 	    return tem;
3451 	}
3452       else if (fmt[i] == 'E')
3453 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3454 	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3455 	    return tem;
3456     }
3457 
3458   return NULL_RTX;
3459 }
3460 
3461 /* Return a value indicating whether OP, an operand of a commutative
3462    operation, is preferred as the first or second operand.  The more
3463    positive the value, the stronger the preference for being the first
3464    operand.  */
3465 
3466 int
commutative_operand_precedence(rtx op)3467 commutative_operand_precedence (rtx op)
3468 {
3469   enum rtx_code code = GET_CODE (op);
3470 
3471   /* Constants always become the second operand.  Prefer "nice" constants.  */
3472   if (code == CONST_INT)
3473     return -10;
3474   if (code == CONST_WIDE_INT)
3475     return -9;
3476   if (code == CONST_POLY_INT)
3477     return -8;
3478   if (code == CONST_DOUBLE)
3479     return -8;
3480   if (code == CONST_FIXED)
3481     return -8;
3482   op = avoid_constant_pool_reference (op);
3483   code = GET_CODE (op);
3484 
3485   switch (GET_RTX_CLASS (code))
3486     {
3487     case RTX_CONST_OBJ:
3488       if (code == CONST_INT)
3489 	return -7;
3490       if (code == CONST_WIDE_INT)
3491 	return -6;
3492       if (code == CONST_POLY_INT)
3493 	return -5;
3494       if (code == CONST_DOUBLE)
3495 	return -5;
3496       if (code == CONST_FIXED)
3497 	return -5;
3498       return -4;
3499 
3500     case RTX_EXTRA:
3501       /* SUBREGs of objects should come second.  */
3502       if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3503         return -3;
3504       return 0;
3505 
3506     case RTX_OBJ:
3507       /* Complex expressions should be the first, so decrease priority
3508          of objects.  Prefer pointer objects over non pointer objects.  */
3509       if ((REG_P (op) && REG_POINTER (op))
3510 	  || (MEM_P (op) && MEM_POINTER (op)))
3511 	return -1;
3512       return -2;
3513 
3514     case RTX_COMM_ARITH:
3515       /* Prefer operands that are themselves commutative to be first.
3516          This helps to make things linear.  In particular,
3517          (and (and (reg) (reg)) (not (reg))) is canonical.  */
3518       return 4;
3519 
3520     case RTX_BIN_ARITH:
3521       /* If only one operand is a binary expression, it will be the first
3522          operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
3523          is canonical, although it will usually be further simplified.  */
3524       return 2;
3525 
3526     case RTX_UNARY:
3527       /* Then prefer NEG and NOT.  */
3528       if (code == NEG || code == NOT)
3529         return 1;
3530       /* FALLTHRU */
3531 
3532     default:
3533       return 0;
3534     }
3535 }
3536 
3537 /* Return 1 iff it is necessary to swap operands of commutative operation
3538    in order to canonicalize expression.  */
3539 
3540 bool
swap_commutative_operands_p(rtx x,rtx y)3541 swap_commutative_operands_p (rtx x, rtx y)
3542 {
3543   return (commutative_operand_precedence (x)
3544 	  < commutative_operand_precedence (y));
3545 }
3546 
3547 /* Return 1 if X is an autoincrement side effect and the register is
3548    not the stack pointer.  */
3549 int
auto_inc_p(const_rtx x)3550 auto_inc_p (const_rtx x)
3551 {
3552   switch (GET_CODE (x))
3553     {
3554     case PRE_INC:
3555     case POST_INC:
3556     case PRE_DEC:
3557     case POST_DEC:
3558     case PRE_MODIFY:
3559     case POST_MODIFY:
3560       /* There are no REG_INC notes for SP.  */
3561       if (XEXP (x, 0) != stack_pointer_rtx)
3562 	return 1;
3563     default:
3564       break;
3565     }
3566   return 0;
3567 }
3568 
3569 /* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
3570 int
loc_mentioned_in_p(rtx * loc,const_rtx in)3571 loc_mentioned_in_p (rtx *loc, const_rtx in)
3572 {
3573   enum rtx_code code;
3574   const char *fmt;
3575   int i, j;
3576 
3577   if (!in)
3578     return 0;
3579 
3580   code = GET_CODE (in);
3581   fmt = GET_RTX_FORMAT (code);
3582   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3583     {
3584       if (fmt[i] == 'e')
3585 	{
3586 	  if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3587 	    return 1;
3588 	}
3589       else if (fmt[i] == 'E')
3590 	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3591 	  if (loc == &XVECEXP (in, i, j)
3592 	      || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3593 	    return 1;
3594     }
3595   return 0;
3596 }
3597 
3598 /* Reinterpret a subreg as a bit extraction from an integer and return
3599    the position of the least significant bit of the extracted value.
3600    In other words, if the extraction were performed as a shift right
3601    and mask, return the number of bits to shift right.
3602 
3603    The outer value of the subreg has OUTER_BYTES bytes and starts at
3604    byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes.  */
3605 
3606 poly_uint64
subreg_size_lsb(poly_uint64 outer_bytes,poly_uint64 inner_bytes,poly_uint64 subreg_byte)3607 subreg_size_lsb (poly_uint64 outer_bytes,
3608 		 poly_uint64 inner_bytes,
3609 		 poly_uint64 subreg_byte)
3610 {
3611   poly_uint64 subreg_end, trailing_bytes, byte_pos;
3612 
3613   /* A paradoxical subreg begins at bit position 0.  */
3614   gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3615   if (maybe_gt (outer_bytes, inner_bytes))
3616     {
3617       gcc_checking_assert (known_eq (subreg_byte, 0U));
3618       return 0;
3619     }
3620 
3621   subreg_end = subreg_byte + outer_bytes;
3622   trailing_bytes = inner_bytes - subreg_end;
3623   if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3624     byte_pos = trailing_bytes;
3625   else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3626     byte_pos = subreg_byte;
3627   else
3628     {
3629       /* When bytes and words have opposite endianness, we must be able
3630 	 to split offsets into words and bytes at compile time.  */
3631       poly_uint64 leading_word_part
3632 	= force_align_down (subreg_byte, UNITS_PER_WORD);
3633       poly_uint64 trailing_word_part
3634 	= force_align_down (trailing_bytes, UNITS_PER_WORD);
3635       /* If the subreg crosses a word boundary ensure that
3636 	 it also begins and ends on a word boundary.  */
3637       gcc_assert (known_le (subreg_end - leading_word_part,
3638 			    (unsigned int) UNITS_PER_WORD)
3639 		  || (known_eq (leading_word_part, subreg_byte)
3640 		      && known_eq (trailing_word_part, trailing_bytes)));
3641       if (WORDS_BIG_ENDIAN)
3642 	byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3643       else
3644 	byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3645     }
3646 
3647   return byte_pos * BITS_PER_UNIT;
3648 }
3649 
3650 /* Given a subreg X, return the bit offset where the subreg begins
3651    (counting from the least significant bit of the reg).  */
3652 
3653 poly_uint64
subreg_lsb(const_rtx x)3654 subreg_lsb (const_rtx x)
3655 {
3656   return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3657 		       SUBREG_BYTE (x));
3658 }
3659 
3660 /* Return the subreg byte offset for a subreg whose outer value has
3661    OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3662    there are LSB_SHIFT *bits* between the lsb of the outer value and the
3663    lsb of the inner value.  This is the inverse of the calculation
3664    performed by subreg_lsb_1 (which converts byte offsets to bit shifts).  */
3665 
3666 poly_uint64
subreg_size_offset_from_lsb(poly_uint64 outer_bytes,poly_uint64 inner_bytes,poly_uint64 lsb_shift)3667 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3668 			     poly_uint64 lsb_shift)
3669 {
3670   /* A paradoxical subreg begins at bit position 0.  */
3671   gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3672   if (maybe_gt (outer_bytes, inner_bytes))
3673     {
3674       gcc_checking_assert (known_eq (lsb_shift, 0U));
3675       return 0;
3676     }
3677 
3678   poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3679   poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3680   if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3681     return upper_bytes;
3682   else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3683     return lower_bytes;
3684   else
3685     {
3686       /* When bytes and words have opposite endianness, we must be able
3687 	 to split offsets into words and bytes at compile time.  */
3688       poly_uint64 lower_word_part = force_align_down (lower_bytes,
3689 						      UNITS_PER_WORD);
3690       poly_uint64 upper_word_part = force_align_down (upper_bytes,
3691 						      UNITS_PER_WORD);
3692       if (WORDS_BIG_ENDIAN)
3693 	return upper_word_part + (lower_bytes - lower_word_part);
3694       else
3695 	return lower_word_part + (upper_bytes - upper_word_part);
3696     }
3697 }
3698 
3699 /* Fill in information about a subreg of a hard register.
3700    xregno - A regno of an inner hard subreg_reg (or what will become one).
3701    xmode  - The mode of xregno.
3702    offset - The byte offset.
3703    ymode  - The mode of a top level SUBREG (or what may become one).
3704    info   - Pointer to structure to fill in.
3705 
3706    Rather than considering one particular inner register (and thus one
3707    particular "outer" register) in isolation, this function really uses
3708    XREGNO as a model for a sequence of isomorphic hard registers.  Thus the
3709    function does not check whether adding INFO->offset to XREGNO gives
3710    a valid hard register; even if INFO->offset + XREGNO is out of range,
3711    there might be another register of the same type that is in range.
3712    Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3713    the new register, since that can depend on things like whether the final
3714    register number is even or odd.  Callers that want to check whether
3715    this particular subreg can be replaced by a simple (reg ...) should
3716    use simplify_subreg_regno.  */
3717 
3718 void
subreg_get_info(unsigned int xregno,machine_mode xmode,poly_uint64 offset,machine_mode ymode,struct subreg_info * info)3719 subreg_get_info (unsigned int xregno, machine_mode xmode,
3720 		 poly_uint64 offset, machine_mode ymode,
3721 		 struct subreg_info *info)
3722 {
3723   unsigned int nregs_xmode, nregs_ymode;
3724 
3725   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3726 
3727   poly_uint64 xsize = GET_MODE_SIZE (xmode);
3728   poly_uint64 ysize = GET_MODE_SIZE (ymode);
3729 
3730   bool rknown = false;
3731 
3732   /* If the register representation of a non-scalar mode has holes in it,
3733      we expect the scalar units to be concatenated together, with the holes
3734      distributed evenly among the scalar units.  Each scalar unit must occupy
3735      at least one register.  */
3736   if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3737     {
3738       /* As a consequence, we must be dealing with a constant number of
3739 	 scalars, and thus a constant offset and number of units.  */
3740       HOST_WIDE_INT coffset = offset.to_constant ();
3741       HOST_WIDE_INT cysize = ysize.to_constant ();
3742       nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3743       unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3744       scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3745       gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3746       gcc_assert (nregs_xmode
3747 		  == (nunits
3748 		      * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3749       gcc_assert (hard_regno_nregs (xregno, xmode)
3750 		  == hard_regno_nregs (xregno, xmode_unit) * nunits);
3751 
3752       /* You can only ask for a SUBREG of a value with holes in the middle
3753 	 if you don't cross the holes.  (Such a SUBREG should be done by
3754 	 picking a different register class, or doing it in memory if
3755 	 necessary.)  An example of a value with holes is XCmode on 32-bit
3756 	 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3757 	 3 for each part, but in memory it's two 128-bit parts.
3758 	 Padding is assumed to be at the end (not necessarily the 'high part')
3759 	 of each unit.  */
3760       if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3761 	  && (coffset / GET_MODE_SIZE (xmode_unit)
3762 	      != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3763 	{
3764 	  info->representable_p = false;
3765 	  rknown = true;
3766 	}
3767     }
3768   else
3769     nregs_xmode = hard_regno_nregs (xregno, xmode);
3770 
3771   nregs_ymode = hard_regno_nregs (xregno, ymode);
3772 
3773   /* Subreg sizes must be ordered, so that we can tell whether they are
3774      partial, paradoxical or complete.  */
3775   gcc_checking_assert (ordered_p (xsize, ysize));
3776 
3777   /* Paradoxical subregs are otherwise valid.  */
3778   if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3779     {
3780       info->representable_p = true;
3781       /* If this is a big endian paradoxical subreg, which uses more
3782 	 actual hard registers than the original register, we must
3783 	 return a negative offset so that we find the proper highpart
3784 	 of the register.
3785 
3786 	 We assume that the ordering of registers within a multi-register
3787 	 value has a consistent endianness: if bytes and register words
3788 	 have different endianness, the hard registers that make up a
3789 	 multi-register value must be at least word-sized.  */
3790       if (REG_WORDS_BIG_ENDIAN)
3791 	info->offset = (int) nregs_xmode - (int) nregs_ymode;
3792       else
3793 	info->offset = 0;
3794       info->nregs = nregs_ymode;
3795       return;
3796     }
3797 
3798   /* If registers store different numbers of bits in the different
3799      modes, we cannot generally form this subreg.  */
3800   poly_uint64 regsize_xmode, regsize_ymode;
3801   if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3802       && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3803       && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3804       && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3805     {
3806       if (!rknown
3807 	  && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3808 	      || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3809 	{
3810 	  info->representable_p = false;
3811 	  if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3812 	      || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3813 	    /* Checked by validate_subreg.  We must know at compile time
3814 	       which inner registers are being accessed.  */
3815 	    gcc_unreachable ();
3816 	  return;
3817 	}
3818       /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3819 	 would go outside of XMODE.  */
3820       if (!rknown && maybe_gt (ysize + offset, xsize))
3821 	{
3822 	  info->representable_p = false;
3823 	  info->nregs = nregs_ymode;
3824 	  if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3825 	    /* Checked by validate_subreg.  We must know at compile time
3826 	       which inner registers are being accessed.  */
3827 	    gcc_unreachable ();
3828 	  return;
3829 	}
3830       /* Quick exit for the simple and common case of extracting whole
3831 	 subregisters from a multiregister value.  */
3832       /* ??? It would be better to integrate this into the code below,
3833 	 if we can generalize the concept enough and figure out how
3834 	 odd-sized modes can coexist with the other weird cases we support.  */
3835       HOST_WIDE_INT count;
3836       if (!rknown
3837 	  && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3838 	  && known_eq (regsize_xmode, regsize_ymode)
3839 	  && constant_multiple_p (offset, regsize_ymode, &count))
3840 	{
3841 	  info->representable_p = true;
3842 	  info->nregs = nregs_ymode;
3843 	  info->offset = count;
3844 	  gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3845 	  return;
3846 	}
3847     }
3848 
3849   /* Lowpart subregs are otherwise valid.  */
3850   if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3851     {
3852       info->representable_p = true;
3853       rknown = true;
3854 
3855       if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3856 	{
3857 	  info->offset = 0;
3858 	  info->nregs = nregs_ymode;
3859 	  return;
3860 	}
3861     }
3862 
3863   /* Set NUM_BLOCKS to the number of independently-representable YMODE
3864      values there are in (reg:XMODE XREGNO).  We can view the register
3865      as consisting of this number of independent "blocks", where each
3866      block occupies NREGS_YMODE registers and contains exactly one
3867      representable YMODE value.  */
3868   gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3869   unsigned int num_blocks = nregs_xmode / nregs_ymode;
3870 
3871   /* Calculate the number of bytes in each block.  This must always
3872      be exact, otherwise we don't know how to verify the constraint.
3873      These conditions may be relaxed but subreg_regno_offset would
3874      need to be redesigned.  */
3875   poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3876 
3877   /* Get the number of the first block that contains the subreg and the byte
3878      offset of the subreg from the start of that block.  */
3879   unsigned int block_number;
3880   poly_uint64 subblock_offset;
3881   if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3882 			&subblock_offset))
3883     /* Checked by validate_subreg.  We must know at compile time which
3884        inner registers are being accessed.  */
3885     gcc_unreachable ();
3886 
3887   if (!rknown)
3888     {
3889       /* Only the lowpart of each block is representable.  */
3890       info->representable_p
3891 	= known_eq (subblock_offset,
3892 		    subreg_size_lowpart_offset (ysize, bytes_per_block));
3893       rknown = true;
3894     }
3895 
3896   /* We assume that the ordering of registers within a multi-register
3897      value has a consistent endianness: if bytes and register words
3898      have different endianness, the hard registers that make up a
3899      multi-register value must be at least word-sized.  */
3900   if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3901     /* The block number we calculated above followed memory endianness.
3902        Convert it to register endianness by counting back from the end.
3903        (Note that, because of the assumption above, each block must be
3904        at least word-sized.)  */
3905     info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3906   else
3907     info->offset = block_number * nregs_ymode;
3908   info->nregs = nregs_ymode;
3909 }
3910 
3911 /* This function returns the regno offset of a subreg expression.
3912    xregno - A regno of an inner hard subreg_reg (or what will become one).
3913    xmode  - The mode of xregno.
3914    offset - The byte offset.
3915    ymode  - The mode of a top level SUBREG (or what may become one).
3916    RETURN - The regno offset which would be used.  */
3917 unsigned int
subreg_regno_offset(unsigned int xregno,machine_mode xmode,poly_uint64 offset,machine_mode ymode)3918 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3919 		     poly_uint64 offset, machine_mode ymode)
3920 {
3921   struct subreg_info info;
3922   subreg_get_info (xregno, xmode, offset, ymode, &info);
3923   return info.offset;
3924 }
3925 
3926 /* This function returns true when the offset is representable via
3927    subreg_offset in the given regno.
3928    xregno - A regno of an inner hard subreg_reg (or what will become one).
3929    xmode  - The mode of xregno.
3930    offset - The byte offset.
3931    ymode  - The mode of a top level SUBREG (or what may become one).
3932    RETURN - Whether the offset is representable.  */
3933 bool
subreg_offset_representable_p(unsigned int xregno,machine_mode xmode,poly_uint64 offset,machine_mode ymode)3934 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3935 			       poly_uint64 offset, machine_mode ymode)
3936 {
3937   struct subreg_info info;
3938   subreg_get_info (xregno, xmode, offset, ymode, &info);
3939   return info.representable_p;
3940 }
3941 
3942 /* Return the number of a YMODE register to which
3943 
3944        (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3945 
3946    can be simplified.  Return -1 if the subreg can't be simplified.
3947 
3948    XREGNO is a hard register number.  */
3949 
3950 int
simplify_subreg_regno(unsigned int xregno,machine_mode xmode,poly_uint64 offset,machine_mode ymode)3951 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3952 		       poly_uint64 offset, machine_mode ymode)
3953 {
3954   struct subreg_info info;
3955   unsigned int yregno;
3956 
3957   /* Give the backend a chance to disallow the mode change.  */
3958   if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3959       && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3960       && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
3961     return -1;
3962 
3963   /* We shouldn't simplify stack-related registers.  */
3964   if ((!reload_completed || frame_pointer_needed)
3965       && xregno == FRAME_POINTER_REGNUM)
3966     return -1;
3967 
3968   if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3969       && xregno == ARG_POINTER_REGNUM)
3970     return -1;
3971 
3972   if (xregno == STACK_POINTER_REGNUM
3973       /* We should convert hard stack register in LRA if it is
3974 	 possible.  */
3975       && ! lra_in_progress)
3976     return -1;
3977 
3978   /* Try to get the register offset.  */
3979   subreg_get_info (xregno, xmode, offset, ymode, &info);
3980   if (!info.representable_p)
3981     return -1;
3982 
3983   /* Make sure that the offsetted register value is in range.  */
3984   yregno = xregno + info.offset;
3985   if (!HARD_REGISTER_NUM_P (yregno))
3986     return -1;
3987 
3988   /* See whether (reg:YMODE YREGNO) is valid.
3989 
3990      ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3991      This is a kludge to work around how complex FP arguments are passed
3992      on IA-64 and should be fixed.  See PR target/49226.  */
3993   if (!targetm.hard_regno_mode_ok (yregno, ymode)
3994       && targetm.hard_regno_mode_ok (xregno, xmode))
3995     return -1;
3996 
3997   return (int) yregno;
3998 }
3999 
4000 /* Return the final regno that a subreg expression refers to.  */
4001 unsigned int
subreg_regno(const_rtx x)4002 subreg_regno (const_rtx x)
4003 {
4004   unsigned int ret;
4005   rtx subreg = SUBREG_REG (x);
4006   int regno = REGNO (subreg);
4007 
4008   ret = regno + subreg_regno_offset (regno,
4009 				     GET_MODE (subreg),
4010 				     SUBREG_BYTE (x),
4011 				     GET_MODE (x));
4012   return ret;
4013 
4014 }
4015 
4016 /* Return the number of registers that a subreg expression refers
4017    to.  */
4018 unsigned int
subreg_nregs(const_rtx x)4019 subreg_nregs (const_rtx x)
4020 {
4021   return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4022 }
4023 
4024 /* Return the number of registers that a subreg REG with REGNO
4025    expression refers to.  This is a copy of the rtlanal.c:subreg_nregs
4026    changed so that the regno can be passed in. */
4027 
4028 unsigned int
subreg_nregs_with_regno(unsigned int regno,const_rtx x)4029 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4030 {
4031   struct subreg_info info;
4032   rtx subreg = SUBREG_REG (x);
4033 
4034   subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4035 		   &info);
4036   return info.nregs;
4037 }
4038 
4039 struct parms_set_data
4040 {
4041   int nregs;
4042   HARD_REG_SET regs;
4043 };
4044 
4045 /* Helper function for noticing stores to parameter registers.  */
4046 static void
parms_set(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)4047 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4048 {
4049   struct parms_set_data *const d = (struct parms_set_data *) data;
4050   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4051       && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4052     {
4053       CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4054       d->nregs--;
4055     }
4056 }
4057 
4058 /* Look backward for first parameter to be loaded.
4059    Note that loads of all parameters will not necessarily be
4060    found if CSE has eliminated some of them (e.g., an argument
4061    to the outer function is passed down as a parameter).
4062    Do not skip BOUNDARY.  */
4063 rtx_insn *
find_first_parameter_load(rtx_insn * call_insn,rtx_insn * boundary)4064 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4065 {
4066   struct parms_set_data parm;
4067   rtx p;
4068   rtx_insn *before, *first_set;
4069 
4070   /* Since different machines initialize their parameter registers
4071      in different orders, assume nothing.  Collect the set of all
4072      parameter registers.  */
4073   CLEAR_HARD_REG_SET (parm.regs);
4074   parm.nregs = 0;
4075   for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4076     if (GET_CODE (XEXP (p, 0)) == USE
4077 	&& REG_P (XEXP (XEXP (p, 0), 0))
4078 	&& !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4079       {
4080 	gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4081 
4082 	/* We only care about registers which can hold function
4083 	   arguments.  */
4084 	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4085 	  continue;
4086 
4087 	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4088 	parm.nregs++;
4089       }
4090   before = call_insn;
4091   first_set = call_insn;
4092 
4093   /* Search backward for the first set of a register in this set.  */
4094   while (parm.nregs && before != boundary)
4095     {
4096       before = PREV_INSN (before);
4097 
4098       /* It is possible that some loads got CSEed from one call to
4099          another.  Stop in that case.  */
4100       if (CALL_P (before))
4101 	break;
4102 
4103       /* Our caller needs either ensure that we will find all sets
4104          (in case code has not been optimized yet), or take care
4105          for possible labels in a way by setting boundary to preceding
4106          CODE_LABEL.  */
4107       if (LABEL_P (before))
4108 	{
4109 	  gcc_assert (before == boundary);
4110 	  break;
4111 	}
4112 
4113       if (INSN_P (before))
4114 	{
4115 	  int nregs_old = parm.nregs;
4116 	  note_stores (before, parms_set, &parm);
4117 	  /* If we found something that did not set a parameter reg,
4118 	     we're done.  Do not keep going, as that might result
4119 	     in hoisting an insn before the setting of a pseudo
4120 	     that is used by the hoisted insn. */
4121 	  if (nregs_old != parm.nregs)
4122 	    first_set = before;
4123 	  else
4124 	    break;
4125 	}
4126     }
4127   return first_set;
4128 }
4129 
4130 /* Return true if we should avoid inserting code between INSN and preceding
4131    call instruction.  */
4132 
4133 bool
keep_with_call_p(const rtx_insn * insn)4134 keep_with_call_p (const rtx_insn *insn)
4135 {
4136   rtx set;
4137 
4138   if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4139     {
4140       if (REG_P (SET_DEST (set))
4141 	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4142 	  && fixed_regs[REGNO (SET_DEST (set))]
4143 	  && general_operand (SET_SRC (set), VOIDmode))
4144 	return true;
4145       if (REG_P (SET_SRC (set))
4146 	  && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4147 	  && REG_P (SET_DEST (set))
4148 	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4149 	return true;
4150       /* There may be a stack pop just after the call and before the store
4151 	 of the return register.  Search for the actual store when deciding
4152 	 if we can break or not.  */
4153       if (SET_DEST (set) == stack_pointer_rtx)
4154 	{
4155 	  /* This CONST_CAST is okay because next_nonnote_insn just
4156 	     returns its argument and we assign it to a const_rtx
4157 	     variable.  */
4158 	  const rtx_insn *i2
4159 	    = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4160 	  if (i2 && keep_with_call_p (i2))
4161 	    return true;
4162 	}
4163     }
4164   return false;
4165 }
4166 
4167 /* Return true if LABEL is a target of JUMP_INSN.  This applies only
4168    to non-complex jumps.  That is, direct unconditional, conditional,
4169    and tablejumps, but not computed jumps or returns.  It also does
4170    not apply to the fallthru case of a conditional jump.  */
4171 
4172 bool
label_is_jump_target_p(const_rtx label,const rtx_insn * jump_insn)4173 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4174 {
4175   rtx tmp = JUMP_LABEL (jump_insn);
4176   rtx_jump_table_data *table;
4177 
4178   if (label == tmp)
4179     return true;
4180 
4181   if (tablejump_p (jump_insn, NULL, &table))
4182     {
4183       rtvec vec = table->get_labels ();
4184       int i, veclen = GET_NUM_ELEM (vec);
4185 
4186       for (i = 0; i < veclen; ++i)
4187 	if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4188 	  return true;
4189     }
4190 
4191   if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4192     return true;
4193 
4194   return false;
4195 }
4196 
4197 
4198 /* Return an estimate of the cost of computing rtx X.
4199    One use is in cse, to decide which expression to keep in the hash table.
4200    Another is in rtl generation, to pick the cheapest way to multiply.
4201    Other uses like the latter are expected in the future.
4202 
4203    X appears as operand OPNO in an expression with code OUTER_CODE.
4204    SPEED specifies whether costs optimized for speed or size should
4205    be returned.  */
4206 
4207 int
rtx_cost(rtx x,machine_mode mode,enum rtx_code outer_code,int opno,bool speed)4208 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4209 	  int opno, bool speed)
4210 {
4211   int i, j;
4212   enum rtx_code code;
4213   const char *fmt;
4214   int total;
4215   int factor;
4216   unsigned mode_size;
4217 
4218   if (x == 0)
4219     return 0;
4220 
4221   if (GET_CODE (x) == SET)
4222     /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4223        the mode for the factor.  */
4224     mode = GET_MODE (SET_DEST (x));
4225   else if (GET_MODE (x) != VOIDmode)
4226     mode = GET_MODE (x);
4227 
4228   mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
4229 
4230   /* A size N times larger than UNITS_PER_WORD likely needs N times as
4231      many insns, taking N times as long.  */
4232   factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
4233 
4234   /* Compute the default costs of certain things.
4235      Note that targetm.rtx_costs can override the defaults.  */
4236 
4237   code = GET_CODE (x);
4238   switch (code)
4239     {
4240     case MULT:
4241       /* Multiplication has time-complexity O(N*N), where N is the
4242 	 number of units (translated from digits) when using
4243 	 schoolbook long multiplication.  */
4244       total = factor * factor * COSTS_N_INSNS (5);
4245       break;
4246     case DIV:
4247     case UDIV:
4248     case MOD:
4249     case UMOD:
4250       /* Similarly, complexity for schoolbook long division.  */
4251       total = factor * factor * COSTS_N_INSNS (7);
4252       break;
4253     case USE:
4254       /* Used in combine.c as a marker.  */
4255       total = 0;
4256       break;
4257     default:
4258       total = factor * COSTS_N_INSNS (1);
4259     }
4260 
4261   switch (code)
4262     {
4263     case REG:
4264       return 0;
4265 
4266     case SUBREG:
4267       total = 0;
4268       /* If we can't tie these modes, make this expensive.  The larger
4269 	 the mode, the more expensive it is.  */
4270       if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4271 	return COSTS_N_INSNS (2 + factor);
4272       break;
4273 
4274     case TRUNCATE:
4275       if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4276 	{
4277 	  total = 0;
4278 	  break;
4279 	}
4280       /* FALLTHRU */
4281     default:
4282       if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4283 	return total;
4284       break;
4285     }
4286 
4287   /* Sum the costs of the sub-rtx's, plus cost of this operation,
4288      which is already in total.  */
4289 
4290   fmt = GET_RTX_FORMAT (code);
4291   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4292     if (fmt[i] == 'e')
4293       total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4294     else if (fmt[i] == 'E')
4295       for (j = 0; j < XVECLEN (x, i); j++)
4296 	total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4297 
4298   return total;
4299 }
4300 
4301 /* Fill in the structure C with information about both speed and size rtx
4302    costs for X, which is operand OPNO in an expression with code OUTER.  */
4303 
4304 void
get_full_rtx_cost(rtx x,machine_mode mode,enum rtx_code outer,int opno,struct full_rtx_costs * c)4305 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4306 		   struct full_rtx_costs *c)
4307 {
4308   c->speed = rtx_cost (x, mode, outer, opno, true);
4309   c->size = rtx_cost (x, mode, outer, opno, false);
4310 }
4311 
4312 
4313 /* Return cost of address expression X.
4314    Expect that X is properly formed address reference.
4315 
4316    SPEED parameter specify whether costs optimized for speed or size should
4317    be returned.  */
4318 
4319 int
address_cost(rtx x,machine_mode mode,addr_space_t as,bool speed)4320 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4321 {
4322   /* We may be asked for cost of various unusual addresses, such as operands
4323      of push instruction.  It is not worthwhile to complicate writing
4324      of the target hook by such cases.  */
4325 
4326   if (!memory_address_addr_space_p (mode, x, as))
4327     return 1000;
4328 
4329   return targetm.address_cost (x, mode, as, speed);
4330 }
4331 
4332 /* If the target doesn't override, compute the cost as with arithmetic.  */
4333 
4334 int
default_address_cost(rtx x,machine_mode,addr_space_t,bool speed)4335 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4336 {
4337   return rtx_cost (x, Pmode, MEM, 0, speed);
4338 }
4339 
4340 
4341 unsigned HOST_WIDE_INT
nonzero_bits(const_rtx x,machine_mode mode)4342 nonzero_bits (const_rtx x, machine_mode mode)
4343 {
4344   if (mode == VOIDmode)
4345     mode = GET_MODE (x);
4346   scalar_int_mode int_mode;
4347   if (!is_a <scalar_int_mode> (mode, &int_mode))
4348     return GET_MODE_MASK (mode);
4349   return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4350 }
4351 
4352 unsigned int
num_sign_bit_copies(const_rtx x,machine_mode mode)4353 num_sign_bit_copies (const_rtx x, machine_mode mode)
4354 {
4355   if (mode == VOIDmode)
4356     mode = GET_MODE (x);
4357   scalar_int_mode int_mode;
4358   if (!is_a <scalar_int_mode> (mode, &int_mode))
4359     return 1;
4360   return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4361 }
4362 
4363 /* Return true if nonzero_bits1 might recurse into both operands
4364    of X.  */
4365 
4366 static inline bool
nonzero_bits_binary_arith_p(const_rtx x)4367 nonzero_bits_binary_arith_p (const_rtx x)
4368 {
4369   if (!ARITHMETIC_P (x))
4370     return false;
4371   switch (GET_CODE (x))
4372     {
4373     case AND:
4374     case XOR:
4375     case IOR:
4376     case UMIN:
4377     case UMAX:
4378     case SMIN:
4379     case SMAX:
4380     case PLUS:
4381     case MINUS:
4382     case MULT:
4383     case DIV:
4384     case UDIV:
4385     case MOD:
4386     case UMOD:
4387       return true;
4388     default:
4389       return false;
4390     }
4391 }
4392 
4393 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4394    It avoids exponential behavior in nonzero_bits1 when X has
4395    identical subexpressions on the first or the second level.  */
4396 
4397 static unsigned HOST_WIDE_INT
cached_nonzero_bits(const_rtx x,scalar_int_mode mode,const_rtx known_x,machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)4398 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4399 		     machine_mode known_mode,
4400 		     unsigned HOST_WIDE_INT known_ret)
4401 {
4402   if (x == known_x && mode == known_mode)
4403     return known_ret;
4404 
4405   /* Try to find identical subexpressions.  If found call
4406      nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4407      precomputed value for the subexpression as KNOWN_RET.  */
4408 
4409   if (nonzero_bits_binary_arith_p (x))
4410     {
4411       rtx x0 = XEXP (x, 0);
4412       rtx x1 = XEXP (x, 1);
4413 
4414       /* Check the first level.  */
4415       if (x0 == x1)
4416 	return nonzero_bits1 (x, mode, x0, mode,
4417 			      cached_nonzero_bits (x0, mode, known_x,
4418 						   known_mode, known_ret));
4419 
4420       /* Check the second level.  */
4421       if (nonzero_bits_binary_arith_p (x0)
4422 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4423 	return nonzero_bits1 (x, mode, x1, mode,
4424 			      cached_nonzero_bits (x1, mode, known_x,
4425 						   known_mode, known_ret));
4426 
4427       if (nonzero_bits_binary_arith_p (x1)
4428 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4429 	return nonzero_bits1 (x, mode, x0, mode,
4430 			      cached_nonzero_bits (x0, mode, known_x,
4431 						   known_mode, known_ret));
4432     }
4433 
4434   return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4435 }
4436 
4437 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4438    We don't let nonzero_bits recur into num_sign_bit_copies, because that
4439    is less useful.  We can't allow both, because that results in exponential
4440    run time recursion.  There is a nullstone testcase that triggered
4441    this.  This macro avoids accidental uses of num_sign_bit_copies.  */
4442 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4443 
4444 /* Given an expression, X, compute which bits in X can be nonzero.
4445    We don't care about bits outside of those defined in MODE.
4446 
4447    For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4448    an arithmetic operation, we can do better.  */
4449 
4450 static unsigned HOST_WIDE_INT
nonzero_bits1(const_rtx x,scalar_int_mode mode,const_rtx known_x,machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)4451 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4452 	       machine_mode known_mode,
4453 	       unsigned HOST_WIDE_INT known_ret)
4454 {
4455   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4456   unsigned HOST_WIDE_INT inner_nz;
4457   enum rtx_code code = GET_CODE (x);
4458   machine_mode inner_mode;
4459   unsigned int inner_width;
4460   scalar_int_mode xmode;
4461 
4462   unsigned int mode_width = GET_MODE_PRECISION (mode);
4463 
4464   if (CONST_INT_P (x))
4465     {
4466       if (SHORT_IMMEDIATES_SIGN_EXTEND
4467 	  && INTVAL (x) > 0
4468 	  && mode_width < BITS_PER_WORD
4469 	  && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4470 	return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4471 
4472       return UINTVAL (x);
4473     }
4474 
4475   if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4476     return nonzero;
4477   unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4478 
4479   /* If X is wider than MODE, use its mode instead.  */
4480   if (xmode_width > mode_width)
4481     {
4482       mode = xmode;
4483       nonzero = GET_MODE_MASK (mode);
4484       mode_width = xmode_width;
4485     }
4486 
4487   if (mode_width > HOST_BITS_PER_WIDE_INT)
4488     /* Our only callers in this case look for single bit values.  So
4489        just return the mode mask.  Those tests will then be false.  */
4490     return nonzero;
4491 
4492   /* If MODE is wider than X, but both are a single word for both the host
4493      and target machines, we can compute this from which bits of the object
4494      might be nonzero in its own mode, taking into account the fact that, on
4495      CISC machines, accessing an object in a wider mode generally causes the
4496      high-order bits to become undefined, so they are not known to be zero.
4497      We extend this reasoning to RISC machines for operations that might not
4498      operate on the full registers.  */
4499   if (mode_width > xmode_width
4500       && xmode_width <= BITS_PER_WORD
4501       && xmode_width <= HOST_BITS_PER_WIDE_INT
4502       && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4503     {
4504       nonzero &= cached_nonzero_bits (x, xmode,
4505 				      known_x, known_mode, known_ret);
4506       nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4507       return nonzero;
4508     }
4509 
4510   /* Please keep nonzero_bits_binary_arith_p above in sync with
4511      the code in the switch below.  */
4512   switch (code)
4513     {
4514     case REG:
4515 #if defined(POINTERS_EXTEND_UNSIGNED)
4516       /* If pointers extend unsigned and this is a pointer in Pmode, say that
4517 	 all the bits above ptr_mode are known to be zero.  */
4518       /* As we do not know which address space the pointer is referring to,
4519 	 we can do this only if the target does not support different pointer
4520 	 or address modes depending on the address space.  */
4521       if (target_default_pointer_address_modes_p ()
4522 	  && POINTERS_EXTEND_UNSIGNED
4523 	  && xmode == Pmode
4524 	  && REG_POINTER (x)
4525 	  && !targetm.have_ptr_extend ())
4526 	nonzero &= GET_MODE_MASK (ptr_mode);
4527 #endif
4528 
4529       /* Include declared information about alignment of pointers.  */
4530       /* ??? We don't properly preserve REG_POINTER changes across
4531 	 pointer-to-integer casts, so we can't trust it except for
4532 	 things that we know must be pointers.  See execute/960116-1.c.  */
4533       if ((x == stack_pointer_rtx
4534 	   || x == frame_pointer_rtx
4535 	   || x == arg_pointer_rtx)
4536 	  && REGNO_POINTER_ALIGN (REGNO (x)))
4537 	{
4538 	  unsigned HOST_WIDE_INT alignment
4539 	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4540 
4541 #ifdef PUSH_ROUNDING
4542 	  /* If PUSH_ROUNDING is defined, it is possible for the
4543 	     stack to be momentarily aligned only to that amount,
4544 	     so we pick the least alignment.  */
4545 	  if (x == stack_pointer_rtx && PUSH_ARGS)
4546 	    {
4547 	      poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4548 	      alignment = MIN (known_alignment (rounded_1), alignment);
4549 	    }
4550 #endif
4551 
4552 	  nonzero &= ~(alignment - 1);
4553 	}
4554 
4555       {
4556 	unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4557 	rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4558 						  &nonzero_for_hook);
4559 
4560 	if (new_rtx)
4561 	  nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4562 						   known_mode, known_ret);
4563 
4564 	return nonzero_for_hook;
4565       }
4566 
4567     case MEM:
4568       /* In many, if not most, RISC machines, reading a byte from memory
4569 	 zeros the rest of the register.  Noticing that fact saves a lot
4570 	 of extra zero-extends.  */
4571       if (load_extend_op (xmode) == ZERO_EXTEND)
4572 	nonzero &= GET_MODE_MASK (xmode);
4573       break;
4574 
4575     case EQ:  case NE:
4576     case UNEQ:  case LTGT:
4577     case GT:  case GTU:  case UNGT:
4578     case LT:  case LTU:  case UNLT:
4579     case GE:  case GEU:  case UNGE:
4580     case LE:  case LEU:  case UNLE:
4581     case UNORDERED: case ORDERED:
4582       /* If this produces an integer result, we know which bits are set.
4583 	 Code here used to clear bits outside the mode of X, but that is
4584 	 now done above.  */
4585       /* Mind that MODE is the mode the caller wants to look at this
4586 	 operation in, and not the actual operation mode.  We can wind
4587 	 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4588 	 that describes the results of a vector compare.  */
4589       if (GET_MODE_CLASS (xmode) == MODE_INT
4590 	  && mode_width <= HOST_BITS_PER_WIDE_INT)
4591 	nonzero = STORE_FLAG_VALUE;
4592       break;
4593 
4594     case NEG:
4595 #if 0
4596       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4597 	 and num_sign_bit_copies.  */
4598       if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4599 	nonzero = 1;
4600 #endif
4601 
4602       if (xmode_width < mode_width)
4603 	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4604       break;
4605 
4606     case ABS:
4607 #if 0
4608       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4609 	 and num_sign_bit_copies.  */
4610       if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4611 	nonzero = 1;
4612 #endif
4613       break;
4614 
4615     case TRUNCATE:
4616       nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4617 				       known_x, known_mode, known_ret)
4618 		  & GET_MODE_MASK (mode));
4619       break;
4620 
4621     case ZERO_EXTEND:
4622       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4623 				      known_x, known_mode, known_ret);
4624       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4625 	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4626       break;
4627 
4628     case SIGN_EXTEND:
4629       /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4630 	 Otherwise, show all the bits in the outer mode but not the inner
4631 	 may be nonzero.  */
4632       inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4633 				      known_x, known_mode, known_ret);
4634       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4635 	{
4636 	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4637 	  if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4638 	    inner_nz |= (GET_MODE_MASK (mode)
4639 			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4640 	}
4641 
4642       nonzero &= inner_nz;
4643       break;
4644 
4645     case AND:
4646       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4647 				       known_x, known_mode, known_ret)
4648       		 & cached_nonzero_bits (XEXP (x, 1), mode,
4649 					known_x, known_mode, known_ret);
4650       break;
4651 
4652     case XOR:   case IOR:
4653     case UMIN:  case UMAX:  case SMIN:  case SMAX:
4654       {
4655 	unsigned HOST_WIDE_INT nonzero0
4656 	   = cached_nonzero_bits (XEXP (x, 0), mode,
4657 				  known_x, known_mode, known_ret);
4658 
4659 	/* Don't call nonzero_bits for the second time if it cannot change
4660 	   anything.  */
4661 	if ((nonzero & nonzero0) != nonzero)
4662 	  nonzero &= nonzero0
4663       		     | cached_nonzero_bits (XEXP (x, 1), mode,
4664 					    known_x, known_mode, known_ret);
4665       }
4666       break;
4667 
4668     case PLUS:  case MINUS:
4669     case MULT:
4670     case DIV:   case UDIV:
4671     case MOD:   case UMOD:
4672       /* We can apply the rules of arithmetic to compute the number of
4673 	 high- and low-order zero bits of these operations.  We start by
4674 	 computing the width (position of the highest-order nonzero bit)
4675 	 and the number of low-order zero bits for each value.  */
4676       {
4677 	unsigned HOST_WIDE_INT nz0
4678 	  = cached_nonzero_bits (XEXP (x, 0), mode,
4679 				 known_x, known_mode, known_ret);
4680 	unsigned HOST_WIDE_INT nz1
4681 	  = cached_nonzero_bits (XEXP (x, 1), mode,
4682 				 known_x, known_mode, known_ret);
4683 	int sign_index = xmode_width - 1;
4684 	int width0 = floor_log2 (nz0) + 1;
4685 	int width1 = floor_log2 (nz1) + 1;
4686 	int low0 = ctz_or_zero (nz0);
4687 	int low1 = ctz_or_zero (nz1);
4688 	unsigned HOST_WIDE_INT op0_maybe_minusp
4689 	  = nz0 & (HOST_WIDE_INT_1U << sign_index);
4690 	unsigned HOST_WIDE_INT op1_maybe_minusp
4691 	  = nz1 & (HOST_WIDE_INT_1U << sign_index);
4692 	unsigned int result_width = mode_width;
4693 	int result_low = 0;
4694 
4695 	switch (code)
4696 	  {
4697 	  case PLUS:
4698 	    result_width = MAX (width0, width1) + 1;
4699 	    result_low = MIN (low0, low1);
4700 	    break;
4701 	  case MINUS:
4702 	    result_low = MIN (low0, low1);
4703 	    break;
4704 	  case MULT:
4705 	    result_width = width0 + width1;
4706 	    result_low = low0 + low1;
4707 	    break;
4708 	  case DIV:
4709 	    if (width1 == 0)
4710 	      break;
4711 	    if (!op0_maybe_minusp && !op1_maybe_minusp)
4712 	      result_width = width0;
4713 	    break;
4714 	  case UDIV:
4715 	    if (width1 == 0)
4716 	      break;
4717 	    result_width = width0;
4718 	    break;
4719 	  case MOD:
4720 	    if (width1 == 0)
4721 	      break;
4722 	    if (!op0_maybe_minusp && !op1_maybe_minusp)
4723 	      result_width = MIN (width0, width1);
4724 	    result_low = MIN (low0, low1);
4725 	    break;
4726 	  case UMOD:
4727 	    if (width1 == 0)
4728 	      break;
4729 	    result_width = MIN (width0, width1);
4730 	    result_low = MIN (low0, low1);
4731 	    break;
4732 	  default:
4733 	    gcc_unreachable ();
4734 	  }
4735 
4736 	if (result_width < mode_width)
4737 	  nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4738 
4739 	if (result_low > 0)
4740 	  nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4741       }
4742       break;
4743 
4744     case ZERO_EXTRACT:
4745       if (CONST_INT_P (XEXP (x, 1))
4746 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4747 	nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4748       break;
4749 
4750     case SUBREG:
4751       /* If this is a SUBREG formed for a promoted variable that has
4752 	 been zero-extended, we know that at least the high-order bits
4753 	 are zero, though others might be too.  */
4754       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4755 	nonzero = GET_MODE_MASK (xmode)
4756 		  & cached_nonzero_bits (SUBREG_REG (x), xmode,
4757 					 known_x, known_mode, known_ret);
4758 
4759       /* If the inner mode is a single word for both the host and target
4760 	 machines, we can compute this from which bits of the inner
4761 	 object might be nonzero.  */
4762       inner_mode = GET_MODE (SUBREG_REG (x));
4763       if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4764 	  && inner_width <= BITS_PER_WORD
4765 	  && inner_width <= HOST_BITS_PER_WIDE_INT)
4766 	{
4767 	  nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4768 					  known_x, known_mode, known_ret);
4769 
4770           /* On a typical CISC machine, accessing an object in a wider mode
4771 	     causes the high-order bits to become undefined.  So they are
4772 	     not known to be zero.
4773 
4774 	     On a typical RISC machine, we only have to worry about the way
4775 	     loads are extended.  Otherwise, if we get a reload for the inner
4776 	     part, it may be loaded from the stack, and then we may lose all
4777 	     the zero bits that existed before the store to the stack.  */
4778 	  rtx_code extend_op;
4779 	  if ((!WORD_REGISTER_OPERATIONS
4780 	       || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4781 		   ? val_signbit_known_set_p (inner_mode, nonzero)
4782 		   : extend_op != ZERO_EXTEND)
4783 	       || !MEM_P (SUBREG_REG (x)))
4784 	      && xmode_width > inner_width)
4785 	    nonzero
4786 	      |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4787 	}
4788       break;
4789 
4790     case ASHIFT:
4791     case ASHIFTRT:
4792     case LSHIFTRT:
4793     case ROTATE:
4794     case ROTATERT:
4795       /* The nonzero bits are in two classes: any bits within MODE
4796 	 that aren't in xmode are always significant.  The rest of the
4797 	 nonzero bits are those that are significant in the operand of
4798 	 the shift when shifted the appropriate number of bits.  This
4799 	 shows that high-order bits are cleared by the right shift and
4800 	 low-order bits by left shifts.  */
4801       if (CONST_INT_P (XEXP (x, 1))
4802 	  && INTVAL (XEXP (x, 1)) >= 0
4803 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4804 	  && INTVAL (XEXP (x, 1)) < xmode_width)
4805 	{
4806 	  int count = INTVAL (XEXP (x, 1));
4807 	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4808 	  unsigned HOST_WIDE_INT op_nonzero
4809 	    = cached_nonzero_bits (XEXP (x, 0), mode,
4810 				   known_x, known_mode, known_ret);
4811 	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4812 	  unsigned HOST_WIDE_INT outer = 0;
4813 
4814 	  if (mode_width > xmode_width)
4815 	    outer = (op_nonzero & nonzero & ~mode_mask);
4816 
4817 	  switch (code)
4818 	    {
4819 	    case ASHIFT:
4820 	      inner <<= count;
4821 	      break;
4822 
4823 	    case LSHIFTRT:
4824 	      inner >>= count;
4825 	      break;
4826 
4827 	    case ASHIFTRT:
4828 	      inner >>= count;
4829 
4830 	      /* If the sign bit may have been nonzero before the shift, we
4831 		 need to mark all the places it could have been copied to
4832 		 by the shift as possibly nonzero.  */
4833 	      if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4834 		inner |= (((HOST_WIDE_INT_1U << count) - 1)
4835 			  << (xmode_width - count));
4836 	      break;
4837 
4838 	    case ROTATE:
4839 	      inner = (inner << (count % xmode_width)
4840 		       | (inner >> (xmode_width - (count % xmode_width))))
4841 		      & mode_mask;
4842 	      break;
4843 
4844 	    case ROTATERT:
4845 	      inner = (inner >> (count % xmode_width)
4846 		       | (inner << (xmode_width - (count % xmode_width))))
4847 		      & mode_mask;
4848 	      break;
4849 
4850 	    default:
4851 	      gcc_unreachable ();
4852 	    }
4853 
4854 	  nonzero &= (outer | inner);
4855 	}
4856       break;
4857 
4858     case FFS:
4859     case POPCOUNT:
4860       /* This is at most the number of bits in the mode.  */
4861       nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4862       break;
4863 
4864     case CLZ:
4865       /* If CLZ has a known value at zero, then the nonzero bits are
4866 	 that value, plus the number of bits in the mode minus one.  */
4867       if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4868 	nonzero
4869 	  |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4870       else
4871 	nonzero = -1;
4872       break;
4873 
4874     case CTZ:
4875       /* If CTZ has a known value at zero, then the nonzero bits are
4876 	 that value, plus the number of bits in the mode minus one.  */
4877       if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4878 	nonzero
4879 	  |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4880       else
4881 	nonzero = -1;
4882       break;
4883 
4884     case CLRSB:
4885       /* This is at most the number of bits in the mode minus 1.  */
4886       nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4887       break;
4888 
4889     case PARITY:
4890       nonzero = 1;
4891       break;
4892 
4893     case IF_THEN_ELSE:
4894       {
4895 	unsigned HOST_WIDE_INT nonzero_true
4896 	  = cached_nonzero_bits (XEXP (x, 1), mode,
4897 				 known_x, known_mode, known_ret);
4898 
4899 	/* Don't call nonzero_bits for the second time if it cannot change
4900 	   anything.  */
4901 	if ((nonzero & nonzero_true) != nonzero)
4902 	  nonzero &= nonzero_true
4903       		     | cached_nonzero_bits (XEXP (x, 2), mode,
4904 					    known_x, known_mode, known_ret);
4905       }
4906       break;
4907 
4908     default:
4909       break;
4910     }
4911 
4912   return nonzero;
4913 }
4914 
4915 /* See the macro definition above.  */
4916 #undef cached_num_sign_bit_copies
4917 
4918 
4919 /* Return true if num_sign_bit_copies1 might recurse into both operands
4920    of X.  */
4921 
4922 static inline bool
num_sign_bit_copies_binary_arith_p(const_rtx x)4923 num_sign_bit_copies_binary_arith_p (const_rtx x)
4924 {
4925   if (!ARITHMETIC_P (x))
4926     return false;
4927   switch (GET_CODE (x))
4928     {
4929     case IOR:
4930     case AND:
4931     case XOR:
4932     case SMIN:
4933     case SMAX:
4934     case UMIN:
4935     case UMAX:
4936     case PLUS:
4937     case MINUS:
4938     case MULT:
4939       return true;
4940     default:
4941       return false;
4942     }
4943 }
4944 
4945 /* The function cached_num_sign_bit_copies is a wrapper around
4946    num_sign_bit_copies1.  It avoids exponential behavior in
4947    num_sign_bit_copies1 when X has identical subexpressions on the
4948    first or the second level.  */
4949 
4950 static unsigned int
cached_num_sign_bit_copies(const_rtx x,scalar_int_mode mode,const_rtx known_x,machine_mode known_mode,unsigned int known_ret)4951 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4952 			    const_rtx known_x, machine_mode known_mode,
4953 			    unsigned int known_ret)
4954 {
4955   if (x == known_x && mode == known_mode)
4956     return known_ret;
4957 
4958   /* Try to find identical subexpressions.  If found call
4959      num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4960      the precomputed value for the subexpression as KNOWN_RET.  */
4961 
4962   if (num_sign_bit_copies_binary_arith_p (x))
4963     {
4964       rtx x0 = XEXP (x, 0);
4965       rtx x1 = XEXP (x, 1);
4966 
4967       /* Check the first level.  */
4968       if (x0 == x1)
4969 	return
4970 	  num_sign_bit_copies1 (x, mode, x0, mode,
4971 				cached_num_sign_bit_copies (x0, mode, known_x,
4972 							    known_mode,
4973 							    known_ret));
4974 
4975       /* Check the second level.  */
4976       if (num_sign_bit_copies_binary_arith_p (x0)
4977 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4978 	return
4979 	  num_sign_bit_copies1 (x, mode, x1, mode,
4980 				cached_num_sign_bit_copies (x1, mode, known_x,
4981 							    known_mode,
4982 							    known_ret));
4983 
4984       if (num_sign_bit_copies_binary_arith_p (x1)
4985 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4986 	return
4987 	  num_sign_bit_copies1 (x, mode, x0, mode,
4988 				cached_num_sign_bit_copies (x0, mode, known_x,
4989 							    known_mode,
4990 							    known_ret));
4991     }
4992 
4993   return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4994 }
4995 
4996 /* Return the number of bits at the high-order end of X that are known to
4997    be equal to the sign bit.  X will be used in mode MODE.  The returned
4998    value will always be between 1 and the number of bits in MODE.  */
4999 
5000 static unsigned int
num_sign_bit_copies1(const_rtx x,scalar_int_mode mode,const_rtx known_x,machine_mode known_mode,unsigned int known_ret)5001 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5002 		      machine_mode known_mode,
5003 		      unsigned int known_ret)
5004 {
5005   enum rtx_code code = GET_CODE (x);
5006   unsigned int bitwidth = GET_MODE_PRECISION (mode);
5007   int num0, num1, result;
5008   unsigned HOST_WIDE_INT nonzero;
5009 
5010   if (CONST_INT_P (x))
5011     {
5012       /* If the constant is negative, take its 1's complement and remask.
5013 	 Then see how many zero bits we have.  */
5014       nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5015       if (bitwidth <= HOST_BITS_PER_WIDE_INT
5016 	  && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5017 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
5018 
5019       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5020     }
5021 
5022   scalar_int_mode xmode, inner_mode;
5023   if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5024     return 1;
5025 
5026   unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5027 
5028   /* For a smaller mode, just ignore the high bits.  */
5029   if (bitwidth < xmode_width)
5030     {
5031       num0 = cached_num_sign_bit_copies (x, xmode,
5032 					 known_x, known_mode, known_ret);
5033       return MAX (1, num0 - (int) (xmode_width - bitwidth));
5034     }
5035 
5036   if (bitwidth > xmode_width)
5037     {
5038       /* If this machine does not do all register operations on the entire
5039 	 register and MODE is wider than the mode of X, we can say nothing
5040 	 at all about the high-order bits.  We extend this reasoning to RISC
5041 	 machines for operations that might not operate on full registers.  */
5042       if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5043 	return 1;
5044 
5045       /* Likewise on machines that do, if the mode of the object is smaller
5046 	 than a word and loads of that size don't sign extend, we can say
5047 	 nothing about the high order bits.  */
5048       if (xmode_width < BITS_PER_WORD
5049 	  && load_extend_op (xmode) != SIGN_EXTEND)
5050 	return 1;
5051     }
5052 
5053   /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5054      the code in the switch below.  */
5055   switch (code)
5056     {
5057     case REG:
5058 
5059 #if defined(POINTERS_EXTEND_UNSIGNED)
5060       /* If pointers extend signed and this is a pointer in Pmode, say that
5061 	 all the bits above ptr_mode are known to be sign bit copies.  */
5062       /* As we do not know which address space the pointer is referring to,
5063 	 we can do this only if the target does not support different pointer
5064 	 or address modes depending on the address space.  */
5065       if (target_default_pointer_address_modes_p ()
5066 	  && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5067 	  && mode == Pmode && REG_POINTER (x)
5068 	  && !targetm.have_ptr_extend ())
5069 	return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5070 #endif
5071 
5072       {
5073 	unsigned int copies_for_hook = 1, copies = 1;
5074 	rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5075 							 &copies_for_hook);
5076 
5077 	if (new_rtx)
5078 	  copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5079 					       known_mode, known_ret);
5080 
5081 	if (copies > 1 || copies_for_hook > 1)
5082 	  return MAX (copies, copies_for_hook);
5083 
5084 	/* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
5085       }
5086       break;
5087 
5088     case MEM:
5089       /* Some RISC machines sign-extend all loads of smaller than a word.  */
5090       if (load_extend_op (xmode) == SIGN_EXTEND)
5091 	return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5092       break;
5093 
5094     case SUBREG:
5095       /* If this is a SUBREG for a promoted object that is sign-extended
5096 	 and we are looking at it in a wider mode, we know that at least the
5097 	 high-order bits are known to be sign bit copies.  */
5098 
5099       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5100 	{
5101 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5102 					     known_x, known_mode, known_ret);
5103 	  return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5104 	}
5105 
5106       if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5107 	{
5108 	  /* For a smaller object, just ignore the high bits.  */
5109 	  if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5110 	    {
5111 	      num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5112 						 known_x, known_mode,
5113 						 known_ret);
5114 	      return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5115 					   - bitwidth));
5116 	    }
5117 
5118 	  /* For paradoxical SUBREGs on machines where all register operations
5119 	     affect the entire register, just look inside.  Note that we are
5120 	     passing MODE to the recursive call, so the number of sign bit
5121 	     copies will remain relative to that mode, not the inner mode.
5122 
5123 	     This works only if loads sign extend.  Otherwise, if we get a
5124 	     reload for the inner part, it may be loaded from the stack, and
5125 	     then we lose all sign bit copies that existed before the store
5126 	     to the stack.  */
5127 	  if (WORD_REGISTER_OPERATIONS
5128 	      && load_extend_op (inner_mode) == SIGN_EXTEND
5129 	      && paradoxical_subreg_p (x)
5130 	      && MEM_P (SUBREG_REG (x)))
5131 	    return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5132 					       known_x, known_mode, known_ret);
5133 	}
5134       break;
5135 
5136     case SIGN_EXTRACT:
5137       if (CONST_INT_P (XEXP (x, 1)))
5138 	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5139       break;
5140 
5141     case SIGN_EXTEND:
5142       if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5143 	return (bitwidth - GET_MODE_PRECISION (inner_mode)
5144 		+ cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5145 					      known_x, known_mode, known_ret));
5146       break;
5147 
5148     case TRUNCATE:
5149       /* For a smaller object, just ignore the high bits.  */
5150       inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5151       num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5152 					 known_x, known_mode, known_ret);
5153       return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5154 				    - bitwidth)));
5155 
5156     case NOT:
5157       return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5158 					 known_x, known_mode, known_ret);
5159 
5160     case ROTATE:       case ROTATERT:
5161       /* If we are rotating left by a number of bits less than the number
5162 	 of sign bit copies, we can just subtract that amount from the
5163 	 number.  */
5164       if (CONST_INT_P (XEXP (x, 1))
5165 	  && INTVAL (XEXP (x, 1)) >= 0
5166 	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5167 	{
5168 	  num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5169 					     known_x, known_mode, known_ret);
5170 	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5171 				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5172 	}
5173       break;
5174 
5175     case NEG:
5176       /* In general, this subtracts one sign bit copy.  But if the value
5177 	 is known to be positive, the number of sign bit copies is the
5178 	 same as that of the input.  Finally, if the input has just one bit
5179 	 that might be nonzero, all the bits are copies of the sign bit.  */
5180       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5181 					 known_x, known_mode, known_ret);
5182       if (bitwidth > HOST_BITS_PER_WIDE_INT)
5183 	return num0 > 1 ? num0 - 1 : 1;
5184 
5185       nonzero = nonzero_bits (XEXP (x, 0), mode);
5186       if (nonzero == 1)
5187 	return bitwidth;
5188 
5189       if (num0 > 1
5190 	  && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5191 	num0--;
5192 
5193       return num0;
5194 
5195     case IOR:   case AND:   case XOR:
5196     case SMIN:  case SMAX:  case UMIN:  case UMAX:
5197       /* Logical operations will preserve the number of sign-bit copies.
5198 	 MIN and MAX operations always return one of the operands.  */
5199       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5200 					 known_x, known_mode, known_ret);
5201       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5202 					 known_x, known_mode, known_ret);
5203 
5204       /* If num1 is clearing some of the top bits then regardless of
5205 	 the other term, we are guaranteed to have at least that many
5206 	 high-order zero bits.  */
5207       if (code == AND
5208 	  && num1 > 1
5209 	  && bitwidth <= HOST_BITS_PER_WIDE_INT
5210 	  && CONST_INT_P (XEXP (x, 1))
5211 	  && (UINTVAL (XEXP (x, 1))
5212 	      & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5213 	return num1;
5214 
5215       /* Similarly for IOR when setting high-order bits.  */
5216       if (code == IOR
5217 	  && num1 > 1
5218 	  && bitwidth <= HOST_BITS_PER_WIDE_INT
5219 	  && CONST_INT_P (XEXP (x, 1))
5220 	  && (UINTVAL (XEXP (x, 1))
5221 	      & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5222 	return num1;
5223 
5224       return MIN (num0, num1);
5225 
5226     case PLUS:  case MINUS:
5227       /* For addition and subtraction, we can have a 1-bit carry.  However,
5228 	 if we are subtracting 1 from a positive number, there will not
5229 	 be such a carry.  Furthermore, if the positive number is known to
5230 	 be 0 or 1, we know the result is either -1 or 0.  */
5231 
5232       if (code == PLUS && XEXP (x, 1) == constm1_rtx
5233 	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
5234 	{
5235 	  nonzero = nonzero_bits (XEXP (x, 0), mode);
5236 	  if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5237 	    return (nonzero == 1 || nonzero == 0 ? bitwidth
5238 		    : bitwidth - floor_log2 (nonzero) - 1);
5239 	}
5240 
5241       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5242 					 known_x, known_mode, known_ret);
5243       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5244 					 known_x, known_mode, known_ret);
5245       result = MAX (1, MIN (num0, num1) - 1);
5246 
5247       return result;
5248 
5249     case MULT:
5250       /* The number of bits of the product is the sum of the number of
5251 	 bits of both terms.  However, unless one of the terms if known
5252 	 to be positive, we must allow for an additional bit since negating
5253 	 a negative number can remove one sign bit copy.  */
5254 
5255       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5256 					 known_x, known_mode, known_ret);
5257       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5258 					 known_x, known_mode, known_ret);
5259 
5260       result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5261       if (result > 0
5262 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
5263 	      || (((nonzero_bits (XEXP (x, 0), mode)
5264 		    & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5265 		  && ((nonzero_bits (XEXP (x, 1), mode)
5266 		       & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5267 		      != 0))))
5268 	result--;
5269 
5270       return MAX (1, result);
5271 
5272     case UDIV:
5273       /* The result must be <= the first operand.  If the first operand
5274 	 has the high bit set, we know nothing about the number of sign
5275 	 bit copies.  */
5276       if (bitwidth > HOST_BITS_PER_WIDE_INT)
5277 	return 1;
5278       else if ((nonzero_bits (XEXP (x, 0), mode)
5279 		& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5280 	return 1;
5281       else
5282 	return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5283 					   known_x, known_mode, known_ret);
5284 
5285     case UMOD:
5286       /* The result must be <= the second operand.  If the second operand
5287 	 has (or just might have) the high bit set, we know nothing about
5288 	 the number of sign bit copies.  */
5289       if (bitwidth > HOST_BITS_PER_WIDE_INT)
5290 	return 1;
5291       else if ((nonzero_bits (XEXP (x, 1), mode)
5292 		& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5293 	return 1;
5294       else
5295 	return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5296 					   known_x, known_mode, known_ret);
5297 
5298     case DIV:
5299       /* Similar to unsigned division, except that we have to worry about
5300 	 the case where the divisor is negative, in which case we have
5301 	 to add 1.  */
5302       result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5303 					   known_x, known_mode, known_ret);
5304       if (result > 1
5305 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
5306 	      || (nonzero_bits (XEXP (x, 1), mode)
5307 		  & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5308 	result--;
5309 
5310       return result;
5311 
5312     case MOD:
5313       result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5314 					   known_x, known_mode, known_ret);
5315       if (result > 1
5316 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
5317 	      || (nonzero_bits (XEXP (x, 1), mode)
5318 		  & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5319 	result--;
5320 
5321       return result;
5322 
5323     case ASHIFTRT:
5324       /* Shifts by a constant add to the number of bits equal to the
5325 	 sign bit.  */
5326       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5327 					 known_x, known_mode, known_ret);
5328       if (CONST_INT_P (XEXP (x, 1))
5329 	  && INTVAL (XEXP (x, 1)) > 0
5330 	  && INTVAL (XEXP (x, 1)) < xmode_width)
5331 	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5332 
5333       return num0;
5334 
5335     case ASHIFT:
5336       /* Left shifts destroy copies.  */
5337       if (!CONST_INT_P (XEXP (x, 1))
5338 	  || INTVAL (XEXP (x, 1)) < 0
5339 	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5340 	  || INTVAL (XEXP (x, 1)) >= xmode_width)
5341 	return 1;
5342 
5343       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5344 					 known_x, known_mode, known_ret);
5345       return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5346 
5347     case IF_THEN_ELSE:
5348       num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5349 					 known_x, known_mode, known_ret);
5350       num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5351 					 known_x, known_mode, known_ret);
5352       return MIN (num0, num1);
5353 
5354     case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
5355     case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
5356     case GEU: case GTU: case LEU: case LTU:
5357     case UNORDERED: case ORDERED:
5358       /* If the constant is negative, take its 1's complement and remask.
5359 	 Then see how many zero bits we have.  */
5360       nonzero = STORE_FLAG_VALUE;
5361       if (bitwidth <= HOST_BITS_PER_WIDE_INT
5362 	  && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5363 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
5364 
5365       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5366 
5367     default:
5368       break;
5369     }
5370 
5371   /* If we haven't been able to figure it out by one of the above rules,
5372      see if some of the high-order bits are known to be zero.  If so,
5373      count those bits and return one less than that amount.  If we can't
5374      safely compute the mask for this mode, always return BITWIDTH.  */
5375 
5376   bitwidth = GET_MODE_PRECISION (mode);
5377   if (bitwidth > HOST_BITS_PER_WIDE_INT)
5378     return 1;
5379 
5380   nonzero = nonzero_bits (x, mode);
5381   return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5382 	 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5383 }
5384 
5385 /* Calculate the rtx_cost of a single instruction pattern.  A return value of
5386    zero indicates an instruction pattern without a known cost.  */
5387 
5388 int
pattern_cost(rtx pat,bool speed)5389 pattern_cost (rtx pat, bool speed)
5390 {
5391   int i, cost;
5392   rtx set;
5393 
5394   /* Extract the single set rtx from the instruction pattern.  We
5395      can't use single_set since we only have the pattern.  We also
5396      consider PARALLELs of a normal set and a single comparison.  In
5397      that case we use the cost of the non-comparison SET operation,
5398      which is most-likely to be the real cost of this operation.  */
5399   if (GET_CODE (pat) == SET)
5400     set = pat;
5401   else if (GET_CODE (pat) == PARALLEL)
5402     {
5403       set = NULL_RTX;
5404       rtx comparison = NULL_RTX;
5405 
5406       for (i = 0; i < XVECLEN (pat, 0); i++)
5407 	{
5408 	  rtx x = XVECEXP (pat, 0, i);
5409 	  if (GET_CODE (x) == SET)
5410 	    {
5411 	      if (GET_CODE (SET_SRC (x)) == COMPARE)
5412 		{
5413 		  if (comparison)
5414 		    return 0;
5415 		  comparison = x;
5416 		}
5417 	      else
5418 		{
5419 		  if (set)
5420 		    return 0;
5421 		  set = x;
5422 		}
5423 	    }
5424 	}
5425 
5426       if (!set && comparison)
5427 	set = comparison;
5428 
5429       if (!set)
5430 	return 0;
5431     }
5432   else
5433     return 0;
5434 
5435   cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5436   return cost > 0 ? cost : COSTS_N_INSNS (1);
5437 }
5438 
5439 /* Calculate the cost of a single instruction.  A return value of zero
5440    indicates an instruction pattern without a known cost.  */
5441 
5442 int
insn_cost(rtx_insn * insn,bool speed)5443 insn_cost (rtx_insn *insn, bool speed)
5444 {
5445   if (targetm.insn_cost)
5446     return targetm.insn_cost (insn, speed);
5447 
5448   return pattern_cost (PATTERN (insn), speed);
5449 }
5450 
5451 /* Returns estimate on cost of computing SEQ.  */
5452 
5453 unsigned
seq_cost(const rtx_insn * seq,bool speed)5454 seq_cost (const rtx_insn *seq, bool speed)
5455 {
5456   unsigned cost = 0;
5457   rtx set;
5458 
5459   for (; seq; seq = NEXT_INSN (seq))
5460     {
5461       set = single_set (seq);
5462       if (set)
5463         cost += set_rtx_cost (set, speed);
5464       else if (NONDEBUG_INSN_P (seq))
5465 	{
5466 	  int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5467 	  if (this_cost > 0)
5468 	    cost += this_cost;
5469 	  else
5470 	    cost++;
5471 	}
5472     }
5473 
5474   return cost;
5475 }
5476 
5477 /* Given an insn INSN and condition COND, return the condition in a
5478    canonical form to simplify testing by callers.  Specifically:
5479 
5480    (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5481    (2) Both operands will be machine operands; (cc0) will have been replaced.
5482    (3) If an operand is a constant, it will be the second operand.
5483    (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5484        for GE, GEU, and LEU.
5485 
5486    If the condition cannot be understood, or is an inequality floating-point
5487    comparison which needs to be reversed, 0 will be returned.
5488 
5489    If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5490 
5491    If EARLIEST is nonzero, it is a pointer to a place where the earliest
5492    insn used in locating the condition was found.  If a replacement test
5493    of the condition is desired, it should be placed in front of that
5494    insn and we will be sure that the inputs are still valid.
5495 
5496    If WANT_REG is nonzero, we wish the condition to be relative to that
5497    register, if possible.  Therefore, do not canonicalize the condition
5498    further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
5499    to be a compare to a CC mode register.
5500 
5501    If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5502    and at INSN.  */
5503 
5504 rtx
canonicalize_condition(rtx_insn * insn,rtx cond,int reverse,rtx_insn ** earliest,rtx want_reg,int allow_cc_mode,int valid_at_insn_p)5505 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5506 			rtx_insn **earliest,
5507 			rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5508 {
5509   enum rtx_code code;
5510   rtx_insn *prev = insn;
5511   const_rtx set;
5512   rtx tem;
5513   rtx op0, op1;
5514   int reverse_code = 0;
5515   machine_mode mode;
5516   basic_block bb = BLOCK_FOR_INSN (insn);
5517 
5518   code = GET_CODE (cond);
5519   mode = GET_MODE (cond);
5520   op0 = XEXP (cond, 0);
5521   op1 = XEXP (cond, 1);
5522 
5523   if (reverse)
5524     code = reversed_comparison_code (cond, insn);
5525   if (code == UNKNOWN)
5526     return 0;
5527 
5528   if (earliest)
5529     *earliest = insn;
5530 
5531   /* If we are comparing a register with zero, see if the register is set
5532      in the previous insn to a COMPARE or a comparison operation.  Perform
5533      the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5534      in cse.c  */
5535 
5536   while ((GET_RTX_CLASS (code) == RTX_COMPARE
5537 	  || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5538 	 && op1 == CONST0_RTX (GET_MODE (op0))
5539 	 && op0 != want_reg)
5540     {
5541       /* Set nonzero when we find something of interest.  */
5542       rtx x = 0;
5543 
5544       /* If comparison with cc0, import actual comparison from compare
5545 	 insn.  */
5546       if (op0 == cc0_rtx)
5547 	{
5548 	  if ((prev = prev_nonnote_insn (prev)) == 0
5549 	      || !NONJUMP_INSN_P (prev)
5550 	      || (set = single_set (prev)) == 0
5551 	      || SET_DEST (set) != cc0_rtx)
5552 	    return 0;
5553 
5554 	  op0 = SET_SRC (set);
5555 	  op1 = CONST0_RTX (GET_MODE (op0));
5556 	  if (earliest)
5557 	    *earliest = prev;
5558 	}
5559 
5560       /* If this is a COMPARE, pick up the two things being compared.  */
5561       if (GET_CODE (op0) == COMPARE)
5562 	{
5563 	  op1 = XEXP (op0, 1);
5564 	  op0 = XEXP (op0, 0);
5565 	  continue;
5566 	}
5567       else if (!REG_P (op0))
5568 	break;
5569 
5570       /* Go back to the previous insn.  Stop if it is not an INSN.  We also
5571 	 stop if it isn't a single set or if it has a REG_INC note because
5572 	 we don't want to bother dealing with it.  */
5573 
5574       prev = prev_nonnote_nondebug_insn (prev);
5575 
5576       if (prev == 0
5577 	  || !NONJUMP_INSN_P (prev)
5578 	  || FIND_REG_INC_NOTE (prev, NULL_RTX)
5579 	  /* In cfglayout mode, there do not have to be labels at the
5580 	     beginning of a block, or jumps at the end, so the previous
5581 	     conditions would not stop us when we reach bb boundary.  */
5582 	  || BLOCK_FOR_INSN (prev) != bb)
5583 	break;
5584 
5585       set = set_of (op0, prev);
5586 
5587       if (set
5588 	  && (GET_CODE (set) != SET
5589 	      || !rtx_equal_p (SET_DEST (set), op0)))
5590 	break;
5591 
5592       /* If this is setting OP0, get what it sets it to if it looks
5593 	 relevant.  */
5594       if (set)
5595 	{
5596 	  machine_mode inner_mode = GET_MODE (SET_DEST (set));
5597 #ifdef FLOAT_STORE_FLAG_VALUE
5598 	  REAL_VALUE_TYPE fsfv;
5599 #endif
5600 
5601 	  /* ??? We may not combine comparisons done in a CCmode with
5602 	     comparisons not done in a CCmode.  This is to aid targets
5603 	     like Alpha that have an IEEE compliant EQ instruction, and
5604 	     a non-IEEE compliant BEQ instruction.  The use of CCmode is
5605 	     actually artificial, simply to prevent the combination, but
5606 	     should not affect other platforms.
5607 
5608 	     However, we must allow VOIDmode comparisons to match either
5609 	     CCmode or non-CCmode comparison, because some ports have
5610 	     modeless comparisons inside branch patterns.
5611 
5612 	     ??? This mode check should perhaps look more like the mode check
5613 	     in simplify_comparison in combine.  */
5614 	  if (((GET_MODE_CLASS (mode) == MODE_CC)
5615 	       != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5616 	      && mode != VOIDmode
5617 	      && inner_mode != VOIDmode)
5618 	    break;
5619 	  if (GET_CODE (SET_SRC (set)) == COMPARE
5620 	      || (((code == NE
5621 		    || (code == LT
5622 			&& val_signbit_known_set_p (inner_mode,
5623 						    STORE_FLAG_VALUE))
5624 #ifdef FLOAT_STORE_FLAG_VALUE
5625 		    || (code == LT
5626 			&& SCALAR_FLOAT_MODE_P (inner_mode)
5627 			&& (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5628 			    REAL_VALUE_NEGATIVE (fsfv)))
5629 #endif
5630 		    ))
5631 		  && COMPARISON_P (SET_SRC (set))))
5632 	    x = SET_SRC (set);
5633 	  else if (((code == EQ
5634 		     || (code == GE
5635 			 && val_signbit_known_set_p (inner_mode,
5636 						     STORE_FLAG_VALUE))
5637 #ifdef FLOAT_STORE_FLAG_VALUE
5638 		     || (code == GE
5639 			 && SCALAR_FLOAT_MODE_P (inner_mode)
5640 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5641 			     REAL_VALUE_NEGATIVE (fsfv)))
5642 #endif
5643 		     ))
5644 		   && COMPARISON_P (SET_SRC (set)))
5645 	    {
5646 	      reverse_code = 1;
5647 	      x = SET_SRC (set);
5648 	    }
5649 	  else if ((code == EQ || code == NE)
5650 		   && GET_CODE (SET_SRC (set)) == XOR)
5651 	    /* Handle sequences like:
5652 
5653 	       (set op0 (xor X Y))
5654 	       ...(eq|ne op0 (const_int 0))...
5655 
5656 	       in which case:
5657 
5658 	       (eq op0 (const_int 0)) reduces to (eq X Y)
5659 	       (ne op0 (const_int 0)) reduces to (ne X Y)
5660 
5661 	       This is the form used by MIPS16, for example.  */
5662 	    x = SET_SRC (set);
5663 	  else
5664 	    break;
5665 	}
5666 
5667       else if (reg_set_p (op0, prev))
5668 	/* If this sets OP0, but not directly, we have to give up.  */
5669 	break;
5670 
5671       if (x)
5672 	{
5673 	  /* If the caller is expecting the condition to be valid at INSN,
5674 	     make sure X doesn't change before INSN.  */
5675 	  if (valid_at_insn_p)
5676 	    if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5677 	      break;
5678 	  if (COMPARISON_P (x))
5679 	    code = GET_CODE (x);
5680 	  if (reverse_code)
5681 	    {
5682 	      code = reversed_comparison_code (x, prev);
5683 	      if (code == UNKNOWN)
5684 		return 0;
5685 	      reverse_code = 0;
5686 	    }
5687 
5688 	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5689 	  if (earliest)
5690 	    *earliest = prev;
5691 	}
5692     }
5693 
5694   /* If constant is first, put it last.  */
5695   if (CONSTANT_P (op0))
5696     code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5697 
5698   /* If OP0 is the result of a comparison, we weren't able to find what
5699      was really being compared, so fail.  */
5700   if (!allow_cc_mode
5701       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5702     return 0;
5703 
5704   /* Canonicalize any ordered comparison with integers involving equality
5705      if we can do computations in the relevant mode and we do not
5706      overflow.  */
5707 
5708   scalar_int_mode op0_mode;
5709   if (CONST_INT_P (op1)
5710       && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5711       && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5712     {
5713       HOST_WIDE_INT const_val = INTVAL (op1);
5714       unsigned HOST_WIDE_INT uconst_val = const_val;
5715       unsigned HOST_WIDE_INT max_val
5716 	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5717 
5718       switch (code)
5719 	{
5720 	case LE:
5721 	  if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5722 	    code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5723 	  break;
5724 
5725 	/* When cross-compiling, const_val might be sign-extended from
5726 	   BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5727 	case GE:
5728 	  if ((const_val & max_val)
5729 	      != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5730 	    code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5731 	  break;
5732 
5733 	case LEU:
5734 	  if (uconst_val < max_val)
5735 	    code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5736 	  break;
5737 
5738 	case GEU:
5739 	  if (uconst_val != 0)
5740 	    code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5741 	  break;
5742 
5743 	default:
5744 	  break;
5745 	}
5746     }
5747 
5748   /* Never return CC0; return zero instead.  */
5749   if (CC0_P (op0))
5750     return 0;
5751 
5752   /* We promised to return a comparison.  */
5753   rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5754   if (COMPARISON_P (ret))
5755     return ret;
5756   return 0;
5757 }
5758 
5759 /* Given a jump insn JUMP, return the condition that will cause it to branch
5760    to its JUMP_LABEL.  If the condition cannot be understood, or is an
5761    inequality floating-point comparison which needs to be reversed, 0 will
5762    be returned.
5763 
5764    If EARLIEST is nonzero, it is a pointer to a place where the earliest
5765    insn used in locating the condition was found.  If a replacement test
5766    of the condition is desired, it should be placed in front of that
5767    insn and we will be sure that the inputs are still valid.  If EARLIEST
5768    is null, the returned condition will be valid at INSN.
5769 
5770    If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5771    compare CC mode register.
5772 
5773    VALID_AT_INSN_P is the same as for canonicalize_condition.  */
5774 
5775 rtx
get_condition(rtx_insn * jump,rtx_insn ** earliest,int allow_cc_mode,int valid_at_insn_p)5776 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5777 	       int valid_at_insn_p)
5778 {
5779   rtx cond;
5780   int reverse;
5781   rtx set;
5782 
5783   /* If this is not a standard conditional jump, we can't parse it.  */
5784   if (!JUMP_P (jump)
5785       || ! any_condjump_p (jump))
5786     return 0;
5787   set = pc_set (jump);
5788 
5789   cond = XEXP (SET_SRC (set), 0);
5790 
5791   /* If this branches to JUMP_LABEL when the condition is false, reverse
5792      the condition.  */
5793   reverse
5794     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5795       && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5796 
5797   return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5798 				 allow_cc_mode, valid_at_insn_p);
5799 }
5800 
5801 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5802    TARGET_MODE_REP_EXTENDED.
5803 
5804    Note that we assume that the property of
5805    TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5806    narrower than mode B.  I.e., if A is a mode narrower than B then in
5807    order to be able to operate on it in mode B, mode A needs to
5808    satisfy the requirements set by the representation of mode B.  */
5809 
5810 static void
init_num_sign_bit_copies_in_rep(void)5811 init_num_sign_bit_copies_in_rep (void)
5812 {
5813   opt_scalar_int_mode in_mode_iter;
5814   scalar_int_mode mode;
5815 
5816   FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5817     FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5818       {
5819 	scalar_int_mode in_mode = in_mode_iter.require ();
5820 	scalar_int_mode i;
5821 
5822 	/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5823 	   extends to the next widest mode.  */
5824 	gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5825 		    || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5826 
5827 	/* We are in in_mode.  Count how many bits outside of mode
5828 	   have to be copies of the sign-bit.  */
5829 	FOR_EACH_MODE (i, mode, in_mode)
5830 	  {
5831 	    /* This must always exist (for the last iteration it will be
5832 	       IN_MODE).  */
5833 	    scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5834 
5835 	    if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5836 		/* We can only check sign-bit copies starting from the
5837 		   top-bit.  In order to be able to check the bits we
5838 		   have already seen we pretend that subsequent bits
5839 		   have to be sign-bit copies too.  */
5840 		|| num_sign_bit_copies_in_rep [in_mode][mode])
5841 	      num_sign_bit_copies_in_rep [in_mode][mode]
5842 		+= GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5843 	  }
5844       }
5845 }
5846 
5847 /* Suppose that truncation from the machine mode of X to MODE is not a
5848    no-op.  See if there is anything special about X so that we can
5849    assume it already contains a truncated value of MODE.  */
5850 
5851 bool
truncated_to_mode(machine_mode mode,const_rtx x)5852 truncated_to_mode (machine_mode mode, const_rtx x)
5853 {
5854   /* This register has already been used in MODE without explicit
5855      truncation.  */
5856   if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5857     return true;
5858 
5859   /* See if we already satisfy the requirements of MODE.  If yes we
5860      can just switch to MODE.  */
5861   if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5862       && (num_sign_bit_copies (x, GET_MODE (x))
5863 	  >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5864     return true;
5865 
5866   return false;
5867 }
5868 
5869 /* Return true if RTX code CODE has a single sequence of zero or more
5870    "e" operands and no rtvec operands.  Initialize its rtx_all_subrtx_bounds
5871    entry in that case.  */
5872 
5873 static bool
setup_reg_subrtx_bounds(unsigned int code)5874 setup_reg_subrtx_bounds (unsigned int code)
5875 {
5876   const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5877   unsigned int i = 0;
5878   for (; format[i] != 'e'; ++i)
5879     {
5880       if (!format[i])
5881 	/* No subrtxes.  Leave start and count as 0.  */
5882 	return true;
5883       if (format[i] == 'E' || format[i] == 'V')
5884 	return false;
5885     }
5886 
5887   /* Record the sequence of 'e's.  */
5888   rtx_all_subrtx_bounds[code].start = i;
5889   do
5890     ++i;
5891   while (format[i] == 'e');
5892   rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5893   /* rtl-iter.h relies on this.  */
5894   gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5895 
5896   for (; format[i]; ++i)
5897     if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5898       return false;
5899 
5900   return true;
5901 }
5902 
5903 /* Initialize rtx_all_subrtx_bounds.  */
5904 void
init_rtlanal(void)5905 init_rtlanal (void)
5906 {
5907   int i;
5908   for (i = 0; i < NUM_RTX_CODE; i++)
5909     {
5910       if (!setup_reg_subrtx_bounds (i))
5911 	rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5912       if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5913 	rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5914     }
5915 
5916   init_num_sign_bit_copies_in_rep ();
5917 }
5918 
5919 /* Check whether this is a constant pool constant.  */
5920 bool
constant_pool_constant_p(rtx x)5921 constant_pool_constant_p (rtx x)
5922 {
5923   x = avoid_constant_pool_reference (x);
5924   return CONST_DOUBLE_P (x);
5925 }
5926 
5927 /* If M is a bitmask that selects a field of low-order bits within an item but
5928    not the entire word, return the length of the field.  Return -1 otherwise.
5929    M is used in machine mode MODE.  */
5930 
5931 int
low_bitmask_len(machine_mode mode,unsigned HOST_WIDE_INT m)5932 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5933 {
5934   if (mode != VOIDmode)
5935     {
5936       if (!HWI_COMPUTABLE_MODE_P (mode))
5937 	return -1;
5938       m &= GET_MODE_MASK (mode);
5939     }
5940 
5941   return exact_log2 (m + 1);
5942 }
5943 
5944 /* Return the mode of MEM's address.  */
5945 
5946 scalar_int_mode
get_address_mode(rtx mem)5947 get_address_mode (rtx mem)
5948 {
5949   machine_mode mode;
5950 
5951   gcc_assert (MEM_P (mem));
5952   mode = GET_MODE (XEXP (mem, 0));
5953   if (mode != VOIDmode)
5954     return as_a <scalar_int_mode> (mode);
5955   return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5956 }
5957 
5958 /* Split up a CONST_DOUBLE or integer constant rtx
5959    into two rtx's for single words,
5960    storing in *FIRST the word that comes first in memory in the target
5961    and in *SECOND the other.
5962 
5963    TODO: This function needs to be rewritten to work on any size
5964    integer.  */
5965 
5966 void
split_double(rtx value,rtx * first,rtx * second)5967 split_double (rtx value, rtx *first, rtx *second)
5968 {
5969   if (CONST_INT_P (value))
5970     {
5971       if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5972 	{
5973 	  /* In this case the CONST_INT holds both target words.
5974 	     Extract the bits from it into two word-sized pieces.
5975 	     Sign extend each half to HOST_WIDE_INT.  */
5976 	  unsigned HOST_WIDE_INT low, high;
5977 	  unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5978 	  unsigned bits_per_word = BITS_PER_WORD;
5979 
5980 	  /* Set sign_bit to the most significant bit of a word.  */
5981 	  sign_bit = 1;
5982 	  sign_bit <<= bits_per_word - 1;
5983 
5984 	  /* Set mask so that all bits of the word are set.  We could
5985 	     have used 1 << BITS_PER_WORD instead of basing the
5986 	     calculation on sign_bit.  However, on machines where
5987 	     HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5988 	     compiler warning, even though the code would never be
5989 	     executed.  */
5990 	  mask = sign_bit << 1;
5991 	  mask--;
5992 
5993 	  /* Set sign_extend as any remaining bits.  */
5994 	  sign_extend = ~mask;
5995 
5996 	  /* Pick the lower word and sign-extend it.  */
5997 	  low = INTVAL (value);
5998 	  low &= mask;
5999 	  if (low & sign_bit)
6000 	    low |= sign_extend;
6001 
6002 	  /* Pick the higher word, shifted to the least significant
6003 	     bits, and sign-extend it.  */
6004 	  high = INTVAL (value);
6005 	  high >>= bits_per_word - 1;
6006 	  high >>= 1;
6007 	  high &= mask;
6008 	  if (high & sign_bit)
6009 	    high |= sign_extend;
6010 
6011 	  /* Store the words in the target machine order.  */
6012 	  if (WORDS_BIG_ENDIAN)
6013 	    {
6014 	      *first = GEN_INT (high);
6015 	      *second = GEN_INT (low);
6016 	    }
6017 	  else
6018 	    {
6019 	      *first = GEN_INT (low);
6020 	      *second = GEN_INT (high);
6021 	    }
6022 	}
6023       else
6024 	{
6025 	  /* The rule for using CONST_INT for a wider mode
6026 	     is that we regard the value as signed.
6027 	     So sign-extend it.  */
6028 	  rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6029 	  if (WORDS_BIG_ENDIAN)
6030 	    {
6031 	      *first = high;
6032 	      *second = value;
6033 	    }
6034 	  else
6035 	    {
6036 	      *first = value;
6037 	      *second = high;
6038 	    }
6039 	}
6040     }
6041   else if (GET_CODE (value) == CONST_WIDE_INT)
6042     {
6043       /* All of this is scary code and needs to be converted to
6044 	 properly work with any size integer.  */
6045       gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6046       if (WORDS_BIG_ENDIAN)
6047 	{
6048 	  *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6049 	  *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6050 	}
6051       else
6052 	{
6053 	  *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6054 	  *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6055 	}
6056     }
6057   else if (!CONST_DOUBLE_P (value))
6058     {
6059       if (WORDS_BIG_ENDIAN)
6060 	{
6061 	  *first = const0_rtx;
6062 	  *second = value;
6063 	}
6064       else
6065 	{
6066 	  *first = value;
6067 	  *second = const0_rtx;
6068 	}
6069     }
6070   else if (GET_MODE (value) == VOIDmode
6071 	   /* This is the old way we did CONST_DOUBLE integers.  */
6072 	   || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6073     {
6074       /* In an integer, the words are defined as most and least significant.
6075 	 So order them by the target's convention.  */
6076       if (WORDS_BIG_ENDIAN)
6077 	{
6078 	  *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6079 	  *second = GEN_INT (CONST_DOUBLE_LOW (value));
6080 	}
6081       else
6082 	{
6083 	  *first = GEN_INT (CONST_DOUBLE_LOW (value));
6084 	  *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6085 	}
6086     }
6087   else
6088     {
6089       long l[2];
6090 
6091       /* Note, this converts the REAL_VALUE_TYPE to the target's
6092 	 format, splits up the floating point double and outputs
6093 	 exactly 32 bits of it into each of l[0] and l[1] --
6094 	 not necessarily BITS_PER_WORD bits.  */
6095       REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6096 
6097       /* If 32 bits is an entire word for the target, but not for the host,
6098 	 then sign-extend on the host so that the number will look the same
6099 	 way on the host that it would on the target.  See for instance
6100 	 simplify_unary_operation.  The #if is needed to avoid compiler
6101 	 warnings.  */
6102 
6103 #if HOST_BITS_PER_LONG > 32
6104       if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6105 	{
6106 	  if (l[0] & ((long) 1 << 31))
6107 	    l[0] |= ((unsigned long) (-1) << 32);
6108 	  if (l[1] & ((long) 1 << 31))
6109 	    l[1] |= ((unsigned long) (-1) << 32);
6110 	}
6111 #endif
6112 
6113       *first = GEN_INT (l[0]);
6114       *second = GEN_INT (l[1]);
6115     }
6116 }
6117 
6118 /* Return true if X is a sign_extract or zero_extract from the least
6119    significant bit.  */
6120 
6121 static bool
lsb_bitfield_op_p(rtx x)6122 lsb_bitfield_op_p (rtx x)
6123 {
6124   if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6125     {
6126       machine_mode mode = GET_MODE (XEXP (x, 0));
6127       HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6128       HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6129       poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6130 
6131       return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6132     }
6133   return false;
6134 }
6135 
6136 /* Strip outer address "mutations" from LOC and return a pointer to the
6137    inner value.  If OUTER_CODE is nonnull, store the code of the innermost
6138    stripped expression there.
6139 
6140    "Mutations" either convert between modes or apply some kind of
6141    extension, truncation or alignment.  */
6142 
6143 rtx *
strip_address_mutations(rtx * loc,enum rtx_code * outer_code)6144 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6145 {
6146   for (;;)
6147     {
6148       enum rtx_code code = GET_CODE (*loc);
6149       if (GET_RTX_CLASS (code) == RTX_UNARY)
6150 	/* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6151 	   used to convert between pointer sizes.  */
6152 	loc = &XEXP (*loc, 0);
6153       else if (lsb_bitfield_op_p (*loc))
6154 	/* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6155 	   acts as a combined truncation and extension.  */
6156 	loc = &XEXP (*loc, 0);
6157       else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6158 	/* (and ... (const_int -X)) is used to align to X bytes.  */
6159 	loc = &XEXP (*loc, 0);
6160       else if (code == SUBREG
6161                && !OBJECT_P (SUBREG_REG (*loc))
6162                && subreg_lowpart_p (*loc))
6163 	/* (subreg (operator ...) ...) inside and is used for mode
6164 	   conversion too.  */
6165 	loc = &SUBREG_REG (*loc);
6166       else
6167 	return loc;
6168       if (outer_code)
6169 	*outer_code = code;
6170     }
6171 }
6172 
6173 /* Return true if CODE applies some kind of scale.  The scaled value is
6174    is the first operand and the scale is the second.  */
6175 
6176 static bool
binary_scale_code_p(enum rtx_code code)6177 binary_scale_code_p (enum rtx_code code)
6178 {
6179   return (code == MULT
6180           || code == ASHIFT
6181           /* Needed by ARM targets.  */
6182           || code == ASHIFTRT
6183           || code == LSHIFTRT
6184           || code == ROTATE
6185           || code == ROTATERT);
6186 }
6187 
6188 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6189    (see address_info).  Return null otherwise.  */
6190 
6191 static rtx *
get_base_term(rtx * inner)6192 get_base_term (rtx *inner)
6193 {
6194   if (GET_CODE (*inner) == LO_SUM)
6195     inner = strip_address_mutations (&XEXP (*inner, 0));
6196   if (REG_P (*inner)
6197       || MEM_P (*inner)
6198       || GET_CODE (*inner) == SUBREG
6199       || GET_CODE (*inner) == SCRATCH)
6200     return inner;
6201   return 0;
6202 }
6203 
6204 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6205    (see address_info).  Return null otherwise.  */
6206 
6207 static rtx *
get_index_term(rtx * inner)6208 get_index_term (rtx *inner)
6209 {
6210   /* At present, only constant scales are allowed.  */
6211   if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6212     inner = strip_address_mutations (&XEXP (*inner, 0));
6213   if (REG_P (*inner)
6214       || MEM_P (*inner)
6215       || GET_CODE (*inner) == SUBREG
6216       || GET_CODE (*inner) == SCRATCH)
6217     return inner;
6218   return 0;
6219 }
6220 
6221 /* Set the segment part of address INFO to LOC, given that INNER is the
6222    unmutated value.  */
6223 
6224 static void
set_address_segment(struct address_info * info,rtx * loc,rtx * inner)6225 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6226 {
6227   gcc_assert (!info->segment);
6228   info->segment = loc;
6229   info->segment_term = inner;
6230 }
6231 
6232 /* Set the base part of address INFO to LOC, given that INNER is the
6233    unmutated value.  */
6234 
6235 static void
set_address_base(struct address_info * info,rtx * loc,rtx * inner)6236 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6237 {
6238   gcc_assert (!info->base);
6239   info->base = loc;
6240   info->base_term = inner;
6241 }
6242 
6243 /* Set the index part of address INFO to LOC, given that INNER is the
6244    unmutated value.  */
6245 
6246 static void
set_address_index(struct address_info * info,rtx * loc,rtx * inner)6247 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6248 {
6249   gcc_assert (!info->index);
6250   info->index = loc;
6251   info->index_term = inner;
6252 }
6253 
6254 /* Set the displacement part of address INFO to LOC, given that INNER
6255    is the constant term.  */
6256 
6257 static void
set_address_disp(struct address_info * info,rtx * loc,rtx * inner)6258 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6259 {
6260   gcc_assert (!info->disp);
6261   info->disp = loc;
6262   info->disp_term = inner;
6263 }
6264 
6265 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address.  Set up the
6266    rest of INFO accordingly.  */
6267 
6268 static void
decompose_incdec_address(struct address_info * info)6269 decompose_incdec_address (struct address_info *info)
6270 {
6271   info->autoinc_p = true;
6272 
6273   rtx *base = &XEXP (*info->inner, 0);
6274   set_address_base (info, base, base);
6275   gcc_checking_assert (info->base == info->base_term);
6276 
6277   /* These addresses are only valid when the size of the addressed
6278      value is known.  */
6279   gcc_checking_assert (info->mode != VOIDmode);
6280 }
6281 
6282 /* INFO->INNER describes a {PRE,POST}_MODIFY address.  Set up the rest
6283    of INFO accordingly.  */
6284 
6285 static void
decompose_automod_address(struct address_info * info)6286 decompose_automod_address (struct address_info *info)
6287 {
6288   info->autoinc_p = true;
6289 
6290   rtx *base = &XEXP (*info->inner, 0);
6291   set_address_base (info, base, base);
6292   gcc_checking_assert (info->base == info->base_term);
6293 
6294   rtx plus = XEXP (*info->inner, 1);
6295   gcc_assert (GET_CODE (plus) == PLUS);
6296 
6297   info->base_term2 = &XEXP (plus, 0);
6298   gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6299 
6300   rtx *step = &XEXP (plus, 1);
6301   rtx *inner_step = strip_address_mutations (step);
6302   if (CONSTANT_P (*inner_step))
6303     set_address_disp (info, step, inner_step);
6304   else
6305     set_address_index (info, step, inner_step);
6306 }
6307 
6308 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6309    values in [PTR, END).  Return a pointer to the end of the used array.  */
6310 
6311 static rtx **
extract_plus_operands(rtx * loc,rtx ** ptr,rtx ** end)6312 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6313 {
6314   rtx x = *loc;
6315   if (GET_CODE (x) == PLUS)
6316     {
6317       ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6318       ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6319     }
6320   else
6321     {
6322       gcc_assert (ptr != end);
6323       *ptr++ = loc;
6324     }
6325   return ptr;
6326 }
6327 
6328 /* Evaluate the likelihood of X being a base or index value, returning
6329    positive if it is likely to be a base, negative if it is likely to be
6330    an index, and 0 if we can't tell.  Make the magnitude of the return
6331    value reflect the amount of confidence we have in the answer.
6332 
6333    MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1.  */
6334 
6335 static int
baseness(rtx x,machine_mode mode,addr_space_t as,enum rtx_code outer_code,enum rtx_code index_code)6336 baseness (rtx x, machine_mode mode, addr_space_t as,
6337 	  enum rtx_code outer_code, enum rtx_code index_code)
6338 {
6339   /* Believe *_POINTER unless the address shape requires otherwise.  */
6340   if (REG_P (x) && REG_POINTER (x))
6341     return 2;
6342   if (MEM_P (x) && MEM_POINTER (x))
6343     return 2;
6344 
6345   if (REG_P (x) && HARD_REGISTER_P (x))
6346     {
6347       /* X is a hard register.  If it only fits one of the base
6348 	 or index classes, choose that interpretation.  */
6349       int regno = REGNO (x);
6350       bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6351       bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6352       if (base_p != index_p)
6353 	return base_p ? 1 : -1;
6354     }
6355   return 0;
6356 }
6357 
6358 /* INFO->INNER describes a normal, non-automodified address.
6359    Fill in the rest of INFO accordingly.  */
6360 
6361 static void
decompose_normal_address(struct address_info * info)6362 decompose_normal_address (struct address_info *info)
6363 {
6364   /* Treat the address as the sum of up to four values.  */
6365   rtx *ops[4];
6366   size_t n_ops = extract_plus_operands (info->inner, ops,
6367 					ops + ARRAY_SIZE (ops)) - ops;
6368 
6369   /* If there is more than one component, any base component is in a PLUS.  */
6370   if (n_ops > 1)
6371     info->base_outer_code = PLUS;
6372 
6373   /* Try to classify each sum operand now.  Leave those that could be
6374      either a base or an index in OPS.  */
6375   rtx *inner_ops[4];
6376   size_t out = 0;
6377   for (size_t in = 0; in < n_ops; ++in)
6378     {
6379       rtx *loc = ops[in];
6380       rtx *inner = strip_address_mutations (loc);
6381       if (CONSTANT_P (*inner))
6382 	set_address_disp (info, loc, inner);
6383       else if (GET_CODE (*inner) == UNSPEC)
6384 	set_address_segment (info, loc, inner);
6385       else
6386 	{
6387 	  /* The only other possibilities are a base or an index.  */
6388 	  rtx *base_term = get_base_term (inner);
6389 	  rtx *index_term = get_index_term (inner);
6390 	  gcc_assert (base_term || index_term);
6391 	  if (!base_term)
6392 	    set_address_index (info, loc, index_term);
6393 	  else if (!index_term)
6394 	    set_address_base (info, loc, base_term);
6395 	  else
6396 	    {
6397 	      gcc_assert (base_term == index_term);
6398 	      ops[out] = loc;
6399 	      inner_ops[out] = base_term;
6400 	      ++out;
6401 	    }
6402 	}
6403     }
6404 
6405   /* Classify the remaining OPS members as bases and indexes.  */
6406   if (out == 1)
6407     {
6408       /* If we haven't seen a base or an index yet, assume that this is
6409 	 the base.  If we were confident that another term was the base
6410 	 or index, treat the remaining operand as the other kind.  */
6411       if (!info->base)
6412 	set_address_base (info, ops[0], inner_ops[0]);
6413       else
6414 	set_address_index (info, ops[0], inner_ops[0]);
6415     }
6416   else if (out == 2)
6417     {
6418       /* In the event of a tie, assume the base comes first.  */
6419       if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6420 		    GET_CODE (*ops[1]))
6421 	  >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6422 		       GET_CODE (*ops[0])))
6423 	{
6424 	  set_address_base (info, ops[0], inner_ops[0]);
6425 	  set_address_index (info, ops[1], inner_ops[1]);
6426 	}
6427       else
6428 	{
6429 	  set_address_base (info, ops[1], inner_ops[1]);
6430 	  set_address_index (info, ops[0], inner_ops[0]);
6431 	}
6432     }
6433   else
6434     gcc_assert (out == 0);
6435 }
6436 
6437 /* Describe address *LOC in *INFO.  MODE is the mode of the addressed value,
6438    or VOIDmode if not known.  AS is the address space associated with LOC.
6439    OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise.  */
6440 
6441 void
decompose_address(struct address_info * info,rtx * loc,machine_mode mode,addr_space_t as,enum rtx_code outer_code)6442 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6443 		   addr_space_t as, enum rtx_code outer_code)
6444 {
6445   memset (info, 0, sizeof (*info));
6446   info->mode = mode;
6447   info->as = as;
6448   info->addr_outer_code = outer_code;
6449   info->outer = loc;
6450   info->inner = strip_address_mutations (loc, &outer_code);
6451   info->base_outer_code = outer_code;
6452   switch (GET_CODE (*info->inner))
6453     {
6454     case PRE_DEC:
6455     case PRE_INC:
6456     case POST_DEC:
6457     case POST_INC:
6458       decompose_incdec_address (info);
6459       break;
6460 
6461     case PRE_MODIFY:
6462     case POST_MODIFY:
6463       decompose_automod_address (info);
6464       break;
6465 
6466     default:
6467       decompose_normal_address (info);
6468       break;
6469     }
6470 }
6471 
6472 /* Describe address operand LOC in INFO.  */
6473 
6474 void
decompose_lea_address(struct address_info * info,rtx * loc)6475 decompose_lea_address (struct address_info *info, rtx *loc)
6476 {
6477   decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6478 }
6479 
6480 /* Describe the address of MEM X in INFO.  */
6481 
6482 void
decompose_mem_address(struct address_info * info,rtx x)6483 decompose_mem_address (struct address_info *info, rtx x)
6484 {
6485   gcc_assert (MEM_P (x));
6486   decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6487 		     MEM_ADDR_SPACE (x), MEM);
6488 }
6489 
6490 /* Update INFO after a change to the address it describes.  */
6491 
6492 void
update_address(struct address_info * info)6493 update_address (struct address_info *info)
6494 {
6495   decompose_address (info, info->outer, info->mode, info->as,
6496 		     info->addr_outer_code);
6497 }
6498 
6499 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6500    more complicated than that.  */
6501 
6502 HOST_WIDE_INT
get_index_scale(const struct address_info * info)6503 get_index_scale (const struct address_info *info)
6504 {
6505   rtx index = *info->index;
6506   if (GET_CODE (index) == MULT
6507       && CONST_INT_P (XEXP (index, 1))
6508       && info->index_term == &XEXP (index, 0))
6509     return INTVAL (XEXP (index, 1));
6510 
6511   if (GET_CODE (index) == ASHIFT
6512       && CONST_INT_P (XEXP (index, 1))
6513       && info->index_term == &XEXP (index, 0))
6514     return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6515 
6516   if (info->index == info->index_term)
6517     return 1;
6518 
6519   return 0;
6520 }
6521 
6522 /* Return the "index code" of INFO, in the form required by
6523    ok_for_base_p_1.  */
6524 
6525 enum rtx_code
get_index_code(const struct address_info * info)6526 get_index_code (const struct address_info *info)
6527 {
6528   if (info->index)
6529     return GET_CODE (*info->index);
6530 
6531   if (info->disp)
6532     return GET_CODE (*info->disp);
6533 
6534   return SCRATCH;
6535 }
6536 
6537 /* Return true if RTL X contains a SYMBOL_REF.  */
6538 
6539 bool
contains_symbol_ref_p(const_rtx x)6540 contains_symbol_ref_p (const_rtx x)
6541 {
6542   subrtx_iterator::array_type array;
6543   FOR_EACH_SUBRTX (iter, array, x, ALL)
6544     if (SYMBOL_REF_P (*iter))
6545       return true;
6546 
6547   return false;
6548 }
6549 
6550 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF.  */
6551 
6552 bool
contains_symbolic_reference_p(const_rtx x)6553 contains_symbolic_reference_p (const_rtx x)
6554 {
6555   subrtx_iterator::array_type array;
6556   FOR_EACH_SUBRTX (iter, array, x, ALL)
6557     if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6558       return true;
6559 
6560   return false;
6561 }
6562 
6563 /* Return true if RTL X contains a constant pool address.  */
6564 
6565 bool
contains_constant_pool_address_p(const_rtx x)6566 contains_constant_pool_address_p (const_rtx x)
6567 {
6568   subrtx_iterator::array_type array;
6569   FOR_EACH_SUBRTX (iter, array, x, ALL)
6570     if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6571       return true;
6572 
6573   return false;
6574 }
6575 
6576 
6577 /* Return true if X contains a thread-local symbol.  */
6578 
6579 bool
tls_referenced_p(const_rtx x)6580 tls_referenced_p (const_rtx x)
6581 {
6582   if (!targetm.have_tls)
6583     return false;
6584 
6585   subrtx_iterator::array_type array;
6586   FOR_EACH_SUBRTX (iter, array, x, ALL)
6587     if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6588       return true;
6589   return false;
6590 }
6591