1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package draw provides image composition functions.
6//
7// See "The Go image/draw package" for an introduction to this package:
8// https://golang.org/doc/articles/image_draw.html
9package draw
10
11import (
12	"image"
13	"image/color"
14	"image/internal/imageutil"
15)
16
17// m is the maximum color value returned by image.Color.RGBA.
18const m = 1<<16 - 1
19
20// Image is an image.Image with a Set method to change a single pixel.
21type Image interface {
22	image.Image
23	Set(x, y int, c color.Color)
24}
25
26// Quantizer produces a palette for an image.
27type Quantizer interface {
28	// Quantize appends up to cap(p) - len(p) colors to p and returns the
29	// updated palette suitable for converting m to a paletted image.
30	Quantize(p color.Palette, m image.Image) color.Palette
31}
32
33// Op is a Porter-Duff compositing operator.
34type Op int
35
36const (
37	// Over specifies ``(src in mask) over dst''.
38	Over Op = iota
39	// Src specifies ``src in mask''.
40	Src
41)
42
43// Draw implements the Drawer interface by calling the Draw function with this
44// Op.
45func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
46	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
47}
48
49// Drawer contains the Draw method.
50type Drawer interface {
51	// Draw aligns r.Min in dst with sp in src and then replaces the
52	// rectangle r in dst with the result of drawing src on dst.
53	Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
54}
55
56// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
57// diffusion.
58var FloydSteinberg Drawer = floydSteinberg{}
59
60type floydSteinberg struct{}
61
62func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
63	clip(dst, &r, src, &sp, nil, nil)
64	if r.Empty() {
65		return
66	}
67	drawPaletted(dst, r, src, sp, true)
68}
69
70// clip clips r against each image's bounds (after translating into the
71// destination image's coordinate space) and shifts the points sp and mp by
72// the same amount as the change in r.Min.
73func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
74	orig := r.Min
75	*r = r.Intersect(dst.Bounds())
76	*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
77	if mask != nil {
78		*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
79	}
80	dx := r.Min.X - orig.X
81	dy := r.Min.Y - orig.Y
82	if dx == 0 && dy == 0 {
83		return
84	}
85	sp.X += dx
86	sp.Y += dy
87	if mp != nil {
88		mp.X += dx
89		mp.Y += dy
90	}
91}
92
93func processBackward(dst image.Image, r image.Rectangle, src image.Image, sp image.Point) bool {
94	return dst == src &&
95		r.Overlaps(r.Add(sp.Sub(r.Min))) &&
96		(sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X))
97}
98
99// Draw calls DrawMask with a nil mask.
100func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
101	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
102}
103
104// DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
105// in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
106func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
107	clip(dst, &r, src, &sp, mask, &mp)
108	if r.Empty() {
109		return
110	}
111
112	// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
113	switch dst0 := dst.(type) {
114	case *image.RGBA:
115		if op == Over {
116			if mask == nil {
117				switch src0 := src.(type) {
118				case *image.Uniform:
119					sr, sg, sb, sa := src0.RGBA()
120					if sa == 0xffff {
121						drawFillSrc(dst0, r, sr, sg, sb, sa)
122					} else {
123						drawFillOver(dst0, r, sr, sg, sb, sa)
124					}
125					return
126				case *image.RGBA:
127					drawCopyOver(dst0, r, src0, sp)
128					return
129				case *image.NRGBA:
130					drawNRGBAOver(dst0, r, src0, sp)
131					return
132				case *image.YCbCr:
133					// An image.YCbCr is always fully opaque, and so if the
134					// mask is nil (i.e. fully opaque) then the op is
135					// effectively always Src. Similarly for image.Gray and
136					// image.CMYK.
137					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
138						return
139					}
140				case *image.Gray:
141					drawGray(dst0, r, src0, sp)
142					return
143				case *image.CMYK:
144					drawCMYK(dst0, r, src0, sp)
145					return
146				}
147			} else if mask0, ok := mask.(*image.Alpha); ok {
148				switch src0 := src.(type) {
149				case *image.Uniform:
150					drawGlyphOver(dst0, r, src0, mask0, mp)
151					return
152				}
153			}
154		} else {
155			if mask == nil {
156				switch src0 := src.(type) {
157				case *image.Uniform:
158					sr, sg, sb, sa := src0.RGBA()
159					drawFillSrc(dst0, r, sr, sg, sb, sa)
160					return
161				case *image.RGBA:
162					drawCopySrc(dst0, r, src0, sp)
163					return
164				case *image.NRGBA:
165					drawNRGBASrc(dst0, r, src0, sp)
166					return
167				case *image.YCbCr:
168					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
169						return
170					}
171				case *image.Gray:
172					drawGray(dst0, r, src0, sp)
173					return
174				case *image.CMYK:
175					drawCMYK(dst0, r, src0, sp)
176					return
177				}
178			}
179		}
180		drawRGBA(dst0, r, src, sp, mask, mp, op)
181		return
182	case *image.Paletted:
183		if op == Src && mask == nil && !processBackward(dst, r, src, sp) {
184			drawPaletted(dst0, r, src, sp, false)
185			return
186		}
187	}
188
189	x0, x1, dx := r.Min.X, r.Max.X, 1
190	y0, y1, dy := r.Min.Y, r.Max.Y, 1
191	if processBackward(dst, r, src, sp) {
192		x0, x1, dx = x1-1, x0-1, -1
193		y0, y1, dy = y1-1, y0-1, -1
194	}
195
196	var out color.RGBA64
197	sy := sp.Y + y0 - r.Min.Y
198	my := mp.Y + y0 - r.Min.Y
199	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
200		sx := sp.X + x0 - r.Min.X
201		mx := mp.X + x0 - r.Min.X
202		for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
203			ma := uint32(m)
204			if mask != nil {
205				_, _, _, ma = mask.At(mx, my).RGBA()
206			}
207			switch {
208			case ma == 0:
209				if op == Over {
210					// No-op.
211				} else {
212					dst.Set(x, y, color.Transparent)
213				}
214			case ma == m && op == Src:
215				dst.Set(x, y, src.At(sx, sy))
216			default:
217				sr, sg, sb, sa := src.At(sx, sy).RGBA()
218				if op == Over {
219					dr, dg, db, da := dst.At(x, y).RGBA()
220					a := m - (sa * ma / m)
221					out.R = uint16((dr*a + sr*ma) / m)
222					out.G = uint16((dg*a + sg*ma) / m)
223					out.B = uint16((db*a + sb*ma) / m)
224					out.A = uint16((da*a + sa*ma) / m)
225				} else {
226					out.R = uint16(sr * ma / m)
227					out.G = uint16(sg * ma / m)
228					out.B = uint16(sb * ma / m)
229					out.A = uint16(sa * ma / m)
230				}
231				// The third argument is &out instead of out (and out is
232				// declared outside of the inner loop) to avoid the implicit
233				// conversion to color.Color here allocating memory in the
234				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
235				dst.Set(x, y, &out)
236			}
237		}
238	}
239}
240
241func drawFillOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
242	// The 0x101 is here for the same reason as in drawRGBA.
243	a := (m - sa) * 0x101
244	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
245	i1 := i0 + r.Dx()*4
246	for y := r.Min.Y; y != r.Max.Y; y++ {
247		for i := i0; i < i1; i += 4 {
248			dr := &dst.Pix[i+0]
249			dg := &dst.Pix[i+1]
250			db := &dst.Pix[i+2]
251			da := &dst.Pix[i+3]
252
253			*dr = uint8((uint32(*dr)*a/m + sr) >> 8)
254			*dg = uint8((uint32(*dg)*a/m + sg) >> 8)
255			*db = uint8((uint32(*db)*a/m + sb) >> 8)
256			*da = uint8((uint32(*da)*a/m + sa) >> 8)
257		}
258		i0 += dst.Stride
259		i1 += dst.Stride
260	}
261}
262
263func drawFillSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
264	sr8 := uint8(sr >> 8)
265	sg8 := uint8(sg >> 8)
266	sb8 := uint8(sb >> 8)
267	sa8 := uint8(sa >> 8)
268	// The built-in copy function is faster than a straightforward for loop to fill the destination with
269	// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
270	// then use the first row as the slice source for the remaining rows.
271	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
272	i1 := i0 + r.Dx()*4
273	for i := i0; i < i1; i += 4 {
274		dst.Pix[i+0] = sr8
275		dst.Pix[i+1] = sg8
276		dst.Pix[i+2] = sb8
277		dst.Pix[i+3] = sa8
278	}
279	firstRow := dst.Pix[i0:i1]
280	for y := r.Min.Y + 1; y < r.Max.Y; y++ {
281		i0 += dst.Stride
282		i1 += dst.Stride
283		copy(dst.Pix[i0:i1], firstRow)
284	}
285}
286
287func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
288	dx, dy := r.Dx(), r.Dy()
289	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
290	s0 := src.PixOffset(sp.X, sp.Y)
291	var (
292		ddelta, sdelta int
293		i0, i1, idelta int
294	)
295	if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
296		ddelta = dst.Stride
297		sdelta = src.Stride
298		i0, i1, idelta = 0, dx*4, +4
299	} else {
300		// If the source start point is higher than the destination start point, or equal height but to the left,
301		// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
302		d0 += (dy - 1) * dst.Stride
303		s0 += (dy - 1) * src.Stride
304		ddelta = -dst.Stride
305		sdelta = -src.Stride
306		i0, i1, idelta = (dx-1)*4, -4, -4
307	}
308	for ; dy > 0; dy-- {
309		dpix := dst.Pix[d0:]
310		spix := src.Pix[s0:]
311		for i := i0; i != i1; i += idelta {
312			s := spix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
313			sr := uint32(s[0]) * 0x101
314			sg := uint32(s[1]) * 0x101
315			sb := uint32(s[2]) * 0x101
316			sa := uint32(s[3]) * 0x101
317
318			// The 0x101 is here for the same reason as in drawRGBA.
319			a := (m - sa) * 0x101
320
321			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
322			d[0] = uint8((uint32(d[0])*a/m + sr) >> 8)
323			d[1] = uint8((uint32(d[1])*a/m + sg) >> 8)
324			d[2] = uint8((uint32(d[2])*a/m + sb) >> 8)
325			d[3] = uint8((uint32(d[3])*a/m + sa) >> 8)
326		}
327		d0 += ddelta
328		s0 += sdelta
329	}
330}
331
332func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
333	n, dy := 4*r.Dx(), r.Dy()
334	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
335	s0 := src.PixOffset(sp.X, sp.Y)
336	var ddelta, sdelta int
337	if r.Min.Y <= sp.Y {
338		ddelta = dst.Stride
339		sdelta = src.Stride
340	} else {
341		// If the source start point is higher than the destination start
342		// point, then we compose the rows in bottom-up order instead of
343		// top-down. Unlike the drawCopyOver function, we don't have to check
344		// the x coordinates because the built-in copy function can handle
345		// overlapping slices.
346		d0 += (dy - 1) * dst.Stride
347		s0 += (dy - 1) * src.Stride
348		ddelta = -dst.Stride
349		sdelta = -src.Stride
350	}
351	for ; dy > 0; dy-- {
352		copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n])
353		d0 += ddelta
354		s0 += sdelta
355	}
356}
357
358func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
359	i0 := (r.Min.X - dst.Rect.Min.X) * 4
360	i1 := (r.Max.X - dst.Rect.Min.X) * 4
361	si0 := (sp.X - src.Rect.Min.X) * 4
362	yMax := r.Max.Y - dst.Rect.Min.Y
363
364	y := r.Min.Y - dst.Rect.Min.Y
365	sy := sp.Y - src.Rect.Min.Y
366	for ; y != yMax; y, sy = y+1, sy+1 {
367		dpix := dst.Pix[y*dst.Stride:]
368		spix := src.Pix[sy*src.Stride:]
369
370		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
371			// Convert from non-premultiplied color to pre-multiplied color.
372			s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857
373			sa := uint32(s[3]) * 0x101
374			sr := uint32(s[0]) * sa / 0xff
375			sg := uint32(s[1]) * sa / 0xff
376			sb := uint32(s[2]) * sa / 0xff
377
378			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
379			dr := uint32(d[0])
380			dg := uint32(d[1])
381			db := uint32(d[2])
382			da := uint32(d[3])
383
384			// The 0x101 is here for the same reason as in drawRGBA.
385			a := (m - sa) * 0x101
386
387			d[0] = uint8((dr*a/m + sr) >> 8)
388			d[1] = uint8((dg*a/m + sg) >> 8)
389			d[2] = uint8((db*a/m + sb) >> 8)
390			d[3] = uint8((da*a/m + sa) >> 8)
391		}
392	}
393}
394
395func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
396	i0 := (r.Min.X - dst.Rect.Min.X) * 4
397	i1 := (r.Max.X - dst.Rect.Min.X) * 4
398	si0 := (sp.X - src.Rect.Min.X) * 4
399	yMax := r.Max.Y - dst.Rect.Min.Y
400
401	y := r.Min.Y - dst.Rect.Min.Y
402	sy := sp.Y - src.Rect.Min.Y
403	for ; y != yMax; y, sy = y+1, sy+1 {
404		dpix := dst.Pix[y*dst.Stride:]
405		spix := src.Pix[sy*src.Stride:]
406
407		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
408			// Convert from non-premultiplied color to pre-multiplied color.
409			s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857
410			sa := uint32(s[3]) * 0x101
411			sr := uint32(s[0]) * sa / 0xff
412			sg := uint32(s[1]) * sa / 0xff
413			sb := uint32(s[2]) * sa / 0xff
414
415			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
416			d[0] = uint8(sr >> 8)
417			d[1] = uint8(sg >> 8)
418			d[2] = uint8(sb >> 8)
419			d[3] = uint8(sa >> 8)
420		}
421	}
422}
423
424func drawGray(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point) {
425	i0 := (r.Min.X - dst.Rect.Min.X) * 4
426	i1 := (r.Max.X - dst.Rect.Min.X) * 4
427	si0 := (sp.X - src.Rect.Min.X) * 1
428	yMax := r.Max.Y - dst.Rect.Min.Y
429
430	y := r.Min.Y - dst.Rect.Min.Y
431	sy := sp.Y - src.Rect.Min.Y
432	for ; y != yMax; y, sy = y+1, sy+1 {
433		dpix := dst.Pix[y*dst.Stride:]
434		spix := src.Pix[sy*src.Stride:]
435
436		for i, si := i0, si0; i < i1; i, si = i+4, si+1 {
437			p := spix[si]
438			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
439			d[0] = p
440			d[1] = p
441			d[2] = p
442			d[3] = 255
443		}
444	}
445}
446
447func drawCMYK(dst *image.RGBA, r image.Rectangle, src *image.CMYK, sp image.Point) {
448	i0 := (r.Min.X - dst.Rect.Min.X) * 4
449	i1 := (r.Max.X - dst.Rect.Min.X) * 4
450	si0 := (sp.X - src.Rect.Min.X) * 4
451	yMax := r.Max.Y - dst.Rect.Min.Y
452
453	y := r.Min.Y - dst.Rect.Min.Y
454	sy := sp.Y - src.Rect.Min.Y
455	for ; y != yMax; y, sy = y+1, sy+1 {
456		dpix := dst.Pix[y*dst.Stride:]
457		spix := src.Pix[sy*src.Stride:]
458
459		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
460			s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857
461			d := dpix[i : i+4 : i+4]
462			d[0], d[1], d[2] = color.CMYKToRGB(s[0], s[1], s[2], s[3])
463			d[3] = 255
464		}
465	}
466}
467
468func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) {
469	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
470	i1 := i0 + r.Dx()*4
471	mi0 := mask.PixOffset(mp.X, mp.Y)
472	sr, sg, sb, sa := src.RGBA()
473	for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 {
474		for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 {
475			ma := uint32(mask.Pix[mi])
476			if ma == 0 {
477				continue
478			}
479			ma |= ma << 8
480
481			// The 0x101 is here for the same reason as in drawRGBA.
482			a := (m - (sa * ma / m)) * 0x101
483
484			d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
485			d[0] = uint8((uint32(d[0])*a + sr*ma) / m >> 8)
486			d[1] = uint8((uint32(d[1])*a + sg*ma) / m >> 8)
487			d[2] = uint8((uint32(d[2])*a + sb*ma) / m >> 8)
488			d[3] = uint8((uint32(d[3])*a + sa*ma) / m >> 8)
489		}
490		i0 += dst.Stride
491		i1 += dst.Stride
492		mi0 += mask.Stride
493	}
494}
495
496func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
497	x0, x1, dx := r.Min.X, r.Max.X, 1
498	y0, y1, dy := r.Min.Y, r.Max.Y, 1
499	if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
500		if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
501			x0, x1, dx = x1-1, x0-1, -1
502			y0, y1, dy = y1-1, y0-1, -1
503		}
504	}
505
506	sy := sp.Y + y0 - r.Min.Y
507	my := mp.Y + y0 - r.Min.Y
508	sx0 := sp.X + x0 - r.Min.X
509	mx0 := mp.X + x0 - r.Min.X
510	sx1 := sx0 + (x1 - x0)
511	i0 := dst.PixOffset(x0, y0)
512	di := dx * 4
513	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
514		for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx {
515			ma := uint32(m)
516			if mask != nil {
517				_, _, _, ma = mask.At(mx, my).RGBA()
518			}
519			sr, sg, sb, sa := src.At(sx, sy).RGBA()
520			d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
521			if op == Over {
522				dr := uint32(d[0])
523				dg := uint32(d[1])
524				db := uint32(d[2])
525				da := uint32(d[3])
526
527				// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
528				// We work in 16-bit color, and so would normally do:
529				// dr |= dr << 8
530				// and similarly for dg, db and da, but instead we multiply a
531				// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
532				// This yields the same result, but is fewer arithmetic operations.
533				a := (m - (sa * ma / m)) * 0x101
534
535				d[0] = uint8((dr*a + sr*ma) / m >> 8)
536				d[1] = uint8((dg*a + sg*ma) / m >> 8)
537				d[2] = uint8((db*a + sb*ma) / m >> 8)
538				d[3] = uint8((da*a + sa*ma) / m >> 8)
539
540			} else {
541				d[0] = uint8(sr * ma / m >> 8)
542				d[1] = uint8(sg * ma / m >> 8)
543				d[2] = uint8(sb * ma / m >> 8)
544				d[3] = uint8(sa * ma / m >> 8)
545			}
546		}
547		i0 += dy * dst.Stride
548	}
549}
550
551// clamp clamps i to the interval [0, 0xffff].
552func clamp(i int32) int32 {
553	if i < 0 {
554		return 0
555	}
556	if i > 0xffff {
557		return 0xffff
558	}
559	return i
560}
561
562// sqDiff returns the squared-difference of x and y, shifted by 2 so that
563// adding four of those won't overflow a uint32.
564//
565// x and y are both assumed to be in the range [0, 0xffff].
566func sqDiff(x, y int32) uint32 {
567	// This is an optimized code relying on the overflow/wrap around
568	// properties of unsigned integers operations guaranteed by the language
569	// spec. See sqDiff from the image/color package for more details.
570	d := uint32(x - y)
571	return (d * d) >> 2
572}
573
574func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) {
575	// TODO(nigeltao): handle the case where the dst and src overlap.
576	// Does it even make sense to try and do Floyd-Steinberg whilst
577	// walking the image backward (right-to-left bottom-to-top)?
578
579	// If dst is an *image.Paletted, we have a fast path for dst.Set and
580	// dst.At. The dst.Set equivalent is a batch version of the algorithm
581	// used by color.Palette's Index method in image/color/color.go, plus
582	// optional Floyd-Steinberg error diffusion.
583	palette, pix, stride := [][4]int32(nil), []byte(nil), 0
584	if p, ok := dst.(*image.Paletted); ok {
585		palette = make([][4]int32, len(p.Palette))
586		for i, col := range p.Palette {
587			r, g, b, a := col.RGBA()
588			palette[i][0] = int32(r)
589			palette[i][1] = int32(g)
590			palette[i][2] = int32(b)
591			palette[i][3] = int32(a)
592		}
593		pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride
594	}
595
596	// quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization
597	// errors that have been propagated to the pixels in the current and next
598	// rows. The +2 simplifies calculation near the edges.
599	var quantErrorCurr, quantErrorNext [][4]int32
600	if floydSteinberg {
601		quantErrorCurr = make([][4]int32, r.Dx()+2)
602		quantErrorNext = make([][4]int32, r.Dx()+2)
603	}
604	pxRGBA := func(x, y int) (r, g, b, a uint32) { return src.At(x, y).RGBA() }
605	// Fast paths for special cases to avoid excessive use of the color.Color
606	// interface which escapes to the heap but need to be discovered for
607	// each pixel on r. See also https://golang.org/issues/15759.
608	switch src0 := src.(type) {
609	case *image.RGBA:
610		pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.RGBAAt(x, y).RGBA() }
611	case *image.NRGBA:
612		pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.NRGBAAt(x, y).RGBA() }
613	case *image.YCbCr:
614		pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.YCbCrAt(x, y).RGBA() }
615	}
616
617	// Loop over each source pixel.
618	out := color.RGBA64{A: 0xffff}
619	for y := 0; y != r.Dy(); y++ {
620		for x := 0; x != r.Dx(); x++ {
621			// er, eg and eb are the pixel's R,G,B values plus the
622			// optional Floyd-Steinberg error.
623			sr, sg, sb, sa := pxRGBA(sp.X+x, sp.Y+y)
624			er, eg, eb, ea := int32(sr), int32(sg), int32(sb), int32(sa)
625			if floydSteinberg {
626				er = clamp(er + quantErrorCurr[x+1][0]/16)
627				eg = clamp(eg + quantErrorCurr[x+1][1]/16)
628				eb = clamp(eb + quantErrorCurr[x+1][2]/16)
629				ea = clamp(ea + quantErrorCurr[x+1][3]/16)
630			}
631
632			if palette != nil {
633				// Find the closest palette color in Euclidean R,G,B,A space:
634				// the one that minimizes sum-squared-difference.
635				// TODO(nigeltao): consider smarter algorithms.
636				bestIndex, bestSum := 0, uint32(1<<32-1)
637				for index, p := range palette {
638					sum := sqDiff(er, p[0]) + sqDiff(eg, p[1]) + sqDiff(eb, p[2]) + sqDiff(ea, p[3])
639					if sum < bestSum {
640						bestIndex, bestSum = index, sum
641						if sum == 0 {
642							break
643						}
644					}
645				}
646				pix[y*stride+x] = byte(bestIndex)
647
648				if !floydSteinberg {
649					continue
650				}
651				er -= palette[bestIndex][0]
652				eg -= palette[bestIndex][1]
653				eb -= palette[bestIndex][2]
654				ea -= palette[bestIndex][3]
655
656			} else {
657				out.R = uint16(er)
658				out.G = uint16(eg)
659				out.B = uint16(eb)
660				out.A = uint16(ea)
661				// The third argument is &out instead of out (and out is
662				// declared outside of the inner loop) to avoid the implicit
663				// conversion to color.Color here allocating memory in the
664				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
665				dst.Set(r.Min.X+x, r.Min.Y+y, &out)
666
667				if !floydSteinberg {
668					continue
669				}
670				sr, sg, sb, sa = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
671				er -= int32(sr)
672				eg -= int32(sg)
673				eb -= int32(sb)
674				ea -= int32(sa)
675			}
676
677			// Propagate the Floyd-Steinberg quantization error.
678			quantErrorNext[x+0][0] += er * 3
679			quantErrorNext[x+0][1] += eg * 3
680			quantErrorNext[x+0][2] += eb * 3
681			quantErrorNext[x+0][3] += ea * 3
682			quantErrorNext[x+1][0] += er * 5
683			quantErrorNext[x+1][1] += eg * 5
684			quantErrorNext[x+1][2] += eb * 5
685			quantErrorNext[x+1][3] += ea * 5
686			quantErrorNext[x+2][0] += er * 1
687			quantErrorNext[x+2][1] += eg * 1
688			quantErrorNext[x+2][2] += eb * 1
689			quantErrorNext[x+2][3] += ea * 1
690			quantErrorCurr[x+2][0] += er * 7
691			quantErrorCurr[x+2][1] += eg * 7
692			quantErrorCurr[x+2][2] += eb * 7
693			quantErrorCurr[x+2][3] += ea * 7
694		}
695
696		// Recycle the quantization error buffers.
697		if floydSteinberg {
698			quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr
699			for i := range quantErrorNext {
700				quantErrorNext[i] = [4]int32{}
701			}
702		}
703	}
704}
705