1 // Copyright 2018 Developers of the Rand project.
2 // Copyright 2017-2018 The Rust Project Developers.
3 //
4 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7 // option. This file may not be copied, modified, or distributed
8 // except according to those terms.
9 
10 //! Random number generation traits
11 //!
12 //! This crate is mainly of interest to crates publishing implementations of
13 //! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
14 //! which re-exports the main traits and error types.
15 //!
16 //! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
17 //! generators and external random-number sources.
18 //!
19 //! [`SeedableRng`] is an extension trait for construction from fixed seeds and
20 //! other random number generators.
21 //!
22 //! [`Error`] is provided for error-handling. It is safe to use in `no_std`
23 //! environments.
24 //!
25 //! The [`impls`] and [`le`] sub-modules include a few small functions to assist
26 //! implementation of [`RngCore`].
27 //!
28 //! [`rand`]: https://docs.rs/rand
29 
30 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
31        html_favicon_url = "https://www.rust-lang.org/favicon.ico",
32        html_root_url = "https://rust-random.github.io/rand/")]
33 
34 #![deny(missing_docs)]
35 #![deny(missing_debug_implementations)]
36 #![doc(test(attr(allow(unused_variables), deny(warnings))))]
37 
38 #![allow(clippy::unreadable_literal)]
39 
40 #![cfg_attr(not(feature="std"), no_std)]
41 
42 
43 use core::default::Default;
44 use core::convert::AsMut;
45 use core::ptr::copy_nonoverlapping;
46 
47 #[cfg(all(feature="alloc", not(feature="std")))] extern crate alloc;
48 #[cfg(all(feature="alloc", not(feature="std")))] use alloc::boxed::Box;
49 
50 pub use error::Error;
51 #[cfg(feature="getrandom")] pub use os::OsRng;
52 
53 
54 mod error;
55 pub mod block;
56 pub mod impls;
57 pub mod le;
58 #[cfg(feature="getrandom")] mod os;
59 
60 
61 /// The core of a random number generator.
62 ///
63 /// This trait encapsulates the low-level functionality common to all
64 /// generators, and is the "back end", to be implemented by generators.
65 /// End users should normally use the `Rng` trait from the [`rand`] crate,
66 /// which is automatically implemented for every type implementing `RngCore`.
67 ///
68 /// Three different methods for generating random data are provided since the
69 /// optimal implementation of each is dependent on the type of generator. There
70 /// is no required relationship between the output of each; e.g. many
71 /// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
72 /// values and drop any remaining unused bytes.
73 ///
74 /// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error
75 /// handling; it is not deemed sufficiently useful to add equivalents for
76 /// [`next_u32`] or [`next_u64`] since the latter methods are almost always used
77 /// with algorithmic generators (PRNGs), which are normally infallible.
78 ///
79 /// Algorithmic generators implementing [`SeedableRng`] should normally have
80 /// *portable, reproducible* output, i.e. fix Endianness when converting values
81 /// to avoid platform differences, and avoid making any changes which affect
82 /// output (except by communicating that the release has breaking changes).
83 ///
84 /// Typically implementators will implement only one of the methods available
85 /// in this trait directly, then use the helper functions from the
86 /// [`impls`] module to implement the other methods.
87 ///
88 /// It is recommended that implementations also implement:
89 ///
90 /// - `Debug` with a custom implementation which *does not* print any internal
91 ///   state (at least, [`CryptoRng`]s should not risk leaking state through
92 ///   `Debug`).
93 /// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
94 ///   support optional at the crate level in PRNG libs.
95 /// - `Clone`, if possible.
96 /// - *never* implement `Copy` (accidental copies may cause repeated values).
97 /// - *do not* implement `Default` for pseudorandom generators, but instead
98 ///   implement [`SeedableRng`], to guide users towards proper seeding.
99 ///   External / hardware RNGs can choose to implement `Default`.
100 /// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
101 ///
102 /// # Example
103 ///
104 /// A simple example, obviously not generating very *random* output:
105 ///
106 /// ```
107 /// #![allow(dead_code)]
108 /// use rand_core::{RngCore, Error, impls};
109 ///
110 /// struct CountingRng(u64);
111 ///
112 /// impl RngCore for CountingRng {
113 ///     fn next_u32(&mut self) -> u32 {
114 ///         self.next_u64() as u32
115 ///     }
116 ///
117 ///     fn next_u64(&mut self) -> u64 {
118 ///         self.0 += 1;
119 ///         self.0
120 ///     }
121 ///
122 ///     fn fill_bytes(&mut self, dest: &mut [u8]) {
123 ///         impls::fill_bytes_via_next(self, dest)
124 ///     }
125 ///
126 ///     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
127 ///         Ok(self.fill_bytes(dest))
128 ///     }
129 /// }
130 /// ```
131 ///
132 /// [`rand`]: https://docs.rs/rand
133 /// [`try_fill_bytes`]: RngCore::try_fill_bytes
134 /// [`fill_bytes`]: RngCore::fill_bytes
135 /// [`next_u32`]: RngCore::next_u32
136 /// [`next_u64`]: RngCore::next_u64
137 pub trait RngCore {
138     /// Return the next random `u32`.
139     ///
140     /// RNGs must implement at least one method from this trait directly. In
141     /// the case this method is not implemented directly, it can be implemented
142     /// using `self.next_u64() as u32` or via
143     /// [`fill_bytes`](impls::next_u32_via_fill).
next_u32(&mut self) -> u32144     fn next_u32(&mut self) -> u32;
145 
146     /// Return the next random `u64`.
147     ///
148     /// RNGs must implement at least one method from this trait directly. In
149     /// the case this method is not implemented directly, it can be implemented
150     /// via [`next_u32`](impls::next_u64_via_u32) or via
151     /// [`fill_bytes`](impls::next_u64_via_fill).
next_u64(&mut self) -> u64152     fn next_u64(&mut self) -> u64;
153 
154     /// Fill `dest` with random data.
155     ///
156     /// RNGs must implement at least one method from this trait directly. In
157     /// the case this method is not implemented directly, it can be implemented
158     /// via [`next_u*`](impls::fill_bytes_via_next) or
159     /// via [`try_fill_bytes`](RngCore::try_fill_bytes); if this generator can
160     /// fail the implementation must choose how best to handle errors here
161     /// (e.g. panic with a descriptive message or log a warning and retry a few
162     /// times).
163     ///
164     /// This method should guarantee that `dest` is entirely filled
165     /// with new data, and may panic if this is impossible
166     /// (e.g. reading past the end of a file that is being used as the
167     /// source of randomness).
fill_bytes(&mut self, dest: &mut [u8])168     fn fill_bytes(&mut self, dest: &mut [u8]);
169 
170     /// Fill `dest` entirely with random data.
171     ///
172     /// This is the only method which allows an RNG to report errors while
173     /// generating random data thus making this the primary method implemented
174     /// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used
175     /// directly to generate keys and to seed (infallible) PRNGs.
176     ///
177     /// Other than error handling, this method is identical to [`fill_bytes`];
178     /// thus this may be implemented using `Ok(self.fill_bytes(dest))` or
179     /// `fill_bytes` may be implemented with
180     /// `self.try_fill_bytes(dest).unwrap()` or more specific error handling.
181     ///
182     /// [`fill_bytes`]: RngCore::fill_bytes
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>183     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>;
184 }
185 
186 /// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`]
187 /// implementation is supposed to be cryptographically secure.
188 ///
189 /// *Cryptographically secure generators*, also known as *CSPRNGs*, should
190 /// satisfy an additional properties over other generators: given the first
191 /// *k* bits of an algorithm's output
192 /// sequence, it should not be possible using polynomial-time algorithms to
193 /// predict the next bit with probability significantly greater than 50%.
194 ///
195 /// Some generators may satisfy an additional property, however this is not
196 /// required by this trait: if the CSPRNG's state is revealed, it should not be
197 /// computationally-feasible to reconstruct output prior to this. Some other
198 /// generators allow backwards-computation and are consided *reversible*.
199 ///
200 /// Note that this trait is provided for guidance only and cannot guarantee
201 /// suitability for cryptographic applications. In general it should only be
202 /// implemented for well-reviewed code implementing well-regarded algorithms.
203 ///
204 /// Note also that use of a `CryptoRng` does not protect against other
205 /// weaknesses such as seeding from a weak entropy source or leaking state.
206 ///
207 /// [`BlockRngCore`]: block::BlockRngCore
208 pub trait CryptoRng {}
209 
210 /// A random number generator that can be explicitly seeded.
211 ///
212 /// This trait encapsulates the low-level functionality common to all
213 /// pseudo-random number generators (PRNGs, or algorithmic generators).
214 ///
215 /// [`rand`]: https://docs.rs/rand
216 pub trait SeedableRng: Sized {
217     /// Seed type, which is restricted to types mutably-dereferencable as `u8`
218     /// arrays (we recommend `[u8; N]` for some `N`).
219     ///
220     /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
221     /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
222     /// partially overlapping periods.
223     ///
224     /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
225     ///
226     ///
227     /// # Implementing `SeedableRng` for RNGs with large seeds
228     ///
229     /// Note that the required traits `core::default::Default` and
230     /// `core::convert::AsMut<u8>` are not implemented for large arrays
231     /// `[u8; N]` with `N` > 32. To be able to implement the traits required by
232     /// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be
233     /// used:
234     ///
235     /// ```
236     /// use rand_core::SeedableRng;
237     ///
238     /// const N: usize = 64;
239     /// pub struct MyRngSeed(pub [u8; N]);
240     /// pub struct MyRng(MyRngSeed);
241     ///
242     /// impl Default for MyRngSeed {
243     ///     fn default() -> MyRngSeed {
244     ///         MyRngSeed([0; N])
245     ///     }
246     /// }
247     ///
248     /// impl AsMut<[u8]> for MyRngSeed {
249     ///     fn as_mut(&mut self) -> &mut [u8] {
250     ///         &mut self.0
251     ///     }
252     /// }
253     ///
254     /// impl SeedableRng for MyRng {
255     ///     type Seed = MyRngSeed;
256     ///
257     ///     fn from_seed(seed: MyRngSeed) -> MyRng {
258     ///         MyRng(seed)
259     ///     }
260     /// }
261     /// ```
262     type Seed: Sized + Default + AsMut<[u8]>;
263 
264     /// Create a new PRNG using the given seed.
265     ///
266     /// PRNG implementations are allowed to assume that bits in the seed are
267     /// well distributed. That means usually that the number of one and zero
268     /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
269     /// Note that many non-cryptographic PRNGs will show poor quality output
270     /// if this is not adhered to. If you wish to seed from simple numbers, use
271     /// `seed_from_u64` instead.
272     ///
273     /// All PRNG implementations should be reproducible unless otherwise noted:
274     /// given a fixed `seed`, the same sequence of output should be produced
275     /// on all runs, library versions and architectures (e.g. check endianness).
276     /// Any "value-breaking" changes to the generator should require bumping at
277     /// least the minor version and documentation of the change.
278     ///
279     /// It is not required that this function yield the same state as a
280     /// reference implementation of the PRNG given equivalent seed; if necessary
281     /// another constructor replicating behaviour from a reference
282     /// implementation can be added.
283     ///
284     /// PRNG implementations should make sure `from_seed` never panics. In the
285     /// case that some special values (like an all zero seed) are not viable
286     /// seeds it is preferable to map these to alternative constant value(s),
287     /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
288     /// seed"). This is assuming only a small number of values must be rejected.
from_seed(seed: Self::Seed) -> Self289     fn from_seed(seed: Self::Seed) -> Self;
290 
291     /// Create a new PRNG using a `u64` seed.
292     ///
293     /// This is a convenience-wrapper around `from_seed` to allow construction
294     /// of any `SeedableRng` from a simple `u64` value. It is designed such that
295     /// low Hamming Weight numbers like 0 and 1 can be used and should still
296     /// result in good, independent seeds to the PRNG which is returned.
297     ///
298     /// This **is not suitable for cryptography**, as should be clear given that
299     /// the input size is only 64 bits.
300     ///
301     /// Implementations for PRNGs *may* provide their own implementations of
302     /// this function, but the default implementation should be good enough for
303     /// all purposes. *Changing* the implementation of this function should be
304     /// considered a value-breaking change.
seed_from_u64(mut state: u64) -> Self305     fn seed_from_u64(mut state: u64) -> Self {
306         // We use PCG32 to generate a u32 sequence, and copy to the seed
307         const MUL: u64 = 6364136223846793005;
308         const INC: u64 = 11634580027462260723;
309 
310         let mut seed = Self::Seed::default();
311         for chunk in seed.as_mut().chunks_mut(4) {
312             // We advance the state first (to get away from the input value,
313             // in case it has low Hamming Weight).
314             state = state.wrapping_mul(MUL).wrapping_add(INC);
315 
316             // Use PCG output function with to_le to generate x:
317             let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
318             let rot = (state >> 59) as u32;
319             let x = xorshifted.rotate_right(rot).to_le();
320 
321             unsafe {
322                 let p = &x as *const u32 as *const u8;
323                 copy_nonoverlapping(p, chunk.as_mut_ptr(), chunk.len());
324             }
325         }
326 
327         Self::from_seed(seed)
328     }
329 
330     /// Create a new PRNG seeded from another `Rng`.
331     ///
332     /// This may be useful when needing to rapidly seed many PRNGs from a master
333     /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
334     ///
335     /// The master PRNG should be at least as high quality as the child PRNGs.
336     /// When seeding non-cryptographic child PRNGs, we recommend using a
337     /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
338     /// correlations between the child PRNGs. If this is not possible (e.g.
339     /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
340     /// mixing function on the output or consider use of a hash function with
341     /// `from_seed`.
342     ///
343     /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
344     /// extreme example of what can go wrong: the new PRNG will be a clone
345     /// of the parent.
346     ///
347     /// PRNG implementations are allowed to assume that a good RNG is provided
348     /// for seeding, and that it is cryptographically secure when appropriate.
349     /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
350     /// method should ensure the implementation satisfies reproducibility
351     /// (in prior versions this was not required).
352     ///
353     /// [`rand`]: https://docs.rs/rand
354     /// [`rand_os`]: https://docs.rs/rand_os
from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error>355     fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
356         let mut seed = Self::Seed::default();
357         rng.try_fill_bytes(seed.as_mut())?;
358         Ok(Self::from_seed(seed))
359     }
360 
361     /// Creates a new instance of the RNG seeded via [`getrandom`].
362     ///
363     /// This method is the recommended way to construct non-deterministic PRNGs
364     /// since it is convenient and secure.
365     ///
366     /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
367     /// issue, one may prefer to seed from a local PRNG, e.g.
368     /// `from_rng(thread_rng()).unwrap()`.
369     ///
370     /// # Panics
371     ///
372     /// If [`getrandom`] is unable to provide secure entropy this method will panic.
373     ///
374     /// [`getrandom`]: https://docs.rs/getrandom
375     #[cfg(feature="getrandom")]
from_entropy() -> Self376     fn from_entropy() -> Self {
377         let mut seed = Self::Seed::default();
378         if let Err(err) = getrandom::getrandom(seed.as_mut()) {
379             panic!("from_entropy failed: {}", err);
380         }
381         Self::from_seed(seed)
382     }
383 }
384 
385 // Implement `RngCore` for references to an `RngCore`.
386 // Force inlining all functions, so that it is up to the `RngCore`
387 // implementation and the optimizer to decide on inlining.
388 impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R {
389     #[inline(always)]
next_u32(&mut self) -> u32390     fn next_u32(&mut self) -> u32 {
391         (**self).next_u32()
392     }
393 
394     #[inline(always)]
next_u64(&mut self) -> u64395     fn next_u64(&mut self) -> u64 {
396         (**self).next_u64()
397     }
398 
399     #[inline(always)]
fill_bytes(&mut self, dest: &mut [u8])400     fn fill_bytes(&mut self, dest: &mut [u8]) {
401         (**self).fill_bytes(dest)
402     }
403 
404     #[inline(always)]
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>405     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
406         (**self).try_fill_bytes(dest)
407     }
408 }
409 
410 // Implement `RngCore` for boxed references to an `RngCore`.
411 // Force inlining all functions, so that it is up to the `RngCore`
412 // implementation and the optimizer to decide on inlining.
413 #[cfg(feature="alloc")]
414 impl<R: RngCore + ?Sized> RngCore for Box<R> {
415     #[inline(always)]
next_u32(&mut self) -> u32416     fn next_u32(&mut self) -> u32 {
417         (**self).next_u32()
418     }
419 
420     #[inline(always)]
next_u64(&mut self) -> u64421     fn next_u64(&mut self) -> u64 {
422         (**self).next_u64()
423     }
424 
425     #[inline(always)]
fill_bytes(&mut self, dest: &mut [u8])426     fn fill_bytes(&mut self, dest: &mut [u8]) {
427         (**self).fill_bytes(dest)
428     }
429 
430     #[inline(always)]
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>431     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
432         (**self).try_fill_bytes(dest)
433     }
434 }
435 
436 #[cfg(feature="std")]
437 impl std::io::Read for dyn RngCore {
read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error>438     fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
439         self.try_fill_bytes(buf)?;
440         Ok(buf.len())
441     }
442 }
443 
444 // Implement `CryptoRng` for references to an `CryptoRng`.
445 impl<'a, R: CryptoRng + ?Sized> CryptoRng for &'a mut R {}
446 
447 // Implement `CryptoRng` for boxed references to an `CryptoRng`.
448 #[cfg(feature="alloc")]
449 impl<R: CryptoRng + ?Sized> CryptoRng for Box<R> {}
450 
451 #[cfg(test)]
452 mod test {
453     use super::*;
454 
455     #[test]
test_seed_from_u64()456     fn test_seed_from_u64() {
457         struct SeedableNum(u64);
458         impl SeedableRng for SeedableNum {
459             type Seed = [u8; 8];
460             fn from_seed(seed: Self::Seed) -> Self {
461                 let mut x = [0u64; 1];
462                 le::read_u64_into(&seed, &mut x);
463                 SeedableNum(x[0])
464             }
465         }
466 
467         const N: usize = 8;
468         const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
469         let mut results = [0u64; N];
470         for (i, seed) in SEEDS.iter().enumerate() {
471             let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
472             results[i] = x;
473         }
474 
475         for (i1, r1) in results.iter().enumerate() {
476             let weight = r1.count_ones();
477             // This is the binomial distribution B(64, 0.5), so chance of
478             // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
479             // weight > 44.
480             assert!(weight >= 20 && weight <= 44);
481 
482             for (i2, r2) in results.iter().enumerate() {
483                 if i1 == i2 { continue; }
484                 let diff_weight = (r1 ^ r2).count_ones();
485                 assert!(diff_weight >= 20);
486             }
487         }
488 
489         // value-breakage test:
490         assert_eq!(results[0], 5029875928683246316);
491     }
492 }
493