1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 
3    Copyright (C) 1993-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "doublest.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "dwarf2-frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_string.h"
35 #include "linespec.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "arch-utils.h"
39 #include "osabi.h"
40 #include "block.h"
41 #include "infcall.h"
42 #include "trad-frame.h"
43 
44 #include "elf-bfd.h"
45 
46 #include "alpha-tdep.h"
47 
48 /* Instruction decoding.  The notations for registers, immediates and
49    opcodes are the same as the one used in Compaq's Alpha architecture
50    handbook.  */
51 
52 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53 
54 /* Memory instruction format */
55 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57 #define MEM_DISP(insn) \
58   (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59 
60 static const int lda_opcode = 0x08;
61 static const int stq_opcode = 0x2d;
62 
63 /* Branch instruction format */
64 #define BR_RA(insn) MEM_RA(insn)
65 
66 static const int br_opcode = 0x30;
67 static const int bne_opcode = 0x3d;
68 
69 /* Operate instruction format */
70 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72 #define OPR_RA(insn) MEM_RA(insn)
73 #define OPR_RC(insn) ((insn & 0x1f))
74 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75 
76 static const int subq_opcode = 0x10;
77 static const int subq_function = 0x29;
78 
79 
80 /* Return the name of the REGNO register.
81 
82    An empty name corresponds to a register number that used to
83    be used for a virtual register.  That virtual register has
84    been removed, but the index is still reserved to maintain
85    compatibility with existing remote alpha targets.  */
86 
87 static const char *
alpha_register_name(struct gdbarch * gdbarch,int regno)88 alpha_register_name (struct gdbarch *gdbarch, int regno)
89 {
90   static const char * const register_names[] =
91   {
92     "v0",   "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",
93     "t7",   "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "fp",
94     "a0",   "a1",   "a2",   "a3",   "a4",   "a5",   "t8",   "t9",
95     "t10",  "t11",  "ra",   "t12",  "at",   "gp",   "sp",   "zero",
96     "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",
97     "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",
98     "f16",  "f17",  "f18",  "f19",  "f20",  "f21",  "f22",  "f23",
99     "f24",  "f25",  "f26",  "f27",  "f28",  "f29",  "f30",  "fpcr",
100     "pc",   "",     "unique"
101   };
102 
103   if (regno < 0)
104     return NULL;
105   if (regno >= ARRAY_SIZE(register_names))
106     return NULL;
107   return register_names[regno];
108 }
109 
110 static int
alpha_cannot_fetch_register(struct gdbarch * gdbarch,int regno)111 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
112 {
113   return (strlen (alpha_register_name (gdbarch, regno)) == 0);
114 }
115 
116 static int
alpha_cannot_store_register(struct gdbarch * gdbarch,int regno)117 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
118 {
119   return (regno == ALPHA_ZERO_REGNUM
120           || strlen (alpha_register_name (gdbarch, regno)) == 0);
121 }
122 
123 static struct type *
alpha_register_type(struct gdbarch * gdbarch,int regno)124 alpha_register_type (struct gdbarch *gdbarch, int regno)
125 {
126   if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
127     return builtin_type (gdbarch)->builtin_data_ptr;
128   if (regno == ALPHA_PC_REGNUM)
129     return builtin_type (gdbarch)->builtin_func_ptr;
130 
131   /* Don't need to worry about little vs big endian until
132      some jerk tries to port to alpha-unicosmk.  */
133   if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
134     return builtin_type (gdbarch)->builtin_double;
135 
136   return builtin_type (gdbarch)->builtin_int64;
137 }
138 
139 /* Is REGNUM a member of REGGROUP?  */
140 
141 static int
alpha_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * group)142 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 			   struct reggroup *group)
144 {
145   /* Filter out any registers eliminated, but whose regnum is
146      reserved for backward compatibility, e.g. the vfp.  */
147   if (gdbarch_register_name (gdbarch, regnum) == NULL
148       || *gdbarch_register_name (gdbarch, regnum) == '\0')
149     return 0;
150 
151   if (group == all_reggroup)
152     return 1;
153 
154   /* Zero should not be saved or restored.  Technically it is a general
155      register (just as $f31 would be a float if we represented it), but
156      there's no point displaying it during "info regs", so leave it out
157      of all groups except for "all".  */
158   if (regnum == ALPHA_ZERO_REGNUM)
159     return 0;
160 
161   /* All other registers are saved and restored.  */
162   if (group == save_reggroup || group == restore_reggroup)
163     return 1;
164 
165   /* All other groups are non-overlapping.  */
166 
167   /* Since this is really a PALcode memory slot...  */
168   if (regnum == ALPHA_UNIQUE_REGNUM)
169     return group == system_reggroup;
170 
171   /* Force the FPCR to be considered part of the floating point state.  */
172   if (regnum == ALPHA_FPCR_REGNUM)
173     return group == float_reggroup;
174 
175   if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176     return group == float_reggroup;
177   else
178     return group == general_reggroup;
179 }
180 
181 /* The following represents exactly the conversion performed by
182    the LDS instruction.  This applies to both single-precision
183    floating point and 32-bit integers.  */
184 
185 static void
alpha_lds(struct gdbarch * gdbarch,void * out,const void * in)186 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
187 {
188   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
189   ULONGEST mem     = extract_unsigned_integer (in, 4, byte_order);
190   ULONGEST frac    = (mem >>  0) & 0x7fffff;
191   ULONGEST sign    = (mem >> 31) & 1;
192   ULONGEST exp_msb = (mem >> 30) & 1;
193   ULONGEST exp_low = (mem >> 23) & 0x7f;
194   ULONGEST exp, reg;
195 
196   exp = (exp_msb << 10) | exp_low;
197   if (exp_msb)
198     {
199       if (exp_low == 0x7f)
200 	exp = 0x7ff;
201     }
202   else
203     {
204       if (exp_low != 0x00)
205 	exp |= 0x380;
206     }
207 
208   reg = (sign << 63) | (exp << 52) | (frac << 29);
209   store_unsigned_integer (out, 8, byte_order, reg);
210 }
211 
212 /* Similarly, this represents exactly the conversion performed by
213    the STS instruction.  */
214 
215 static void
alpha_sts(struct gdbarch * gdbarch,void * out,const void * in)216 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
217 {
218   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219   ULONGEST reg, mem;
220 
221   reg = extract_unsigned_integer (in, 8, byte_order);
222   mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
223   store_unsigned_integer (out, 4, byte_order, mem);
224 }
225 
226 /* The alpha needs a conversion between register and memory format if the
227    register is a floating point register and memory format is float, as the
228    register format must be double or memory format is an integer with 4
229    bytes or less, as the representation of integers in floating point
230    registers is different.  */
231 
232 static int
alpha_convert_register_p(struct gdbarch * gdbarch,int regno,struct type * type)233 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 			  struct type *type)
235 {
236   return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 	  && TYPE_LENGTH (type) != 8);
238 }
239 
240 static int
alpha_register_to_value(struct frame_info * frame,int regnum,struct type * valtype,gdb_byte * out,int * optimizedp,int * unavailablep)241 alpha_register_to_value (struct frame_info *frame, int regnum,
242 			 struct type *valtype, gdb_byte *out,
243 			int *optimizedp, int *unavailablep)
244 {
245   struct gdbarch *gdbarch = get_frame_arch (frame);
246   gdb_byte in[MAX_REGISTER_SIZE];
247 
248   /* Convert to TYPE.  */
249   if (!get_frame_register_bytes (frame, regnum, 0,
250 				 register_size (gdbarch, regnum),
251 				 in, optimizedp, unavailablep))
252     return 0;
253 
254   if (TYPE_LENGTH (valtype) == 4)
255     {
256       alpha_sts (gdbarch, out, in);
257       *optimizedp = *unavailablep = 0;
258       return 1;
259     }
260 
261   error (_("Cannot retrieve value from floating point register"));
262 }
263 
264 static void
alpha_value_to_register(struct frame_info * frame,int regnum,struct type * valtype,const gdb_byte * in)265 alpha_value_to_register (struct frame_info *frame, int regnum,
266 			 struct type *valtype, const gdb_byte *in)
267 {
268   gdb_byte out[MAX_REGISTER_SIZE];
269 
270   switch (TYPE_LENGTH (valtype))
271     {
272     case 4:
273       alpha_lds (get_frame_arch (frame), out, in);
274       break;
275     default:
276       error (_("Cannot store value in floating point register"));
277     }
278   put_frame_register (frame, regnum, out);
279 }
280 
281 
282 /* The alpha passes the first six arguments in the registers, the rest on
283    the stack.  The register arguments are stored in ARG_REG_BUFFER, and
284    then moved into the register file; this simplifies the passing of a
285    large struct which extends from the registers to the stack, plus avoids
286    three ptrace invocations per word.
287 
288    We don't bother tracking which register values should go in integer
289    regs or fp regs; we load the same values into both.
290 
291    If the called function is returning a structure, the address of the
292    structure to be returned is passed as a hidden first argument.  */
293 
294 static CORE_ADDR
alpha_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)295 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 		       struct regcache *regcache, CORE_ADDR bp_addr,
297 		       int nargs, struct value **args, CORE_ADDR sp,
298 		       int struct_return, CORE_ADDR struct_addr)
299 {
300   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
301   int i;
302   int accumulate_size = struct_return ? 8 : 0;
303   struct alpha_arg
304     {
305       const gdb_byte *contents;
306       int len;
307       int offset;
308     };
309   struct alpha_arg *alpha_args
310     = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
311   struct alpha_arg *m_arg;
312   gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
313   int required_arg_regs;
314   CORE_ADDR func_addr = find_function_addr (function, NULL);
315 
316   /* The ABI places the address of the called function in T12.  */
317   regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318 
319   /* Set the return address register to point to the entry point
320      of the program, where a breakpoint lies in wait.  */
321   regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322 
323   /* Lay out the arguments in memory.  */
324   for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325     {
326       struct value *arg = args[i];
327       struct type *arg_type = check_typedef (value_type (arg));
328 
329       /* Cast argument to long if necessary as the compiler does it too.  */
330       switch (TYPE_CODE (arg_type))
331 	{
332 	case TYPE_CODE_INT:
333 	case TYPE_CODE_BOOL:
334 	case TYPE_CODE_CHAR:
335 	case TYPE_CODE_RANGE:
336 	case TYPE_CODE_ENUM:
337 	  if (TYPE_LENGTH (arg_type) == 4)
338 	    {
339 	      /* 32-bit values must be sign-extended to 64 bits
340 		 even if the base data type is unsigned.  */
341 	      arg_type = builtin_type (gdbarch)->builtin_int32;
342 	      arg = value_cast (arg_type, arg);
343 	    }
344 	  if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 	    {
346 	      arg_type = builtin_type (gdbarch)->builtin_int64;
347 	      arg = value_cast (arg_type, arg);
348 	    }
349 	  break;
350 
351 	case TYPE_CODE_FLT:
352 	  /* "float" arguments loaded in registers must be passed in
353 	     register format, aka "double".  */
354 	  if (accumulate_size < sizeof (arg_reg_buffer)
355 	      && TYPE_LENGTH (arg_type) == 4)
356 	    {
357 	      arg_type = builtin_type (gdbarch)->builtin_double;
358 	      arg = value_cast (arg_type, arg);
359 	    }
360 	  /* Tru64 5.1 has a 128-bit long double, and passes this by
361 	     invisible reference.  No one else uses this data type.  */
362 	  else if (TYPE_LENGTH (arg_type) == 16)
363 	    {
364 	      /* Allocate aligned storage.  */
365 	      sp = (sp & -16) - 16;
366 
367 	      /* Write the real data into the stack.  */
368 	      write_memory (sp, value_contents (arg), 16);
369 
370 	      /* Construct the indirection.  */
371 	      arg_type = lookup_pointer_type (arg_type);
372 	      arg = value_from_pointer (arg_type, sp);
373 	    }
374 	  break;
375 
376 	case TYPE_CODE_COMPLEX:
377 	  /* ??? The ABI says that complex values are passed as two
378 	     separate scalar values.  This distinction only matters
379 	     for complex float.  However, GCC does not implement this.  */
380 
381 	  /* Tru64 5.1 has a 128-bit long double, and passes this by
382 	     invisible reference.  */
383 	  if (TYPE_LENGTH (arg_type) == 32)
384 	    {
385 	      /* Allocate aligned storage.  */
386 	      sp = (sp & -16) - 16;
387 
388 	      /* Write the real data into the stack.  */
389 	      write_memory (sp, value_contents (arg), 32);
390 
391 	      /* Construct the indirection.  */
392 	      arg_type = lookup_pointer_type (arg_type);
393 	      arg = value_from_pointer (arg_type, sp);
394 	    }
395 	  break;
396 
397 	default:
398 	  break;
399 	}
400       m_arg->len = TYPE_LENGTH (arg_type);
401       m_arg->offset = accumulate_size;
402       accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
403       m_arg->contents = value_contents (arg);
404     }
405 
406   /* Determine required argument register loads, loading an argument register
407      is expensive as it uses three ptrace calls.  */
408   required_arg_regs = accumulate_size / 8;
409   if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410     required_arg_regs = ALPHA_NUM_ARG_REGS;
411 
412   /* Make room for the arguments on the stack.  */
413   if (accumulate_size < sizeof(arg_reg_buffer))
414     accumulate_size = 0;
415   else
416     accumulate_size -= sizeof(arg_reg_buffer);
417   sp -= accumulate_size;
418 
419   /* Keep sp aligned to a multiple of 16 as the ABI requires.  */
420   sp &= ~15;
421 
422   /* `Push' arguments on the stack.  */
423   for (i = nargs; m_arg--, --i >= 0;)
424     {
425       const gdb_byte *contents = m_arg->contents;
426       int offset = m_arg->offset;
427       int len = m_arg->len;
428 
429       /* Copy the bytes destined for registers into arg_reg_buffer.  */
430       if (offset < sizeof(arg_reg_buffer))
431 	{
432 	  if (offset + len <= sizeof(arg_reg_buffer))
433 	    {
434 	      memcpy (arg_reg_buffer + offset, contents, len);
435 	      continue;
436 	    }
437 	  else
438 	    {
439 	      int tlen = sizeof(arg_reg_buffer) - offset;
440 	      memcpy (arg_reg_buffer + offset, contents, tlen);
441 	      offset += tlen;
442 	      contents += tlen;
443 	      len -= tlen;
444 	    }
445 	}
446 
447       /* Everything else goes to the stack.  */
448       write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
449     }
450   if (struct_return)
451     store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 			    byte_order, struct_addr);
453 
454   /* Load the argument registers.  */
455   for (i = 0; i < required_arg_regs; i++)
456     {
457       regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 			     arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459       regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 			     arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461     }
462 
463   /* Finally, update the stack pointer.  */
464   regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465 
466   return sp;
467 }
468 
469 /* Extract from REGCACHE the value about to be returned from a function
470    and copy it into VALBUF.  */
471 
472 static void
alpha_extract_return_value(struct type * valtype,struct regcache * regcache,gdb_byte * valbuf)473 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
474 			    gdb_byte *valbuf)
475 {
476   struct gdbarch *gdbarch = get_regcache_arch (regcache);
477   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478   gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
479   ULONGEST l;
480 
481   switch (TYPE_CODE (valtype))
482     {
483     case TYPE_CODE_FLT:
484       switch (TYPE_LENGTH (valtype))
485 	{
486 	case 4:
487 	  regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
488 	  alpha_sts (gdbarch, valbuf, raw_buffer);
489 	  break;
490 
491 	case 8:
492 	  regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
493 	  break;
494 
495 	case 16:
496 	  regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 	  read_memory (l, valbuf, 16);
498 	  break;
499 
500 	default:
501 	  internal_error (__FILE__, __LINE__,
502 			  _("unknown floating point width"));
503 	}
504       break;
505 
506     case TYPE_CODE_COMPLEX:
507       switch (TYPE_LENGTH (valtype))
508 	{
509 	case 8:
510 	  /* ??? This isn't correct wrt the ABI, but it's what GCC does.  */
511 	  regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
512 	  break;
513 
514 	case 16:
515 	  regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
516 	  regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
517 	  break;
518 
519 	case 32:
520 	  regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
521 	  read_memory (l, valbuf, 32);
522 	  break;
523 
524 	default:
525 	  internal_error (__FILE__, __LINE__,
526 			  _("unknown floating point width"));
527 	}
528       break;
529 
530     default:
531       /* Assume everything else degenerates to an integer.  */
532       regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
533       store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
534       break;
535     }
536 }
537 
538 /* Insert the given value into REGCACHE as if it was being
539    returned by a function.  */
540 
541 static void
alpha_store_return_value(struct type * valtype,struct regcache * regcache,const gdb_byte * valbuf)542 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
543 			  const gdb_byte *valbuf)
544 {
545   struct gdbarch *gdbarch = get_regcache_arch (regcache);
546   gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
547   ULONGEST l;
548 
549   switch (TYPE_CODE (valtype))
550     {
551     case TYPE_CODE_FLT:
552       switch (TYPE_LENGTH (valtype))
553 	{
554 	case 4:
555 	  alpha_lds (gdbarch, raw_buffer, valbuf);
556 	  regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
557 	  break;
558 
559 	case 8:
560 	  regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 	  break;
562 
563 	case 16:
564 	  /* FIXME: 128-bit long doubles are returned like structures:
565 	     by writing into indirect storage provided by the caller
566 	     as the first argument.  */
567 	  error (_("Cannot set a 128-bit long double return value."));
568 
569 	default:
570 	  internal_error (__FILE__, __LINE__,
571 			  _("unknown floating point width"));
572 	}
573       break;
574 
575     case TYPE_CODE_COMPLEX:
576       switch (TYPE_LENGTH (valtype))
577 	{
578 	case 8:
579 	  /* ??? This isn't correct wrt the ABI, but it's what GCC does.  */
580 	  regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
581 	  break;
582 
583 	case 16:
584 	  regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
585 	  regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
586 	  break;
587 
588 	case 32:
589 	  /* FIXME: 128-bit long doubles are returned like structures:
590 	     by writing into indirect storage provided by the caller
591 	     as the first argument.  */
592 	  error (_("Cannot set a 128-bit long double return value."));
593 
594 	default:
595 	  internal_error (__FILE__, __LINE__,
596 			  _("unknown floating point width"));
597 	}
598       break;
599 
600     default:
601       /* Assume everything else degenerates to an integer.  */
602       /* 32-bit values must be sign-extended to 64 bits
603 	 even if the base data type is unsigned.  */
604       if (TYPE_LENGTH (valtype) == 4)
605 	valtype = builtin_type (gdbarch)->builtin_int32;
606       l = unpack_long (valtype, valbuf);
607       regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608       break;
609     }
610 }
611 
612 static enum return_value_convention
alpha_return_value(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)613 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
614 		    struct type *type, struct regcache *regcache,
615 		    gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617   enum type_code code = TYPE_CODE (type);
618 
619   if ((code == TYPE_CODE_STRUCT
620        || code == TYPE_CODE_UNION
621        || code == TYPE_CODE_ARRAY)
622       && gdbarch_tdep (gdbarch)->return_in_memory (type))
623     {
624       if (readbuf)
625 	{
626 	  ULONGEST addr;
627 	  regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
629 	}
630 
631       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632     }
633 
634   if (readbuf)
635     alpha_extract_return_value (type, regcache, readbuf);
636   if (writebuf)
637     alpha_store_return_value (type, regcache, writebuf);
638 
639   return RETURN_VALUE_REGISTER_CONVENTION;
640 }
641 
642 static int
alpha_return_in_memory_always(struct type * type)643 alpha_return_in_memory_always (struct type *type)
644 {
645   return 1;
646 }
647 
648 static const gdb_byte *
alpha_breakpoint_from_pc(struct gdbarch * gdbarch,CORE_ADDR * pc,int * len)649 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
650 {
651   static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
652 
653   *len = sizeof(break_insn);
654   return break_insn;
655 }
656 
657 
658 /* This returns the PC of the first insn after the prologue.
659    If we can't find the prologue, then return 0.  */
660 
661 CORE_ADDR
alpha_after_prologue(CORE_ADDR pc)662 alpha_after_prologue (CORE_ADDR pc)
663 {
664   struct symtab_and_line sal;
665   CORE_ADDR func_addr, func_end;
666 
667   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
668     return 0;
669 
670   sal = find_pc_line (func_addr, 0);
671   if (sal.end < func_end)
672     return sal.end;
673 
674   /* The line after the prologue is after the end of the function.  In this
675      case, tell the caller to find the prologue the hard way.  */
676   return 0;
677 }
678 
679 /* Read an instruction from memory at PC, looking through breakpoints.  */
680 
681 unsigned int
alpha_read_insn(struct gdbarch * gdbarch,CORE_ADDR pc)682 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
683 {
684   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
685   gdb_byte buf[ALPHA_INSN_SIZE];
686   int status;
687 
688   status = target_read_memory (pc, buf, sizeof (buf));
689   if (status)
690     memory_error (status, pc);
691   return extract_unsigned_integer (buf, sizeof (buf), byte_order);
692 }
693 
694 /* To skip prologues, I use this predicate.  Returns either PC itself
695    if the code at PC does not look like a function prologue; otherwise
696    returns an address that (if we're lucky) follows the prologue.  If
697    LENIENT, then we must skip everything which is involved in setting
698    up the frame (it's OK to skip more, just so long as we don't skip
699    anything which might clobber the registers which are being saved.  */
700 
701 static CORE_ADDR
alpha_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)702 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
703 {
704   unsigned long inst;
705   int offset;
706   CORE_ADDR post_prologue_pc;
707   gdb_byte buf[ALPHA_INSN_SIZE];
708 
709   /* Silently return the unaltered pc upon memory errors.
710      This could happen on OSF/1 if decode_line_1 tries to skip the
711      prologue for quickstarted shared library functions when the
712      shared library is not yet mapped in.
713      Reading target memory is slow over serial lines, so we perform
714      this check only if the target has shared libraries (which all
715      Alpha targets do).  */
716   if (target_read_memory (pc, buf, sizeof (buf)))
717     return pc;
718 
719   /* See if we can determine the end of the prologue via the symbol table.
720      If so, then return either PC, or the PC after the prologue, whichever
721      is greater.  */
722 
723   post_prologue_pc = alpha_after_prologue (pc);
724   if (post_prologue_pc != 0)
725     return max (pc, post_prologue_pc);
726 
727   /* Can't determine prologue from the symbol table, need to examine
728      instructions.  */
729 
730   /* Skip the typical prologue instructions.  These are the stack adjustment
731      instruction and the instructions that save registers on the stack
732      or in the gcc frame.  */
733   for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
734     {
735       inst = alpha_read_insn (gdbarch, pc + offset);
736 
737       if ((inst & 0xffff0000) == 0x27bb0000)	/* ldah $gp,n($t12) */
738 	continue;
739       if ((inst & 0xffff0000) == 0x23bd0000)	/* lda $gp,n($gp) */
740 	continue;
741       if ((inst & 0xffff0000) == 0x23de0000)	/* lda $sp,n($sp) */
742 	continue;
743       if ((inst & 0xffe01fff) == 0x43c0153e)	/* subq $sp,n,$sp */
744 	continue;
745 
746       if (((inst & 0xfc1f0000) == 0xb41e0000		/* stq reg,n($sp) */
747 	   || (inst & 0xfc1f0000) == 0x9c1e0000)	/* stt reg,n($sp) */
748 	  && (inst & 0x03e00000) != 0x03e00000)		/* reg != $zero */
749 	continue;
750 
751       if (inst == 0x47de040f)			/* bis sp,sp,fp */
752 	continue;
753       if (inst == 0x47fe040f)			/* bis zero,sp,fp */
754 	continue;
755 
756       break;
757     }
758   return pc + offset;
759 }
760 
761 
762 static const int ldl_l_opcode = 0x2a;
763 static const int ldq_l_opcode = 0x2b;
764 static const int stl_c_opcode = 0x2e;
765 static const int stq_c_opcode = 0x2f;
766 
767 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
768    instruction and ending with a STL_C/STQ_C instruction.  If such a sequence
769    is found, attempt to step through it.  A breakpoint is placed at the end of
770    the sequence.  */
771 
772 static int
alpha_deal_with_atomic_sequence(struct frame_info * frame)773 alpha_deal_with_atomic_sequence (struct frame_info *frame)
774 {
775   struct gdbarch *gdbarch = get_frame_arch (frame);
776   struct address_space *aspace = get_frame_address_space (frame);
777   CORE_ADDR pc = get_frame_pc (frame);
778   CORE_ADDR breaks[2] = {-1, -1};
779   CORE_ADDR loc = pc;
780   CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
781   unsigned int insn = alpha_read_insn (gdbarch, loc);
782   int insn_count;
783   int index;
784   int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
785   const int atomic_sequence_length = 16; /* Instruction sequence length.  */
786   int bc_insn_count = 0; /* Conditional branch instruction count.  */
787 
788   /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction.  */
789   if (INSN_OPCODE (insn) != ldl_l_opcode
790       && INSN_OPCODE (insn) != ldq_l_opcode)
791     return 0;
792 
793   /* Assume that no atomic sequence is longer than "atomic_sequence_length"
794      instructions.  */
795   for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
796     {
797       loc += ALPHA_INSN_SIZE;
798       insn = alpha_read_insn (gdbarch, loc);
799 
800       /* Assume that there is at most one branch in the atomic
801 	 sequence.  If a branch is found, put a breakpoint in
802 	 its destination address.  */
803       if (INSN_OPCODE (insn) >= br_opcode)
804 	{
805 	  int immediate = (insn & 0x001fffff) << 2;
806 
807 	  immediate = (immediate ^ 0x400000) - 0x400000;
808 
809 	  if (bc_insn_count >= 1)
810 	    return 0; /* More than one branch found, fallback
811 			 to the standard single-step code.  */
812 
813 	  breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
814 
815 	  bc_insn_count++;
816 	  last_breakpoint++;
817 	}
818 
819       if (INSN_OPCODE (insn) == stl_c_opcode
820 	  || INSN_OPCODE (insn) == stq_c_opcode)
821 	break;
822     }
823 
824   /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction.  */
825   if (INSN_OPCODE (insn) != stl_c_opcode
826       && INSN_OPCODE (insn) != stq_c_opcode)
827     return 0;
828 
829   closing_insn = loc;
830   loc += ALPHA_INSN_SIZE;
831 
832   /* Insert a breakpoint right after the end of the atomic sequence.  */
833   breaks[0] = loc;
834 
835   /* Check for duplicated breakpoints.  Check also for a breakpoint
836      placed (branch instruction's destination) anywhere in sequence.  */
837   if (last_breakpoint
838       && (breaks[1] == breaks[0]
839 	  || (breaks[1] >= pc && breaks[1] <= closing_insn)))
840     last_breakpoint = 0;
841 
842   /* Effectively inserts the breakpoints.  */
843   for (index = 0; index <= last_breakpoint; index++)
844     insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
845 
846   return 1;
847 }
848 
849 
850 /* Figure out where the longjmp will land.
851    We expect the first arg to be a pointer to the jmp_buf structure from
852    which we extract the PC (JB_PC) that we will land at.  The PC is copied
853    into the "pc".  This routine returns true on success.  */
854 
855 static int
alpha_get_longjmp_target(struct frame_info * frame,CORE_ADDR * pc)856 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
857 {
858   struct gdbarch *gdbarch = get_frame_arch (frame);
859   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
860   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
861   CORE_ADDR jb_addr;
862   gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
863 
864   jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
865 
866   if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
867 			  raw_buffer, tdep->jb_elt_size))
868     return 0;
869 
870   *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
871   return 1;
872 }
873 
874 
875 /* Frame unwinder for signal trampolines.  We use alpha tdep bits that
876    describe the location and shape of the sigcontext structure.  After
877    that, all registers are in memory, so it's easy.  */
878 /* ??? Shouldn't we be able to do this generically, rather than with
879    OSABI data specific to Alpha?  */
880 
881 struct alpha_sigtramp_unwind_cache
882 {
883   CORE_ADDR sigcontext_addr;
884 };
885 
886 static struct alpha_sigtramp_unwind_cache *
alpha_sigtramp_frame_unwind_cache(struct frame_info * this_frame,void ** this_prologue_cache)887 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
888 				   void **this_prologue_cache)
889 {
890   struct alpha_sigtramp_unwind_cache *info;
891   struct gdbarch_tdep *tdep;
892 
893   if (*this_prologue_cache)
894     return *this_prologue_cache;
895 
896   info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
897   *this_prologue_cache = info;
898 
899   tdep = gdbarch_tdep (get_frame_arch (this_frame));
900   info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
901 
902   return info;
903 }
904 
905 /* Return the address of REGNUM in a sigtramp frame.  Since this is
906    all arithmetic, it doesn't seem worthwhile to cache it.  */
907 
908 static CORE_ADDR
alpha_sigtramp_register_address(struct gdbarch * gdbarch,CORE_ADDR sigcontext_addr,int regnum)909 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
910 				 CORE_ADDR sigcontext_addr, int regnum)
911 {
912   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913 
914   if (regnum >= 0 && regnum < 32)
915     return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
916   else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
917     return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
918   else if (regnum == ALPHA_PC_REGNUM)
919     return sigcontext_addr + tdep->sc_pc_offset;
920 
921   return 0;
922 }
923 
924 /* Given a GDB frame, determine the address of the calling function's
925    frame.  This will be used to create a new GDB frame struct.  */
926 
927 static void
alpha_sigtramp_frame_this_id(struct frame_info * this_frame,void ** this_prologue_cache,struct frame_id * this_id)928 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
929 			      void **this_prologue_cache,
930 			      struct frame_id *this_id)
931 {
932   struct gdbarch *gdbarch = get_frame_arch (this_frame);
933   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
934   struct alpha_sigtramp_unwind_cache *info
935     = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
936   CORE_ADDR stack_addr, code_addr;
937 
938   /* If the OSABI couldn't locate the sigcontext, give up.  */
939   if (info->sigcontext_addr == 0)
940     return;
941 
942   /* If we have dynamic signal trampolines, find their start.
943      If we do not, then we must assume there is a symbol record
944      that can provide the start address.  */
945   if (tdep->dynamic_sigtramp_offset)
946     {
947       int offset;
948       code_addr = get_frame_pc (this_frame);
949       offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
950       if (offset >= 0)
951 	code_addr -= offset;
952       else
953 	code_addr = 0;
954     }
955   else
956     code_addr = get_frame_func (this_frame);
957 
958   /* The stack address is trivially read from the sigcontext.  */
959   stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
960 						ALPHA_SP_REGNUM);
961   stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
962 					  ALPHA_REGISTER_SIZE);
963 
964   *this_id = frame_id_build (stack_addr, code_addr);
965 }
966 
967 /* Retrieve the value of REGNUM in FRAME.  Don't give up!  */
968 
969 static struct value *
alpha_sigtramp_frame_prev_register(struct frame_info * this_frame,void ** this_prologue_cache,int regnum)970 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
971 				    void **this_prologue_cache, int regnum)
972 {
973   struct alpha_sigtramp_unwind_cache *info
974     = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
975   CORE_ADDR addr;
976 
977   if (info->sigcontext_addr != 0)
978     {
979       /* All integer and fp registers are stored in memory.  */
980       addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
981 					      info->sigcontext_addr, regnum);
982       if (addr != 0)
983         return frame_unwind_got_memory (this_frame, regnum, addr);
984     }
985 
986   /* This extra register may actually be in the sigcontext, but our
987      current description of it in alpha_sigtramp_frame_unwind_cache
988      doesn't include it.  Too bad.  Fall back on whatever's in the
989      outer frame.  */
990   return frame_unwind_got_register (this_frame, regnum, regnum);
991 }
992 
993 static int
alpha_sigtramp_frame_sniffer(const struct frame_unwind * self,struct frame_info * this_frame,void ** this_prologue_cache)994 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
995                               struct frame_info *this_frame,
996                               void **this_prologue_cache)
997 {
998   struct gdbarch *gdbarch = get_frame_arch (this_frame);
999   CORE_ADDR pc = get_frame_pc (this_frame);
1000   const char *name;
1001 
1002   /* NOTE: cagney/2004-04-30: Do not copy/clone this code.  Instead
1003      look at tramp-frame.h and other simplier per-architecture
1004      sigtramp unwinders.  */
1005 
1006   /* We shouldn't even bother to try if the OSABI didn't register a
1007      sigcontext_addr handler or pc_in_sigtramp hander.  */
1008   if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1009     return 0;
1010   if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1011     return 0;
1012 
1013   /* Otherwise we should be in a signal frame.  */
1014   find_pc_partial_function (pc, &name, NULL, NULL);
1015   if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1016     return 1;
1017 
1018   return 0;
1019 }
1020 
1021 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1022   SIGTRAMP_FRAME,
1023   default_frame_unwind_stop_reason,
1024   alpha_sigtramp_frame_this_id,
1025   alpha_sigtramp_frame_prev_register,
1026   NULL,
1027   alpha_sigtramp_frame_sniffer
1028 };
1029 
1030 
1031 
1032 /* Heuristic_proc_start may hunt through the text section for a long
1033    time across a 2400 baud serial line.  Allows the user to limit this
1034    search.  */
1035 static unsigned int heuristic_fence_post = 0;
1036 
1037 /* Attempt to locate the start of the function containing PC.  We assume that
1038    the previous function ends with an about_to_return insn.  Not foolproof by
1039    any means, since gcc is happy to put the epilogue in the middle of a
1040    function.  But we're guessing anyway...  */
1041 
1042 static CORE_ADDR
alpha_heuristic_proc_start(struct gdbarch * gdbarch,CORE_ADDR pc)1043 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1044 {
1045   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1046   CORE_ADDR last_non_nop = pc;
1047   CORE_ADDR fence = pc - heuristic_fence_post;
1048   CORE_ADDR orig_pc = pc;
1049   CORE_ADDR func;
1050   struct inferior *inf;
1051 
1052   if (pc == 0)
1053     return 0;
1054 
1055   /* First see if we can find the start of the function from minimal
1056      symbol information.  This can succeed with a binary that doesn't
1057      have debug info, but hasn't been stripped.  */
1058   func = get_pc_function_start (pc);
1059   if (func)
1060     return func;
1061 
1062   if (heuristic_fence_post == UINT_MAX
1063       || fence < tdep->vm_min_address)
1064     fence = tdep->vm_min_address;
1065 
1066   /* Search back for previous return; also stop at a 0, which might be
1067      seen for instance before the start of a code section.  Don't include
1068      nops, since this usually indicates padding between functions.  */
1069   for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1070     {
1071       unsigned int insn = alpha_read_insn (gdbarch, pc);
1072       switch (insn)
1073 	{
1074 	case 0:			/* invalid insn */
1075 	case 0x6bfa8001:	/* ret $31,($26),1 */
1076 	  return last_non_nop;
1077 
1078 	case 0x2ffe0000:	/* unop: ldq_u $31,0($30) */
1079 	case 0x47ff041f:	/* nop: bis $31,$31,$31 */
1080 	  break;
1081 
1082 	default:
1083 	  last_non_nop = pc;
1084 	  break;
1085 	}
1086     }
1087 
1088   inf = current_inferior ();
1089 
1090   /* It's not clear to me why we reach this point when stopping quietly,
1091      but with this test, at least we don't print out warnings for every
1092      child forked (eg, on decstation).  22apr93 rich@cygnus.com.  */
1093   if (inf->control.stop_soon == NO_STOP_QUIETLY)
1094     {
1095       static int blurb_printed = 0;
1096 
1097       if (fence == tdep->vm_min_address)
1098 	warning (_("Hit beginning of text section without finding \
1099 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1100       else
1101 	warning (_("Hit heuristic-fence-post without finding \
1102 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1103 
1104       if (!blurb_printed)
1105 	{
1106 	  printf_filtered (_("\
1107 This warning occurs if you are debugging a function without any symbols\n\
1108 (for example, in a stripped executable).  In that case, you may wish to\n\
1109 increase the size of the search with the `set heuristic-fence-post' command.\n\
1110 \n\
1111 Otherwise, you told GDB there was a function where there isn't one, or\n\
1112 (more likely) you have encountered a bug in GDB.\n"));
1113 	  blurb_printed = 1;
1114 	}
1115     }
1116 
1117   return 0;
1118 }
1119 
1120 /* Fallback alpha frame unwinder.  Uses instruction scanning and knows
1121    something about the traditional layout of alpha stack frames.  */
1122 
1123 struct alpha_heuristic_unwind_cache
1124 {
1125   CORE_ADDR vfp;
1126   CORE_ADDR start_pc;
1127   struct trad_frame_saved_reg *saved_regs;
1128   int return_reg;
1129 };
1130 
1131 /* If a probing loop sequence starts at PC, simulate it and compute
1132    FRAME_SIZE and PC after its execution.  Otherwise, return with PC and
1133    FRAME_SIZE unchanged.  */
1134 
1135 static void
alpha_heuristic_analyze_probing_loop(struct gdbarch * gdbarch,CORE_ADDR * pc,int * frame_size)1136 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1137 				      int *frame_size)
1138 {
1139   CORE_ADDR cur_pc = *pc;
1140   int cur_frame_size = *frame_size;
1141   int nb_of_iterations, reg_index, reg_probe;
1142   unsigned int insn;
1143 
1144   /* The following pattern is recognized as a probing loop:
1145 
1146         lda     REG_INDEX,NB_OF_ITERATIONS
1147         lda     REG_PROBE,<immediate>(sp)
1148 
1149      LOOP_START:
1150         stq     zero,<immediate>(REG_PROBE)
1151         subq    REG_INDEX,0x1,REG_INDEX
1152         lda     REG_PROBE,<immediate>(REG_PROBE)
1153         bne     REG_INDEX, LOOP_START
1154 
1155         lda     sp,<immediate>(REG_PROBE)
1156 
1157      If anything different is found, the function returns without
1158      changing PC and FRAME_SIZE.  Otherwise, PC will point immediately
1159      after this sequence, and FRAME_SIZE will be updated.  */
1160 
1161   /* lda     REG_INDEX,NB_OF_ITERATIONS */
1162 
1163   insn = alpha_read_insn (gdbarch, cur_pc);
1164   if (INSN_OPCODE (insn) != lda_opcode)
1165     return;
1166   reg_index = MEM_RA (insn);
1167   nb_of_iterations = MEM_DISP (insn);
1168 
1169   /* lda     REG_PROBE,<immediate>(sp) */
1170 
1171   cur_pc += ALPHA_INSN_SIZE;
1172   insn = alpha_read_insn (gdbarch, cur_pc);
1173   if (INSN_OPCODE (insn) != lda_opcode
1174       || MEM_RB (insn) != ALPHA_SP_REGNUM)
1175     return;
1176   reg_probe = MEM_RA (insn);
1177   cur_frame_size -= MEM_DISP (insn);
1178 
1179   /* stq     zero,<immediate>(REG_PROBE) */
1180 
1181   cur_pc += ALPHA_INSN_SIZE;
1182   insn = alpha_read_insn (gdbarch, cur_pc);
1183   if (INSN_OPCODE (insn) != stq_opcode
1184       || MEM_RA (insn) != 0x1f
1185       || MEM_RB (insn) != reg_probe)
1186     return;
1187 
1188   /* subq    REG_INDEX,0x1,REG_INDEX */
1189 
1190   cur_pc += ALPHA_INSN_SIZE;
1191   insn = alpha_read_insn (gdbarch, cur_pc);
1192   if (INSN_OPCODE (insn) != subq_opcode
1193       || !OPR_HAS_IMMEDIATE (insn)
1194       || OPR_FUNCTION (insn) != subq_function
1195       || OPR_LIT(insn) != 1
1196       || OPR_RA (insn) != reg_index
1197       || OPR_RC (insn) != reg_index)
1198     return;
1199 
1200   /* lda     REG_PROBE,<immediate>(REG_PROBE) */
1201 
1202   cur_pc += ALPHA_INSN_SIZE;
1203   insn = alpha_read_insn (gdbarch, cur_pc);
1204   if (INSN_OPCODE (insn) != lda_opcode
1205       || MEM_RA (insn) != reg_probe
1206       || MEM_RB (insn) != reg_probe)
1207     return;
1208   cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1209 
1210   /* bne     REG_INDEX, LOOP_START */
1211 
1212   cur_pc += ALPHA_INSN_SIZE;
1213   insn = alpha_read_insn (gdbarch, cur_pc);
1214   if (INSN_OPCODE (insn) != bne_opcode
1215       || MEM_RA (insn) != reg_index)
1216     return;
1217 
1218   /* lda     sp,<immediate>(REG_PROBE) */
1219 
1220   cur_pc += ALPHA_INSN_SIZE;
1221   insn = alpha_read_insn (gdbarch, cur_pc);
1222   if (INSN_OPCODE (insn) != lda_opcode
1223       || MEM_RA (insn) != ALPHA_SP_REGNUM
1224       || MEM_RB (insn) != reg_probe)
1225     return;
1226   cur_frame_size -= MEM_DISP (insn);
1227 
1228   *pc = cur_pc;
1229   *frame_size = cur_frame_size;
1230 }
1231 
1232 static struct alpha_heuristic_unwind_cache *
alpha_heuristic_frame_unwind_cache(struct frame_info * this_frame,void ** this_prologue_cache,CORE_ADDR start_pc)1233 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1234 				    void **this_prologue_cache,
1235 				    CORE_ADDR start_pc)
1236 {
1237   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1238   struct alpha_heuristic_unwind_cache *info;
1239   ULONGEST val;
1240   CORE_ADDR limit_pc, cur_pc;
1241   int frame_reg, frame_size, return_reg, reg;
1242 
1243   if (*this_prologue_cache)
1244     return *this_prologue_cache;
1245 
1246   info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1247   *this_prologue_cache = info;
1248   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1249 
1250   limit_pc = get_frame_pc (this_frame);
1251   if (start_pc == 0)
1252     start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1253   info->start_pc = start_pc;
1254 
1255   frame_reg = ALPHA_SP_REGNUM;
1256   frame_size = 0;
1257   return_reg = -1;
1258 
1259   /* If we've identified a likely place to start, do code scanning.  */
1260   if (start_pc != 0)
1261     {
1262       /* Limit the forward search to 50 instructions.  */
1263       if (start_pc + 200 < limit_pc)
1264 	limit_pc = start_pc + 200;
1265 
1266       for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1267 	{
1268 	  unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1269 
1270 	  if ((word & 0xffff0000) == 0x23de0000)	/* lda $sp,n($sp) */
1271 	    {
1272 	      if (word & 0x8000)
1273 		{
1274 		  /* Consider only the first stack allocation instruction
1275 		     to contain the static size of the frame.  */
1276 		  if (frame_size == 0)
1277 		    frame_size = (-word) & 0xffff;
1278 		}
1279 	      else
1280 		{
1281 		  /* Exit loop if a positive stack adjustment is found, which
1282 		     usually means that the stack cleanup code in the function
1283 		     epilogue is reached.  */
1284 		  break;
1285 		}
1286 	    }
1287 	  else if ((word & 0xfc1f0000) == 0xb41e0000)	/* stq reg,n($sp) */
1288 	    {
1289 	      reg = (word & 0x03e00000) >> 21;
1290 
1291               /* Ignore this instruction if we have already encountered
1292                  an instruction saving the same register earlier in the
1293                  function code.  The current instruction does not tell
1294                  us where the original value upon function entry is saved.
1295                  All it says is that the function we are scanning reused
1296                  that register for some computation of its own, and is now
1297                  saving its result.  */
1298               if (trad_frame_addr_p(info->saved_regs, reg))
1299                 continue;
1300 
1301 	      if (reg == 31)
1302 		continue;
1303 
1304 	      /* Do not compute the address where the register was saved yet,
1305 		 because we don't know yet if the offset will need to be
1306 		 relative to $sp or $fp (we can not compute the address
1307 		 relative to $sp if $sp is updated during the execution of
1308 		 the current subroutine, for instance when doing some alloca).
1309 		 So just store the offset for the moment, and compute the
1310 		 address later when we know whether this frame has a frame
1311 		 pointer or not.  */
1312 	      /* Hack: temporarily add one, so that the offset is non-zero
1313 		 and we can tell which registers have save offsets below.  */
1314 	      info->saved_regs[reg].addr = (word & 0xffff) + 1;
1315 
1316 	      /* Starting with OSF/1-3.2C, the system libraries are shipped
1317 		 without local symbols, but they still contain procedure
1318 		 descriptors without a symbol reference. GDB is currently
1319 		 unable to find these procedure descriptors and uses
1320 		 heuristic_proc_desc instead.
1321 		 As some low level compiler support routines (__div*, __add*)
1322 		 use a non-standard return address register, we have to
1323 		 add some heuristics to determine the return address register,
1324 		 or stepping over these routines will fail.
1325 		 Usually the return address register is the first register
1326 		 saved on the stack, but assembler optimization might
1327 		 rearrange the register saves.
1328 		 So we recognize only a few registers (t7, t9, ra) within
1329 		 the procedure prologue as valid return address registers.
1330 		 If we encounter a return instruction, we extract the
1331 		 return address register from it.
1332 
1333 		 FIXME: Rewriting GDB to access the procedure descriptors,
1334 		 e.g. via the minimal symbol table, might obviate this
1335 		 hack.  */
1336 	      if (return_reg == -1
1337 		  && cur_pc < (start_pc + 80)
1338 		  && (reg == ALPHA_T7_REGNUM
1339 		      || reg == ALPHA_T9_REGNUM
1340 		      || reg == ALPHA_RA_REGNUM))
1341 		return_reg = reg;
1342 	    }
1343 	  else if ((word & 0xffe0ffff) == 0x6be08001)	/* ret zero,reg,1 */
1344 	    return_reg = (word >> 16) & 0x1f;
1345 	  else if (word == 0x47de040f)			/* bis sp,sp,fp */
1346 	    frame_reg = ALPHA_GCC_FP_REGNUM;
1347 	  else if (word == 0x47fe040f)			/* bis zero,sp,fp */
1348 	    frame_reg = ALPHA_GCC_FP_REGNUM;
1349 
1350 	  alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1351 	}
1352 
1353       /* If we haven't found a valid return address register yet, keep
1354 	 searching in the procedure prologue.  */
1355       if (return_reg == -1)
1356 	{
1357 	  while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1358 	    {
1359 	      unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1360 
1361 	      if ((word & 0xfc1f0000) == 0xb41e0000)	/* stq reg,n($sp) */
1362 		{
1363 		  reg = (word & 0x03e00000) >> 21;
1364 		  if (reg == ALPHA_T7_REGNUM
1365 		      || reg == ALPHA_T9_REGNUM
1366 		      || reg == ALPHA_RA_REGNUM)
1367 		    {
1368 		      return_reg = reg;
1369 		      break;
1370 		    }
1371 		}
1372 	      else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1373 		{
1374 		  return_reg = (word >> 16) & 0x1f;
1375 		  break;
1376 		}
1377 
1378 	      cur_pc += ALPHA_INSN_SIZE;
1379 	    }
1380 	}
1381     }
1382 
1383   /* Failing that, do default to the customary RA.  */
1384   if (return_reg == -1)
1385     return_reg = ALPHA_RA_REGNUM;
1386   info->return_reg = return_reg;
1387 
1388   val = get_frame_register_unsigned (this_frame, frame_reg);
1389   info->vfp = val + frame_size;
1390 
1391   /* Convert offsets to absolute addresses.  See above about adding
1392      one to the offsets to make all detected offsets non-zero.  */
1393   for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1394     if (trad_frame_addr_p(info->saved_regs, reg))
1395       info->saved_regs[reg].addr += val - 1;
1396 
1397   /* The stack pointer of the previous frame is computed by popping
1398      the current stack frame.  */
1399   if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1400    trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1401 
1402   return info;
1403 }
1404 
1405 /* Given a GDB frame, determine the address of the calling function's
1406    frame.  This will be used to create a new GDB frame struct.  */
1407 
1408 static void
alpha_heuristic_frame_this_id(struct frame_info * this_frame,void ** this_prologue_cache,struct frame_id * this_id)1409 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1410 			       void **this_prologue_cache,
1411 			       struct frame_id *this_id)
1412 {
1413   struct alpha_heuristic_unwind_cache *info
1414     = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1415 
1416   *this_id = frame_id_build (info->vfp, info->start_pc);
1417 }
1418 
1419 /* Retrieve the value of REGNUM in FRAME.  Don't give up!  */
1420 
1421 static struct value *
alpha_heuristic_frame_prev_register(struct frame_info * this_frame,void ** this_prologue_cache,int regnum)1422 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1423 				     void **this_prologue_cache, int regnum)
1424 {
1425   struct alpha_heuristic_unwind_cache *info
1426     = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1427 
1428   /* The PC of the previous frame is stored in the link register of
1429      the current frame.  Frob regnum so that we pull the value from
1430      the correct place.  */
1431   if (regnum == ALPHA_PC_REGNUM)
1432     regnum = info->return_reg;
1433 
1434   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1435 }
1436 
1437 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1438   NORMAL_FRAME,
1439   default_frame_unwind_stop_reason,
1440   alpha_heuristic_frame_this_id,
1441   alpha_heuristic_frame_prev_register,
1442   NULL,
1443   default_frame_sniffer
1444 };
1445 
1446 static CORE_ADDR
alpha_heuristic_frame_base_address(struct frame_info * this_frame,void ** this_prologue_cache)1447 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1448 				    void **this_prologue_cache)
1449 {
1450   struct alpha_heuristic_unwind_cache *info
1451     = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1452 
1453   return info->vfp;
1454 }
1455 
1456 static const struct frame_base alpha_heuristic_frame_base = {
1457   &alpha_heuristic_frame_unwind,
1458   alpha_heuristic_frame_base_address,
1459   alpha_heuristic_frame_base_address,
1460   alpha_heuristic_frame_base_address
1461 };
1462 
1463 /* Just like reinit_frame_cache, but with the right arguments to be
1464    callable as an sfunc.  Used by the "set heuristic-fence-post" command.  */
1465 
1466 static void
reinit_frame_cache_sfunc(char * args,int from_tty,struct cmd_list_element * c)1467 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1468 {
1469   reinit_frame_cache ();
1470 }
1471 
1472 
1473 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1474    dummy frame.  The frame ID's base needs to match the TOS value
1475    saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1476    breakpoint.  */
1477 
1478 static struct frame_id
alpha_dummy_id(struct gdbarch * gdbarch,struct frame_info * this_frame)1479 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1480 {
1481   ULONGEST base;
1482   base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1483   return frame_id_build (base, get_frame_pc (this_frame));
1484 }
1485 
1486 static CORE_ADDR
alpha_unwind_pc(struct gdbarch * gdbarch,struct frame_info * next_frame)1487 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1488 {
1489   ULONGEST pc;
1490   pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1491   return pc;
1492 }
1493 
1494 
1495 /* Helper routines for alpha*-nat.c files to move register sets to and
1496    from core files.  The UNIQUE pointer is allowed to be NULL, as most
1497    targets don't supply this value in their core files.  */
1498 
1499 void
alpha_supply_int_regs(struct regcache * regcache,int regno,const void * r0_r30,const void * pc,const void * unique)1500 alpha_supply_int_regs (struct regcache *regcache, int regno,
1501 		       const void *r0_r30, const void *pc, const void *unique)
1502 {
1503   const gdb_byte *regs = r0_r30;
1504   int i;
1505 
1506   for (i = 0; i < 31; ++i)
1507     if (regno == i || regno == -1)
1508       regcache_raw_supply (regcache, i, regs + i * 8);
1509 
1510   if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1511     {
1512       const gdb_byte zero[8] = { 0 };
1513 
1514       regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1515     }
1516 
1517   if (regno == ALPHA_PC_REGNUM || regno == -1)
1518     regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1519 
1520   if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1521     regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1522 }
1523 
1524 void
alpha_fill_int_regs(const struct regcache * regcache,int regno,void * r0_r30,void * pc,void * unique)1525 alpha_fill_int_regs (const struct regcache *regcache,
1526 		     int regno, void *r0_r30, void *pc, void *unique)
1527 {
1528   gdb_byte *regs = r0_r30;
1529   int i;
1530 
1531   for (i = 0; i < 31; ++i)
1532     if (regno == i || regno == -1)
1533       regcache_raw_collect (regcache, i, regs + i * 8);
1534 
1535   if (regno == ALPHA_PC_REGNUM || regno == -1)
1536     regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1537 
1538   if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1539     regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1540 }
1541 
1542 void
alpha_supply_fp_regs(struct regcache * regcache,int regno,const void * f0_f30,const void * fpcr)1543 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1544 		      const void *f0_f30, const void *fpcr)
1545 {
1546   const gdb_byte *regs = f0_f30;
1547   int i;
1548 
1549   for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1550     if (regno == i || regno == -1)
1551       regcache_raw_supply (regcache, i,
1552 			   regs + (i - ALPHA_FP0_REGNUM) * 8);
1553 
1554   if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1555     regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1556 }
1557 
1558 void
alpha_fill_fp_regs(const struct regcache * regcache,int regno,void * f0_f30,void * fpcr)1559 alpha_fill_fp_regs (const struct regcache *regcache,
1560 		    int regno, void *f0_f30, void *fpcr)
1561 {
1562   gdb_byte *regs = f0_f30;
1563   int i;
1564 
1565   for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1566     if (regno == i || regno == -1)
1567       regcache_raw_collect (regcache, i,
1568 			    regs + (i - ALPHA_FP0_REGNUM) * 8);
1569 
1570   if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1571     regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1572 }
1573 
1574 
1575 
1576 /* Return nonzero if the G_floating register value in REG is equal to
1577    zero for FP control instructions.  */
1578 
1579 static int
fp_register_zero_p(LONGEST reg)1580 fp_register_zero_p (LONGEST reg)
1581 {
1582   /* Check that all bits except the sign bit are zero.  */
1583   const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1584 
1585   return ((reg & zero_mask) == 0);
1586 }
1587 
1588 /* Return the value of the sign bit for the G_floating register
1589    value held in REG.  */
1590 
1591 static int
fp_register_sign_bit(LONGEST reg)1592 fp_register_sign_bit (LONGEST reg)
1593 {
1594   const LONGEST sign_mask = (LONGEST) 1 << 63;
1595 
1596   return ((reg & sign_mask) != 0);
1597 }
1598 
1599 /* alpha_software_single_step() is called just before we want to resume
1600    the inferior, if we want to single-step it but there is no hardware
1601    or kernel single-step support (NetBSD on Alpha, for example).  We find
1602    the target of the coming instruction and breakpoint it.  */
1603 
1604 static CORE_ADDR
alpha_next_pc(struct frame_info * frame,CORE_ADDR pc)1605 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1606 {
1607   struct gdbarch *gdbarch = get_frame_arch (frame);
1608   unsigned int insn;
1609   unsigned int op;
1610   int regno;
1611   int offset;
1612   LONGEST rav;
1613 
1614   insn = alpha_read_insn (gdbarch, pc);
1615 
1616   /* Opcode is top 6 bits.  */
1617   op = (insn >> 26) & 0x3f;
1618 
1619   if (op == 0x1a)
1620     {
1621       /* Jump format: target PC is:
1622 	 RB & ~3  */
1623       return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1624     }
1625 
1626   if ((op & 0x30) == 0x30)
1627     {
1628       /* Branch format: target PC is:
1629 	 (new PC) + (4 * sext(displacement))  */
1630       if (op == 0x30		/* BR */
1631 	  || op == 0x34)	/* BSR */
1632 	{
1633  branch_taken:
1634           offset = (insn & 0x001fffff);
1635 	  if (offset & 0x00100000)
1636 	    offset  |= 0xffe00000;
1637 	  offset *= ALPHA_INSN_SIZE;
1638 	  return (pc + ALPHA_INSN_SIZE + offset);
1639 	}
1640 
1641       /* Need to determine if branch is taken; read RA.  */
1642       regno = (insn >> 21) & 0x1f;
1643       switch (op)
1644         {
1645           case 0x31:              /* FBEQ */
1646           case 0x36:              /* FBGE */
1647           case 0x37:              /* FBGT */
1648           case 0x33:              /* FBLE */
1649           case 0x32:              /* FBLT */
1650           case 0x35:              /* FBNE */
1651             regno += gdbarch_fp0_regnum (gdbarch);
1652 	}
1653 
1654       rav = get_frame_register_signed (frame, regno);
1655 
1656       switch (op)
1657 	{
1658 	case 0x38:		/* BLBC */
1659 	  if ((rav & 1) == 0)
1660 	    goto branch_taken;
1661 	  break;
1662 	case 0x3c:		/* BLBS */
1663 	  if (rav & 1)
1664 	    goto branch_taken;
1665 	  break;
1666 	case 0x39:		/* BEQ */
1667 	  if (rav == 0)
1668 	    goto branch_taken;
1669 	  break;
1670 	case 0x3d:		/* BNE */
1671 	  if (rav != 0)
1672 	    goto branch_taken;
1673 	  break;
1674 	case 0x3a:		/* BLT */
1675 	  if (rav < 0)
1676 	    goto branch_taken;
1677 	  break;
1678 	case 0x3b:		/* BLE */
1679 	  if (rav <= 0)
1680 	    goto branch_taken;
1681 	  break;
1682 	case 0x3f:		/* BGT */
1683 	  if (rav > 0)
1684 	    goto branch_taken;
1685 	  break;
1686 	case 0x3e:		/* BGE */
1687 	  if (rav >= 0)
1688 	    goto branch_taken;
1689 	  break;
1690 
1691         /* Floating point branches.  */
1692 
1693         case 0x31:              /* FBEQ */
1694           if (fp_register_zero_p (rav))
1695             goto branch_taken;
1696           break;
1697         case 0x36:              /* FBGE */
1698           if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1699             goto branch_taken;
1700           break;
1701         case 0x37:              /* FBGT */
1702           if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1703             goto branch_taken;
1704           break;
1705         case 0x33:              /* FBLE */
1706           if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1707             goto branch_taken;
1708           break;
1709         case 0x32:              /* FBLT */
1710           if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1711             goto branch_taken;
1712           break;
1713         case 0x35:              /* FBNE */
1714           if (! fp_register_zero_p (rav))
1715             goto branch_taken;
1716           break;
1717 	}
1718     }
1719 
1720   /* Not a branch or branch not taken; target PC is:
1721      pc + 4  */
1722   return (pc + ALPHA_INSN_SIZE);
1723 }
1724 
1725 int
alpha_software_single_step(struct frame_info * frame)1726 alpha_software_single_step (struct frame_info *frame)
1727 {
1728   struct gdbarch *gdbarch = get_frame_arch (frame);
1729   struct address_space *aspace = get_frame_address_space (frame);
1730   CORE_ADDR pc, next_pc;
1731 
1732   pc = get_frame_pc (frame);
1733   next_pc = alpha_next_pc (frame, pc);
1734 
1735   insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1736   return 1;
1737 }
1738 
1739 
1740 /* Initialize the current architecture based on INFO.  If possible, re-use an
1741    architecture from ARCHES, which is a list of architectures already created
1742    during this debugging session.
1743 
1744    Called e.g. at program startup, when reading a core file, and when reading
1745    a binary file.  */
1746 
1747 static struct gdbarch *
alpha_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1748 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1749 {
1750   struct gdbarch_tdep *tdep;
1751   struct gdbarch *gdbarch;
1752 
1753   /* Try to determine the ABI of the object we are loading.  */
1754   if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1755     {
1756       /* If it's an ECOFF file, assume it's OSF/1.  */
1757       if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1758 	info.osabi = GDB_OSABI_OSF1;
1759     }
1760 
1761   /* Find a candidate among extant architectures.  */
1762   arches = gdbarch_list_lookup_by_info (arches, &info);
1763   if (arches != NULL)
1764     return arches->gdbarch;
1765 
1766   tdep = xmalloc (sizeof (struct gdbarch_tdep));
1767   gdbarch = gdbarch_alloc (&info, tdep);
1768 
1769   /* Lowest text address.  This is used by heuristic_proc_start()
1770      to decide when to stop looking.  */
1771   tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1772 
1773   tdep->dynamic_sigtramp_offset = NULL;
1774   tdep->sigcontext_addr = NULL;
1775   tdep->sc_pc_offset = 2 * 8;
1776   tdep->sc_regs_offset = 4 * 8;
1777   tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1778 
1779   tdep->jb_pc = -1;	/* longjmp support not enabled by default.  */
1780 
1781   tdep->return_in_memory = alpha_return_in_memory_always;
1782 
1783   /* Type sizes */
1784   set_gdbarch_short_bit (gdbarch, 16);
1785   set_gdbarch_int_bit (gdbarch, 32);
1786   set_gdbarch_long_bit (gdbarch, 64);
1787   set_gdbarch_long_long_bit (gdbarch, 64);
1788   set_gdbarch_float_bit (gdbarch, 32);
1789   set_gdbarch_double_bit (gdbarch, 64);
1790   set_gdbarch_long_double_bit (gdbarch, 64);
1791   set_gdbarch_ptr_bit (gdbarch, 64);
1792 
1793   /* Register info */
1794   set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1795   set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1796   set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1797   set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1798 
1799   set_gdbarch_register_name (gdbarch, alpha_register_name);
1800   set_gdbarch_register_type (gdbarch, alpha_register_type);
1801 
1802   set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1803   set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1804 
1805   set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1806   set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1807   set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1808 
1809   set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1810 
1811   /* Prologue heuristics.  */
1812   set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1813 
1814   /* Disassembler.  */
1815   set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1816 
1817   /* Call info.  */
1818 
1819   set_gdbarch_return_value (gdbarch, alpha_return_value);
1820 
1821   /* Settings for calling functions in the inferior.  */
1822   set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1823 
1824   /* Methods for saving / extracting a dummy frame's ID.  */
1825   set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1826 
1827   /* Return the unwound PC value.  */
1828   set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1829 
1830   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1831   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1832 
1833   set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1834   set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1835   set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1836 
1837   /* Handles single stepping of atomic sequences.  */
1838   set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1839 
1840   /* Hook in ABI-specific overrides, if they have been registered.  */
1841   gdbarch_init_osabi (info, gdbarch);
1842 
1843   /* Now that we have tuned the configuration, set a few final things
1844      based on what the OS ABI has told us.  */
1845 
1846   if (tdep->jb_pc >= 0)
1847     set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1848 
1849   frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1850   frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1851 
1852   frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1853 
1854   return gdbarch;
1855 }
1856 
1857 void
alpha_dwarf2_init_abi(struct gdbarch_info info,struct gdbarch * gdbarch)1858 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1859 {
1860   dwarf2_append_unwinders (gdbarch);
1861   frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1862 }
1863 
1864 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1865 
1866 void
_initialize_alpha_tdep(void)1867 _initialize_alpha_tdep (void)
1868 {
1869   struct cmd_list_element *c;
1870 
1871   gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1872 
1873   /* Let the user set the fence post for heuristic_proc_start.  */
1874 
1875   /* We really would like to have both "0" and "unlimited" work, but
1876      command.c doesn't deal with that.  So make it a var_zinteger
1877      because the user can always use "999999" or some such for unlimited.  */
1878   /* We need to throw away the frame cache when we set this, since it
1879      might change our ability to get backtraces.  */
1880   add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1881 			    &heuristic_fence_post, _("\
1882 Set the distance searched for the start of a function."), _("\
1883 Show the distance searched for the start of a function."), _("\
1884 If you are debugging a stripped executable, GDB needs to search through the\n\
1885 program for the start of a function.  This command sets the distance of the\n\
1886 search.  The only need to set it is when debugging a stripped executable."),
1887 			    reinit_frame_cache_sfunc,
1888 			    NULL, /* FIXME: i18n: The distance searched for
1889 				     the start of a function is \"%d\".  */
1890 			    &setlist, &showlist);
1891 }
1892