1 /* GNU/Linux on ARM target support.
2 
3    Copyright (C) 1999-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 
37 #include "arm-tdep.h"
38 #include "arm-linux-tdep.h"
39 #include "linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "arch-utils.h"
42 #include "inferior.h"
43 #include "gdbthread.h"
44 #include "symfile.h"
45 
46 #include "cli/cli-utils.h"
47 #include "stap-probe.h"
48 #include "parser-defs.h"
49 #include "user-regs.h"
50 #include <ctype.h>
51 
52 #include "gdb_string.h"
53 
54 /* This is defined in <elf.h> on ARM GNU/Linux systems.  */
55 #define AT_HWCAP        16
56 
57 extern int arm_apcs_32;
58 
59 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
60    is to execute a particular software interrupt, rather than use a
61    particular undefined instruction to provoke a trap.  Upon exection
62    of the software interrupt the kernel stops the inferior with a
63    SIGTRAP, and wakes the debugger.  */
64 
65 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
66 
67 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
68 
69 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
70    the operand of the swi if old-ABI compatibility is disabled.  Therefore,
71    use an undefined instruction instead.  This is supported as of kernel
72    version 2.5.70 (May 2003), so should be a safe assumption for EABI
73    binaries.  */
74 
75 static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
76 
77 static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
78 
79 /* All the kernels which support Thumb support using a specific undefined
80    instruction for the Thumb breakpoint.  */
81 
82 static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
83 
84 static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
85 
86 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
87    we must use a length-appropriate breakpoint for 32-bit Thumb
88    instructions.  See also thumb_get_next_pc.  */
89 
90 static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
91 
92 static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
93 
94 /* Description of the longjmp buffer.  The buffer is treated as an array of
95    elements of size ARM_LINUX_JB_ELEMENT_SIZE.
96 
97    The location of saved registers in this buffer (in particular the PC
98    to use after longjmp is called) varies depending on the ABI (in
99    particular the FP model) and also (possibly) the C Library.
100 
101    For glibc, eglibc, and uclibc the following holds:  If the FP model is
102    SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
103    buffer.  This is also true for the SoftFPA model.  However, for the FPA
104    model the PC is at offset 21 in the buffer.  */
105 #define ARM_LINUX_JB_ELEMENT_SIZE	INT_REGISTER_SIZE
106 #define ARM_LINUX_JB_PC_FPA		21
107 #define ARM_LINUX_JB_PC_EABI		9
108 
109 /*
110    Dynamic Linking on ARM GNU/Linux
111    --------------------------------
112 
113    Note: PLT = procedure linkage table
114    GOT = global offset table
115 
116    As much as possible, ELF dynamic linking defers the resolution of
117    jump/call addresses until the last minute.  The technique used is
118    inspired by the i386 ELF design, and is based on the following
119    constraints.
120 
121    1) The calling technique should not force a change in the assembly
122    code produced for apps; it MAY cause changes in the way assembly
123    code is produced for position independent code (i.e. shared
124    libraries).
125 
126    2) The technique must be such that all executable areas must not be
127    modified; and any modified areas must not be executed.
128 
129    To do this, there are three steps involved in a typical jump:
130 
131    1) in the code
132    2) through the PLT
133    3) using a pointer from the GOT
134 
135    When the executable or library is first loaded, each GOT entry is
136    initialized to point to the code which implements dynamic name
137    resolution and code finding.  This is normally a function in the
138    program interpreter (on ARM GNU/Linux this is usually
139    ld-linux.so.2, but it does not have to be).  On the first
140    invocation, the function is located and the GOT entry is replaced
141    with the real function address.  Subsequent calls go through steps
142    1, 2 and 3 and end up calling the real code.
143 
144    1) In the code:
145 
146    b    function_call
147    bl   function_call
148 
149    This is typical ARM code using the 26 bit relative branch or branch
150    and link instructions.  The target of the instruction
151    (function_call is usually the address of the function to be called.
152    In position independent code, the target of the instruction is
153    actually an entry in the PLT when calling functions in a shared
154    library.  Note that this call is identical to a normal function
155    call, only the target differs.
156 
157    2) In the PLT:
158 
159    The PLT is a synthetic area, created by the linker.  It exists in
160    both executables and libraries.  It is an array of stubs, one per
161    imported function call.  It looks like this:
162 
163    PLT[0]:
164    str     lr, [sp, #-4]!       @push the return address (lr)
165    ldr     lr, [pc, #16]   @load from 6 words ahead
166    add     lr, pc, lr      @form an address for GOT[0]
167    ldr     pc, [lr, #8]!   @jump to the contents of that addr
168 
169    The return address (lr) is pushed on the stack and used for
170    calculations.  The load on the second line loads the lr with
171    &GOT[3] - . - 20.  The addition on the third leaves:
172 
173    lr = (&GOT[3] - . - 20) + (. + 8)
174    lr = (&GOT[3] - 12)
175    lr = &GOT[0]
176 
177    On the fourth line, the pc and lr are both updated, so that:
178 
179    pc = GOT[2]
180    lr = &GOT[0] + 8
181    = &GOT[2]
182 
183    NOTE: PLT[0] borrows an offset .word from PLT[1].  This is a little
184    "tight", but allows us to keep all the PLT entries the same size.
185 
186    PLT[n+1]:
187    ldr     ip, [pc, #4]    @load offset from gotoff
188    add     ip, pc, ip      @add the offset to the pc
189    ldr     pc, [ip]        @jump to that address
190    gotoff: .word   GOT[n+3] - .
191 
192    The load on the first line, gets an offset from the fourth word of
193    the PLT entry.  The add on the second line makes ip = &GOT[n+3],
194    which contains either a pointer to PLT[0] (the fixup trampoline) or
195    a pointer to the actual code.
196 
197    3) In the GOT:
198 
199    The GOT contains helper pointers for both code (PLT) fixups and
200    data fixups.  The first 3 entries of the GOT are special.  The next
201    M entries (where M is the number of entries in the PLT) belong to
202    the PLT fixups.  The next D (all remaining) entries belong to
203    various data fixups.  The actual size of the GOT is 3 + M + D.
204 
205    The GOT is also a synthetic area, created by the linker.  It exists
206    in both executables and libraries.  When the GOT is first
207    initialized , all the GOT entries relating to PLT fixups are
208    pointing to code back at PLT[0].
209 
210    The special entries in the GOT are:
211 
212    GOT[0] = linked list pointer used by the dynamic loader
213    GOT[1] = pointer to the reloc table for this module
214    GOT[2] = pointer to the fixup/resolver code
215 
216    The first invocation of function call comes through and uses the
217    fixup/resolver code.  On the entry to the fixup/resolver code:
218 
219    ip = &GOT[n+3]
220    lr = &GOT[2]
221    stack[0] = return address (lr) of the function call
222    [r0, r1, r2, r3] are still the arguments to the function call
223 
224    This is enough information for the fixup/resolver code to work
225    with.  Before the fixup/resolver code returns, it actually calls
226    the requested function and repairs &GOT[n+3].  */
227 
228 /* The constants below were determined by examining the following files
229    in the linux kernel sources:
230 
231       arch/arm/kernel/signal.c
232 	  - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
233       include/asm-arm/unistd.h
234 	  - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
235 
236 #define ARM_LINUX_SIGRETURN_INSTR	0xef900077
237 #define ARM_LINUX_RT_SIGRETURN_INSTR	0xef9000ad
238 
239 /* For ARM EABI, the syscall number is not in the SWI instruction
240    (instead it is loaded into r7).  We recognize the pattern that
241    glibc uses...  alternatively, we could arrange to do this by
242    function name, but they are not always exported.  */
243 #define ARM_SET_R7_SIGRETURN		0xe3a07077
244 #define ARM_SET_R7_RT_SIGRETURN		0xe3a070ad
245 #define ARM_EABI_SYSCALL		0xef000000
246 
247 /* OABI syscall restart trampoline, used for EABI executables too
248    whenever OABI support has been enabled in the kernel.  */
249 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
250 #define ARM_LDR_PC_SP_12		0xe49df00c
251 #define ARM_LDR_PC_SP_4			0xe49df004
252 
253 static void
arm_linux_sigtramp_cache(struct frame_info * this_frame,struct trad_frame_cache * this_cache,CORE_ADDR func,int regs_offset)254 arm_linux_sigtramp_cache (struct frame_info *this_frame,
255 			  struct trad_frame_cache *this_cache,
256 			  CORE_ADDR func, int regs_offset)
257 {
258   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
259   CORE_ADDR base = sp + regs_offset;
260   int i;
261 
262   for (i = 0; i < 16; i++)
263     trad_frame_set_reg_addr (this_cache, i, base + i * 4);
264 
265   trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
266 
267   /* The VFP or iWMMXt registers may be saved on the stack, but there's
268      no reliable way to restore them (yet).  */
269 
270   /* Save a frame ID.  */
271   trad_frame_set_id (this_cache, frame_id_build (sp, func));
272 }
273 
274 /* There are a couple of different possible stack layouts that
275    we need to support.
276 
277    Before version 2.6.18, the kernel used completely independent
278    layouts for non-RT and RT signals.  For non-RT signals the stack
279    began directly with a struct sigcontext.  For RT signals the stack
280    began with two redundant pointers (to the siginfo and ucontext),
281    and then the siginfo and ucontext.
282 
283    As of version 2.6.18, the non-RT signal frame layout starts with
284    a ucontext and the RT signal frame starts with a siginfo and then
285    a ucontext.  Also, the ucontext now has a designated save area
286    for coprocessor registers.
287 
288    For RT signals, it's easy to tell the difference: we look for
289    pinfo, the pointer to the siginfo.  If it has the expected
290    value, we have an old layout.  If it doesn't, we have the new
291    layout.
292 
293    For non-RT signals, it's a bit harder.  We need something in one
294    layout or the other with a recognizable offset and value.  We can't
295    use the return trampoline, because ARM usually uses SA_RESTORER,
296    in which case the stack return trampoline is not filled in.
297    We can't use the saved stack pointer, because sigaltstack might
298    be in use.  So for now we guess the new layout...  */
299 
300 /* There are three words (trap_no, error_code, oldmask) in
301    struct sigcontext before r0.  */
302 #define ARM_SIGCONTEXT_R0 0xc
303 
304 /* There are five words (uc_flags, uc_link, and three for uc_stack)
305    in the ucontext_t before the sigcontext.  */
306 #define ARM_UCONTEXT_SIGCONTEXT 0x14
307 
308 /* There are three elements in an rt_sigframe before the ucontext:
309    pinfo, puc, and info.  The first two are pointers and the third
310    is a struct siginfo, with size 128 bytes.  We could follow puc
311    to the ucontext, but it's simpler to skip the whole thing.  */
312 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
313 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
314 
315 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
316 
317 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
318 
319 static void
arm_linux_sigreturn_init(const struct tramp_frame * self,struct frame_info * this_frame,struct trad_frame_cache * this_cache,CORE_ADDR func)320 arm_linux_sigreturn_init (const struct tramp_frame *self,
321 			  struct frame_info *this_frame,
322 			  struct trad_frame_cache *this_cache,
323 			  CORE_ADDR func)
324 {
325   struct gdbarch *gdbarch = get_frame_arch (this_frame);
326   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
327   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
328   ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
329 
330   if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
331     arm_linux_sigtramp_cache (this_frame, this_cache, func,
332 			      ARM_UCONTEXT_SIGCONTEXT
333 			      + ARM_SIGCONTEXT_R0);
334   else
335     arm_linux_sigtramp_cache (this_frame, this_cache, func,
336 			      ARM_SIGCONTEXT_R0);
337 }
338 
339 static void
arm_linux_rt_sigreturn_init(const struct tramp_frame * self,struct frame_info * this_frame,struct trad_frame_cache * this_cache,CORE_ADDR func)340 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
341 			  struct frame_info *this_frame,
342 			  struct trad_frame_cache *this_cache,
343 			  CORE_ADDR func)
344 {
345   struct gdbarch *gdbarch = get_frame_arch (this_frame);
346   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
347   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
348   ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
349 
350   if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
351     arm_linux_sigtramp_cache (this_frame, this_cache, func,
352 			      ARM_OLD_RT_SIGFRAME_UCONTEXT
353 			      + ARM_UCONTEXT_SIGCONTEXT
354 			      + ARM_SIGCONTEXT_R0);
355   else
356     arm_linux_sigtramp_cache (this_frame, this_cache, func,
357 			      ARM_NEW_RT_SIGFRAME_UCONTEXT
358 			      + ARM_UCONTEXT_SIGCONTEXT
359 			      + ARM_SIGCONTEXT_R0);
360 }
361 
362 static void
arm_linux_restart_syscall_init(const struct tramp_frame * self,struct frame_info * this_frame,struct trad_frame_cache * this_cache,CORE_ADDR func)363 arm_linux_restart_syscall_init (const struct tramp_frame *self,
364 				struct frame_info *this_frame,
365 				struct trad_frame_cache *this_cache,
366 				CORE_ADDR func)
367 {
368   struct gdbarch *gdbarch = get_frame_arch (this_frame);
369   CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
370   CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
371   CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
372   ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
373   int sp_offset;
374 
375   /* There are two variants of this trampoline; with older kernels, the
376      stub is placed on the stack, while newer kernels use the stub from
377      the vector page.  They are identical except that the older version
378      increments SP by 12 (to skip stored PC and the stub itself), while
379      the newer version increments SP only by 4 (just the stored PC).  */
380   if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
381     sp_offset = 4;
382   else
383     sp_offset = 12;
384 
385   /* Update Thumb bit in CPSR.  */
386   if (pc & 1)
387     cpsr |= t_bit;
388   else
389     cpsr &= ~t_bit;
390 
391   /* Remove Thumb bit from PC.  */
392   pc = gdbarch_addr_bits_remove (gdbarch, pc);
393 
394   /* Save previous register values.  */
395   trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
396   trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
397   trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
398 
399   /* Save a frame ID.  */
400   trad_frame_set_id (this_cache, frame_id_build (sp, func));
401 }
402 
403 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
404   SIGTRAMP_FRAME,
405   4,
406   {
407     { ARM_LINUX_SIGRETURN_INSTR, -1 },
408     { TRAMP_SENTINEL_INSN }
409   },
410   arm_linux_sigreturn_init
411 };
412 
413 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
414   SIGTRAMP_FRAME,
415   4,
416   {
417     { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
418     { TRAMP_SENTINEL_INSN }
419   },
420   arm_linux_rt_sigreturn_init
421 };
422 
423 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
424   SIGTRAMP_FRAME,
425   4,
426   {
427     { ARM_SET_R7_SIGRETURN, -1 },
428     { ARM_EABI_SYSCALL, -1 },
429     { TRAMP_SENTINEL_INSN }
430   },
431   arm_linux_sigreturn_init
432 };
433 
434 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
435   SIGTRAMP_FRAME,
436   4,
437   {
438     { ARM_SET_R7_RT_SIGRETURN, -1 },
439     { ARM_EABI_SYSCALL, -1 },
440     { TRAMP_SENTINEL_INSN }
441   },
442   arm_linux_rt_sigreturn_init
443 };
444 
445 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
446   NORMAL_FRAME,
447   4,
448   {
449     { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
450     { ARM_LDR_PC_SP_12, -1 },
451     { TRAMP_SENTINEL_INSN }
452   },
453   arm_linux_restart_syscall_init
454 };
455 
456 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
457   NORMAL_FRAME,
458   4,
459   {
460     { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
461     { ARM_LDR_PC_SP_4, -1 },
462     { TRAMP_SENTINEL_INSN }
463   },
464   arm_linux_restart_syscall_init
465 };
466 
467 /* Core file and register set support.  */
468 
469 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
470 
471 void
arm_linux_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs_buf,size_t len)472 arm_linux_supply_gregset (const struct regset *regset,
473 			  struct regcache *regcache,
474 			  int regnum, const void *gregs_buf, size_t len)
475 {
476   struct gdbarch *gdbarch = get_regcache_arch (regcache);
477   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478   const gdb_byte *gregs = gregs_buf;
479   int regno;
480   CORE_ADDR reg_pc;
481   gdb_byte pc_buf[INT_REGISTER_SIZE];
482 
483   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
484     if (regnum == -1 || regnum == regno)
485       regcache_raw_supply (regcache, regno,
486 			   gregs + INT_REGISTER_SIZE * regno);
487 
488   if (regnum == ARM_PS_REGNUM || regnum == -1)
489     {
490       if (arm_apcs_32)
491 	regcache_raw_supply (regcache, ARM_PS_REGNUM,
492 			     gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
493       else
494 	regcache_raw_supply (regcache, ARM_PS_REGNUM,
495 			     gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
496     }
497 
498   if (regnum == ARM_PC_REGNUM || regnum == -1)
499     {
500       reg_pc = extract_unsigned_integer (gregs
501 					 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
502 					 INT_REGISTER_SIZE, byte_order);
503       reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
504       store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
505       regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
506     }
507 }
508 
509 void
arm_linux_collect_gregset(const struct regset * regset,const struct regcache * regcache,int regnum,void * gregs_buf,size_t len)510 arm_linux_collect_gregset (const struct regset *regset,
511 			   const struct regcache *regcache,
512 			   int regnum, void *gregs_buf, size_t len)
513 {
514   gdb_byte *gregs = gregs_buf;
515   int regno;
516 
517   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
518     if (regnum == -1 || regnum == regno)
519       regcache_raw_collect (regcache, regno,
520 			    gregs + INT_REGISTER_SIZE * regno);
521 
522   if (regnum == ARM_PS_REGNUM || regnum == -1)
523     {
524       if (arm_apcs_32)
525 	regcache_raw_collect (regcache, ARM_PS_REGNUM,
526 			      gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
527       else
528 	regcache_raw_collect (regcache, ARM_PS_REGNUM,
529 			      gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
530     }
531 
532   if (regnum == ARM_PC_REGNUM || regnum == -1)
533     regcache_raw_collect (regcache, ARM_PC_REGNUM,
534 			  gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
535 }
536 
537 /* Support for register format used by the NWFPE FPA emulator.  */
538 
539 #define typeNone		0x00
540 #define typeSingle		0x01
541 #define typeDouble		0x02
542 #define typeExtended		0x03
543 
544 void
supply_nwfpe_register(struct regcache * regcache,int regno,const gdb_byte * regs)545 supply_nwfpe_register (struct regcache *regcache, int regno,
546 		       const gdb_byte *regs)
547 {
548   const gdb_byte *reg_data;
549   gdb_byte reg_tag;
550   gdb_byte buf[FP_REGISTER_SIZE];
551 
552   reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
553   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
554   memset (buf, 0, FP_REGISTER_SIZE);
555 
556   switch (reg_tag)
557     {
558     case typeSingle:
559       memcpy (buf, reg_data, 4);
560       break;
561     case typeDouble:
562       memcpy (buf, reg_data + 4, 4);
563       memcpy (buf + 4, reg_data, 4);
564       break;
565     case typeExtended:
566       /* We want sign and exponent, then least significant bits,
567 	 then most significant.  NWFPE does sign, most, least.  */
568       memcpy (buf, reg_data, 4);
569       memcpy (buf + 4, reg_data + 8, 4);
570       memcpy (buf + 8, reg_data + 4, 4);
571       break;
572     default:
573       break;
574     }
575 
576   regcache_raw_supply (regcache, regno, buf);
577 }
578 
579 void
collect_nwfpe_register(const struct regcache * regcache,int regno,gdb_byte * regs)580 collect_nwfpe_register (const struct regcache *regcache, int regno,
581 			gdb_byte *regs)
582 {
583   gdb_byte *reg_data;
584   gdb_byte reg_tag;
585   gdb_byte buf[FP_REGISTER_SIZE];
586 
587   regcache_raw_collect (regcache, regno, buf);
588 
589   /* NOTE drow/2006-06-07: This code uses the tag already in the
590      register buffer.  I've preserved that when moving the code
591      from the native file to the target file.  But this doesn't
592      always make sense.  */
593 
594   reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
595   reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
596 
597   switch (reg_tag)
598     {
599     case typeSingle:
600       memcpy (reg_data, buf, 4);
601       break;
602     case typeDouble:
603       memcpy (reg_data, buf + 4, 4);
604       memcpy (reg_data + 4, buf, 4);
605       break;
606     case typeExtended:
607       memcpy (reg_data, buf, 4);
608       memcpy (reg_data + 4, buf + 8, 4);
609       memcpy (reg_data + 8, buf + 4, 4);
610       break;
611     default:
612       break;
613     }
614 }
615 
616 void
arm_linux_supply_nwfpe(const struct regset * regset,struct regcache * regcache,int regnum,const void * regs_buf,size_t len)617 arm_linux_supply_nwfpe (const struct regset *regset,
618 			struct regcache *regcache,
619 			int regnum, const void *regs_buf, size_t len)
620 {
621   const gdb_byte *regs = regs_buf;
622   int regno;
623 
624   if (regnum == ARM_FPS_REGNUM || regnum == -1)
625     regcache_raw_supply (regcache, ARM_FPS_REGNUM,
626 			 regs + NWFPE_FPSR_OFFSET);
627 
628   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
629     if (regnum == -1 || regnum == regno)
630       supply_nwfpe_register (regcache, regno, regs);
631 }
632 
633 void
arm_linux_collect_nwfpe(const struct regset * regset,const struct regcache * regcache,int regnum,void * regs_buf,size_t len)634 arm_linux_collect_nwfpe (const struct regset *regset,
635 			 const struct regcache *regcache,
636 			 int regnum, void *regs_buf, size_t len)
637 {
638   gdb_byte *regs = regs_buf;
639   int regno;
640 
641   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
642     if (regnum == -1 || regnum == regno)
643       collect_nwfpe_register (regcache, regno, regs);
644 
645   if (regnum == ARM_FPS_REGNUM || regnum == -1)
646     regcache_raw_collect (regcache, ARM_FPS_REGNUM,
647 			  regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
648 }
649 
650 /* Support VFP register format.  */
651 
652 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
653 
654 static void
arm_linux_supply_vfp(const struct regset * regset,struct regcache * regcache,int regnum,const void * regs_buf,size_t len)655 arm_linux_supply_vfp (const struct regset *regset,
656 		      struct regcache *regcache,
657 		      int regnum, const void *regs_buf, size_t len)
658 {
659   const gdb_byte *regs = regs_buf;
660   int regno;
661 
662   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
663     regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
664 
665   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
666     if (regnum == -1 || regnum == regno)
667       regcache_raw_supply (regcache, regno,
668 			   regs + (regno - ARM_D0_REGNUM) * 8);
669 }
670 
671 static void
arm_linux_collect_vfp(const struct regset * regset,const struct regcache * regcache,int regnum,void * regs_buf,size_t len)672 arm_linux_collect_vfp (const struct regset *regset,
673 			 const struct regcache *regcache,
674 			 int regnum, void *regs_buf, size_t len)
675 {
676   gdb_byte *regs = regs_buf;
677   int regno;
678 
679   if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
680     regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
681 
682   for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
683     if (regnum == -1 || regnum == regno)
684       regcache_raw_collect (regcache, regno,
685 			    regs + (regno - ARM_D0_REGNUM) * 8);
686 }
687 
688 /* Return the appropriate register set for the core section identified
689    by SECT_NAME and SECT_SIZE.  */
690 
691 static const struct regset *
arm_linux_regset_from_core_section(struct gdbarch * gdbarch,const char * sect_name,size_t sect_size)692 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
693 				    const char *sect_name, size_t sect_size)
694 {
695   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
696 
697   if (strcmp (sect_name, ".reg") == 0
698       && sect_size == ARM_LINUX_SIZEOF_GREGSET)
699     {
700       if (tdep->gregset == NULL)
701         tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
702                                       arm_linux_collect_gregset);
703       return tdep->gregset;
704     }
705 
706   if (strcmp (sect_name, ".reg2") == 0
707       && sect_size == ARM_LINUX_SIZEOF_NWFPE)
708     {
709       if (tdep->fpregset == NULL)
710         tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
711                                        arm_linux_collect_nwfpe);
712       return tdep->fpregset;
713     }
714 
715   if (strcmp (sect_name, ".reg-arm-vfp") == 0
716       && sect_size == ARM_LINUX_SIZEOF_VFP)
717     {
718       if (tdep->vfpregset == NULL)
719         tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
720 					arm_linux_collect_vfp);
721       return tdep->vfpregset;
722     }
723 
724   return NULL;
725 }
726 
727 /* Core file register set sections.  */
728 
729 static struct core_regset_section arm_linux_fpa_regset_sections[] =
730 {
731   { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
732   { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
733   { NULL, 0}
734 };
735 
736 static struct core_regset_section arm_linux_vfp_regset_sections[] =
737 {
738   { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
739   { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
740   { NULL, 0}
741 };
742 
743 /* Determine target description from core file.  */
744 
745 static const struct target_desc *
arm_linux_core_read_description(struct gdbarch * gdbarch,struct target_ops * target,bfd * abfd)746 arm_linux_core_read_description (struct gdbarch *gdbarch,
747                                  struct target_ops *target,
748                                  bfd *abfd)
749 {
750   CORE_ADDR arm_hwcap = 0;
751 
752   if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
753     return NULL;
754 
755   if (arm_hwcap & HWCAP_VFP)
756     {
757       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
758          Neon with VFPv3-D32.  */
759       if (arm_hwcap & HWCAP_NEON)
760 	return tdesc_arm_with_neon;
761       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
762 	return tdesc_arm_with_vfpv3;
763       else
764 	return tdesc_arm_with_vfpv2;
765     }
766 
767   return NULL;
768 }
769 
770 
771 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
772    return 1.  In addition, set IS_THUMB depending on whether we
773    will return to ARM or Thumb code.  Return 0 if it is not a
774    rt_sigreturn/sigreturn syscall.  */
775 static int
arm_linux_sigreturn_return_addr(struct frame_info * frame,unsigned long svc_number,CORE_ADDR * pc,int * is_thumb)776 arm_linux_sigreturn_return_addr (struct frame_info *frame,
777 				 unsigned long svc_number,
778 				 CORE_ADDR *pc, int *is_thumb)
779 {
780   /* Is this a sigreturn or rt_sigreturn syscall?  */
781   if (svc_number == 119 || svc_number == 173)
782     {
783       if (get_frame_type (frame) == SIGTRAMP_FRAME)
784 	{
785 	  ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
786 	  CORE_ADDR cpsr
787 	    = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
788 
789 	  *is_thumb = (cpsr & t_bit) != 0;
790 	  *pc = frame_unwind_caller_pc (frame);
791 	  return 1;
792 	}
793     }
794   return 0;
795 }
796 
797 /* When FRAME is at a syscall instruction, return the PC of the next
798    instruction to be executed.  */
799 
800 static CORE_ADDR
arm_linux_syscall_next_pc(struct frame_info * frame)801 arm_linux_syscall_next_pc (struct frame_info *frame)
802 {
803   CORE_ADDR pc = get_frame_pc (frame);
804   CORE_ADDR return_addr = 0;
805   int is_thumb = arm_frame_is_thumb (frame);
806   ULONGEST svc_number = 0;
807 
808   if (is_thumb)
809     {
810       svc_number = get_frame_register_unsigned (frame, 7);
811       return_addr = pc + 2;
812     }
813   else
814     {
815       struct gdbarch *gdbarch = get_frame_arch (frame);
816       enum bfd_endian byte_order_for_code =
817 	gdbarch_byte_order_for_code (gdbarch);
818       unsigned long this_instr =
819 	read_memory_unsigned_integer (pc, 4, byte_order_for_code);
820 
821       unsigned long svc_operand = (0x00ffffff & this_instr);
822       if (svc_operand)  /* OABI.  */
823 	{
824 	  svc_number = svc_operand - 0x900000;
825 	}
826       else /* EABI.  */
827 	{
828 	  svc_number = get_frame_register_unsigned (frame, 7);
829 	}
830 
831       return_addr = pc + 4;
832     }
833 
834   arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
835 
836   /* Addresses for calling Thumb functions have the bit 0 set.  */
837   if (is_thumb)
838     return_addr |= 1;
839 
840   return return_addr;
841 }
842 
843 
844 /* Insert a single step breakpoint at the next executed instruction.  */
845 
846 static int
arm_linux_software_single_step(struct frame_info * frame)847 arm_linux_software_single_step (struct frame_info *frame)
848 {
849   struct gdbarch *gdbarch = get_frame_arch (frame);
850   struct address_space *aspace = get_frame_address_space (frame);
851   CORE_ADDR next_pc;
852 
853   if (arm_deal_with_atomic_sequence (frame))
854     return 1;
855 
856   next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
857 
858   /* The Linux kernel offers some user-mode helpers in a high page.  We can
859      not read this page (as of 2.6.23), and even if we could then we couldn't
860      set breakpoints in it, and even if we could then the atomic operations
861      would fail when interrupted.  They are all called as functions and return
862      to the address in LR, so step to there instead.  */
863   if (next_pc > 0xffff0000)
864     next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
865 
866   arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
867 
868   return 1;
869 }
870 
871 /* Support for displaced stepping of Linux SVC instructions.  */
872 
873 static void
arm_linux_cleanup_svc(struct gdbarch * gdbarch,struct regcache * regs,struct displaced_step_closure * dsc)874 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
875 		       struct regcache *regs,
876 		       struct displaced_step_closure *dsc)
877 {
878   CORE_ADDR from = dsc->insn_addr;
879   ULONGEST apparent_pc;
880   int within_scratch;
881 
882   regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
883 
884   within_scratch = (apparent_pc >= dsc->scratch_base
885 		    && apparent_pc < (dsc->scratch_base
886 				      + DISPLACED_MODIFIED_INSNS * 4 + 4));
887 
888   if (debug_displaced)
889     {
890       fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
891 			  "SVC step ", (unsigned long) apparent_pc);
892       if (within_scratch)
893         fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
894       else
895         fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
896     }
897 
898   if (within_scratch)
899     displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
900 }
901 
902 static int
arm_linux_copy_svc(struct gdbarch * gdbarch,struct regcache * regs,struct displaced_step_closure * dsc)903 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
904 		    struct displaced_step_closure *dsc)
905 {
906   CORE_ADDR return_to = 0;
907 
908   struct frame_info *frame;
909   unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
910   int is_sigreturn = 0;
911   int is_thumb;
912 
913   frame = get_current_frame ();
914 
915   is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
916 						 &return_to, &is_thumb);
917   if (is_sigreturn)
918     {
919 	  struct symtab_and_line sal;
920 
921 	  if (debug_displaced)
922 	    fprintf_unfiltered (gdb_stdlog, "displaced: found "
923 	      "sigreturn/rt_sigreturn SVC call.  PC in frame = %lx\n",
924 	      (unsigned long) get_frame_pc (frame));
925 
926 	  if (debug_displaced)
927 	    fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx.  "
928 	      "Setting momentary breakpoint.\n", (unsigned long) return_to);
929 
930 	  gdb_assert (inferior_thread ()->control.step_resume_breakpoint
931 		      == NULL);
932 
933 	  sal = find_pc_line (return_to, 0);
934 	  sal.pc = return_to;
935 	  sal.section = find_pc_overlay (return_to);
936 	  sal.explicit_pc = 1;
937 
938 	  frame = get_prev_frame (frame);
939 
940 	  if (frame)
941 	    {
942 	      inferior_thread ()->control.step_resume_breakpoint
943         	= set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
944 					    bp_step_resume);
945 
946 	      /* set_momentary_breakpoint invalidates FRAME.  */
947 	      frame = NULL;
948 
949 	      /* We need to make sure we actually insert the momentary
950 	         breakpoint set above.  */
951 	      insert_breakpoints ();
952 	    }
953 	  else if (debug_displaced)
954 	    fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
955 				"frame to set momentary breakpoint for "
956 				"sigreturn/rt_sigreturn\n");
957 	}
958       else if (debug_displaced)
959 	fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
960 			    "SVC call not in signal trampoline frame\n");
961 
962 
963   /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
964 		  location, else nothing.
965      Insn: unmodified svc.
966      Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
967               else leave pc alone.  */
968 
969 
970   dsc->cleanup = &arm_linux_cleanup_svc;
971   /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
972      instruction.  */
973   dsc->wrote_to_pc = 1;
974 
975   return 0;
976 }
977 
978 
979 /* The following two functions implement single-stepping over calls to Linux
980    kernel helper routines, which perform e.g. atomic operations on architecture
981    variants which don't support them natively.
982 
983    When this function is called, the PC will be pointing at the kernel helper
984    (at an address inaccessible to GDB), and r14 will point to the return
985    address.  Displaced stepping always executes code in the copy area:
986    so, make the copy-area instruction branch back to the kernel helper (the
987    "from" address), and make r14 point to the breakpoint in the copy area.  In
988    that way, we regain control once the kernel helper returns, and can clean
989    up appropriately (as if we had just returned from the kernel helper as it
990    would have been called from the non-displaced location).  */
991 
992 static void
cleanup_kernel_helper_return(struct gdbarch * gdbarch,struct regcache * regs,struct displaced_step_closure * dsc)993 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
994 			      struct regcache *regs,
995 			      struct displaced_step_closure *dsc)
996 {
997   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
998   displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
999 }
1000 
1001 static void
arm_catch_kernel_helper_return(struct gdbarch * gdbarch,CORE_ADDR from,CORE_ADDR to,struct regcache * regs,struct displaced_step_closure * dsc)1002 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1003 				CORE_ADDR to, struct regcache *regs,
1004 				struct displaced_step_closure *dsc)
1005 {
1006   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1007 
1008   dsc->numinsns = 1;
1009   dsc->insn_addr = from;
1010   dsc->cleanup = &cleanup_kernel_helper_return;
1011   /* Say we wrote to the PC, else cleanup will set PC to the next
1012      instruction in the helper, which isn't helpful.  */
1013   dsc->wrote_to_pc = 1;
1014 
1015   /* Preparation: tmp[0] <- r14
1016                   r14 <- <scratch space>+4
1017 		  *(<scratch space>+8) <- from
1018      Insn: ldr pc, [r14, #4]
1019      Cleanup: r14 <- tmp[0], pc <- tmp[0].  */
1020 
1021   dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1022   displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1023 		       CANNOT_WRITE_PC);
1024   write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1025 
1026   dsc->modinsn[0] = 0xe59ef004;  /* ldr pc, [lr, #4].  */
1027 }
1028 
1029 /* Linux-specific displaced step instruction copying function.  Detects when
1030    the program has stepped into a Linux kernel helper routine (which must be
1031    handled as a special case), falling back to arm_displaced_step_copy_insn()
1032    if it hasn't.  */
1033 
1034 static struct displaced_step_closure *
arm_linux_displaced_step_copy_insn(struct gdbarch * gdbarch,CORE_ADDR from,CORE_ADDR to,struct regcache * regs)1035 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1036 				    CORE_ADDR from, CORE_ADDR to,
1037 				    struct regcache *regs)
1038 {
1039   struct displaced_step_closure *dsc
1040     = xmalloc (sizeof (struct displaced_step_closure));
1041 
1042   /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1043      stop at the return location.  */
1044   if (from > 0xffff0000)
1045     {
1046       if (debug_displaced)
1047         fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1048 			    "at %.8lx\n", (unsigned long) from);
1049 
1050       arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1051     }
1052   else
1053     {
1054       /* Override the default handling of SVC instructions.  */
1055       dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1056 
1057       arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1058     }
1059 
1060   arm_displaced_init_closure (gdbarch, from, to, dsc);
1061 
1062   return dsc;
1063 }
1064 
1065 static int
arm_stap_is_single_operand(struct gdbarch * gdbarch,const char * s)1066 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1067 {
1068   return (*s == '#' /* Literal number.  */
1069 	  || *s == '[' /* Register indirection or
1070 			  displacement.  */
1071 	  || isalpha (*s)); /* Register value.  */
1072 }
1073 
1074 /* This routine is used to parse a special token in ARM's assembly.
1075 
1076    The special tokens parsed by it are:
1077 
1078       - Register displacement (e.g, [fp, #-8])
1079 
1080    It returns one if the special token has been parsed successfully,
1081    or zero if the current token is not considered special.  */
1082 
1083 static int
arm_stap_parse_special_token(struct gdbarch * gdbarch,struct stap_parse_info * p)1084 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1085 			      struct stap_parse_info *p)
1086 {
1087   if (*p->arg == '[')
1088     {
1089       /* Temporary holder for lookahead.  */
1090       const char *tmp = p->arg;
1091       /* Used to save the register name.  */
1092       const char *start;
1093       char *regname;
1094       int len, offset;
1095       int got_minus = 0;
1096       long displacement;
1097       struct stoken str;
1098 
1099       ++tmp;
1100       start = tmp;
1101 
1102       /* Register name.  */
1103       while (isalnum (*tmp))
1104 	++tmp;
1105 
1106       if (*tmp != ',')
1107 	return 0;
1108 
1109       len = tmp - start;
1110       regname = alloca (len + 2);
1111 
1112       offset = 0;
1113       if (isdigit (*start))
1114 	{
1115 	  /* If we are dealing with a register whose name begins with a
1116 	     digit, it means we should prefix the name with the letter
1117 	     `r', because GDB expects this name pattern.  Otherwise (e.g.,
1118 	     we are dealing with the register `fp'), we don't need to
1119 	     add such a prefix.  */
1120 	  regname[0] = 'r';
1121 	  offset = 1;
1122 	}
1123 
1124       strncpy (regname + offset, start, len);
1125       len += offset;
1126       regname[len] = '\0';
1127 
1128       if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1129 	error (_("Invalid register name `%s' on expression `%s'."),
1130 	       regname, p->saved_arg);
1131 
1132       ++tmp;
1133       tmp = skip_spaces_const (tmp);
1134       if (*tmp++ != '#')
1135 	return 0;
1136 
1137       if (*tmp == '-')
1138 	{
1139 	  ++tmp;
1140 	  got_minus = 1;
1141 	}
1142 
1143       displacement = strtol (tmp, (char **) &tmp, 10);
1144 
1145       /* Skipping last `]'.  */
1146       if (*tmp++ != ']')
1147 	return 0;
1148 
1149       /* The displacement.  */
1150       write_exp_elt_opcode (OP_LONG);
1151       write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
1152       write_exp_elt_longcst (displacement);
1153       write_exp_elt_opcode (OP_LONG);
1154       if (got_minus)
1155 	write_exp_elt_opcode (UNOP_NEG);
1156 
1157       /* The register name.  */
1158       write_exp_elt_opcode (OP_REGISTER);
1159       str.ptr = regname;
1160       str.length = len;
1161       write_exp_string (str);
1162       write_exp_elt_opcode (OP_REGISTER);
1163 
1164       write_exp_elt_opcode (BINOP_ADD);
1165 
1166       /* Casting to the expected type.  */
1167       write_exp_elt_opcode (UNOP_CAST);
1168       write_exp_elt_type (lookup_pointer_type (p->arg_type));
1169       write_exp_elt_opcode (UNOP_CAST);
1170 
1171       write_exp_elt_opcode (UNOP_IND);
1172 
1173       p->arg = tmp;
1174     }
1175   else
1176     return 0;
1177 
1178   return 1;
1179 }
1180 
1181 static void
arm_linux_init_abi(struct gdbarch_info info,struct gdbarch * gdbarch)1182 arm_linux_init_abi (struct gdbarch_info info,
1183 		    struct gdbarch *gdbarch)
1184 {
1185   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1186 
1187   linux_init_abi (info, gdbarch);
1188 
1189   tdep->lowest_pc = 0x8000;
1190   if (info.byte_order == BFD_ENDIAN_BIG)
1191     {
1192       if (tdep->arm_abi == ARM_ABI_AAPCS)
1193 	tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1194       else
1195 	tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1196       tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1197       tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1198     }
1199   else
1200     {
1201       if (tdep->arm_abi == ARM_ABI_AAPCS)
1202 	tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1203       else
1204 	tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1205       tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1206       tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1207     }
1208   tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1209   tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1210   tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1211 
1212   if (tdep->fp_model == ARM_FLOAT_AUTO)
1213     tdep->fp_model = ARM_FLOAT_FPA;
1214 
1215   switch (tdep->fp_model)
1216     {
1217     case ARM_FLOAT_FPA:
1218       tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1219       break;
1220     case ARM_FLOAT_SOFT_FPA:
1221     case ARM_FLOAT_SOFT_VFP:
1222     case ARM_FLOAT_VFP:
1223       tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1224       break;
1225     default:
1226       internal_error
1227 	(__FILE__, __LINE__,
1228          _("arm_linux_init_abi: Floating point model not supported"));
1229       break;
1230     }
1231   tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1232 
1233   set_solib_svr4_fetch_link_map_offsets
1234     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1235 
1236   /* Single stepping.  */
1237   set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1238 
1239   /* Shared library handling.  */
1240   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1241   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1242 
1243   /* Enable TLS support.  */
1244   set_gdbarch_fetch_tls_load_module_address (gdbarch,
1245                                              svr4_fetch_objfile_link_map);
1246 
1247   tramp_frame_prepend_unwinder (gdbarch,
1248 				&arm_linux_sigreturn_tramp_frame);
1249   tramp_frame_prepend_unwinder (gdbarch,
1250 				&arm_linux_rt_sigreturn_tramp_frame);
1251   tramp_frame_prepend_unwinder (gdbarch,
1252 				&arm_eabi_linux_sigreturn_tramp_frame);
1253   tramp_frame_prepend_unwinder (gdbarch,
1254 				&arm_eabi_linux_rt_sigreturn_tramp_frame);
1255   tramp_frame_prepend_unwinder (gdbarch,
1256 				&arm_linux_restart_syscall_tramp_frame);
1257   tramp_frame_prepend_unwinder (gdbarch,
1258 				&arm_kernel_linux_restart_syscall_tramp_frame);
1259 
1260   /* Core file support.  */
1261   set_gdbarch_regset_from_core_section (gdbarch,
1262 					arm_linux_regset_from_core_section);
1263   set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1264 
1265   if (tdep->have_vfp_registers)
1266     set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1267   else if (tdep->have_fpa_registers)
1268     set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
1269 
1270   set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1271 
1272   /* Displaced stepping.  */
1273   set_gdbarch_displaced_step_copy_insn (gdbarch,
1274 					arm_linux_displaced_step_copy_insn);
1275   set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1276   set_gdbarch_displaced_step_free_closure (gdbarch,
1277 					   simple_displaced_step_free_closure);
1278   set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1279 
1280   /* Reversible debugging, process record.  */
1281   set_gdbarch_process_record (gdbarch, arm_process_record);
1282 
1283   /* SystemTap functions.  */
1284   set_gdbarch_stap_integer_prefix (gdbarch, "#");
1285   set_gdbarch_stap_register_prefix (gdbarch, "r");
1286   set_gdbarch_stap_register_indirection_prefix (gdbarch, "[");
1287   set_gdbarch_stap_register_indirection_suffix (gdbarch, "]");
1288   set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1289   set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1290   set_gdbarch_stap_parse_special_token (gdbarch,
1291 					arm_stap_parse_special_token);
1292 
1293   tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1294 
1295   /* Syscall record.  */
1296   tdep->arm_swi_record = NULL;
1297 }
1298 
1299 /* Provide a prototype to silence -Wmissing-prototypes.  */
1300 extern initialize_file_ftype _initialize_arm_linux_tdep;
1301 
1302 void
_initialize_arm_linux_tdep(void)1303 _initialize_arm_linux_tdep (void)
1304 {
1305   gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1306 			  arm_linux_init_abi);
1307 }
1308