1 /* Target-dependent code for SPARC.
2 
3    Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37 
38 #include "gdb_assert.h"
39 #include "gdb_string.h"
40 
41 #include "sparc-tdep.h"
42 #include "sparc-ravenscar-thread.h"
43 
44 struct regset;
45 
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47    "Low-Level System Information" of the SPARC Compliance Definition
48    (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC.  The SCD
49    lists changes with respect to the original 32-bit psABI as defined
50    in the "System V ABI, SPARC Processor Supplement".
51 
52    Note that if we talk about SunOS, we mean SunOS 4.x, which was
53    BSD-based, which is sometimes (retroactively?) referred to as
54    Solaris 1.x.  If we talk about Solaris we mean Solaris 2.x and
55    above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56    suffering from severe version number inflation).  Solaris 2.x is
57    also known as SunOS 5.x, since that's what uname(1) says.  Solaris
58    2.x is SVR4-based.  */
59 
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61    sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62    code that can handle both.  The 64-bit specific code lives in
63    sparc64-tdep.c; don't add any here.  */
64 
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66    big-endian IA-64 Quad-Precision format.  */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68 
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70    (0x7ff) for 64-bit code.  BIAS is likely to be defined on SPARC
71    hosts, so undefine it first.  */
72 #undef BIAS
73 #define BIAS 2047
74 
75 /* Macros to extract fields from SPARC instructions.  */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros.  */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
90 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91 
92 /* Fetch the instruction at PC.  Instructions are always big-endian
93    even if the processor operates in little-endian mode.  */
94 
95 unsigned long
sparc_fetch_instruction(CORE_ADDR pc)96 sparc_fetch_instruction (CORE_ADDR pc)
97 {
98   gdb_byte buf[4];
99   unsigned long insn;
100   int i;
101 
102   /* If we can't read the instruction at PC, return zero.  */
103   if (target_read_memory (pc, buf, sizeof (buf)))
104     return 0;
105 
106   insn = 0;
107   for (i = 0; i < sizeof (buf); i++)
108     insn = (insn << 8) | buf[i];
109   return insn;
110 }
111 
112 
113 /* Return non-zero if the instruction corresponding to PC is an "unimp"
114    instruction.  */
115 
116 static int
sparc_is_unimp_insn(CORE_ADDR pc)117 sparc_is_unimp_insn (CORE_ADDR pc)
118 {
119   const unsigned long insn = sparc_fetch_instruction (pc);
120 
121   return ((insn & 0xc1c00000) == 0);
122 }
123 
124 /* OpenBSD/sparc includes StackGhost, which according to the author's
125    website http://stackghost.cerias.purdue.edu "... transparently and
126    automatically protects applications' stack frames; more
127    specifically, it guards the return pointers.  The protection
128    mechanisms require no application source or binary modification and
129    imposes only a negligible performance penalty."
130 
131    The same website provides the following description of how
132    StackGhost works:
133 
134    "StackGhost interfaces with the kernel trap handler that would
135    normally write out registers to the stack and the handler that
136    would read them back in.  By XORing a cookie into the
137    return-address saved in the user stack when it is actually written
138    to the stack, and then XOR it out when the return-address is pulled
139    from the stack, StackGhost can cause attacker corrupted return
140    pointers to behave in a manner the attacker cannot predict.
141    StackGhost can also use several unused bits in the return pointer
142    to detect a smashed return pointer and abort the process."
143 
144    For GDB this means that whenever we're reading %i7 from a stack
145    frame's window save area, we'll have to XOR the cookie.
146 
147    More information on StackGuard can be found on in:
148 
149    Mike Frantzen and Mike Shuey.  "StackGhost: Hardware Facilitated
150    Stack Protection."  2001.  Published in USENIX Security Symposium
151    '01.  */
152 
153 /* Fetch StackGhost Per-Process XOR cookie.  */
154 
155 ULONGEST
sparc_fetch_wcookie(struct gdbarch * gdbarch)156 sparc_fetch_wcookie (struct gdbarch *gdbarch)
157 {
158   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
159   struct target_ops *ops = &current_target;
160   gdb_byte buf[8];
161   int len;
162 
163   len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
164   if (len == -1)
165     return 0;
166 
167   /* We should have either an 32-bit or an 64-bit cookie.  */
168   gdb_assert (len == 4 || len == 8);
169 
170   return extract_unsigned_integer (buf, len, byte_order);
171 }
172 
173 
174 /* The functions on this page are intended to be used to classify
175    function arguments.  */
176 
177 /* Check whether TYPE is "Integral or Pointer".  */
178 
179 static int
sparc_integral_or_pointer_p(const struct type * type)180 sparc_integral_or_pointer_p (const struct type *type)
181 {
182   int len = TYPE_LENGTH (type);
183 
184   switch (TYPE_CODE (type))
185     {
186     case TYPE_CODE_INT:
187     case TYPE_CODE_BOOL:
188     case TYPE_CODE_CHAR:
189     case TYPE_CODE_ENUM:
190     case TYPE_CODE_RANGE:
191       /* We have byte, half-word, word and extended-word/doubleword
192 	 integral types.  The doubleword is an extension to the
193 	 original 32-bit ABI by the SCD 2.4.x.  */
194       return (len == 1 || len == 2 || len == 4 || len == 8);
195     case TYPE_CODE_PTR:
196     case TYPE_CODE_REF:
197       /* Allow either 32-bit or 64-bit pointers.  */
198       return (len == 4 || len == 8);
199     default:
200       break;
201     }
202 
203   return 0;
204 }
205 
206 /* Check whether TYPE is "Floating".  */
207 
208 static int
sparc_floating_p(const struct type * type)209 sparc_floating_p (const struct type *type)
210 {
211   switch (TYPE_CODE (type))
212     {
213     case TYPE_CODE_FLT:
214       {
215 	int len = TYPE_LENGTH (type);
216 	return (len == 4 || len == 8 || len == 16);
217       }
218     default:
219       break;
220     }
221 
222   return 0;
223 }
224 
225 /* Check whether TYPE is "Complex Floating".  */
226 
227 static int
sparc_complex_floating_p(const struct type * type)228 sparc_complex_floating_p (const struct type *type)
229 {
230   switch (TYPE_CODE (type))
231     {
232     case TYPE_CODE_COMPLEX:
233       {
234 	int len = TYPE_LENGTH (type);
235 	return (len == 8 || len == 16 || len == 32);
236       }
237     default:
238       break;
239     }
240 
241   return 0;
242 }
243 
244 /* Check whether TYPE is "Structure or Union".
245 
246    In terms of Ada subprogram calls, arrays are treated the same as
247    struct and union types.  So this function also returns non-zero
248    for array types.  */
249 
250 static int
sparc_structure_or_union_p(const struct type * type)251 sparc_structure_or_union_p (const struct type *type)
252 {
253   switch (TYPE_CODE (type))
254     {
255     case TYPE_CODE_STRUCT:
256     case TYPE_CODE_UNION:
257     case TYPE_CODE_ARRAY:
258       return 1;
259     default:
260       break;
261     }
262 
263   return 0;
264 }
265 
266 /* Register information.  */
267 
268 static const char *sparc32_register_names[] =
269 {
270   "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
271   "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
272   "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
273   "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
274 
275   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
276   "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
277   "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
278   "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
279 
280   "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
281 };
282 
283 /* Total number of registers.  */
284 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
285 
286 /* We provide the aliases %d0..%d30 for the floating registers as
287    "psuedo" registers.  */
288 
289 static const char *sparc32_pseudo_register_names[] =
290 {
291   "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
292   "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
293 };
294 
295 /* Total number of pseudo registers.  */
296 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
297 
298 /* Return the name of register REGNUM.  */
299 
300 static const char *
sparc32_register_name(struct gdbarch * gdbarch,int regnum)301 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
302 {
303   if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
304     return sparc32_register_names[regnum];
305 
306   if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
307     return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
308 
309   return NULL;
310 }
311 
312 /* Construct types for ISA-specific registers.  */
313 
314 static struct type *
sparc_psr_type(struct gdbarch * gdbarch)315 sparc_psr_type (struct gdbarch *gdbarch)
316 {
317   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318 
319   if (!tdep->sparc_psr_type)
320     {
321       struct type *type;
322 
323       type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
324       append_flags_type_flag (type, 5, "ET");
325       append_flags_type_flag (type, 6, "PS");
326       append_flags_type_flag (type, 7, "S");
327       append_flags_type_flag (type, 12, "EF");
328       append_flags_type_flag (type, 13, "EC");
329 
330       tdep->sparc_psr_type = type;
331     }
332 
333   return tdep->sparc_psr_type;
334 }
335 
336 static struct type *
sparc_fsr_type(struct gdbarch * gdbarch)337 sparc_fsr_type (struct gdbarch *gdbarch)
338 {
339   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
340 
341   if (!tdep->sparc_fsr_type)
342     {
343       struct type *type;
344 
345       type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
346       append_flags_type_flag (type, 0, "NXA");
347       append_flags_type_flag (type, 1, "DZA");
348       append_flags_type_flag (type, 2, "UFA");
349       append_flags_type_flag (type, 3, "OFA");
350       append_flags_type_flag (type, 4, "NVA");
351       append_flags_type_flag (type, 5, "NXC");
352       append_flags_type_flag (type, 6, "DZC");
353       append_flags_type_flag (type, 7, "UFC");
354       append_flags_type_flag (type, 8, "OFC");
355       append_flags_type_flag (type, 9, "NVC");
356       append_flags_type_flag (type, 22, "NS");
357       append_flags_type_flag (type, 23, "NXM");
358       append_flags_type_flag (type, 24, "DZM");
359       append_flags_type_flag (type, 25, "UFM");
360       append_flags_type_flag (type, 26, "OFM");
361       append_flags_type_flag (type, 27, "NVM");
362 
363       tdep->sparc_fsr_type = type;
364     }
365 
366   return tdep->sparc_fsr_type;
367 }
368 
369 /* Return the GDB type object for the "standard" data type of data in
370    register REGNUM.  */
371 
372 static struct type *
sparc32_register_type(struct gdbarch * gdbarch,int regnum)373 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
374 {
375   if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
376     return builtin_type (gdbarch)->builtin_float;
377 
378   if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
379     return builtin_type (gdbarch)->builtin_double;
380 
381   if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
382     return builtin_type (gdbarch)->builtin_data_ptr;
383 
384   if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
385     return builtin_type (gdbarch)->builtin_func_ptr;
386 
387   if (regnum == SPARC32_PSR_REGNUM)
388     return sparc_psr_type (gdbarch);
389 
390   if (regnum == SPARC32_FSR_REGNUM)
391     return sparc_fsr_type (gdbarch);
392 
393   return builtin_type (gdbarch)->builtin_int32;
394 }
395 
396 static enum register_status
sparc32_pseudo_register_read(struct gdbarch * gdbarch,struct regcache * regcache,int regnum,gdb_byte * buf)397 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
398 			      struct regcache *regcache,
399 			      int regnum, gdb_byte *buf)
400 {
401   enum register_status status;
402 
403   gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
404 
405   regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
406   status = regcache_raw_read (regcache, regnum, buf);
407   if (status == REG_VALID)
408     status = regcache_raw_read (regcache, regnum + 1, buf + 4);
409   return status;
410 }
411 
412 static void
sparc32_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int regnum,const gdb_byte * buf)413 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
414 			       struct regcache *regcache,
415 			       int regnum, const gdb_byte *buf)
416 {
417   gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
418 
419   regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
420   regcache_raw_write (regcache, regnum, buf);
421   regcache_raw_write (regcache, regnum + 1, buf + 4);
422 }
423 
424 
425 static CORE_ADDR
sparc32_frame_align(struct gdbarch * gdbarch,CORE_ADDR address)426 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
427 {
428   /* The ABI requires double-word alignment.  */
429   return address & ~0x7;
430 }
431 
432 static CORE_ADDR
sparc32_push_dummy_code(struct gdbarch * gdbarch,CORE_ADDR sp,CORE_ADDR funcaddr,struct value ** args,int nargs,struct type * value_type,CORE_ADDR * real_pc,CORE_ADDR * bp_addr,struct regcache * regcache)433 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
434 			 CORE_ADDR funcaddr,
435 			 struct value **args, int nargs,
436 			 struct type *value_type,
437 			 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
438 			 struct regcache *regcache)
439 {
440   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
441 
442   *bp_addr = sp - 4;
443   *real_pc = funcaddr;
444 
445   if (using_struct_return (gdbarch, NULL, value_type))
446     {
447       gdb_byte buf[4];
448 
449       /* This is an UNIMP instruction.  */
450       store_unsigned_integer (buf, 4, byte_order,
451 			      TYPE_LENGTH (value_type) & 0x1fff);
452       write_memory (sp - 8, buf, 4);
453       return sp - 8;
454     }
455 
456   return sp - 4;
457 }
458 
459 static CORE_ADDR
sparc32_store_arguments(struct regcache * regcache,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)460 sparc32_store_arguments (struct regcache *regcache, int nargs,
461 			 struct value **args, CORE_ADDR sp,
462 			 int struct_return, CORE_ADDR struct_addr)
463 {
464   struct gdbarch *gdbarch = get_regcache_arch (regcache);
465   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466   /* Number of words in the "parameter array".  */
467   int num_elements = 0;
468   int element = 0;
469   int i;
470 
471   for (i = 0; i < nargs; i++)
472     {
473       struct type *type = value_type (args[i]);
474       int len = TYPE_LENGTH (type);
475 
476       if (sparc_structure_or_union_p (type)
477 	  || (sparc_floating_p (type) && len == 16)
478 	  || sparc_complex_floating_p (type))
479 	{
480 	  /* Structure, Union and Quad-Precision Arguments.  */
481 	  sp -= len;
482 
483 	  /* Use doubleword alignment for these values.  That's always
484              correct, and wasting a few bytes shouldn't be a problem.  */
485 	  sp &= ~0x7;
486 
487 	  write_memory (sp, value_contents (args[i]), len);
488 	  args[i] = value_from_pointer (lookup_pointer_type (type), sp);
489 	  num_elements++;
490 	}
491       else if (sparc_floating_p (type))
492 	{
493 	  /* Floating arguments.  */
494 	  gdb_assert (len == 4 || len == 8);
495 	  num_elements += (len / 4);
496 	}
497       else
498 	{
499 	  /* Integral and pointer arguments.  */
500 	  gdb_assert (sparc_integral_or_pointer_p (type));
501 
502 	  if (len < 4)
503 	    args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
504 				  args[i]);
505 	  num_elements += ((len + 3) / 4);
506 	}
507     }
508 
509   /* Always allocate at least six words.  */
510   sp -= max (6, num_elements) * 4;
511 
512   /* The psABI says that "Software convention requires space for the
513      struct/union return value pointer, even if the word is unused."  */
514   sp -= 4;
515 
516   /* The psABI says that "Although software convention and the
517      operating system require every stack frame to be doubleword
518      aligned."  */
519   sp &= ~0x7;
520 
521   for (i = 0; i < nargs; i++)
522     {
523       const bfd_byte *valbuf = value_contents (args[i]);
524       struct type *type = value_type (args[i]);
525       int len = TYPE_LENGTH (type);
526 
527       gdb_assert (len == 4 || len == 8);
528 
529       if (element < 6)
530 	{
531 	  int regnum = SPARC_O0_REGNUM + element;
532 
533 	  regcache_cooked_write (regcache, regnum, valbuf);
534 	  if (len > 4 && element < 5)
535 	    regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
536 	}
537 
538       /* Always store the argument in memory.  */
539       write_memory (sp + 4 + element * 4, valbuf, len);
540       element += len / 4;
541     }
542 
543   gdb_assert (element == num_elements);
544 
545   if (struct_return)
546     {
547       gdb_byte buf[4];
548 
549       store_unsigned_integer (buf, 4, byte_order, struct_addr);
550       write_memory (sp, buf, 4);
551     }
552 
553   return sp;
554 }
555 
556 static CORE_ADDR
sparc32_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)557 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
558 			 struct regcache *regcache, CORE_ADDR bp_addr,
559 			 int nargs, struct value **args, CORE_ADDR sp,
560 			 int struct_return, CORE_ADDR struct_addr)
561 {
562   CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
563 
564   /* Set return address.  */
565   regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
566 
567   /* Set up function arguments.  */
568   sp = sparc32_store_arguments (regcache, nargs, args, sp,
569 				struct_return, struct_addr);
570 
571   /* Allocate the 16-word window save area.  */
572   sp -= 16 * 4;
573 
574   /* Stack should be doubleword aligned at this point.  */
575   gdb_assert (sp % 8 == 0);
576 
577   /* Finally, update the stack pointer.  */
578   regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
579 
580   return sp;
581 }
582 
583 
584 /* Use the program counter to determine the contents and size of a
585    breakpoint instruction.  Return a pointer to a string of bytes that
586    encode a breakpoint instruction, store the length of the string in
587    *LEN and optionally adjust *PC to point to the correct memory
588    location for inserting the breakpoint.  */
589 
590 static const gdb_byte *
sparc_breakpoint_from_pc(struct gdbarch * gdbarch,CORE_ADDR * pc,int * len)591 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
592 {
593   static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
594 
595   *len = sizeof (break_insn);
596   return break_insn;
597 }
598 
599 
600 /* Allocate and initialize a frame cache.  */
601 
602 static struct sparc_frame_cache *
sparc_alloc_frame_cache(void)603 sparc_alloc_frame_cache (void)
604 {
605   struct sparc_frame_cache *cache;
606 
607   cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
608 
609   /* Base address.  */
610   cache->base = 0;
611   cache->pc = 0;
612 
613   /* Frameless until proven otherwise.  */
614   cache->frameless_p = 1;
615   cache->frame_offset = 0;
616   cache->saved_regs_mask = 0;
617   cache->copied_regs_mask = 0;
618   cache->struct_return_p = 0;
619 
620   return cache;
621 }
622 
623 /* GCC generates several well-known sequences of instructions at the begining
624    of each function prologue when compiling with -fstack-check.  If one of
625    such sequences starts at START_PC, then return the address of the
626    instruction immediately past this sequence.  Otherwise, return START_PC.  */
627 
628 static CORE_ADDR
sparc_skip_stack_check(const CORE_ADDR start_pc)629 sparc_skip_stack_check (const CORE_ADDR start_pc)
630 {
631   CORE_ADDR pc = start_pc;
632   unsigned long insn;
633   int offset_stack_checking_sequence = 0;
634   int probing_loop = 0;
635 
636   /* With GCC, all stack checking sequences begin with the same two
637      instructions, plus an optional one in the case of a probing loop:
638 
639          sethi <some immediate>, %g1
640          sub %sp, %g1, %g1
641 
642      or:
643 
644          sethi <some immediate>, %g1
645          sethi <some immediate>, %g4
646          sub %sp, %g1, %g1
647 
648      or:
649 
650          sethi <some immediate>, %g1
651          sub %sp, %g1, %g1
652          sethi <some immediate>, %g4
653 
654      If the optional instruction is found (setting g4), assume that a
655      probing loop will follow.  */
656 
657   /* sethi <some immediate>, %g1 */
658   insn = sparc_fetch_instruction (pc);
659   pc = pc + 4;
660   if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
661     return start_pc;
662 
663   /* optional: sethi <some immediate>, %g4 */
664   insn = sparc_fetch_instruction (pc);
665   pc = pc + 4;
666   if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
667     {
668       probing_loop = 1;
669       insn = sparc_fetch_instruction (pc);
670       pc = pc + 4;
671     }
672 
673   /* sub %sp, %g1, %g1 */
674   if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
675         && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
676     return start_pc;
677 
678   insn = sparc_fetch_instruction (pc);
679   pc = pc + 4;
680 
681   /* optional: sethi <some immediate>, %g4 */
682   if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
683     {
684       probing_loop = 1;
685       insn = sparc_fetch_instruction (pc);
686       pc = pc + 4;
687     }
688 
689   /* First possible sequence:
690          [first two instructions above]
691          clr [%g1 - some immediate]  */
692 
693   /* clr [%g1 - some immediate]  */
694   if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
695       && X_RS1 (insn) == 1 && X_RD (insn) == 0)
696     {
697       /* Valid stack-check sequence, return the new PC.  */
698       return pc;
699     }
700 
701   /* Second possible sequence: A small number of probes.
702          [first two instructions above]
703          clr [%g1]
704          add   %g1, -<some immediate>, %g1
705          clr [%g1]
706          [repeat the two instructions above any (small) number of times]
707          clr [%g1 - some immediate]  */
708 
709   /* clr [%g1] */
710   else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
711       && X_RS1 (insn) == 1 && X_RD (insn) == 0)
712     {
713       while (1)
714         {
715           /* add %g1, -<some immediate>, %g1 */
716           insn = sparc_fetch_instruction (pc);
717           pc = pc + 4;
718           if (!(X_OP (insn) == 2  && X_OP3(insn) == 0 && X_I(insn)
719                 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
720             break;
721 
722           /* clr [%g1] */
723           insn = sparc_fetch_instruction (pc);
724           pc = pc + 4;
725           if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
726                 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
727             return start_pc;
728         }
729 
730       /* clr [%g1 - some immediate] */
731       if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
732             && X_RS1 (insn) == 1 && X_RD (insn) == 0))
733         return start_pc;
734 
735       /* We found a valid stack-check sequence, return the new PC.  */
736       return pc;
737     }
738 
739   /* Third sequence: A probing loop.
740          [first three instructions above]
741          sub  %g1, %g4, %g4
742          cmp  %g1, %g4
743          be  <disp>
744          add  %g1, -<some immediate>, %g1
745          ba  <disp>
746          clr  [%g1]
747 
748      And an optional last probe for the remainder:
749 
750          clr [%g4 - some immediate]  */
751 
752   if (probing_loop)
753     {
754       /* sub  %g1, %g4, %g4 */
755       if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
756             && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
757         return start_pc;
758 
759       /* cmp  %g1, %g4 */
760       insn = sparc_fetch_instruction (pc);
761       pc = pc + 4;
762       if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
763             && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
764         return start_pc;
765 
766       /* be  <disp> */
767       insn = sparc_fetch_instruction (pc);
768       pc = pc + 4;
769       if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
770         return start_pc;
771 
772       /* add  %g1, -<some immediate>, %g1 */
773       insn = sparc_fetch_instruction (pc);
774       pc = pc + 4;
775       if (!(X_OP (insn) == 2  && X_OP3(insn) == 0 && X_I(insn)
776             && X_RS1 (insn) == 1 && X_RD (insn) == 1))
777         return start_pc;
778 
779       /* ba  <disp> */
780       insn = sparc_fetch_instruction (pc);
781       pc = pc + 4;
782       if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
783         return start_pc;
784 
785       /* clr  [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
786       insn = sparc_fetch_instruction (pc);
787       pc = pc + 4;
788       if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
789             && X_RD (insn) == 0 && X_RS1 (insn) == 1
790 	    && (!X_I(insn) || X_SIMM13 (insn) == 0)))
791         return start_pc;
792 
793       /* We found a valid stack-check sequence, return the new PC.  */
794 
795       /* optional: clr [%g4 - some immediate]  */
796       insn = sparc_fetch_instruction (pc);
797       pc = pc + 4;
798       if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
799             && X_RS1 (insn) == 4 && X_RD (insn) == 0))
800         return pc - 4;
801       else
802 	return pc;
803     }
804 
805   /* No stack check code in our prologue, return the start_pc.  */
806   return start_pc;
807 }
808 
809 /* Record the effect of a SAVE instruction on CACHE.  */
810 
811 void
sparc_record_save_insn(struct sparc_frame_cache * cache)812 sparc_record_save_insn (struct sparc_frame_cache *cache)
813 {
814   /* The frame is set up.  */
815   cache->frameless_p = 0;
816 
817   /* The frame pointer contains the CFA.  */
818   cache->frame_offset = 0;
819 
820   /* The `local' and `in' registers are all saved.  */
821   cache->saved_regs_mask = 0xffff;
822 
823   /* The `out' registers are all renamed.  */
824   cache->copied_regs_mask = 0xff;
825 }
826 
827 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
828    Bail out early if CURRENT_PC is reached.  Return the address where
829    the analysis stopped.
830 
831    We handle both the traditional register window model and the single
832    register window (aka flat) model.  */
833 
834 CORE_ADDR
sparc_analyze_prologue(struct gdbarch * gdbarch,CORE_ADDR pc,CORE_ADDR current_pc,struct sparc_frame_cache * cache)835 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
836 			CORE_ADDR current_pc, struct sparc_frame_cache *cache)
837 {
838   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
839   unsigned long insn;
840   int offset = 0;
841   int dest = -1;
842 
843   pc = sparc_skip_stack_check (pc);
844 
845   if (current_pc <= pc)
846     return current_pc;
847 
848   /* We have to handle to "Procedure Linkage Table" (PLT) special.  On
849      SPARC the linker usually defines a symbol (typically
850      _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
851      This symbol makes us end up here with PC pointing at the start of
852      the PLT and CURRENT_PC probably pointing at a PLT entry.  If we
853      would do our normal prologue analysis, we would probably conclude
854      that we've got a frame when in reality we don't, since the
855      dynamic linker patches up the first PLT with some code that
856      starts with a SAVE instruction.  Patch up PC such that it points
857      at the start of our PLT entry.  */
858   if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
859     pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
860 
861   insn = sparc_fetch_instruction (pc);
862 
863   /* Recognize store insns and record their sources.  */
864   while (X_OP (insn) == 3
865 	 && (X_OP3 (insn) == 0x4     /* stw */
866 	     || X_OP3 (insn) == 0x7  /* std */
867 	     || X_OP3 (insn) == 0xe) /* stx */
868 	 && X_RS1 (insn) == SPARC_SP_REGNUM)
869     {
870       int regnum = X_RD (insn);
871 
872       /* Recognize stores into the corresponding stack slots.  */
873       if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
874 	  && ((X_I (insn)
875 	       && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
876 				      ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
877 				      : (regnum - SPARC_L0_REGNUM) * 4))
878 	      || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
879 	{
880 	  cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
881 	  if (X_OP3 (insn) == 0x7)
882 	    cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
883 	}
884 
885       offset += 4;
886 
887       insn = sparc_fetch_instruction (pc + offset);
888     }
889 
890   /* Recognize a SETHI insn and record its destination.  */
891   if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
892     {
893       dest = X_RD (insn);
894       offset += 4;
895 
896       insn = sparc_fetch_instruction (pc + offset);
897     }
898 
899   /* Allow for an arithmetic operation on DEST or %g1.  */
900   if (X_OP (insn) == 2 && X_I (insn)
901       && (X_RD (insn) == 1 || X_RD (insn) == dest))
902     {
903       offset += 4;
904 
905       insn = sparc_fetch_instruction (pc + offset);
906     }
907 
908   /* Check for the SAVE instruction that sets up the frame.  */
909   if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
910     {
911       sparc_record_save_insn (cache);
912       offset += 4;
913       return pc + offset;
914     }
915 
916   /* Check for an arithmetic operation on %sp.  */
917   if (X_OP (insn) == 2
918       && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
919       && X_RS1 (insn) == SPARC_SP_REGNUM
920       && X_RD (insn) == SPARC_SP_REGNUM)
921     {
922       if (X_I (insn))
923 	{
924 	  cache->frame_offset = X_SIMM13 (insn);
925 	  if (X_OP3 (insn) == 0)
926 	    cache->frame_offset = -cache->frame_offset;
927 	}
928       offset += 4;
929 
930       insn = sparc_fetch_instruction (pc + offset);
931 
932       /* Check for an arithmetic operation that sets up the frame.  */
933       if (X_OP (insn) == 2
934 	  && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
935 	  && X_RS1 (insn) == SPARC_SP_REGNUM
936 	  && X_RD (insn) == SPARC_FP_REGNUM)
937 	{
938 	  cache->frameless_p = 0;
939 	  cache->frame_offset = 0;
940 	  /* We could check that the amount subtracted to %sp above is the
941 	     same as the one added here, but this seems superfluous.  */
942 	  cache->copied_regs_mask |= 0x40;
943 	  offset += 4;
944 
945 	  insn = sparc_fetch_instruction (pc + offset);
946 	}
947 
948       /* Check for a move (or) operation that copies the return register.  */
949       if (X_OP (insn) == 2
950 	  && X_OP3 (insn) == 0x2
951 	  && !X_I (insn)
952 	  && X_RS1 (insn) == SPARC_G0_REGNUM
953 	  && X_RS2 (insn) == SPARC_O7_REGNUM
954 	  && X_RD (insn) == SPARC_I7_REGNUM)
955 	{
956 	   cache->copied_regs_mask |= 0x80;
957 	   offset += 4;
958 	}
959 
960       return pc + offset;
961     }
962 
963   return pc;
964 }
965 
966 static CORE_ADDR
sparc_unwind_pc(struct gdbarch * gdbarch,struct frame_info * this_frame)967 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
968 {
969   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
970   return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
971 }
972 
973 /* Return PC of first real instruction of the function starting at
974    START_PC.  */
975 
976 static CORE_ADDR
sparc32_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR start_pc)977 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
978 {
979   struct symtab_and_line sal;
980   CORE_ADDR func_start, func_end;
981   struct sparc_frame_cache cache;
982 
983   /* This is the preferred method, find the end of the prologue by
984      using the debugging information.  */
985   if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
986     {
987       sal = find_pc_line (func_start, 0);
988 
989       if (sal.end < func_end
990 	  && start_pc <= sal.end)
991 	return sal.end;
992     }
993 
994   start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
995 
996   /* The psABI says that "Although the first 6 words of arguments
997      reside in registers, the standard stack frame reserves space for
998      them.".  It also suggests that a function may use that space to
999      "write incoming arguments 0 to 5" into that space, and that's
1000      indeed what GCC seems to be doing.  In that case GCC will
1001      generate debug information that points to the stack slots instead
1002      of the registers, so we should consider the instructions that
1003      write out these incoming arguments onto the stack.  */
1004 
1005   while (1)
1006     {
1007       unsigned long insn = sparc_fetch_instruction (start_pc);
1008 
1009       /* Recognize instructions that store incoming arguments into the
1010 	 corresponding stack slots.  */
1011       if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1012 	  && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1013 	{
1014 	  int regnum = X_RD (insn);
1015 
1016 	  /* Case of arguments still in %o[0..5].  */
1017 	  if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1018 	      && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1019 	      && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1020 	    {
1021 	      start_pc += 4;
1022 	      continue;
1023 	    }
1024 
1025 	  /* Case of arguments copied into %i[0..5].  */
1026 	  if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1027 	      && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1028 	      && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1029 	    {
1030 	      start_pc += 4;
1031 	      continue;
1032 	    }
1033 	}
1034 
1035       break;
1036     }
1037 
1038   return start_pc;
1039 }
1040 
1041 /* Normal frames.  */
1042 
1043 struct sparc_frame_cache *
sparc_frame_cache(struct frame_info * this_frame,void ** this_cache)1044 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1045 {
1046   struct sparc_frame_cache *cache;
1047 
1048   if (*this_cache)
1049     return *this_cache;
1050 
1051   cache = sparc_alloc_frame_cache ();
1052   *this_cache = cache;
1053 
1054   cache->pc = get_frame_func (this_frame);
1055   if (cache->pc != 0)
1056     sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1057 			    get_frame_pc (this_frame), cache);
1058 
1059   if (cache->frameless_p)
1060     {
1061       /* This function is frameless, so %fp (%i6) holds the frame
1062          pointer for our calling frame.  Use %sp (%o6) as this frame's
1063          base address.  */
1064       cache->base =
1065         get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1066     }
1067   else
1068     {
1069       /* For normal frames, %fp (%i6) holds the frame pointer, the
1070          base address for the current stack frame.  */
1071       cache->base =
1072 	get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1073     }
1074 
1075   cache->base += cache->frame_offset;
1076 
1077   if (cache->base & 1)
1078     cache->base += BIAS;
1079 
1080   return cache;
1081 }
1082 
1083 static int
sparc32_struct_return_from_sym(struct symbol * sym)1084 sparc32_struct_return_from_sym (struct symbol *sym)
1085 {
1086   struct type *type = check_typedef (SYMBOL_TYPE (sym));
1087   enum type_code code = TYPE_CODE (type);
1088 
1089   if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1090     {
1091       type = check_typedef (TYPE_TARGET_TYPE (type));
1092       if (sparc_structure_or_union_p (type)
1093 	  || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1094 	return 1;
1095     }
1096 
1097   return 0;
1098 }
1099 
1100 struct sparc_frame_cache *
sparc32_frame_cache(struct frame_info * this_frame,void ** this_cache)1101 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1102 {
1103   struct sparc_frame_cache *cache;
1104   struct symbol *sym;
1105 
1106   if (*this_cache)
1107     return *this_cache;
1108 
1109   cache = sparc_frame_cache (this_frame, this_cache);
1110 
1111   sym = find_pc_function (cache->pc);
1112   if (sym)
1113     {
1114       cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1115     }
1116   else
1117     {
1118       /* There is no debugging information for this function to
1119          help us determine whether this function returns a struct
1120          or not.  So we rely on another heuristic which is to check
1121          the instruction at the return address and see if this is
1122          an "unimp" instruction.  If it is, then it is a struct-return
1123          function.  */
1124       CORE_ADDR pc;
1125       int regnum =
1126 	(cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1127 
1128       pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1129       if (sparc_is_unimp_insn (pc))
1130         cache->struct_return_p = 1;
1131     }
1132 
1133   return cache;
1134 }
1135 
1136 static void
sparc32_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)1137 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1138 		       struct frame_id *this_id)
1139 {
1140   struct sparc_frame_cache *cache =
1141     sparc32_frame_cache (this_frame, this_cache);
1142 
1143   /* This marks the outermost frame.  */
1144   if (cache->base == 0)
1145     return;
1146 
1147   (*this_id) = frame_id_build (cache->base, cache->pc);
1148 }
1149 
1150 static struct value *
sparc32_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)1151 sparc32_frame_prev_register (struct frame_info *this_frame,
1152 			     void **this_cache, int regnum)
1153 {
1154   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1155   struct sparc_frame_cache *cache =
1156     sparc32_frame_cache (this_frame, this_cache);
1157 
1158   if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1159     {
1160       CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1161 
1162       /* If this functions has a Structure, Union or Quad-Precision
1163 	 return value, we have to skip the UNIMP instruction that encodes
1164 	 the size of the structure.  */
1165       if (cache->struct_return_p)
1166 	pc += 4;
1167 
1168       regnum =
1169 	(cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1170       pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1171       return frame_unwind_got_constant (this_frame, regnum, pc);
1172     }
1173 
1174   /* Handle StackGhost.  */
1175   {
1176     ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1177 
1178     if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1179       {
1180         CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1181         ULONGEST i7;
1182 
1183         /* Read the value in from memory.  */
1184         i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1185         return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1186       }
1187   }
1188 
1189   /* The previous frame's `local' and `in' registers may have been saved
1190      in the register save area.  */
1191   if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1192       && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1193     {
1194       CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1195 
1196       return frame_unwind_got_memory (this_frame, regnum, addr);
1197     }
1198 
1199   /* The previous frame's `out' registers may be accessible as the current
1200      frame's `in' registers.  */
1201   if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1202       && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1203     regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1204 
1205   return frame_unwind_got_register (this_frame, regnum, regnum);
1206 }
1207 
1208 static const struct frame_unwind sparc32_frame_unwind =
1209 {
1210   NORMAL_FRAME,
1211   default_frame_unwind_stop_reason,
1212   sparc32_frame_this_id,
1213   sparc32_frame_prev_register,
1214   NULL,
1215   default_frame_sniffer
1216 };
1217 
1218 
1219 static CORE_ADDR
sparc32_frame_base_address(struct frame_info * this_frame,void ** this_cache)1220 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1221 {
1222   struct sparc_frame_cache *cache =
1223     sparc32_frame_cache (this_frame, this_cache);
1224 
1225   return cache->base;
1226 }
1227 
1228 static const struct frame_base sparc32_frame_base =
1229 {
1230   &sparc32_frame_unwind,
1231   sparc32_frame_base_address,
1232   sparc32_frame_base_address,
1233   sparc32_frame_base_address
1234 };
1235 
1236 static struct frame_id
sparc_dummy_id(struct gdbarch * gdbarch,struct frame_info * this_frame)1237 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1238 {
1239   CORE_ADDR sp;
1240 
1241   sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1242   if (sp & 1)
1243     sp += BIAS;
1244   return frame_id_build (sp, get_frame_pc (this_frame));
1245 }
1246 
1247 
1248 /* Extract a function return value of TYPE from REGCACHE, and copy
1249    that into VALBUF.  */
1250 
1251 static void
sparc32_extract_return_value(struct type * type,struct regcache * regcache,gdb_byte * valbuf)1252 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1253 			      gdb_byte *valbuf)
1254 {
1255   int len = TYPE_LENGTH (type);
1256   gdb_byte buf[32];
1257 
1258   gdb_assert (!sparc_structure_or_union_p (type));
1259   gdb_assert (!(sparc_floating_p (type) && len == 16));
1260 
1261   if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1262     {
1263       /* Floating return values.  */
1264       regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1265       if (len > 4)
1266 	regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1267       if (len > 8)
1268 	{
1269 	  regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1270 	  regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1271 	}
1272       if (len > 16)
1273 	{
1274 	  regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1275 	  regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1276 	  regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1277 	  regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1278 	}
1279       memcpy (valbuf, buf, len);
1280     }
1281   else
1282     {
1283       /* Integral and pointer return values.  */
1284       gdb_assert (sparc_integral_or_pointer_p (type));
1285 
1286       regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1287       if (len > 4)
1288 	{
1289 	  regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1290 	  gdb_assert (len == 8);
1291 	  memcpy (valbuf, buf, 8);
1292 	}
1293       else
1294 	{
1295 	  /* Just stripping off any unused bytes should preserve the
1296 	     signed-ness just fine.  */
1297 	  memcpy (valbuf, buf + 4 - len, len);
1298 	}
1299     }
1300 }
1301 
1302 /* Store the function return value of type TYPE from VALBUF into
1303    REGCACHE.  */
1304 
1305 static void
sparc32_store_return_value(struct type * type,struct regcache * regcache,const gdb_byte * valbuf)1306 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1307 			    const gdb_byte *valbuf)
1308 {
1309   int len = TYPE_LENGTH (type);
1310   gdb_byte buf[8];
1311 
1312   gdb_assert (!sparc_structure_or_union_p (type));
1313   gdb_assert (!(sparc_floating_p (type) && len == 16));
1314   gdb_assert (len <= 8);
1315 
1316   if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1317     {
1318       /* Floating return values.  */
1319       memcpy (buf, valbuf, len);
1320       regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1321       if (len > 4)
1322 	regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1323       if (len > 8)
1324 	{
1325 	  regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1326 	  regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1327 	}
1328       if (len > 16)
1329 	{
1330 	  regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1331 	  regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1332 	  regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1333 	  regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1334 	}
1335     }
1336   else
1337     {
1338       /* Integral and pointer return values.  */
1339       gdb_assert (sparc_integral_or_pointer_p (type));
1340 
1341       if (len > 4)
1342 	{
1343 	  gdb_assert (len == 8);
1344 	  memcpy (buf, valbuf, 8);
1345 	  regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1346 	}
1347       else
1348 	{
1349 	  /* ??? Do we need to do any sign-extension here?  */
1350 	  memcpy (buf + 4 - len, valbuf, len);
1351 	}
1352       regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1353     }
1354 }
1355 
1356 static enum return_value_convention
sparc32_return_value(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)1357 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1358 		      struct type *type, struct regcache *regcache,
1359 		      gdb_byte *readbuf, const gdb_byte *writebuf)
1360 {
1361   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362 
1363   /* The psABI says that "...every stack frame reserves the word at
1364      %fp+64.  If a function returns a structure, union, or
1365      quad-precision value, this word should hold the address of the
1366      object into which the return value should be copied."  This
1367      guarantees that we can always find the return value, not just
1368      before the function returns.  */
1369 
1370   if (sparc_structure_or_union_p (type)
1371       || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1372     {
1373       ULONGEST sp;
1374       CORE_ADDR addr;
1375 
1376       if (readbuf)
1377 	{
1378 	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1379 	  addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1380 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
1381 	}
1382       if (writebuf)
1383 	{
1384 	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1385 	  addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1386 	  write_memory (addr, writebuf, TYPE_LENGTH (type));
1387 	}
1388 
1389       return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1390     }
1391 
1392   if (readbuf)
1393     sparc32_extract_return_value (type, regcache, readbuf);
1394   if (writebuf)
1395     sparc32_store_return_value (type, regcache, writebuf);
1396 
1397   return RETURN_VALUE_REGISTER_CONVENTION;
1398 }
1399 
1400 static int
sparc32_stabs_argument_has_addr(struct gdbarch * gdbarch,struct type * type)1401 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1402 {
1403   return (sparc_structure_or_union_p (type)
1404 	  || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1405 	  || sparc_complex_floating_p (type));
1406 }
1407 
1408 static int
sparc32_dwarf2_struct_return_p(struct frame_info * this_frame)1409 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1410 {
1411   CORE_ADDR pc = get_frame_address_in_block (this_frame);
1412   struct symbol *sym = find_pc_function (pc);
1413 
1414   if (sym)
1415     return sparc32_struct_return_from_sym (sym);
1416   return 0;
1417 }
1418 
1419 static void
sparc32_dwarf2_frame_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg,struct frame_info * this_frame)1420 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1421 			       struct dwarf2_frame_state_reg *reg,
1422 			       struct frame_info *this_frame)
1423 {
1424   int off;
1425 
1426   switch (regnum)
1427     {
1428     case SPARC_G0_REGNUM:
1429       /* Since %g0 is always zero, there is no point in saving it, and
1430 	 people will be inclined omit it from the CFI.  Make sure we
1431 	 don't warn about that.  */
1432       reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1433       break;
1434     case SPARC_SP_REGNUM:
1435       reg->how = DWARF2_FRAME_REG_CFA;
1436       break;
1437     case SPARC32_PC_REGNUM:
1438     case SPARC32_NPC_REGNUM:
1439       reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1440       off = 8;
1441       if (sparc32_dwarf2_struct_return_p (this_frame))
1442 	off += 4;
1443       if (regnum == SPARC32_NPC_REGNUM)
1444 	off += 4;
1445       reg->loc.offset = off;
1446       break;
1447     }
1448 }
1449 
1450 
1451 /* The SPARC Architecture doesn't have hardware single-step support,
1452    and most operating systems don't implement it either, so we provide
1453    software single-step mechanism.  */
1454 
1455 static CORE_ADDR
sparc_analyze_control_transfer(struct frame_info * frame,CORE_ADDR pc,CORE_ADDR * npc)1456 sparc_analyze_control_transfer (struct frame_info *frame,
1457 				CORE_ADDR pc, CORE_ADDR *npc)
1458 {
1459   unsigned long insn = sparc_fetch_instruction (pc);
1460   int conditional_p = X_COND (insn) & 0x7;
1461   int branch_p = 0, fused_p = 0;
1462   long offset = 0;			/* Must be signed for sign-extend.  */
1463 
1464   if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1465     {
1466       if ((insn & 0x10000000) == 0)
1467 	{
1468 	  /* Branch on Integer Register with Prediction (BPr).  */
1469 	  branch_p = 1;
1470 	  conditional_p = 1;
1471 	}
1472       else
1473 	{
1474 	  /* Compare and Branch  */
1475 	  branch_p = 1;
1476 	  fused_p = 1;
1477 	  offset = 4 * X_DISP10 (insn);
1478 	}
1479     }
1480   else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1481     {
1482       /* Branch on Floating-Point Condition Codes (FBfcc).  */
1483       branch_p = 1;
1484       offset = 4 * X_DISP22 (insn);
1485     }
1486   else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1487     {
1488       /* Branch on Floating-Point Condition Codes with Prediction
1489          (FBPfcc).  */
1490       branch_p = 1;
1491       offset = 4 * X_DISP19 (insn);
1492     }
1493   else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1494     {
1495       /* Branch on Integer Condition Codes (Bicc).  */
1496       branch_p = 1;
1497       offset = 4 * X_DISP22 (insn);
1498     }
1499   else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1500     {
1501       /* Branch on Integer Condition Codes with Prediction (BPcc).  */
1502       branch_p = 1;
1503       offset = 4 * X_DISP19 (insn);
1504     }
1505   else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1506     {
1507       /* Trap instruction (TRAP).  */
1508       return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1509     }
1510 
1511   /* FIXME: Handle DONE and RETRY instructions.  */
1512 
1513   if (branch_p)
1514     {
1515       if (fused_p)
1516 	{
1517 	  /* Fused compare-and-branch instructions are non-delayed,
1518 	     and do not have an annuling capability.  So we need to
1519 	     always set a breakpoint on both the NPC and the branch
1520 	     target address.  */
1521 	  gdb_assert (offset != 0);
1522 	  return pc + offset;
1523 	}
1524       else if (conditional_p)
1525 	{
1526 	  /* For conditional branches, return nPC + 4 iff the annul
1527 	     bit is 1.  */
1528 	  return (X_A (insn) ? *npc + 4 : 0);
1529 	}
1530       else
1531 	{
1532 	  /* For unconditional branches, return the target if its
1533 	     specified condition is "always" and return nPC + 4 if the
1534 	     condition is "never".  If the annul bit is 1, set *NPC to
1535 	     zero.  */
1536 	  if (X_COND (insn) == 0x0)
1537 	    pc = *npc, offset = 4;
1538 	  if (X_A (insn))
1539 	    *npc = 0;
1540 
1541 	  gdb_assert (offset != 0);
1542 	  return pc + offset;
1543 	}
1544     }
1545 
1546   return 0;
1547 }
1548 
1549 static CORE_ADDR
sparc_step_trap(struct frame_info * frame,unsigned long insn)1550 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1551 {
1552   return 0;
1553 }
1554 
1555 int
sparc_software_single_step(struct frame_info * frame)1556 sparc_software_single_step (struct frame_info *frame)
1557 {
1558   struct gdbarch *arch = get_frame_arch (frame);
1559   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1560   struct address_space *aspace = get_frame_address_space (frame);
1561   CORE_ADDR npc, nnpc;
1562 
1563   CORE_ADDR pc, orig_npc;
1564 
1565   pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1566   orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1567 
1568   /* Analyze the instruction at PC.  */
1569   nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1570   if (npc != 0)
1571     insert_single_step_breakpoint (arch, aspace, npc);
1572 
1573   if (nnpc != 0)
1574     insert_single_step_breakpoint (arch, aspace, nnpc);
1575 
1576   /* Assert that we have set at least one breakpoint, and that
1577      they're not set at the same spot - unless we're going
1578      from here straight to NULL, i.e. a call or jump to 0.  */
1579   gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1580   gdb_assert (nnpc != npc || orig_npc == 0);
1581 
1582   return 1;
1583 }
1584 
1585 static void
sparc_write_pc(struct regcache * regcache,CORE_ADDR pc)1586 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1587 {
1588   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1589 
1590   regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1591   regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1592 }
1593 
1594 
1595 /* Return the appropriate register set for the core section identified
1596    by SECT_NAME and SECT_SIZE.  */
1597 
1598 static const struct regset *
sparc_regset_from_core_section(struct gdbarch * gdbarch,const char * sect_name,size_t sect_size)1599 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1600 				const char *sect_name, size_t sect_size)
1601 {
1602   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1603 
1604   if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1605     return tdep->gregset;
1606 
1607   if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1608     return tdep->fpregset;
1609 
1610   return NULL;
1611 }
1612 
1613 
1614 static struct gdbarch *
sparc32_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1615 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1616 {
1617   struct gdbarch_tdep *tdep;
1618   struct gdbarch *gdbarch;
1619 
1620   /* If there is already a candidate, use it.  */
1621   arches = gdbarch_list_lookup_by_info (arches, &info);
1622   if (arches != NULL)
1623     return arches->gdbarch;
1624 
1625   /* Allocate space for the new architecture.  */
1626   tdep = XZALLOC (struct gdbarch_tdep);
1627   gdbarch = gdbarch_alloc (&info, tdep);
1628 
1629   tdep->pc_regnum = SPARC32_PC_REGNUM;
1630   tdep->npc_regnum = SPARC32_NPC_REGNUM;
1631   tdep->step_trap = sparc_step_trap;
1632 
1633   set_gdbarch_long_double_bit (gdbarch, 128);
1634   set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1635 
1636   set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1637   set_gdbarch_register_name (gdbarch, sparc32_register_name);
1638   set_gdbarch_register_type (gdbarch, sparc32_register_type);
1639   set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1640   set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1641   set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1642 
1643   /* Register numbers of various important registers.  */
1644   set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1645   set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1646   set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1647 
1648   /* Call dummy code.  */
1649   set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1650   set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1651   set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1652   set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1653 
1654   set_gdbarch_return_value (gdbarch, sparc32_return_value);
1655   set_gdbarch_stabs_argument_has_addr
1656     (gdbarch, sparc32_stabs_argument_has_addr);
1657 
1658   set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1659 
1660   /* Stack grows downward.  */
1661   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1662 
1663   set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1664 
1665   set_gdbarch_frame_args_skip (gdbarch, 8);
1666 
1667   set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1668 
1669   set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1670   set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1671 
1672   set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1673 
1674   set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1675 
1676   frame_base_set_default (gdbarch, &sparc32_frame_base);
1677 
1678   /* Hook in the DWARF CFI frame unwinder.  */
1679   dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1680   /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1681      StackGhost issues have been resolved.  */
1682 
1683   /* Hook in ABI-specific overrides, if they have been registered.  */
1684   gdbarch_init_osabi (info, gdbarch);
1685 
1686   frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1687 
1688   /* If we have register sets, enable the generic core file support.  */
1689   if (tdep->gregset)
1690     set_gdbarch_regset_from_core_section (gdbarch,
1691 					  sparc_regset_from_core_section);
1692 
1693   register_sparc_ravenscar_ops (gdbarch);
1694 
1695   return gdbarch;
1696 }
1697 
1698 /* Helper functions for dealing with register windows.  */
1699 
1700 void
sparc_supply_rwindow(struct regcache * regcache,CORE_ADDR sp,int regnum)1701 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1702 {
1703   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1704   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1705   int offset = 0;
1706   gdb_byte buf[8];
1707   int i;
1708 
1709   if (sp & 1)
1710     {
1711       /* Registers are 64-bit.  */
1712       sp += BIAS;
1713 
1714       for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1715 	{
1716 	  if (regnum == i || regnum == -1)
1717 	    {
1718 	      target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1719 
1720 	      /* Handle StackGhost.  */
1721 	      if (i == SPARC_I7_REGNUM)
1722 		{
1723 		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1724 		  ULONGEST i7;
1725 
1726 		  i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1727 		  store_unsigned_integer (buf + offset, 8, byte_order,
1728 					  i7 ^ wcookie);
1729 		}
1730 
1731 	      regcache_raw_supply (regcache, i, buf);
1732 	    }
1733 	}
1734     }
1735   else
1736     {
1737       /* Registers are 32-bit.  Toss any sign-extension of the stack
1738 	 pointer.  */
1739       sp &= 0xffffffffUL;
1740 
1741       /* Clear out the top half of the temporary buffer, and put the
1742 	 register value in the bottom half if we're in 64-bit mode.  */
1743       if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1744 	{
1745 	  memset (buf, 0, 4);
1746 	  offset = 4;
1747 	}
1748 
1749       for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1750 	{
1751 	  if (regnum == i || regnum == -1)
1752 	    {
1753 	      target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1754 				  buf + offset, 4);
1755 
1756 	      /* Handle StackGhost.  */
1757 	      if (i == SPARC_I7_REGNUM)
1758 		{
1759 		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1760 		  ULONGEST i7;
1761 
1762 		  i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1763 		  store_unsigned_integer (buf + offset, 4, byte_order,
1764 					  i7 ^ wcookie);
1765 		}
1766 
1767 	      regcache_raw_supply (regcache, i, buf);
1768 	    }
1769 	}
1770     }
1771 }
1772 
1773 void
sparc_collect_rwindow(const struct regcache * regcache,CORE_ADDR sp,int regnum)1774 sparc_collect_rwindow (const struct regcache *regcache,
1775 		       CORE_ADDR sp, int regnum)
1776 {
1777   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1778   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1779   int offset = 0;
1780   gdb_byte buf[8];
1781   int i;
1782 
1783   if (sp & 1)
1784     {
1785       /* Registers are 64-bit.  */
1786       sp += BIAS;
1787 
1788       for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1789 	{
1790 	  if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1791 	    {
1792 	      regcache_raw_collect (regcache, i, buf);
1793 
1794 	      /* Handle StackGhost.  */
1795 	      if (i == SPARC_I7_REGNUM)
1796 		{
1797 		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1798 		  ULONGEST i7;
1799 
1800 		  i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1801 		  store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1802 		}
1803 
1804 	      target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1805 	    }
1806 	}
1807     }
1808   else
1809     {
1810       /* Registers are 32-bit.  Toss any sign-extension of the stack
1811 	 pointer.  */
1812       sp &= 0xffffffffUL;
1813 
1814       /* Only use the bottom half if we're in 64-bit mode.  */
1815       if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1816 	offset = 4;
1817 
1818       for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1819 	{
1820 	  if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1821 	    {
1822 	      regcache_raw_collect (regcache, i, buf);
1823 
1824 	      /* Handle StackGhost.  */
1825 	      if (i == SPARC_I7_REGNUM)
1826 		{
1827 		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1828 		  ULONGEST i7;
1829 
1830 		  i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1831 		  store_unsigned_integer (buf + offset, 4, byte_order,
1832 					  i7 ^ wcookie);
1833 		}
1834 
1835 	      target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1836 				   buf + offset, 4);
1837 	    }
1838 	}
1839     }
1840 }
1841 
1842 /* Helper functions for dealing with register sets.  */
1843 
1844 void
sparc32_supply_gregset(const struct sparc_gregset * gregset,struct regcache * regcache,int regnum,const void * gregs)1845 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1846 			struct regcache *regcache,
1847 			int regnum, const void *gregs)
1848 {
1849   const gdb_byte *regs = gregs;
1850   gdb_byte zero[4] = { 0 };
1851   int i;
1852 
1853   if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1854     regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1855 			 regs + gregset->r_psr_offset);
1856 
1857   if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1858     regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1859 			 regs + gregset->r_pc_offset);
1860 
1861   if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1862     regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1863 			 regs + gregset->r_npc_offset);
1864 
1865   if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1866     regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1867 			 regs + gregset->r_y_offset);
1868 
1869   if (regnum == SPARC_G0_REGNUM || regnum == -1)
1870     regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1871 
1872   if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1873     {
1874       int offset = gregset->r_g1_offset;
1875 
1876       for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1877 	{
1878 	  if (regnum == i || regnum == -1)
1879 	    regcache_raw_supply (regcache, i, regs + offset);
1880 	  offset += 4;
1881 	}
1882     }
1883 
1884   if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1885     {
1886       /* Not all of the register set variants include Locals and
1887          Inputs.  For those that don't, we read them off the stack.  */
1888       if (gregset->r_l0_offset == -1)
1889 	{
1890 	  ULONGEST sp;
1891 
1892 	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1893 	  sparc_supply_rwindow (regcache, sp, regnum);
1894 	}
1895       else
1896 	{
1897 	  int offset = gregset->r_l0_offset;
1898 
1899 	  for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1900 	    {
1901 	      if (regnum == i || regnum == -1)
1902 		regcache_raw_supply (regcache, i, regs + offset);
1903 	      offset += 4;
1904 	    }
1905 	}
1906     }
1907 }
1908 
1909 void
sparc32_collect_gregset(const struct sparc_gregset * gregset,const struct regcache * regcache,int regnum,void * gregs)1910 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1911 			 const struct regcache *regcache,
1912 			 int regnum, void *gregs)
1913 {
1914   gdb_byte *regs = gregs;
1915   int i;
1916 
1917   if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1918     regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1919 			  regs + gregset->r_psr_offset);
1920 
1921   if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1922     regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1923 			  regs + gregset->r_pc_offset);
1924 
1925   if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1926     regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1927 			  regs + gregset->r_npc_offset);
1928 
1929   if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1930     regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1931 			  regs + gregset->r_y_offset);
1932 
1933   if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1934     {
1935       int offset = gregset->r_g1_offset;
1936 
1937       /* %g0 is always zero.  */
1938       for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1939 	{
1940 	  if (regnum == i || regnum == -1)
1941 	    regcache_raw_collect (regcache, i, regs + offset);
1942 	  offset += 4;
1943 	}
1944     }
1945 
1946   if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1947     {
1948       /* Not all of the register set variants include Locals and
1949          Inputs.  For those that don't, we read them off the stack.  */
1950       if (gregset->r_l0_offset != -1)
1951 	{
1952 	  int offset = gregset->r_l0_offset;
1953 
1954 	  for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1955 	    {
1956 	      if (regnum == i || regnum == -1)
1957 		regcache_raw_collect (regcache, i, regs + offset);
1958 	      offset += 4;
1959 	    }
1960 	}
1961     }
1962 }
1963 
1964 void
sparc32_supply_fpregset(const struct sparc_fpregset * fpregset,struct regcache * regcache,int regnum,const void * fpregs)1965 sparc32_supply_fpregset (const struct sparc_fpregset *fpregset,
1966 			 struct regcache *regcache,
1967 			 int regnum, const void *fpregs)
1968 {
1969   const gdb_byte *regs = fpregs;
1970   int i;
1971 
1972   for (i = 0; i < 32; i++)
1973     {
1974       if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1975 	regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
1976 			     regs + fpregset->r_f0_offset + (i * 4));
1977     }
1978 
1979   if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1980     regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1981 			 regs + fpregset->r_fsr_offset);
1982 }
1983 
1984 void
sparc32_collect_fpregset(const struct sparc_fpregset * fpregset,const struct regcache * regcache,int regnum,void * fpregs)1985 sparc32_collect_fpregset (const struct sparc_fpregset *fpregset,
1986 			  const struct regcache *regcache,
1987 			  int regnum, void *fpregs)
1988 {
1989   gdb_byte *regs = fpregs;
1990   int i;
1991 
1992   for (i = 0; i < 32; i++)
1993     {
1994       if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1995 	regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
1996 			      regs + fpregset->r_f0_offset + (i * 4));
1997     }
1998 
1999   if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2000     regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2001 			  regs + fpregset->r_fsr_offset);
2002 }
2003 
2004 
2005 /* SunOS 4.  */
2006 
2007 /* From <machine/reg.h>.  */
2008 const struct sparc_gregset sparc32_sunos4_gregset =
2009 {
2010   0 * 4,			/* %psr */
2011   1 * 4,			/* %pc */
2012   2 * 4,			/* %npc */
2013   3 * 4,			/* %y */
2014   -1,				/* %wim */
2015   -1,				/* %tbr */
2016   4 * 4,			/* %g1 */
2017   -1				/* %l0 */
2018 };
2019 
2020 const struct sparc_fpregset sparc32_sunos4_fpregset =
2021 {
2022   0 * 4,			/* %f0 */
2023   33 * 4,			/* %fsr */
2024 };
2025 
2026 const struct sparc_fpregset sparc32_bsd_fpregset =
2027 {
2028   0 * 4,			/* %f0 */
2029   32 * 4,			/* %fsr */
2030 };
2031 
2032 
2033 /* Provide a prototype to silence -Wmissing-prototypes.  */
2034 void _initialize_sparc_tdep (void);
2035 
2036 void
_initialize_sparc_tdep(void)2037 _initialize_sparc_tdep (void)
2038 {
2039   register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2040 }
2041