1// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
2// Use of this source code is governed by a MIT license found in the LICENSE file.
3
4package codec
5
6// Contains code shared by both encode and decode.
7
8// Some shared ideas around encoding/decoding
9// ------------------------------------------
10//
11// If an interface{} is passed, we first do a type assertion to see if it is
12// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
13//
14// If we start with a reflect.Value, we are already in reflect.Value land and
15// will try to grab the function for the underlying Type and directly call that function.
16// This is more performant than calling reflect.Value.Interface().
17//
18// This still helps us bypass many layers of reflection, and give best performance.
19//
20// Containers
21// ------------
22// Containers in the stream are either associative arrays (key-value pairs) or
23// regular arrays (indexed by incrementing integers).
24//
25// Some streams support indefinite-length containers, and use a breaking
26// byte-sequence to denote that the container has come to an end.
27//
28// Some streams also are text-based, and use explicit separators to denote the
29// end/beginning of different values.
30//
31// During encode, we use a high-level condition to determine how to iterate through
32// the container. That decision is based on whether the container is text-based (with
33// separators) or binary (without separators). If binary, we do not even call the
34// encoding of separators.
35//
36// During decode, we use a different high-level condition to determine how to iterate
37// through the containers. That decision is based on whether the stream contained
38// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
39// it has to be binary, and we do not even try to read separators.
40//
41// Philosophy
42// ------------
43// On decode, this codec will update containers appropriately:
44//    - If struct, update fields from stream into fields of struct.
45//      If field in stream not found in struct, handle appropriately (based on option).
46//      If a struct field has no corresponding value in the stream, leave it AS IS.
47//      If nil in stream, set value to nil/zero value.
48//    - If map, update map from stream.
49//      If the stream value is NIL, set the map to nil.
50//    - if slice, try to update up to length of array in stream.
51//      if container len is less than stream array length,
52//      and container cannot be expanded, handled (based on option).
53//      This means you can decode 4-element stream array into 1-element array.
54//
55// ------------------------------------
56// On encode, user can specify omitEmpty. This means that the value will be omitted
57// if the zero value. The problem may occur during decode, where omitted values do not affect
58// the value being decoded into. This means that if decoding into a struct with an
59// int field with current value=5, and the field is omitted in the stream, then after
60// decoding, the value will still be 5 (not 0).
61// omitEmpty only works if you guarantee that you always decode into zero-values.
62//
63// ------------------------------------
64// We could have truncated a map to remove keys not available in the stream,
65// or set values in the struct which are not in the stream to their zero values.
66// We decided against it because there is no efficient way to do it.
67// We may introduce it as an option later.
68// However, that will require enabling it for both runtime and code generation modes.
69//
70// To support truncate, we need to do 2 passes over the container:
71//   map
72//   - first collect all keys (e.g. in k1)
73//   - for each key in stream, mark k1 that the key should not be removed
74//   - after updating map, do second pass and call delete for all keys in k1 which are not marked
75//   struct:
76//   - for each field, track the *typeInfo s1
77//   - iterate through all s1, and for each one not marked, set value to zero
78//   - this involves checking the possible anonymous fields which are nil ptrs.
79//     too much work.
80//
81// ------------------------------------------
82// Error Handling is done within the library using panic.
83//
84// This way, the code doesn't have to keep checking if an error has happened,
85// and we don't have to keep sending the error value along with each call
86// or storing it in the En|Decoder and checking it constantly along the way.
87//
88// The disadvantage is that small functions which use panics cannot be inlined.
89// The code accounts for that by only using panics behind an interface;
90// since interface calls cannot be inlined, this is irrelevant.
91//
92// We considered storing the error is En|Decoder.
93//   - once it has its err field set, it cannot be used again.
94//   - panicing will be optional, controlled by const flag.
95//   - code should always check error first and return early.
96// We eventually decided against it as it makes the code clumsier to always
97// check for these error conditions.
98
99import (
100	"bytes"
101	"encoding"
102	"encoding/binary"
103	"errors"
104	"fmt"
105	"io"
106	"math"
107	"reflect"
108	"sort"
109	"strconv"
110	"strings"
111	"sync"
112	"sync/atomic"
113	"time"
114)
115
116const (
117	scratchByteArrayLen = 32
118	// initCollectionCap   = 16 // 32 is defensive. 16 is preferred.
119
120	// Support encoding.(Binary|Text)(Unm|M)arshaler.
121	// This constant flag will enable or disable it.
122	supportMarshalInterfaces = true
123
124	// for debugging, set this to false, to catch panic traces.
125	// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
126	recoverPanicToErr = true
127
128	// arrayCacheLen is the length of the cache used in encoder or decoder for
129	// allowing zero-alloc initialization.
130	// arrayCacheLen = 8
131
132	// size of the cacheline: defaulting to value for archs: amd64, arm64, 386
133	// should use "runtime/internal/sys".CacheLineSize, but that is not exposed.
134	cacheLineSize = 64
135
136	wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize
137	wordSize     = wordSizeBits / 8
138
139	// so structFieldInfo fits into 8 bytes
140	maxLevelsEmbedding = 14
141
142	// useFinalizers=true configures finalizers to release pool'ed resources
143	// acquired by Encoder/Decoder during their GC.
144	//
145	// Note that calling SetFinalizer is always expensive,
146	// as code must be run on the systemstack even for SetFinalizer(t, nil).
147	//
148	// We document that folks SHOULD call Release() when done, or they can
149	// explicitly call SetFinalizer themselves e.g.
150	//    runtime.SetFinalizer(e, (*Encoder).Release)
151	//    runtime.SetFinalizer(d, (*Decoder).Release)
152	useFinalizers = false
153)
154
155var oneByteArr [1]byte
156var zeroByteSlice = oneByteArr[:0:0]
157
158var codecgen bool
159
160var refBitset bitset256
161var pool pooler
162var panicv panicHdl
163
164func init() {
165	pool.init()
166
167	refBitset.set(byte(reflect.Map))
168	refBitset.set(byte(reflect.Ptr))
169	refBitset.set(byte(reflect.Func))
170	refBitset.set(byte(reflect.Chan))
171}
172
173type clsErr struct {
174	closed    bool  // is it closed?
175	errClosed error // error on closing
176}
177
178// type entryType uint8
179
180// const (
181// 	entryTypeBytes entryType = iota // make this 0, so a comparison is cheap
182// 	entryTypeIo
183// 	entryTypeBufio
184// 	entryTypeUnset = 255
185// )
186
187type charEncoding uint8
188
189const (
190	_ charEncoding = iota // make 0 unset
191	cUTF8
192	cUTF16LE
193	cUTF16BE
194	cUTF32LE
195	cUTF32BE
196	// Deprecated: not a true char encoding value
197	cRAW charEncoding = 255
198)
199
200// valueType is the stream type
201type valueType uint8
202
203const (
204	valueTypeUnset valueType = iota
205	valueTypeNil
206	valueTypeInt
207	valueTypeUint
208	valueTypeFloat
209	valueTypeBool
210	valueTypeString
211	valueTypeSymbol
212	valueTypeBytes
213	valueTypeMap
214	valueTypeArray
215	valueTypeTime
216	valueTypeExt
217
218	// valueTypeInvalid = 0xff
219)
220
221var valueTypeStrings = [...]string{
222	"Unset",
223	"Nil",
224	"Int",
225	"Uint",
226	"Float",
227	"Bool",
228	"String",
229	"Symbol",
230	"Bytes",
231	"Map",
232	"Array",
233	"Timestamp",
234	"Ext",
235}
236
237func (x valueType) String() string {
238	if int(x) < len(valueTypeStrings) {
239		return valueTypeStrings[x]
240	}
241	return strconv.FormatInt(int64(x), 10)
242}
243
244type seqType uint8
245
246const (
247	_ seqType = iota
248	seqTypeArray
249	seqTypeSlice
250	seqTypeChan
251)
252
253// note that containerMapStart and containerArraySend are not sent.
254// This is because the ReadXXXStart and EncodeXXXStart already does these.
255type containerState uint8
256
257const (
258	_ containerState = iota
259
260	containerMapStart // slot left open, since Driver method already covers it
261	containerMapKey
262	containerMapValue
263	containerMapEnd
264	containerArrayStart // slot left open, since Driver methods already cover it
265	containerArrayElem
266	containerArrayEnd
267)
268
269// // sfiIdx used for tracking where a (field/enc)Name is seen in a []*structFieldInfo
270// type sfiIdx struct {
271// 	name  string
272// 	index int
273// }
274
275// do not recurse if a containing type refers to an embedded type
276// which refers back to its containing type (via a pointer).
277// The second time this back-reference happens, break out,
278// so as not to cause an infinite loop.
279const rgetMaxRecursion = 2
280
281// Anecdotally, we believe most types have <= 12 fields.
282// - even Java's PMD rules set TooManyFields threshold to 15.
283// However, go has embedded fields, which should be regarded as
284// top level, allowing structs to possibly double or triple.
285// In addition, we don't want to keep creating transient arrays,
286// especially for the sfi index tracking, and the evtypes tracking.
287//
288// So - try to keep typeInfoLoadArray within 2K bytes
289const (
290	typeInfoLoadArraySfisLen   = 16
291	typeInfoLoadArraySfiidxLen = 8 * 112
292	typeInfoLoadArrayEtypesLen = 12
293	typeInfoLoadArrayBLen      = 8 * 4
294)
295
296type typeInfoLoad struct {
297	// fNames   []string
298	// encNames []string
299	etypes []uintptr
300	sfis   []structFieldInfo
301}
302
303type typeInfoLoadArray struct {
304	// fNames   [typeInfoLoadArrayLen]string
305	// encNames [typeInfoLoadArrayLen]string
306	sfis   [typeInfoLoadArraySfisLen]structFieldInfo
307	sfiidx [typeInfoLoadArraySfiidxLen]byte
308	etypes [typeInfoLoadArrayEtypesLen]uintptr
309	b      [typeInfoLoadArrayBLen]byte // scratch - used for struct field names
310}
311
312// mirror json.Marshaler and json.Unmarshaler here,
313// so we don't import the encoding/json package
314
315type jsonMarshaler interface {
316	MarshalJSON() ([]byte, error)
317}
318type jsonUnmarshaler interface {
319	UnmarshalJSON([]byte) error
320}
321
322type isZeroer interface {
323	IsZero() bool
324}
325
326type codecError struct {
327	name string
328	err  interface{}
329}
330
331func (e codecError) Cause() error {
332	switch xerr := e.err.(type) {
333	case nil:
334		return nil
335	case error:
336		return xerr
337	case string:
338		return errors.New(xerr)
339	case fmt.Stringer:
340		return errors.New(xerr.String())
341	default:
342		return fmt.Errorf("%v", e.err)
343	}
344}
345
346func (e codecError) Error() string {
347	return fmt.Sprintf("%s error: %v", e.name, e.err)
348}
349
350// type byteAccepter func(byte) bool
351
352var (
353	bigen               = binary.BigEndian
354	structInfoFieldName = "_struct"
355
356	mapStrIntfTyp  = reflect.TypeOf(map[string]interface{}(nil))
357	mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
358	intfSliceTyp   = reflect.TypeOf([]interface{}(nil))
359	intfTyp        = intfSliceTyp.Elem()
360
361	reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem()
362
363	stringTyp     = reflect.TypeOf("")
364	timeTyp       = reflect.TypeOf(time.Time{})
365	rawExtTyp     = reflect.TypeOf(RawExt{})
366	rawTyp        = reflect.TypeOf(Raw{})
367	uintptrTyp    = reflect.TypeOf(uintptr(0))
368	uint8Typ      = reflect.TypeOf(uint8(0))
369	uint8SliceTyp = reflect.TypeOf([]uint8(nil))
370	uintTyp       = reflect.TypeOf(uint(0))
371	intTyp        = reflect.TypeOf(int(0))
372
373	mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
374
375	binaryMarshalerTyp   = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
376	binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
377
378	textMarshalerTyp   = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
379	textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
380
381	jsonMarshalerTyp   = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
382	jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
383
384	selferTyp         = reflect.TypeOf((*Selfer)(nil)).Elem()
385	missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem()
386	iszeroTyp         = reflect.TypeOf((*isZeroer)(nil)).Elem()
387
388	uint8TypId      = rt2id(uint8Typ)
389	uint8SliceTypId = rt2id(uint8SliceTyp)
390	rawExtTypId     = rt2id(rawExtTyp)
391	rawTypId        = rt2id(rawTyp)
392	intfTypId       = rt2id(intfTyp)
393	timeTypId       = rt2id(timeTyp)
394	stringTypId     = rt2id(stringTyp)
395
396	mapStrIntfTypId  = rt2id(mapStrIntfTyp)
397	mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
398	intfSliceTypId   = rt2id(intfSliceTyp)
399	// mapBySliceTypId  = rt2id(mapBySliceTyp)
400
401	intBitsize  = uint8(intTyp.Bits())
402	uintBitsize = uint8(uintTyp.Bits())
403
404	// bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
405	bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
406
407	chkOvf checkOverflow
408
409	errNoFieldNameToStructFieldInfo = errors.New("no field name passed to parseStructFieldInfo")
410)
411
412var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
413
414var immutableKindsSet = [32]bool{
415	// reflect.Invalid:  ,
416	reflect.Bool:       true,
417	reflect.Int:        true,
418	reflect.Int8:       true,
419	reflect.Int16:      true,
420	reflect.Int32:      true,
421	reflect.Int64:      true,
422	reflect.Uint:       true,
423	reflect.Uint8:      true,
424	reflect.Uint16:     true,
425	reflect.Uint32:     true,
426	reflect.Uint64:     true,
427	reflect.Uintptr:    true,
428	reflect.Float32:    true,
429	reflect.Float64:    true,
430	reflect.Complex64:  true,
431	reflect.Complex128: true,
432	// reflect.Array
433	// reflect.Chan
434	// reflect.Func: true,
435	// reflect.Interface
436	// reflect.Map
437	// reflect.Ptr
438	// reflect.Slice
439	reflect.String: true,
440	// reflect.Struct
441	// reflect.UnsafePointer
442}
443
444// Selfer defines methods by which a value can encode or decode itself.
445//
446// Any type which implements Selfer will be able to encode or decode itself.
447// Consequently, during (en|de)code, this takes precedence over
448// (text|binary)(M|Unm)arshal or extension support.
449//
450// By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself.
451// If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error.
452// For example, the snippet below will cause such an error.
453//     type testSelferRecur struct{}
454//     func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) }
455//     func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) }
456//
457// Note: *the first set of bytes of any value MUST NOT represent nil in the format*.
458// This is because, during each decode, we first check the the next set of bytes
459// represent nil, and if so, we just set the value to nil.
460type Selfer interface {
461	CodecEncodeSelf(*Encoder)
462	CodecDecodeSelf(*Decoder)
463}
464
465// MissingFielder defines the interface allowing structs to internally decode or encode
466// values which do not map to struct fields.
467//
468// We expect that this interface is bound to a pointer type (so the mutation function works).
469//
470// A use-case is if a version of a type unexports a field, but you want compatibility between
471// both versions during encoding and decoding.
472//
473// Note that the interface is completely ignored during codecgen.
474type MissingFielder interface {
475	// CodecMissingField is called to set a missing field and value pair.
476	//
477	// It returns true if the missing field was set on the struct.
478	CodecMissingField(field []byte, value interface{}) bool
479
480	// CodecMissingFields returns the set of fields which are not struct fields
481	CodecMissingFields() map[string]interface{}
482}
483
484// MapBySlice is a tag interface that denotes wrapped slice should encode as a map in the stream.
485// The slice contains a sequence of key-value pairs.
486// This affords storing a map in a specific sequence in the stream.
487//
488// Example usage:
489//    type T1 []string         // or []int or []Point or any other "slice" type
490//    func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map
491//    type T2 struct { KeyValues T1 }
492//
493//    var kvs = []string{"one", "1", "two", "2", "three", "3"}
494//    var v2 = T2{ KeyValues: T1(kvs) }
495//    // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} }
496//
497// The support of MapBySlice affords the following:
498//   - A slice type which implements MapBySlice will be encoded as a map
499//   - A slice can be decoded from a map in the stream
500//   - It MUST be a slice type (not a pointer receiver) that implements MapBySlice
501type MapBySlice interface {
502	MapBySlice()
503}
504
505// BasicHandle encapsulates the common options and extension functions.
506//
507// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
508type BasicHandle struct {
509	// BasicHandle is always a part of a different type.
510	// It doesn't have to fit into it own cache lines.
511
512	// TypeInfos is used to get the type info for any type.
513	//
514	// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
515	TypeInfos *TypeInfos
516
517	// Note: BasicHandle is not comparable, due to these slices here (extHandle, intf2impls).
518	// If *[]T is used instead, this becomes comparable, at the cost of extra indirection.
519	// Thses slices are used all the time, so keep as slices (not pointers).
520
521	extHandle
522
523	intf2impls
524
525	inited uint32
526	_      uint32 // padding
527
528	// ---- cache line
529
530	RPCOptions
531
532	// TimeNotBuiltin configures whether time.Time should be treated as a builtin type.
533	//
534	// All Handlers should know how to encode/decode time.Time as part of the core
535	// format specification, or as a standard extension defined by the format.
536	//
537	// However, users can elect to handle time.Time as a custom extension, or via the
538	// standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface.
539	// To elect this behavior, users can set TimeNotBuiltin=true.
540	// Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior
541	// (for Cbor and Msgpack), where time.Time was not a builtin supported type.
542	TimeNotBuiltin bool
543
544	// ExplicitRelease configures whether Release() is implicitly called after an encode or
545	// decode call.
546	//
547	// If you will hold onto an Encoder or Decoder for re-use, by calling Reset(...)
548	// on it or calling (Must)Encode repeatedly into a given []byte or io.Writer,
549	// then you do not want it to be implicitly closed after each Encode/Decode call.
550	// Doing so will unnecessarily return resources to the shared pool, only for you to
551	// grab them right after again to do another Encode/Decode call.
552	//
553	// Instead, you configure ExplicitRelease=true, and you explicitly call Release() when
554	// you are truly done.
555	//
556	// As an alternative, you can explicitly set a finalizer - so its resources
557	// are returned to the shared pool before it is garbage-collected. Do it as below:
558	//    runtime.SetFinalizer(e, (*Encoder).Release)
559	//    runtime.SetFinalizer(d, (*Decoder).Release)
560	ExplicitRelease bool
561
562	be bool   // is handle a binary encoding?
563	js bool   // is handle javascript handler?
564	n  byte   // first letter of handle name
565	_  uint16 // padding
566
567	// ---- cache line
568
569	DecodeOptions
570
571	// ---- cache line
572
573	EncodeOptions
574
575	// noBuiltInTypeChecker
576
577	rtidFns atomicRtidFnSlice
578	mu      sync.Mutex
579	// r []uintptr     // rtids mapped to s above
580}
581
582// basicHandle returns an initialized BasicHandle from the Handle.
583func basicHandle(hh Handle) (x *BasicHandle) {
584	x = hh.getBasicHandle()
585	if atomic.CompareAndSwapUint32(&x.inited, 0, 1) {
586		x.be = hh.isBinary()
587		_, x.js = hh.(*JsonHandle)
588		x.n = hh.Name()[0]
589	}
590	return
591}
592
593func (x *BasicHandle) getBasicHandle() *BasicHandle {
594	return x
595}
596
597func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
598	if x.TypeInfos == nil {
599		return defTypeInfos.get(rtid, rt)
600	}
601	return x.TypeInfos.get(rtid, rt)
602}
603
604func findFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) {
605	// binary search. adapted from sort/search.go.
606	// Note: we use goto (instead of for loop) so this can be inlined.
607
608	// h, i, j := 0, 0, len(s)
609	var h uint // var h, i uint
610	var j = uint(len(s))
611LOOP:
612	if i < j {
613		h = i + (j-i)/2
614		if s[h].rtid < rtid {
615			i = h + 1
616		} else {
617			j = h
618		}
619		goto LOOP
620	}
621	if i < uint(len(s)) && s[i].rtid == rtid {
622		fn = s[i].fn
623	}
624	return
625}
626
627func (x *BasicHandle) fn(rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *codecFn) {
628	rtid := rt2id(rt)
629	sp := x.rtidFns.load()
630	if sp != nil {
631		if _, fn = findFn(sp, rtid); fn != nil {
632			// xdebugf("<<<< %c: found fn for %v in rtidfns of size: %v", c.n, rt, len(sp))
633			return
634		}
635	}
636	c := x
637	// xdebugf("#### for %c: load fn for %v in rtidfns of size: %v", c.n, rt, len(sp))
638	fn = new(codecFn)
639	fi := &(fn.i)
640	ti := c.getTypeInfo(rtid, rt)
641	fi.ti = ti
642
643	rk := reflect.Kind(ti.kind)
644
645	if checkCodecSelfer && (ti.cs || ti.csp) {
646		fn.fe = (*Encoder).selferMarshal
647		fn.fd = (*Decoder).selferUnmarshal
648		fi.addrF = true
649		fi.addrD = ti.csp
650		fi.addrE = ti.csp
651	} else if rtid == timeTypId && !c.TimeNotBuiltin {
652		fn.fe = (*Encoder).kTime
653		fn.fd = (*Decoder).kTime
654	} else if rtid == rawTypId {
655		fn.fe = (*Encoder).raw
656		fn.fd = (*Decoder).raw
657	} else if rtid == rawExtTypId {
658		fn.fe = (*Encoder).rawExt
659		fn.fd = (*Decoder).rawExt
660		fi.addrF = true
661		fi.addrD = true
662		fi.addrE = true
663	} else if xfFn := c.getExt(rtid); xfFn != nil {
664		fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
665		fn.fe = (*Encoder).ext
666		fn.fd = (*Decoder).ext
667		fi.addrF = true
668		fi.addrD = true
669		if rk == reflect.Struct || rk == reflect.Array {
670			fi.addrE = true
671		}
672	} else if supportMarshalInterfaces && c.be && (ti.bm || ti.bmp) && (ti.bu || ti.bup) {
673		fn.fe = (*Encoder).binaryMarshal
674		fn.fd = (*Decoder).binaryUnmarshal
675		fi.addrF = true
676		fi.addrD = ti.bup
677		fi.addrE = ti.bmp
678	} else if supportMarshalInterfaces && !c.be && c.js && (ti.jm || ti.jmp) && (ti.ju || ti.jup) {
679		//If JSON, we should check JSONMarshal before textMarshal
680		fn.fe = (*Encoder).jsonMarshal
681		fn.fd = (*Decoder).jsonUnmarshal
682		fi.addrF = true
683		fi.addrD = ti.jup
684		fi.addrE = ti.jmp
685	} else if supportMarshalInterfaces && !c.be && (ti.tm || ti.tmp) && (ti.tu || ti.tup) {
686		fn.fe = (*Encoder).textMarshal
687		fn.fd = (*Decoder).textUnmarshal
688		fi.addrF = true
689		fi.addrD = ti.tup
690		fi.addrE = ti.tmp
691	} else {
692		if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
693			if ti.pkgpath == "" { // un-named slice or map
694				if idx := fastpathAV.index(rtid); idx != -1 {
695					fn.fe = fastpathAV[idx].encfn
696					fn.fd = fastpathAV[idx].decfn
697					fi.addrD = true
698					fi.addrF = false
699				}
700			} else {
701				// use mapping for underlying type if there
702				var rtu reflect.Type
703				if rk == reflect.Map {
704					rtu = reflect.MapOf(ti.key, ti.elem)
705				} else {
706					rtu = reflect.SliceOf(ti.elem)
707				}
708				rtuid := rt2id(rtu)
709				if idx := fastpathAV.index(rtuid); idx != -1 {
710					xfnf := fastpathAV[idx].encfn
711					xrt := fastpathAV[idx].rt
712					fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
713						xfnf(e, xf, xrv.Convert(xrt))
714					}
715					fi.addrD = true
716					fi.addrF = false // meaning it can be an address(ptr) or a value
717					xfnf2 := fastpathAV[idx].decfn
718					fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
719						if xrv.Kind() == reflect.Ptr {
720							xfnf2(d, xf, xrv.Convert(reflect.PtrTo(xrt)))
721						} else {
722							xfnf2(d, xf, xrv.Convert(xrt))
723						}
724					}
725				}
726			}
727		}
728		if fn.fe == nil && fn.fd == nil {
729			switch rk {
730			case reflect.Bool:
731				fn.fe = (*Encoder).kBool
732				fn.fd = (*Decoder).kBool
733			case reflect.String:
734				fn.fe = (*Encoder).kString
735				fn.fd = (*Decoder).kString
736			case reflect.Int:
737				fn.fd = (*Decoder).kInt
738				fn.fe = (*Encoder).kInt
739			case reflect.Int8:
740				fn.fe = (*Encoder).kInt8
741				fn.fd = (*Decoder).kInt8
742			case reflect.Int16:
743				fn.fe = (*Encoder).kInt16
744				fn.fd = (*Decoder).kInt16
745			case reflect.Int32:
746				fn.fe = (*Encoder).kInt32
747				fn.fd = (*Decoder).kInt32
748			case reflect.Int64:
749				fn.fe = (*Encoder).kInt64
750				fn.fd = (*Decoder).kInt64
751			case reflect.Uint:
752				fn.fd = (*Decoder).kUint
753				fn.fe = (*Encoder).kUint
754			case reflect.Uint8:
755				fn.fe = (*Encoder).kUint8
756				fn.fd = (*Decoder).kUint8
757			case reflect.Uint16:
758				fn.fe = (*Encoder).kUint16
759				fn.fd = (*Decoder).kUint16
760			case reflect.Uint32:
761				fn.fe = (*Encoder).kUint32
762				fn.fd = (*Decoder).kUint32
763			case reflect.Uint64:
764				fn.fe = (*Encoder).kUint64
765				fn.fd = (*Decoder).kUint64
766			case reflect.Uintptr:
767				fn.fe = (*Encoder).kUintptr
768				fn.fd = (*Decoder).kUintptr
769			case reflect.Float32:
770				fn.fe = (*Encoder).kFloat32
771				fn.fd = (*Decoder).kFloat32
772			case reflect.Float64:
773				fn.fe = (*Encoder).kFloat64
774				fn.fd = (*Decoder).kFloat64
775			case reflect.Invalid:
776				fn.fe = (*Encoder).kInvalid
777				fn.fd = (*Decoder).kErr
778			case reflect.Chan:
779				fi.seq = seqTypeChan
780				fn.fe = (*Encoder).kSlice
781				fn.fd = (*Decoder).kSlice
782			case reflect.Slice:
783				fi.seq = seqTypeSlice
784				fn.fe = (*Encoder).kSlice
785				fn.fd = (*Decoder).kSlice
786			case reflect.Array:
787				fi.seq = seqTypeArray
788				fn.fe = (*Encoder).kSlice
789				fi.addrF = false
790				fi.addrD = false
791				rt2 := reflect.SliceOf(ti.elem)
792				fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
793					d.h.fn(rt2, true, false).fd(d, xf, xrv.Slice(0, xrv.Len()))
794				}
795				// fn.fd = (*Decoder).kArray
796			case reflect.Struct:
797				if ti.anyOmitEmpty || ti.mf || ti.mfp {
798					fn.fe = (*Encoder).kStruct
799				} else {
800					fn.fe = (*Encoder).kStructNoOmitempty
801				}
802				fn.fd = (*Decoder).kStruct
803			case reflect.Map:
804				fn.fe = (*Encoder).kMap
805				fn.fd = (*Decoder).kMap
806			case reflect.Interface:
807				// encode: reflect.Interface are handled already by preEncodeValue
808				fn.fd = (*Decoder).kInterface
809				fn.fe = (*Encoder).kErr
810			default:
811				// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
812				fn.fe = (*Encoder).kErr
813				fn.fd = (*Decoder).kErr
814			}
815		}
816	}
817
818	c.mu.Lock()
819	var sp2 []codecRtidFn
820	sp = c.rtidFns.load()
821	if sp == nil {
822		sp2 = []codecRtidFn{{rtid, fn}}
823		c.rtidFns.store(sp2)
824		// xdebugf(">>>> adding rt: %v to rtidfns of size: %v", rt, len(sp2))
825		// xdebugf(">>>> loading stored rtidfns of size: %v", len(c.rtidFns.load()))
826	} else {
827		idx, fn2 := findFn(sp, rtid)
828		if fn2 == nil {
829			sp2 = make([]codecRtidFn, len(sp)+1)
830			copy(sp2, sp[:idx])
831			copy(sp2[idx+1:], sp[idx:])
832			sp2[idx] = codecRtidFn{rtid, fn}
833			c.rtidFns.store(sp2)
834			// xdebugf(">>>> adding rt: %v to rtidfns of size: %v", rt, len(sp2))
835
836		}
837	}
838	c.mu.Unlock()
839	return
840}
841
842// Handle defines a specific encoding format. It also stores any runtime state
843// used during an Encoding or Decoding session e.g. stored state about Types, etc.
844//
845// Once a handle is configured, it can be shared across multiple Encoders and Decoders.
846//
847// Note that a Handle is NOT safe for concurrent modification.
848// Consequently, do not modify it after it is configured if shared among
849// multiple Encoders and Decoders in different goroutines.
850//
851// Consequently, the typical usage model is that a Handle is pre-configured
852// before first time use, and not modified while in use.
853// Such a pre-configured Handle is safe for concurrent access.
854type Handle interface {
855	Name() string
856	// return the basic handle. It may not have been inited.
857	// Prefer to use basicHandle() helper function that ensures it has been inited.
858	getBasicHandle() *BasicHandle
859	recreateEncDriver(encDriver) bool
860	newEncDriver(w *Encoder) encDriver
861	newDecDriver(r *Decoder) decDriver
862	isBinary() bool
863	hasElemSeparators() bool
864	// IsBuiltinType(rtid uintptr) bool
865}
866
867// Raw represents raw formatted bytes.
868// We "blindly" store it during encode and retrieve the raw bytes during decode.
869// Note: it is dangerous during encode, so we may gate the behaviour
870// behind an Encode flag which must be explicitly set.
871type Raw []byte
872
873// RawExt represents raw unprocessed extension data.
874// Some codecs will decode extension data as a *RawExt
875// if there is no registered extension for the tag.
876//
877// Only one of Data or Value is nil.
878// If Data is nil, then the content of the RawExt is in the Value.
879type RawExt struct {
880	Tag uint64
881	// Data is the []byte which represents the raw ext. If nil, ext is exposed in Value.
882	// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types
883	Data []byte
884	// Value represents the extension, if Data is nil.
885	// Value is used by codecs (e.g. cbor, json) which leverage the format to do
886	// custom serialization of the types.
887	Value interface{}
888}
889
890// BytesExt handles custom (de)serialization of types to/from []byte.
891// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
892type BytesExt interface {
893	// WriteExt converts a value to a []byte.
894	//
895	// Note: v is a pointer iff the registered extension type is a struct or array kind.
896	WriteExt(v interface{}) []byte
897
898	// ReadExt updates a value from a []byte.
899	//
900	// Note: dst is always a pointer kind to the registered extension type.
901	ReadExt(dst interface{}, src []byte)
902}
903
904// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
905// The Encoder or Decoder will then handle the further (de)serialization of that known type.
906//
907// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types.
908type InterfaceExt interface {
909	// ConvertExt converts a value into a simpler interface for easy encoding
910	// e.g. convert time.Time to int64.
911	//
912	// Note: v is a pointer iff the registered extension type is a struct or array kind.
913	ConvertExt(v interface{}) interface{}
914
915	// UpdateExt updates a value from a simpler interface for easy decoding
916	// e.g. convert int64 to time.Time.
917	//
918	// Note: dst is always a pointer kind to the registered extension type.
919	UpdateExt(dst interface{}, src interface{})
920}
921
922// Ext handles custom (de)serialization of custom types / extensions.
923type Ext interface {
924	BytesExt
925	InterfaceExt
926}
927
928// addExtWrapper is a wrapper implementation to support former AddExt exported method.
929type addExtWrapper struct {
930	encFn func(reflect.Value) ([]byte, error)
931	decFn func(reflect.Value, []byte) error
932}
933
934func (x addExtWrapper) WriteExt(v interface{}) []byte {
935	bs, err := x.encFn(reflect.ValueOf(v))
936	if err != nil {
937		panic(err)
938	}
939	return bs
940}
941
942func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
943	if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
944		panic(err)
945	}
946}
947
948func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
949	return x.WriteExt(v)
950}
951
952func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
953	x.ReadExt(dest, v.([]byte))
954}
955
956type extWrapper struct {
957	BytesExt
958	InterfaceExt
959}
960
961type bytesExtFailer struct{}
962
963func (bytesExtFailer) WriteExt(v interface{}) []byte {
964	panicv.errorstr("BytesExt.WriteExt is not supported")
965	return nil
966}
967func (bytesExtFailer) ReadExt(v interface{}, bs []byte) {
968	panicv.errorstr("BytesExt.ReadExt is not supported")
969}
970
971type interfaceExtFailer struct{}
972
973func (interfaceExtFailer) ConvertExt(v interface{}) interface{} {
974	panicv.errorstr("InterfaceExt.ConvertExt is not supported")
975	return nil
976}
977func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) {
978	panicv.errorstr("InterfaceExt.UpdateExt is not supported")
979}
980
981type binaryEncodingType struct{}
982
983func (binaryEncodingType) isBinary() bool { return true }
984
985type textEncodingType struct{}
986
987func (textEncodingType) isBinary() bool { return false }
988
989// noBuiltInTypes is embedded into many types which do not support builtins
990// e.g. msgpack, simple, cbor.
991
992// type noBuiltInTypeChecker struct{}
993// func (noBuiltInTypeChecker) IsBuiltinType(rt uintptr) bool { return false }
994// type noBuiltInTypes struct{ noBuiltInTypeChecker }
995
996type noBuiltInTypes struct{}
997
998func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
999func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
1000
1001// type noStreamingCodec struct{}
1002// func (noStreamingCodec) CheckBreak() bool { return false }
1003// func (noStreamingCodec) hasElemSeparators() bool { return false }
1004
1005type noElemSeparators struct{}
1006
1007func (noElemSeparators) hasElemSeparators() (v bool)            { return }
1008func (noElemSeparators) recreateEncDriver(e encDriver) (v bool) { return }
1009
1010// bigenHelper.
1011// Users must already slice the x completely, because we will not reslice.
1012type bigenHelper struct {
1013	x []byte // must be correctly sliced to appropriate len. slicing is a cost.
1014	w *encWriterSwitch
1015}
1016
1017func (z bigenHelper) writeUint16(v uint16) {
1018	bigen.PutUint16(z.x, v)
1019	z.w.writeb(z.x)
1020}
1021
1022func (z bigenHelper) writeUint32(v uint32) {
1023	bigen.PutUint32(z.x, v)
1024	z.w.writeb(z.x)
1025}
1026
1027func (z bigenHelper) writeUint64(v uint64) {
1028	bigen.PutUint64(z.x, v)
1029	z.w.writeb(z.x)
1030}
1031
1032type extTypeTagFn struct {
1033	rtid    uintptr
1034	rtidptr uintptr
1035	rt      reflect.Type
1036	tag     uint64
1037	ext     Ext
1038	_       [1]uint64 // padding
1039}
1040
1041type extHandle []extTypeTagFn
1042
1043// AddExt registes an encode and decode function for a reflect.Type.
1044// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
1045//
1046// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
1047func (o *extHandle) AddExt(rt reflect.Type, tag byte,
1048	encfn func(reflect.Value) ([]byte, error),
1049	decfn func(reflect.Value, []byte) error) (err error) {
1050	if encfn == nil || decfn == nil {
1051		return o.SetExt(rt, uint64(tag), nil)
1052	}
1053	return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
1054}
1055
1056// SetExt will set the extension for a tag and reflect.Type.
1057// Note that the type must be a named type, and specifically not a pointer or Interface.
1058// An error is returned if that is not honored.
1059// To Deregister an ext, call SetExt with nil Ext.
1060//
1061// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
1062func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
1063	// o is a pointer, because we may need to initialize it
1064	rk := rt.Kind()
1065	for rk == reflect.Ptr {
1066		rt = rt.Elem()
1067		rk = rt.Kind()
1068	}
1069
1070	if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
1071		return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
1072	}
1073
1074	rtid := rt2id(rt)
1075	switch rtid {
1076	case timeTypId, rawTypId, rawExtTypId:
1077		// all natively supported type, so cannot have an extension
1078		return // TODO: should we silently ignore, or return an error???
1079	}
1080	// if o == nil {
1081	// 	return errors.New("codec.Handle.SetExt: extHandle not initialized")
1082	// }
1083	o2 := *o
1084	// if o2 == nil {
1085	// 	return errors.New("codec.Handle.SetExt: extHandle not initialized")
1086	// }
1087	for i := range o2 {
1088		v := &o2[i]
1089		if v.rtid == rtid {
1090			v.tag, v.ext = tag, ext
1091			return
1092		}
1093	}
1094	rtidptr := rt2id(reflect.PtrTo(rt))
1095	*o = append(o2, extTypeTagFn{rtid, rtidptr, rt, tag, ext, [1]uint64{}})
1096	return
1097}
1098
1099func (o extHandle) getExt(rtid uintptr) (v *extTypeTagFn) {
1100	for i := range o {
1101		v = &o[i]
1102		if v.rtid == rtid || v.rtidptr == rtid {
1103			return
1104		}
1105	}
1106	return nil
1107}
1108
1109func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) {
1110	for i := range o {
1111		v = &o[i]
1112		if v.tag == tag {
1113			return
1114		}
1115	}
1116	return nil
1117}
1118
1119type intf2impl struct {
1120	rtid uintptr // for intf
1121	impl reflect.Type
1122	// _    [1]uint64 // padding // not-needed, as *intf2impl is never returned.
1123}
1124
1125type intf2impls []intf2impl
1126
1127// Intf2Impl maps an interface to an implementing type.
1128// This allows us support infering the concrete type
1129// and populating it when passed an interface.
1130// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc.
1131//
1132// Passing a nil impl will clear the mapping.
1133func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) {
1134	if impl != nil && !impl.Implements(intf) {
1135		return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf)
1136	}
1137	rtid := rt2id(intf)
1138	o2 := *o
1139	for i := range o2 {
1140		v := &o2[i]
1141		if v.rtid == rtid {
1142			v.impl = impl
1143			return
1144		}
1145	}
1146	*o = append(o2, intf2impl{rtid, impl})
1147	return
1148}
1149
1150func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) {
1151	for i := range o {
1152		v := &o[i]
1153		if v.rtid == rtid {
1154			if v.impl == nil {
1155				return
1156			}
1157			if v.impl.Kind() == reflect.Ptr {
1158				return reflect.New(v.impl.Elem())
1159			}
1160			return reflect.New(v.impl).Elem()
1161		}
1162	}
1163	return
1164}
1165
1166type structFieldInfoFlag uint8
1167
1168const (
1169	_ structFieldInfoFlag = 1 << iota
1170	structFieldInfoFlagReady
1171	structFieldInfoFlagOmitEmpty
1172)
1173
1174func (x *structFieldInfoFlag) flagSet(f structFieldInfoFlag) {
1175	*x = *x | f
1176}
1177
1178func (x *structFieldInfoFlag) flagClr(f structFieldInfoFlag) {
1179	*x = *x &^ f
1180}
1181
1182func (x structFieldInfoFlag) flagGet(f structFieldInfoFlag) bool {
1183	return x&f != 0
1184}
1185
1186func (x structFieldInfoFlag) omitEmpty() bool {
1187	return x.flagGet(structFieldInfoFlagOmitEmpty)
1188}
1189
1190func (x structFieldInfoFlag) ready() bool {
1191	return x.flagGet(structFieldInfoFlagReady)
1192}
1193
1194type structFieldInfo struct {
1195	encName   string // encode name
1196	fieldName string // field name
1197
1198	is  [maxLevelsEmbedding]uint16 // (recursive/embedded) field index in struct
1199	nis uint8                      // num levels of embedding. if 1, then it's not embedded.
1200
1201	encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers
1202	structFieldInfoFlag
1203	_ [1]byte // padding
1204}
1205
1206func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
1207	if v, valid := si.field(v, false); valid {
1208		v.Set(reflect.Zero(v.Type()))
1209	}
1210}
1211
1212// rv returns the field of the struct.
1213// If anonymous, it returns an Invalid
1214func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value, valid bool) {
1215	// replicate FieldByIndex
1216	for i, x := range si.is {
1217		if uint8(i) == si.nis {
1218			break
1219		}
1220		if v, valid = baseStructRv(v, update); !valid {
1221			return
1222		}
1223		v = v.Field(int(x))
1224	}
1225
1226	return v, true
1227}
1228
1229// func (si *structFieldInfo) fieldval(v reflect.Value, update bool) reflect.Value {
1230// 	v, _ = si.field(v, update)
1231// 	return v
1232// }
1233
1234func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) {
1235	keytype = valueTypeString // default
1236	if stag == "" {
1237		return
1238	}
1239	for i, s := range strings.Split(stag, ",") {
1240		if i == 0 {
1241		} else {
1242			switch s {
1243			case "omitempty":
1244				omitEmpty = true
1245			case "toarray":
1246				toArray = true
1247			case "int":
1248				keytype = valueTypeInt
1249			case "uint":
1250				keytype = valueTypeUint
1251			case "float":
1252				keytype = valueTypeFloat
1253				// case "bool":
1254				// 	keytype = valueTypeBool
1255			case "string":
1256				keytype = valueTypeString
1257			}
1258		}
1259	}
1260	return
1261}
1262
1263func (si *structFieldInfo) parseTag(stag string) {
1264	// if fname == "" {
1265	// 	panic(errNoFieldNameToStructFieldInfo)
1266	// }
1267
1268	if stag == "" {
1269		return
1270	}
1271	for i, s := range strings.Split(stag, ",") {
1272		if i == 0 {
1273			if s != "" {
1274				si.encName = s
1275			}
1276		} else {
1277			switch s {
1278			case "omitempty":
1279				si.flagSet(structFieldInfoFlagOmitEmpty)
1280				// si.omitEmpty = true
1281				// case "toarray":
1282				// 	si.toArray = true
1283			}
1284		}
1285	}
1286}
1287
1288type sfiSortedByEncName []*structFieldInfo
1289
1290func (p sfiSortedByEncName) Len() int           { return len(p) }
1291func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName }
1292func (p sfiSortedByEncName) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
1293
1294const structFieldNodeNumToCache = 4
1295
1296type structFieldNodeCache struct {
1297	rv  [structFieldNodeNumToCache]reflect.Value
1298	idx [structFieldNodeNumToCache]uint32
1299	num uint8
1300}
1301
1302func (x *structFieldNodeCache) get(key uint32) (fv reflect.Value, valid bool) {
1303	for i, k := range &x.idx {
1304		if uint8(i) == x.num {
1305			return // break
1306		}
1307		if key == k {
1308			return x.rv[i], true
1309		}
1310	}
1311	return
1312}
1313
1314func (x *structFieldNodeCache) tryAdd(fv reflect.Value, key uint32) {
1315	if x.num < structFieldNodeNumToCache {
1316		x.rv[x.num] = fv
1317		x.idx[x.num] = key
1318		x.num++
1319		return
1320	}
1321}
1322
1323type structFieldNode struct {
1324	v      reflect.Value
1325	cache2 structFieldNodeCache
1326	cache3 structFieldNodeCache
1327	update bool
1328}
1329
1330func (x *structFieldNode) field(si *structFieldInfo) (fv reflect.Value) {
1331	// return si.fieldval(x.v, x.update)
1332	// Note: we only cache if nis=2 or nis=3 i.e. up to 2 levels of embedding
1333	// This mostly saves us time on the repeated calls to v.Elem, v.Field, etc.
1334	var valid bool
1335	switch si.nis {
1336	case 1:
1337		fv = x.v.Field(int(si.is[0]))
1338	case 2:
1339		if fv, valid = x.cache2.get(uint32(si.is[0])); valid {
1340			fv = fv.Field(int(si.is[1]))
1341			return
1342		}
1343		fv = x.v.Field(int(si.is[0]))
1344		if fv, valid = baseStructRv(fv, x.update); !valid {
1345			return
1346		}
1347		x.cache2.tryAdd(fv, uint32(si.is[0]))
1348		fv = fv.Field(int(si.is[1]))
1349	case 3:
1350		var key uint32 = uint32(si.is[0])<<16 | uint32(si.is[1])
1351		if fv, valid = x.cache3.get(key); valid {
1352			fv = fv.Field(int(si.is[2]))
1353			return
1354		}
1355		fv = x.v.Field(int(si.is[0]))
1356		if fv, valid = baseStructRv(fv, x.update); !valid {
1357			return
1358		}
1359		fv = fv.Field(int(si.is[1]))
1360		if fv, valid = baseStructRv(fv, x.update); !valid {
1361			return
1362		}
1363		x.cache3.tryAdd(fv, key)
1364		fv = fv.Field(int(si.is[2]))
1365	default:
1366		fv, _ = si.field(x.v, x.update)
1367	}
1368	return
1369}
1370
1371func baseStructRv(v reflect.Value, update bool) (v2 reflect.Value, valid bool) {
1372	for v.Kind() == reflect.Ptr {
1373		if v.IsNil() {
1374			if !update {
1375				return
1376			}
1377			v.Set(reflect.New(v.Type().Elem()))
1378		}
1379		v = v.Elem()
1380	}
1381	return v, true
1382}
1383
1384type typeInfoFlag uint8
1385
1386const (
1387	typeInfoFlagComparable = 1 << iota
1388	typeInfoFlagIsZeroer
1389	typeInfoFlagIsZeroerPtr
1390)
1391
1392// typeInfo keeps information about each (non-ptr) type referenced in the encode/decode sequence.
1393//
1394// During an encode/decode sequence, we work as below:
1395//   - If base is a built in type, en/decode base value
1396//   - If base is registered as an extension, en/decode base value
1397//   - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
1398//   - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
1399//   - Else decode appropriately based on the reflect.Kind
1400type typeInfo struct {
1401	rt      reflect.Type
1402	elem    reflect.Type
1403	pkgpath string
1404
1405	rtid uintptr
1406	// rv0  reflect.Value // saved zero value, used if immutableKind
1407
1408	numMeth uint16 // number of methods
1409	kind    uint8
1410	chandir uint8
1411
1412	anyOmitEmpty bool      // true if a struct, and any of the fields are tagged "omitempty"
1413	toArray      bool      // whether this (struct) type should be encoded as an array
1414	keyType      valueType // if struct, how is the field name stored in a stream? default is string
1415	mbs          bool      // base type (T or *T) is a MapBySlice
1416
1417	// ---- cpu cache line boundary?
1418	sfiSort []*structFieldInfo // sorted. Used when enc/dec struct to map.
1419	sfiSrc  []*structFieldInfo // unsorted. Used when enc/dec struct to array.
1420
1421	key reflect.Type
1422
1423	// ---- cpu cache line boundary?
1424	// sfis         []structFieldInfo // all sfi, in src order, as created.
1425	sfiNamesSort []byte // all names, with indexes into the sfiSort
1426
1427	// format of marshal type fields below: [btj][mu]p? OR csp?
1428
1429	bm  bool // T is a binaryMarshaler
1430	bmp bool // *T is a binaryMarshaler
1431	bu  bool // T is a binaryUnmarshaler
1432	bup bool // *T is a binaryUnmarshaler
1433	tm  bool // T is a textMarshaler
1434	tmp bool // *T is a textMarshaler
1435	tu  bool // T is a textUnmarshaler
1436	tup bool // *T is a textUnmarshaler
1437
1438	jm  bool // T is a jsonMarshaler
1439	jmp bool // *T is a jsonMarshaler
1440	ju  bool // T is a jsonUnmarshaler
1441	jup bool // *T is a jsonUnmarshaler
1442	cs  bool // T is a Selfer
1443	csp bool // *T is a Selfer
1444	mf  bool // T is a MissingFielder
1445	mfp bool // *T is a MissingFielder
1446
1447	// other flags, with individual bits representing if set.
1448	flags              typeInfoFlag
1449	infoFieldOmitempty bool
1450
1451	_ [6]byte   // padding
1452	_ [2]uint64 // padding
1453}
1454
1455func (ti *typeInfo) isFlag(f typeInfoFlag) bool {
1456	return ti.flags&f != 0
1457}
1458
1459func (ti *typeInfo) indexForEncName(name []byte) (index int16) {
1460	var sn []byte
1461	if len(name)+2 <= 32 {
1462		var buf [32]byte // should not escape to heap
1463		sn = buf[:len(name)+2]
1464	} else {
1465		sn = make([]byte, len(name)+2)
1466	}
1467	copy(sn[1:], name)
1468	sn[0], sn[len(sn)-1] = tiSep2(name), 0xff
1469	j := bytes.Index(ti.sfiNamesSort, sn)
1470	if j < 0 {
1471		return -1
1472	}
1473	index = int16(uint16(ti.sfiNamesSort[j+len(sn)+1]) | uint16(ti.sfiNamesSort[j+len(sn)])<<8)
1474	return
1475}
1476
1477type rtid2ti struct {
1478	rtid uintptr
1479	ti   *typeInfo
1480}
1481
1482// TypeInfos caches typeInfo for each type on first inspection.
1483//
1484// It is configured with a set of tag keys, which are used to get
1485// configuration for the type.
1486type TypeInfos struct {
1487	// infos: formerly map[uintptr]*typeInfo, now *[]rtid2ti, 2 words expected
1488	infos atomicTypeInfoSlice
1489	mu    sync.Mutex
1490	tags  []string
1491	_     [2]uint64 // padding
1492}
1493
1494// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
1495//
1496// This allows users customize the struct tag keys which contain configuration
1497// of their types.
1498func NewTypeInfos(tags []string) *TypeInfos {
1499	return &TypeInfos{tags: tags}
1500}
1501
1502func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
1503	// check for tags: codec, json, in that order.
1504	// this allows seamless support for many configured structs.
1505	for _, x := range x.tags {
1506		s = t.Get(x)
1507		if s != "" {
1508			return s
1509		}
1510	}
1511	return
1512}
1513
1514func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) {
1515	// binary search. adapted from sort/search.go.
1516	// Note: we use goto (instead of for loop) so this can be inlined.
1517
1518	// if sp == nil {
1519	// 	return -1, nil
1520	// }
1521	// s := *sp
1522
1523	// h, i, j := 0, 0, len(s)
1524	var h uint // var h, i uint
1525	var j = uint(len(s))
1526LOOP:
1527	if i < j {
1528		h = i + (j-i)/2
1529		if s[h].rtid < rtid {
1530			i = h + 1
1531		} else {
1532			j = h
1533		}
1534		goto LOOP
1535	}
1536	if i < uint(len(s)) && s[i].rtid == rtid {
1537		ti = s[i].ti
1538	}
1539	return
1540}
1541
1542func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
1543	sp := x.infos.load()
1544	if sp != nil {
1545		_, pti = findTypeInfo(sp, rtid)
1546		if pti != nil {
1547			return
1548		}
1549	}
1550
1551	rk := rt.Kind()
1552
1553	if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
1554		panicv.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt)
1555	}
1556
1557	// do not hold lock while computing this.
1558	// it may lead to duplication, but that's ok.
1559	ti := typeInfo{
1560		rt:      rt,
1561		rtid:    rtid,
1562		kind:    uint8(rk),
1563		pkgpath: rt.PkgPath(),
1564		keyType: valueTypeString, // default it - so it's never 0
1565	}
1566	// ti.rv0 = reflect.Zero(rt)
1567
1568	// ti.comparable = rt.Comparable()
1569	ti.numMeth = uint16(rt.NumMethod())
1570
1571	ti.bm, ti.bmp = implIntf(rt, binaryMarshalerTyp)
1572	ti.bu, ti.bup = implIntf(rt, binaryUnmarshalerTyp)
1573	ti.tm, ti.tmp = implIntf(rt, textMarshalerTyp)
1574	ti.tu, ti.tup = implIntf(rt, textUnmarshalerTyp)
1575	ti.jm, ti.jmp = implIntf(rt, jsonMarshalerTyp)
1576	ti.ju, ti.jup = implIntf(rt, jsonUnmarshalerTyp)
1577	ti.cs, ti.csp = implIntf(rt, selferTyp)
1578	ti.mf, ti.mfp = implIntf(rt, missingFielderTyp)
1579
1580	b1, b2 := implIntf(rt, iszeroTyp)
1581	if b1 {
1582		ti.flags |= typeInfoFlagIsZeroer
1583	}
1584	if b2 {
1585		ti.flags |= typeInfoFlagIsZeroerPtr
1586	}
1587	if rt.Comparable() {
1588		ti.flags |= typeInfoFlagComparable
1589	}
1590
1591	switch rk {
1592	case reflect.Struct:
1593		var omitEmpty bool
1594		if f, ok := rt.FieldByName(structInfoFieldName); ok {
1595			ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag))
1596			ti.infoFieldOmitempty = omitEmpty
1597		} else {
1598			ti.keyType = valueTypeString
1599		}
1600		pp, pi := &pool.tiload, pool.tiload.Get() // pool.tiLoad()
1601		pv := pi.(*typeInfoLoadArray)
1602		pv.etypes[0] = ti.rtid
1603		// vv := typeInfoLoad{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
1604		vv := typeInfoLoad{pv.etypes[:1], pv.sfis[:0]}
1605		x.rget(rt, rtid, omitEmpty, nil, &vv)
1606		// ti.sfis = vv.sfis
1607		ti.sfiSrc, ti.sfiSort, ti.sfiNamesSort, ti.anyOmitEmpty = rgetResolveSFI(rt, vv.sfis, pv)
1608		pp.Put(pi)
1609	case reflect.Map:
1610		ti.elem = rt.Elem()
1611		ti.key = rt.Key()
1612	case reflect.Slice:
1613		ti.mbs, _ = implIntf(rt, mapBySliceTyp)
1614		ti.elem = rt.Elem()
1615	case reflect.Chan:
1616		ti.elem = rt.Elem()
1617		ti.chandir = uint8(rt.ChanDir())
1618	case reflect.Array, reflect.Ptr:
1619		ti.elem = rt.Elem()
1620	}
1621	// sfi = sfiSrc
1622
1623	x.mu.Lock()
1624	sp = x.infos.load()
1625	var sp2 []rtid2ti
1626	if sp == nil {
1627		pti = &ti
1628		sp2 = []rtid2ti{{rtid, pti}}
1629		x.infos.store(sp2)
1630	} else {
1631		var idx uint
1632		idx, pti = findTypeInfo(sp, rtid)
1633		if pti == nil {
1634			pti = &ti
1635			sp2 = make([]rtid2ti, len(sp)+1)
1636			copy(sp2, sp[:idx])
1637			copy(sp2[idx+1:], sp[idx:])
1638			sp2[idx] = rtid2ti{rtid, pti}
1639			x.infos.store(sp2)
1640		}
1641	}
1642	x.mu.Unlock()
1643	return
1644}
1645
1646func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, omitEmpty bool,
1647	indexstack []uint16, pv *typeInfoLoad) {
1648	// Read up fields and store how to access the value.
1649	//
1650	// It uses go's rules for message selectors,
1651	// which say that the field with the shallowest depth is selected.
1652	//
1653	// Note: we consciously use slices, not a map, to simulate a set.
1654	//       Typically, types have < 16 fields,
1655	//       and iteration using equals is faster than maps there
1656	flen := rt.NumField()
1657	if flen > (1<<maxLevelsEmbedding - 1) {
1658		panicv.errorf("codec: types with > %v fields are not supported - has %v fields",
1659			(1<<maxLevelsEmbedding - 1), flen)
1660	}
1661	// pv.sfis = make([]structFieldInfo, flen)
1662LOOP:
1663	for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
1664		f := rt.Field(int(j))
1665		fkind := f.Type.Kind()
1666		// skip if a func type, or is unexported, or structTag value == "-"
1667		switch fkind {
1668		case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
1669			continue LOOP
1670		}
1671
1672		isUnexported := f.PkgPath != ""
1673		if isUnexported && !f.Anonymous {
1674			continue
1675		}
1676		stag := x.structTag(f.Tag)
1677		if stag == "-" {
1678			continue
1679		}
1680		var si structFieldInfo
1681		var parsed bool
1682		// if anonymous and no struct tag (or it's blank),
1683		// and a struct (or pointer to struct), inline it.
1684		if f.Anonymous && fkind != reflect.Interface {
1685			// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
1686			ft := f.Type
1687			isPtr := ft.Kind() == reflect.Ptr
1688			for ft.Kind() == reflect.Ptr {
1689				ft = ft.Elem()
1690			}
1691			isStruct := ft.Kind() == reflect.Struct
1692
1693			// Ignore embedded fields of unexported non-struct types.
1694			// Also, from go1.10, ignore pointers to unexported struct types
1695			// because unmarshal cannot assign a new struct to an unexported field.
1696			// See https://golang.org/issue/21357
1697			if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
1698				continue
1699			}
1700			doInline := stag == ""
1701			if !doInline {
1702				si.parseTag(stag)
1703				parsed = true
1704				doInline = si.encName == ""
1705				// doInline = si.isZero()
1706			}
1707			if doInline && isStruct {
1708				// if etypes contains this, don't call rget again (as fields are already seen here)
1709				ftid := rt2id(ft)
1710				// We cannot recurse forever, but we need to track other field depths.
1711				// So - we break if we see a type twice (not the first time).
1712				// This should be sufficient to handle an embedded type that refers to its
1713				// owning type, which then refers to its embedded type.
1714				processIt := true
1715				numk := 0
1716				for _, k := range pv.etypes {
1717					if k == ftid {
1718						numk++
1719						if numk == rgetMaxRecursion {
1720							processIt = false
1721							break
1722						}
1723					}
1724				}
1725				if processIt {
1726					pv.etypes = append(pv.etypes, ftid)
1727					indexstack2 := make([]uint16, len(indexstack)+1)
1728					copy(indexstack2, indexstack)
1729					indexstack2[len(indexstack)] = j
1730					// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
1731					x.rget(ft, ftid, omitEmpty, indexstack2, pv)
1732				}
1733				continue
1734			}
1735		}
1736
1737		// after the anonymous dance: if an unexported field, skip
1738		if isUnexported {
1739			continue
1740		}
1741
1742		if f.Name == "" {
1743			panic(errNoFieldNameToStructFieldInfo)
1744		}
1745
1746		// pv.fNames = append(pv.fNames, f.Name)
1747		// if si.encName == "" {
1748
1749		if !parsed {
1750			si.encName = f.Name
1751			si.parseTag(stag)
1752			parsed = true
1753		} else if si.encName == "" {
1754			si.encName = f.Name
1755		}
1756		si.encNameAsciiAlphaNum = true
1757		for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination
1758			b := si.encName[i]
1759			if (b >= '0' && b <= '9') || (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') {
1760				continue
1761			}
1762			si.encNameAsciiAlphaNum = false
1763			break
1764		}
1765		si.fieldName = f.Name
1766		si.flagSet(structFieldInfoFlagReady)
1767
1768		// pv.encNames = append(pv.encNames, si.encName)
1769
1770		// si.ikind = int(f.Type.Kind())
1771		if len(indexstack) > maxLevelsEmbedding-1 {
1772			panicv.errorf("codec: only supports up to %v depth of embedding - type has %v depth",
1773				maxLevelsEmbedding-1, len(indexstack))
1774		}
1775		si.nis = uint8(len(indexstack)) + 1
1776		copy(si.is[:], indexstack)
1777		si.is[len(indexstack)] = j
1778
1779		if omitEmpty {
1780			si.flagSet(structFieldInfoFlagOmitEmpty)
1781		}
1782		pv.sfis = append(pv.sfis, si)
1783	}
1784}
1785
1786func tiSep(name string) uint8 {
1787	// (xn[0]%64) // (between 192-255 - outside ascii BMP)
1788	// return 0xfe - (name[0] & 63)
1789	// return 0xfe - (name[0] & 63) - uint8(len(name))
1790	// return 0xfe - (name[0] & 63) - uint8(len(name)&63)
1791	// return ((0xfe - (name[0] & 63)) & 0xf8) | (uint8(len(name) & 0x07))
1792	return 0xfe - (name[0] & 63) - uint8(len(name)&63)
1793}
1794
1795func tiSep2(name []byte) uint8 {
1796	return 0xfe - (name[0] & 63) - uint8(len(name)&63)
1797}
1798
1799// resolves the struct field info got from a call to rget.
1800// Returns a trimmed, unsorted and sorted []*structFieldInfo.
1801func rgetResolveSFI(rt reflect.Type, x []structFieldInfo, pv *typeInfoLoadArray) (
1802	y, z []*structFieldInfo, ss []byte, anyOmitEmpty bool) {
1803	sa := pv.sfiidx[:0]
1804	sn := pv.b[:]
1805	n := len(x)
1806
1807	var xn string
1808	var ui uint16
1809	var sep byte
1810
1811	for i := range x {
1812		ui = uint16(i)
1813		xn = x[i].encName // fieldName or encName? use encName for now.
1814		if len(xn)+2 > cap(pv.b) {
1815			sn = make([]byte, len(xn)+2)
1816		} else {
1817			sn = sn[:len(xn)+2]
1818		}
1819		// use a custom sep, so that misses are less frequent,
1820		// since the sep (first char in search) is as unique as first char in field name.
1821		sep = tiSep(xn)
1822		sn[0], sn[len(sn)-1] = sep, 0xff
1823		copy(sn[1:], xn)
1824		j := bytes.Index(sa, sn)
1825		if j == -1 {
1826			sa = append(sa, sep)
1827			sa = append(sa, xn...)
1828			sa = append(sa, 0xff, byte(ui>>8), byte(ui))
1829		} else {
1830			index := uint16(sa[j+len(sn)+1]) | uint16(sa[j+len(sn)])<<8
1831			// one of them must be reset to nil,
1832			// and the index updated appropriately to the other one
1833			if x[i].nis == x[index].nis {
1834			} else if x[i].nis < x[index].nis {
1835				sa[j+len(sn)], sa[j+len(sn)+1] = byte(ui>>8), byte(ui)
1836				if x[index].ready() {
1837					x[index].flagClr(structFieldInfoFlagReady)
1838					n--
1839				}
1840			} else {
1841				if x[i].ready() {
1842					x[i].flagClr(structFieldInfoFlagReady)
1843					n--
1844				}
1845			}
1846		}
1847
1848	}
1849	var w []structFieldInfo
1850	sharingArray := len(x) <= typeInfoLoadArraySfisLen // sharing array with typeInfoLoadArray
1851	if sharingArray {
1852		w = make([]structFieldInfo, n)
1853	}
1854
1855	// remove all the nils (non-ready)
1856	y = make([]*structFieldInfo, n)
1857	n = 0
1858	var sslen int
1859	for i := range x {
1860		if !x[i].ready() {
1861			continue
1862		}
1863		if !anyOmitEmpty && x[i].omitEmpty() {
1864			anyOmitEmpty = true
1865		}
1866		if sharingArray {
1867			w[n] = x[i]
1868			y[n] = &w[n]
1869		} else {
1870			y[n] = &x[i]
1871		}
1872		sslen = sslen + len(x[i].encName) + 4
1873		n++
1874	}
1875	if n != len(y) {
1876		panicv.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d",
1877			rt, len(y), len(x), n)
1878	}
1879
1880	z = make([]*structFieldInfo, len(y))
1881	copy(z, y)
1882	sort.Sort(sfiSortedByEncName(z))
1883
1884	sharingArray = len(sa) <= typeInfoLoadArraySfiidxLen
1885	if sharingArray {
1886		ss = make([]byte, 0, sslen)
1887	} else {
1888		ss = sa[:0] // reuse the newly made sa array if necessary
1889	}
1890	for i := range z {
1891		xn = z[i].encName
1892		sep = tiSep(xn)
1893		ui = uint16(i)
1894		ss = append(ss, sep)
1895		ss = append(ss, xn...)
1896		ss = append(ss, 0xff, byte(ui>>8), byte(ui))
1897	}
1898	return
1899}
1900
1901func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
1902	return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
1903}
1904
1905// isEmptyStruct is only called from isEmptyValue, and checks if a struct is empty:
1906//    - does it implement IsZero() bool
1907//    - is it comparable, and can i compare directly using ==
1908//    - if checkStruct, then walk through the encodable fields
1909//      and check if they are empty or not.
1910func isEmptyStruct(v reflect.Value, tinfos *TypeInfos, deref, checkStruct bool) bool {
1911	// v is a struct kind - no need to check again.
1912	// We only check isZero on a struct kind, to reduce the amount of times
1913	// that we lookup the rtid and typeInfo for each type as we walk the tree.
1914
1915	vt := v.Type()
1916	rtid := rt2id(vt)
1917	if tinfos == nil {
1918		tinfos = defTypeInfos
1919	}
1920	ti := tinfos.get(rtid, vt)
1921	if ti.rtid == timeTypId {
1922		return rv2i(v).(time.Time).IsZero()
1923	}
1924	if ti.isFlag(typeInfoFlagIsZeroerPtr) && v.CanAddr() {
1925		return rv2i(v.Addr()).(isZeroer).IsZero()
1926	}
1927	if ti.isFlag(typeInfoFlagIsZeroer) {
1928		return rv2i(v).(isZeroer).IsZero()
1929	}
1930	if ti.isFlag(typeInfoFlagComparable) {
1931		return rv2i(v) == rv2i(reflect.Zero(vt))
1932	}
1933	if !checkStruct {
1934		return false
1935	}
1936	// We only care about what we can encode/decode,
1937	// so that is what we use to check omitEmpty.
1938	for _, si := range ti.sfiSrc {
1939		sfv, valid := si.field(v, false)
1940		if valid && !isEmptyValue(sfv, tinfos, deref, checkStruct) {
1941			return false
1942		}
1943	}
1944	return true
1945}
1946
1947// func roundFloat(x float64) float64 {
1948// 	t := math.Trunc(x)
1949// 	if math.Abs(x-t) >= 0.5 {
1950// 		return t + math.Copysign(1, x)
1951// 	}
1952// 	return t
1953// }
1954
1955func panicToErr(h errDecorator, err *error) {
1956	// Note: This method MUST be called directly from defer i.e. defer panicToErr ...
1957	// else it seems the recover is not fully handled
1958	if recoverPanicToErr {
1959		if x := recover(); x != nil {
1960			// fmt.Printf("panic'ing with: %v\n", x)
1961			// debug.PrintStack()
1962			panicValToErr(h, x, err)
1963		}
1964	}
1965}
1966
1967func panicValToErr(h errDecorator, v interface{}, err *error) {
1968	switch xerr := v.(type) {
1969	case nil:
1970	case error:
1971		switch xerr {
1972		case nil:
1973		case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized:
1974			// treat as special (bubble up)
1975			*err = xerr
1976		default:
1977			h.wrapErr(xerr, err)
1978		}
1979	case string:
1980		if xerr != "" {
1981			h.wrapErr(xerr, err)
1982		}
1983	case fmt.Stringer:
1984		if xerr != nil {
1985			h.wrapErr(xerr, err)
1986		}
1987	default:
1988		h.wrapErr(v, err)
1989	}
1990}
1991
1992func isImmutableKind(k reflect.Kind) (v bool) {
1993	// return immutableKindsSet[k]
1994	// since we know reflect.Kind is in range 0..31, then use the k%32 == k constraint
1995	return immutableKindsSet[k%reflect.Kind(len(immutableKindsSet))] // bounds-check-elimination
1996}
1997
1998// ----
1999
2000type codecFnInfo struct {
2001	ti    *typeInfo
2002	xfFn  Ext
2003	xfTag uint64
2004	seq   seqType
2005	addrD bool
2006	addrF bool // if addrD, this says whether decode function can take a value or a ptr
2007	addrE bool
2008}
2009
2010// codecFn encapsulates the captured variables and the encode function.
2011// This way, we only do some calculations one times, and pass to the
2012// code block that should be called (encapsulated in a function)
2013// instead of executing the checks every time.
2014type codecFn struct {
2015	i  codecFnInfo
2016	fe func(*Encoder, *codecFnInfo, reflect.Value)
2017	fd func(*Decoder, *codecFnInfo, reflect.Value)
2018	_  [1]uint64 // padding
2019}
2020
2021type codecRtidFn struct {
2022	rtid uintptr
2023	fn   *codecFn
2024}
2025
2026// ----
2027
2028// these "checkOverflow" functions must be inlinable, and not call anybody.
2029// Overflow means that the value cannot be represented without wrapping/overflow.
2030// Overflow=false does not mean that the value can be represented without losing precision
2031// (especially for floating point).
2032
2033type checkOverflow struct{}
2034
2035// func (checkOverflow) Float16(f float64) (overflow bool) {
2036// 	panicv.errorf("unimplemented")
2037// 	if f < 0 {
2038// 		f = -f
2039// 	}
2040// 	return math.MaxFloat32 < f && f <= math.MaxFloat64
2041// }
2042
2043func (checkOverflow) Float32(v float64) (overflow bool) {
2044	if v < 0 {
2045		v = -v
2046	}
2047	return math.MaxFloat32 < v && v <= math.MaxFloat64
2048}
2049func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
2050	if bitsize == 0 || bitsize >= 64 || v == 0 {
2051		return
2052	}
2053	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
2054		overflow = true
2055	}
2056	return
2057}
2058func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
2059	if bitsize == 0 || bitsize >= 64 || v == 0 {
2060		return
2061	}
2062	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
2063		overflow = true
2064	}
2065	return
2066}
2067func (checkOverflow) SignedInt(v uint64) (overflow bool) {
2068	//e.g. -127 to 128 for int8
2069	pos := (v >> 63) == 0
2070	ui2 := v & 0x7fffffffffffffff
2071	if pos {
2072		if ui2 > math.MaxInt64 {
2073			overflow = true
2074		}
2075	} else {
2076		if ui2 > math.MaxInt64-1 {
2077			overflow = true
2078		}
2079	}
2080	return
2081}
2082
2083func (x checkOverflow) Float32V(v float64) float64 {
2084	if x.Float32(v) {
2085		panicv.errorf("float32 overflow: %v", v)
2086	}
2087	return v
2088}
2089func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 {
2090	if x.Uint(v, bitsize) {
2091		panicv.errorf("uint64 overflow: %v", v)
2092	}
2093	return v
2094}
2095func (x checkOverflow) IntV(v int64, bitsize uint8) int64 {
2096	if x.Int(v, bitsize) {
2097		panicv.errorf("int64 overflow: %v", v)
2098	}
2099	return v
2100}
2101func (x checkOverflow) SignedIntV(v uint64) int64 {
2102	if x.SignedInt(v) {
2103		panicv.errorf("uint64 to int64 overflow: %v", v)
2104	}
2105	return int64(v)
2106}
2107
2108// ------------------ SORT -----------------
2109
2110func isNaN(f float64) bool { return f != f }
2111
2112// -----------------------
2113
2114type ioFlusher interface {
2115	Flush() error
2116}
2117
2118type ioPeeker interface {
2119	Peek(int) ([]byte, error)
2120}
2121
2122type ioBuffered interface {
2123	Buffered() int
2124}
2125
2126// -----------------------
2127
2128type intSlice []int64
2129type uintSlice []uint64
2130
2131// type uintptrSlice []uintptr
2132type floatSlice []float64
2133type boolSlice []bool
2134type stringSlice []string
2135
2136// type bytesSlice [][]byte
2137
2138func (p intSlice) Len() int           { return len(p) }
2139func (p intSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2140func (p intSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2141
2142func (p uintSlice) Len() int           { return len(p) }
2143func (p uintSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2144func (p uintSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2145
2146// func (p uintptrSlice) Len() int           { return len(p) }
2147// func (p uintptrSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2148// func (p uintptrSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2149
2150func (p floatSlice) Len() int { return len(p) }
2151func (p floatSlice) Less(i, j int) bool {
2152	return p[uint(i)] < p[uint(j)] || isNaN(p[uint(i)]) && !isNaN(p[uint(j)])
2153}
2154func (p floatSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2155
2156func (p stringSlice) Len() int           { return len(p) }
2157func (p stringSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2158func (p stringSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2159
2160// func (p bytesSlice) Len() int           { return len(p) }
2161// func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[uint(i)], p[uint(j)]) == -1 }
2162// func (p bytesSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2163
2164func (p boolSlice) Len() int           { return len(p) }
2165func (p boolSlice) Less(i, j int) bool { return !p[uint(i)] && p[uint(j)] }
2166func (p boolSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2167
2168// ---------------------
2169
2170type sfiRv struct {
2171	v *structFieldInfo
2172	r reflect.Value
2173}
2174
2175type intRv struct {
2176	v int64
2177	r reflect.Value
2178}
2179type intRvSlice []intRv
2180type uintRv struct {
2181	v uint64
2182	r reflect.Value
2183}
2184type uintRvSlice []uintRv
2185type floatRv struct {
2186	v float64
2187	r reflect.Value
2188}
2189type floatRvSlice []floatRv
2190type boolRv struct {
2191	v bool
2192	r reflect.Value
2193}
2194type boolRvSlice []boolRv
2195type stringRv struct {
2196	v string
2197	r reflect.Value
2198}
2199type stringRvSlice []stringRv
2200type bytesRv struct {
2201	v []byte
2202	r reflect.Value
2203}
2204type bytesRvSlice []bytesRv
2205type timeRv struct {
2206	v time.Time
2207	r reflect.Value
2208}
2209type timeRvSlice []timeRv
2210
2211func (p intRvSlice) Len() int           { return len(p) }
2212func (p intRvSlice) Less(i, j int) bool { return p[uint(i)].v < p[uint(j)].v }
2213func (p intRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2214
2215func (p uintRvSlice) Len() int           { return len(p) }
2216func (p uintRvSlice) Less(i, j int) bool { return p[uint(i)].v < p[uint(j)].v }
2217func (p uintRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2218
2219func (p floatRvSlice) Len() int { return len(p) }
2220func (p floatRvSlice) Less(i, j int) bool {
2221	return p[uint(i)].v < p[uint(j)].v || isNaN(p[uint(i)].v) && !isNaN(p[uint(j)].v)
2222}
2223func (p floatRvSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2224
2225func (p stringRvSlice) Len() int           { return len(p) }
2226func (p stringRvSlice) Less(i, j int) bool { return p[uint(i)].v < p[uint(j)].v }
2227func (p stringRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2228
2229func (p bytesRvSlice) Len() int           { return len(p) }
2230func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[uint(i)].v, p[uint(j)].v) == -1 }
2231func (p bytesRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2232
2233func (p boolRvSlice) Len() int           { return len(p) }
2234func (p boolRvSlice) Less(i, j int) bool { return !p[uint(i)].v && p[uint(j)].v }
2235func (p boolRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2236
2237func (p timeRvSlice) Len() int           { return len(p) }
2238func (p timeRvSlice) Less(i, j int) bool { return p[uint(i)].v.Before(p[uint(j)].v) }
2239func (p timeRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2240
2241// -----------------
2242
2243type bytesI struct {
2244	v []byte
2245	i interface{}
2246}
2247
2248type bytesISlice []bytesI
2249
2250func (p bytesISlice) Len() int           { return len(p) }
2251func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[uint(i)].v, p[uint(j)].v) == -1 }
2252func (p bytesISlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2253
2254// -----------------
2255
2256type set []uintptr
2257
2258func (s *set) add(v uintptr) (exists bool) {
2259	// e.ci is always nil, or len >= 1
2260	x := *s
2261	if x == nil {
2262		x = make([]uintptr, 1, 8)
2263		x[0] = v
2264		*s = x
2265		return
2266	}
2267	// typically, length will be 1. make this perform.
2268	if len(x) == 1 {
2269		if j := x[0]; j == 0 {
2270			x[0] = v
2271		} else if j == v {
2272			exists = true
2273		} else {
2274			x = append(x, v)
2275			*s = x
2276		}
2277		return
2278	}
2279	// check if it exists
2280	for _, j := range x {
2281		if j == v {
2282			exists = true
2283			return
2284		}
2285	}
2286	// try to replace a "deleted" slot
2287	for i, j := range x {
2288		if j == 0 {
2289			x[i] = v
2290			return
2291		}
2292	}
2293	// if unable to replace deleted slot, just append it.
2294	x = append(x, v)
2295	*s = x
2296	return
2297}
2298
2299func (s *set) remove(v uintptr) (exists bool) {
2300	x := *s
2301	if len(x) == 0 {
2302		return
2303	}
2304	if len(x) == 1 {
2305		if x[0] == v {
2306			x[0] = 0
2307		}
2308		return
2309	}
2310	for i, j := range x {
2311		if j == v {
2312			exists = true
2313			x[i] = 0 // set it to 0, as way to delete it.
2314			// copy(x[i:], x[i+1:])
2315			// x = x[:len(x)-1]
2316			return
2317		}
2318	}
2319	return
2320}
2321
2322// ------
2323
2324// bitset types are better than [256]bool, because they permit the whole
2325// bitset array being on a single cache line and use less memory.
2326//
2327// Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap).
2328//
2329// We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces
2330// bounds checking, so we discarded them, and everyone uses bitset256.
2331//
2332// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
2333// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
2334
2335type bitset256 [32]byte
2336
2337func (x *bitset256) isset(pos byte) bool {
2338	return x[pos>>3]&(1<<(pos&7)) != 0
2339}
2340
2341// func (x *bitset256) issetv(pos byte) byte {
2342// 	return x[pos>>3] & (1 << (pos & 7))
2343// }
2344
2345func (x *bitset256) set(pos byte) {
2346	x[pos>>3] |= (1 << (pos & 7))
2347}
2348
2349// func (x *bitset256) unset(pos byte) {
2350// 	x[pos>>3] &^= (1 << (pos & 7))
2351// }
2352
2353// type bit2set256 [64]byte
2354
2355// func (x *bit2set256) set(pos byte, v1, v2 bool) {
2356// 	var pos2 uint8 = (pos & 3) << 1 // returning 0, 2, 4 or 6
2357// 	if v1 {
2358// 		x[pos>>2] |= 1 << (pos2 + 1)
2359// 	}
2360// 	if v2 {
2361// 		x[pos>>2] |= 1 << pos2
2362// 	}
2363// }
2364// func (x *bit2set256) get(pos byte) uint8 {
2365// 	var pos2 uint8 = (pos & 3) << 1     // returning 0, 2, 4 or 6
2366// 	return x[pos>>2] << (6 - pos2) >> 6 // 11000000 -> 00000011
2367// }
2368
2369// ------------
2370
2371type pooler struct {
2372	// function-scoped pooled resources
2373	tiload                                      sync.Pool // for type info loading
2374	sfiRv8, sfiRv16, sfiRv32, sfiRv64, sfiRv128 sync.Pool // for struct encoding
2375
2376	// lifetime-scoped pooled resources
2377	// dn                                 sync.Pool // for decNaked
2378	buf1k, buf2k, buf4k, buf8k, buf16k, buf32k, buf64k sync.Pool // for [N]byte
2379}
2380
2381func (p *pooler) init() {
2382	p.tiload.New = func() interface{} { return new(typeInfoLoadArray) }
2383
2384	p.sfiRv8.New = func() interface{} { return new([8]sfiRv) }
2385	p.sfiRv16.New = func() interface{} { return new([16]sfiRv) }
2386	p.sfiRv32.New = func() interface{} { return new([32]sfiRv) }
2387	p.sfiRv64.New = func() interface{} { return new([64]sfiRv) }
2388	p.sfiRv128.New = func() interface{} { return new([128]sfiRv) }
2389
2390	// p.dn.New = func() interface{} { x := new(decNaked); x.init(); return x }
2391
2392	p.buf1k.New = func() interface{} { return new([1 * 1024]byte) }
2393	p.buf2k.New = func() interface{} { return new([2 * 1024]byte) }
2394	p.buf4k.New = func() interface{} { return new([4 * 1024]byte) }
2395	p.buf8k.New = func() interface{} { return new([8 * 1024]byte) }
2396	p.buf16k.New = func() interface{} { return new([16 * 1024]byte) }
2397	p.buf32k.New = func() interface{} { return new([32 * 1024]byte) }
2398	p.buf64k.New = func() interface{} { return new([64 * 1024]byte) }
2399
2400}
2401
2402// func (p *pooler) sfiRv8() (sp *sync.Pool, v interface{}) {
2403// 	return &p.strRv8, p.strRv8.Get()
2404// }
2405// func (p *pooler) sfiRv16() (sp *sync.Pool, v interface{}) {
2406// 	return &p.strRv16, p.strRv16.Get()
2407// }
2408// func (p *pooler) sfiRv32() (sp *sync.Pool, v interface{}) {
2409// 	return &p.strRv32, p.strRv32.Get()
2410// }
2411// func (p *pooler) sfiRv64() (sp *sync.Pool, v interface{}) {
2412// 	return &p.strRv64, p.strRv64.Get()
2413// }
2414// func (p *pooler) sfiRv128() (sp *sync.Pool, v interface{}) {
2415// 	return &p.strRv128, p.strRv128.Get()
2416// }
2417
2418// func (p *pooler) bytes1k() (sp *sync.Pool, v interface{}) {
2419// 	return &p.buf1k, p.buf1k.Get()
2420// }
2421// func (p *pooler) bytes2k() (sp *sync.Pool, v interface{}) {
2422// 	return &p.buf2k, p.buf2k.Get()
2423// }
2424// func (p *pooler) bytes4k() (sp *sync.Pool, v interface{}) {
2425// 	return &p.buf4k, p.buf4k.Get()
2426// }
2427// func (p *pooler) bytes8k() (sp *sync.Pool, v interface{}) {
2428// 	return &p.buf8k, p.buf8k.Get()
2429// }
2430// func (p *pooler) bytes16k() (sp *sync.Pool, v interface{}) {
2431// 	return &p.buf16k, p.buf16k.Get()
2432// }
2433// func (p *pooler) bytes32k() (sp *sync.Pool, v interface{}) {
2434// 	return &p.buf32k, p.buf32k.Get()
2435// }
2436// func (p *pooler) bytes64k() (sp *sync.Pool, v interface{}) {
2437// 	return &p.buf64k, p.buf64k.Get()
2438// }
2439
2440// func (p *pooler) tiLoad() (sp *sync.Pool, v interface{}) {
2441// 	return &p.tiload, p.tiload.Get()
2442// }
2443
2444// func (p *pooler) decNaked() (sp *sync.Pool, v interface{}) {
2445// 	return &p.dn, p.dn.Get()
2446// }
2447
2448// func (p *pooler) decNaked() (v *decNaked, f func(*decNaked) ) {
2449// 	sp := &(p.dn)
2450// 	vv := sp.Get()
2451// 	return vv.(*decNaked), func(x *decNaked) { sp.Put(vv) }
2452// }
2453// func (p *pooler) decNakedGet() (v interface{}) {
2454// 	return p.dn.Get()
2455// }
2456// func (p *pooler) tiLoadGet() (v interface{}) {
2457// 	return p.tiload.Get()
2458// }
2459// func (p *pooler) decNakedPut(v interface{}) {
2460// 	p.dn.Put(v)
2461// }
2462// func (p *pooler) tiLoadPut(v interface{}) {
2463// 	p.tiload.Put(v)
2464// }
2465
2466// ----------------------------------------------------
2467
2468type panicHdl struct{}
2469
2470func (panicHdl) errorv(err error) {
2471	if err != nil {
2472		panic(err)
2473	}
2474}
2475
2476func (panicHdl) errorstr(message string) {
2477	if message != "" {
2478		panic(message)
2479	}
2480}
2481
2482func (panicHdl) errorf(format string, params ...interface{}) {
2483	if format == "" {
2484	} else if len(params) == 0 {
2485		panic(format)
2486	} else {
2487		panic(fmt.Sprintf(format, params...))
2488	}
2489}
2490
2491// ----------------------------------------------------
2492
2493type errDecorator interface {
2494	wrapErr(in interface{}, out *error)
2495}
2496
2497type errDecoratorDef struct{}
2498
2499func (errDecoratorDef) wrapErr(v interface{}, e *error) { *e = fmt.Errorf("%v", v) }
2500
2501// ----------------------------------------------------
2502
2503type must struct{}
2504
2505func (must) String(s string, err error) string {
2506	if err != nil {
2507		panicv.errorv(err)
2508	}
2509	return s
2510}
2511func (must) Int(s int64, err error) int64 {
2512	if err != nil {
2513		panicv.errorv(err)
2514	}
2515	return s
2516}
2517func (must) Uint(s uint64, err error) uint64 {
2518	if err != nil {
2519		panicv.errorv(err)
2520	}
2521	return s
2522}
2523func (must) Float(s float64, err error) float64 {
2524	if err != nil {
2525		panicv.errorv(err)
2526	}
2527	return s
2528}
2529
2530// -------------------
2531
2532type bytesBufPooler struct {
2533	pool    *sync.Pool
2534	poolbuf interface{}
2535}
2536
2537func (z *bytesBufPooler) end() {
2538	if z.pool != nil {
2539		z.pool.Put(z.poolbuf)
2540		z.pool, z.poolbuf = nil, nil
2541	}
2542}
2543
2544func (z *bytesBufPooler) get(bufsize int) (buf []byte) {
2545	// ensure an end is called first (if necessary)
2546	if z.pool != nil {
2547		z.pool.Put(z.poolbuf)
2548		z.pool, z.poolbuf = nil, nil
2549	}
2550
2551	// // Try to use binary search.
2552	// // This is not optimal, as most folks select 1k or 2k buffers
2553	// // so a linear search is better (sequence of if/else blocks)
2554	// if bufsize < 1 {
2555	// 	bufsize = 0
2556	// } else {
2557	// 	bufsize--
2558	// 	bufsize /= 1024
2559	// }
2560	// switch bufsize {
2561	// case 0:
2562	// 	z.pool, z.poolbuf = pool.bytes1k()
2563	// 	buf = z.poolbuf.(*[1 * 1024]byte)[:]
2564	// case 1:
2565	// 	z.pool, z.poolbuf = pool.bytes2k()
2566	// 	buf = z.poolbuf.(*[2 * 1024]byte)[:]
2567	// case 2, 3:
2568	// 	z.pool, z.poolbuf = pool.bytes4k()
2569	// 	buf = z.poolbuf.(*[4 * 1024]byte)[:]
2570	// case 4, 5, 6, 7:
2571	// 	z.pool, z.poolbuf = pool.bytes8k()
2572	// 	buf = z.poolbuf.(*[8 * 1024]byte)[:]
2573	// case 8, 9, 10, 11, 12, 13, 14, 15:
2574	// 	z.pool, z.poolbuf = pool.bytes16k()
2575	// 	buf = z.poolbuf.(*[16 * 1024]byte)[:]
2576	// case 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31:
2577	// 	z.pool, z.poolbuf = pool.bytes32k()
2578	// 	buf = z.poolbuf.(*[32 * 1024]byte)[:]
2579	// default:
2580	// 	z.pool, z.poolbuf = pool.bytes64k()
2581	// 	buf = z.poolbuf.(*[64 * 1024]byte)[:]
2582	// }
2583	// return
2584
2585	if bufsize <= 1*1024 {
2586		z.pool, z.poolbuf = &pool.buf1k, pool.buf1k.Get() // pool.bytes1k()
2587		buf = z.poolbuf.(*[1 * 1024]byte)[:]
2588	} else if bufsize <= 2*1024 {
2589		z.pool, z.poolbuf = &pool.buf2k, pool.buf2k.Get() // pool.bytes2k()
2590		buf = z.poolbuf.(*[2 * 1024]byte)[:]
2591	} else if bufsize <= 4*1024 {
2592		z.pool, z.poolbuf = &pool.buf4k, pool.buf4k.Get() // pool.bytes4k()
2593		buf = z.poolbuf.(*[4 * 1024]byte)[:]
2594	} else if bufsize <= 8*1024 {
2595		z.pool, z.poolbuf = &pool.buf8k, pool.buf8k.Get() // pool.bytes8k()
2596		buf = z.poolbuf.(*[8 * 1024]byte)[:]
2597	} else if bufsize <= 16*1024 {
2598		z.pool, z.poolbuf = &pool.buf16k, pool.buf16k.Get() // pool.bytes16k()
2599		buf = z.poolbuf.(*[16 * 1024]byte)[:]
2600	} else if bufsize <= 32*1024 {
2601		z.pool, z.poolbuf = &pool.buf32k, pool.buf32k.Get() // pool.bytes32k()
2602		buf = z.poolbuf.(*[32 * 1024]byte)[:]
2603	} else {
2604		z.pool, z.poolbuf = &pool.buf64k, pool.buf64k.Get() // pool.bytes64k()
2605		buf = z.poolbuf.(*[64 * 1024]byte)[:]
2606	}
2607	return
2608}
2609
2610// ----------------
2611
2612type sfiRvPooler struct {
2613	pool  *sync.Pool
2614	poolv interface{}
2615}
2616
2617func (z *sfiRvPooler) end() {
2618	if z.pool != nil {
2619		z.pool.Put(z.poolv)
2620		z.pool, z.poolv = nil, nil
2621	}
2622}
2623
2624func (z *sfiRvPooler) get(newlen int) (fkvs []sfiRv) {
2625	if newlen < 0 { // bounds-check-elimination
2626		// cannot happen // here for bounds-check-elimination
2627	} else if newlen <= 8 {
2628		z.pool, z.poolv = &pool.sfiRv8, pool.sfiRv8.Get() // pool.sfiRv8()
2629		fkvs = z.poolv.(*[8]sfiRv)[:newlen]
2630	} else if newlen <= 16 {
2631		z.pool, z.poolv = &pool.sfiRv16, pool.sfiRv16.Get() // pool.sfiRv16()
2632		fkvs = z.poolv.(*[16]sfiRv)[:newlen]
2633	} else if newlen <= 32 {
2634		z.pool, z.poolv = &pool.sfiRv32, pool.sfiRv32.Get() // pool.sfiRv32()
2635		fkvs = z.poolv.(*[32]sfiRv)[:newlen]
2636	} else if newlen <= 64 {
2637		z.pool, z.poolv = &pool.sfiRv64, pool.sfiRv64.Get() // pool.sfiRv64()
2638		fkvs = z.poolv.(*[64]sfiRv)[:newlen]
2639	} else if newlen <= 128 {
2640		z.pool, z.poolv = &pool.sfiRv128, pool.sfiRv128.Get() // pool.sfiRv128()
2641		fkvs = z.poolv.(*[128]sfiRv)[:newlen]
2642	} else {
2643		fkvs = make([]sfiRv, newlen)
2644	}
2645	return
2646}
2647
2648// xdebugf prints the message in red on the terminal.
2649// Use it in place of fmt.Printf (which it calls internally)
2650func xdebugf(pattern string, args ...interface{}) {
2651	var delim string
2652	if len(pattern) > 0 && pattern[len(pattern)-1] != '\n' {
2653		delim = "\n"
2654	}
2655	fmt.Printf("\033[1;31m"+pattern+delim+"\033[0m", args...)
2656}
2657
2658// func isImmutableKind(k reflect.Kind) (v bool) {
2659// 	return false ||
2660// 		k == reflect.Int ||
2661// 		k == reflect.Int8 ||
2662// 		k == reflect.Int16 ||
2663// 		k == reflect.Int32 ||
2664// 		k == reflect.Int64 ||
2665// 		k == reflect.Uint ||
2666// 		k == reflect.Uint8 ||
2667// 		k == reflect.Uint16 ||
2668// 		k == reflect.Uint32 ||
2669// 		k == reflect.Uint64 ||
2670// 		k == reflect.Uintptr ||
2671// 		k == reflect.Float32 ||
2672// 		k == reflect.Float64 ||
2673// 		k == reflect.Bool ||
2674// 		k == reflect.String
2675// }
2676
2677// func timeLocUTCName(tzint int16) string {
2678// 	if tzint == 0 {
2679// 		return "UTC"
2680// 	}
2681// 	var tzname = []byte("UTC+00:00")
2682// 	//tzname := fmt.Sprintf("UTC%s%02d:%02d", tzsign, tz/60, tz%60) //perf issue using Sprintf. inline below.
2683// 	//tzhr, tzmin := tz/60, tz%60 //faster if u convert to int first
2684// 	var tzhr, tzmin int16
2685// 	if tzint < 0 {
2686// 		tzname[3] = '-' // (TODO: verify. this works here)
2687// 		tzhr, tzmin = -tzint/60, (-tzint)%60
2688// 	} else {
2689// 		tzhr, tzmin = tzint/60, tzint%60
2690// 	}
2691// 	tzname[4] = timeDigits[tzhr/10]
2692// 	tzname[5] = timeDigits[tzhr%10]
2693// 	tzname[7] = timeDigits[tzmin/10]
2694// 	tzname[8] = timeDigits[tzmin%10]
2695// 	return string(tzname)
2696// 	//return time.FixedZone(string(tzname), int(tzint)*60)
2697// }
2698