1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 /*
19 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
20 * file for a list of people on the GLib Team. See the ChangeLog
21 * files for a list of changes. These files are distributed with
22 * GLib at ftp://ftp.gtk.org/pub/gtk/.
23 */
24
25 /*
26 * MT safe
27 */
28
29 #include "config.h"
30 #include "glibconfig.h"
31
32 #define DEBUG_MSG(x) /* */
33 #ifdef G_ENABLE_DEBUG
34 /* #define DEBUG_MSG(args) g_message args ; */
35 #endif
36
37 #include <time.h>
38 #include <string.h>
39 #include <stdlib.h>
40 #include <locale.h>
41
42 #ifdef G_OS_WIN32
43 #include <windows.h>
44 #endif
45
46 #include "gdate.h"
47
48 #include "gconvert.h"
49 #include "gmem.h"
50 #include "gstrfuncs.h"
51 #include "gtestutils.h"
52 #include "gthread.h"
53 #include "gunicode.h"
54
55 #ifdef G_OS_WIN32
56 #include "garray.h"
57 #endif
58
59 /**
60 * SECTION:date
61 * @title: Date and Time Functions
62 * @short_description: calendrical calculations and miscellaneous time stuff
63 *
64 * The #GDate data structure represents a day between January 1, Year 1,
65 * and sometime a few thousand years in the future (right now it will go
66 * to the year 65535 or so, but g_date_set_parse() only parses up to the
67 * year 8000 or so - just count on "a few thousand"). #GDate is meant to
68 * represent everyday dates, not astronomical dates or historical dates
69 * or ISO timestamps or the like. It extrapolates the current Gregorian
70 * calendar forward and backward in time; there is no attempt to change
71 * the calendar to match time periods or locations. #GDate does not store
72 * time information; it represents a day.
73 *
74 * The #GDate implementation has several nice features; it is only a
75 * 64-bit struct, so storing large numbers of dates is very efficient. It
76 * can keep both a Julian and day-month-year representation of the date,
77 * since some calculations are much easier with one representation or the
78 * other. A Julian representation is simply a count of days since some
79 * fixed day in the past; for #GDate the fixed day is January 1, 1 AD.
80 * ("Julian" dates in the #GDate API aren't really Julian dates in the
81 * technical sense; technically, Julian dates count from the start of the
82 * Julian period, Jan 1, 4713 BC).
83 *
84 * #GDate is simple to use. First you need a "blank" date; you can get a
85 * dynamically allocated date from g_date_new(), or you can declare an
86 * automatic variable or array and initialize it by
87 * calling g_date_clear(). A cleared date is safe; it's safe to call
88 * g_date_set_dmy() and the other mutator functions to initialize the
89 * value of a cleared date. However, a cleared date is initially
90 * invalid, meaning that it doesn't represent a day that exists.
91 * It is undefined to call any of the date calculation routines on an
92 * invalid date. If you obtain a date from a user or other
93 * unpredictable source, you should check its validity with the
94 * g_date_valid() predicate. g_date_valid() is also used to check for
95 * errors with g_date_set_parse() and other functions that can
96 * fail. Dates can be invalidated by calling g_date_clear() again.
97 *
98 * It is very important to use the API to access the #GDate
99 * struct. Often only the day-month-year or only the Julian
100 * representation is valid. Sometimes neither is valid. Use the API.
101 *
102 * GLib also features #GDateTime which represents a precise time.
103 */
104
105 /**
106 * G_USEC_PER_SEC:
107 *
108 * Number of microseconds in one second (1 million).
109 * This macro is provided for code readability.
110 */
111
112 /**
113 * GTimeVal:
114 * @tv_sec: seconds
115 * @tv_usec: microseconds
116 *
117 * Represents a precise time, with seconds and microseconds.
118 *
119 * Similar to the struct timeval returned by the `gettimeofday()`
120 * UNIX system call.
121 *
122 * GLib is attempting to unify around the use of 64-bit integers to
123 * represent microsecond-precision time. As such, this type will be
124 * removed from a future version of GLib. A consequence of using `glong` for
125 * `tv_sec` is that on 32-bit systems `GTimeVal` is subject to the year 2038
126 * problem.
127 *
128 * Deprecated: 2.62: Use #GDateTime or #guint64 instead.
129 */
130
131 /**
132 * GDate:
133 * @julian_days: the Julian representation of the date
134 * @julian: this bit is set if @julian_days is valid
135 * @dmy: this is set if @day, @month and @year are valid
136 * @day: the day of the day-month-year representation of the date,
137 * as a number between 1 and 31
138 * @month: the day of the day-month-year representation of the date,
139 * as a number between 1 and 12
140 * @year: the day of the day-month-year representation of the date
141 *
142 * Represents a day between January 1, Year 1 and a few thousand years in
143 * the future. None of its members should be accessed directly.
144 *
145 * If the `GDate` is obtained from g_date_new(), it will be safe
146 * to mutate but invalid and thus not safe for calendrical computations.
147 *
148 * If it's declared on the stack, it will contain garbage so must be
149 * initialized with g_date_clear(). g_date_clear() makes the date invalid
150 * but safe. An invalid date doesn't represent a day, it's "empty." A date
151 * becomes valid after you set it to a Julian day or you set a day, month,
152 * and year.
153 */
154
155 /**
156 * GTime:
157 *
158 * Simply a replacement for `time_t`. It has been deprecated
159 * since it is not equivalent to `time_t` on 64-bit platforms
160 * with a 64-bit `time_t`.
161 *
162 * Unrelated to #GTimer.
163 *
164 * Note that #GTime is defined to always be a 32-bit integer,
165 * unlike `time_t` which may be 64-bit on some systems. Therefore,
166 * #GTime will overflow in the year 2038, and you cannot use the
167 * address of a #GTime variable as argument to the UNIX time()
168 * function.
169 *
170 * Instead, do the following:
171 *
172 * |[<!-- language="C" -->
173 * time_t ttime;
174 * GTime gtime;
175 *
176 * time (&ttime);
177 * gtime = (GTime)ttime;
178 * ]|
179 *
180 * Deprecated: 2.62: This is not [Y2038-safe](https://en.wikipedia.org/wiki/Year_2038_problem).
181 * Use #GDateTime or #time_t instead.
182 */
183
184 /**
185 * GDateDMY:
186 * @G_DATE_DAY: a day
187 * @G_DATE_MONTH: a month
188 * @G_DATE_YEAR: a year
189 *
190 * This enumeration isn't used in the API, but may be useful if you need
191 * to mark a number as a day, month, or year.
192 */
193
194 /**
195 * GDateDay:
196 *
197 * Integer representing a day of the month; between 1 and 31.
198 *
199 * The %G_DATE_BAD_DAY value represents an invalid day of the month.
200 */
201
202 /**
203 * GDateMonth:
204 * @G_DATE_BAD_MONTH: invalid value
205 * @G_DATE_JANUARY: January
206 * @G_DATE_FEBRUARY: February
207 * @G_DATE_MARCH: March
208 * @G_DATE_APRIL: April
209 * @G_DATE_MAY: May
210 * @G_DATE_JUNE: June
211 * @G_DATE_JULY: July
212 * @G_DATE_AUGUST: August
213 * @G_DATE_SEPTEMBER: September
214 * @G_DATE_OCTOBER: October
215 * @G_DATE_NOVEMBER: November
216 * @G_DATE_DECEMBER: December
217 *
218 * Enumeration representing a month; values are %G_DATE_JANUARY,
219 * %G_DATE_FEBRUARY, etc. %G_DATE_BAD_MONTH is the invalid value.
220 */
221
222 /**
223 * GDateYear:
224 *
225 * Integer type representing a year.
226 *
227 * The %G_DATE_BAD_YEAR value is the invalid value. The year
228 * must be 1 or higher; negative ([BCE](https://en.wikipedia.org/wiki/Common_Era))
229 * years are not allowed.
230 *
231 * The year is represented with four digits.
232 */
233
234 /**
235 * GDateWeekday:
236 * @G_DATE_BAD_WEEKDAY: invalid value
237 * @G_DATE_MONDAY: Monday
238 * @G_DATE_TUESDAY: Tuesday
239 * @G_DATE_WEDNESDAY: Wednesday
240 * @G_DATE_THURSDAY: Thursday
241 * @G_DATE_FRIDAY: Friday
242 * @G_DATE_SATURDAY: Saturday
243 * @G_DATE_SUNDAY: Sunday
244 *
245 * Enumeration representing a day of the week; #G_DATE_MONDAY,
246 * #G_DATE_TUESDAY, etc. #G_DATE_BAD_WEEKDAY is an invalid weekday.
247 */
248
249 /**
250 * G_DATE_BAD_DAY:
251 *
252 * Represents an invalid #GDateDay.
253 */
254
255 /**
256 * G_DATE_BAD_JULIAN:
257 *
258 * Represents an invalid Julian day number.
259 */
260
261 /**
262 * G_DATE_BAD_YEAR:
263 *
264 * Represents an invalid year.
265 */
266
267 /**
268 * g_date_new:
269 *
270 * Allocates a #GDate and initializes
271 * it to a safe state. The new date will
272 * be cleared (as if you'd called g_date_clear()) but invalid (it won't
273 * represent an existing day). Free the return value with g_date_free().
274 *
275 * Returns: a newly-allocated #GDate
276 */
277 GDate*
g_date_new(void)278 g_date_new (void)
279 {
280 GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */
281
282 return d;
283 }
284
285 /**
286 * g_date_new_dmy:
287 * @day: day of the month
288 * @month: month of the year
289 * @year: year
290 *
291 * Like g_date_new(), but also sets the value of the date. Assuming the
292 * day-month-year triplet you pass in represents an existing day, the
293 * returned date will be valid.
294 *
295 * Returns: a newly-allocated #GDate initialized with @day, @month, and @year
296 */
297 GDate*
g_date_new_dmy(GDateDay day,GDateMonth m,GDateYear y)298 g_date_new_dmy (GDateDay day,
299 GDateMonth m,
300 GDateYear y)
301 {
302 GDate *d;
303 g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL);
304
305 d = g_new (GDate, 1);
306
307 d->julian = FALSE;
308 d->dmy = TRUE;
309
310 d->month = m;
311 d->day = day;
312 d->year = y;
313
314 g_assert (g_date_valid (d));
315
316 return d;
317 }
318
319 /**
320 * g_date_new_julian:
321 * @julian_day: days since January 1, Year 1
322 *
323 * Like g_date_new(), but also sets the value of the date. Assuming the
324 * Julian day number you pass in is valid (greater than 0, less than an
325 * unreasonably large number), the returned date will be valid.
326 *
327 * Returns: a newly-allocated #GDate initialized with @julian_day
328 */
329 GDate*
g_date_new_julian(guint32 julian_day)330 g_date_new_julian (guint32 julian_day)
331 {
332 GDate *d;
333 g_return_val_if_fail (g_date_valid_julian (julian_day), NULL);
334
335 d = g_new (GDate, 1);
336
337 d->julian = TRUE;
338 d->dmy = FALSE;
339
340 d->julian_days = julian_day;
341
342 g_assert (g_date_valid (d));
343
344 return d;
345 }
346
347 /**
348 * g_date_free:
349 * @date: a #GDate to free
350 *
351 * Frees a #GDate returned from g_date_new().
352 */
353 void
g_date_free(GDate * date)354 g_date_free (GDate *date)
355 {
356 g_return_if_fail (date != NULL);
357
358 g_free (date);
359 }
360
361 /**
362 * g_date_copy:
363 * @date: a #GDate to copy
364 *
365 * Copies a GDate to a newly-allocated GDate. If the input was invalid
366 * (as determined by g_date_valid()), the invalid state will be copied
367 * as is into the new object.
368 *
369 * Returns: (transfer full): a newly-allocated #GDate initialized from @date
370 *
371 * Since: 2.56
372 */
373 GDate *
g_date_copy(const GDate * date)374 g_date_copy (const GDate *date)
375 {
376 GDate *res;
377 g_return_val_if_fail (date != NULL, NULL);
378
379 if (g_date_valid (date))
380 res = g_date_new_julian (g_date_get_julian (date));
381 else
382 {
383 res = g_date_new ();
384 *res = *date;
385 }
386
387 return res;
388 }
389
390 /**
391 * g_date_valid:
392 * @date: a #GDate to check
393 *
394 * Returns %TRUE if the #GDate represents an existing day. The date must not
395 * contain garbage; it should have been initialized with g_date_clear()
396 * if it wasn't allocated by one of the g_date_new() variants.
397 *
398 * Returns: Whether the date is valid
399 */
400 gboolean
g_date_valid(const GDate * d)401 g_date_valid (const GDate *d)
402 {
403 g_return_val_if_fail (d != NULL, FALSE);
404
405 return (d->julian || d->dmy);
406 }
407
408 static const guint8 days_in_months[2][13] =
409 { /* error, jan feb mar apr may jun jul aug sep oct nov dec */
410 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
411 { 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */
412 };
413
414 static const guint16 days_in_year[2][14] =
415 { /* 0, jan feb mar apr may jun jul aug sep oct nov dec */
416 { 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
417 { 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
418 };
419
420 /**
421 * g_date_valid_month:
422 * @month: month
423 *
424 * Returns %TRUE if the month value is valid. The 12 #GDateMonth
425 * enumeration values are the only valid months.
426 *
427 * Returns: %TRUE if the month is valid
428 */
429 gboolean
g_date_valid_month(GDateMonth m)430 g_date_valid_month (GDateMonth m)
431 {
432 return (((gint) m > G_DATE_BAD_MONTH) && ((gint) m < 13));
433 }
434
435 /**
436 * g_date_valid_year:
437 * @year: year
438 *
439 * Returns %TRUE if the year is valid. Any year greater than 0 is valid,
440 * though there is a 16-bit limit to what #GDate will understand.
441 *
442 * Returns: %TRUE if the year is valid
443 */
444 gboolean
g_date_valid_year(GDateYear y)445 g_date_valid_year (GDateYear y)
446 {
447 return ( y > G_DATE_BAD_YEAR );
448 }
449
450 /**
451 * g_date_valid_day:
452 * @day: day to check
453 *
454 * Returns %TRUE if the day of the month is valid (a day is valid if it's
455 * between 1 and 31 inclusive).
456 *
457 * Returns: %TRUE if the day is valid
458 */
459
460 gboolean
g_date_valid_day(GDateDay d)461 g_date_valid_day (GDateDay d)
462 {
463 return ( (d > G_DATE_BAD_DAY) && (d < 32) );
464 }
465
466 /**
467 * g_date_valid_weekday:
468 * @weekday: weekday
469 *
470 * Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration
471 * values are the only valid weekdays.
472 *
473 * Returns: %TRUE if the weekday is valid
474 */
475 gboolean
g_date_valid_weekday(GDateWeekday w)476 g_date_valid_weekday (GDateWeekday w)
477 {
478 return (((gint) w > G_DATE_BAD_WEEKDAY) && ((gint) w < 8));
479 }
480
481 /**
482 * g_date_valid_julian:
483 * @julian_date: Julian day to check
484 *
485 * Returns %TRUE if the Julian day is valid. Anything greater than zero
486 * is basically a valid Julian, though there is a 32-bit limit.
487 *
488 * Returns: %TRUE if the Julian day is valid
489 */
490 gboolean
g_date_valid_julian(guint32 j)491 g_date_valid_julian (guint32 j)
492 {
493 return (j > G_DATE_BAD_JULIAN);
494 }
495
496 /**
497 * g_date_valid_dmy:
498 * @day: day
499 * @month: month
500 * @year: year
501 *
502 * Returns %TRUE if the day-month-year triplet forms a valid, existing day
503 * in the range of days #GDate understands (Year 1 or later, no more than
504 * a few thousand years in the future).
505 *
506 * Returns: %TRUE if the date is a valid one
507 */
508 gboolean
g_date_valid_dmy(GDateDay d,GDateMonth m,GDateYear y)509 g_date_valid_dmy (GDateDay d,
510 GDateMonth m,
511 GDateYear y)
512 {
513 /* No need to check the upper bound of @y, because #GDateYear is 16 bits wide,
514 * just like #GDate.year. */
515 return ( (m > G_DATE_BAD_MONTH) &&
516 (m < 13) &&
517 (d > G_DATE_BAD_DAY) &&
518 (y > G_DATE_BAD_YEAR) && /* must check before using g_date_is_leap_year */
519 (d <= (g_date_is_leap_year (y) ?
520 days_in_months[1][m] : days_in_months[0][m])) );
521 }
522
523
524 /* "Julian days" just means an absolute number of days, where Day 1 ==
525 * Jan 1, Year 1
526 */
527 static void
g_date_update_julian(const GDate * const_d)528 g_date_update_julian (const GDate *const_d)
529 {
530 GDate *d = (GDate *) const_d;
531 GDateYear year;
532 gint idx;
533
534 g_return_if_fail (d != NULL);
535 g_return_if_fail (d->dmy != 0);
536 g_return_if_fail (!d->julian);
537 g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year));
538
539 /* What we actually do is: multiply years * 365 days in the year,
540 * add the number of years divided by 4, subtract the number of
541 * years divided by 100 and add the number of years divided by 400,
542 * which accounts for leap year stuff. Code from Steffen Beyer's
543 * DateCalc.
544 */
545
546 year = d->year - 1; /* we know d->year > 0 since it's valid */
547
548 d->julian_days = year * 365U;
549 d->julian_days += (year >>= 2); /* divide by 4 and add */
550 d->julian_days -= (year /= 25); /* divides original # years by 100 */
551 d->julian_days += year >> 2; /* divides by 4, which divides original by 400 */
552
553 idx = g_date_is_leap_year (d->year) ? 1 : 0;
554
555 d->julian_days += days_in_year[idx][d->month] + d->day;
556
557 g_return_if_fail (g_date_valid_julian (d->julian_days));
558
559 d->julian = TRUE;
560 }
561
562 static void
g_date_update_dmy(const GDate * const_d)563 g_date_update_dmy (const GDate *const_d)
564 {
565 GDate *d = (GDate *) const_d;
566 GDateYear y;
567 GDateMonth m;
568 GDateDay day;
569
570 guint32 A, B, C, D, E, M;
571
572 g_return_if_fail (d != NULL);
573 g_return_if_fail (d->julian);
574 g_return_if_fail (!d->dmy);
575 g_return_if_fail (g_date_valid_julian (d->julian_days));
576
577 /* Formula taken from the Calendar FAQ; the formula was for the
578 * Julian Period which starts on 1 January 4713 BC, so we add
579 * 1,721,425 to the number of days before doing the formula.
580 *
581 * I'm sure this can be simplified for our 1 January 1 AD period
582 * start, but I can't figure out how to unpack the formula.
583 */
584
585 A = d->julian_days + 1721425 + 32045;
586 B = ( 4 *(A + 36524) )/ 146097 - 1;
587 C = A - (146097 * B)/4;
588 D = ( 4 * (C + 365) ) / 1461 - 1;
589 E = C - ((1461*D) / 4);
590 M = (5 * (E - 1) + 2)/153;
591
592 m = M + 3 - (12*(M/10));
593 day = E - (153*M + 2)/5;
594 y = 100 * B + D - 4800 + (M/10);
595
596 #ifdef G_ENABLE_DEBUG
597 if (!g_date_valid_dmy (day, m, y))
598 g_warning ("OOPS julian: %u computed dmy: %u %u %u",
599 d->julian_days, day, m, y);
600 #endif
601
602 d->month = m;
603 d->day = day;
604 d->year = y;
605
606 d->dmy = TRUE;
607 }
608
609 /**
610 * g_date_get_weekday:
611 * @date: a #GDate
612 *
613 * Returns the day of the week for a #GDate. The date must be valid.
614 *
615 * Returns: day of the week as a #GDateWeekday.
616 */
617 GDateWeekday
g_date_get_weekday(const GDate * d)618 g_date_get_weekday (const GDate *d)
619 {
620 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY);
621
622 if (!d->julian)
623 g_date_update_julian (d);
624
625 g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY);
626
627 return ((d->julian_days - 1) % 7) + 1;
628 }
629
630 /**
631 * g_date_get_month:
632 * @date: a #GDate to get the month from
633 *
634 * Returns the month of the year. The date must be valid.
635 *
636 * Returns: month of the year as a #GDateMonth
637 */
638 GDateMonth
g_date_get_month(const GDate * d)639 g_date_get_month (const GDate *d)
640 {
641 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH);
642
643 if (!d->dmy)
644 g_date_update_dmy (d);
645
646 g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH);
647
648 return d->month;
649 }
650
651 /**
652 * g_date_get_year:
653 * @date: a #GDate
654 *
655 * Returns the year of a #GDate. The date must be valid.
656 *
657 * Returns: year in which the date falls
658 */
659 GDateYear
g_date_get_year(const GDate * d)660 g_date_get_year (const GDate *d)
661 {
662 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR);
663
664 if (!d->dmy)
665 g_date_update_dmy (d);
666
667 g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR);
668
669 return d->year;
670 }
671
672 /**
673 * g_date_get_day:
674 * @date: a #GDate to extract the day of the month from
675 *
676 * Returns the day of the month. The date must be valid.
677 *
678 * Returns: day of the month
679 */
680 GDateDay
g_date_get_day(const GDate * d)681 g_date_get_day (const GDate *d)
682 {
683 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY);
684
685 if (!d->dmy)
686 g_date_update_dmy (d);
687
688 g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY);
689
690 return d->day;
691 }
692
693 /**
694 * g_date_get_julian:
695 * @date: a #GDate to extract the Julian day from
696 *
697 * Returns the Julian day or "serial number" of the #GDate. The
698 * Julian day is simply the number of days since January 1, Year 1; i.e.,
699 * January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2,
700 * etc. The date must be valid.
701 *
702 * Returns: Julian day
703 */
704 guint32
g_date_get_julian(const GDate * d)705 g_date_get_julian (const GDate *d)
706 {
707 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN);
708
709 if (!d->julian)
710 g_date_update_julian (d);
711
712 g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN);
713
714 return d->julian_days;
715 }
716
717 /**
718 * g_date_get_day_of_year:
719 * @date: a #GDate to extract day of year from
720 *
721 * Returns the day of the year, where Jan 1 is the first day of the
722 * year. The date must be valid.
723 *
724 * Returns: day of the year
725 */
726 guint
g_date_get_day_of_year(const GDate * d)727 g_date_get_day_of_year (const GDate *d)
728 {
729 gint idx;
730
731 g_return_val_if_fail (g_date_valid (d), 0);
732
733 if (!d->dmy)
734 g_date_update_dmy (d);
735
736 g_return_val_if_fail (d->dmy, 0);
737
738 idx = g_date_is_leap_year (d->year) ? 1 : 0;
739
740 return (days_in_year[idx][d->month] + d->day);
741 }
742
743 /**
744 * g_date_get_monday_week_of_year:
745 * @date: a #GDate
746 *
747 * Returns the week of the year, where weeks are understood to start on
748 * Monday. If the date is before the first Monday of the year, return 0.
749 * The date must be valid.
750 *
751 * Returns: week of the year
752 */
753 guint
g_date_get_monday_week_of_year(const GDate * d)754 g_date_get_monday_week_of_year (const GDate *d)
755 {
756 GDateWeekday wd;
757 guint day;
758 GDate first;
759
760 g_return_val_if_fail (g_date_valid (d), 0);
761
762 if (!d->dmy)
763 g_date_update_dmy (d);
764
765 g_return_val_if_fail (d->dmy, 0);
766
767 g_date_clear (&first, 1);
768
769 g_date_set_dmy (&first, 1, 1, d->year);
770
771 wd = g_date_get_weekday (&first) - 1; /* make Monday day 0 */
772 day = g_date_get_day_of_year (d) - 1;
773
774 return ((day + wd)/7U + (wd == 0 ? 1 : 0));
775 }
776
777 /**
778 * g_date_get_sunday_week_of_year:
779 * @date: a #GDate
780 *
781 * Returns the week of the year during which this date falls, if
782 * weeks are understood to begin on Sunday. The date must be valid.
783 * Can return 0 if the day is before the first Sunday of the year.
784 *
785 * Returns: week number
786 */
787 guint
g_date_get_sunday_week_of_year(const GDate * d)788 g_date_get_sunday_week_of_year (const GDate *d)
789 {
790 GDateWeekday wd;
791 guint day;
792 GDate first;
793
794 g_return_val_if_fail (g_date_valid (d), 0);
795
796 if (!d->dmy)
797 g_date_update_dmy (d);
798
799 g_return_val_if_fail (d->dmy, 0);
800
801 g_date_clear (&first, 1);
802
803 g_date_set_dmy (&first, 1, 1, d->year);
804
805 wd = g_date_get_weekday (&first);
806 if (wd == 7) wd = 0; /* make Sunday day 0 */
807 day = g_date_get_day_of_year (d) - 1;
808
809 return ((day + wd)/7U + (wd == 0 ? 1 : 0));
810 }
811
812 /**
813 * g_date_get_iso8601_week_of_year:
814 * @date: a valid #GDate
815 *
816 * Returns the week of the year, where weeks are interpreted according
817 * to ISO 8601.
818 *
819 * Returns: ISO 8601 week number of the year.
820 *
821 * Since: 2.6
822 **/
823 guint
g_date_get_iso8601_week_of_year(const GDate * d)824 g_date_get_iso8601_week_of_year (const GDate *d)
825 {
826 guint j, d4, L, d1, w;
827
828 g_return_val_if_fail (g_date_valid (d), 0);
829
830 if (!d->julian)
831 g_date_update_julian (d);
832
833 g_return_val_if_fail (d->julian, 0);
834
835 /* Formula taken from the Calendar FAQ; the formula was for the
836 * Julian Period which starts on 1 January 4713 BC, so we add
837 * 1,721,425 to the number of days before doing the formula.
838 */
839 j = d->julian_days + 1721425;
840 d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461;
841 L = d4 / 1460;
842 d1 = ((d4 - L) % 365) + L;
843 w = d1 / 7 + 1;
844
845 return w;
846 }
847
848 /**
849 * g_date_days_between:
850 * @date1: the first date
851 * @date2: the second date
852 *
853 * Computes the number of days between two dates.
854 * If @date2 is prior to @date1, the returned value is negative.
855 * Both dates must be valid.
856 *
857 * Returns: the number of days between @date1 and @date2
858 */
859 gint
g_date_days_between(const GDate * d1,const GDate * d2)860 g_date_days_between (const GDate *d1,
861 const GDate *d2)
862 {
863 g_return_val_if_fail (g_date_valid (d1), 0);
864 g_return_val_if_fail (g_date_valid (d2), 0);
865
866 return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1);
867 }
868
869 /**
870 * g_date_clear:
871 * @date: pointer to one or more dates to clear
872 * @n_dates: number of dates to clear
873 *
874 * Initializes one or more #GDate structs to a safe but invalid
875 * state. The cleared dates will not represent an existing date, but will
876 * not contain garbage. Useful to init a date declared on the stack.
877 * Validity can be tested with g_date_valid().
878 */
879 void
g_date_clear(GDate * d,guint ndates)880 g_date_clear (GDate *d, guint ndates)
881 {
882 g_return_if_fail (d != NULL);
883 g_return_if_fail (ndates != 0);
884
885 memset (d, 0x0, ndates*sizeof (GDate));
886 }
887
888 G_LOCK_DEFINE_STATIC (g_date_global);
889
890 /* These are for the parser, output to the user should use *
891 * g_date_strftime () - this creates more never-freed memory to annoy
892 * all those memory debugger users. :-)
893 */
894
895 static gchar *long_month_names[13] =
896 {
897 NULL,
898 };
899
900 static gchar *long_month_names_alternative[13] =
901 {
902 NULL,
903 };
904
905 static gchar *short_month_names[13] =
906 {
907 NULL,
908 };
909
910 static gchar *short_month_names_alternative[13] =
911 {
912 NULL,
913 };
914
915 /* This tells us if we need to update the parse info */
916 static gchar *current_locale = NULL;
917
918 /* order of these in the current locale */
919 static GDateDMY dmy_order[3] =
920 {
921 G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR
922 };
923
924 /* Where to chop two-digit years: i.e., for the 1930 default, numbers
925 * 29 and below are counted as in the year 2000, numbers 30 and above
926 * are counted as in the year 1900.
927 */
928
929 static const GDateYear twodigit_start_year = 1930;
930
931 /* It is impossible to enter a year between 1 AD and 99 AD with this
932 * in effect.
933 */
934 static gboolean using_twodigit_years = FALSE;
935
936 /* Adjustment of locale era to AD, non-zero means using locale era
937 */
938 static gint locale_era_adjust = 0;
939
940 struct _GDateParseTokens {
941 gint num_ints;
942 gint n[3];
943 guint month;
944 };
945
946 typedef struct _GDateParseTokens GDateParseTokens;
947
948 static inline gboolean
update_month_match(gsize * longest,const gchar * haystack,const gchar * needle)949 update_month_match (gsize *longest,
950 const gchar *haystack,
951 const gchar *needle)
952 {
953 gsize length;
954
955 if (needle == NULL)
956 return FALSE;
957
958 length = strlen (needle);
959 if (*longest >= length)
960 return FALSE;
961
962 if (strstr (haystack, needle) == NULL)
963 return FALSE;
964
965 *longest = length;
966 return TRUE;
967 }
968
969 #define NUM_LEN 10
970
971 /* HOLDS: g_date_global_lock */
972 static void
g_date_fill_parse_tokens(const gchar * str,GDateParseTokens * pt)973 g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt)
974 {
975 gchar num[4][NUM_LEN+1];
976 gint i;
977 const guchar *s;
978
979 /* We count 4, but store 3; so we can give an error
980 * if there are 4.
981 */
982 num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0';
983
984 s = (const guchar *) str;
985 pt->num_ints = 0;
986 while (*s && pt->num_ints < 4)
987 {
988
989 i = 0;
990 while (*s && g_ascii_isdigit (*s) && i < NUM_LEN)
991 {
992 num[pt->num_ints][i] = *s;
993 ++s;
994 ++i;
995 }
996
997 if (i > 0)
998 {
999 num[pt->num_ints][i] = '\0';
1000 ++(pt->num_ints);
1001 }
1002
1003 if (*s == '\0') break;
1004
1005 ++s;
1006 }
1007
1008 pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0;
1009 pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0;
1010 pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0;
1011
1012 pt->month = G_DATE_BAD_MONTH;
1013
1014 if (pt->num_ints < 3)
1015 {
1016 gsize longest = 0;
1017 gchar *casefold;
1018 gchar *normalized;
1019
1020 casefold = g_utf8_casefold (str, -1);
1021 normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1022 g_free (casefold);
1023
1024 for (i = 1; i < 13; ++i)
1025 {
1026 /* Here month names may be in a genitive case if the language
1027 * grammatical rules require it.
1028 * Examples of how January may look in some languages:
1029 * Catalan: "de gener", Croatian: "siječnja", Polish: "stycznia",
1030 * Upper Sorbian: "januara".
1031 * Note that most of the languages can't or don't use the the
1032 * genitive case here so they use nominative everywhere.
1033 * For example, English always uses "January".
1034 */
1035 if (update_month_match (&longest, normalized, long_month_names[i]))
1036 pt->month = i;
1037
1038 /* Here month names will be in a nominative case.
1039 * Examples of how January may look in some languages:
1040 * Catalan: "gener", Croatian: "Siječanj", Polish: "styczeń",
1041 * Upper Sorbian: "Januar".
1042 */
1043 if (update_month_match (&longest, normalized, long_month_names_alternative[i]))
1044 pt->month = i;
1045
1046 /* Differences between abbreviated nominative and abbreviated
1047 * genitive month names are visible in very few languages but
1048 * let's handle them.
1049 */
1050 if (update_month_match (&longest, normalized, short_month_names[i]))
1051 pt->month = i;
1052
1053 if (update_month_match (&longest, normalized, short_month_names_alternative[i]))
1054 pt->month = i;
1055 }
1056
1057 g_free (normalized);
1058 }
1059 }
1060
1061 /* HOLDS: g_date_global_lock */
1062 static void
g_date_prepare_to_parse(const gchar * str,GDateParseTokens * pt)1063 g_date_prepare_to_parse (const gchar *str,
1064 GDateParseTokens *pt)
1065 {
1066 const gchar *locale = setlocale (LC_TIME, NULL);
1067 gboolean recompute_localeinfo = FALSE;
1068 GDate d;
1069
1070 g_return_if_fail (locale != NULL); /* should not happen */
1071
1072 g_date_clear (&d, 1); /* clear for scratch use */
1073
1074 if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) )
1075 recompute_localeinfo = TRUE; /* Uh, there used to be a reason for the temporary */
1076
1077 if (recompute_localeinfo)
1078 {
1079 int i = 1;
1080 GDateParseTokens testpt;
1081 gchar buf[128];
1082
1083 g_free (current_locale); /* still works if current_locale == NULL */
1084
1085 current_locale = g_strdup (locale);
1086
1087 short_month_names[0] = "Error";
1088 long_month_names[0] = "Error";
1089
1090 while (i < 13)
1091 {
1092 gchar *casefold;
1093
1094 g_date_set_dmy (&d, 1, i, 1976);
1095
1096 g_return_if_fail (g_date_valid (&d));
1097
1098 g_date_strftime (buf, 127, "%b", &d);
1099
1100 casefold = g_utf8_casefold (buf, -1);
1101 g_free (short_month_names[i]);
1102 short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1103 g_free (casefold);
1104
1105 g_date_strftime (buf, 127, "%B", &d);
1106 casefold = g_utf8_casefold (buf, -1);
1107 g_free (long_month_names[i]);
1108 long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1109 g_free (casefold);
1110
1111 g_date_strftime (buf, 127, "%Ob", &d);
1112 casefold = g_utf8_casefold (buf, -1);
1113 g_free (short_month_names_alternative[i]);
1114 short_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1115 g_free (casefold);
1116
1117 g_date_strftime (buf, 127, "%OB", &d);
1118 casefold = g_utf8_casefold (buf, -1);
1119 g_free (long_month_names_alternative[i]);
1120 long_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1121 g_free (casefold);
1122
1123 ++i;
1124 }
1125
1126 /* Determine DMY order */
1127
1128 /* had to pick a random day - don't change this, some strftimes
1129 * are broken on some days, and this one is good so far. */
1130 g_date_set_dmy (&d, 4, 7, 1976);
1131
1132 g_date_strftime (buf, 127, "%x", &d);
1133
1134 g_date_fill_parse_tokens (buf, &testpt);
1135
1136 using_twodigit_years = FALSE;
1137 locale_era_adjust = 0;
1138 dmy_order[0] = G_DATE_DAY;
1139 dmy_order[1] = G_DATE_MONTH;
1140 dmy_order[2] = G_DATE_YEAR;
1141
1142 i = 0;
1143 while (i < testpt.num_ints)
1144 {
1145 switch (testpt.n[i])
1146 {
1147 case 7:
1148 dmy_order[i] = G_DATE_MONTH;
1149 break;
1150 case 4:
1151 dmy_order[i] = G_DATE_DAY;
1152 break;
1153 case 76:
1154 using_twodigit_years = TRUE;
1155 G_GNUC_FALLTHROUGH;
1156 case 1976:
1157 dmy_order[i] = G_DATE_YEAR;
1158 break;
1159 default:
1160 /* assume locale era */
1161 locale_era_adjust = 1976 - testpt.n[i];
1162 dmy_order[i] = G_DATE_YEAR;
1163 break;
1164 }
1165 ++i;
1166 }
1167
1168 #if defined(G_ENABLE_DEBUG) && 0
1169 DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules."));
1170 i = 1;
1171 while (i < 13)
1172 {
1173 DEBUG_MSG ((" %s %s", long_month_names[i], short_month_names[i]));
1174 ++i;
1175 }
1176 DEBUG_MSG (("Alternative month names:"));
1177 i = 1;
1178 while (i < 13)
1179 {
1180 DEBUG_MSG ((" %s %s", long_month_names_alternative[i], short_month_names_alternative[i]));
1181 ++i;
1182 }
1183 if (using_twodigit_years)
1184 {
1185 DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year));
1186 }
1187 {
1188 gchar *strings[3];
1189 i = 0;
1190 while (i < 3)
1191 {
1192 switch (dmy_order[i])
1193 {
1194 case G_DATE_MONTH:
1195 strings[i] = "Month";
1196 break;
1197 case G_DATE_YEAR:
1198 strings[i] = "Year";
1199 break;
1200 case G_DATE_DAY:
1201 strings[i] = "Day";
1202 break;
1203 default:
1204 strings[i] = NULL;
1205 break;
1206 }
1207 ++i;
1208 }
1209 DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2]));
1210 DEBUG_MSG (("**Sample date in this locale: '%s'", buf));
1211 }
1212 #endif
1213 }
1214
1215 g_date_fill_parse_tokens (str, pt);
1216 }
1217
1218 static guint
convert_twodigit_year(guint y)1219 convert_twodigit_year (guint y)
1220 {
1221 if (using_twodigit_years && y < 100)
1222 {
1223 guint two = twodigit_start_year % 100;
1224 guint century = (twodigit_start_year / 100) * 100;
1225
1226 if (y < two)
1227 century += 100;
1228
1229 y += century;
1230 }
1231 return y;
1232 }
1233
1234 /**
1235 * g_date_set_parse:
1236 * @date: a #GDate to fill in
1237 * @str: string to parse
1238 *
1239 * Parses a user-inputted string @str, and try to figure out what date it
1240 * represents, taking the [current locale][setlocale] into account. If the
1241 * string is successfully parsed, the date will be valid after the call.
1242 * Otherwise, it will be invalid. You should check using g_date_valid()
1243 * to see whether the parsing succeeded.
1244 *
1245 * This function is not appropriate for file formats and the like; it
1246 * isn't very precise, and its exact behavior varies with the locale.
1247 * It's intended to be a heuristic routine that guesses what the user
1248 * means by a given string (and it does work pretty well in that
1249 * capacity).
1250 */
1251 void
g_date_set_parse(GDate * d,const gchar * str)1252 g_date_set_parse (GDate *d,
1253 const gchar *str)
1254 {
1255 GDateParseTokens pt;
1256 guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR;
1257 gsize str_len;
1258
1259 g_return_if_fail (d != NULL);
1260
1261 /* set invalid */
1262 g_date_clear (d, 1);
1263
1264 /* Anything longer than this is ridiculous and could take a while to normalize.
1265 * This limit is chosen arbitrarily. */
1266 str_len = strlen (str);
1267 if (str_len > 200)
1268 return;
1269
1270 /* The input has to be valid UTF-8. */
1271 if (!g_utf8_validate_len (str, str_len, NULL))
1272 return;
1273
1274 G_LOCK (g_date_global);
1275
1276 g_date_prepare_to_parse (str, &pt);
1277
1278 DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d",
1279 pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month));
1280
1281
1282 if (pt.num_ints == 4)
1283 {
1284 G_UNLOCK (g_date_global);
1285 return; /* presumably a typo; bail out. */
1286 }
1287
1288 if (pt.num_ints > 1)
1289 {
1290 int i = 0;
1291 int j = 0;
1292
1293 g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */
1294
1295 while (i < pt.num_ints && j < 3)
1296 {
1297 switch (dmy_order[j])
1298 {
1299 case G_DATE_MONTH:
1300 {
1301 if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH)
1302 {
1303 m = pt.month;
1304 ++j; /* skip months, but don't skip this number */
1305 continue;
1306 }
1307 else
1308 m = pt.n[i];
1309 }
1310 break;
1311 case G_DATE_DAY:
1312 {
1313 if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH)
1314 {
1315 day = 1;
1316 ++j; /* skip days, since we may have month/year */
1317 continue;
1318 }
1319 day = pt.n[i];
1320 }
1321 break;
1322 case G_DATE_YEAR:
1323 {
1324 y = pt.n[i];
1325
1326 if (locale_era_adjust != 0)
1327 {
1328 y += locale_era_adjust;
1329 }
1330
1331 y = convert_twodigit_year (y);
1332 }
1333 break;
1334 default:
1335 break;
1336 }
1337
1338 ++i;
1339 ++j;
1340 }
1341
1342
1343 if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y))
1344 {
1345 /* Try YYYY MM DD */
1346 y = pt.n[0];
1347 m = pt.n[1];
1348 day = pt.n[2];
1349
1350 if (using_twodigit_years && y < 100)
1351 y = G_DATE_BAD_YEAR; /* avoids ambiguity */
1352 }
1353 else if (pt.num_ints == 2)
1354 {
1355 if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH)
1356 m = pt.month;
1357 }
1358 }
1359 else if (pt.num_ints == 1)
1360 {
1361 if (pt.month != G_DATE_BAD_MONTH)
1362 {
1363 /* Month name and year? */
1364 m = pt.month;
1365 day = 1;
1366 y = pt.n[0];
1367 }
1368 else
1369 {
1370 /* Try yyyymmdd and yymmdd */
1371
1372 m = (pt.n[0]/100) % 100;
1373 day = pt.n[0] % 100;
1374 y = pt.n[0]/10000;
1375
1376 y = convert_twodigit_year (y);
1377 }
1378 }
1379
1380 /* See if we got anything valid out of all this. */
1381 /* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */
1382 if (y < 8000 && g_date_valid_dmy (day, m, y))
1383 {
1384 d->month = m;
1385 d->day = day;
1386 d->year = y;
1387 d->dmy = TRUE;
1388 }
1389 #ifdef G_ENABLE_DEBUG
1390 else
1391 {
1392 DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y));
1393 }
1394 #endif
1395 G_UNLOCK (g_date_global);
1396 }
1397
1398 /**
1399 * g_date_set_time_t:
1400 * @date: a #GDate
1401 * @timet: time_t value to set
1402 *
1403 * Sets the value of a date to the date corresponding to a time
1404 * specified as a time_t. The time to date conversion is done using
1405 * the user's current timezone.
1406 *
1407 * To set the value of a date to the current day, you could write:
1408 * |[<!-- language="C" -->
1409 * time_t now = time (NULL);
1410 * if (now == (time_t) -1)
1411 * // handle the error
1412 * g_date_set_time_t (date, now);
1413 * ]|
1414 *
1415 * Since: 2.10
1416 */
1417 void
g_date_set_time_t(GDate * date,time_t timet)1418 g_date_set_time_t (GDate *date,
1419 time_t timet)
1420 {
1421 struct tm tm;
1422
1423 g_return_if_fail (date != NULL);
1424
1425 #ifdef HAVE_LOCALTIME_R
1426 localtime_r (&timet, &tm);
1427 #else
1428 {
1429 struct tm *ptm = localtime (&timet);
1430
1431 if (ptm == NULL)
1432 {
1433 /* Happens at least in Microsoft's C library if you pass a
1434 * negative time_t. Use 2000-01-01 as default date.
1435 */
1436 #ifndef G_DISABLE_CHECKS
1437 g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "ptm != NULL");
1438 #endif
1439
1440 tm.tm_mon = 0;
1441 tm.tm_mday = 1;
1442 tm.tm_year = 100;
1443 }
1444 else
1445 memcpy ((void *) &tm, (void *) ptm, sizeof(struct tm));
1446 }
1447 #endif
1448
1449 date->julian = FALSE;
1450
1451 date->month = tm.tm_mon + 1;
1452 date->day = tm.tm_mday;
1453 date->year = tm.tm_year + 1900;
1454
1455 g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year));
1456
1457 date->dmy = TRUE;
1458 }
1459
1460
1461 /**
1462 * g_date_set_time:
1463 * @date: a #GDate.
1464 * @time_: #GTime value to set.
1465 *
1466 * Sets the value of a date from a #GTime value.
1467 * The time to date conversion is done using the user's current timezone.
1468 *
1469 * Deprecated: 2.10: Use g_date_set_time_t() instead.
1470 */
1471 G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1472 void
g_date_set_time(GDate * date,GTime time_)1473 g_date_set_time (GDate *date,
1474 GTime time_)
1475 {
1476 g_date_set_time_t (date, (time_t) time_);
1477 }
1478 G_GNUC_END_IGNORE_DEPRECATIONS
1479
1480 /**
1481 * g_date_set_time_val:
1482 * @date: a #GDate
1483 * @timeval: #GTimeVal value to set
1484 *
1485 * Sets the value of a date from a #GTimeVal value. Note that the
1486 * @tv_usec member is ignored, because #GDate can't make use of the
1487 * additional precision.
1488 *
1489 * The time to date conversion is done using the user's current timezone.
1490 *
1491 * Since: 2.10
1492 * Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use g_date_set_time_t()
1493 * instead.
1494 */
1495 G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1496 void
g_date_set_time_val(GDate * date,GTimeVal * timeval)1497 g_date_set_time_val (GDate *date,
1498 GTimeVal *timeval)
1499 {
1500 g_date_set_time_t (date, (time_t) timeval->tv_sec);
1501 }
1502 G_GNUC_END_IGNORE_DEPRECATIONS
1503
1504 /**
1505 * g_date_set_month:
1506 * @date: a #GDate
1507 * @month: month to set
1508 *
1509 * Sets the month of the year for a #GDate. If the resulting
1510 * day-month-year triplet is invalid, the date will be invalid.
1511 */
1512 void
g_date_set_month(GDate * d,GDateMonth m)1513 g_date_set_month (GDate *d,
1514 GDateMonth m)
1515 {
1516 g_return_if_fail (d != NULL);
1517 g_return_if_fail (g_date_valid_month (m));
1518
1519 if (d->julian && !d->dmy) g_date_update_dmy(d);
1520 d->julian = FALSE;
1521
1522 d->month = m;
1523
1524 if (g_date_valid_dmy (d->day, d->month, d->year))
1525 d->dmy = TRUE;
1526 else
1527 d->dmy = FALSE;
1528 }
1529
1530 /**
1531 * g_date_set_day:
1532 * @date: a #GDate
1533 * @day: day to set
1534 *
1535 * Sets the day of the month for a #GDate. If the resulting
1536 * day-month-year triplet is invalid, the date will be invalid.
1537 */
1538 void
g_date_set_day(GDate * d,GDateDay day)1539 g_date_set_day (GDate *d,
1540 GDateDay day)
1541 {
1542 g_return_if_fail (d != NULL);
1543 g_return_if_fail (g_date_valid_day (day));
1544
1545 if (d->julian && !d->dmy) g_date_update_dmy(d);
1546 d->julian = FALSE;
1547
1548 d->day = day;
1549
1550 if (g_date_valid_dmy (d->day, d->month, d->year))
1551 d->dmy = TRUE;
1552 else
1553 d->dmy = FALSE;
1554 }
1555
1556 /**
1557 * g_date_set_year:
1558 * @date: a #GDate
1559 * @year: year to set
1560 *
1561 * Sets the year for a #GDate. If the resulting day-month-year
1562 * triplet is invalid, the date will be invalid.
1563 */
1564 void
g_date_set_year(GDate * d,GDateYear y)1565 g_date_set_year (GDate *d,
1566 GDateYear y)
1567 {
1568 g_return_if_fail (d != NULL);
1569 g_return_if_fail (g_date_valid_year (y));
1570
1571 if (d->julian && !d->dmy) g_date_update_dmy(d);
1572 d->julian = FALSE;
1573
1574 d->year = y;
1575
1576 if (g_date_valid_dmy (d->day, d->month, d->year))
1577 d->dmy = TRUE;
1578 else
1579 d->dmy = FALSE;
1580 }
1581
1582 /**
1583 * g_date_set_dmy:
1584 * @date: a #GDate
1585 * @day: day
1586 * @month: month
1587 * @y: year
1588 *
1589 * Sets the value of a #GDate from a day, month, and year.
1590 * The day-month-year triplet must be valid; if you aren't
1591 * sure it is, call g_date_valid_dmy() to check before you
1592 * set it.
1593 */
1594 void
g_date_set_dmy(GDate * d,GDateDay day,GDateMonth m,GDateYear y)1595 g_date_set_dmy (GDate *d,
1596 GDateDay day,
1597 GDateMonth m,
1598 GDateYear y)
1599 {
1600 g_return_if_fail (d != NULL);
1601 g_return_if_fail (g_date_valid_dmy (day, m, y));
1602
1603 d->julian = FALSE;
1604
1605 d->month = m;
1606 d->day = day;
1607 d->year = y;
1608
1609 d->dmy = TRUE;
1610 }
1611
1612 /**
1613 * g_date_set_julian:
1614 * @date: a #GDate
1615 * @julian_date: Julian day number (days since January 1, Year 1)
1616 *
1617 * Sets the value of a #GDate from a Julian day number.
1618 */
1619 void
g_date_set_julian(GDate * d,guint32 j)1620 g_date_set_julian (GDate *d,
1621 guint32 j)
1622 {
1623 g_return_if_fail (d != NULL);
1624 g_return_if_fail (g_date_valid_julian (j));
1625
1626 d->julian_days = j;
1627 d->julian = TRUE;
1628 d->dmy = FALSE;
1629 }
1630
1631 /**
1632 * g_date_is_first_of_month:
1633 * @date: a #GDate to check
1634 *
1635 * Returns %TRUE if the date is on the first of a month.
1636 * The date must be valid.
1637 *
1638 * Returns: %TRUE if the date is the first of the month
1639 */
1640 gboolean
g_date_is_first_of_month(const GDate * d)1641 g_date_is_first_of_month (const GDate *d)
1642 {
1643 g_return_val_if_fail (g_date_valid (d), FALSE);
1644
1645 if (!d->dmy)
1646 g_date_update_dmy (d);
1647
1648 g_return_val_if_fail (d->dmy, FALSE);
1649
1650 if (d->day == 1) return TRUE;
1651 else return FALSE;
1652 }
1653
1654 /**
1655 * g_date_is_last_of_month:
1656 * @date: a #GDate to check
1657 *
1658 * Returns %TRUE if the date is the last day of the month.
1659 * The date must be valid.
1660 *
1661 * Returns: %TRUE if the date is the last day of the month
1662 */
1663 gboolean
g_date_is_last_of_month(const GDate * d)1664 g_date_is_last_of_month (const GDate *d)
1665 {
1666 gint idx;
1667
1668 g_return_val_if_fail (g_date_valid (d), FALSE);
1669
1670 if (!d->dmy)
1671 g_date_update_dmy (d);
1672
1673 g_return_val_if_fail (d->dmy, FALSE);
1674
1675 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1676
1677 if (d->day == days_in_months[idx][d->month]) return TRUE;
1678 else return FALSE;
1679 }
1680
1681 /**
1682 * g_date_add_days:
1683 * @date: a #GDate to increment
1684 * @n_days: number of days to move the date forward
1685 *
1686 * Increments a date some number of days.
1687 * To move forward by weeks, add weeks*7 days.
1688 * The date must be valid.
1689 */
1690 void
g_date_add_days(GDate * d,guint ndays)1691 g_date_add_days (GDate *d,
1692 guint ndays)
1693 {
1694 g_return_if_fail (g_date_valid (d));
1695
1696 if (!d->julian)
1697 g_date_update_julian (d);
1698
1699 g_return_if_fail (d->julian);
1700 g_return_if_fail (ndays <= G_MAXUINT32 - d->julian_days);
1701
1702 d->julian_days += ndays;
1703 d->dmy = FALSE;
1704 }
1705
1706 /**
1707 * g_date_subtract_days:
1708 * @date: a #GDate to decrement
1709 * @n_days: number of days to move
1710 *
1711 * Moves a date some number of days into the past.
1712 * To move by weeks, just move by weeks*7 days.
1713 * The date must be valid.
1714 */
1715 void
g_date_subtract_days(GDate * d,guint ndays)1716 g_date_subtract_days (GDate *d,
1717 guint ndays)
1718 {
1719 g_return_if_fail (g_date_valid (d));
1720
1721 if (!d->julian)
1722 g_date_update_julian (d);
1723
1724 g_return_if_fail (d->julian);
1725 g_return_if_fail (d->julian_days > ndays);
1726
1727 d->julian_days -= ndays;
1728 d->dmy = FALSE;
1729 }
1730
1731 /**
1732 * g_date_add_months:
1733 * @date: a #GDate to increment
1734 * @n_months: number of months to move forward
1735 *
1736 * Increments a date by some number of months.
1737 * If the day of the month is greater than 28,
1738 * this routine may change the day of the month
1739 * (because the destination month may not have
1740 * the current day in it). The date must be valid.
1741 */
1742 void
g_date_add_months(GDate * d,guint nmonths)1743 g_date_add_months (GDate *d,
1744 guint nmonths)
1745 {
1746 guint years, months;
1747 gint idx;
1748
1749 g_return_if_fail (g_date_valid (d));
1750
1751 if (!d->dmy)
1752 g_date_update_dmy (d);
1753
1754 g_return_if_fail (d->dmy != 0);
1755 g_return_if_fail (nmonths <= G_MAXUINT - (d->month - 1));
1756
1757 nmonths += d->month - 1;
1758
1759 years = nmonths/12;
1760 months = nmonths%12;
1761
1762 g_return_if_fail (years <= (guint) (G_MAXUINT16 - d->year));
1763
1764 d->month = months + 1;
1765 d->year += years;
1766
1767 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1768
1769 if (d->day > days_in_months[idx][d->month])
1770 d->day = days_in_months[idx][d->month];
1771
1772 d->julian = FALSE;
1773
1774 g_return_if_fail (g_date_valid (d));
1775 }
1776
1777 /**
1778 * g_date_subtract_months:
1779 * @date: a #GDate to decrement
1780 * @n_months: number of months to move
1781 *
1782 * Moves a date some number of months into the past.
1783 * If the current day of the month doesn't exist in
1784 * the destination month, the day of the month
1785 * may change. The date must be valid.
1786 */
1787 void
g_date_subtract_months(GDate * d,guint nmonths)1788 g_date_subtract_months (GDate *d,
1789 guint nmonths)
1790 {
1791 guint years, months;
1792 gint idx;
1793
1794 g_return_if_fail (g_date_valid (d));
1795
1796 if (!d->dmy)
1797 g_date_update_dmy (d);
1798
1799 g_return_if_fail (d->dmy != 0);
1800
1801 years = nmonths/12;
1802 months = nmonths%12;
1803
1804 g_return_if_fail (d->year > years);
1805
1806 d->year -= years;
1807
1808 if (d->month > months) d->month -= months;
1809 else
1810 {
1811 months -= d->month;
1812 d->month = 12 - months;
1813 d->year -= 1;
1814 }
1815
1816 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1817
1818 if (d->day > days_in_months[idx][d->month])
1819 d->day = days_in_months[idx][d->month];
1820
1821 d->julian = FALSE;
1822
1823 g_return_if_fail (g_date_valid (d));
1824 }
1825
1826 /**
1827 * g_date_add_years:
1828 * @date: a #GDate to increment
1829 * @n_years: number of years to move forward
1830 *
1831 * Increments a date by some number of years.
1832 * If the date is February 29, and the destination
1833 * year is not a leap year, the date will be changed
1834 * to February 28. The date must be valid.
1835 */
1836 void
g_date_add_years(GDate * d,guint nyears)1837 g_date_add_years (GDate *d,
1838 guint nyears)
1839 {
1840 g_return_if_fail (g_date_valid (d));
1841
1842 if (!d->dmy)
1843 g_date_update_dmy (d);
1844
1845 g_return_if_fail (d->dmy != 0);
1846 g_return_if_fail (nyears <= (guint) (G_MAXUINT16 - d->year));
1847
1848 d->year += nyears;
1849
1850 if (d->month == 2 && d->day == 29)
1851 {
1852 if (!g_date_is_leap_year (d->year))
1853 d->day = 28;
1854 }
1855
1856 d->julian = FALSE;
1857 }
1858
1859 /**
1860 * g_date_subtract_years:
1861 * @date: a #GDate to decrement
1862 * @n_years: number of years to move
1863 *
1864 * Moves a date some number of years into the past.
1865 * If the current day doesn't exist in the destination
1866 * year (i.e. it's February 29 and you move to a non-leap-year)
1867 * then the day is changed to February 29. The date
1868 * must be valid.
1869 */
1870 void
g_date_subtract_years(GDate * d,guint nyears)1871 g_date_subtract_years (GDate *d,
1872 guint nyears)
1873 {
1874 g_return_if_fail (g_date_valid (d));
1875
1876 if (!d->dmy)
1877 g_date_update_dmy (d);
1878
1879 g_return_if_fail (d->dmy != 0);
1880 g_return_if_fail (d->year > nyears);
1881
1882 d->year -= nyears;
1883
1884 if (d->month == 2 && d->day == 29)
1885 {
1886 if (!g_date_is_leap_year (d->year))
1887 d->day = 28;
1888 }
1889
1890 d->julian = FALSE;
1891 }
1892
1893 /**
1894 * g_date_is_leap_year:
1895 * @year: year to check
1896 *
1897 * Returns %TRUE if the year is a leap year.
1898 *
1899 * For the purposes of this function, leap year is every year
1900 * divisible by 4 unless that year is divisible by 100. If it
1901 * is divisible by 100 it would be a leap year only if that year
1902 * is also divisible by 400.
1903 *
1904 * Returns: %TRUE if the year is a leap year
1905 */
1906 gboolean
g_date_is_leap_year(GDateYear year)1907 g_date_is_leap_year (GDateYear year)
1908 {
1909 g_return_val_if_fail (g_date_valid_year (year), FALSE);
1910
1911 return ( (((year % 4) == 0) && ((year % 100) != 0)) ||
1912 (year % 400) == 0 );
1913 }
1914
1915 /**
1916 * g_date_get_days_in_month:
1917 * @month: month
1918 * @year: year
1919 *
1920 * Returns the number of days in a month, taking leap
1921 * years into account.
1922 *
1923 * Returns: number of days in @month during the @year
1924 */
1925 guint8
g_date_get_days_in_month(GDateMonth month,GDateYear year)1926 g_date_get_days_in_month (GDateMonth month,
1927 GDateYear year)
1928 {
1929 gint idx;
1930
1931 g_return_val_if_fail (g_date_valid_year (year), 0);
1932 g_return_val_if_fail (g_date_valid_month (month), 0);
1933
1934 idx = g_date_is_leap_year (year) ? 1 : 0;
1935
1936 return days_in_months[idx][month];
1937 }
1938
1939 /**
1940 * g_date_get_monday_weeks_in_year:
1941 * @year: a year
1942 *
1943 * Returns the number of weeks in the year, where weeks
1944 * are taken to start on Monday. Will be 52 or 53. The
1945 * date must be valid. (Years always have 52 7-day periods,
1946 * plus 1 or 2 extra days depending on whether it's a leap
1947 * year. This function is basically telling you how many
1948 * Mondays are in the year, i.e. there are 53 Mondays if
1949 * one of the extra days happens to be a Monday.)
1950 *
1951 * Returns: number of Mondays in the year
1952 */
1953 guint8
g_date_get_monday_weeks_in_year(GDateYear year)1954 g_date_get_monday_weeks_in_year (GDateYear year)
1955 {
1956 GDate d;
1957
1958 g_return_val_if_fail (g_date_valid_year (year), 0);
1959
1960 g_date_clear (&d, 1);
1961 g_date_set_dmy (&d, 1, 1, year);
1962 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1963 g_date_set_dmy (&d, 31, 12, year);
1964 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1965 if (g_date_is_leap_year (year))
1966 {
1967 g_date_set_dmy (&d, 2, 1, year);
1968 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1969 g_date_set_dmy (&d, 30, 12, year);
1970 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1971 }
1972 return 52;
1973 }
1974
1975 /**
1976 * g_date_get_sunday_weeks_in_year:
1977 * @year: year to count weeks in
1978 *
1979 * Returns the number of weeks in the year, where weeks
1980 * are taken to start on Sunday. Will be 52 or 53. The
1981 * date must be valid. (Years always have 52 7-day periods,
1982 * plus 1 or 2 extra days depending on whether it's a leap
1983 * year. This function is basically telling you how many
1984 * Sundays are in the year, i.e. there are 53 Sundays if
1985 * one of the extra days happens to be a Sunday.)
1986 *
1987 * Returns: the number of weeks in @year
1988 */
1989 guint8
g_date_get_sunday_weeks_in_year(GDateYear year)1990 g_date_get_sunday_weeks_in_year (GDateYear year)
1991 {
1992 GDate d;
1993
1994 g_return_val_if_fail (g_date_valid_year (year), 0);
1995
1996 g_date_clear (&d, 1);
1997 g_date_set_dmy (&d, 1, 1, year);
1998 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1999 g_date_set_dmy (&d, 31, 12, year);
2000 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
2001 if (g_date_is_leap_year (year))
2002 {
2003 g_date_set_dmy (&d, 2, 1, year);
2004 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
2005 g_date_set_dmy (&d, 30, 12, year);
2006 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
2007 }
2008 return 52;
2009 }
2010
2011 /**
2012 * g_date_compare:
2013 * @lhs: first date to compare
2014 * @rhs: second date to compare
2015 *
2016 * qsort()-style comparison function for dates.
2017 * Both dates must be valid.
2018 *
2019 * Returns: 0 for equal, less than zero if @lhs is less than @rhs,
2020 * greater than zero if @lhs is greater than @rhs
2021 */
2022 gint
g_date_compare(const GDate * lhs,const GDate * rhs)2023 g_date_compare (const GDate *lhs,
2024 const GDate *rhs)
2025 {
2026 g_return_val_if_fail (lhs != NULL, 0);
2027 g_return_val_if_fail (rhs != NULL, 0);
2028 g_return_val_if_fail (g_date_valid (lhs), 0);
2029 g_return_val_if_fail (g_date_valid (rhs), 0);
2030
2031 /* Remember the self-comparison case! I think it works right now. */
2032
2033 while (TRUE)
2034 {
2035 if (lhs->julian && rhs->julian)
2036 {
2037 if (lhs->julian_days < rhs->julian_days) return -1;
2038 else if (lhs->julian_days > rhs->julian_days) return 1;
2039 else return 0;
2040 }
2041 else if (lhs->dmy && rhs->dmy)
2042 {
2043 if (lhs->year < rhs->year) return -1;
2044 else if (lhs->year > rhs->year) return 1;
2045 else
2046 {
2047 if (lhs->month < rhs->month) return -1;
2048 else if (lhs->month > rhs->month) return 1;
2049 else
2050 {
2051 if (lhs->day < rhs->day) return -1;
2052 else if (lhs->day > rhs->day) return 1;
2053 else return 0;
2054 }
2055
2056 }
2057
2058 }
2059 else
2060 {
2061 if (!lhs->julian) g_date_update_julian (lhs);
2062 if (!rhs->julian) g_date_update_julian (rhs);
2063 g_return_val_if_fail (lhs->julian, 0);
2064 g_return_val_if_fail (rhs->julian, 0);
2065 }
2066
2067 }
2068 return 0; /* warnings */
2069 }
2070
2071 /**
2072 * g_date_to_struct_tm:
2073 * @date: a #GDate to set the struct tm from
2074 * @tm: (not nullable): struct tm to fill
2075 *
2076 * Fills in the date-related bits of a struct tm using the @date value.
2077 * Initializes the non-date parts with something safe but meaningless.
2078 */
2079 void
g_date_to_struct_tm(const GDate * d,struct tm * tm)2080 g_date_to_struct_tm (const GDate *d,
2081 struct tm *tm)
2082 {
2083 GDateWeekday day;
2084
2085 g_return_if_fail (g_date_valid (d));
2086 g_return_if_fail (tm != NULL);
2087
2088 if (!d->dmy)
2089 g_date_update_dmy (d);
2090
2091 g_return_if_fail (d->dmy != 0);
2092
2093 /* zero all the irrelevant fields to be sure they're valid */
2094
2095 /* On Linux and maybe other systems, there are weird non-POSIX
2096 * fields on the end of struct tm that choke strftime if they
2097 * contain garbage. So we need to 0 the entire struct, not just the
2098 * fields we know to exist.
2099 */
2100
2101 memset (tm, 0x0, sizeof (struct tm));
2102
2103 tm->tm_mday = d->day;
2104 tm->tm_mon = d->month - 1; /* 0-11 goes in tm */
2105 tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */
2106
2107 day = g_date_get_weekday (d);
2108 if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */
2109
2110 tm->tm_wday = (int)day;
2111
2112 tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */
2113 tm->tm_isdst = -1; /* -1 means "information not available" */
2114 }
2115
2116 /**
2117 * g_date_clamp:
2118 * @date: a #GDate to clamp
2119 * @min_date: minimum accepted value for @date
2120 * @max_date: maximum accepted value for @date
2121 *
2122 * If @date is prior to @min_date, sets @date equal to @min_date.
2123 * If @date falls after @max_date, sets @date equal to @max_date.
2124 * Otherwise, @date is unchanged.
2125 * Either of @min_date and @max_date may be %NULL.
2126 * All non-%NULL dates must be valid.
2127 */
2128 void
g_date_clamp(GDate * date,const GDate * min_date,const GDate * max_date)2129 g_date_clamp (GDate *date,
2130 const GDate *min_date,
2131 const GDate *max_date)
2132 {
2133 g_return_if_fail (g_date_valid (date));
2134
2135 if (min_date != NULL)
2136 g_return_if_fail (g_date_valid (min_date));
2137
2138 if (max_date != NULL)
2139 g_return_if_fail (g_date_valid (max_date));
2140
2141 if (min_date != NULL && max_date != NULL)
2142 g_return_if_fail (g_date_compare (min_date, max_date) <= 0);
2143
2144 if (min_date && g_date_compare (date, min_date) < 0)
2145 *date = *min_date;
2146
2147 if (max_date && g_date_compare (max_date, date) < 0)
2148 *date = *max_date;
2149 }
2150
2151 /**
2152 * g_date_order:
2153 * @date1: the first date
2154 * @date2: the second date
2155 *
2156 * Checks if @date1 is less than or equal to @date2,
2157 * and swap the values if this is not the case.
2158 */
2159 void
g_date_order(GDate * date1,GDate * date2)2160 g_date_order (GDate *date1,
2161 GDate *date2)
2162 {
2163 g_return_if_fail (g_date_valid (date1));
2164 g_return_if_fail (g_date_valid (date2));
2165
2166 if (g_date_compare (date1, date2) > 0)
2167 {
2168 GDate tmp = *date1;
2169 *date1 = *date2;
2170 *date2 = tmp;
2171 }
2172 }
2173
2174 #ifdef G_OS_WIN32
2175 static gboolean
append_month_name(GArray * result,LCID lcid,SYSTEMTIME * systemtime,gboolean abbreviated,gboolean alternative)2176 append_month_name (GArray *result,
2177 LCID lcid,
2178 SYSTEMTIME *systemtime,
2179 gboolean abbreviated,
2180 gboolean alternative)
2181 {
2182 int n;
2183 WORD base;
2184 LPCWSTR lpFormat;
2185
2186 if (alternative)
2187 {
2188 base = abbreviated ? LOCALE_SABBREVMONTHNAME1 : LOCALE_SMONTHNAME1;
2189 n = GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, NULL, 0);
2190 if (n == 0)
2191 return FALSE;
2192
2193 g_array_set_size (result, result->len + n);
2194 if (GetLocaleInfoW (lcid, base + systemtime->wMonth - 1,
2195 ((wchar_t *) result->data) + result->len - n, n) != n)
2196 return FALSE;
2197
2198 g_array_set_size (result, result->len - 1);
2199 }
2200 else
2201 {
2202 /* According to MSDN, this is the correct method to obtain
2203 * the form of the month name used when formatting a full
2204 * date; it must be a genitive case in some languages.
2205 *
2206 * (n == 0) indicates an error, whereas (n < 2) is something we’d never
2207 * expect from the given format string, and would break the subsequent code.
2208 */
2209 lpFormat = abbreviated ? L"ddMMM" : L"ddMMMM";
2210 n = GetDateFormatW (lcid, 0, systemtime, lpFormat, NULL, 0);
2211 if (n < 2)
2212 return FALSE;
2213
2214 g_array_set_size (result, result->len + n);
2215 if (GetDateFormatW (lcid, 0, systemtime, lpFormat,
2216 ((wchar_t *) result->data) + result->len - n, n) != n)
2217 return FALSE;
2218
2219 /* We have obtained a day number as two digits and the month name.
2220 * Now let's get rid of those two digits: overwrite them with the
2221 * month name.
2222 */
2223 memmove (((wchar_t *) result->data) + result->len - n,
2224 ((wchar_t *) result->data) + result->len - n + 2,
2225 (n - 2) * sizeof (wchar_t));
2226 g_array_set_size (result, result->len - 3);
2227 }
2228
2229 return TRUE;
2230 }
2231
2232 static gsize
win32_strftime_helper(const GDate * d,const gchar * format,const struct tm * tm,gchar * s,gsize slen)2233 win32_strftime_helper (const GDate *d,
2234 const gchar *format,
2235 const struct tm *tm,
2236 gchar *s,
2237 gsize slen)
2238 {
2239 SYSTEMTIME systemtime;
2240 TIME_ZONE_INFORMATION tzinfo;
2241 LCID lcid;
2242 int n, k;
2243 GArray *result;
2244 const gchar *p;
2245 gunichar c, modifier;
2246 const wchar_t digits[] = L"0123456789";
2247 gchar *convbuf;
2248 glong convlen = 0;
2249 gsize retval;
2250
2251 systemtime.wYear = tm->tm_year + 1900;
2252 systemtime.wMonth = tm->tm_mon + 1;
2253 systemtime.wDayOfWeek = tm->tm_wday;
2254 systemtime.wDay = tm->tm_mday;
2255 systemtime.wHour = tm->tm_hour;
2256 systemtime.wMinute = tm->tm_min;
2257 systemtime.wSecond = tm->tm_sec;
2258 systemtime.wMilliseconds = 0;
2259
2260 lcid = GetThreadLocale ();
2261 result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t), MAX (128, strlen (format) * 2));
2262
2263 p = format;
2264 while (*p)
2265 {
2266 c = g_utf8_get_char (p);
2267 if (c == '%')
2268 {
2269 p = g_utf8_next_char (p);
2270 if (!*p)
2271 {
2272 s[0] = '\0';
2273 g_array_free (result, TRUE);
2274
2275 return 0;
2276 }
2277
2278 modifier = '\0';
2279 c = g_utf8_get_char (p);
2280 if (c == 'E' || c == 'O')
2281 {
2282 /* "%OB", "%Ob", and "%Oh" are supported, ignore other modified
2283 * conversion specifiers for now.
2284 */
2285 modifier = c;
2286 p = g_utf8_next_char (p);
2287 if (!*p)
2288 {
2289 s[0] = '\0';
2290 g_array_free (result, TRUE);
2291
2292 return 0;
2293 }
2294
2295 c = g_utf8_get_char (p);
2296 }
2297
2298 switch (c)
2299 {
2300 case 'a':
2301 if (systemtime.wDayOfWeek == 0)
2302 k = 6;
2303 else
2304 k = systemtime.wDayOfWeek - 1;
2305 n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0);
2306 g_array_set_size (result, result->len + n);
2307 GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2308 g_array_set_size (result, result->len - 1);
2309 break;
2310 case 'A':
2311 if (systemtime.wDayOfWeek == 0)
2312 k = 6;
2313 else
2314 k = systemtime.wDayOfWeek - 1;
2315 n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0);
2316 g_array_set_size (result, result->len + n);
2317 GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2318 g_array_set_size (result, result->len - 1);
2319 break;
2320 case 'b':
2321 case 'h':
2322 if (!append_month_name (result, lcid, &systemtime, TRUE, modifier == 'O'))
2323 {
2324 /* Ignore the error; this placeholder will be replaced with nothing */
2325 }
2326 break;
2327 case 'B':
2328 if (!append_month_name (result, lcid, &systemtime, FALSE, modifier == 'O'))
2329 {
2330 /* Ignore the error; this placeholder will be replaced with nothing */
2331 }
2332 break;
2333 case 'c':
2334 n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2335 if (n > 0)
2336 {
2337 g_array_set_size (result, result->len + n);
2338 GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2339 g_array_set_size (result, result->len - 1);
2340 }
2341 g_array_append_vals (result, L" ", 1);
2342 n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2343 if (n > 0)
2344 {
2345 g_array_set_size (result, result->len + n);
2346 GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2347 g_array_set_size (result, result->len - 1);
2348 }
2349 break;
2350 case 'C':
2351 g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2352 g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1);
2353 break;
2354 case 'd':
2355 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2356 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2357 break;
2358 case 'D':
2359 g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2360 g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2361 g_array_append_vals (result, L"/", 1);
2362 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2363 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2364 g_array_append_vals (result, L"/", 1);
2365 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2366 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2367 break;
2368 case 'e':
2369 if (systemtime.wDay >= 10)
2370 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2371 else
2372 g_array_append_vals (result, L" ", 1);
2373 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2374 break;
2375
2376 /* A GDate has no time fields, so for now we can
2377 * hardcode all time conversions into zeros (or 12 for
2378 * %I). The alternative code snippets in the #else
2379 * branches are here ready to be taken into use when
2380 * needed by a g_strftime() or g_date_and_time_format()
2381 * or whatever.
2382 */
2383 case 'H':
2384 #if 1
2385 g_array_append_vals (result, L"00", 2);
2386 #else
2387 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2388 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2389 #endif
2390 break;
2391 case 'I':
2392 #if 1
2393 g_array_append_vals (result, L"12", 2);
2394 #else
2395 if (systemtime.wHour == 0)
2396 g_array_append_vals (result, L"12", 2);
2397 else
2398 {
2399 g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2400 g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2401 }
2402 #endif
2403 break;
2404 case 'j':
2405 g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1);
2406 g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1);
2407 g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1);
2408 break;
2409 case 'm':
2410 g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2411 g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2412 break;
2413 case 'M':
2414 #if 1
2415 g_array_append_vals (result, L"00", 2);
2416 #else
2417 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2418 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2419 #endif
2420 break;
2421 case 'n':
2422 g_array_append_vals (result, L"\n", 1);
2423 break;
2424 case 'p':
2425 n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2426 if (n > 0)
2427 {
2428 g_array_set_size (result, result->len + n);
2429 GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2430 g_array_set_size (result, result->len - 1);
2431 }
2432 break;
2433 case 'r':
2434 /* This is a rather odd format. Hard to say what to do.
2435 * Let's always use the POSIX %I:%M:%S %p
2436 */
2437 #if 1
2438 g_array_append_vals (result, L"12:00:00", 8);
2439 #else
2440 if (systemtime.wHour == 0)
2441 g_array_append_vals (result, L"12", 2);
2442 else
2443 {
2444 g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2445 g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2446 }
2447 g_array_append_vals (result, L":", 1);
2448 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2449 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2450 g_array_append_vals (result, L":", 1);
2451 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2452 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2453 g_array_append_vals (result, L" ", 1);
2454 #endif
2455 n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2456 if (n > 0)
2457 {
2458 g_array_set_size (result, result->len + n);
2459 GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2460 g_array_set_size (result, result->len - 1);
2461 }
2462 break;
2463 case 'R':
2464 #if 1
2465 g_array_append_vals (result, L"00:00", 5);
2466 #else
2467 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2468 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2469 g_array_append_vals (result, L":", 1);
2470 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2471 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2472 #endif
2473 break;
2474 case 'S':
2475 #if 1
2476 g_array_append_vals (result, L"00", 2);
2477 #else
2478 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2479 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2480 #endif
2481 break;
2482 case 't':
2483 g_array_append_vals (result, L"\t", 1);
2484 break;
2485 case 'T':
2486 #if 1
2487 g_array_append_vals (result, L"00:00:00", 8);
2488 #else
2489 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2490 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2491 g_array_append_vals (result, L":", 1);
2492 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2493 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2494 g_array_append_vals (result, L":", 1);
2495 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2496 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2497 #endif
2498 break;
2499 case 'u':
2500 if (systemtime.wDayOfWeek == 0)
2501 g_array_append_vals (result, L"7", 1);
2502 else
2503 g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2504 break;
2505 case 'U':
2506 n = g_date_get_sunday_week_of_year (d);
2507 g_array_append_vals (result, digits + n/10, 1);
2508 g_array_append_vals (result, digits + n%10, 1);
2509 break;
2510 case 'V':
2511 n = g_date_get_iso8601_week_of_year (d);
2512 g_array_append_vals (result, digits + n/10, 1);
2513 g_array_append_vals (result, digits + n%10, 1);
2514 break;
2515 case 'w':
2516 g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2517 break;
2518 case 'W':
2519 n = g_date_get_monday_week_of_year (d);
2520 g_array_append_vals (result, digits + n/10, 1);
2521 g_array_append_vals (result, digits + n%10, 1);
2522 break;
2523 case 'x':
2524 n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2525 if (n > 0)
2526 {
2527 g_array_set_size (result, result->len + n);
2528 GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2529 g_array_set_size (result, result->len - 1);
2530 }
2531 break;
2532 case 'X':
2533 n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2534 if (n > 0)
2535 {
2536 g_array_set_size (result, result->len + n);
2537 GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2538 g_array_set_size (result, result->len - 1);
2539 }
2540 break;
2541 case 'y':
2542 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2543 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2544 break;
2545 case 'Y':
2546 g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2547 g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1);
2548 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2549 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2550 break;
2551 case 'Z':
2552 n = GetTimeZoneInformation (&tzinfo);
2553 if (n == TIME_ZONE_ID_UNKNOWN)
2554 ;
2555 else if (n == TIME_ZONE_ID_STANDARD)
2556 g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName));
2557 else if (n == TIME_ZONE_ID_DAYLIGHT)
2558 g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName));
2559 break;
2560 case '%':
2561 g_array_append_vals (result, L"%", 1);
2562 break;
2563 }
2564 }
2565 else if (c <= 0xFFFF)
2566 {
2567 wchar_t wc = c;
2568 g_array_append_vals (result, &wc, 1);
2569 }
2570 else
2571 {
2572 glong nwc;
2573 wchar_t *ws;
2574
2575 ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL);
2576 g_array_append_vals (result, ws, nwc);
2577 g_free (ws);
2578 }
2579 p = g_utf8_next_char (p);
2580 }
2581
2582 convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL);
2583 g_array_free (result, TRUE);
2584
2585 if (!convbuf)
2586 {
2587 s[0] = '\0';
2588 return 0;
2589 }
2590
2591 if (slen <= convlen)
2592 {
2593 /* Ensure only whole characters are copied into the buffer. */
2594 gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2595 g_assert (end != NULL);
2596 convlen = end - convbuf;
2597
2598 /* Return 0 because the buffer isn't large enough. */
2599 retval = 0;
2600 }
2601 else
2602 retval = convlen;
2603
2604 memcpy (s, convbuf, convlen);
2605 s[convlen] = '\0';
2606 g_free (convbuf);
2607
2608 return retval;
2609 }
2610
2611 #endif
2612
2613 /**
2614 * g_date_strftime:
2615 * @s: destination buffer
2616 * @slen: buffer size
2617 * @format: format string
2618 * @date: valid #GDate
2619 *
2620 * Generates a printed representation of the date, in a
2621 * [locale][setlocale]-specific way.
2622 * Works just like the platform's C library strftime() function,
2623 * but only accepts date-related formats; time-related formats
2624 * give undefined results. Date must be valid. Unlike strftime()
2625 * (which uses the locale encoding), works on a UTF-8 format
2626 * string and stores a UTF-8 result.
2627 *
2628 * This function does not provide any conversion specifiers in
2629 * addition to those implemented by the platform's C library.
2630 * For example, don't expect that using g_date_strftime() would
2631 * make the \%F provided by the C99 strftime() work on Windows
2632 * where the C library only complies to C89.
2633 *
2634 * Returns: number of characters written to the buffer, or 0 the buffer was too small
2635 */
2636 #pragma GCC diagnostic push
2637 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
2638
2639 gsize
g_date_strftime(gchar * s,gsize slen,const gchar * format,const GDate * d)2640 g_date_strftime (gchar *s,
2641 gsize slen,
2642 const gchar *format,
2643 const GDate *d)
2644 {
2645 struct tm tm;
2646 #ifndef G_OS_WIN32
2647 gsize locale_format_len = 0;
2648 gchar *locale_format;
2649 gsize tmplen;
2650 gchar *tmpbuf;
2651 gsize tmpbufsize;
2652 gsize convlen = 0;
2653 gchar *convbuf;
2654 GError *error = NULL;
2655 gsize retval;
2656 #endif
2657
2658 g_return_val_if_fail (g_date_valid (d), 0);
2659 g_return_val_if_fail (slen > 0, 0);
2660 g_return_val_if_fail (format != NULL, 0);
2661 g_return_val_if_fail (s != NULL, 0);
2662
2663 g_date_to_struct_tm (d, &tm);
2664
2665 #ifdef G_OS_WIN32
2666 if (!g_utf8_validate (format, -1, NULL))
2667 {
2668 s[0] = '\0';
2669 return 0;
2670 }
2671 return win32_strftime_helper (d, format, &tm, s, slen);
2672 #else
2673
2674 locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error);
2675
2676 if (error)
2677 {
2678 g_warning (G_STRLOC "Error converting format to locale encoding: %s", error->message);
2679 g_error_free (error);
2680
2681 s[0] = '\0';
2682 return 0;
2683 }
2684
2685 tmpbufsize = MAX (128, locale_format_len * 2);
2686 while (TRUE)
2687 {
2688 tmpbuf = g_malloc (tmpbufsize);
2689
2690 /* Set the first byte to something other than '\0', to be able to
2691 * recognize whether strftime actually failed or just returned "".
2692 */
2693 tmpbuf[0] = '\1';
2694 tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm);
2695
2696 if (tmplen == 0 && tmpbuf[0] != '\0')
2697 {
2698 g_free (tmpbuf);
2699 tmpbufsize *= 2;
2700
2701 if (tmpbufsize > 65536)
2702 {
2703 g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up");
2704 g_free (locale_format);
2705
2706 s[0] = '\0';
2707 return 0;
2708 }
2709 }
2710 else
2711 break;
2712 }
2713 g_free (locale_format);
2714
2715 convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error);
2716 g_free (tmpbuf);
2717
2718 if (error)
2719 {
2720 g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s", error->message);
2721 g_error_free (error);
2722
2723 s[0] = '\0';
2724 return 0;
2725 }
2726
2727 if (slen <= convlen)
2728 {
2729 /* Ensure only whole characters are copied into the buffer.
2730 */
2731 gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2732 g_assert (end != NULL);
2733 convlen = end - convbuf;
2734
2735 /* Return 0 because the buffer isn't large enough.
2736 */
2737 retval = 0;
2738 }
2739 else
2740 retval = convlen;
2741
2742 memcpy (s, convbuf, convlen);
2743 s[convlen] = '\0';
2744 g_free (convbuf);
2745
2746 return retval;
2747 #endif
2748 }
2749
2750 #pragma GCC diagnostic pop
2751