1 #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP 2 #define BOOST_PYTHON_SLICE_JDB20040105_HPP 3 4 // Copyright (c) 2004 Jonathan Brandmeyer 5 // Use, modification and distribution are subject to the 6 // Boost Software License, Version 1.0. (See accompanying file 7 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) 8 9 #include <boost/python/detail/prefix.hpp> 10 #include <boost/config.hpp> 11 #include <boost/python/object.hpp> 12 #include <boost/python/extract.hpp> 13 #include <boost/python/converter/pytype_object_mgr_traits.hpp> 14 15 #include <boost/iterator/iterator_traits.hpp> 16 17 #include <iterator> 18 #include <algorithm> 19 20 namespace boost { namespace python { 21 22 namespace detail 23 { 24 class BOOST_PYTHON_DECL slice_base : public object 25 { 26 public: 27 // Get the Python objects associated with the slice. In principle, these 28 // may be any arbitrary Python type, but in practice they are usually 29 // integers. If one or more parameter is ommited in the Python expression 30 // that created this slice, than that parameter is None here, and compares 31 // equal to a default-constructed boost::python::object. 32 // If a user-defined type wishes to support slicing, then support for the 33 // special meaning associated with negative indices is up to the user. 34 object start() const; 35 object stop() const; 36 object step() const; 37 38 protected: 39 explicit slice_base(PyObject*, PyObject*, PyObject*); 40 41 BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object) 42 }; 43 } 44 45 class slice : public detail::slice_base 46 { 47 typedef detail::slice_base base; 48 public: 49 // Equivalent to slice(::) slice()50 slice() : base(0,0,0) {} 51 52 // Each argument must be slice_nil, or implicitly convertable to object. 53 // They should normally be integers. 54 template<typename Integer1, typename Integer2> slice(Integer1 start,Integer2 stop)55 slice( Integer1 start, Integer2 stop) 56 : base( object(start).ptr(), object(stop).ptr(), 0 ) 57 {} 58 59 template<typename Integer1, typename Integer2, typename Integer3> slice(Integer1 start,Integer2 stop,Integer3 stride)60 slice( Integer1 start, Integer2 stop, Integer3 stride) 61 : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() ) 62 {} 63 64 // The following algorithm is intended to automate the process of 65 // determining a slice range when you want to fully support negative 66 // indices and non-singular step sizes. Its functionallity is simmilar to 67 // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users. 68 // This template returns a slice::range struct that, when used in the 69 // following iterative loop, will traverse a slice of the function's 70 // arguments. 71 // while (start != end) { 72 // do_foo(...); 73 // std::advance( start, step); 74 // } 75 // do_foo(...); // repeat exactly once more. 76 77 // Arguments: a [begin, end) pair of STL-conforming random-access iterators. 78 79 // Return: slice::range, where start and stop define a _closed_ interval 80 // that covers at most [begin, end-1] of the provided arguments, and a step 81 // that is non-zero. 82 83 // Throws: error_already_set() if any of the indices are neither None nor 84 // integers, or the slice has a step value of zero. 85 // std::invalid_argument if the resulting range would be empty. Normally, 86 // you should catch this exception and return an empty sequence of the 87 // appropriate type. 88 89 // Performance: constant time for random-access iterators. 90 91 // Rationale: 92 // closed-interval: If an open interval were used, then for a non-singular 93 // value for step, the required state for the end iterator could be 94 // beyond the one-past-the-end postion of the specified range. While 95 // probably harmless, the behavior of STL-conforming iterators is 96 // undefined in this case. 97 // exceptions on zero-length range: It is impossible to define a closed 98 // interval over an empty range, so some other form of error checking 99 // would have to be used by the user to prevent undefined behavior. In 100 // the case where the user fails to catch the exception, it will simply 101 // be translated to Python by the default exception handling mechanisms. 102 103 template<typename RandomAccessIterator> 104 struct range 105 { 106 RandomAccessIterator start; 107 RandomAccessIterator stop; 108 typename iterator_difference<RandomAccessIterator>::type step; 109 }; 110 111 template<typename RandomAccessIterator> 112 slice::range<RandomAccessIterator> get_indices(const RandomAccessIterator & begin,const RandomAccessIterator & end) const113 get_indices( const RandomAccessIterator& begin, 114 const RandomAccessIterator& end) const 115 { 116 // This is based loosely on PySlice_GetIndicesEx(), but it has been 117 // carefully crafted to ensure that these iterators never fall out of 118 // the range of the container. 119 slice::range<RandomAccessIterator> ret; 120 121 typedef typename iterator_difference<RandomAccessIterator>::type difference_type; 122 difference_type max_dist = std::distance(begin, end); 123 124 object slice_start = this->start(); 125 object slice_stop = this->stop(); 126 object slice_step = this->step(); 127 128 // Extract the step. 129 if (slice_step == object()) { 130 ret.step = 1; 131 } 132 else { 133 ret.step = extract<long>( slice_step); 134 if (ret.step == 0) { 135 PyErr_SetString( PyExc_IndexError, "step size cannot be zero."); 136 throw_error_already_set(); 137 } 138 } 139 140 // Setup the start iterator. 141 if (slice_start == object()) { 142 if (ret.step < 0) { 143 ret.start = end; 144 --ret.start; 145 } 146 else 147 ret.start = begin; 148 } 149 else { 150 difference_type i = extract<long>( slice_start); 151 if (i >= max_dist && ret.step > 0) 152 throw std::invalid_argument( "Zero-length slice"); 153 if (i >= 0) { 154 ret.start = begin; 155 BOOST_USING_STD_MIN(); 156 std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1)); 157 } 158 else { 159 if (i < -max_dist && ret.step < 0) 160 throw std::invalid_argument( "Zero-length slice"); 161 ret.start = end; 162 // Advance start (towards begin) not farther than begin. 163 std::advance( ret.start, (-i < max_dist) ? i : -max_dist ); 164 } 165 } 166 167 // Set up the stop iterator. This one is a little trickier since slices 168 // define a [) range, and we are returning a [] range. 169 if (slice_stop == object()) { 170 if (ret.step < 0) { 171 ret.stop = begin; 172 } 173 else { 174 ret.stop = end; 175 std::advance( ret.stop, -1); 176 } 177 } 178 else { 179 difference_type i = extract<long>(slice_stop); 180 // First, branch on which direction we are going with this. 181 if (ret.step < 0) { 182 if (i+1 >= max_dist || i == -1) 183 throw std::invalid_argument( "Zero-length slice"); 184 185 if (i >= 0) { 186 ret.stop = begin; 187 std::advance( ret.stop, i+1); 188 } 189 else { // i is negative, but more negative than -1. 190 ret.stop = end; 191 std::advance( ret.stop, (-i < max_dist) ? i : -max_dist); 192 } 193 } 194 else { // stepping forward 195 if (i == 0 || -i >= max_dist) 196 throw std::invalid_argument( "Zero-length slice"); 197 198 if (i > 0) { 199 ret.stop = begin; 200 std::advance( ret.stop, (std::min)( i-1, max_dist-1)); 201 } 202 else { // i is negative, but not more negative than -max_dist 203 ret.stop = end; 204 std::advance( ret.stop, i-1); 205 } 206 } 207 } 208 209 // Now the fun part, handling the possibilites surrounding step. 210 // At this point, step has been initialized, ret.stop, and ret.step 211 // represent the widest possible range that could be traveled 212 // (inclusive), and final_dist is the maximum distance covered by the 213 // slice. 214 typename iterator_difference<RandomAccessIterator>::type final_dist = 215 std::distance( ret.start, ret.stop); 216 217 // First case, if both ret.start and ret.stop are equal, then step 218 // is irrelevant and we can return here. 219 if (final_dist == 0) 220 return ret; 221 222 // Second, if there is a sign mismatch, than the resulting range and 223 // step size conflict: std::advance( ret.start, ret.step) goes away from 224 // ret.stop. 225 if ((final_dist > 0) != (ret.step > 0)) 226 throw std::invalid_argument( "Zero-length slice."); 227 228 // Finally, if the last step puts us past the end, we move ret.stop 229 // towards ret.start in the amount of the remainder. 230 // I don't remember all of the oolies surrounding negative modulii, 231 // so I am handling each of these cases separately. 232 if (final_dist < 0) { 233 difference_type remainder = -final_dist % -ret.step; 234 std::advance( ret.stop, remainder); 235 } 236 else { 237 difference_type remainder = final_dist % ret.step; 238 std::advance( ret.stop, -remainder); 239 } 240 241 return ret; 242 } 243 244 // Incorrect spelling. DO NOT USE. Only here for backward compatibility. 245 // Corrected 2011-06-14. 246 template<typename RandomAccessIterator> 247 slice::range<RandomAccessIterator> get_indicies(const RandomAccessIterator & begin,const RandomAccessIterator & end) const248 get_indicies( const RandomAccessIterator& begin, 249 const RandomAccessIterator& end) const 250 { 251 return get_indices(begin, end); 252 } 253 254 public: 255 // This declaration, in conjunction with the specialization of 256 // object_manager_traits<> below, allows C++ functions accepting slice 257 // arguments to be called from from Python. These constructors should never 258 // be used in client code. 259 BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base) 260 }; 261 262 263 namespace converter { 264 265 template<> 266 struct object_manager_traits<slice> 267 : pytype_object_manager_traits<&PySlice_Type, slice> 268 { 269 }; 270 271 } // !namesapce converter 272 273 } } // !namespace ::boost::python 274 275 276 #endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP 277