1 /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2  *
3  * ***** BEGIN LICENSE BLOCK *****
4  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5  *
6  * The contents of this file are subject to the Mozilla Public License Version
7  * 1.1 (the "License"); you may not use this file except in compliance with
8  * the License. You may obtain a copy of the License at
9  * http://www.mozilla.org/MPL/
10  *
11  * Software distributed under the License is distributed on an "AS IS" basis,
12  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13  * for the specific language governing rights and limitations under the
14  * License.
15  *
16  * The Original Code is Mozilla Communicator client code, released
17  * March 31, 1998.
18  *
19  * The Initial Developer of the Original Code is
20  * Sun Microsystems, Inc.
21  * Portions created by the Initial Developer are Copyright (C) 1998
22  * the Initial Developer. All Rights Reserved.
23  *
24  * Contributor(s):
25  *
26  * Alternatively, the contents of this file may be used under the terms of
27  * either of the GNU General Public License Version 2 or later (the "GPL"),
28  * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29  * in which case the provisions of the GPL or the LGPL are applicable instead
30  * of those above. If you wish to allow use of your version of this file only
31  * under the terms of either the GPL or the LGPL, and not to allow others to
32  * use your version of this file under the terms of the MPL, indicate your
33  * decision by deleting the provisions above and replace them with the notice
34  * and other provisions required by the GPL or the LGPL. If you do not delete
35  * the provisions above, a recipient may use your version of this file under
36  * the terms of any one of the MPL, the GPL or the LGPL.
37  *
38  * ***** END LICENSE BLOCK ***** */
39 
40 /* @(#)e_log.c 1.3 95/01/18 */
41 /*
42  * ====================================================
43  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
44  *
45  * Developed at SunSoft, a Sun Microsystems, Inc. business.
46  * Permission to use, copy, modify, and distribute this
47  * software is freely granted, provided that this notice
48  * is preserved.
49  * ====================================================
50  */
51 
52 /* __ieee754_log(x)
53  * Return the logrithm of x
54  *
55  * Method :
56  *   1. Argument Reduction: find k and f such that
57  *			x = 2^k * (1+f),
58  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
59  *
60  *   2. Approximation of log(1+f).
61  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
62  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
63  *	     	 = 2s + s*R
64  *      We use a special Reme algorithm on [0,0.1716] to generate
65  * 	a polynomial of degree 14 to approximate R The maximum error
66  *	of this polynomial approximation is bounded by 2**-58.45. In
67  *	other words,
68  *		        2      4      6      8      10      12      14
69  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
70  *  	(the values of Lg1 to Lg7 are listed in the program)
71  *	and
72  *	    |      2          14          |     -58.45
73  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
74  *	    |                             |
75  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
76  *	In order to guarantee error in log below 1ulp, we compute log
77  *	by
78  *		log(1+f) = f - s*(f - R)	(if f is not too large)
79  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
80  *
81  *	3. Finally,  log(x) = k*ln2 + log(1+f).
82  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
83  *	   Here ln2 is split into two floating point number:
84  *			ln2_hi + ln2_lo,
85  *	   where n*ln2_hi is always exact for |n| < 2000.
86  *
87  * Special cases:
88  *	log(x) is NaN with signal if x < 0 (including -INF) ;
89  *	log(+INF) is +INF; log(0) is -INF with signal;
90  *	log(NaN) is that NaN with no signal.
91  *
92  * Accuracy:
93  *	according to an error analysis, the error is always less than
94  *	1 ulp (unit in the last place).
95  *
96  * Constants:
97  * The hexadecimal values are the intended ones for the following
98  * constants. The decimal values may be used, provided that the
99  * compiler will convert from decimal to binary accurately enough
100  * to produce the hexadecimal values shown.
101  */
102 
103 #include "fdlibm.h"
104 
105 #ifdef __STDC__
106 static const double
107 #else
108 static double
109 #endif
110 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
111 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
112 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
113 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
114 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
115 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
116 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
117 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
118 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
119 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
120 
121 static double zero   =  0.0;
122 
123 #ifdef __STDC__
__ieee754_log(double x)124 	double __ieee754_log(double x)
125 #else
126 	double __ieee754_log(x)
127 	double x;
128 #endif
129 {
130         fd_twoints u;
131 	double hfsq,f,s,z,R,w,t1,t2,dk;
132 	int k,hx,i,j;
133 	unsigned lx;
134 
135         u.d = x;
136 	hx = __HI(u);		/* high word of x */
137 	lx = __LO(u);		/* low  word of x */
138 
139 	k=0;
140 	if (hx < 0x00100000) {			/* x < 2**-1022  */
141 	    if (((hx&0x7fffffff)|lx)==0)
142 		return -two54/zero;		/* log(+-0)=-inf */
143 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
144 	    k -= 54; x *= two54; /* subnormal number, scale up x */
145             u.d = x;
146 	    hx = __HI(u);		/* high word of x */
147 	}
148 	if (hx >= 0x7ff00000) return x+x;
149 	k += (hx>>20)-1023;
150 	hx &= 0x000fffff;
151 	i = (hx+0x95f64)&0x100000;
152         u.d = x;
153 	__HI(u) = hx|(i^0x3ff00000);	/* normalize x or x/2 */
154         x = u.d;
155 	k += (i>>20);
156 	f = x-1.0;
157 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
158 	    if(f==zero) {
159                 if(k==0) return zero; else {dk=(double)k;
160                                             return dk*ln2_hi+dk*ln2_lo;}
161             }
162 	    R = f*f*(0.5-0.33333333333333333*f);
163 	    if(k==0) return f-R; else {dk=(double)k;
164 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
165 	}
166  	s = f/(2.0+f);
167 	dk = (double)k;
168 	z = s*s;
169 	i = hx-0x6147a;
170 	w = z*z;
171 	j = 0x6b851-hx;
172 	t1= w*(Lg2+w*(Lg4+w*Lg6));
173 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
174 	i |= j;
175 	R = t2+t1;
176 	if(i>0) {
177 	    hfsq=0.5*f*f;
178 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
179 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
180 	} else {
181 	    if(k==0) return f-s*(f-R); else
182 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
183 	}
184 }
185