1 /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2  *
3  * ***** BEGIN LICENSE BLOCK *****
4  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5  *
6  * The contents of this file are subject to the Mozilla Public License Version
7  * 1.1 (the "License"); you may not use this file except in compliance with
8  * the License. You may obtain a copy of the License at
9  * http://www.mozilla.org/MPL/
10  *
11  * Software distributed under the License is distributed on an "AS IS" basis,
12  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13  * for the specific language governing rights and limitations under the
14  * License.
15  *
16  * The Original Code is Mozilla Communicator client code, released
17  * March 31, 1998.
18  *
19  * The Initial Developer of the Original Code is
20  * Sun Microsystems, Inc.
21  * Portions created by the Initial Developer are Copyright (C) 1998
22  * the Initial Developer. All Rights Reserved.
23  *
24  * Contributor(s):
25  *
26  * Alternatively, the contents of this file may be used under the terms of
27  * either of the GNU General Public License Version 2 or later (the "GPL"),
28  * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29  * in which case the provisions of the GPL or the LGPL are applicable instead
30  * of those above. If you wish to allow use of your version of this file only
31  * under the terms of either the GPL or the LGPL, and not to allow others to
32  * use your version of this file under the terms of the MPL, indicate your
33  * decision by deleting the provisions above and replace them with the notice
34  * and other provisions required by the GPL or the LGPL. If you do not delete
35  * the provisions above, a recipient may use your version of this file under
36  * the terms of any one of the MPL, the GPL or the LGPL.
37  *
38  * ***** END LICENSE BLOCK ***** */
39 
40 /* @(#)s_expm1.c 1.3 95/01/18 */
41 /*
42  * ====================================================
43  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
44  *
45  * Developed at SunSoft, a Sun Microsystems, Inc. business.
46  * Permission to use, copy, modify, and distribute this
47  * software is freely granted, provided that this notice
48  * is preserved.
49  * ====================================================
50  */
51 
52 /* expm1(x)
53  * Returns exp(x)-1, the exponential of x minus 1.
54  *
55  * Method
56  *   1. Argument reduction:
57  *	Given x, find r and integer k such that
58  *
59  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
60  *
61  *      Here a correction term c will be computed to compensate
62  *	the error in r when rounded to a floating-point number.
63  *
64  *   2. Approximating expm1(r) by a special rational function on
65  *	the interval [0,0.34658]:
66  *	Since
67  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
68  *	we define R1(r*r) by
69  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
70  *	That is,
71  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
72  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
73  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
74  *      We use a special Reme algorithm on [0,0.347] to generate
75  * 	a polynomial of degree 5 in r*r to approximate R1. The
76  *	maximum error of this polynomial approximation is bounded
77  *	by 2**-61. In other words,
78  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
79  *	where 	Q1  =  -1.6666666666666567384E-2,
80  * 		Q2  =   3.9682539681370365873E-4,
81  * 		Q3  =  -9.9206344733435987357E-6,
82  * 		Q4  =   2.5051361420808517002E-7,
83  * 		Q5  =  -6.2843505682382617102E-9;
84  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
85  *	with error bounded by
86  *	    |                  5           |     -61
87  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
88  *	    |                              |
89  *
90  *	expm1(r) = exp(r)-1 is then computed by the following
91  * 	specific way which minimize the accumulation rounding error:
92  *			       2     3
93  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
94  *	      expm1(r) = r + --- + --- * [--------------------]
95  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
96  *
97  *	To compensate the error in the argument reduction, we use
98  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
99  *			   ~ expm1(r) + c + r*c
100  *	Thus c+r*c will be added in as the correction terms for
101  *	expm1(r+c). Now rearrange the term to avoid optimization
102  * 	screw up:
103  *		        (      2                                    2 )
104  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
105  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
106  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
107  *                      (                                             )
108  *
109  *		   = r - E
110  *   3. Scale back to obtain expm1(x):
111  *	From step 1, we have
112  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
113  *		    = or     2^k*[expm1(r) + (1-2^-k)]
114  *   4. Implementation notes:
115  *	(A). To save one multiplication, we scale the coefficient Qi
116  *	     to Qi*2^i, and replace z by (x^2)/2.
117  *	(B). To achieve maximum accuracy, we compute expm1(x) by
118  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
119  *	  (ii)  if k=0, return r-E
120  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
121  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
122  *	       	       else	     return  1.0+2.0*(r-E);
123  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
124  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
125  *	  (vii) return 2^k(1-((E+2^-k)-r))
126  *
127  * Special cases:
128  *	expm1(INF) is INF, expm1(NaN) is NaN;
129  *	expm1(-INF) is -1, and
130  *	for finite argument, only expm1(0)=0 is exact.
131  *
132  * Accuracy:
133  *	according to an error analysis, the error is always less than
134  *	1 ulp (unit in the last place).
135  *
136  * Misc. info.
137  *	For IEEE double
138  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
139  *
140  * Constants:
141  * The hexadecimal values are the intended ones for the following
142  * constants. The decimal values may be used, provided that the
143  * compiler will convert from decimal to binary accurately enough
144  * to produce the hexadecimal values shown.
145  */
146 
147 #include "fdlibm.h"
148 
149 #ifdef __STDC__
150 static const double
151 #else
152 static double
153 #endif
154 one		= 1.0,
155 really_big		= 1.0e+300,
156 tiny		= 1.0e-300,
157 o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
158 ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
159 ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
160 invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
161 	/* scaled coefficients related to expm1 */
162 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
163 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
164 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
165 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
166 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
167 
168 #ifdef __STDC__
fd_expm1(double x)169 	double fd_expm1(double x)
170 #else
171 	double fd_expm1(x)
172 	double x;
173 #endif
174 {
175         fd_twoints u;
176 	double y,hi,lo,c,t,e,hxs,hfx,r1;
177 	int k,xsb;
178 	unsigned hx;
179 
180         u.d = x;
181 	hx  = __HI(u);	/* high word of x */
182 	xsb = hx&0x80000000;		/* sign bit of x */
183 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
184 	hx &= 0x7fffffff;		/* high word of |x| */
185 
186     /* filter out huge and non-finite argument */
187 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
188 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
189                 if(hx>=0x7ff00000) {
190                     u.d = x;
191 		    if(((hx&0xfffff)|__LO(u))!=0)
192 		         return x+x; 	 /* NaN */
193 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
194 	        }
195 	        if(x > o_threshold) return really_big*really_big; /* overflow */
196 	    }
197 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
198 		if(x+tiny<0.0)		/* raise inexact */
199 		return tiny-one;	/* return -1 */
200 	    }
201 	}
202 
203     /* argument reduction */
204 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
205 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
206 		if(xsb==0)
207 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
208 		else
209 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
210 	    } else {
211 		k  = (int)(invln2*x+((xsb==0)?0.5:-0.5));
212 		t  = k;
213 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
214 		lo = t*ln2_lo;
215 	    }
216 	    x  = hi - lo;
217 	    c  = (hi-x)-lo;
218 	}
219 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
220 	    t = really_big+x;	/* return x with inexact flags when x!=0 */
221 	    return x - (t-(really_big+x));
222 	}
223 	else k = 0;
224 
225     /* x is now in primary range */
226 	hfx = 0.5*x;
227 	hxs = x*hfx;
228 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
229 	t  = 3.0-r1*hfx;
230 	e  = hxs*((r1-t)/(6.0 - x*t));
231 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
232 	else {
233 	    e  = (x*(e-c)-c);
234 	    e -= hxs;
235 	    if(k== -1) return 0.5*(x-e)-0.5;
236 	    if(k==1)
237 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
238 	       	else 	      return  one+2.0*(x-e);
239 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
240 	        y = one-(e-x);
241                 u.d = y;
242 	        __HI(u) += (k<<20);	/* add k to y's exponent */
243                 y = u.d;
244 	        return y-one;
245 	    }
246 	    t = one;
247 	    if(k<20) {
248                 u.d = t;
249 	       	__HI(u) = 0x3ff00000 - (0x200000>>k);  /* t=1-2^-k */
250                 t = u.d;
251 	       	y = t-(e-x);
252                 u.d = y;
253 	       	__HI(u) += (k<<20);	/* add k to y's exponent */
254                 y = u.d;
255 	   } else {
256                u.d = t;
257 	       	__HI(u)  = ((0x3ff-k)<<20);	/* 2^-k */
258                 t = u.d;
259 	       	y = x-(e+t);
260 	       	y += one;
261                 u.d = y;
262 	       	__HI(u) += (k<<20);	/* add k to y's exponent */
263                 y = u.d;
264 	    }
265 	}
266 	return y;
267 }
268