1 /*
2  * fortuna.c
3  *		Fortuna-like PRNG.
4  *
5  * Copyright (c) 2005 Marko Kreen
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *	  notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *	  notice, this list of conditions and the following disclaimer in the
15  *	  documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * contrib/pgcrypto/fortuna.c
30  */
31 
32 #include <sys/time.h>
33 #include <time.h>
34 
35 #include "c.h"
36 #include "rijndael.h"
37 #include "sha2.h"
38 #include "fortuna.h"
39 
40 
41 /*
42  * Why Fortuna-like: There does not seem to be any definitive reference
43  * on Fortuna in the net.  Instead this implementation is based on
44  * following references:
45  *
46  * http://en.wikipedia.org/wiki/Fortuna_(PRNG)
47  *	 - Wikipedia article
48  * http://jlcooke.ca/random/
49  *	 - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
50  */
51 
52 /*
53  * There is some confusion about whether and how to carry forward
54  * the state of the pools.	Seems like original Fortuna does not
55  * do it, resetting hash after each request.  I guess expecting
56  * feeding to happen more often that requesting.   This is absolutely
57  * unsuitable for pgcrypto, as nothing asynchronous happens here.
58  *
59  * J.L. Cooke fixed this by feeding previous hash to new re-initialized
60  * hash context.
61  *
62  * Fortuna predecessor Yarrow requires ability to query intermediate
63  * 'final result' from hash, without affecting it.
64  *
65  * This implementation uses the Yarrow method - asking intermediate
66  * results, but continuing with old state.
67  */
68 
69 
70 /*
71  * Algorithm parameters
72  */
73 
74 /*
75  * How many pools.
76  *
77  * Original Fortuna uses 32 pools, that means 32'th pool is
78  * used not earlier than in 13th year.	This is a waste in
79  * pgcrypto, as we have very low-frequancy seeding.  Here
80  * is preferable to have all entropy usable in reasonable time.
81  *
82  * With 23 pools, 23th pool is used after 9 days which seems
83  * more sane.
84  *
85  * In our case the minimal cycle time would be bit longer
86  * than the system-randomness feeding frequency.
87  */
88 #define NUM_POOLS		23
89 
90 /* in microseconds */
91 #define RESEED_INTERVAL 100000	/* 0.1 sec */
92 
93 /* for one big request, reseed after this many bytes */
94 #define RESEED_BYTES	(1024*1024)
95 
96 /*
97  * Skip reseed if pool 0 has less than this many
98  * bytes added since last reseed.
99  */
100 #define POOL0_FILL		(256/8)
101 
102 /*
103  * Algorithm constants
104  */
105 
106 /* Both cipher key size and hash result size */
107 #define BLOCK			32
108 
109 /* cipher block size */
110 #define CIPH_BLOCK		16
111 
112 /* for internal wrappers */
113 #define MD_CTX			SHA256_CTX
114 #define CIPH_CTX		rijndael_ctx
115 
116 struct fortuna_state
117 {
118 	uint8		counter[CIPH_BLOCK];
119 	uint8		result[CIPH_BLOCK];
120 	uint8		key[BLOCK];
121 	MD_CTX		pool[NUM_POOLS];
122 	CIPH_CTX	ciph;
123 	unsigned	reseed_count;
124 	struct timeval last_reseed_time;
125 	unsigned	pool0_bytes;
126 	unsigned	rnd_pos;
127 	int			tricks_done;
128 };
129 typedef struct fortuna_state FState;
130 
131 
132 /*
133  * Use our own wrappers here.
134  * - Need to get intermediate result from digest, without affecting it.
135  * - Need re-set key on a cipher context.
136  * - Algorithms are guaranteed to exist.
137  * - No memory allocations.
138  */
139 
140 void
ciph_init(CIPH_CTX * ctx,const uint8 * key,int klen)141 ciph_init(CIPH_CTX * ctx, const uint8 *key, int klen)
142 {
143 	rijndael_set_key(ctx, (const uint32 *) key, klen, 1);
144 }
145 
146 void
ciph_encrypt(CIPH_CTX * ctx,const uint8 * in,uint8 * out)147 ciph_encrypt(CIPH_CTX * ctx, const uint8 *in, uint8 *out)
148 {
149 	rijndael_encrypt(ctx, (const uint32 *) in, (uint32 *) out);
150 }
151 
152 void
md_init(MD_CTX * ctx)153 md_init(MD_CTX * ctx)
154 {
155 	SHA256_Init(ctx);
156 }
157 
158 void
md_update(MD_CTX * ctx,const uint8 * data,int len)159 md_update(MD_CTX * ctx, const uint8 *data, int len)
160 {
161 	SHA256_Update(ctx, data, len);
162 }
163 
164 void
md_result(MD_CTX * ctx,uint8 * dst)165 md_result(MD_CTX * ctx, uint8 *dst)
166 {
167 	SHA256_CTX	tmp;
168 
169 	memcpy(&tmp, ctx, sizeof(*ctx));
170 	SHA256_Final(dst, &tmp);
171 	memset(&tmp, 0, sizeof(tmp));
172 }
173 
174 /*
175  * initialize state
176  */
177 void
init_state(FState * st)178 init_state(FState *st)
179 {
180 	int			i;
181 
182 	memset(st, 0, sizeof(*st));
183 	for (i = 0; i < NUM_POOLS; i++)
184 		md_init(&st->pool[i]);
185 }
186 
187 /*
188  * Endianess does not matter.
189  * It just needs to change without repeating.
190  */
191 void
inc_counter(FState * st)192 inc_counter(FState *st)
193 {
194 	uint32	   *val = (uint32 *) st->counter;
195 
196 	if (++val[0])
197 		return;
198 	if (++val[1])
199 		return;
200 	if (++val[2])
201 		return;
202 	++val[3];
203 }
204 
205 /*
206  * This is called 'cipher in counter mode'.
207  */
208 void
encrypt_counter(FState * st,uint8 * dst)209 encrypt_counter(FState *st, uint8 *dst)
210 {
211 	ciph_encrypt(&st->ciph, st->counter, dst);
212 	inc_counter(st);
213 }
214 
215 
216 /*
217  * The time between reseed must be at least RESEED_INTERVAL
218  * microseconds.
219  */
220 int
enough_time_passed(FState * st)221 enough_time_passed(FState *st)
222 {
223 	int			ok;
224 	struct timeval tv;
225 	struct timeval *last = &st->last_reseed_time;
226 
227 	gettimeofday(&tv, NULL);
228 
229 	/* check how much time has passed */
230 	ok = 0;
231 	if (tv.tv_sec > last->tv_sec + 1)
232 		ok = 1;
233 	else if (tv.tv_sec == last->tv_sec + 1)
234 	{
235 		if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
236 			ok = 1;
237 	}
238 	else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
239 		ok = 1;
240 
241 	/* reseed will happen, update last_reseed_time */
242 	if (ok)
243 		memcpy(last, &tv, sizeof(tv));
244 
245 	memset(&tv, 0, sizeof(tv));
246 
247 	return ok;
248 }
249 
250 /*
251  * generate new key from all the pools
252  */
253 void
reseed(FState * st)254 reseed(FState *st)
255 {
256 	unsigned	k;
257 	unsigned	n;
258 	MD_CTX		key_md;
259 	uint8		buf[BLOCK];
260 
261 	/* set pool as empty */
262 	st->pool0_bytes = 0;
263 
264 	/*
265 	 * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
266 	 */
267 	n = ++st->reseed_count;
268 
269 	/*
270 	 * The goal: use k-th pool only 1/(2^k) of the time.
271 	 */
272 	md_init(&key_md);
273 	for (k = 0; k < NUM_POOLS; k++)
274 	{
275 		md_result(&st->pool[k], buf);
276 		md_update(&key_md, buf, BLOCK);
277 
278 		if (n & 1 || !n)
279 			break;
280 		n >>= 1;
281 	}
282 
283 	/* add old key into mix too */
284 	md_update(&key_md, st->key, BLOCK);
285 
286 	/* now we have new key */
287 	md_result(&key_md, st->key);
288 
289 	/* use new key */
290 	ciph_init(&st->ciph, st->key, BLOCK);
291 
292 	memset(&key_md, 0, sizeof(key_md));
293 	memset(buf, 0, BLOCK);
294 }
295 
296 /*
297  * Pick a random pool.	This uses key bytes as random source.
298  */
299 unsigned
get_rand_pool(FState * st)300 get_rand_pool(FState *st)
301 {
302 	unsigned	rnd;
303 
304 	/*
305 	 * This slightly prefers lower pools - thats OK.
306 	 */
307 	rnd = st->key[st->rnd_pos] % NUM_POOLS;
308 
309 	st->rnd_pos++;
310 	if (st->rnd_pos >= BLOCK)
311 		st->rnd_pos = 0;
312 
313 	return rnd;
314 }
315 
316 /*
317  * update pools
318  */
319 void
add_entropy(FState * st,const uint8 * data,unsigned len)320 add_entropy(FState *st, const uint8 *data, unsigned len)
321 {
322 	unsigned	pos;
323 	uint8		hash[BLOCK];
324 	MD_CTX		md;
325 
326 	/* hash given data */
327 	md_init(&md);
328 	md_update(&md, data, len);
329 	md_result(&md, hash);
330 
331 	/*
332 	 * Make sure the pool 0 is initialized, then update randomly.
333 	 */
334 	if (st->reseed_count == 0)
335 		pos = 0;
336 	else
337 		pos = get_rand_pool(st);
338 	md_update(&st->pool[pos], hash, BLOCK);
339 
340 	if (pos == 0)
341 		st->pool0_bytes += len;
342 
343 	memset(hash, 0, BLOCK);
344 	memset(&md, 0, sizeof(md));
345 }
346 
347 /*
348  * Just take 2 next blocks as new key
349  */
350 void
rekey(FState * st)351 rekey(FState *st)
352 {
353 	encrypt_counter(st, st->key);
354 	encrypt_counter(st, st->key + CIPH_BLOCK);
355 	ciph_init(&st->ciph, st->key, BLOCK);
356 }
357 
358 /*
359  * Hide public constants. (counter, pools > 0)
360  *
361  * This can also be viewed as spreading the startup
362  * entropy over all of the components.
363  */
364 void
startup_tricks(FState * st)365 startup_tricks(FState *st)
366 {
367 	int			i;
368 	uint8		buf[BLOCK];
369 
370 	/* Use next block as counter. */
371 	encrypt_counter(st, st->counter);
372 
373 	/* Now shuffle pools, excluding #0 */
374 	for (i = 1; i < NUM_POOLS; i++)
375 	{
376 		encrypt_counter(st, buf);
377 		encrypt_counter(st, buf + CIPH_BLOCK);
378 		md_update(&st->pool[i], buf, BLOCK);
379 	}
380 	memset(buf, 0, BLOCK);
381 
382 	/* Hide the key. */
383 	rekey(st);
384 
385 	/* This can be done only once. */
386 	st->tricks_done = 1;
387 }
388 
389 void
extract_data(FState * st,unsigned count,uint8 * dst)390 extract_data(FState *st, unsigned count, uint8 *dst)
391 {
392 	unsigned	n;
393 	unsigned	block_nr = 0;
394 
395 	/* Should we reseed? */
396 	if (st->pool0_bytes >= POOL0_FILL || st->reseed_count == 0)
397 		if (enough_time_passed(st))
398 			reseed(st);
399 
400 	/* Do some randomization on first call */
401 	if (!st->tricks_done)
402 		startup_tricks(st);
403 
404 	while (count > 0)
405 	{
406 		/* produce bytes */
407 		encrypt_counter(st, st->result);
408 
409 		/* copy result */
410 		if (count > CIPH_BLOCK)
411 			n = CIPH_BLOCK;
412 		else
413 			n = count;
414 		memcpy(dst, st->result, n);
415 		dst += n;
416 		count -= n;
417 
418 		/* must not give out too many bytes with one key */
419 		block_nr++;
420 		if (block_nr > (RESEED_BYTES / CIPH_BLOCK))
421 		{
422 			rekey(st);
423 			block_nr = 0;
424 		}
425 	}
426 	/* Set new key for next request. */
427 	rekey(st);
428 }
429 
430 /*
431  * public interface
432  */
433 
434 FState main_state;
435 int	init_done = 0;
436 
437 void
fortuna_add_entropy(const uint8 * data,unsigned len)438 fortuna_add_entropy(const uint8 *data, unsigned len)
439 {
440 	if (!init_done)
441 	{
442 		init_state(&main_state);
443 		init_done = 1;
444 	}
445 	if (!data || !len)
446 		return;
447 	add_entropy(&main_state, data, len);
448 }
449 
450 void
fortuna_get_bytes(unsigned len,uint8 * dst)451 fortuna_get_bytes(unsigned len, uint8 *dst)
452 {
453 	if (!init_done)
454 	{
455 		init_state(&main_state);
456 		init_done = 1;
457 	}
458 	if (!dst || !len)
459 		return;
460 	extract_data(&main_state, len, dst);
461 }
462