1 // RUN: %clang_cc1 -std=c++1z -verify %s -DERRORS -Wundefined-func-template
2 // RUN: %clang_cc1 -std=c++1z -verify %s -UERRORS -Wundefined-func-template
3 
4 // This test is split into two because we only produce "undefined internal"
5 // warnings if we didn't produce any errors.
6 #if ERRORS
7 
8 namespace std {
9   using size_t = decltype(sizeof(0));
10   template<typename T> struct initializer_list {
11     const T *p;
12     size_t n;
13     initializer_list();
14   };
15   // FIXME: This should probably not be necessary.
16   template<typename T> initializer_list(initializer_list<T>) -> initializer_list<T>;
17 }
18 
has_type(...)19 template<typename T> constexpr bool has_type(...) { return false; }
has_type(T)20 template<typename T> constexpr bool has_type(T) { return true; }
21 
22 std::initializer_list il = {1, 2, 3, 4, 5};
23 
24 template<typename T> struct vector {
25   template<typename Iter> vector(Iter, Iter);
26   vector(std::initializer_list<T>);
27 };
28 
29 template<typename T> vector(std::initializer_list<T>) -> vector<T>;
30 template<typename Iter> explicit vector(Iter, Iter) -> vector<typename Iter::value_type>;
31 template<typename T> explicit vector(std::size_t, T) -> vector<T>;
32 
33 vector v1 = {1, 2, 3, 4};
34 static_assert(has_type<vector<int>>(v1));
35 
36 struct iter { typedef char value_type; } it, end;
37 vector v2(it, end);
38 static_assert(has_type<vector<char>>(v2));
39 
40 vector v3(5, 5);
41 static_assert(has_type<vector<int>>(v3));
42 
43 vector v4 = {it, end};
44 static_assert(has_type<vector<iter>>(v4));
45 
46 vector v5{it, end};
47 static_assert(has_type<vector<iter>>(v5));
48 
49 template<typename ...T> struct tuple { tuple(T...); };
50 template<typename ...T> explicit tuple(T ...t) -> tuple<T...>; // expected-note {{declared}}
51 // FIXME: Remove
52 template<typename ...T> tuple(tuple<T...>) -> tuple<T...>;
53 
54 const int n = 4;
55 tuple ta = tuple{1, 'a', "foo", n};
56 static_assert(has_type<tuple<int, char, const char*, int>>(ta));
57 
58 tuple tb{ta};
59 static_assert(has_type<tuple<int, char, const char*, int>>(tb));
60 
61 // FIXME: This should be tuple<tuple<...>>; when the above guide is removed.
62 tuple tc = {ta};
63 static_assert(has_type<tuple<int, char, const char*, int>>(tc));
64 
65 tuple td = {1, 2, 3}; // expected-error {{selected an explicit deduction guide}}
66 static_assert(has_type<tuple<int, char, const char*, int>>(td));
67 
68 // FIXME: This is a GCC extension for now; if CWG don't allow this, at least
69 // add a warning for it.
70 namespace new_expr {
71   tuple<int> *p = new tuple{0};
72   tuple<float, float> *q = new tuple(1.0f, 2.0f);
73 }
74 
75 namespace ambiguity {
76   template<typename T> struct A {};
77   A(unsigned short) -> A<int>; // expected-note {{candidate}}
78   A(short) -> A<int>; // expected-note {{candidate}}
79   A a = 0; // expected-error {{ambiguous deduction for template arguments of 'A'}}
80 
81   template<typename T> struct B {};
82   template<typename T> B(T(&)(int)) -> B<int>; // expected-note {{candidate function [with T = int]}}
83   template<typename T> B(int(&)(T)) -> B<int>; // expected-note {{candidate function [with T = int]}}
84   int f(int);
85   B b = f; // expected-error {{ambiguous deduction for template arguments of 'B'}}
86 }
87 
88 // FIXME: Revisit this once CWG decides if attributes, and [[deprecated]] in
89 // particular, should be permitted here.
90 namespace deprecated {
91   template<typename T> struct A { A(int); };
92   [[deprecated]] A(int) -> A<void>; // expected-note {{marked deprecated here}}
93   A a = 0; // expected-warning {{'<deduction guide for A>' is deprecated}}
94 }
95 
96 namespace dependent {
97   template<template<typename...> typename A> decltype(auto) a = A{1, 2, 3};
98   static_assert(has_type<vector<int>>(a<vector>));
99   static_assert(has_type<tuple<int, int, int>>(a<tuple>));
100 
101   struct B {
102     template<typename T> struct X { X(T); };
103     X(int) -> X<int>;
104     template<typename T> using Y = X<T>; // expected-note {{template}}
105   };
f()106   template<typename T> void f() {
107     typename T::X tx = 0;
108     typename T::Y ty = 0; // expected-error {{alias template 'Y' requires template arguments; argument deduction only allowed for class templates}}
109   }
110   template void f<B>(); // expected-note {{in instantiation of}}
111 
112   template<typename T> struct C { C(T); };
113   template<typename T> C(T) -> C<T>;
g(T a)114   template<typename T> void g(T a) {
115     C b = 0;
116     C c = a;
117     using U = decltype(b); // expected-note {{previous}}
118     using U = decltype(c); // expected-error {{different types ('C<const char *>' vs 'C<int>')}}
119   }
h()120   void h() {
121     g(0);
122     g("foo"); // expected-note {{instantiation of}}
123   }
124 }
125 
126 namespace look_into_current_instantiation {
127   template<typename U> struct Q {};
128   template<typename T> struct A {
129     using U = T;
130     template<typename> using V = Q<A<T>::U>;
131     template<typename W = int> A(V<W>);
132   };
133   A a = Q<float>(); // ok, can look through class-scope typedefs and alias
134                     // templates, and members of the current instantiation
135   A<float> &r = a;
136 
137   template<typename T> struct B { // expected-note {{could not match 'B<T>' against 'int'}}
138     struct X {
139       typedef T type;
140     };
141     B(typename X::type); // expected-note {{couldn't infer template argument 'T'}}
142   };
143   B b = 0; // expected-error {{no viable}}
144 
145   // We should have a substitution failure in the immediate context of
146   // deduction when using the C(T, U) constructor (probably; core wording
147   // unclear).
148   template<typename T> struct C {
149     using U = typename T::type;
150     C(T, U);
151   };
152 
153   struct R { R(int); typedef R type; };
154   C(...) -> C<R>;
155 
156   C c = {1, 2};
157 }
158 
159 namespace nondeducible {
160   template<typename A, typename B> struct X {};
161 
162   template<typename A> // expected-note {{non-deducible template parameter 'A'}}
163   X() -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
164 
165   template<typename A> // expected-note {{non-deducible template parameter 'A'}}
166   X(typename X<A, int>::type) -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
167 
168   template<typename A = int,
169            typename B> // expected-note {{non-deducible template parameter 'B'}}
170   X(int) -> X<A, B>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
171 
172   template<typename A = int,
173            typename ...B>
174   X(float) -> X<A, B...>; // ok
175 }
176 
177 namespace default_args_from_ctor {
Sdefault_args_from_ctor::S178   template <class A> struct S { S(A = 0) {} };
179   S s(0);
180 
Tdefault_args_from_ctor::T181   template <class A> struct T { template<typename B> T(A = 0, B = 0) {} };
182   T t(0, 0);
183 }
184 
185 namespace transform_params {
186   template<typename T, T N, template<T (*v)[N]> typename U, T (*X)[N]>
187   struct A {
188     template<typename V, V M, V (*Y)[M], template<V (*v)[M]> typename W>
189     A(U<X>, W<Y>);
190 
191     static constexpr T v = N;
192   };
193 
194   int n[12];
195   template<int (*)[12]> struct Q {};
196   Q<&n> qn;
197   A a(qn, qn);
198   static_assert(a.v == 12);
199 
200   template<typename ...T> struct B {
Btransform_params::B201     template<T ...V> B(const T (&...p)[V]) {
202       constexpr int Vs[] = {V...};
203       static_assert(Vs[0] == 3 && Vs[1] == 4 && Vs[2] == 4);
204     }
205     static constexpr int (*p)(T...) = (int(*)(int, char, char))nullptr;
206   };
207   B b({1, 2, 3}, "foo", {'x', 'y', 'z', 'w'}); // ok
208 
209   template<typename ...T> struct C {
210     template<T ...V, template<T...> typename X>
211       C(X<V...>);
212   };
213   template<int...> struct Y {};
214   C c(Y<0, 1, 2>{});
215 
216   template<typename ...T> struct D {
217     template<T ...V> D(Y<V...>);
218   };
219   D d(Y<0, 1, 2>{});
220 }
221 
222 namespace variadic {
223   int arr3[3], arr4[4];
224 
225   // PR32673
226   template<typename T> struct A {
227     template<typename ...U> A(T, U...);
228   };
229   A a(1, 2, 3);
230 
231   template<typename T> struct B {
232     template<int ...N> B(T, int (&...r)[N]);
233   };
234   B b(1, arr3, arr4);
235 
236   template<typename T> struct C {
237     template<template<typename> typename ...U> C(T, U<int>...);
238   };
239   C c(1, a, b);
240 
241   template<typename ...U> struct X {
242     template<typename T> X(T, U...);
243   };
244   X x(1, 2, 3);
245 
246   template<int ...N> struct Y {
247     template<typename T> Y(T, int (&...r)[N]);
248   };
249   Y y(1, arr3, arr4);
250 
251   template<template<typename> typename ...U> struct Z {
252     template<typename T> Z(T, U<int>...);
253   };
254   Z z(1, a, b);
255 }
256 
257 namespace tuple_tests {
258   // The converting n-ary constructor appears viable, deducing T as an empty
259   // pack (until we check its SFINAE constraints).
260   namespace libcxx_1 {
261     template<class ...T> struct tuple {
262       template<class ...Args> struct X { static const bool value = false; };
263       template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
264     };
265     tuple a = {1, 2, 3};
266   }
267 
268   // Don't get caught by surprise when X<...> doesn't even exist in the
269   // selected specialization!
270   namespace libcxx_2 {
271     template<class ...T> struct tuple {
272       template<class ...Args> struct X { static const bool value = false; };
273       // Substitution into X<U...>::value succeeds but produces the
274       // value-dependent expression
275       //   tuple<T...>::X<>::value
276       // FIXME: Is that the right behavior?
277       template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
278     };
279     template <> class tuple<> {};
280     tuple a = {1, 2, 3}; // expected-error {{excess elements in struct initializer}}
281   }
282 
283   namespace libcxx_3 {
284     template<typename ...T> struct scoped_lock {
285       scoped_lock(T...);
286     };
287     template<> struct scoped_lock<> {};
288     scoped_lock l = {};
289   }
290 }
291 
292 namespace dependent {
293   template<typename T> struct X {
294     X(T);
295   };
Var(T t)296   template<typename T> int Var(T t) {
297     X x(t);
298     return X(x) + 1; // expected-error {{invalid operands}}
299   }
Cast(T t)300   template<typename T> int Cast(T t) {
301     return X(X(t)) + 1; // expected-error {{invalid operands}}
302   }
New(T t)303   template<typename T> int New(T t) {
304     return X(new X(t)) + 1; // expected-error {{invalid operands}}
305   };
306   template int Var(float); // expected-note {{instantiation of}}
307   template int Cast(float); // expected-note {{instantiation of}}
308   template int New(float); // expected-note {{instantiation of}}
309   template<typename T> int operator+(X<T>, int);
310   template int Var(int);
311   template int Cast(int);
312   template int New(int);
313 
test()314   template<template<typename> typename Y> void test() {
315     Y(0);
316     new Y(0);
317     Y y(0);
318   }
319   template void test<X>();
320 }
321 
322 namespace injected_class_name {
323   template<typename T = void> struct A {
324     A();
325     template<typename U> A(A<U>);
326   };
327   A<int> a;
328   A b = a;
329   using T = decltype(a);
330   using T = decltype(b);
331 }
332 
333 namespace member_guides {
334   // PR34520
335   template<class>
336   struct Foo {
337     template <class T> struct Bar {
Barmember_guides::Foo::Bar338       Bar(...) {}
339     };
340     Bar(int) -> Bar<int>;
341   };
342   Foo<int>::Bar b = 0;
343 
344   struct A {
345     template<typename T> struct Public; // expected-note {{declared public}}
346     Public(float) -> Public<float>;
347   protected: // expected-note {{declared protected by intervening access specifier}}
348     template<typename T> struct Protected; // expected-note 2{{declared protected}}
349     Protected(float) -> Protected<float>;
350     Public(int) -> Public<int>; // expected-error {{different access}}
351   private: // expected-note {{declared private by intervening access specifier}}
352     template<typename T> struct Private; // expected-note {{declared private}}
353     Protected(int) -> Protected<int>; // expected-error {{different access}}
354   public: // expected-note 2{{declared public by intervening access specifier}}
355     template<typename T> Public(T) -> Public<T>;
356     template<typename T> Protected(T) -> Protected<T>; // expected-error {{different access}}
357     template<typename T> Private(T) -> Private<T>; // expected-error {{different access}}
358   };
359 }
360 
361 namespace rdar41903969 {
362 template <class T> struct A {};
363 template <class T> struct B;
364 template <class T> struct C {
365   C(A<T>&);
366   C(B<T>&);
367 };
368 
foo(A<int> & a,B<int> & b)369 void foo(A<int> &a, B<int> &b) {
370   (void)C{b};
371   (void)C{a};
372 }
373 
374 template<typename T> struct X {
375   X(std::initializer_list<T>) = delete;
376   X(const X&);
377 };
378 
379 template <class T> struct D : X<T> {};
380 
bar(D<int> & d)381 void bar(D<int>& d) {
382   (void)X{d};
383 }
384 }
385 
386 namespace rdar41330135 {
387 template <int> struct A {};
388 template <class T>
389 struct S {
390   template <class U>
391   S(T a, U t, A<sizeof(t)>);
392 };
393 template <class T> struct D {
394   D(T t, A<sizeof(t)>);
395 };
f()396 int f() {
397   S s(0, 0, A<sizeof(int)>());
398   D d(0, A<sizeof(int)>());
399 }
400 
401 namespace test_dupls {
402 template<unsigned long> struct X {};
403 template<typename T> struct A {
404   A(T t, X<sizeof(t)>);
405 };
406 A a(0, {});
407 template<typename U> struct B {
408   B(U u, X<sizeof(u)>);
409 };
410 B b(0, {});
411 }
412 
413 }
414 
415 #pragma clang diagnostic push
416 #pragma clang diagnostic warning "-Wctad-maybe-unsupported"
417 namespace test_implicit_ctad_warning {
418 
419 template <class T>
420 struct Tag {};
421 
422 template <class T>
423 struct NoExplicit { // expected-note {{add a deduction guide to suppress this warning}}
NoExplicittest_implicit_ctad_warning::NoExplicit424   NoExplicit(T) {}
NoExplicittest_implicit_ctad_warning::NoExplicit425   NoExplicit(T, int) {}
426 };
427 
428 // expected-warning@+1 {{'NoExplicit' may not intend to support class template argument deduction}}
429 NoExplicit ne(42);
430 
431 template <class U>
432 struct HasExplicit {
HasExplicittest_implicit_ctad_warning::HasExplicit433   HasExplicit(U) {}
HasExplicittest_implicit_ctad_warning::HasExplicit434   HasExplicit(U, int) {}
435 };
436 template <class U> HasExplicit(U, int) -> HasExplicit<Tag<U>>;
437 
438 HasExplicit he(42);
439 
440 // Motivating examples from (taken from Stephan Lavavej's 2018 Cppcon talk)
441 template <class T, class U>
442 struct AmateurPair { // expected-note {{add a deduction guide to suppress this warning}}
443   T first;
444   U second;
AmateurPairtest_implicit_ctad_warning::AmateurPair445   explicit AmateurPair(const T &t, const U &u) {}
446 };
447 // expected-warning@+1 {{'AmateurPair' may not intend to support class template argument deduction}}
448 AmateurPair p1(42, "hello world"); // deduces to Pair<int, char[12]>
449 
450 template <class T, class U>
451 struct AmateurPair2 { // expected-note {{add a deduction guide to suppress this warning}}
452   T first;
453   U second;
AmateurPair2test_implicit_ctad_warning::AmateurPair2454   explicit AmateurPair2(T t, U u) {}
455 };
456 // expected-warning@+1 {{'AmateurPair2' may not intend to support class template argument deduction}}
457 AmateurPair2 p2(42, "hello world"); // deduces to Pair2<int, const char*>
458 
459 template <class T, class U>
460 struct ProPair {
461   T first; U second;
ProPairtest_implicit_ctad_warning::ProPair462     explicit ProPair(T const& t, U  const& u)  {}
463 };
464 template<class T1, class T2>
465 ProPair(T1, T2) -> ProPair<T1, T2>;
466 ProPair p3(42, "hello world"); // deduces to ProPair<int, const char*>
467 static_assert(__is_same(decltype(p3), ProPair<int, const char*>));
468 
469 // Test that user-defined explicit guides suppress the warning even if they
470 // aren't used as candidates.
471 template <class T>
472 struct TestExplicitCtor {
TestExplicitCtortest_implicit_ctad_warning::TestExplicitCtor473   TestExplicitCtor(T) {}
474 };
475 template <class T>
476 explicit TestExplicitCtor(TestExplicitCtor<T> const&) -> TestExplicitCtor<void>;
477 TestExplicitCtor<int> ce1{42};
478 TestExplicitCtor ce2 = ce1;
479 static_assert(__is_same(decltype(ce2), TestExplicitCtor<int>), "");
480 
481 struct allow_ctad_t {
482   allow_ctad_t() = delete;
483 };
484 
485 template <class T>
486 struct TestSuppression {
TestSuppressiontest_implicit_ctad_warning::TestSuppression487   TestSuppression(T) {}
488 };
489 TestSuppression(allow_ctad_t)->TestSuppression<void>;
490 TestSuppression ta("abc");
491 static_assert(__is_same(decltype(ta), TestSuppression<const char *>), "");
492 }
493 #pragma clang diagnostic pop
494 
495 namespace PR41549 {
496 
497 template <class H, class P> struct umm;
498 
499 template <class H = int, class P = int>
500 struct umm {
501   umm(H h = 0, P p = 0);
502 };
503 
504 template <class H, class P> struct umm;
505 
506 umm m(1);
507 
508 }
509 
510 namespace PR45124 {
511   class a { int d; };
512   class b : a {};
513 
514   struct x { ~x(); };
515   template<typename> class y { y(x = x()); };
516   template<typename z> y(z)->y<z>;
517 
518   // Not a constant initializer, but trivial default initialization. We won't
519   // detect this as trivial default initialization if synthesizing the implicit
520   // deduction guide 'template<typename T> y(x = x()) -> Y<T>;' leaves behind a
521   // pending cleanup.
522   __thread b g;
523 }
524 
525 #else
526 
527 // expected-no-diagnostics
528 namespace undefined_warnings {
529   // Make sure we don't get an "undefined but used internal symbol" warning for the deduction guide here.
530   namespace {
531     template <typename T>
532     struct TemplDObj {
TemplDObjundefined_warnings::__anonbfb4b0ff0111::TemplDObj533       explicit TemplDObj(T func) noexcept {}
534     };
535     auto test1 = TemplDObj(0);
536 
537     TemplDObj(float) -> TemplDObj<double>;
538     auto test2 = TemplDObj(.0f);
539   }
540 }
541 #endif
542