1 //===-- include/flang/Evaluate/integer.h ------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef FORTRAN_EVALUATE_INTEGER_H_
10 #define FORTRAN_EVALUATE_INTEGER_H_
11 
12 // Emulates binary integers of an arbitrary (but fixed) bit size for use
13 // when the host C++ environment does not support that size or when the
14 // full suite of Fortran's integer intrinsic scalar functions are needed.
15 // The data model is typeless, so signed* and unsigned operations
16 // are distinguished from each other with distinct member function interfaces.
17 // (*"Signed" here means two's-complement, just to be clear.  Ones'-complement
18 // and signed-magnitude encodings appear to be extinct in 2018.)
19 
20 #include "flang/Common/bit-population-count.h"
21 #include "flang/Common/leading-zero-bit-count.h"
22 #include "flang/Evaluate/common.h"
23 #include <cinttypes>
24 #include <climits>
25 #include <cstddef>
26 #include <cstdint>
27 #include <string>
28 #include <type_traits>
29 
30 // Some environments, viz. clang on Darwin, allow the macro HUGE
31 // to leak out of <math.h> even when it is never directly included.
32 #undef HUGE
33 
34 namespace Fortran::evaluate::value {
35 
36 // Implements an integer as an assembly of smaller host integer parts
37 // that constitute the digits of a large-radix fixed-point number.
38 // For best performance, the type of these parts should be half of the
39 // size of the largest efficient integer supported by the host processor.
40 // These parts are stored in either little- or big-endian order, which can
41 // match that of the host's endianness or not; but if the ordering matches
42 // that of the host, raw host data can be overlaid with a properly configured
43 // instance of this class and used in situ.
44 // To facilitate exhaustive testing of what would otherwise be more rare
45 // edge cases, this class template may be configured to use other part
46 // types &/or partial fields in the parts.  The radix (i.e., the number
47 // of possible values in a part), however, must be a power of two; this
48 // template class is not generalized to enable, say, decimal arithmetic.
49 // Member functions that correspond to Fortran intrinsic functions are
50 // named accordingly in ALL CAPS so that they can be referenced easily in
51 // the language standard.
52 template <int BITS, bool IS_LITTLE_ENDIAN = isHostLittleEndian,
53     int PARTBITS = BITS <= 32 ? BITS : 32,
54     typename PART = HostUnsignedInt<PARTBITS>,
55     typename BIGPART = HostUnsignedInt<PARTBITS * 2>>
56 class Integer {
57 public:
58   static constexpr int bits{BITS};
59   static constexpr int partBits{PARTBITS};
60   using Part = PART;
61   using BigPart = BIGPART;
62   static_assert(std::is_integral_v<Part>);
63   static_assert(std::is_unsigned_v<Part>);
64   static_assert(std::is_integral_v<BigPart>);
65   static_assert(std::is_unsigned_v<BigPart>);
66   static_assert(CHAR_BIT * sizeof(BigPart) >= 2 * partBits);
67   static constexpr bool littleEndian{IS_LITTLE_ENDIAN};
68 
69 private:
70   static constexpr int maxPartBits{CHAR_BIT * sizeof(Part)};
71   static_assert(partBits > 0 && partBits <= maxPartBits);
72   static constexpr int extraPartBits{maxPartBits - partBits};
73   static constexpr int parts{(bits + partBits - 1) / partBits};
74   static_assert(parts >= 1);
75   static constexpr int extraTopPartBits{
76       extraPartBits + (parts * partBits) - bits};
77   static constexpr int topPartBits{maxPartBits - extraTopPartBits};
78   static_assert(topPartBits > 0 && topPartBits <= partBits);
79   static_assert((parts - 1) * partBits + topPartBits == bits);
80   static constexpr Part partMask{static_cast<Part>(~0) >> extraPartBits};
81   static constexpr Part topPartMask{static_cast<Part>(~0) >> extraTopPartBits};
82 
83 public:
84   // Some types used for member function results
85   struct ValueWithOverflow {
86     Integer value;
87     bool overflow;
88   };
89 
90   struct ValueWithCarry {
91     Integer value;
92     bool carry;
93   };
94 
95   struct Product {
SignedMultiplicationOverflowedProduct96     bool SignedMultiplicationOverflowed() const {
97       return lower.IsNegative() ? (upper.POPCNT() != bits) : !upper.IsZero();
98     }
99     Integer upper, lower;
100   };
101 
102   struct QuotientWithRemainder {
103     Integer quotient, remainder;
104     bool divisionByZero, overflow;
105   };
106 
107   struct PowerWithErrors {
108     Integer power;
109     bool divisionByZero{false}, overflow{false}, zeroToZero{false};
110   };
111 
112   // Constructors and value-generating static functions
Integer()113   constexpr Integer() { Clear(); } // default constructor: zero
114   constexpr Integer(const Integer &) = default;
115   constexpr Integer(Integer &&) = default;
116 
117   // C++'s integral types can all be converted to Integer
118   // with silent truncation.
119   template <typename INT, typename = std::enable_if_t<std::is_integral_v<INT>>>
Integer(INT n)120   constexpr Integer(INT n) {
121     constexpr int nBits = CHAR_BIT * sizeof n;
122     if constexpr (nBits < partBits) {
123       if constexpr (std::is_unsigned_v<INT>) {
124         // Zero-extend an unsigned smaller value.
125         SetLEPart(0, n);
126         for (int j{1}; j < parts; ++j) {
127           SetLEPart(j, 0);
128         }
129       } else {
130         // n has a signed type smaller than the usable
131         // bits in a Part.
132         // Avoid conversions that change both size and sign.
133         using SignedPart = std::make_signed_t<Part>;
134         Part p = static_cast<SignedPart>(n);
135         SetLEPart(0, p);
136         if constexpr (parts > 1) {
137           Part signExtension = static_cast<SignedPart>(-(n < 0));
138           for (int j{1}; j < parts; ++j) {
139             SetLEPart(j, signExtension);
140           }
141         }
142       }
143     } else {
144       // n has some integral type no smaller than the usable
145       // bits in a Part.
146       // Ensure that all shifts are smaller than a whole word.
147       if constexpr (std::is_unsigned_v<INT>) {
148         for (int j{0}; j < parts; ++j) {
149           SetLEPart(j, static_cast<Part>(n));
150           if constexpr (nBits > partBits) {
151             n >>= partBits;
152           } else {
153             n = 0;
154           }
155         }
156       } else {
157         INT signExtension{-(n < 0)};
158         static_assert(nBits >= partBits);
159         if constexpr (nBits > partBits) {
160           signExtension <<= nBits - partBits;
161           for (int j{0}; j < parts; ++j) {
162             SetLEPart(j, static_cast<Part>(n));
163             n >>= partBits;
164             n |= signExtension;
165           }
166         } else {
167           SetLEPart(0, static_cast<Part>(n));
168           for (int j{1}; j < parts; ++j) {
169             SetLEPart(j, static_cast<Part>(signExtension));
170           }
171         }
172       }
173     }
174   }
175 
176   constexpr Integer &operator=(const Integer &) = default;
177 
178   constexpr bool operator<(const Integer &that) const {
179     return CompareUnsigned(that) == Ordering::Less;
180   }
181   constexpr bool operator<=(const Integer &that) const {
182     return CompareUnsigned(that) != Ordering::Greater;
183   }
184   constexpr bool operator==(const Integer &that) const {
185     return CompareUnsigned(that) == Ordering::Equal;
186   }
187   constexpr bool operator!=(const Integer &that) const {
188     return !(*this == that);
189   }
190   constexpr bool operator>=(const Integer &that) const {
191     return CompareUnsigned(that) != Ordering::Less;
192   }
193   constexpr bool operator>(const Integer &that) const {
194     return CompareUnsigned(that) == Ordering::Greater;
195   }
196 
197   // Left-justified mask (e.g., MASKL(1) has only its sign bit set)
MASKL(int places)198   static constexpr Integer MASKL(int places) {
199     if (places <= 0) {
200       return {};
201     } else if (places >= bits) {
202       return MASKR(bits);
203     } else {
204       return MASKR(bits - places).NOT();
205     }
206   }
207 
208   // Right-justified mask (e.g., MASKR(1) == 1, MASKR(2) == 3, &c.)
MASKR(int places)209   static constexpr Integer MASKR(int places) {
210     Integer result{nullptr};
211     int j{0};
212     for (; j + 1 < parts && places >= partBits; ++j, places -= partBits) {
213       result.LEPart(j) = partMask;
214     }
215     if (places > 0) {
216       if (j + 1 < parts) {
217         result.LEPart(j++) = partMask >> (partBits - places);
218       } else if (j + 1 == parts) {
219         if (places >= topPartBits) {
220           result.LEPart(j++) = topPartMask;
221         } else {
222           result.LEPart(j++) = topPartMask >> (topPartBits - places);
223         }
224       }
225     }
226     for (; j < parts; ++j) {
227       result.LEPart(j) = 0;
228     }
229     return result;
230   }
231 
232   static constexpr ValueWithOverflow Read(
233       const char *&pp, std::uint64_t base = 10, bool isSigned = false) {
234     Integer result;
235     bool overflow{false};
236     const char *p{pp};
237     while (*p == ' ' || *p == '\t') {
238       ++p;
239     }
240     bool negate{*p == '-'};
241     if (negate || *p == '+') {
242       while (*++p == ' ' || *p == '\t') {
243       }
244     }
245     Integer radix{base};
246     // This code makes assumptions about local contiguity in regions of the
247     // character set and only works up to base 36.  These assumptions hold
248     // for all current combinations of surviving character sets (ASCII, UTF-8,
249     // EBCDIC) and the bases used in Fortran source and formatted I/O
250     // (viz., 2, 8, 10, & 16).  But: management thought that a disclaimer
251     // might be needed here to warn future users of this code about these
252     // assumptions, so here you go, future programmer in some postapocalyptic
253     // hellscape, and best of luck with the inexorable killer robots.
254     for (; std::uint64_t digit = *p; ++p) {
255       if (digit >= '0' && digit <= '9' && digit < '0' + base) {
256         digit -= '0';
257       } else if (base > 10 && digit >= 'A' && digit < 'A' + base - 10) {
258         digit -= 'A' - 10;
259       } else if (base > 10 && digit >= 'a' && digit < 'a' + base - 10) {
260         digit -= 'a' - 10;
261       } else {
262         break;
263       }
264       Product shifted{result.MultiplyUnsigned(radix)};
265       overflow |= !shifted.upper.IsZero();
266       ValueWithCarry next{shifted.lower.AddUnsigned(Integer{digit})};
267       overflow |= next.carry;
268       result = next.value;
269     }
270     pp = p;
271     if (negate) {
272       result = result.Negate().value;
273       overflow |= isSigned && !result.IsNegative() && !result.IsZero();
274     } else {
275       overflow |= isSigned && result.IsNegative();
276     }
277     return {result, overflow};
278   }
279 
280   template <typename FROM>
ConvertUnsigned(const FROM & that)281   static constexpr ValueWithOverflow ConvertUnsigned(const FROM &that) {
282     std::uint64_t field{that.ToUInt64()};
283     ValueWithOverflow result{field, false};
284     if constexpr (bits < 64) {
285       result.overflow = (field >> bits) != 0;
286     }
287     for (int j{64}; j < that.bits && !result.overflow; j += 64) {
288       field = that.SHIFTR(j).ToUInt64();
289       if (bits <= j) {
290         result.overflow = field != 0;
291       } else {
292         result.value = result.value.IOR(Integer{field}.SHIFTL(j));
293         if (bits < j + 64) {
294           result.overflow = (field >> (bits - j)) != 0;
295         }
296       }
297     }
298     return result;
299   }
300 
301   template <typename FROM>
ConvertSigned(const FROM & that)302   static constexpr ValueWithOverflow ConvertSigned(const FROM &that) {
303     ValueWithOverflow result{ConvertUnsigned(that)};
304     if constexpr (bits > FROM::bits) {
305       if (that.IsNegative()) {
306         result.value = result.value.IOR(MASKL(bits - FROM::bits));
307       }
308       result.overflow = false;
309     } else if constexpr (bits < FROM::bits) {
310       auto back{FROM::template ConvertSigned(result.value)};
311       result.overflow = back.value.CompareUnsigned(that) != Ordering::Equal;
312     }
313     return result;
314   }
315 
UnsignedDecimal()316   std::string UnsignedDecimal() const {
317     if constexpr (bits < 4) {
318       char digit = '0' + ToUInt64();
319       return {digit};
320     } else if (IsZero()) {
321       return {'0'};
322     } else {
323       QuotientWithRemainder qr{DivideUnsigned(10)};
324       char digit = '0' + qr.remainder.ToUInt64();
325       if (qr.quotient.IsZero()) {
326         return {digit};
327       } else {
328         return qr.quotient.UnsignedDecimal() + digit;
329       }
330     }
331   }
332 
SignedDecimal()333   std::string SignedDecimal() const {
334     if (IsNegative()) {
335       return std::string{'-'} + Negate().value.UnsignedDecimal();
336     } else {
337       return UnsignedDecimal();
338     }
339   }
340 
341   // Omits a leading "0x".
Hexadecimal()342   std::string Hexadecimal() const {
343     std::string result;
344     int digits{(bits + 3) >> 2};
345     for (int j{0}; j < digits; ++j) {
346       int pos{(digits - 1 - j) * 4};
347       char nybble = IBITS(pos, 4).ToUInt64();
348       if (nybble != 0 || !result.empty() || j + 1 == digits) {
349         char digit = '0' + nybble;
350         if (digit > '9') {
351           digit += 'a' - ('9' + 1);
352         }
353         result += digit;
354       }
355     }
356     return result;
357   }
358 
359   static constexpr int DIGITS{bits - 1}; // don't count the sign bit
HUGE()360   static constexpr Integer HUGE() { return MASKR(bits - 1); }
361   static constexpr int RANGE{// in the sense of SELECTED_INT_KIND
362       // This magic value is LOG10(2.)*1E12.
363       static_cast<int>(((bits - 1) * 301029995664) / 1000000000000)};
364 
IsZero()365   constexpr bool IsZero() const {
366     for (int j{0}; j < parts; ++j) {
367       if (part_[j] != 0) {
368         return false;
369       }
370     }
371     return true;
372   }
373 
IsNegative()374   constexpr bool IsNegative() const {
375     return (LEPart(parts - 1) >> (topPartBits - 1)) & 1;
376   }
377 
CompareToZeroSigned()378   constexpr Ordering CompareToZeroSigned() const {
379     if (IsNegative()) {
380       return Ordering::Less;
381     } else if (IsZero()) {
382       return Ordering::Equal;
383     } else {
384       return Ordering::Greater;
385     }
386   }
387 
388   // Count the number of contiguous most-significant bit positions
389   // that are clear.
LEADZ()390   constexpr int LEADZ() const {
391     if (LEPart(parts - 1) != 0) {
392       int lzbc{common::LeadingZeroBitCount(LEPart(parts - 1))};
393       return lzbc - extraTopPartBits;
394     }
395     int upperZeroes{topPartBits};
396     for (int j{1}; j < parts; ++j) {
397       if (Part p{LEPart(parts - 1 - j)}) {
398         int lzbc{common::LeadingZeroBitCount(p)};
399         return upperZeroes + lzbc - extraPartBits;
400       }
401       upperZeroes += partBits;
402     }
403     return bits;
404   }
405 
406   // Count the number of bit positions that are set.
POPCNT()407   constexpr int POPCNT() const {
408     int count{0};
409     for (int j{0}; j < parts; ++j) {
410       count += common::BitPopulationCount(part_[j]);
411     }
412     return count;
413   }
414 
415   // True when POPCNT is odd.
POPPAR()416   constexpr bool POPPAR() const { return POPCNT() & 1; }
417 
TRAILZ()418   constexpr int TRAILZ() const {
419     auto minus1{AddUnsigned(MASKR(bits))}; // { x-1, carry = x > 0 }
420     if (!minus1.carry) {
421       return bits; // was zero
422     } else {
423       // x ^ (x-1) has all bits set at and below original least-order set bit.
424       return IEOR(minus1.value).POPCNT() - 1;
425     }
426   }
427 
BTEST(int pos)428   constexpr bool BTEST(int pos) const {
429     if (pos < 0 || pos >= bits) {
430       return false;
431     } else {
432       return (LEPart(pos / partBits) >> (pos % partBits)) & 1;
433     }
434   }
435 
CompareUnsigned(const Integer & y)436   constexpr Ordering CompareUnsigned(const Integer &y) const {
437     for (int j{parts}; j-- > 0;) {
438       if (LEPart(j) > y.LEPart(j)) {
439         return Ordering::Greater;
440       }
441       if (LEPart(j) < y.LEPart(j)) {
442         return Ordering::Less;
443       }
444     }
445     return Ordering::Equal;
446   }
447 
BGE(const Integer & y)448   constexpr bool BGE(const Integer &y) const {
449     return CompareUnsigned(y) != Ordering::Less;
450   }
BGT(const Integer & y)451   constexpr bool BGT(const Integer &y) const {
452     return CompareUnsigned(y) == Ordering::Greater;
453   }
BLE(const Integer & y)454   constexpr bool BLE(const Integer &y) const { return !BGT(y); }
BLT(const Integer & y)455   constexpr bool BLT(const Integer &y) const { return !BGE(y); }
456 
CompareSigned(const Integer & y)457   constexpr Ordering CompareSigned(const Integer &y) const {
458     bool isNegative{IsNegative()};
459     if (isNegative != y.IsNegative()) {
460       return isNegative ? Ordering::Less : Ordering::Greater;
461     }
462     return CompareUnsigned(y);
463   }
464 
ToUInt64()465   constexpr std::uint64_t ToUInt64() const {
466     std::uint64_t n{LEPart(0)};
467     int filled{partBits};
468     for (int j{1}; filled < 64 && j < parts; ++j, filled += partBits) {
469       n |= std::uint64_t{LEPart(j)} << filled;
470     }
471     return n;
472   }
473 
ToInt64()474   constexpr std::int64_t ToInt64() const {
475     std::int64_t signExtended = ToUInt64();
476     if constexpr (bits < 64) {
477       signExtended |= -(signExtended >> (bits - 1)) << bits;
478     }
479     return signExtended;
480   }
481 
482   // Ones'-complement (i.e., C's ~)
NOT()483   constexpr Integer NOT() const {
484     Integer result{nullptr};
485     for (int j{0}; j < parts; ++j) {
486       result.SetLEPart(j, ~LEPart(j));
487     }
488     return result;
489   }
490 
491   // Two's-complement negation (-x = ~x + 1).
492   // An overflow flag accompanies the result, and will be true when the
493   // operand is the most negative signed number (MASKL(1)).
Negate()494   constexpr ValueWithOverflow Negate() const {
495     Integer result{nullptr};
496     Part carry{1};
497     for (int j{0}; j + 1 < parts; ++j) {
498       Part newCarry{LEPart(j) == 0 && carry};
499       result.SetLEPart(j, ~LEPart(j) + carry);
500       carry = newCarry;
501     }
502     Part top{LEPart(parts - 1)};
503     result.SetLEPart(parts - 1, ~top + carry);
504     bool overflow{top != 0 && result.LEPart(parts - 1) == top};
505     return {result, overflow};
506   }
507 
ABS()508   constexpr ValueWithOverflow ABS() const {
509     if (IsNegative()) {
510       return Negate();
511     } else {
512       return {*this, false};
513     }
514   }
515 
516   // Shifts the operand left when the count is positive, right when negative.
517   // Vacated bit positions are filled with zeroes.
ISHFT(int count)518   constexpr Integer ISHFT(int count) const {
519     if (count < 0) {
520       return SHIFTR(-count);
521     } else {
522       return SHIFTL(count);
523     }
524   }
525 
526   // Left shift with zero fill.
SHIFTL(int count)527   constexpr Integer SHIFTL(int count) const {
528     if (count <= 0) {
529       return *this;
530     } else {
531       Integer result{nullptr};
532       int shiftParts{count / partBits};
533       int bitShift{count - partBits * shiftParts};
534       int j{parts - 1};
535       if (bitShift == 0) {
536         for (; j >= shiftParts; --j) {
537           result.SetLEPart(j, LEPart(j - shiftParts));
538         }
539         for (; j >= 0; --j) {
540           result.LEPart(j) = 0;
541         }
542       } else {
543         for (; j > shiftParts; --j) {
544           result.SetLEPart(j,
545               ((LEPart(j - shiftParts) << bitShift) |
546                   (LEPart(j - shiftParts - 1) >> (partBits - bitShift))));
547         }
548         if (j == shiftParts) {
549           result.SetLEPart(j, LEPart(0) << bitShift);
550           --j;
551         }
552         for (; j >= 0; --j) {
553           result.LEPart(j) = 0;
554         }
555       }
556       return result;
557     }
558   }
559 
560   // Circular shift of a field of least-significant bits.  The least-order
561   // "size" bits are shifted circularly in place by "count" positions;
562   // the shift is leftward if count is nonnegative, rightward otherwise.
563   // Higher-order bits are unchanged.
564   constexpr Integer ISHFTC(int count, int size = bits) const {
565     if (count == 0 || size <= 0) {
566       return *this;
567     }
568     if (size > bits) {
569       size = bits;
570     }
571     count %= size;
572     if (count == 0) {
573       return *this;
574     }
575     int middleBits{size - count}, leastBits{count};
576     if (count < 0) {
577       middleBits = -count;
578       leastBits = size + count;
579     }
580     if (size == bits) {
581       return SHIFTL(leastBits).IOR(SHIFTR(middleBits));
582     }
583     Integer unchanged{IAND(MASKL(bits - size))};
584     Integer middle{IAND(MASKR(middleBits)).SHIFTL(leastBits)};
585     Integer least{SHIFTR(middleBits).IAND(MASKR(leastBits))};
586     return unchanged.IOR(middle).IOR(least);
587   }
588 
589   // Double shifts, aka shifts with specific fill.
SHIFTLWithFill(const Integer & fill,int count)590   constexpr Integer SHIFTLWithFill(const Integer &fill, int count) const {
591     if (count <= 0) {
592       return *this;
593     } else if (count >= 2 * bits) {
594       return {};
595     } else if (count > bits) {
596       return fill.SHIFTL(count - bits);
597     } else if (count == bits) {
598       return fill;
599     } else {
600       return SHIFTL(count).IOR(fill.SHIFTR(bits - count));
601     }
602   }
603 
SHIFTRWithFill(const Integer & fill,int count)604   constexpr Integer SHIFTRWithFill(const Integer &fill, int count) const {
605     if (count <= 0) {
606       return *this;
607     } else if (count >= 2 * bits) {
608       return {};
609     } else if (count > bits) {
610       return fill.SHIFTR(count - bits);
611     } else if (count == bits) {
612       return fill;
613     } else {
614       return SHIFTR(count).IOR(fill.SHIFTL(bits - count));
615     }
616   }
617 
DSHIFTL(const Integer & fill,int count)618   constexpr Integer DSHIFTL(const Integer &fill, int count) const {
619     // DSHIFTL(I,J) shifts I:J left; the second argument is the right fill.
620     return SHIFTLWithFill(fill, count);
621   }
622 
DSHIFTR(const Integer & value,int count)623   constexpr Integer DSHIFTR(const Integer &value, int count) const {
624     // DSHIFTR(I,J) shifts I:J right; the *first* argument is the left fill.
625     return value.SHIFTRWithFill(*this, count);
626   }
627 
628   // Vacated upper bits are filled with zeroes.
SHIFTR(int count)629   constexpr Integer SHIFTR(int count) const {
630     if (count <= 0) {
631       return *this;
632     } else {
633       Integer result{nullptr};
634       int shiftParts{count / partBits};
635       int bitShift{count - partBits * shiftParts};
636       int j{0};
637       if (bitShift == 0) {
638         for (; j + shiftParts < parts; ++j) {
639           result.LEPart(j) = LEPart(j + shiftParts);
640         }
641         for (; j < parts; ++j) {
642           result.LEPart(j) = 0;
643         }
644       } else {
645         for (; j + shiftParts + 1 < parts; ++j) {
646           result.SetLEPart(j,
647               (LEPart(j + shiftParts) >> bitShift) |
648                   (LEPart(j + shiftParts + 1) << (partBits - bitShift)));
649         }
650         if (j + shiftParts + 1 == parts) {
651           result.LEPart(j++) = LEPart(parts - 1) >> bitShift;
652         }
653         for (; j < parts; ++j) {
654           result.LEPart(j) = 0;
655         }
656       }
657       return result;
658     }
659   }
660 
661   // Be advised, an arithmetic (sign-filling) right shift is not
662   // the same as a division by a power of two in all cases.
SHIFTA(int count)663   constexpr Integer SHIFTA(int count) const {
664     if (count <= 0) {
665       return *this;
666     } else if (IsNegative()) {
667       return SHIFTR(count).IOR(MASKL(count));
668     } else {
669       return SHIFTR(count);
670     }
671   }
672 
673   // Clears a single bit.
IBCLR(int pos)674   constexpr Integer IBCLR(int pos) const {
675     if (pos < 0 || pos >= bits) {
676       return *this;
677     } else {
678       Integer result{*this};
679       result.LEPart(pos / partBits) &= ~(Part{1} << (pos % partBits));
680       return result;
681     }
682   }
683 
684   // Sets a single bit.
IBSET(int pos)685   constexpr Integer IBSET(int pos) const {
686     if (pos < 0 || pos >= bits) {
687       return *this;
688     } else {
689       Integer result{*this};
690       result.LEPart(pos / partBits) |= Part{1} << (pos % partBits);
691       return result;
692     }
693   }
694 
695   // Extracts a field.
IBITS(int pos,int size)696   constexpr Integer IBITS(int pos, int size) const {
697     return SHIFTR(pos).IAND(MASKR(size));
698   }
699 
IAND(const Integer & y)700   constexpr Integer IAND(const Integer &y) const {
701     Integer result{nullptr};
702     for (int j{0}; j < parts; ++j) {
703       result.LEPart(j) = LEPart(j) & y.LEPart(j);
704     }
705     return result;
706   }
707 
IOR(const Integer & y)708   constexpr Integer IOR(const Integer &y) const {
709     Integer result{nullptr};
710     for (int j{0}; j < parts; ++j) {
711       result.LEPart(j) = LEPart(j) | y.LEPart(j);
712     }
713     return result;
714   }
715 
IEOR(const Integer & y)716   constexpr Integer IEOR(const Integer &y) const {
717     Integer result{nullptr};
718     for (int j{0}; j < parts; ++j) {
719       result.LEPart(j) = LEPart(j) ^ y.LEPart(j);
720     }
721     return result;
722   }
723 
MERGE_BITS(const Integer & y,const Integer & mask)724   constexpr Integer MERGE_BITS(const Integer &y, const Integer &mask) const {
725     return IAND(mask).IOR(y.IAND(mask.NOT()));
726   }
727 
MAX(const Integer & y)728   constexpr Integer MAX(const Integer &y) const {
729     if (CompareSigned(y) == Ordering::Less) {
730       return y;
731     } else {
732       return *this;
733     }
734   }
735 
MIN(const Integer & y)736   constexpr Integer MIN(const Integer &y) const {
737     if (CompareSigned(y) == Ordering::Less) {
738       return *this;
739     } else {
740       return y;
741     }
742   }
743 
744   // Unsigned addition with carry.
745   constexpr ValueWithCarry AddUnsigned(
746       const Integer &y, bool carryIn = false) const {
747     Integer sum{nullptr};
748     BigPart carry{carryIn};
749     for (int j{0}; j + 1 < parts; ++j) {
750       carry += LEPart(j);
751       carry += y.LEPart(j);
752       sum.SetLEPart(j, carry);
753       carry >>= partBits;
754     }
755     carry += LEPart(parts - 1);
756     carry += y.LEPart(parts - 1);
757     sum.SetLEPart(parts - 1, carry);
758     return {sum, carry > topPartMask};
759   }
760 
AddSigned(const Integer & y)761   constexpr ValueWithOverflow AddSigned(const Integer &y) const {
762     bool isNegative{IsNegative()};
763     bool sameSign{isNegative == y.IsNegative()};
764     ValueWithCarry sum{AddUnsigned(y)};
765     bool overflow{sameSign && sum.value.IsNegative() != isNegative};
766     return {sum.value, overflow};
767   }
768 
SubtractSigned(const Integer & y)769   constexpr ValueWithOverflow SubtractSigned(const Integer &y) const {
770     bool isNegative{IsNegative()};
771     bool sameSign{isNegative == y.IsNegative()};
772     ValueWithCarry diff{AddUnsigned(y.Negate().value)};
773     bool overflow{!sameSign && diff.value.IsNegative() != isNegative};
774     return {diff.value, overflow};
775   }
776 
777   // MAX(X-Y, 0)
DIM(const Integer & y)778   constexpr Integer DIM(const Integer &y) const {
779     if (CompareSigned(y) != Ordering::Greater) {
780       return {};
781     } else {
782       return SubtractSigned(y).value;
783     }
784   }
785 
SIGN(bool toNegative)786   constexpr ValueWithOverflow SIGN(bool toNegative) const {
787     if (toNegative == IsNegative()) {
788       return {*this, false};
789     } else if (toNegative) {
790       return Negate();
791     } else {
792       return ABS();
793     }
794   }
795 
SIGN(const Integer & sign)796   constexpr ValueWithOverflow SIGN(const Integer &sign) const {
797     return SIGN(sign.IsNegative());
798   }
799 
MultiplyUnsigned(const Integer & y)800   constexpr Product MultiplyUnsigned(const Integer &y) const {
801     Part product[2 * parts]{}; // little-endian full product
802     for (int j{0}; j < parts; ++j) {
803       if (Part xpart{LEPart(j)}) {
804         for (int k{0}; k < parts; ++k) {
805           if (Part ypart{y.LEPart(k)}) {
806             BigPart xy{xpart};
807             xy *= ypart;
808 #if defined __GNUC__ && __GNUC__ < 8
809             // && to < (2 * parts) was added to avoid GCC < 8 build failure on
810             // -Werror=array-bounds. This can be removed if -Werror is disable.
811             for (int to{j + k}; xy != 0 && to < (2 * parts); ++to) {
812 #else
813             for (int to{j + k}; xy != 0; ++to) {
814 #endif
815               xy += product[to];
816               product[to] = xy & partMask;
817               xy >>= partBits;
818             }
819           }
820         }
821       }
822     }
823     Integer upper{nullptr}, lower{nullptr};
824     for (int j{0}; j < parts; ++j) {
825       lower.LEPart(j) = product[j];
826       upper.LEPart(j) = product[j + parts];
827     }
828     if constexpr (topPartBits < partBits) {
829       upper = upper.SHIFTL(partBits - topPartBits);
830       upper.LEPart(0) |= lower.LEPart(parts - 1) >> topPartBits;
831       lower.LEPart(parts - 1) &= topPartMask;
832     }
833     return {upper, lower};
834   }
835 
836   constexpr Product MultiplySigned(const Integer &y) const {
837     bool yIsNegative{y.IsNegative()};
838     Integer absy{y};
839     if (yIsNegative) {
840       absy = y.Negate().value;
841     }
842     bool isNegative{IsNegative()};
843     Integer absx{*this};
844     if (isNegative) {
845       absx = Negate().value;
846     }
847     Product product{absx.MultiplyUnsigned(absy)};
848     if (isNegative != yIsNegative) {
849       product.lower = product.lower.NOT();
850       product.upper = product.upper.NOT();
851       Integer one{1};
852       auto incremented{product.lower.AddUnsigned(one)};
853       product.lower = incremented.value;
854       if (incremented.carry) {
855         product.upper = product.upper.AddUnsigned(one).value;
856       }
857     }
858     return product;
859   }
860 
861   constexpr QuotientWithRemainder DivideUnsigned(const Integer &divisor) const {
862     if (divisor.IsZero()) {
863       return {MASKR(bits), Integer{}, true, false}; // overflow to max value
864     }
865     int bitsDone{LEADZ()};
866     Integer top{SHIFTL(bitsDone)};
867     Integer quotient, remainder;
868     for (; bitsDone < bits; ++bitsDone) {
869       auto doubledTop{top.AddUnsigned(top)};
870       top = doubledTop.value;
871       remainder = remainder.AddUnsigned(remainder, doubledTop.carry).value;
872       bool nextBit{remainder.CompareUnsigned(divisor) != Ordering::Less};
873       quotient = quotient.AddUnsigned(quotient, nextBit).value;
874       if (nextBit) {
875         remainder = remainder.SubtractSigned(divisor).value;
876       }
877     }
878     return {quotient, remainder, false, false};
879   }
880 
881   // A nonzero remainder has the sign of the dividend, i.e., it computes
882   // the MOD intrinsic (X-INT(X/Y)*Y), not MODULO (which is below).
883   // 8/5 = 1r3;  -8/5 = -1r-3;  8/-5 = -1r3;  -8/-5 = 1r-3
884   constexpr QuotientWithRemainder DivideSigned(Integer divisor) const {
885     bool dividendIsNegative{IsNegative()};
886     bool negateQuotient{dividendIsNegative};
887     Ordering divisorOrdering{divisor.CompareToZeroSigned()};
888     if (divisorOrdering == Ordering::Less) {
889       negateQuotient = !negateQuotient;
890       auto negated{divisor.Negate()};
891       if (negated.overflow) {
892         // divisor was (and is) the most negative number
893         if (CompareUnsigned(divisor) == Ordering::Equal) {
894           return {MASKR(1), Integer{}, false, bits <= 1};
895         } else {
896           return {Integer{}, *this, false, false};
897         }
898       }
899       divisor = negated.value;
900     } else if (divisorOrdering == Ordering::Equal) {
901       // division by zero
902       if (dividendIsNegative) {
903         return {MASKL(1), Integer{}, true, false};
904       } else {
905         return {MASKR(bits - 1), Integer{}, true, false};
906       }
907     }
908     Integer dividend{*this};
909     if (dividendIsNegative) {
910       auto negated{Negate()};
911       if (negated.overflow) {
912         // Dividend was (and remains) the most negative number.
913         // See whether the original divisor was -1 (if so, it's 1 now).
914         if (divisorOrdering == Ordering::Less &&
915             divisor.CompareUnsigned(Integer{1}) == Ordering::Equal) {
916           // most negative number / -1 is the sole overflow case
917           return {*this, Integer{}, false, true};
918         }
919       } else {
920         dividend = negated.value;
921       }
922     }
923     // Overflow is not possible, and both the dividend and divisor
924     // are now positive.
925     QuotientWithRemainder result{dividend.DivideUnsigned(divisor)};
926     if (negateQuotient) {
927       result.quotient = result.quotient.Negate().value;
928     }
929     if (dividendIsNegative) {
930       result.remainder = result.remainder.Negate().value;
931     }
932     return result;
933   }
934 
935   // Result has the sign of the divisor argument.
936   // 8 mod 5 = 3;  -8 mod 5 = 2;  8 mod -5 = -2;  -8 mod -5 = -3
937   constexpr ValueWithOverflow MODULO(const Integer &divisor) const {
938     bool negativeDivisor{divisor.IsNegative()};
939     bool distinctSigns{IsNegative() != negativeDivisor};
940     QuotientWithRemainder divided{DivideSigned(divisor)};
941     if (distinctSigns && !divided.remainder.IsZero()) {
942       return {divided.remainder.AddUnsigned(divisor).value, divided.overflow};
943     } else {
944       return {divided.remainder, divided.overflow};
945     }
946   }
947 
948   constexpr PowerWithErrors Power(const Integer &exponent) const {
949     PowerWithErrors result{1, false, false, false};
950     if (exponent.IsZero()) {
951       // x**0 -> 1, including the case 0**0, which is not defined specifically
952       // in F'18 afaict; however, other Fortrans tested all produce 1, not 0,
953       // apart from nagfor, which stops with an error at runtime.
954       // Ada, APL, C's pow(), Haskell, Julia, MATLAB, and R all produce 1 too.
955       // F'77 explicitly states that 0**0 is mathematically undefined and
956       // therefore prohibited.
957       result.zeroToZero = IsZero();
958     } else if (exponent.IsNegative()) {
959       if (IsZero()) {
960         result.divisionByZero = true;
961         result.power = MASKR(bits - 1);
962       } else if (CompareSigned(Integer{1}) == Ordering::Equal) {
963         result.power = *this; // 1**x -> 1
964       } else if (CompareSigned(Integer{-1}) == Ordering::Equal) {
965         if (exponent.BTEST(0)) {
966           result.power = *this; // (-1)**x -> -1 if x is odd
967         }
968       } else {
969         result.power.Clear(); // j**k -> 0 if |j| > 1 and k < 0
970       }
971     } else {
972       Integer shifted{*this};
973       Integer pow{exponent};
974       int nbits{bits - pow.LEADZ()};
975       for (int j{0}; j < nbits; ++j) {
976         if (pow.BTEST(j)) {
977           Product product{result.power.MultiplySigned(shifted)};
978           result.power = product.lower;
979           result.overflow |= product.SignedMultiplicationOverflowed();
980         }
981         if (j + 1 < nbits) {
982           Product squared{shifted.MultiplySigned(shifted)};
983           result.overflow |= squared.SignedMultiplicationOverflowed();
984           shifted = squared.lower;
985         }
986       }
987     }
988     return result;
989   }
990 
991 private:
992   // A private constructor, selected by the use of nullptr,
993   // that is used by member functions when it would be a waste
994   // of time to initialize parts_[].
995   constexpr Integer(std::nullptr_t) {}
996 
997   // Accesses parts in little-endian order.
998   constexpr const Part &LEPart(int part) const {
999     if constexpr (littleEndian) {
1000       return part_[part];
1001     } else {
1002       return part_[parts - 1 - part];
1003     }
1004   }
1005 
1006   constexpr Part &LEPart(int part) {
1007     if constexpr (littleEndian) {
1008       return part_[part];
1009     } else {
1010       return part_[parts - 1 - part];
1011     }
1012   }
1013 
1014   constexpr void SetLEPart(int part, Part x) {
1015     LEPart(part) = x & PartMask(part);
1016   }
1017 
1018   static constexpr Part PartMask(int part) {
1019     return part == parts - 1 ? topPartMask : partMask;
1020   }
1021 
1022   constexpr void Clear() {
1023     for (int j{0}; j < parts; ++j) {
1024       part_[j] = 0;
1025     }
1026   }
1027 
1028   Part part_[parts]{};
1029 };
1030 
1031 extern template class Integer<8>;
1032 extern template class Integer<16>;
1033 extern template class Integer<32>;
1034 extern template class Integer<64>;
1035 extern template class Integer<80>;
1036 extern template class Integer<128>;
1037 } // namespace Fortran::evaluate::value
1038 #endif // FORTRAN_EVALUATE_INTEGER_H_
1039