1 //===-- ClangExpressionParser.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/Builtins.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/SourceLocation.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/Version.h"
18 #include "clang/CodeGen/CodeGenAction.h"
19 #include "clang/CodeGen/ModuleBuilder.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/EditedSource.h"
22 #include "clang/Edit/EditsReceiver.h"
23 #include "clang/Frontend/CompilerInstance.h"
24 #include "clang/Frontend/CompilerInvocation.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/FrontendPluginRegistry.h"
28 #include "clang/Frontend/TextDiagnosticBuffer.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Parse/ParseAST.h"
32 #include "clang/Rewrite/Core/Rewriter.h"
33 #include "clang/Rewrite/Frontend/FrontendActions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaConsumer.h"
37
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ExecutionEngine/ExecutionEngine.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
44
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/DynamicLibrary.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Host.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 #include "llvm/Support/Signals.h"
52
53 #include "ClangDiagnostic.h"
54 #include "ClangExpressionParser.h"
55 #include "ClangUserExpression.h"
56
57 #include "ASTUtils.h"
58 #include "ClangASTSource.h"
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionDeclMap.h"
61 #include "ClangExpressionHelper.h"
62 #include "ClangExpressionParser.h"
63 #include "ClangHost.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRDynamicChecks.h"
67 #include "IRForTarget.h"
68 #include "ModuleDependencyCollector.h"
69
70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
71 #include "lldb/Core/Debugger.h"
72 #include "lldb/Core/Disassembler.h"
73 #include "lldb/Core/Module.h"
74 #include "lldb/Core/StreamFile.h"
75 #include "lldb/Expression/IRExecutionUnit.h"
76 #include "lldb/Expression/IRInterpreter.h"
77 #include "lldb/Host/File.h"
78 #include "lldb/Host/HostInfo.h"
79 #include "lldb/Symbol/SymbolVendor.h"
80 #include "lldb/Target/ExecutionContext.h"
81 #include "lldb/Target/Language.h"
82 #include "lldb/Target/Process.h"
83 #include "lldb/Target/Target.h"
84 #include "lldb/Target/ThreadPlanCallFunction.h"
85 #include "lldb/Utility/DataBufferHeap.h"
86 #include "lldb/Utility/LLDBAssert.h"
87 #include "lldb/Utility/Log.h"
88 #include "lldb/Utility/Reproducer.h"
89 #include "lldb/Utility/Stream.h"
90 #include "lldb/Utility/StreamString.h"
91 #include "lldb/Utility/StringList.h"
92
93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h"
95
96 #include <cctype>
97 #include <memory>
98
99 using namespace clang;
100 using namespace llvm;
101 using namespace lldb_private;
102
103 //===----------------------------------------------------------------------===//
104 // Utility Methods for Clang
105 //===----------------------------------------------------------------------===//
106
107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
108 ClangModulesDeclVendor &m_decl_vendor;
109 ClangPersistentVariables &m_persistent_vars;
110 clang::SourceManager &m_source_mgr;
111 StreamString m_error_stream;
112 bool m_has_errors = false;
113
114 public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor & decl_vendor,ClangPersistentVariables & persistent_vars,clang::SourceManager & source_mgr)115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
116 ClangPersistentVariables &persistent_vars,
117 clang::SourceManager &source_mgr)
118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
119 m_source_mgr(source_mgr) {}
120
moduleImport(SourceLocation import_location,clang::ModuleIdPath path,const clang::Module *)121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
122 const clang::Module * /*null*/) override {
123 // Ignore modules that are imported in the wrapper code as these are not
124 // loaded by the user.
125 llvm::StringRef filename =
126 m_source_mgr.getPresumedLoc(import_location).getFilename();
127 if (filename == ClangExpressionSourceCode::g_prefix_file_name)
128 return;
129
130 SourceModule module;
131
132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
133 module.path.push_back(ConstString(component.first->getName()));
134
135 StreamString error_stream;
136
137 ClangModulesDeclVendor::ModuleVector exported_modules;
138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
139 m_has_errors = true;
140
141 for (ClangModulesDeclVendor::ModuleID module : exported_modules)
142 m_persistent_vars.AddHandLoadedClangModule(module);
143 }
144
hasErrors()145 bool hasErrors() { return m_has_errors; }
146
getErrorString()147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
148 };
149
AddAllFixIts(ClangDiagnostic * diag,const clang::Diagnostic & Info)150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
151 for (auto &fix_it : Info.getFixItHints()) {
152 if (fix_it.isNull())
153 continue;
154 diag->AddFixitHint(fix_it);
155 }
156 }
157
158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
159 public:
ClangDiagnosticManagerAdapter(DiagnosticOptions & opts)160 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
161 DiagnosticOptions *options = new DiagnosticOptions(opts);
162 options->ShowPresumedLoc = true;
163 options->ShowLevel = false;
164 m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
165 m_passthrough =
166 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
167 }
168
ResetManager(DiagnosticManager * manager=nullptr)169 void ResetManager(DiagnosticManager *manager = nullptr) {
170 m_manager = manager;
171 }
172
173 /// Returns the last ClangDiagnostic message that the DiagnosticManager
174 /// received or a nullptr if the DiagnosticMangager hasn't seen any
175 /// Clang diagnostics yet.
MaybeGetLastClangDiag() const176 ClangDiagnostic *MaybeGetLastClangDiag() const {
177 if (m_manager->Diagnostics().empty())
178 return nullptr;
179 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
180 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
181 return clang_diag;
182 }
183
HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,const clang::Diagnostic & Info)184 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
185 const clang::Diagnostic &Info) override {
186 if (!m_manager) {
187 // We have no DiagnosticManager before/after parsing but we still could
188 // receive diagnostics (e.g., by the ASTImporter failing to copy decls
189 // when we move the expression result ot the ScratchASTContext). Let's at
190 // least log these diagnostics until we find a way to properly render
191 // them and display them to the user.
192 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
193 if (log) {
194 llvm::SmallVector<char, 32> diag_str;
195 Info.FormatDiagnostic(diag_str);
196 diag_str.push_back('\0');
197 const char *plain_diag = diag_str.data();
198 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
199 }
200 return;
201 }
202
203 // Update error/warning counters.
204 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
205
206 // Render diagnostic message to m_output.
207 m_output.clear();
208 m_passthrough->HandleDiagnostic(DiagLevel, Info);
209 m_os->flush();
210
211 lldb_private::DiagnosticSeverity severity;
212 bool make_new_diagnostic = true;
213
214 switch (DiagLevel) {
215 case DiagnosticsEngine::Level::Fatal:
216 case DiagnosticsEngine::Level::Error:
217 severity = eDiagnosticSeverityError;
218 break;
219 case DiagnosticsEngine::Level::Warning:
220 severity = eDiagnosticSeverityWarning;
221 break;
222 case DiagnosticsEngine::Level::Remark:
223 case DiagnosticsEngine::Level::Ignored:
224 severity = eDiagnosticSeverityRemark;
225 break;
226 case DiagnosticsEngine::Level::Note:
227 m_manager->AppendMessageToDiagnostic(m_output);
228 make_new_diagnostic = false;
229
230 // 'note:' diagnostics for errors and warnings can also contain Fix-Its.
231 // We add these Fix-Its to the last error diagnostic to make sure
232 // that we later have all Fix-Its related to an 'error' diagnostic when
233 // we apply them to the user expression.
234 auto *clang_diag = MaybeGetLastClangDiag();
235 // If we don't have a previous diagnostic there is nothing to do.
236 // If the previous diagnostic already has its own Fix-Its, assume that
237 // the 'note:' Fix-It is just an alternative way to solve the issue and
238 // ignore these Fix-Its.
239 if (!clang_diag || clang_diag->HasFixIts())
240 break;
241 // Ignore all Fix-Its that are not associated with an error.
242 if (clang_diag->GetSeverity() != eDiagnosticSeverityError)
243 break;
244 AddAllFixIts(clang_diag, Info);
245 break;
246 }
247 if (make_new_diagnostic) {
248 // ClangDiagnostic messages are expected to have no whitespace/newlines
249 // around them.
250 std::string stripped_output =
251 std::string(llvm::StringRef(m_output).trim());
252
253 auto new_diagnostic = std::make_unique<ClangDiagnostic>(
254 stripped_output, severity, Info.getID());
255
256 // Don't store away warning fixits, since the compiler doesn't have
257 // enough context in an expression for the warning to be useful.
258 // FIXME: Should we try to filter out FixIts that apply to our generated
259 // code, and not the user's expression?
260 if (severity == eDiagnosticSeverityError)
261 AddAllFixIts(new_diagnostic.get(), Info);
262
263 m_manager->AddDiagnostic(std::move(new_diagnostic));
264 }
265 }
266
BeginSourceFile(const LangOptions & LO,const Preprocessor * PP)267 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
268 m_passthrough->BeginSourceFile(LO, PP);
269 }
270
EndSourceFile()271 void EndSourceFile() override { m_passthrough->EndSourceFile(); }
272
273 private:
274 DiagnosticManager *m_manager = nullptr;
275 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
276 /// Output stream of m_passthrough.
277 std::shared_ptr<llvm::raw_string_ostream> m_os;
278 /// Output string filled by m_os.
279 std::string m_output;
280 };
281
SetupModuleHeaderPaths(CompilerInstance * compiler,std::vector<std::string> include_directories,lldb::TargetSP target_sp)282 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
283 std::vector<std::string> include_directories,
284 lldb::TargetSP target_sp) {
285 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
286
287 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
288
289 for (const std::string &dir : include_directories) {
290 search_opts.AddPath(dir, frontend::System, false, true);
291 LLDB_LOG(log, "Added user include dir: {0}", dir);
292 }
293
294 llvm::SmallString<128> module_cache;
295 const auto &props = ModuleList::GetGlobalModuleListProperties();
296 props.GetClangModulesCachePath().GetPath(module_cache);
297 search_opts.ModuleCachePath = std::string(module_cache.str());
298 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
299
300 search_opts.ResourceDir = GetClangResourceDir().GetPath();
301
302 search_opts.ImplicitModuleMaps = true;
303 }
304
305 //===----------------------------------------------------------------------===//
306 // Implementation of ClangExpressionParser
307 //===----------------------------------------------------------------------===//
308
ClangExpressionParser(ExecutionContextScope * exe_scope,Expression & expr,bool generate_debug_info,std::vector<std::string> include_directories,std::string filename)309 ClangExpressionParser::ClangExpressionParser(
310 ExecutionContextScope *exe_scope, Expression &expr,
311 bool generate_debug_info, std::vector<std::string> include_directories,
312 std::string filename)
313 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
314 m_pp_callbacks(nullptr),
315 m_include_directories(std::move(include_directories)),
316 m_filename(std::move(filename)) {
317 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
318
319 // We can't compile expressions without a target. So if the exe_scope is
320 // null or doesn't have a target, then we just need to get out of here. I'll
321 // lldbassert and not make any of the compiler objects since
322 // I can't return errors directly from the constructor. Further calls will
323 // check if the compiler was made and
324 // bag out if it wasn't.
325
326 if (!exe_scope) {
327 lldbassert(exe_scope &&
328 "Can't make an expression parser with a null scope.");
329 return;
330 }
331
332 lldb::TargetSP target_sp;
333 target_sp = exe_scope->CalculateTarget();
334 if (!target_sp) {
335 lldbassert(target_sp.get() &&
336 "Can't make an expression parser with a null target.");
337 return;
338 }
339
340 // 1. Create a new compiler instance.
341 m_compiler = std::make_unique<CompilerInstance>();
342
343 // When capturing a reproducer, hook up the file collector with clang to
344 // collector modules and headers.
345 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
346 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
347 m_compiler->setModuleDepCollector(
348 std::make_shared<ModuleDependencyCollectorAdaptor>(
349 fp.GetFileCollector()));
350 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
351 opts.IncludeSystemHeaders = true;
352 opts.IncludeModuleFiles = true;
353 }
354
355 // Make sure clang uses the same VFS as LLDB.
356 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
357
358 lldb::LanguageType frame_lang =
359 expr.Language(); // defaults to lldb::eLanguageTypeUnknown
360 bool overridden_target_opts = false;
361 lldb_private::LanguageRuntime *lang_rt = nullptr;
362
363 std::string abi;
364 ArchSpec target_arch;
365 target_arch = target_sp->GetArchitecture();
366
367 const auto target_machine = target_arch.GetMachine();
368
369 // If the expression is being evaluated in the context of an existing stack
370 // frame, we introspect to see if the language runtime is available.
371
372 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
373 lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
374
375 // Make sure the user hasn't provided a preferred execution language with
376 // `expression --language X -- ...`
377 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
378 frame_lang = frame_sp->GetLanguage();
379
380 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
381 lang_rt = process_sp->GetLanguageRuntime(frame_lang);
382 LLDB_LOGF(log, "Frame has language of type %s",
383 Language::GetNameForLanguageType(frame_lang));
384 }
385
386 // 2. Configure the compiler with a set of default options that are
387 // appropriate for most situations.
388 if (target_arch.IsValid()) {
389 std::string triple = target_arch.GetTriple().str();
390 m_compiler->getTargetOpts().Triple = triple;
391 LLDB_LOGF(log, "Using %s as the target triple",
392 m_compiler->getTargetOpts().Triple.c_str());
393 } else {
394 // If we get here we don't have a valid target and just have to guess.
395 // Sometimes this will be ok to just use the host target triple (when we
396 // evaluate say "2+3", but other expressions like breakpoint conditions and
397 // other things that _are_ target specific really shouldn't just be using
398 // the host triple. In such a case the language runtime should expose an
399 // overridden options set (3), below.
400 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
401 LLDB_LOGF(log, "Using default target triple of %s",
402 m_compiler->getTargetOpts().Triple.c_str());
403 }
404 // Now add some special fixes for known architectures: Any arm32 iOS
405 // environment, but not on arm64
406 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
407 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
408 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
409 m_compiler->getTargetOpts().ABI = "apcs-gnu";
410 }
411 // Supported subsets of x86
412 if (target_machine == llvm::Triple::x86 ||
413 target_machine == llvm::Triple::x86_64) {
414 m_compiler->getTargetOpts().Features.push_back("+sse");
415 m_compiler->getTargetOpts().Features.push_back("+sse2");
416 }
417
418 // Set the target CPU to generate code for. This will be empty for any CPU
419 // that doesn't really need to make a special
420 // CPU string.
421 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
422
423 // Set the target ABI
424 abi = GetClangTargetABI(target_arch);
425 if (!abi.empty())
426 m_compiler->getTargetOpts().ABI = abi;
427
428 // 3. Now allow the runtime to provide custom configuration options for the
429 // target. In this case, a specialized language runtime is available and we
430 // can query it for extra options. For 99% of use cases, this will not be
431 // needed and should be provided when basic platform detection is not enough.
432 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this
433 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime
434 // having knowledge of clang::TargetOpts.
435 if (auto *renderscript_rt =
436 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt))
437 overridden_target_opts =
438 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
439
440 if (overridden_target_opts)
441 if (log && log->GetVerbose()) {
442 LLDB_LOGV(
443 log, "Using overridden target options for the expression evaluation");
444
445 auto opts = m_compiler->getTargetOpts();
446 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
447 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
448 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
449 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
450 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
451 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
452 StringList::LogDump(log, opts.Features, "Features");
453 }
454
455 // 4. Create and install the target on the compiler.
456 m_compiler->createDiagnostics();
457 auto target_info = TargetInfo::CreateTargetInfo(
458 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
459 if (log) {
460 LLDB_LOGF(log, "Using SIMD alignment: %d",
461 target_info->getSimdDefaultAlign());
462 LLDB_LOGF(log, "Target datalayout string: '%s'",
463 target_info->getDataLayout().getStringRepresentation().c_str());
464 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
465 LLDB_LOGF(log, "Target vector alignment: %d",
466 target_info->getMaxVectorAlign());
467 }
468 m_compiler->setTarget(target_info);
469
470 assert(m_compiler->hasTarget());
471
472 // 5. Set language options.
473 lldb::LanguageType language = expr.Language();
474 LangOptions &lang_opts = m_compiler->getLangOpts();
475
476 switch (language) {
477 case lldb::eLanguageTypeC:
478 case lldb::eLanguageTypeC89:
479 case lldb::eLanguageTypeC99:
480 case lldb::eLanguageTypeC11:
481 // FIXME: the following language option is a temporary workaround,
482 // to "ask for C, get C++."
483 // For now, the expression parser must use C++ anytime the language is a C
484 // family language, because the expression parser uses features of C++ to
485 // capture values.
486 lang_opts.CPlusPlus = true;
487 break;
488 case lldb::eLanguageTypeObjC:
489 lang_opts.ObjC = true;
490 // FIXME: the following language option is a temporary workaround,
491 // to "ask for ObjC, get ObjC++" (see comment above).
492 lang_opts.CPlusPlus = true;
493
494 // Clang now sets as default C++14 as the default standard (with
495 // GNU extensions), so we do the same here to avoid mismatches that
496 // cause compiler error when evaluating expressions (e.g. nullptr not found
497 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
498 // two lines below) so we decide to be consistent with that, but this could
499 // be re-evaluated in the future.
500 lang_opts.CPlusPlus11 = true;
501 break;
502 case lldb::eLanguageTypeC_plus_plus:
503 case lldb::eLanguageTypeC_plus_plus_11:
504 case lldb::eLanguageTypeC_plus_plus_14:
505 lang_opts.CPlusPlus11 = true;
506 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
507 LLVM_FALLTHROUGH;
508 case lldb::eLanguageTypeC_plus_plus_03:
509 lang_opts.CPlusPlus = true;
510 if (process_sp)
511 lang_opts.ObjC =
512 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
513 break;
514 case lldb::eLanguageTypeObjC_plus_plus:
515 case lldb::eLanguageTypeUnknown:
516 default:
517 lang_opts.ObjC = true;
518 lang_opts.CPlusPlus = true;
519 lang_opts.CPlusPlus11 = true;
520 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
521 break;
522 }
523
524 lang_opts.Bool = true;
525 lang_opts.WChar = true;
526 lang_opts.Blocks = true;
527 lang_opts.DebuggerSupport =
528 true; // Features specifically for debugger clients
529 if (expr.DesiredResultType() == Expression::eResultTypeId)
530 lang_opts.DebuggerCastResultToId = true;
531
532 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
533 .CharIsSignedByDefault();
534
535 // Spell checking is a nice feature, but it ends up completing a lot of types
536 // that we didn't strictly speaking need to complete. As a result, we spend a
537 // long time parsing and importing debug information.
538 lang_opts.SpellChecking = false;
539
540 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
541 if (clang_expr && clang_expr->DidImportCxxModules()) {
542 LLDB_LOG(log, "Adding lang options for importing C++ modules");
543
544 lang_opts.Modules = true;
545 // We want to implicitly build modules.
546 lang_opts.ImplicitModules = true;
547 // To automatically import all submodules when we import 'std'.
548 lang_opts.ModulesLocalVisibility = false;
549
550 // We use the @import statements, so we need this:
551 // FIXME: We could use the modules-ts, but that currently doesn't work.
552 lang_opts.ObjC = true;
553
554 // Options we need to parse libc++ code successfully.
555 // FIXME: We should ask the driver for the appropriate default flags.
556 lang_opts.GNUMode = true;
557 lang_opts.GNUKeywords = true;
558 lang_opts.DoubleSquareBracketAttributes = true;
559 lang_opts.CPlusPlus11 = true;
560
561 // The Darwin libc expects this macro to be set.
562 lang_opts.GNUCVersion = 40201;
563
564 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
565 target_sp);
566 }
567
568 if (process_sp && lang_opts.ObjC) {
569 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
570 if (runtime->GetRuntimeVersion() ==
571 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
572 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
573 else
574 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
575 VersionTuple(10, 7));
576
577 if (runtime->HasNewLiteralsAndIndexing())
578 lang_opts.DebuggerObjCLiteral = true;
579 }
580 }
581
582 lang_opts.ThreadsafeStatics = false;
583 lang_opts.AccessControl = false; // Debuggers get universal access
584 lang_opts.DollarIdents = true; // $ indicates a persistent variable name
585 // We enable all builtin functions beside the builtins from libc/libm (e.g.
586 // 'fopen'). Those libc functions are already correctly handled by LLDB, and
587 // additionally enabling them as expandable builtins is breaking Clang.
588 lang_opts.NoBuiltin = true;
589
590 // Set CodeGen options
591 m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
592 m_compiler->getCodeGenOpts().InstrumentFunctions = false;
593 m_compiler->getCodeGenOpts().setFramePointer(
594 CodeGenOptions::FramePointerKind::All);
595 if (generate_debug_info)
596 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
597 else
598 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
599
600 // Disable some warnings.
601 m_compiler->getDiagnostics().setSeverityForGroup(
602 clang::diag::Flavor::WarningOrError, "unused-value",
603 clang::diag::Severity::Ignored, SourceLocation());
604 m_compiler->getDiagnostics().setSeverityForGroup(
605 clang::diag::Flavor::WarningOrError, "odr",
606 clang::diag::Severity::Ignored, SourceLocation());
607
608 // Inform the target of the language options
609 //
610 // FIXME: We shouldn't need to do this, the target should be immutable once
611 // created. This complexity should be lifted elsewhere.
612 m_compiler->getTarget().adjust(m_compiler->getLangOpts());
613
614 // 6. Set up the diagnostic buffer for reporting errors
615
616 auto diag_mgr = new ClangDiagnosticManagerAdapter(
617 m_compiler->getDiagnostics().getDiagnosticOptions());
618 m_compiler->getDiagnostics().setClient(diag_mgr);
619
620 // 7. Set up the source management objects inside the compiler
621 m_compiler->createFileManager();
622 if (!m_compiler->hasSourceManager())
623 m_compiler->createSourceManager(m_compiler->getFileManager());
624 m_compiler->createPreprocessor(TU_Complete);
625
626 if (ClangModulesDeclVendor *decl_vendor =
627 target_sp->GetClangModulesDeclVendor()) {
628 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
629 target_sp->GetPersistentExpressionStateForLanguage(
630 lldb::eLanguageTypeC))) {
631 std::unique_ptr<PPCallbacks> pp_callbacks(
632 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
633 m_compiler->getSourceManager()));
634 m_pp_callbacks =
635 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
636 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
637 }
638 }
639
640 // 8. Most of this we get from the CompilerInstance, but we also want to give
641 // the context an ExternalASTSource.
642
643 auto &PP = m_compiler->getPreprocessor();
644 auto &builtin_context = PP.getBuiltinInfo();
645 builtin_context.initializeBuiltins(PP.getIdentifierTable(),
646 m_compiler->getLangOpts());
647
648 m_compiler->createASTContext();
649 clang::ASTContext &ast_context = m_compiler->getASTContext();
650
651 m_ast_context = std::make_unique<TypeSystemClang>(
652 "Expression ASTContext for '" + m_filename + "'", ast_context);
653
654 std::string module_name("$__lldb_module");
655
656 m_llvm_context = std::make_unique<LLVMContext>();
657 m_code_generator.reset(CreateLLVMCodeGen(
658 m_compiler->getDiagnostics(), module_name,
659 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
660 m_compiler->getCodeGenOpts(), *m_llvm_context));
661 }
662
~ClangExpressionParser()663 ClangExpressionParser::~ClangExpressionParser() {}
664
665 namespace {
666
667 /// \class CodeComplete
668 ///
669 /// A code completion consumer for the clang Sema that is responsible for
670 /// creating the completion suggestions when a user requests completion
671 /// of an incomplete `expr` invocation.
672 class CodeComplete : public CodeCompleteConsumer {
673 CodeCompletionTUInfo m_info;
674
675 std::string m_expr;
676 unsigned m_position = 0;
677 /// The printing policy we use when printing declarations for our completion
678 /// descriptions.
679 clang::PrintingPolicy m_desc_policy;
680
681 struct CompletionWithPriority {
682 CompletionResult::Completion completion;
683 /// See CodeCompletionResult::Priority;
684 unsigned Priority;
685
686 /// Establishes a deterministic order in a list of CompletionWithPriority.
687 /// The order returned here is the order in which the completions are
688 /// displayed to the user.
operator <__anonccbbdd2e0111::CodeComplete::CompletionWithPriority689 bool operator<(const CompletionWithPriority &o) const {
690 // High priority results should come first.
691 if (Priority != o.Priority)
692 return Priority > o.Priority;
693
694 // Identical priority, so just make sure it's a deterministic order.
695 return completion.GetUniqueKey() < o.completion.GetUniqueKey();
696 }
697 };
698
699 /// The stored completions.
700 /// Warning: These are in a non-deterministic order until they are sorted
701 /// and returned back to the caller.
702 std::vector<CompletionWithPriority> m_completions;
703
704 /// Returns true if the given character can be used in an identifier.
705 /// This also returns true for numbers because for completion we usually
706 /// just iterate backwards over iterators.
707 ///
708 /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
IsIdChar(char c)709 static bool IsIdChar(char c) {
710 return c == '_' || std::isalnum(c) || c == '$';
711 }
712
713 /// Returns true if the given character is used to separate arguments
714 /// in the command line of lldb.
IsTokenSeparator(char c)715 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
716
717 /// Drops all tokens in front of the expression that are unrelated for
718 /// the completion of the cmd line. 'unrelated' means here that the token
719 /// is not interested for the lldb completion API result.
dropUnrelatedFrontTokens(StringRef cmd) const720 StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
721 if (cmd.empty())
722 return cmd;
723
724 // If we are at the start of a word, then all tokens are unrelated to
725 // the current completion logic.
726 if (IsTokenSeparator(cmd.back()))
727 return StringRef();
728
729 // Remove all previous tokens from the string as they are unrelated
730 // to completing the current token.
731 StringRef to_remove = cmd;
732 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
733 to_remove = to_remove.drop_back();
734 }
735 cmd = cmd.drop_front(to_remove.size());
736
737 return cmd;
738 }
739
740 /// Removes the last identifier token from the given cmd line.
removeLastToken(StringRef cmd) const741 StringRef removeLastToken(StringRef cmd) const {
742 while (!cmd.empty() && IsIdChar(cmd.back())) {
743 cmd = cmd.drop_back();
744 }
745 return cmd;
746 }
747
748 /// Attempts to merge the given completion from the given position into the
749 /// existing command. Returns the completion string that can be returned to
750 /// the lldb completion API.
mergeCompletion(StringRef existing,unsigned pos,StringRef completion) const751 std::string mergeCompletion(StringRef existing, unsigned pos,
752 StringRef completion) const {
753 StringRef existing_command = existing.substr(0, pos);
754 // We rewrite the last token with the completion, so let's drop that
755 // token from the command.
756 existing_command = removeLastToken(existing_command);
757 // We also should remove all previous tokens from the command as they
758 // would otherwise be added to the completion that already has the
759 // completion.
760 existing_command = dropUnrelatedFrontTokens(existing_command);
761 return existing_command.str() + completion.str();
762 }
763
764 public:
765 /// Constructs a CodeComplete consumer that can be attached to a Sema.
766 ///
767 /// \param[out] expr
768 /// The whole expression string that we are currently parsing. This
769 /// string needs to be equal to the input the user typed, and NOT the
770 /// final code that Clang is parsing.
771 /// \param[out] position
772 /// The character position of the user cursor in the `expr` parameter.
773 ///
CodeComplete(clang::LangOptions ops,std::string expr,unsigned position)774 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
775 : CodeCompleteConsumer(CodeCompleteOptions()),
776 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
777 m_position(position), m_desc_policy(ops) {
778
779 // Ensure that the printing policy is producing a description that is as
780 // short as possible.
781 m_desc_policy.SuppressScope = true;
782 m_desc_policy.SuppressTagKeyword = true;
783 m_desc_policy.FullyQualifiedName = false;
784 m_desc_policy.TerseOutput = true;
785 m_desc_policy.IncludeNewlines = false;
786 m_desc_policy.UseVoidForZeroParams = false;
787 m_desc_policy.Bool = true;
788 }
789
790 /// \name Code-completion filtering
791 /// Check if the result should be filtered out.
isResultFilteredOut(StringRef Filter,CodeCompletionResult Result)792 bool isResultFilteredOut(StringRef Filter,
793 CodeCompletionResult Result) override {
794 // This code is mostly copied from CodeCompleteConsumer.
795 switch (Result.Kind) {
796 case CodeCompletionResult::RK_Declaration:
797 return !(
798 Result.Declaration->getIdentifier() &&
799 Result.Declaration->getIdentifier()->getName().startswith(Filter));
800 case CodeCompletionResult::RK_Keyword:
801 return !StringRef(Result.Keyword).startswith(Filter);
802 case CodeCompletionResult::RK_Macro:
803 return !Result.Macro->getName().startswith(Filter);
804 case CodeCompletionResult::RK_Pattern:
805 return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
806 }
807 // If we trigger this assert or the above switch yields a warning, then
808 // CodeCompletionResult has been enhanced with more kinds of completion
809 // results. Expand the switch above in this case.
810 assert(false && "Unknown completion result type?");
811 // If we reach this, then we should just ignore whatever kind of unknown
812 // result we got back. We probably can't turn it into any kind of useful
813 // completion suggestion with the existing code.
814 return true;
815 }
816
817 private:
818 /// Generate the completion strings for the given CodeCompletionResult.
819 /// Note that this function has to process results that could come in
820 /// non-deterministic order, so this function should have no side effects.
821 /// To make this easier to enforce, this function and all its parameters
822 /// should always be const-qualified.
823 /// \return Returns llvm::None if no completion should be provided for the
824 /// given CodeCompletionResult.
825 llvm::Optional<CompletionWithPriority>
getCompletionForResult(const CodeCompletionResult & R) const826 getCompletionForResult(const CodeCompletionResult &R) const {
827 std::string ToInsert;
828 std::string Description;
829 // Handle the different completion kinds that come from the Sema.
830 switch (R.Kind) {
831 case CodeCompletionResult::RK_Declaration: {
832 const NamedDecl *D = R.Declaration;
833 ToInsert = R.Declaration->getNameAsString();
834 // If we have a function decl that has no arguments we want to
835 // complete the empty parantheses for the user. If the function has
836 // arguments, we at least complete the opening bracket.
837 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
838 if (F->getNumParams() == 0)
839 ToInsert += "()";
840 else
841 ToInsert += "(";
842 raw_string_ostream OS(Description);
843 F->print(OS, m_desc_policy, false);
844 OS.flush();
845 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
846 Description = V->getType().getAsString(m_desc_policy);
847 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
848 Description = F->getType().getAsString(m_desc_policy);
849 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
850 // If we try to complete a namespace, then we can directly append
851 // the '::'.
852 if (!N->isAnonymousNamespace())
853 ToInsert += "::";
854 }
855 break;
856 }
857 case CodeCompletionResult::RK_Keyword:
858 ToInsert = R.Keyword;
859 break;
860 case CodeCompletionResult::RK_Macro:
861 ToInsert = R.Macro->getName().str();
862 break;
863 case CodeCompletionResult::RK_Pattern:
864 ToInsert = R.Pattern->getTypedText();
865 break;
866 }
867 // We also filter some internal lldb identifiers here. The user
868 // shouldn't see these.
869 if (llvm::StringRef(ToInsert).startswith("$__lldb_"))
870 return llvm::None;
871 if (ToInsert.empty())
872 return llvm::None;
873 // Merge the suggested Token into the existing command line to comply
874 // with the kind of result the lldb API expects.
875 std::string CompletionSuggestion =
876 mergeCompletion(m_expr, m_position, ToInsert);
877
878 CompletionResult::Completion completion(CompletionSuggestion, Description,
879 CompletionMode::Normal);
880 return {{completion, R.Priority}};
881 }
882
883 public:
884 /// Adds the completions to the given CompletionRequest.
GetCompletions(CompletionRequest & request)885 void GetCompletions(CompletionRequest &request) {
886 // Bring m_completions into a deterministic order and pass it on to the
887 // CompletionRequest.
888 llvm::sort(m_completions);
889
890 for (const CompletionWithPriority &C : m_completions)
891 request.AddCompletion(C.completion.GetCompletion(),
892 C.completion.GetDescription(),
893 C.completion.GetMode());
894 }
895
896 /// \name Code-completion callbacks
897 /// Process the finalized code-completion results.
ProcessCodeCompleteResults(Sema & SemaRef,CodeCompletionContext Context,CodeCompletionResult * Results,unsigned NumResults)898 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
899 CodeCompletionResult *Results,
900 unsigned NumResults) override {
901
902 // The Sema put the incomplete token we try to complete in here during
903 // lexing, so we need to retrieve it here to know what we are completing.
904 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
905
906 // Iterate over all the results. Filter out results we don't want and
907 // process the rest.
908 for (unsigned I = 0; I != NumResults; ++I) {
909 // Filter the results with the information from the Sema.
910 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
911 continue;
912
913 CodeCompletionResult &R = Results[I];
914 llvm::Optional<CompletionWithPriority> CompletionAndPriority =
915 getCompletionForResult(R);
916 if (!CompletionAndPriority)
917 continue;
918 m_completions.push_back(*CompletionAndPriority);
919 }
920 }
921
922 /// \param S the semantic-analyzer object for which code-completion is being
923 /// done.
924 ///
925 /// \param CurrentArg the index of the current argument.
926 ///
927 /// \param Candidates an array of overload candidates.
928 ///
929 /// \param NumCandidates the number of overload candidates
ProcessOverloadCandidates(Sema & S,unsigned CurrentArg,OverloadCandidate * Candidates,unsigned NumCandidates,SourceLocation OpenParLoc)930 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
931 OverloadCandidate *Candidates,
932 unsigned NumCandidates,
933 SourceLocation OpenParLoc) override {
934 // At the moment we don't filter out any overloaded candidates.
935 }
936
getAllocator()937 CodeCompletionAllocator &getAllocator() override {
938 return m_info.getAllocator();
939 }
940
getCodeCompletionTUInfo()941 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
942 };
943 } // namespace
944
Complete(CompletionRequest & request,unsigned line,unsigned pos,unsigned typed_pos)945 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
946 unsigned pos, unsigned typed_pos) {
947 DiagnosticManager mgr;
948 // We need the raw user expression here because that's what the CodeComplete
949 // class uses to provide completion suggestions.
950 // However, the `Text` method only gives us the transformed expression here.
951 // To actually get the raw user input here, we have to cast our expression to
952 // the LLVMUserExpression which exposes the right API. This should never fail
953 // as we always have a ClangUserExpression whenever we call this.
954 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
955 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
956 typed_pos);
957 // We don't need a code generator for parsing.
958 m_code_generator.reset();
959 // Start parsing the expression with our custom code completion consumer.
960 ParseInternal(mgr, &CC, line, pos);
961 CC.GetCompletions(request);
962 return true;
963 }
964
Parse(DiagnosticManager & diagnostic_manager)965 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
966 return ParseInternal(diagnostic_manager);
967 }
968
969 unsigned
ParseInternal(DiagnosticManager & diagnostic_manager,CodeCompleteConsumer * completion_consumer,unsigned completion_line,unsigned completion_column)970 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
971 CodeCompleteConsumer *completion_consumer,
972 unsigned completion_line,
973 unsigned completion_column) {
974 ClangDiagnosticManagerAdapter *adapter =
975 static_cast<ClangDiagnosticManagerAdapter *>(
976 m_compiler->getDiagnostics().getClient());
977
978 adapter->ResetManager(&diagnostic_manager);
979
980 const char *expr_text = m_expr.Text();
981
982 clang::SourceManager &source_mgr = m_compiler->getSourceManager();
983 bool created_main_file = false;
984
985 // Clang wants to do completion on a real file known by Clang's file manager,
986 // so we have to create one to make this work.
987 // TODO: We probably could also simulate to Clang's file manager that there
988 // is a real file that contains our code.
989 bool should_create_file = completion_consumer != nullptr;
990
991 // We also want a real file on disk if we generate full debug info.
992 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
993 codegenoptions::FullDebugInfo;
994
995 if (should_create_file) {
996 int temp_fd = -1;
997 llvm::SmallString<128> result_path;
998 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
999 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
1000 std::string temp_source_path = tmpdir_file_spec.GetPath();
1001 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
1002 } else {
1003 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
1004 }
1005
1006 if (temp_fd != -1) {
1007 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true);
1008 const size_t expr_text_len = strlen(expr_text);
1009 size_t bytes_written = expr_text_len;
1010 if (file.Write(expr_text, bytes_written).Success()) {
1011 if (bytes_written == expr_text_len) {
1012 file.Close();
1013 if (auto fileEntry =
1014 m_compiler->getFileManager().getFile(result_path)) {
1015 source_mgr.setMainFileID(source_mgr.createFileID(
1016 *fileEntry,
1017 SourceLocation(), SrcMgr::C_User));
1018 created_main_file = true;
1019 }
1020 }
1021 }
1022 }
1023 }
1024
1025 if (!created_main_file) {
1026 std::unique_ptr<MemoryBuffer> memory_buffer =
1027 MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
1028 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
1029 }
1030
1031 adapter->BeginSourceFile(m_compiler->getLangOpts(),
1032 &m_compiler->getPreprocessor());
1033
1034 ClangExpressionHelper *type_system_helper =
1035 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1036
1037 // If we want to parse for code completion, we need to attach our code
1038 // completion consumer to the Sema and specify a completion position.
1039 // While parsing the Sema will call this consumer with the provided
1040 // completion suggestions.
1041 if (completion_consumer) {
1042 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
1043 auto &PP = m_compiler->getPreprocessor();
1044 // Lines and columns start at 1 in Clang, but code completion positions are
1045 // indexed from 0, so we need to add 1 to the line and column here.
1046 ++completion_line;
1047 ++completion_column;
1048 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
1049 }
1050
1051 ASTConsumer *ast_transformer =
1052 type_system_helper->ASTTransformer(m_code_generator.get());
1053
1054 std::unique_ptr<clang::ASTConsumer> Consumer;
1055 if (ast_transformer) {
1056 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
1057 } else if (m_code_generator) {
1058 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
1059 } else {
1060 Consumer = std::make_unique<ASTConsumer>();
1061 }
1062
1063 clang::ASTContext &ast_context = m_compiler->getASTContext();
1064
1065 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
1066 *Consumer, TU_Complete, completion_consumer));
1067 m_compiler->setASTConsumer(std::move(Consumer));
1068
1069 if (ast_context.getLangOpts().Modules) {
1070 m_compiler->createASTReader();
1071 m_ast_context->setSema(&m_compiler->getSema());
1072 }
1073
1074 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
1075 if (decl_map) {
1076 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
1077
1078 clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
1079
1080 if (ast_context.getExternalSource()) {
1081 auto module_wrapper =
1082 new ExternalASTSourceWrapper(ast_context.getExternalSource());
1083
1084 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
1085
1086 auto multiplexer =
1087 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
1088 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
1089 ast_context.setExternalSource(Source);
1090 } else {
1091 ast_context.setExternalSource(ast_source);
1092 }
1093 decl_map->InstallASTContext(*m_ast_context);
1094 }
1095
1096 // Check that the ASTReader is properly attached to ASTContext and Sema.
1097 if (ast_context.getLangOpts().Modules) {
1098 assert(m_compiler->getASTContext().getExternalSource() &&
1099 "ASTContext doesn't know about the ASTReader?");
1100 assert(m_compiler->getSema().getExternalSource() &&
1101 "Sema doesn't know about the ASTReader?");
1102 }
1103
1104 {
1105 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1106 &m_compiler->getSema());
1107 ParseAST(m_compiler->getSema(), false, false);
1108 }
1109
1110 // Make sure we have no pointer to the Sema we are about to destroy.
1111 if (ast_context.getLangOpts().Modules)
1112 m_ast_context->setSema(nullptr);
1113 // Destroy the Sema. This is necessary because we want to emulate the
1114 // original behavior of ParseAST (which also destroys the Sema after parsing).
1115 m_compiler->setSema(nullptr);
1116
1117 adapter->EndSourceFile();
1118
1119 unsigned num_errors = adapter->getNumErrors();
1120
1121 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1122 num_errors++;
1123 diagnostic_manager.PutString(eDiagnosticSeverityError,
1124 "while importing modules:");
1125 diagnostic_manager.AppendMessageToDiagnostic(
1126 m_pp_callbacks->getErrorString());
1127 }
1128
1129 if (!num_errors) {
1130 type_system_helper->CommitPersistentDecls();
1131 }
1132
1133 adapter->ResetManager();
1134
1135 return num_errors;
1136 }
1137
1138 std::string
GetClangTargetABI(const ArchSpec & target_arch)1139 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1140 std::string abi;
1141
1142 if (target_arch.IsMIPS()) {
1143 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1144 case ArchSpec::eMIPSABI_N64:
1145 abi = "n64";
1146 break;
1147 case ArchSpec::eMIPSABI_N32:
1148 abi = "n32";
1149 break;
1150 case ArchSpec::eMIPSABI_O32:
1151 abi = "o32";
1152 break;
1153 default:
1154 break;
1155 }
1156 }
1157 return abi;
1158 }
1159
1160 /// Applies the given Fix-It hint to the given commit.
ApplyFixIt(const FixItHint & fixit,clang::edit::Commit & commit)1161 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
1162 // This is cobbed from clang::Rewrite::FixItRewriter.
1163 if (fixit.CodeToInsert.empty()) {
1164 if (fixit.InsertFromRange.isValid()) {
1165 commit.insertFromRange(fixit.RemoveRange.getBegin(),
1166 fixit.InsertFromRange, /*afterToken=*/false,
1167 fixit.BeforePreviousInsertions);
1168 return;
1169 }
1170 commit.remove(fixit.RemoveRange);
1171 return;
1172 }
1173 if (fixit.RemoveRange.isTokenRange() ||
1174 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
1175 commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1176 return;
1177 }
1178 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1179 /*afterToken=*/false, fixit.BeforePreviousInsertions);
1180 }
1181
RewriteExpression(DiagnosticManager & diagnostic_manager)1182 bool ClangExpressionParser::RewriteExpression(
1183 DiagnosticManager &diagnostic_manager) {
1184 clang::SourceManager &source_manager = m_compiler->getSourceManager();
1185 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1186 nullptr);
1187 clang::edit::Commit commit(editor);
1188 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1189
1190 class RewritesReceiver : public edit::EditsReceiver {
1191 Rewriter &rewrite;
1192
1193 public:
1194 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1195
1196 void insert(SourceLocation loc, StringRef text) override {
1197 rewrite.InsertText(loc, text);
1198 }
1199 void replace(CharSourceRange range, StringRef text) override {
1200 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1201 }
1202 };
1203
1204 RewritesReceiver rewrites_receiver(rewriter);
1205
1206 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1207 size_t num_diags = diagnostics.size();
1208 if (num_diags == 0)
1209 return false;
1210
1211 for (const auto &diag : diagnostic_manager.Diagnostics()) {
1212 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1213 if (!diagnostic)
1214 continue;
1215 if (!diagnostic->HasFixIts())
1216 continue;
1217 for (const FixItHint &fixit : diagnostic->FixIts())
1218 ApplyFixIt(fixit, commit);
1219 }
1220
1221 // FIXME - do we want to try to propagate specific errors here?
1222 if (!commit.isCommitable())
1223 return false;
1224 else if (!editor.commit(commit))
1225 return false;
1226
1227 // Now play all the edits, and stash the result in the diagnostic manager.
1228 editor.applyRewrites(rewrites_receiver);
1229 RewriteBuffer &main_file_buffer =
1230 rewriter.getEditBuffer(source_manager.getMainFileID());
1231
1232 std::string fixed_expression;
1233 llvm::raw_string_ostream out_stream(fixed_expression);
1234
1235 main_file_buffer.write(out_stream);
1236 out_stream.flush();
1237 diagnostic_manager.SetFixedExpression(fixed_expression);
1238
1239 return true;
1240 }
1241
FindFunctionInModule(ConstString & mangled_name,llvm::Module * module,const char * orig_name)1242 static bool FindFunctionInModule(ConstString &mangled_name,
1243 llvm::Module *module, const char *orig_name) {
1244 for (const auto &func : module->getFunctionList()) {
1245 const StringRef &name = func.getName();
1246 if (name.find(orig_name) != StringRef::npos) {
1247 mangled_name.SetString(name);
1248 return true;
1249 }
1250 }
1251
1252 return false;
1253 }
1254
PrepareForExecution(lldb::addr_t & func_addr,lldb::addr_t & func_end,lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx,bool & can_interpret,ExecutionPolicy execution_policy)1255 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1256 lldb::addr_t &func_addr, lldb::addr_t &func_end,
1257 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1258 bool &can_interpret, ExecutionPolicy execution_policy) {
1259 func_addr = LLDB_INVALID_ADDRESS;
1260 func_end = LLDB_INVALID_ADDRESS;
1261 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1262
1263 lldb_private::Status err;
1264
1265 std::unique_ptr<llvm::Module> llvm_module_up(
1266 m_code_generator->ReleaseModule());
1267
1268 if (!llvm_module_up) {
1269 err.SetErrorToGenericError();
1270 err.SetErrorString("IR doesn't contain a module");
1271 return err;
1272 }
1273
1274 ConstString function_name;
1275
1276 if (execution_policy != eExecutionPolicyTopLevel) {
1277 // Find the actual name of the function (it's often mangled somehow)
1278
1279 if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1280 m_expr.FunctionName())) {
1281 err.SetErrorToGenericError();
1282 err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1283 m_expr.FunctionName());
1284 return err;
1285 } else {
1286 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1287 m_expr.FunctionName());
1288 }
1289 }
1290
1291 SymbolContext sc;
1292
1293 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1294 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1295 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1296 sc.target_sp = target_sp;
1297 }
1298
1299 LLVMUserExpression::IRPasses custom_passes;
1300 {
1301 auto lang = m_expr.Language();
1302 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1303 Language::GetNameForLanguageType(lang));
1304 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1305 if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1306 auto runtime = process_sp->GetLanguageRuntime(lang);
1307 if (runtime)
1308 runtime->GetIRPasses(custom_passes);
1309 }
1310 }
1311
1312 if (custom_passes.EarlyPasses) {
1313 LLDB_LOGF(log,
1314 "%s - Running Early IR Passes from LanguageRuntime on "
1315 "expression module '%s'",
1316 __FUNCTION__, m_expr.FunctionName());
1317
1318 custom_passes.EarlyPasses->run(*llvm_module_up);
1319 }
1320
1321 execution_unit_sp = std::make_shared<IRExecutionUnit>(
1322 m_llvm_context, // handed off here
1323 llvm_module_up, // handed off here
1324 function_name, exe_ctx.GetTargetSP(), sc,
1325 m_compiler->getTargetOpts().Features);
1326
1327 ClangExpressionHelper *type_system_helper =
1328 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1329 ClangExpressionDeclMap *decl_map =
1330 type_system_helper->DeclMap(); // result can be NULL
1331
1332 if (decl_map) {
1333 StreamString error_stream;
1334 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1335 *execution_unit_sp, error_stream,
1336 function_name.AsCString());
1337
1338 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
1339 err.SetErrorString(error_stream.GetString());
1340 return err;
1341 }
1342
1343 Process *process = exe_ctx.GetProcessPtr();
1344
1345 if (execution_policy != eExecutionPolicyAlways &&
1346 execution_policy != eExecutionPolicyTopLevel) {
1347 lldb_private::Status interpret_error;
1348
1349 bool interpret_function_calls =
1350 !process ? false : process->CanInterpretFunctionCalls();
1351 can_interpret = IRInterpreter::CanInterpret(
1352 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1353 interpret_error, interpret_function_calls);
1354
1355 if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1356 err.SetErrorStringWithFormat(
1357 "Can't evaluate the expression without a running target due to: %s",
1358 interpret_error.AsCString());
1359 return err;
1360 }
1361 }
1362
1363 if (!process && execution_policy == eExecutionPolicyAlways) {
1364 err.SetErrorString("Expression needed to run in the target, but the "
1365 "target can't be run");
1366 return err;
1367 }
1368
1369 if (!process && execution_policy == eExecutionPolicyTopLevel) {
1370 err.SetErrorString("Top-level code needs to be inserted into a runnable "
1371 "target, but the target can't be run");
1372 return err;
1373 }
1374
1375 if (execution_policy == eExecutionPolicyAlways ||
1376 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1377 if (m_expr.NeedsValidation() && process) {
1378 if (!process->GetDynamicCheckers()) {
1379 ClangDynamicCheckerFunctions *dynamic_checkers =
1380 new ClangDynamicCheckerFunctions();
1381
1382 DiagnosticManager install_diagnostics;
1383
1384 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1385 if (install_diagnostics.Diagnostics().size())
1386 err.SetErrorString(install_diagnostics.GetString().c_str());
1387 else
1388 err.SetErrorString("couldn't install checkers, unknown error");
1389
1390 return err;
1391 }
1392
1393 process->SetDynamicCheckers(dynamic_checkers);
1394
1395 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1396 "Finished installing dynamic checkers ==");
1397 }
1398
1399 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1400 process->GetDynamicCheckers())) {
1401 IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1402 function_name.AsCString());
1403
1404 llvm::Module *module = execution_unit_sp->GetModule();
1405 if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1406 err.SetErrorToGenericError();
1407 err.SetErrorString("Couldn't add dynamic checks to the expression");
1408 return err;
1409 }
1410
1411 if (custom_passes.LatePasses) {
1412 LLDB_LOGF(log,
1413 "%s - Running Late IR Passes from LanguageRuntime on "
1414 "expression module '%s'",
1415 __FUNCTION__, m_expr.FunctionName());
1416
1417 custom_passes.LatePasses->run(*module);
1418 }
1419 }
1420 }
1421 }
1422
1423 if (execution_policy == eExecutionPolicyAlways ||
1424 execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1425 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1426 }
1427 } else {
1428 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1429 }
1430
1431 return err;
1432 }
1433
RunStaticInitializers(lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx)1434 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1435 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1436 lldb_private::Status err;
1437
1438 lldbassert(execution_unit_sp.get());
1439 lldbassert(exe_ctx.HasThreadScope());
1440
1441 if (!execution_unit_sp.get()) {
1442 err.SetErrorString(
1443 "can't run static initializers for a NULL execution unit");
1444 return err;
1445 }
1446
1447 if (!exe_ctx.HasThreadScope()) {
1448 err.SetErrorString("can't run static initializers without a thread");
1449 return err;
1450 }
1451
1452 std::vector<lldb::addr_t> static_initializers;
1453
1454 execution_unit_sp->GetStaticInitializers(static_initializers);
1455
1456 for (lldb::addr_t static_initializer : static_initializers) {
1457 EvaluateExpressionOptions options;
1458
1459 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1460 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1461 llvm::ArrayRef<lldb::addr_t>(), options));
1462
1463 DiagnosticManager execution_errors;
1464 lldb::ExpressionResults results =
1465 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1466 exe_ctx, call_static_initializer, options, execution_errors);
1467
1468 if (results != lldb::eExpressionCompleted) {
1469 err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1470 execution_errors.GetString().c_str());
1471 return err;
1472 }
1473 }
1474
1475 return err;
1476 }
1477