1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/TargetSelect.h"
14 #include "llvm/Target/TargetMachine.h"
15 #include "KaleidoscopeJIT.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cctype>
19 #include <cstdint>
20 #include <cstdio>
21 #include <cstdlib>
22 #include <map>
23 #include <memory>
24 #include <string>
25 #include <utility>
26 #include <vector>
27 
28 using namespace llvm;
29 using namespace llvm::orc;
30 
31 //===----------------------------------------------------------------------===//
32 // Lexer
33 //===----------------------------------------------------------------------===//
34 
35 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
36 // of these for known things.
37 enum Token {
38   tok_eof = -1,
39 
40   // commands
41   tok_def = -2,
42   tok_extern = -3,
43 
44   // primary
45   tok_identifier = -4,
46   tok_number = -5,
47 
48   // control
49   tok_if = -6,
50   tok_then = -7,
51   tok_else = -8,
52   tok_for = -9,
53   tok_in = -10,
54 
55   // operators
56   tok_binary = -11,
57   tok_unary = -12,
58 
59   // var definition
60   tok_var = -13
61 };
62 
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal;             // Filled in if tok_number
65 
66 /// gettok - Return the next token from standard input.
gettok()67 static int gettok() {
68   static int LastChar = ' ';
69 
70   // Skip any whitespace.
71   while (isspace(LastChar))
72     LastChar = getchar();
73 
74   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75     IdentifierStr = LastChar;
76     while (isalnum((LastChar = getchar())))
77       IdentifierStr += LastChar;
78 
79     if (IdentifierStr == "def")
80       return tok_def;
81     if (IdentifierStr == "extern")
82       return tok_extern;
83     if (IdentifierStr == "if")
84       return tok_if;
85     if (IdentifierStr == "then")
86       return tok_then;
87     if (IdentifierStr == "else")
88       return tok_else;
89     if (IdentifierStr == "for")
90       return tok_for;
91     if (IdentifierStr == "in")
92       return tok_in;
93     if (IdentifierStr == "binary")
94       return tok_binary;
95     if (IdentifierStr == "unary")
96       return tok_unary;
97     if (IdentifierStr == "var")
98       return tok_var;
99     return tok_identifier;
100   }
101 
102   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
103     std::string NumStr;
104     do {
105       NumStr += LastChar;
106       LastChar = getchar();
107     } while (isdigit(LastChar) || LastChar == '.');
108 
109     NumVal = strtod(NumStr.c_str(), nullptr);
110     return tok_number;
111   }
112 
113   if (LastChar == '#') {
114     // Comment until end of line.
115     do
116       LastChar = getchar();
117     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
118 
119     if (LastChar != EOF)
120       return gettok();
121   }
122 
123   // Check for end of file.  Don't eat the EOF.
124   if (LastChar == EOF)
125     return tok_eof;
126 
127   // Otherwise, just return the character as its ascii value.
128   int ThisChar = LastChar;
129   LastChar = getchar();
130   return ThisChar;
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // Abstract Syntax Tree (aka Parse Tree)
135 //===----------------------------------------------------------------------===//
136 
137 namespace {
138 
139 /// ExprAST - Base class for all expression nodes.
140 class ExprAST {
141 public:
142   virtual ~ExprAST() = default;
143 
144   virtual Value *codegen() = 0;
145 };
146 
147 /// NumberExprAST - Expression class for numeric literals like "1.0".
148 class NumberExprAST : public ExprAST {
149   double Val;
150 
151 public:
NumberExprAST(double Val)152   NumberExprAST(double Val) : Val(Val) {}
153 
154   Value *codegen() override;
155 };
156 
157 /// VariableExprAST - Expression class for referencing a variable, like "a".
158 class VariableExprAST : public ExprAST {
159   std::string Name;
160 
161 public:
VariableExprAST(const std::string & Name)162   VariableExprAST(const std::string &Name) : Name(Name) {}
163 
164   Value *codegen() override;
getName() const165   const std::string &getName() const { return Name; }
166 };
167 
168 /// UnaryExprAST - Expression class for a unary operator.
169 class UnaryExprAST : public ExprAST {
170   char Opcode;
171   std::unique_ptr<ExprAST> Operand;
172 
173 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)174   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
175       : Opcode(Opcode), Operand(std::move(Operand)) {}
176 
177   Value *codegen() override;
178 };
179 
180 /// BinaryExprAST - Expression class for a binary operator.
181 class BinaryExprAST : public ExprAST {
182   char Op;
183   std::unique_ptr<ExprAST> LHS, RHS;
184 
185 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)186   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
187                 std::unique_ptr<ExprAST> RHS)
188       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
189 
190   Value *codegen() override;
191 };
192 
193 /// CallExprAST - Expression class for function calls.
194 class CallExprAST : public ExprAST {
195   std::string Callee;
196   std::vector<std::unique_ptr<ExprAST>> Args;
197 
198 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)199   CallExprAST(const std::string &Callee,
200               std::vector<std::unique_ptr<ExprAST>> Args)
201       : Callee(Callee), Args(std::move(Args)) {}
202 
203   Value *codegen() override;
204 };
205 
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST : public ExprAST {
208   std::unique_ptr<ExprAST> Cond, Then, Else;
209 
210 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)211   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
212             std::unique_ptr<ExprAST> Else)
213       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
214 
215   Value *codegen() override;
216 };
217 
218 /// ForExprAST - Expression class for for/in.
219 class ForExprAST : public ExprAST {
220   std::string VarName;
221   std::unique_ptr<ExprAST> Start, End, Step, Body;
222 
223 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)224   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
225              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
226              std::unique_ptr<ExprAST> Body)
227       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
228         Step(std::move(Step)), Body(std::move(Body)) {}
229 
230   Value *codegen() override;
231 };
232 
233 /// VarExprAST - Expression class for var/in
234 class VarExprAST : public ExprAST {
235   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
236   std::unique_ptr<ExprAST> Body;
237 
238 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)239   VarExprAST(
240       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
241       std::unique_ptr<ExprAST> Body)
242       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
243 
244   Value *codegen() override;
245 };
246 
247 /// PrototypeAST - This class represents the "prototype" for a function,
248 /// which captures its name, and its argument names (thus implicitly the number
249 /// of arguments the function takes), as well as if it is an operator.
250 class PrototypeAST {
251   std::string Name;
252   std::vector<std::string> Args;
253   bool IsOperator;
254   unsigned Precedence; // Precedence if a binary op.
255 
256 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)257   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
258                bool IsOperator = false, unsigned Prec = 0)
259       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
260         Precedence(Prec) {}
261 
262   Function *codegen();
getName() const263   const std::string &getName() const { return Name; }
264 
isUnaryOp() const265   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const266   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
267 
getOperatorName() const268   char getOperatorName() const {
269     assert(isUnaryOp() || isBinaryOp());
270     return Name[Name.size() - 1];
271   }
272 
getBinaryPrecedence() const273   unsigned getBinaryPrecedence() const { return Precedence; }
274 };
275 
276 /// FunctionAST - This class represents a function definition itself.
277 class FunctionAST {
278   std::unique_ptr<PrototypeAST> Proto;
279   std::unique_ptr<ExprAST> Body;
280 
281 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)282   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
283               std::unique_ptr<ExprAST> Body)
284       : Proto(std::move(Proto)), Body(std::move(Body)) {}
285 
286   Function *codegen();
287 };
288 
289 } // end anonymous namespace
290 
291 //===----------------------------------------------------------------------===//
292 // Parser
293 //===----------------------------------------------------------------------===//
294 
295 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
296 /// token the parser is looking at.  getNextToken reads another token from the
297 /// lexer and updates CurTok with its results.
298 static int CurTok;
getNextToken()299 static int getNextToken() { return CurTok = gettok(); }
300 
301 /// BinopPrecedence - This holds the precedence for each binary operator that is
302 /// defined.
303 static std::map<char, int> BinopPrecedence;
304 
305 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()306 static int GetTokPrecedence() {
307   if (!isascii(CurTok))
308     return -1;
309 
310   // Make sure it's a declared binop.
311   int TokPrec = BinopPrecedence[CurTok];
312   if (TokPrec <= 0)
313     return -1;
314   return TokPrec;
315 }
316 
317 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)318 std::unique_ptr<ExprAST> LogError(const char *Str) {
319   fprintf(stderr, "Error: %s\n", Str);
320   return nullptr;
321 }
322 
LogErrorP(const char * Str)323 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
324   LogError(Str);
325   return nullptr;
326 }
327 
328 static std::unique_ptr<ExprAST> ParseExpression();
329 
330 /// numberexpr ::= number
ParseNumberExpr()331 static std::unique_ptr<ExprAST> ParseNumberExpr() {
332   auto Result = std::make_unique<NumberExprAST>(NumVal);
333   getNextToken(); // consume the number
334   return std::move(Result);
335 }
336 
337 /// parenexpr ::= '(' expression ')'
ParseParenExpr()338 static std::unique_ptr<ExprAST> ParseParenExpr() {
339   getNextToken(); // eat (.
340   auto V = ParseExpression();
341   if (!V)
342     return nullptr;
343 
344   if (CurTok != ')')
345     return LogError("expected ')'");
346   getNextToken(); // eat ).
347   return V;
348 }
349 
350 /// identifierexpr
351 ///   ::= identifier
352 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()353 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
354   std::string IdName = IdentifierStr;
355 
356   getNextToken(); // eat identifier.
357 
358   if (CurTok != '(') // Simple variable ref.
359     return std::make_unique<VariableExprAST>(IdName);
360 
361   // Call.
362   getNextToken(); // eat (
363   std::vector<std::unique_ptr<ExprAST>> Args;
364   if (CurTok != ')') {
365     while (true) {
366       if (auto Arg = ParseExpression())
367         Args.push_back(std::move(Arg));
368       else
369         return nullptr;
370 
371       if (CurTok == ')')
372         break;
373 
374       if (CurTok != ',')
375         return LogError("Expected ')' or ',' in argument list");
376       getNextToken();
377     }
378   }
379 
380   // Eat the ')'.
381   getNextToken();
382 
383   return std::make_unique<CallExprAST>(IdName, std::move(Args));
384 }
385 
386 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()387 static std::unique_ptr<ExprAST> ParseIfExpr() {
388   getNextToken(); // eat the if.
389 
390   // condition.
391   auto Cond = ParseExpression();
392   if (!Cond)
393     return nullptr;
394 
395   if (CurTok != tok_then)
396     return LogError("expected then");
397   getNextToken(); // eat the then
398 
399   auto Then = ParseExpression();
400   if (!Then)
401     return nullptr;
402 
403   if (CurTok != tok_else)
404     return LogError("expected else");
405 
406   getNextToken();
407 
408   auto Else = ParseExpression();
409   if (!Else)
410     return nullptr;
411 
412   return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
413                                       std::move(Else));
414 }
415 
416 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()417 static std::unique_ptr<ExprAST> ParseForExpr() {
418   getNextToken(); // eat the for.
419 
420   if (CurTok != tok_identifier)
421     return LogError("expected identifier after for");
422 
423   std::string IdName = IdentifierStr;
424   getNextToken(); // eat identifier.
425 
426   if (CurTok != '=')
427     return LogError("expected '=' after for");
428   getNextToken(); // eat '='.
429 
430   auto Start = ParseExpression();
431   if (!Start)
432     return nullptr;
433   if (CurTok != ',')
434     return LogError("expected ',' after for start value");
435   getNextToken();
436 
437   auto End = ParseExpression();
438   if (!End)
439     return nullptr;
440 
441   // The step value is optional.
442   std::unique_ptr<ExprAST> Step;
443   if (CurTok == ',') {
444     getNextToken();
445     Step = ParseExpression();
446     if (!Step)
447       return nullptr;
448   }
449 
450   if (CurTok != tok_in)
451     return LogError("expected 'in' after for");
452   getNextToken(); // eat 'in'.
453 
454   auto Body = ParseExpression();
455   if (!Body)
456     return nullptr;
457 
458   return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
459                                        std::move(Step), std::move(Body));
460 }
461 
462 /// varexpr ::= 'var' identifier ('=' expression)?
463 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()464 static std::unique_ptr<ExprAST> ParseVarExpr() {
465   getNextToken(); // eat the var.
466 
467   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
468 
469   // At least one variable name is required.
470   if (CurTok != tok_identifier)
471     return LogError("expected identifier after var");
472 
473   while (true) {
474     std::string Name = IdentifierStr;
475     getNextToken(); // eat identifier.
476 
477     // Read the optional initializer.
478     std::unique_ptr<ExprAST> Init = nullptr;
479     if (CurTok == '=') {
480       getNextToken(); // eat the '='.
481 
482       Init = ParseExpression();
483       if (!Init)
484         return nullptr;
485     }
486 
487     VarNames.push_back(std::make_pair(Name, std::move(Init)));
488 
489     // End of var list, exit loop.
490     if (CurTok != ',')
491       break;
492     getNextToken(); // eat the ','.
493 
494     if (CurTok != tok_identifier)
495       return LogError("expected identifier list after var");
496   }
497 
498   // At this point, we have to have 'in'.
499   if (CurTok != tok_in)
500     return LogError("expected 'in' keyword after 'var'");
501   getNextToken(); // eat 'in'.
502 
503   auto Body = ParseExpression();
504   if (!Body)
505     return nullptr;
506 
507   return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
508 }
509 
510 /// primary
511 ///   ::= identifierexpr
512 ///   ::= numberexpr
513 ///   ::= parenexpr
514 ///   ::= ifexpr
515 ///   ::= forexpr
516 ///   ::= varexpr
ParsePrimary()517 static std::unique_ptr<ExprAST> ParsePrimary() {
518   switch (CurTok) {
519   default:
520     return LogError("unknown token when expecting an expression");
521   case tok_identifier:
522     return ParseIdentifierExpr();
523   case tok_number:
524     return ParseNumberExpr();
525   case '(':
526     return ParseParenExpr();
527   case tok_if:
528     return ParseIfExpr();
529   case tok_for:
530     return ParseForExpr();
531   case tok_var:
532     return ParseVarExpr();
533   }
534 }
535 
536 /// unary
537 ///   ::= primary
538 ///   ::= '!' unary
ParseUnary()539 static std::unique_ptr<ExprAST> ParseUnary() {
540   // If the current token is not an operator, it must be a primary expr.
541   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
542     return ParsePrimary();
543 
544   // If this is a unary operator, read it.
545   int Opc = CurTok;
546   getNextToken();
547   if (auto Operand = ParseUnary())
548     return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
549   return nullptr;
550 }
551 
552 /// binoprhs
553 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)554 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
555                                               std::unique_ptr<ExprAST> LHS) {
556   // If this is a binop, find its precedence.
557   while (true) {
558     int TokPrec = GetTokPrecedence();
559 
560     // If this is a binop that binds at least as tightly as the current binop,
561     // consume it, otherwise we are done.
562     if (TokPrec < ExprPrec)
563       return LHS;
564 
565     // Okay, we know this is a binop.
566     int BinOp = CurTok;
567     getNextToken(); // eat binop
568 
569     // Parse the unary expression after the binary operator.
570     auto RHS = ParseUnary();
571     if (!RHS)
572       return nullptr;
573 
574     // If BinOp binds less tightly with RHS than the operator after RHS, let
575     // the pending operator take RHS as its LHS.
576     int NextPrec = GetTokPrecedence();
577     if (TokPrec < NextPrec) {
578       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
579       if (!RHS)
580         return nullptr;
581     }
582 
583     // Merge LHS/RHS.
584     LHS =
585         std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
586   }
587 }
588 
589 /// expression
590 ///   ::= unary binoprhs
591 ///
ParseExpression()592 static std::unique_ptr<ExprAST> ParseExpression() {
593   auto LHS = ParseUnary();
594   if (!LHS)
595     return nullptr;
596 
597   return ParseBinOpRHS(0, std::move(LHS));
598 }
599 
600 /// prototype
601 ///   ::= id '(' id* ')'
602 ///   ::= binary LETTER number? (id, id)
603 ///   ::= unary LETTER (id)
ParsePrototype()604 static std::unique_ptr<PrototypeAST> ParsePrototype() {
605   std::string FnName;
606 
607   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
608   unsigned BinaryPrecedence = 30;
609 
610   switch (CurTok) {
611   default:
612     return LogErrorP("Expected function name in prototype");
613   case tok_identifier:
614     FnName = IdentifierStr;
615     Kind = 0;
616     getNextToken();
617     break;
618   case tok_unary:
619     getNextToken();
620     if (!isascii(CurTok))
621       return LogErrorP("Expected unary operator");
622     FnName = "unary";
623     FnName += (char)CurTok;
624     Kind = 1;
625     getNextToken();
626     break;
627   case tok_binary:
628     getNextToken();
629     if (!isascii(CurTok))
630       return LogErrorP("Expected binary operator");
631     FnName = "binary";
632     FnName += (char)CurTok;
633     Kind = 2;
634     getNextToken();
635 
636     // Read the precedence if present.
637     if (CurTok == tok_number) {
638       if (NumVal < 1 || NumVal > 100)
639         return LogErrorP("Invalid precedecnce: must be 1..100");
640       BinaryPrecedence = (unsigned)NumVal;
641       getNextToken();
642     }
643     break;
644   }
645 
646   if (CurTok != '(')
647     return LogErrorP("Expected '(' in prototype");
648 
649   std::vector<std::string> ArgNames;
650   while (getNextToken() == tok_identifier)
651     ArgNames.push_back(IdentifierStr);
652   if (CurTok != ')')
653     return LogErrorP("Expected ')' in prototype");
654 
655   // success.
656   getNextToken(); // eat ')'.
657 
658   // Verify right number of names for operator.
659   if (Kind && ArgNames.size() != Kind)
660     return LogErrorP("Invalid number of operands for operator");
661 
662   return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
663                                          BinaryPrecedence);
664 }
665 
666 /// definition ::= 'def' prototype expression
ParseDefinition()667 static std::unique_ptr<FunctionAST> ParseDefinition() {
668   getNextToken(); // eat def.
669   auto Proto = ParsePrototype();
670   if (!Proto)
671     return nullptr;
672 
673   if (auto E = ParseExpression())
674     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
675   return nullptr;
676 }
677 
678 /// toplevelexpr ::= expression
ParseTopLevelExpr(unsigned ExprCount)679 static std::unique_ptr<FunctionAST> ParseTopLevelExpr(unsigned ExprCount) {
680   if (auto E = ParseExpression()) {
681     // Make an anonymous proto.
682     auto Proto = std::make_unique<PrototypeAST>(
683         ("__anon_expr" + Twine(ExprCount)).str(), std::vector<std::string>());
684     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
685   }
686   return nullptr;
687 }
688 
689 /// external ::= 'extern' prototype
ParseExtern()690 static std::unique_ptr<PrototypeAST> ParseExtern() {
691   getNextToken(); // eat extern.
692   return ParsePrototype();
693 }
694 
695 //===----------------------------------------------------------------------===//
696 // Code Generation
697 //===----------------------------------------------------------------------===//
698 
699 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
700 static LLVMContext *TheContext;
701 static std::unique_ptr<IRBuilder<>> Builder;
702 static std::unique_ptr<Module> TheModule;
703 static std::map<std::string, AllocaInst *> NamedValues;
704 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
705 static ExitOnError ExitOnErr;
706 
LogErrorV(const char * Str)707 Value *LogErrorV(const char *Str) {
708   LogError(Str);
709   return nullptr;
710 }
711 
getFunction(std::string Name)712 Function *getFunction(std::string Name) {
713   // First, see if the function has already been added to the current module.
714   if (auto *F = TheModule->getFunction(Name))
715     return F;
716 
717   // If not, check whether we can codegen the declaration from some existing
718   // prototype.
719   auto FI = FunctionProtos.find(Name);
720   if (FI != FunctionProtos.end())
721     return FI->second->codegen();
722 
723   // If no existing prototype exists, return null.
724   return nullptr;
725 }
726 
727 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
728 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,StringRef VarName)729 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
730                                           StringRef VarName) {
731   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
732                    TheFunction->getEntryBlock().begin());
733   return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
734 }
735 
codegen()736 Value *NumberExprAST::codegen() {
737   return ConstantFP::get(*TheContext, APFloat(Val));
738 }
739 
codegen()740 Value *VariableExprAST::codegen() {
741   // Look this variable up in the function.
742   Value *V = NamedValues[Name];
743   if (!V)
744     return LogErrorV("Unknown variable name");
745 
746   // Load the value.
747   return Builder->CreateLoad(V, Name.c_str());
748 }
749 
codegen()750 Value *UnaryExprAST::codegen() {
751   Value *OperandV = Operand->codegen();
752   if (!OperandV)
753     return nullptr;
754 
755   Function *F = getFunction(std::string("unary") + Opcode);
756   if (!F)
757     return LogErrorV("Unknown unary operator");
758 
759   return Builder->CreateCall(F, OperandV, "unop");
760 }
761 
codegen()762 Value *BinaryExprAST::codegen() {
763   // Special case '=' because we don't want to emit the LHS as an expression.
764   if (Op == '=') {
765     // Assignment requires the LHS to be an identifier.
766     // This assume we're building without RTTI because LLVM builds that way by
767     // default.  If you build LLVM with RTTI this can be changed to a
768     // dynamic_cast for automatic error checking.
769     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
770     if (!LHSE)
771       return LogErrorV("destination of '=' must be a variable");
772     // Codegen the RHS.
773     Value *Val = RHS->codegen();
774     if (!Val)
775       return nullptr;
776 
777     // Look up the name.
778     Value *Variable = NamedValues[LHSE->getName()];
779     if (!Variable)
780       return LogErrorV("Unknown variable name");
781 
782     Builder->CreateStore(Val, Variable);
783     return Val;
784   }
785 
786   Value *L = LHS->codegen();
787   Value *R = RHS->codegen();
788   if (!L || !R)
789     return nullptr;
790 
791   switch (Op) {
792   case '+':
793     return Builder->CreateFAdd(L, R, "addtmp");
794   case '-':
795     return Builder->CreateFSub(L, R, "subtmp");
796   case '*':
797     return Builder->CreateFMul(L, R, "multmp");
798   case '<':
799     L = Builder->CreateFCmpULT(L, R, "cmptmp");
800     // Convert bool 0/1 to double 0.0 or 1.0
801     return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
802   default:
803     break;
804   }
805 
806   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
807   // a call to it.
808   Function *F = getFunction(std::string("binary") + Op);
809   assert(F && "binary operator not found!");
810 
811   Value *Ops[] = {L, R};
812   return Builder->CreateCall(F, Ops, "binop");
813 }
814 
codegen()815 Value *CallExprAST::codegen() {
816   // Look up the name in the global module table.
817   Function *CalleeF = getFunction(Callee);
818   if (!CalleeF)
819     return LogErrorV("Unknown function referenced");
820 
821   // If argument mismatch error.
822   if (CalleeF->arg_size() != Args.size())
823     return LogErrorV("Incorrect # arguments passed");
824 
825   std::vector<Value *> ArgsV;
826   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
827     ArgsV.push_back(Args[i]->codegen());
828     if (!ArgsV.back())
829       return nullptr;
830   }
831 
832   return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
833 }
834 
codegen()835 Value *IfExprAST::codegen() {
836   Value *CondV = Cond->codegen();
837   if (!CondV)
838     return nullptr;
839 
840   // Convert condition to a bool by comparing equal to 0.0.
841   CondV = Builder->CreateFCmpONE(
842       CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
843 
844   Function *TheFunction = Builder->GetInsertBlock()->getParent();
845 
846   // Create blocks for the then and else cases.  Insert the 'then' block at the
847   // end of the function.
848   BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
849   BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
850   BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
851 
852   Builder->CreateCondBr(CondV, ThenBB, ElseBB);
853 
854   // Emit then value.
855   Builder->SetInsertPoint(ThenBB);
856 
857   Value *ThenV = Then->codegen();
858   if (!ThenV)
859     return nullptr;
860 
861   Builder->CreateBr(MergeBB);
862   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
863   ThenBB = Builder->GetInsertBlock();
864 
865   // Emit else block.
866   TheFunction->getBasicBlockList().push_back(ElseBB);
867   Builder->SetInsertPoint(ElseBB);
868 
869   Value *ElseV = Else->codegen();
870   if (!ElseV)
871     return nullptr;
872 
873   Builder->CreateBr(MergeBB);
874   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
875   ElseBB = Builder->GetInsertBlock();
876 
877   // Emit merge block.
878   TheFunction->getBasicBlockList().push_back(MergeBB);
879   Builder->SetInsertPoint(MergeBB);
880   PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
881 
882   PN->addIncoming(ThenV, ThenBB);
883   PN->addIncoming(ElseV, ElseBB);
884   return PN;
885 }
886 
887 // Output for-loop as:
888 //   var = alloca double
889 //   ...
890 //   start = startexpr
891 //   store start -> var
892 //   goto loop
893 // loop:
894 //   ...
895 //   bodyexpr
896 //   ...
897 // loopend:
898 //   step = stepexpr
899 //   endcond = endexpr
900 //
901 //   curvar = load var
902 //   nextvar = curvar + step
903 //   store nextvar -> var
904 //   br endcond, loop, endloop
905 // outloop:
codegen()906 Value *ForExprAST::codegen() {
907   Function *TheFunction = Builder->GetInsertBlock()->getParent();
908 
909   // Create an alloca for the variable in the entry block.
910   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
911 
912   // Emit the start code first, without 'variable' in scope.
913   Value *StartVal = Start->codegen();
914   if (!StartVal)
915     return nullptr;
916 
917   // Store the value into the alloca.
918   Builder->CreateStore(StartVal, Alloca);
919 
920   // Make the new basic block for the loop header, inserting after current
921   // block.
922   BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
923 
924   // Insert an explicit fall through from the current block to the LoopBB.
925   Builder->CreateBr(LoopBB);
926 
927   // Start insertion in LoopBB.
928   Builder->SetInsertPoint(LoopBB);
929 
930   // Within the loop, the variable is defined equal to the PHI node.  If it
931   // shadows an existing variable, we have to restore it, so save it now.
932   AllocaInst *OldVal = NamedValues[VarName];
933   NamedValues[VarName] = Alloca;
934 
935   // Emit the body of the loop.  This, like any other expr, can change the
936   // current BB.  Note that we ignore the value computed by the body, but don't
937   // allow an error.
938   if (!Body->codegen())
939     return nullptr;
940 
941   // Emit the step value.
942   Value *StepVal = nullptr;
943   if (Step) {
944     StepVal = Step->codegen();
945     if (!StepVal)
946       return nullptr;
947   } else {
948     // If not specified, use 1.0.
949     StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
950   }
951 
952   // Compute the end condition.
953   Value *EndCond = End->codegen();
954   if (!EndCond)
955     return nullptr;
956 
957   // Reload, increment, and restore the alloca.  This handles the case where
958   // the body of the loop mutates the variable.
959   Value *CurVar = Builder->CreateLoad(Alloca, VarName.c_str());
960   Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
961   Builder->CreateStore(NextVar, Alloca);
962 
963   // Convert condition to a bool by comparing equal to 0.0.
964   EndCond = Builder->CreateFCmpONE(
965       EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
966 
967   // Create the "after loop" block and insert it.
968   BasicBlock *AfterBB =
969       BasicBlock::Create(*TheContext, "afterloop", TheFunction);
970 
971   // Insert the conditional branch into the end of LoopEndBB.
972   Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
973 
974   // Any new code will be inserted in AfterBB.
975   Builder->SetInsertPoint(AfterBB);
976 
977   // Restore the unshadowed variable.
978   if (OldVal)
979     NamedValues[VarName] = OldVal;
980   else
981     NamedValues.erase(VarName);
982 
983   // for expr always returns 0.0.
984   return Constant::getNullValue(Type::getDoubleTy(*TheContext));
985 }
986 
codegen()987 Value *VarExprAST::codegen() {
988   std::vector<AllocaInst *> OldBindings;
989 
990   Function *TheFunction = Builder->GetInsertBlock()->getParent();
991 
992   // Register all variables and emit their initializer.
993   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
994     const std::string &VarName = VarNames[i].first;
995     ExprAST *Init = VarNames[i].second.get();
996 
997     // Emit the initializer before adding the variable to scope, this prevents
998     // the initializer from referencing the variable itself, and permits stuff
999     // like this:
1000     //  var a = 1 in
1001     //    var a = a in ...   # refers to outer 'a'.
1002     Value *InitVal;
1003     if (Init) {
1004       InitVal = Init->codegen();
1005       if (!InitVal)
1006         return nullptr;
1007     } else { // If not specified, use 0.0.
1008       InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
1009     }
1010 
1011     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1012     Builder->CreateStore(InitVal, Alloca);
1013 
1014     // Remember the old variable binding so that we can restore the binding when
1015     // we unrecurse.
1016     OldBindings.push_back(NamedValues[VarName]);
1017 
1018     // Remember this binding.
1019     NamedValues[VarName] = Alloca;
1020   }
1021 
1022   // Codegen the body, now that all vars are in scope.
1023   Value *BodyVal = Body->codegen();
1024   if (!BodyVal)
1025     return nullptr;
1026 
1027   // Pop all our variables from scope.
1028   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1029     NamedValues[VarNames[i].first] = OldBindings[i];
1030 
1031   // Return the body computation.
1032   return BodyVal;
1033 }
1034 
codegen()1035 Function *PrototypeAST::codegen() {
1036   // Make the function type:  double(double,double) etc.
1037   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
1038   FunctionType *FT =
1039       FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
1040 
1041   Function *F =
1042       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1043 
1044   // Set names for all arguments.
1045   unsigned Idx = 0;
1046   for (auto &Arg : F->args())
1047     Arg.setName(Args[Idx++]);
1048 
1049   return F;
1050 }
1051 
codegen()1052 Function *FunctionAST::codegen() {
1053   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1054   // reference to it for use below.
1055   auto &P = *Proto;
1056   FunctionProtos[Proto->getName()] = std::move(Proto);
1057   Function *TheFunction = getFunction(P.getName());
1058   if (!TheFunction)
1059     return nullptr;
1060 
1061   // If this is an operator, install it.
1062   if (P.isBinaryOp())
1063     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1064 
1065   // Create a new basic block to start insertion into.
1066   BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
1067   Builder->SetInsertPoint(BB);
1068 
1069   // Record the function arguments in the NamedValues map.
1070   NamedValues.clear();
1071   for (auto &Arg : TheFunction->args()) {
1072     // Create an alloca for this variable.
1073     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1074 
1075     // Store the initial value into the alloca.
1076     Builder->CreateStore(&Arg, Alloca);
1077 
1078     // Add arguments to variable symbol table.
1079     NamedValues[std::string(Arg.getName())] = Alloca;
1080   }
1081 
1082   if (Value *RetVal = Body->codegen()) {
1083     // Finish off the function.
1084     Builder->CreateRet(RetVal);
1085 
1086     // Validate the generated code, checking for consistency.
1087     verifyFunction(*TheFunction);
1088 
1089     return TheFunction;
1090   }
1091 
1092   // Error reading body, remove function.
1093   TheFunction->eraseFromParent();
1094 
1095   if (P.isBinaryOp())
1096     BinopPrecedence.erase(P.getOperatorName());
1097   return nullptr;
1098 }
1099 
1100 //===----------------------------------------------------------------------===//
1101 // Top-Level parsing and JIT Driver
1102 //===----------------------------------------------------------------------===//
1103 
InitializeModule()1104 static void InitializeModule() {
1105   // Open a new module.
1106   TheModule = std::make_unique<Module>("my cool jit", *TheContext);
1107   TheModule->setDataLayout(TheJIT->getDataLayout());
1108 
1109   // Create a new builder for the module.
1110   Builder = std::make_unique<IRBuilder<>>(*TheContext);
1111 }
1112 
HandleDefinition()1113 static void HandleDefinition() {
1114   if (auto FnAST = ParseDefinition()) {
1115     if (auto *FnIR = FnAST->codegen()) {
1116       fprintf(stderr, "Read function definition:");
1117       FnIR->print(errs());
1118       fprintf(stderr, "\n");
1119       ExitOnErr(TheJIT->addModule(std::move(TheModule)));
1120       InitializeModule();
1121     }
1122   } else {
1123     // Skip token for error recovery.
1124     getNextToken();
1125   }
1126 }
1127 
HandleExtern()1128 static void HandleExtern() {
1129   if (auto ProtoAST = ParseExtern()) {
1130     if (auto *FnIR = ProtoAST->codegen()) {
1131       fprintf(stderr, "Read extern: ");
1132       FnIR->print(errs());
1133       fprintf(stderr, "\n");
1134       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1135     }
1136   } else {
1137     // Skip token for error recovery.
1138     getNextToken();
1139   }
1140 }
1141 
HandleTopLevelExpression()1142 static void HandleTopLevelExpression() {
1143   static unsigned ExprCount = 0;
1144 
1145   // Update ExprCount. This number will be added to anonymous expressions to
1146   // prevent them from clashing.
1147   ++ExprCount;
1148 
1149   // Evaluate a top-level expression into an anonymous function.
1150   if (auto FnAST = ParseTopLevelExpr(ExprCount)) {
1151     if (FnAST->codegen()) {
1152       // JIT the module containing the anonymous expression, keeping a handle so
1153       // we can free it later.
1154       ExitOnErr(TheJIT->addModule(std::move(TheModule)));
1155       InitializeModule();
1156 
1157       // Get the anonymous expression's JITSymbol.
1158       auto Sym =
1159           ExitOnErr(TheJIT->lookup(("__anon_expr" + Twine(ExprCount)).str()));
1160 
1161       auto *FP = (double (*)())(intptr_t)Sym.getAddress();
1162       assert(FP && "Failed to codegen function");
1163       fprintf(stderr, "Evaluated to %f\n", FP());
1164     }
1165   } else {
1166     // Skip token for error recovery.
1167     getNextToken();
1168   }
1169 }
1170 
1171 /// top ::= definition | external | expression | ';'
MainLoop()1172 static void MainLoop() {
1173   while (true) {
1174     fprintf(stderr, "ready> ");
1175     switch (CurTok) {
1176     case tok_eof:
1177       return;
1178     case ';': // ignore top-level semicolons.
1179       getNextToken();
1180       break;
1181     case tok_def:
1182       HandleDefinition();
1183       break;
1184     case tok_extern:
1185       HandleExtern();
1186       break;
1187     default:
1188       HandleTopLevelExpression();
1189       break;
1190     }
1191   }
1192 }
1193 
1194 //===----------------------------------------------------------------------===//
1195 // "Library" functions that can be "extern'd" from user code.
1196 //===----------------------------------------------------------------------===//
1197 
1198 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1199 extern "C" double putchard(double X) {
1200   fputc((char)X, stderr);
1201   return 0;
1202 }
1203 
1204 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1205 extern "C" double printd(double X) {
1206   fprintf(stderr, "%f\n", X);
1207   return 0;
1208 }
1209 
1210 //===----------------------------------------------------------------------===//
1211 // Main driver code.
1212 //===----------------------------------------------------------------------===//
1213 
main()1214 int main() {
1215   InitializeNativeTarget();
1216   InitializeNativeTargetAsmPrinter();
1217   InitializeNativeTargetAsmParser();
1218 
1219   // Install standard binary operators.
1220   // 1 is lowest precedence.
1221   BinopPrecedence['='] = 2;
1222   BinopPrecedence['<'] = 10;
1223   BinopPrecedence['+'] = 20;
1224   BinopPrecedence['-'] = 20;
1225   BinopPrecedence['*'] = 40; // highest.
1226 
1227   // Prime the first token.
1228   fprintf(stderr, "ready> ");
1229   getNextToken();
1230 
1231   TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1232   TheContext = &TheJIT->getContext();
1233 
1234   InitializeModule();
1235 
1236   // Run the main "interpreter loop" now.
1237   MainLoop();
1238 
1239   return 0;
1240 }
1241