1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/Error.h"
14 #include "llvm/Support/ErrorHandling.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "KaleidoscopeJIT.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <cctype>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstdlib>
24 #include <map>
25 #include <memory>
26 #include <string>
27 #include <utility>
28 #include <vector>
29 
30 using namespace llvm;
31 using namespace llvm::orc;
32 
33 //===----------------------------------------------------------------------===//
34 // Lexer
35 //===----------------------------------------------------------------------===//
36 
37 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
38 // of these for known things.
39 enum Token {
40   tok_eof = -1,
41 
42   // commands
43   tok_def = -2,
44   tok_extern = -3,
45 
46   // primary
47   tok_identifier = -4,
48   tok_number = -5,
49 
50   // control
51   tok_if = -6,
52   tok_then = -7,
53   tok_else = -8,
54   tok_for = -9,
55   tok_in = -10,
56 
57   // operators
58   tok_binary = -11,
59   tok_unary = -12,
60 
61   // var definition
62   tok_var = -13
63 };
64 
65 static std::string IdentifierStr; // Filled in if tok_identifier
66 static double NumVal;             // Filled in if tok_number
67 
68 /// gettok - Return the next token from standard input.
gettok()69 static int gettok() {
70   static int LastChar = ' ';
71 
72   // Skip any whitespace.
73   while (isspace(LastChar))
74     LastChar = getchar();
75 
76   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
77     IdentifierStr = LastChar;
78     while (isalnum((LastChar = getchar())))
79       IdentifierStr += LastChar;
80 
81     if (IdentifierStr == "def")
82       return tok_def;
83     if (IdentifierStr == "extern")
84       return tok_extern;
85     if (IdentifierStr == "if")
86       return tok_if;
87     if (IdentifierStr == "then")
88       return tok_then;
89     if (IdentifierStr == "else")
90       return tok_else;
91     if (IdentifierStr == "for")
92       return tok_for;
93     if (IdentifierStr == "in")
94       return tok_in;
95     if (IdentifierStr == "binary")
96       return tok_binary;
97     if (IdentifierStr == "unary")
98       return tok_unary;
99     if (IdentifierStr == "var")
100       return tok_var;
101     return tok_identifier;
102   }
103 
104   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
105     std::string NumStr;
106     do {
107       NumStr += LastChar;
108       LastChar = getchar();
109     } while (isdigit(LastChar) || LastChar == '.');
110 
111     NumVal = strtod(NumStr.c_str(), nullptr);
112     return tok_number;
113   }
114 
115   if (LastChar == '#') {
116     // Comment until end of line.
117     do
118       LastChar = getchar();
119     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
120 
121     if (LastChar != EOF)
122       return gettok();
123   }
124 
125   // Check for end of file.  Don't eat the EOF.
126   if (LastChar == EOF)
127     return tok_eof;
128 
129   // Otherwise, just return the character as its ascii value.
130   int ThisChar = LastChar;
131   LastChar = getchar();
132   return ThisChar;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 // Abstract Syntax Tree (aka Parse Tree)
137 //===----------------------------------------------------------------------===//
138 
139 /// ExprAST - Base class for all expression nodes.
140 class ExprAST {
141 public:
142   virtual ~ExprAST() = default;
143 
144   virtual Value *codegen() = 0;
145 };
146 
147 /// NumberExprAST - Expression class for numeric literals like "1.0".
148 class NumberExprAST : public ExprAST {
149   double Val;
150 
151 public:
NumberExprAST(double Val)152   NumberExprAST(double Val) : Val(Val) {}
153 
154   Value *codegen() override;
155 };
156 
157 /// VariableExprAST - Expression class for referencing a variable, like "a".
158 class VariableExprAST : public ExprAST {
159   std::string Name;
160 
161 public:
VariableExprAST(const std::string & Name)162   VariableExprAST(const std::string &Name) : Name(Name) {}
163 
164   Value *codegen() override;
getName() const165   const std::string &getName() const { return Name; }
166 };
167 
168 /// UnaryExprAST - Expression class for a unary operator.
169 class UnaryExprAST : public ExprAST {
170   char Opcode;
171   std::unique_ptr<ExprAST> Operand;
172 
173 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)174   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
175       : Opcode(Opcode), Operand(std::move(Operand)) {}
176 
177   Value *codegen() override;
178 };
179 
180 /// BinaryExprAST - Expression class for a binary operator.
181 class BinaryExprAST : public ExprAST {
182   char Op;
183   std::unique_ptr<ExprAST> LHS, RHS;
184 
185 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)186   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
187                 std::unique_ptr<ExprAST> RHS)
188       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
189 
190   Value *codegen() override;
191 };
192 
193 /// CallExprAST - Expression class for function calls.
194 class CallExprAST : public ExprAST {
195   std::string Callee;
196   std::vector<std::unique_ptr<ExprAST>> Args;
197 
198 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)199   CallExprAST(const std::string &Callee,
200               std::vector<std::unique_ptr<ExprAST>> Args)
201       : Callee(Callee), Args(std::move(Args)) {}
202 
203   Value *codegen() override;
204 };
205 
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST : public ExprAST {
208   std::unique_ptr<ExprAST> Cond, Then, Else;
209 
210 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)211   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
212             std::unique_ptr<ExprAST> Else)
213       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
214 
215   Value *codegen() override;
216 };
217 
218 /// ForExprAST - Expression class for for/in.
219 class ForExprAST : public ExprAST {
220   std::string VarName;
221   std::unique_ptr<ExprAST> Start, End, Step, Body;
222 
223 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)224   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
225              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
226              std::unique_ptr<ExprAST> Body)
227       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
228         Step(std::move(Step)), Body(std::move(Body)) {}
229 
230   Value *codegen() override;
231 };
232 
233 /// VarExprAST - Expression class for var/in
234 class VarExprAST : public ExprAST {
235   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
236   std::unique_ptr<ExprAST> Body;
237 
238 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)239   VarExprAST(
240       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
241       std::unique_ptr<ExprAST> Body)
242       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
243 
244   Value *codegen() override;
245 };
246 
247 /// PrototypeAST - This class represents the "prototype" for a function,
248 /// which captures its name, and its argument names (thus implicitly the number
249 /// of arguments the function takes), as well as if it is an operator.
250 class PrototypeAST {
251   std::string Name;
252   std::vector<std::string> Args;
253   bool IsOperator;
254   unsigned Precedence; // Precedence if a binary op.
255 
256 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)257   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
258                bool IsOperator = false, unsigned Prec = 0)
259       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
260         Precedence(Prec) {}
261 
262   Function *codegen();
getName() const263   const std::string &getName() const { return Name; }
264 
isUnaryOp() const265   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const266   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
267 
getOperatorName() const268   char getOperatorName() const {
269     assert(isUnaryOp() || isBinaryOp());
270     return Name[Name.size() - 1];
271   }
272 
getBinaryPrecedence() const273   unsigned getBinaryPrecedence() const { return Precedence; }
274 };
275 
276 //===----------------------------------------------------------------------===//
277 // Parser
278 //===----------------------------------------------------------------------===//
279 
280 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
281 /// token the parser is looking at.  getNextToken reads another token from the
282 /// lexer and updates CurTok with its results.
283 static int CurTok;
getNextToken()284 static int getNextToken() { return CurTok = gettok(); }
285 
286 /// BinopPrecedence - This holds the precedence for each binary operator that is
287 /// defined.
288 static std::map<char, int> BinopPrecedence;
289 
290 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()291 static int GetTokPrecedence() {
292   if (!isascii(CurTok))
293     return -1;
294 
295   // Make sure it's a declared binop.
296   int TokPrec = BinopPrecedence[CurTok];
297   if (TokPrec <= 0)
298     return -1;
299   return TokPrec;
300 }
301 
302 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)303 std::unique_ptr<ExprAST> LogError(const char *Str) {
304   fprintf(stderr, "Error: %s\n", Str);
305   return nullptr;
306 }
307 
LogErrorP(const char * Str)308 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
309   LogError(Str);
310   return nullptr;
311 }
312 
313 static std::unique_ptr<ExprAST> ParseExpression();
314 
315 /// numberexpr ::= number
ParseNumberExpr()316 static std::unique_ptr<ExprAST> ParseNumberExpr() {
317   auto Result = std::make_unique<NumberExprAST>(NumVal);
318   getNextToken(); // consume the number
319   return std::move(Result);
320 }
321 
322 /// parenexpr ::= '(' expression ')'
ParseParenExpr()323 static std::unique_ptr<ExprAST> ParseParenExpr() {
324   getNextToken(); // eat (.
325   auto V = ParseExpression();
326   if (!V)
327     return nullptr;
328 
329   if (CurTok != ')')
330     return LogError("expected ')'");
331   getNextToken(); // eat ).
332   return V;
333 }
334 
335 /// identifierexpr
336 ///   ::= identifier
337 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()338 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
339   std::string IdName = IdentifierStr;
340 
341   getNextToken(); // eat identifier.
342 
343   if (CurTok != '(') // Simple variable ref.
344     return std::make_unique<VariableExprAST>(IdName);
345 
346   // Call.
347   getNextToken(); // eat (
348   std::vector<std::unique_ptr<ExprAST>> Args;
349   if (CurTok != ')') {
350     while (true) {
351       if (auto Arg = ParseExpression())
352         Args.push_back(std::move(Arg));
353       else
354         return nullptr;
355 
356       if (CurTok == ')')
357         break;
358 
359       if (CurTok != ',')
360         return LogError("Expected ')' or ',' in argument list");
361       getNextToken();
362     }
363   }
364 
365   // Eat the ')'.
366   getNextToken();
367 
368   return std::make_unique<CallExprAST>(IdName, std::move(Args));
369 }
370 
371 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()372 static std::unique_ptr<ExprAST> ParseIfExpr() {
373   getNextToken(); // eat the if.
374 
375   // condition.
376   auto Cond = ParseExpression();
377   if (!Cond)
378     return nullptr;
379 
380   if (CurTok != tok_then)
381     return LogError("expected then");
382   getNextToken(); // eat the then
383 
384   auto Then = ParseExpression();
385   if (!Then)
386     return nullptr;
387 
388   if (CurTok != tok_else)
389     return LogError("expected else");
390 
391   getNextToken();
392 
393   auto Else = ParseExpression();
394   if (!Else)
395     return nullptr;
396 
397   return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
398                                       std::move(Else));
399 }
400 
401 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()402 static std::unique_ptr<ExprAST> ParseForExpr() {
403   getNextToken(); // eat the for.
404 
405   if (CurTok != tok_identifier)
406     return LogError("expected identifier after for");
407 
408   std::string IdName = IdentifierStr;
409   getNextToken(); // eat identifier.
410 
411   if (CurTok != '=')
412     return LogError("expected '=' after for");
413   getNextToken(); // eat '='.
414 
415   auto Start = ParseExpression();
416   if (!Start)
417     return nullptr;
418   if (CurTok != ',')
419     return LogError("expected ',' after for start value");
420   getNextToken();
421 
422   auto End = ParseExpression();
423   if (!End)
424     return nullptr;
425 
426   // The step value is optional.
427   std::unique_ptr<ExprAST> Step;
428   if (CurTok == ',') {
429     getNextToken();
430     Step = ParseExpression();
431     if (!Step)
432       return nullptr;
433   }
434 
435   if (CurTok != tok_in)
436     return LogError("expected 'in' after for");
437   getNextToken(); // eat 'in'.
438 
439   auto Body = ParseExpression();
440   if (!Body)
441     return nullptr;
442 
443   return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
444                                        std::move(Step), std::move(Body));
445 }
446 
447 /// varexpr ::= 'var' identifier ('=' expression)?
448 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()449 static std::unique_ptr<ExprAST> ParseVarExpr() {
450   getNextToken(); // eat the var.
451 
452   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
453 
454   // At least one variable name is required.
455   if (CurTok != tok_identifier)
456     return LogError("expected identifier after var");
457 
458   while (true) {
459     std::string Name = IdentifierStr;
460     getNextToken(); // eat identifier.
461 
462     // Read the optional initializer.
463     std::unique_ptr<ExprAST> Init = nullptr;
464     if (CurTok == '=') {
465       getNextToken(); // eat the '='.
466 
467       Init = ParseExpression();
468       if (!Init)
469         return nullptr;
470     }
471 
472     VarNames.push_back(std::make_pair(Name, std::move(Init)));
473 
474     // End of var list, exit loop.
475     if (CurTok != ',')
476       break;
477     getNextToken(); // eat the ','.
478 
479     if (CurTok != tok_identifier)
480       return LogError("expected identifier list after var");
481   }
482 
483   // At this point, we have to have 'in'.
484   if (CurTok != tok_in)
485     return LogError("expected 'in' keyword after 'var'");
486   getNextToken(); // eat 'in'.
487 
488   auto Body = ParseExpression();
489   if (!Body)
490     return nullptr;
491 
492   return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
493 }
494 
495 /// primary
496 ///   ::= identifierexpr
497 ///   ::= numberexpr
498 ///   ::= parenexpr
499 ///   ::= ifexpr
500 ///   ::= forexpr
501 ///   ::= varexpr
ParsePrimary()502 static std::unique_ptr<ExprAST> ParsePrimary() {
503   switch (CurTok) {
504   default:
505     return LogError("unknown token when expecting an expression");
506   case tok_identifier:
507     return ParseIdentifierExpr();
508   case tok_number:
509     return ParseNumberExpr();
510   case '(':
511     return ParseParenExpr();
512   case tok_if:
513     return ParseIfExpr();
514   case tok_for:
515     return ParseForExpr();
516   case tok_var:
517     return ParseVarExpr();
518   }
519 }
520 
521 /// unary
522 ///   ::= primary
523 ///   ::= '!' unary
ParseUnary()524 static std::unique_ptr<ExprAST> ParseUnary() {
525   // If the current token is not an operator, it must be a primary expr.
526   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
527     return ParsePrimary();
528 
529   // If this is a unary operator, read it.
530   int Opc = CurTok;
531   getNextToken();
532   if (auto Operand = ParseUnary())
533     return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
534   return nullptr;
535 }
536 
537 /// binoprhs
538 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)539 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
540                                               std::unique_ptr<ExprAST> LHS) {
541   // If this is a binop, find its precedence.
542   while (true) {
543     int TokPrec = GetTokPrecedence();
544 
545     // If this is a binop that binds at least as tightly as the current binop,
546     // consume it, otherwise we are done.
547     if (TokPrec < ExprPrec)
548       return LHS;
549 
550     // Okay, we know this is a binop.
551     int BinOp = CurTok;
552     getNextToken(); // eat binop
553 
554     // Parse the unary expression after the binary operator.
555     auto RHS = ParseUnary();
556     if (!RHS)
557       return nullptr;
558 
559     // If BinOp binds less tightly with RHS than the operator after RHS, let
560     // the pending operator take RHS as its LHS.
561     int NextPrec = GetTokPrecedence();
562     if (TokPrec < NextPrec) {
563       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
564       if (!RHS)
565         return nullptr;
566     }
567 
568     // Merge LHS/RHS.
569     LHS =
570         std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
571   }
572 }
573 
574 /// expression
575 ///   ::= unary binoprhs
576 ///
ParseExpression()577 static std::unique_ptr<ExprAST> ParseExpression() {
578   auto LHS = ParseUnary();
579   if (!LHS)
580     return nullptr;
581 
582   return ParseBinOpRHS(0, std::move(LHS));
583 }
584 
585 /// prototype
586 ///   ::= id '(' id* ')'
587 ///   ::= binary LETTER number? (id, id)
588 ///   ::= unary LETTER (id)
ParsePrototype()589 static std::unique_ptr<PrototypeAST> ParsePrototype() {
590   std::string FnName;
591 
592   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
593   unsigned BinaryPrecedence = 30;
594 
595   switch (CurTok) {
596   default:
597     return LogErrorP("Expected function name in prototype");
598   case tok_identifier:
599     FnName = IdentifierStr;
600     Kind = 0;
601     getNextToken();
602     break;
603   case tok_unary:
604     getNextToken();
605     if (!isascii(CurTok))
606       return LogErrorP("Expected unary operator");
607     FnName = "unary";
608     FnName += (char)CurTok;
609     Kind = 1;
610     getNextToken();
611     break;
612   case tok_binary:
613     getNextToken();
614     if (!isascii(CurTok))
615       return LogErrorP("Expected binary operator");
616     FnName = "binary";
617     FnName += (char)CurTok;
618     Kind = 2;
619     getNextToken();
620 
621     // Read the precedence if present.
622     if (CurTok == tok_number) {
623       if (NumVal < 1 || NumVal > 100)
624         return LogErrorP("Invalid precedecnce: must be 1..100");
625       BinaryPrecedence = (unsigned)NumVal;
626       getNextToken();
627     }
628     break;
629   }
630 
631   if (CurTok != '(')
632     return LogErrorP("Expected '(' in prototype");
633 
634   std::vector<std::string> ArgNames;
635   while (getNextToken() == tok_identifier)
636     ArgNames.push_back(IdentifierStr);
637   if (CurTok != ')')
638     return LogErrorP("Expected ')' in prototype");
639 
640   // success.
641   getNextToken(); // eat ')'.
642 
643   // Verify right number of names for operator.
644   if (Kind && ArgNames.size() != Kind)
645     return LogErrorP("Invalid number of operands for operator");
646 
647   return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
648                                          BinaryPrecedence);
649 }
650 
651 /// definition ::= 'def' prototype expression
ParseDefinition()652 static std::unique_ptr<FunctionAST> ParseDefinition() {
653   getNextToken(); // eat def.
654   auto Proto = ParsePrototype();
655   if (!Proto)
656     return nullptr;
657 
658   if (auto E = ParseExpression())
659     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
660   return nullptr;
661 }
662 
663 /// toplevelexpr ::= expression
ParseTopLevelExpr()664 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
665   if (auto E = ParseExpression()) {
666     // Make an anonymous proto.
667     auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
668                                                  std::vector<std::string>());
669     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
670   }
671   return nullptr;
672 }
673 
674 /// external ::= 'extern' prototype
ParseExtern()675 static std::unique_ptr<PrototypeAST> ParseExtern() {
676   getNextToken(); // eat extern.
677   return ParsePrototype();
678 }
679 
680 //===----------------------------------------------------------------------===//
681 // Code Generation
682 //===----------------------------------------------------------------------===//
683 
684 static LLVMContext TheContext;
685 static IRBuilder<> Builder(TheContext);
686 static std::unique_ptr<Module> TheModule;
687 static std::map<std::string, AllocaInst *> NamedValues;
688 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
689 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
690 static ExitOnError ExitOnErr;
691 
LogErrorV(const char * Str)692 Value *LogErrorV(const char *Str) {
693   LogError(Str);
694   return nullptr;
695 }
696 
getFunction(std::string Name)697 Function *getFunction(std::string Name) {
698   // First, see if the function has already been added to the current module.
699   if (auto *F = TheModule->getFunction(Name))
700     return F;
701 
702   // If not, check whether we can codegen the declaration from some existing
703   // prototype.
704   auto FI = FunctionProtos.find(Name);
705   if (FI != FunctionProtos.end())
706     return FI->second->codegen();
707 
708   // If no existing prototype exists, return null.
709   return nullptr;
710 }
711 
712 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
713 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,StringRef VarName)714 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
715                                           StringRef VarName) {
716   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
717                    TheFunction->getEntryBlock().begin());
718   return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
719 }
720 
codegen()721 Value *NumberExprAST::codegen() {
722   return ConstantFP::get(TheContext, APFloat(Val));
723 }
724 
codegen()725 Value *VariableExprAST::codegen() {
726   // Look this variable up in the function.
727   Value *V = NamedValues[Name];
728   if (!V)
729     return LogErrorV("Unknown variable name");
730 
731   // Load the value.
732   return Builder.CreateLoad(V, Name.c_str());
733 }
734 
codegen()735 Value *UnaryExprAST::codegen() {
736   Value *OperandV = Operand->codegen();
737   if (!OperandV)
738     return nullptr;
739 
740   Function *F = getFunction(std::string("unary") + Opcode);
741   if (!F)
742     return LogErrorV("Unknown unary operator");
743 
744   return Builder.CreateCall(F, OperandV, "unop");
745 }
746 
codegen()747 Value *BinaryExprAST::codegen() {
748   // Special case '=' because we don't want to emit the LHS as an expression.
749   if (Op == '=') {
750     // Assignment requires the LHS to be an identifier.
751     // This assume we're building without RTTI because LLVM builds that way by
752     // default.  If you build LLVM with RTTI this can be changed to a
753     // dynamic_cast for automatic error checking.
754     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
755     if (!LHSE)
756       return LogErrorV("destination of '=' must be a variable");
757     // Codegen the RHS.
758     Value *Val = RHS->codegen();
759     if (!Val)
760       return nullptr;
761 
762     // Look up the name.
763     Value *Variable = NamedValues[LHSE->getName()];
764     if (!Variable)
765       return LogErrorV("Unknown variable name");
766 
767     Builder.CreateStore(Val, Variable);
768     return Val;
769   }
770 
771   Value *L = LHS->codegen();
772   Value *R = RHS->codegen();
773   if (!L || !R)
774     return nullptr;
775 
776   switch (Op) {
777   case '+':
778     return Builder.CreateFAdd(L, R, "addtmp");
779   case '-':
780     return Builder.CreateFSub(L, R, "subtmp");
781   case '*':
782     return Builder.CreateFMul(L, R, "multmp");
783   case '<':
784     L = Builder.CreateFCmpULT(L, R, "cmptmp");
785     // Convert bool 0/1 to double 0.0 or 1.0
786     return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
787   default:
788     break;
789   }
790 
791   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
792   // a call to it.
793   Function *F = getFunction(std::string("binary") + Op);
794   assert(F && "binary operator not found!");
795 
796   Value *Ops[] = {L, R};
797   return Builder.CreateCall(F, Ops, "binop");
798 }
799 
codegen()800 Value *CallExprAST::codegen() {
801   // Look up the name in the global module table.
802   Function *CalleeF = getFunction(Callee);
803   if (!CalleeF)
804     return LogErrorV("Unknown function referenced");
805 
806   // If argument mismatch error.
807   if (CalleeF->arg_size() != Args.size())
808     return LogErrorV("Incorrect # arguments passed");
809 
810   std::vector<Value *> ArgsV;
811   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
812     ArgsV.push_back(Args[i]->codegen());
813     if (!ArgsV.back())
814       return nullptr;
815   }
816 
817   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
818 }
819 
codegen()820 Value *IfExprAST::codegen() {
821   Value *CondV = Cond->codegen();
822   if (!CondV)
823     return nullptr;
824 
825   // Convert condition to a bool by comparing equal to 0.0.
826   CondV = Builder.CreateFCmpONE(
827       CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
828 
829   Function *TheFunction = Builder.GetInsertBlock()->getParent();
830 
831   // Create blocks for the then and else cases.  Insert the 'then' block at the
832   // end of the function.
833   BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
834   BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
835   BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
836 
837   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
838 
839   // Emit then value.
840   Builder.SetInsertPoint(ThenBB);
841 
842   Value *ThenV = Then->codegen();
843   if (!ThenV)
844     return nullptr;
845 
846   Builder.CreateBr(MergeBB);
847   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
848   ThenBB = Builder.GetInsertBlock();
849 
850   // Emit else block.
851   TheFunction->getBasicBlockList().push_back(ElseBB);
852   Builder.SetInsertPoint(ElseBB);
853 
854   Value *ElseV = Else->codegen();
855   if (!ElseV)
856     return nullptr;
857 
858   Builder.CreateBr(MergeBB);
859   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
860   ElseBB = Builder.GetInsertBlock();
861 
862   // Emit merge block.
863   TheFunction->getBasicBlockList().push_back(MergeBB);
864   Builder.SetInsertPoint(MergeBB);
865   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
866 
867   PN->addIncoming(ThenV, ThenBB);
868   PN->addIncoming(ElseV, ElseBB);
869   return PN;
870 }
871 
872 // Output for-loop as:
873 //   var = alloca double
874 //   ...
875 //   start = startexpr
876 //   store start -> var
877 //   goto loop
878 // loop:
879 //   ...
880 //   bodyexpr
881 //   ...
882 // loopend:
883 //   step = stepexpr
884 //   endcond = endexpr
885 //
886 //   curvar = load var
887 //   nextvar = curvar + step
888 //   store nextvar -> var
889 //   br endcond, loop, endloop
890 // outloop:
codegen()891 Value *ForExprAST::codegen() {
892   Function *TheFunction = Builder.GetInsertBlock()->getParent();
893 
894   // Create an alloca for the variable in the entry block.
895   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
896 
897   // Emit the start code first, without 'variable' in scope.
898   Value *StartVal = Start->codegen();
899   if (!StartVal)
900     return nullptr;
901 
902   // Store the value into the alloca.
903   Builder.CreateStore(StartVal, Alloca);
904 
905   // Make the new basic block for the loop header, inserting after current
906   // block.
907   BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
908 
909   // Insert an explicit fall through from the current block to the LoopBB.
910   Builder.CreateBr(LoopBB);
911 
912   // Start insertion in LoopBB.
913   Builder.SetInsertPoint(LoopBB);
914 
915   // Within the loop, the variable is defined equal to the PHI node.  If it
916   // shadows an existing variable, we have to restore it, so save it now.
917   AllocaInst *OldVal = NamedValues[VarName];
918   NamedValues[VarName] = Alloca;
919 
920   // Emit the body of the loop.  This, like any other expr, can change the
921   // current BB.  Note that we ignore the value computed by the body, but don't
922   // allow an error.
923   if (!Body->codegen())
924     return nullptr;
925 
926   // Emit the step value.
927   Value *StepVal = nullptr;
928   if (Step) {
929     StepVal = Step->codegen();
930     if (!StepVal)
931       return nullptr;
932   } else {
933     // If not specified, use 1.0.
934     StepVal = ConstantFP::get(TheContext, APFloat(1.0));
935   }
936 
937   // Compute the end condition.
938   Value *EndCond = End->codegen();
939   if (!EndCond)
940     return nullptr;
941 
942   // Reload, increment, and restore the alloca.  This handles the case where
943   // the body of the loop mutates the variable.
944   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
945   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
946   Builder.CreateStore(NextVar, Alloca);
947 
948   // Convert condition to a bool by comparing equal to 0.0.
949   EndCond = Builder.CreateFCmpONE(
950       EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
951 
952   // Create the "after loop" block and insert it.
953   BasicBlock *AfterBB =
954       BasicBlock::Create(TheContext, "afterloop", TheFunction);
955 
956   // Insert the conditional branch into the end of LoopEndBB.
957   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
958 
959   // Any new code will be inserted in AfterBB.
960   Builder.SetInsertPoint(AfterBB);
961 
962   // Restore the unshadowed variable.
963   if (OldVal)
964     NamedValues[VarName] = OldVal;
965   else
966     NamedValues.erase(VarName);
967 
968   // for expr always returns 0.0.
969   return Constant::getNullValue(Type::getDoubleTy(TheContext));
970 }
971 
codegen()972 Value *VarExprAST::codegen() {
973   std::vector<AllocaInst *> OldBindings;
974 
975   Function *TheFunction = Builder.GetInsertBlock()->getParent();
976 
977   // Register all variables and emit their initializer.
978   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
979     const std::string &VarName = VarNames[i].first;
980     ExprAST *Init = VarNames[i].second.get();
981 
982     // Emit the initializer before adding the variable to scope, this prevents
983     // the initializer from referencing the variable itself, and permits stuff
984     // like this:
985     //  var a = 1 in
986     //    var a = a in ...   # refers to outer 'a'.
987     Value *InitVal;
988     if (Init) {
989       InitVal = Init->codegen();
990       if (!InitVal)
991         return nullptr;
992     } else { // If not specified, use 0.0.
993       InitVal = ConstantFP::get(TheContext, APFloat(0.0));
994     }
995 
996     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
997     Builder.CreateStore(InitVal, Alloca);
998 
999     // Remember the old variable binding so that we can restore the binding when
1000     // we unrecurse.
1001     OldBindings.push_back(NamedValues[VarName]);
1002 
1003     // Remember this binding.
1004     NamedValues[VarName] = Alloca;
1005   }
1006 
1007   // Codegen the body, now that all vars are in scope.
1008   Value *BodyVal = Body->codegen();
1009   if (!BodyVal)
1010     return nullptr;
1011 
1012   // Pop all our variables from scope.
1013   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1014     NamedValues[VarNames[i].first] = OldBindings[i];
1015 
1016   // Return the body computation.
1017   return BodyVal;
1018 }
1019 
codegen()1020 Function *PrototypeAST::codegen() {
1021   // Make the function type:  double(double,double) etc.
1022   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1023   FunctionType *FT =
1024       FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1025 
1026   Function *F =
1027       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1028 
1029   // Set names for all arguments.
1030   unsigned Idx = 0;
1031   for (auto &Arg : F->args())
1032     Arg.setName(Args[Idx++]);
1033 
1034   return F;
1035 }
1036 
getProto() const1037 const PrototypeAST& FunctionAST::getProto() const {
1038   return *Proto;
1039 }
1040 
getName() const1041 const std::string& FunctionAST::getName() const {
1042   return Proto->getName();
1043 }
1044 
codegen()1045 Function *FunctionAST::codegen() {
1046   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1047   // reference to it for use below.
1048   auto &P = *Proto;
1049   Function *TheFunction = getFunction(P.getName());
1050   if (!TheFunction)
1051     return nullptr;
1052 
1053   // If this is an operator, install it.
1054   if (P.isBinaryOp())
1055     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1056 
1057   // Create a new basic block to start insertion into.
1058   BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1059   Builder.SetInsertPoint(BB);
1060 
1061   // Record the function arguments in the NamedValues map.
1062   NamedValues.clear();
1063   for (auto &Arg : TheFunction->args()) {
1064     // Create an alloca for this variable.
1065     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1066 
1067     // Store the initial value into the alloca.
1068     Builder.CreateStore(&Arg, Alloca);
1069 
1070     // Add arguments to variable symbol table.
1071     NamedValues[std::string(Arg.getName())] = Alloca;
1072   }
1073 
1074   if (Value *RetVal = Body->codegen()) {
1075     // Finish off the function.
1076     Builder.CreateRet(RetVal);
1077 
1078     // Validate the generated code, checking for consistency.
1079     verifyFunction(*TheFunction);
1080 
1081     return TheFunction;
1082   }
1083 
1084   // Error reading body, remove function.
1085   TheFunction->eraseFromParent();
1086 
1087   if (P.isBinaryOp())
1088     BinopPrecedence.erase(Proto->getOperatorName());
1089   return nullptr;
1090 }
1091 
1092 //===----------------------------------------------------------------------===//
1093 // Top-Level parsing and JIT Driver
1094 //===----------------------------------------------------------------------===//
1095 
InitializeModule()1096 static void InitializeModule() {
1097   // Open a new module.
1098   TheModule = std::make_unique<Module>("my cool jit", TheContext);
1099   TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1100 }
1101 
1102 std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST & FnAST,const std::string & Suffix)1103 irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix) {
1104   if (auto *F = FnAST.codegen()) {
1105     F->setName(F->getName() + Suffix);
1106     auto M = std::move(TheModule);
1107     // Start a new module.
1108     InitializeModule();
1109     return M;
1110   } else
1111     report_fatal_error("Couldn't compile lazily JIT'd function");
1112 }
1113 
HandleDefinition()1114 static void HandleDefinition() {
1115   if (auto FnAST = ParseDefinition()) {
1116     FunctionProtos[FnAST->getProto().getName()] =
1117       std::make_unique<PrototypeAST>(FnAST->getProto());
1118     ExitOnErr(TheJIT->addFunctionAST(std::move(FnAST)));
1119   } else {
1120     // Skip token for error recovery.
1121     getNextToken();
1122   }
1123 }
1124 
HandleExtern()1125 static void HandleExtern() {
1126   if (auto ProtoAST = ParseExtern()) {
1127     if (auto *FnIR = ProtoAST->codegen()) {
1128       fprintf(stderr, "Read extern: ");
1129       FnIR->print(errs());
1130       fprintf(stderr, "\n");
1131       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1132     }
1133   } else {
1134     // Skip token for error recovery.
1135     getNextToken();
1136   }
1137 }
1138 
HandleTopLevelExpression()1139 static void HandleTopLevelExpression() {
1140   // Evaluate a top-level expression into an anonymous function.
1141   if (auto FnAST = ParseTopLevelExpr()) {
1142     FunctionProtos[FnAST->getName()] =
1143       std::make_unique<PrototypeAST>(FnAST->getProto());
1144     if (FnAST->codegen()) {
1145       // JIT the module containing the anonymous expression, keeping a handle so
1146       // we can free it later.
1147       auto H = TheJIT->addModule(std::move(TheModule));
1148       InitializeModule();
1149 
1150       // Search the JIT for the __anon_expr symbol.
1151       auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1152       assert(ExprSymbol && "Function not found");
1153 
1154       // Get the symbol's address and cast it to the right type (takes no
1155       // arguments, returns a double) so we can call it as a native function.
1156       double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
1157       fprintf(stderr, "Evaluated to %f\n", FP());
1158 
1159       // Delete the anonymous expression module from the JIT.
1160       TheJIT->removeModule(H);
1161     }
1162   } else {
1163     // Skip token for error recovery.
1164     getNextToken();
1165   }
1166 }
1167 
1168 /// top ::= definition | external | expression | ';'
MainLoop()1169 static void MainLoop() {
1170   while (true) {
1171     fprintf(stderr, "ready> ");
1172     switch (CurTok) {
1173     case tok_eof:
1174       return;
1175     case ';': // ignore top-level semicolons.
1176       getNextToken();
1177       break;
1178     case tok_def:
1179       HandleDefinition();
1180       break;
1181     case tok_extern:
1182       HandleExtern();
1183       break;
1184     default:
1185       HandleTopLevelExpression();
1186       break;
1187     }
1188   }
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 // "Library" functions that can be "extern'd" from user code.
1193 //===----------------------------------------------------------------------===//
1194 
1195 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1196 extern "C" double putchard(double X) {
1197   fputc((char)X, stderr);
1198   return 0;
1199 }
1200 
1201 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1202 extern "C" double printd(double X) {
1203   fprintf(stderr, "%f\n", X);
1204   return 0;
1205 }
1206 
1207 //===----------------------------------------------------------------------===//
1208 // Main driver code.
1209 //===----------------------------------------------------------------------===//
1210 
main()1211 int main() {
1212   InitializeNativeTarget();
1213   InitializeNativeTargetAsmPrinter();
1214   InitializeNativeTargetAsmParser();
1215 
1216   ExitOnErr.setBanner("Kaleidoscope: ");
1217 
1218   // Install standard binary operators.
1219   // 1 is lowest precedence.
1220   BinopPrecedence['='] = 2;
1221   BinopPrecedence['<'] = 10;
1222   BinopPrecedence['+'] = 20;
1223   BinopPrecedence['-'] = 20;
1224   BinopPrecedence['*'] = 40; // highest.
1225 
1226   // Prime the first token.
1227   fprintf(stderr, "ready> ");
1228   getNextToken();
1229 
1230   TheJIT = std::make_unique<KaleidoscopeJIT>();
1231 
1232   InitializeModule();
1233 
1234   // Run the main "interpreter loop" now.
1235   MainLoop();
1236 
1237   return 0;
1238 }
1239