1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a coalescing interval map for small objects.
10 //
11 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
12 // same value are represented in a compressed form.
13 //
14 // Iterators provide ordered access to the compressed intervals rather than the
15 // individual keys, and insert and erase operations use key intervals as well.
16 //
17 // Like SmallVector, IntervalMap will store the first N intervals in the map
18 // object itself without any allocations. When space is exhausted it switches to
19 // a B+-tree representation with very small overhead for small key and value
20 // objects.
21 //
22 // A Traits class specifies how keys are compared. It also allows IntervalMap to
23 // work with both closed and half-open intervals.
24 //
25 // Keys and values are not stored next to each other in a std::pair, so we don't
26 // provide such a value_type. Dereferencing iterators only returns the mapped
27 // value. The interval bounds are accessible through the start() and stop()
28 // iterator methods.
29 //
30 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
31 // is the optimal size. For large objects use std::map instead.
32 //
33 //===----------------------------------------------------------------------===//
34 //
35 // Synopsis:
36 //
37 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
38 // class IntervalMap {
39 // public:
40 //   typedef KeyT key_type;
41 //   typedef ValT mapped_type;
42 //   typedef RecyclingAllocator<...> Allocator;
43 //   class iterator;
44 //   class const_iterator;
45 //
46 //   explicit IntervalMap(Allocator&);
47 //   ~IntervalMap():
48 //
49 //   bool empty() const;
50 //   KeyT start() const;
51 //   KeyT stop() const;
52 //   ValT lookup(KeyT x, Value NotFound = Value()) const;
53 //
54 //   const_iterator begin() const;
55 //   const_iterator end() const;
56 //   iterator begin();
57 //   iterator end();
58 //   const_iterator find(KeyT x) const;
59 //   iterator find(KeyT x);
60 //
61 //   void insert(KeyT a, KeyT b, ValT y);
62 //   void clear();
63 // };
64 //
65 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
66 // class IntervalMap::const_iterator :
67 //   public std::iterator<std::bidirectional_iterator_tag, ValT> {
68 // public:
69 //   bool operator==(const const_iterator &) const;
70 //   bool operator!=(const const_iterator &) const;
71 //   bool valid() const;
72 //
73 //   const KeyT &start() const;
74 //   const KeyT &stop() const;
75 //   const ValT &value() const;
76 //   const ValT &operator*() const;
77 //   const ValT *operator->() const;
78 //
79 //   const_iterator &operator++();
80 //   const_iterator &operator++(int);
81 //   const_iterator &operator--();
82 //   const_iterator &operator--(int);
83 //   void goToBegin();
84 //   void goToEnd();
85 //   void find(KeyT x);
86 //   void advanceTo(KeyT x);
87 // };
88 //
89 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
90 // class IntervalMap::iterator : public const_iterator {
91 // public:
92 //   void insert(KeyT a, KeyT b, Value y);
93 //   void erase();
94 // };
95 //
96 //===----------------------------------------------------------------------===//
97 
98 #ifndef LLVM_ADT_INTERVALMAP_H
99 #define LLVM_ADT_INTERVALMAP_H
100 
101 #include "llvm/ADT/PointerIntPair.h"
102 #include "llvm/ADT/SmallVector.h"
103 #include "llvm/ADT/bit.h"
104 #include "llvm/Support/AlignOf.h"
105 #include "llvm/Support/Allocator.h"
106 #include "llvm/Support/RecyclingAllocator.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <iterator>
111 #include <new>
112 #include <utility>
113 
114 namespace llvm {
115 
116 //===----------------------------------------------------------------------===//
117 //---                              Key traits                              ---//
118 //===----------------------------------------------------------------------===//
119 //
120 // The IntervalMap works with closed or half-open intervals.
121 // Adjacent intervals that map to the same value are coalesced.
122 //
123 // The IntervalMapInfo traits class is used to determine if a key is contained
124 // in an interval, and if two intervals are adjacent so they can be coalesced.
125 // The provided implementation works for closed integer intervals, other keys
126 // probably need a specialized version.
127 //
128 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
129 //
130 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
131 // allowed. This is so that stopLess(a, b) can be used to determine if two
132 // intervals overlap.
133 //
134 //===----------------------------------------------------------------------===//
135 
136 template <typename T>
137 struct IntervalMapInfo {
138   /// startLess - Return true if x is not in [a;b].
139   /// This is x < a both for closed intervals and for [a;b) half-open intervals.
startLessIntervalMapInfo140   static inline bool startLess(const T &x, const T &a) {
141     return x < a;
142   }
143 
144   /// stopLess - Return true if x is not in [a;b].
145   /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
stopLessIntervalMapInfo146   static inline bool stopLess(const T &b, const T &x) {
147     return b < x;
148   }
149 
150   /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
151   /// This is a+1 == b for closed intervals, a == b for half-open intervals.
adjacentIntervalMapInfo152   static inline bool adjacent(const T &a, const T &b) {
153     return a+1 == b;
154   }
155 
156   /// nonEmpty - Return true if [a;b] is non-empty.
157   /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
nonEmptyIntervalMapInfo158   static inline bool nonEmpty(const T &a, const T &b) {
159     return a <= b;
160   }
161 };
162 
163 template <typename T>
164 struct IntervalMapHalfOpenInfo {
165   /// startLess - Return true if x is not in [a;b).
startLessIntervalMapHalfOpenInfo166   static inline bool startLess(const T &x, const T &a) {
167     return x < a;
168   }
169 
170   /// stopLess - Return true if x is not in [a;b).
stopLessIntervalMapHalfOpenInfo171   static inline bool stopLess(const T &b, const T &x) {
172     return b <= x;
173   }
174 
175   /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
adjacentIntervalMapHalfOpenInfo176   static inline bool adjacent(const T &a, const T &b) {
177     return a == b;
178   }
179 
180   /// nonEmpty - Return true if [a;b) is non-empty.
nonEmptyIntervalMapHalfOpenInfo181   static inline bool nonEmpty(const T &a, const T &b) {
182     return a < b;
183   }
184 };
185 
186 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
187 /// It should be considered private to the implementation.
188 namespace IntervalMapImpl {
189 
190 using IdxPair = std::pair<unsigned,unsigned>;
191 
192 //===----------------------------------------------------------------------===//
193 //---                    IntervalMapImpl::NodeBase                         ---//
194 //===----------------------------------------------------------------------===//
195 //
196 // Both leaf and branch nodes store vectors of pairs.
197 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
198 //
199 // Keys and values are stored in separate arrays to avoid padding caused by
200 // different object alignments. This also helps improve locality of reference
201 // when searching the keys.
202 //
203 // The nodes don't know how many elements they contain - that information is
204 // stored elsewhere. Omitting the size field prevents padding and allows a node
205 // to fill the allocated cache lines completely.
206 //
207 // These are typical key and value sizes, the node branching factor (N), and
208 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
209 //
210 //   T1  T2   N Waste  Used by
211 //    4   4  24   0    Branch<4> (32-bit pointers)
212 //    8   4  16   0    Leaf<4,4>, Branch<4>
213 //    8   8  12   0    Leaf<4,8>, Branch<8>
214 //   16   4   9  12    Leaf<8,4>
215 //   16   8   8   0    Leaf<8,8>
216 //
217 //===----------------------------------------------------------------------===//
218 
219 template <typename T1, typename T2, unsigned N>
220 class NodeBase {
221 public:
222   enum { Capacity = N };
223 
224   T1 first[N];
225   T2 second[N];
226 
227   /// copy - Copy elements from another node.
228   /// @param Other Node elements are copied from.
229   /// @param i     Beginning of the source range in other.
230   /// @param j     Beginning of the destination range in this.
231   /// @param Count Number of elements to copy.
232   template <unsigned M>
copy(const NodeBase<T1,T2,M> & Other,unsigned i,unsigned j,unsigned Count)233   void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
234             unsigned j, unsigned Count) {
235     assert(i + Count <= M && "Invalid source range");
236     assert(j + Count <= N && "Invalid dest range");
237     for (unsigned e = i + Count; i != e; ++i, ++j) {
238       first[j]  = Other.first[i];
239       second[j] = Other.second[i];
240     }
241   }
242 
243   /// moveLeft - Move elements to the left.
244   /// @param i     Beginning of the source range.
245   /// @param j     Beginning of the destination range.
246   /// @param Count Number of elements to copy.
moveLeft(unsigned i,unsigned j,unsigned Count)247   void moveLeft(unsigned i, unsigned j, unsigned Count) {
248     assert(j <= i && "Use moveRight shift elements right");
249     copy(*this, i, j, Count);
250   }
251 
252   /// moveRight - Move elements to the right.
253   /// @param i     Beginning of the source range.
254   /// @param j     Beginning of the destination range.
255   /// @param Count Number of elements to copy.
moveRight(unsigned i,unsigned j,unsigned Count)256   void moveRight(unsigned i, unsigned j, unsigned Count) {
257     assert(i <= j && "Use moveLeft shift elements left");
258     assert(j + Count <= N && "Invalid range");
259     while (Count--) {
260       first[j + Count]  = first[i + Count];
261       second[j + Count] = second[i + Count];
262     }
263   }
264 
265   /// erase - Erase elements [i;j).
266   /// @param i    Beginning of the range to erase.
267   /// @param j    End of the range. (Exclusive).
268   /// @param Size Number of elements in node.
erase(unsigned i,unsigned j,unsigned Size)269   void erase(unsigned i, unsigned j, unsigned Size) {
270     moveLeft(j, i, Size - j);
271   }
272 
273   /// erase - Erase element at i.
274   /// @param i    Index of element to erase.
275   /// @param Size Number of elements in node.
erase(unsigned i,unsigned Size)276   void erase(unsigned i, unsigned Size) {
277     erase(i, i+1, Size);
278   }
279 
280   /// shift - Shift elements [i;size) 1 position to the right.
281   /// @param i    Beginning of the range to move.
282   /// @param Size Number of elements in node.
shift(unsigned i,unsigned Size)283   void shift(unsigned i, unsigned Size) {
284     moveRight(i, i + 1, Size - i);
285   }
286 
287   /// transferToLeftSib - Transfer elements to a left sibling node.
288   /// @param Size  Number of elements in this.
289   /// @param Sib   Left sibling node.
290   /// @param SSize Number of elements in sib.
291   /// @param Count Number of elements to transfer.
transferToLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)292   void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
293                          unsigned Count) {
294     Sib.copy(*this, 0, SSize, Count);
295     erase(0, Count, Size);
296   }
297 
298   /// transferToRightSib - Transfer elements to a right sibling node.
299   /// @param Size  Number of elements in this.
300   /// @param Sib   Right sibling node.
301   /// @param SSize Number of elements in sib.
302   /// @param Count Number of elements to transfer.
transferToRightSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)303   void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
304                           unsigned Count) {
305     Sib.moveRight(0, Count, SSize);
306     Sib.copy(*this, Size-Count, 0, Count);
307   }
308 
309   /// adjustFromLeftSib - Adjust the number if elements in this node by moving
310   /// elements to or from a left sibling node.
311   /// @param Size  Number of elements in this.
312   /// @param Sib   Right sibling node.
313   /// @param SSize Number of elements in sib.
314   /// @param Add   The number of elements to add to this node, possibly < 0.
315   /// @return      Number of elements added to this node, possibly negative.
adjustFromLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,int Add)316   int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
317     if (Add > 0) {
318       // We want to grow, copy from sib.
319       unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
320       Sib.transferToRightSib(SSize, *this, Size, Count);
321       return Count;
322     } else {
323       // We want to shrink, copy to sib.
324       unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
325       transferToLeftSib(Size, Sib, SSize, Count);
326       return -Count;
327     }
328   }
329 };
330 
331 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
332 /// @param Node  Array of pointers to sibling nodes.
333 /// @param Nodes Number of nodes.
334 /// @param CurSize Array of current node sizes, will be overwritten.
335 /// @param NewSize Array of desired node sizes.
336 template <typename NodeT>
adjustSiblingSizes(NodeT * Node[],unsigned Nodes,unsigned CurSize[],const unsigned NewSize[])337 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
338                         unsigned CurSize[], const unsigned NewSize[]) {
339   // Move elements right.
340   for (int n = Nodes - 1; n; --n) {
341     if (CurSize[n] == NewSize[n])
342       continue;
343     for (int m = n - 1; m != -1; --m) {
344       int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
345                                          NewSize[n] - CurSize[n]);
346       CurSize[m] -= d;
347       CurSize[n] += d;
348       // Keep going if the current node was exhausted.
349       if (CurSize[n] >= NewSize[n])
350           break;
351     }
352   }
353 
354   if (Nodes == 0)
355     return;
356 
357   // Move elements left.
358   for (unsigned n = 0; n != Nodes - 1; ++n) {
359     if (CurSize[n] == NewSize[n])
360       continue;
361     for (unsigned m = n + 1; m != Nodes; ++m) {
362       int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
363                                         CurSize[n] -  NewSize[n]);
364       CurSize[m] += d;
365       CurSize[n] -= d;
366       // Keep going if the current node was exhausted.
367       if (CurSize[n] >= NewSize[n])
368           break;
369     }
370   }
371 
372 #ifndef NDEBUG
373   for (unsigned n = 0; n != Nodes; n++)
374     assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
375 #endif
376 }
377 
378 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
379 /// after an overflow or underflow. Reserve space for a new element at Position,
380 /// and compute the node that will hold Position after redistributing node
381 /// elements.
382 ///
383 /// It is required that
384 ///
385 ///   Elements == sum(CurSize), and
386 ///   Elements + Grow <= Nodes * Capacity.
387 ///
388 /// NewSize[] will be filled in such that:
389 ///
390 ///   sum(NewSize) == Elements, and
391 ///   NewSize[i] <= Capacity.
392 ///
393 /// The returned index is the node where Position will go, so:
394 ///
395 ///   sum(NewSize[0..idx-1]) <= Position
396 ///   sum(NewSize[0..idx])   >= Position
397 ///
398 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
399 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
400 /// before the one holding the Position'th element where there is room for an
401 /// insertion.
402 ///
403 /// @param Nodes    The number of nodes.
404 /// @param Elements Total elements in all nodes.
405 /// @param Capacity The capacity of each node.
406 /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
407 /// @param NewSize  Array[Nodes] to receive the new node sizes.
408 /// @param Position Insert position.
409 /// @param Grow     Reserve space for a new element at Position.
410 /// @return         (node, offset) for Position.
411 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
412                    const unsigned *CurSize, unsigned NewSize[],
413                    unsigned Position, bool Grow);
414 
415 //===----------------------------------------------------------------------===//
416 //---                   IntervalMapImpl::NodeSizer                         ---//
417 //===----------------------------------------------------------------------===//
418 //
419 // Compute node sizes from key and value types.
420 //
421 // The branching factors are chosen to make nodes fit in three cache lines.
422 // This may not be possible if keys or values are very large. Such large objects
423 // are handled correctly, but a std::map would probably give better performance.
424 //
425 //===----------------------------------------------------------------------===//
426 
427 enum {
428   // Cache line size. Most architectures have 32 or 64 byte cache lines.
429   // We use 64 bytes here because it provides good branching factors.
430   Log2CacheLine = 6,
431   CacheLineBytes = 1 << Log2CacheLine,
432   DesiredNodeBytes = 3 * CacheLineBytes
433 };
434 
435 template <typename KeyT, typename ValT>
436 struct NodeSizer {
437   enum {
438     // Compute the leaf node branching factor that makes a node fit in three
439     // cache lines. The branching factor must be at least 3, or some B+-tree
440     // balancing algorithms won't work.
441     // LeafSize can't be larger than CacheLineBytes. This is required by the
442     // PointerIntPair used by NodeRef.
443     DesiredLeafSize = DesiredNodeBytes /
444       static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
445     MinLeafSize = 3,
446     LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
447   };
448 
449   using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
450 
451   enum {
452     // Now that we have the leaf branching factor, compute the actual allocation
453     // unit size by rounding up to a whole number of cache lines.
454     AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
455 
456     // Determine the branching factor for branch nodes.
457     BranchSize = AllocBytes /
458       static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
459   };
460 
461   /// Allocator - The recycling allocator used for both branch and leaf nodes.
462   /// This typedef is very likely to be identical for all IntervalMaps with
463   /// reasonably sized entries, so the same allocator can be shared among
464   /// different kinds of maps.
465   using Allocator =
466       RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
467 };
468 
469 //===----------------------------------------------------------------------===//
470 //---                     IntervalMapImpl::NodeRef                         ---//
471 //===----------------------------------------------------------------------===//
472 //
473 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
474 // pointer that can point to both kinds.
475 //
476 // All nodes are cache line aligned and the low 6 bits of a node pointer are
477 // always 0. These bits are used to store the number of elements in the
478 // referenced node. Besides saving space, placing node sizes in the parents
479 // allow tree balancing algorithms to run without faulting cache lines for nodes
480 // that may not need to be modified.
481 //
482 // A NodeRef doesn't know whether it references a leaf node or a branch node.
483 // It is the responsibility of the caller to use the correct types.
484 //
485 // Nodes are never supposed to be empty, and it is invalid to store a node size
486 // of 0 in a NodeRef. The valid range of sizes is 1-64.
487 //
488 //===----------------------------------------------------------------------===//
489 
490 class NodeRef {
491   struct CacheAlignedPointerTraits {
getAsVoidPointerCacheAlignedPointerTraits492     static inline void *getAsVoidPointer(void *P) { return P; }
getFromVoidPointerCacheAlignedPointerTraits493     static inline void *getFromVoidPointer(void *P) { return P; }
494     static constexpr int NumLowBitsAvailable = Log2CacheLine;
495   };
496   PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
497 
498 public:
499   /// NodeRef - Create a null ref.
500   NodeRef() = default;
501 
502   /// operator bool - Detect a null ref.
503   explicit operator bool() const { return pip.getOpaqueValue(); }
504 
505   /// NodeRef - Create a reference to the node p with n elements.
506   template <typename NodeT>
NodeRef(NodeT * p,unsigned n)507   NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
508     assert(n <= NodeT::Capacity && "Size too big for node");
509   }
510 
511   /// size - Return the number of elements in the referenced node.
size()512   unsigned size() const { return pip.getInt() + 1; }
513 
514   /// setSize - Update the node size.
setSize(unsigned n)515   void setSize(unsigned n) { pip.setInt(n - 1); }
516 
517   /// subtree - Access the i'th subtree reference in a branch node.
518   /// This depends on branch nodes storing the NodeRef array as their first
519   /// member.
subtree(unsigned i)520   NodeRef &subtree(unsigned i) const {
521     return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
522   }
523 
524   /// get - Dereference as a NodeT reference.
525   template <typename NodeT>
get()526   NodeT &get() const {
527     return *reinterpret_cast<NodeT*>(pip.getPointer());
528   }
529 
530   bool operator==(const NodeRef &RHS) const {
531     if (pip == RHS.pip)
532       return true;
533     assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
534     return false;
535   }
536 
537   bool operator!=(const NodeRef &RHS) const {
538     return !operator==(RHS);
539   }
540 };
541 
542 //===----------------------------------------------------------------------===//
543 //---                      IntervalMapImpl::LeafNode                       ---//
544 //===----------------------------------------------------------------------===//
545 //
546 // Leaf nodes store up to N disjoint intervals with corresponding values.
547 //
548 // The intervals are kept sorted and fully coalesced so there are no adjacent
549 // intervals mapping to the same value.
550 //
551 // These constraints are always satisfied:
552 //
553 // - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
554 //
555 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
556 //
557 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
558 //                                          - Fully coalesced.
559 //
560 //===----------------------------------------------------------------------===//
561 
562 template <typename KeyT, typename ValT, unsigned N, typename Traits>
563 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
564 public:
start(unsigned i)565   const KeyT &start(unsigned i) const { return this->first[i].first; }
stop(unsigned i)566   const KeyT &stop(unsigned i) const { return this->first[i].second; }
value(unsigned i)567   const ValT &value(unsigned i) const { return this->second[i]; }
568 
start(unsigned i)569   KeyT &start(unsigned i) { return this->first[i].first; }
stop(unsigned i)570   KeyT &stop(unsigned i) { return this->first[i].second; }
value(unsigned i)571   ValT &value(unsigned i) { return this->second[i]; }
572 
573   /// findFrom - Find the first interval after i that may contain x.
574   /// @param i    Starting index for the search.
575   /// @param Size Number of elements in node.
576   /// @param x    Key to search for.
577   /// @return     First index with !stopLess(key[i].stop, x), or size.
578   ///             This is the first interval that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)579   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
580     assert(i <= Size && Size <= N && "Bad indices");
581     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
582            "Index is past the needed point");
583     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
584     return i;
585   }
586 
587   /// safeFind - Find an interval that is known to exist. This is the same as
588   /// findFrom except is it assumed that x is at least within range of the last
589   /// interval.
590   /// @param i Starting index for the search.
591   /// @param x Key to search for.
592   /// @return  First index with !stopLess(key[i].stop, x), never size.
593   ///          This is the first interval that can possibly contain x.
safeFind(unsigned i,KeyT x)594   unsigned safeFind(unsigned i, KeyT x) const {
595     assert(i < N && "Bad index");
596     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
597            "Index is past the needed point");
598     while (Traits::stopLess(stop(i), x)) ++i;
599     assert(i < N && "Unsafe intervals");
600     return i;
601   }
602 
603   /// safeLookup - Lookup mapped value for a safe key.
604   /// It is assumed that x is within range of the last entry.
605   /// @param x        Key to search for.
606   /// @param NotFound Value to return if x is not in any interval.
607   /// @return         The mapped value at x or NotFound.
safeLookup(KeyT x,ValT NotFound)608   ValT safeLookup(KeyT x, ValT NotFound) const {
609     unsigned i = safeFind(0, x);
610     return Traits::startLess(x, start(i)) ? NotFound : value(i);
611   }
612 
613   unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
614 };
615 
616 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
617 /// possible. This may cause the node to grow by 1, or it may cause the node
618 /// to shrink because of coalescing.
619 /// @param Pos  Starting index = insertFrom(0, size, a)
620 /// @param Size Number of elements in node.
621 /// @param a    Interval start.
622 /// @param b    Interval stop.
623 /// @param y    Value be mapped.
624 /// @return     (insert position, new size), or (i, Capacity+1) on overflow.
625 template <typename KeyT, typename ValT, unsigned N, typename Traits>
626 unsigned LeafNode<KeyT, ValT, N, Traits>::
insertFrom(unsigned & Pos,unsigned Size,KeyT a,KeyT b,ValT y)627 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
628   unsigned i = Pos;
629   assert(i <= Size && Size <= N && "Invalid index");
630   assert(!Traits::stopLess(b, a) && "Invalid interval");
631 
632   // Verify the findFrom invariant.
633   assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
634   assert((i == Size || !Traits::stopLess(stop(i), a)));
635   assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
636 
637   // Coalesce with previous interval.
638   if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
639     Pos = i - 1;
640     // Also coalesce with next interval?
641     if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
642       stop(i - 1) = stop(i);
643       this->erase(i, Size);
644       return Size - 1;
645     }
646     stop(i - 1) = b;
647     return Size;
648   }
649 
650   // Detect overflow.
651   if (i == N)
652     return N + 1;
653 
654   // Add new interval at end.
655   if (i == Size) {
656     start(i) = a;
657     stop(i) = b;
658     value(i) = y;
659     return Size + 1;
660   }
661 
662   // Try to coalesce with following interval.
663   if (value(i) == y && Traits::adjacent(b, start(i))) {
664     start(i) = a;
665     return Size;
666   }
667 
668   // We must insert before i. Detect overflow.
669   if (Size == N)
670     return N + 1;
671 
672   // Insert before i.
673   this->shift(i, Size);
674   start(i) = a;
675   stop(i) = b;
676   value(i) = y;
677   return Size + 1;
678 }
679 
680 //===----------------------------------------------------------------------===//
681 //---                   IntervalMapImpl::BranchNode                        ---//
682 //===----------------------------------------------------------------------===//
683 //
684 // A branch node stores references to 1--N subtrees all of the same height.
685 //
686 // The key array in a branch node holds the rightmost stop key of each subtree.
687 // It is redundant to store the last stop key since it can be found in the
688 // parent node, but doing so makes tree balancing a lot simpler.
689 //
690 // It is unusual for a branch node to only have one subtree, but it can happen
691 // in the root node if it is smaller than the normal nodes.
692 //
693 // When all of the leaf nodes from all the subtrees are concatenated, they must
694 // satisfy the same constraints as a single leaf node. They must be sorted,
695 // sane, and fully coalesced.
696 //
697 //===----------------------------------------------------------------------===//
698 
699 template <typename KeyT, typename ValT, unsigned N, typename Traits>
700 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
701 public:
stop(unsigned i)702   const KeyT &stop(unsigned i) const { return this->second[i]; }
subtree(unsigned i)703   const NodeRef &subtree(unsigned i) const { return this->first[i]; }
704 
stop(unsigned i)705   KeyT &stop(unsigned i) { return this->second[i]; }
subtree(unsigned i)706   NodeRef &subtree(unsigned i) { return this->first[i]; }
707 
708   /// findFrom - Find the first subtree after i that may contain x.
709   /// @param i    Starting index for the search.
710   /// @param Size Number of elements in node.
711   /// @param x    Key to search for.
712   /// @return     First index with !stopLess(key[i], x), or size.
713   ///             This is the first subtree that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)714   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
715     assert(i <= Size && Size <= N && "Bad indices");
716     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
717            "Index to findFrom is past the needed point");
718     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
719     return i;
720   }
721 
722   /// safeFind - Find a subtree that is known to exist. This is the same as
723   /// findFrom except is it assumed that x is in range.
724   /// @param i Starting index for the search.
725   /// @param x Key to search for.
726   /// @return  First index with !stopLess(key[i], x), never size.
727   ///          This is the first subtree that can possibly contain x.
safeFind(unsigned i,KeyT x)728   unsigned safeFind(unsigned i, KeyT x) const {
729     assert(i < N && "Bad index");
730     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
731            "Index is past the needed point");
732     while (Traits::stopLess(stop(i), x)) ++i;
733     assert(i < N && "Unsafe intervals");
734     return i;
735   }
736 
737   /// safeLookup - Get the subtree containing x, Assuming that x is in range.
738   /// @param x Key to search for.
739   /// @return  Subtree containing x
safeLookup(KeyT x)740   NodeRef safeLookup(KeyT x) const {
741     return subtree(safeFind(0, x));
742   }
743 
744   /// insert - Insert a new (subtree, stop) pair.
745   /// @param i    Insert position, following entries will be shifted.
746   /// @param Size Number of elements in node.
747   /// @param Node Subtree to insert.
748   /// @param Stop Last key in subtree.
insert(unsigned i,unsigned Size,NodeRef Node,KeyT Stop)749   void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
750     assert(Size < N && "branch node overflow");
751     assert(i <= Size && "Bad insert position");
752     this->shift(i, Size);
753     subtree(i) = Node;
754     stop(i) = Stop;
755   }
756 };
757 
758 //===----------------------------------------------------------------------===//
759 //---                         IntervalMapImpl::Path                        ---//
760 //===----------------------------------------------------------------------===//
761 //
762 // A Path is used by iterators to represent a position in a B+-tree, and the
763 // path to get there from the root.
764 //
765 // The Path class also contains the tree navigation code that doesn't have to
766 // be templatized.
767 //
768 //===----------------------------------------------------------------------===//
769 
770 class Path {
771   /// Entry - Each step in the path is a node pointer and an offset into that
772   /// node.
773   struct Entry {
774     void *node;
775     unsigned size;
776     unsigned offset;
777 
EntryEntry778     Entry(void *Node, unsigned Size, unsigned Offset)
779       : node(Node), size(Size), offset(Offset) {}
780 
EntryEntry781     Entry(NodeRef Node, unsigned Offset)
782       : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
783 
subtreeEntry784     NodeRef &subtree(unsigned i) const {
785       return reinterpret_cast<NodeRef*>(node)[i];
786     }
787   };
788 
789   /// path - The path entries, path[0] is the root node, path.back() is a leaf.
790   SmallVector<Entry, 4> path;
791 
792 public:
793   // Node accessors.
node(unsigned Level)794   template <typename NodeT> NodeT &node(unsigned Level) const {
795     return *reinterpret_cast<NodeT*>(path[Level].node);
796   }
size(unsigned Level)797   unsigned size(unsigned Level) const { return path[Level].size; }
offset(unsigned Level)798   unsigned offset(unsigned Level) const { return path[Level].offset; }
offset(unsigned Level)799   unsigned &offset(unsigned Level) { return path[Level].offset; }
800 
801   // Leaf accessors.
leaf()802   template <typename NodeT> NodeT &leaf() const {
803     return *reinterpret_cast<NodeT*>(path.back().node);
804   }
leafSize()805   unsigned leafSize() const { return path.back().size; }
leafOffset()806   unsigned leafOffset() const { return path.back().offset; }
leafOffset()807   unsigned &leafOffset() { return path.back().offset; }
808 
809   /// valid - Return true if path is at a valid node, not at end().
valid()810   bool valid() const {
811     return !path.empty() && path.front().offset < path.front().size;
812   }
813 
814   /// height - Return the height of the tree corresponding to this path.
815   /// This matches map->height in a full path.
height()816   unsigned height() const { return path.size() - 1; }
817 
818   /// subtree - Get the subtree referenced from Level. When the path is
819   /// consistent, node(Level + 1) == subtree(Level).
820   /// @param Level 0..height-1. The leaves have no subtrees.
subtree(unsigned Level)821   NodeRef &subtree(unsigned Level) const {
822     return path[Level].subtree(path[Level].offset);
823   }
824 
825   /// reset - Reset cached information about node(Level) from subtree(Level -1).
826   /// @param Level 1..height. The node to update after parent node changed.
reset(unsigned Level)827   void reset(unsigned Level) {
828     path[Level] = Entry(subtree(Level - 1), offset(Level));
829   }
830 
831   /// push - Add entry to path.
832   /// @param Node Node to add, should be subtree(path.size()-1).
833   /// @param Offset Offset into Node.
push(NodeRef Node,unsigned Offset)834   void push(NodeRef Node, unsigned Offset) {
835     path.push_back(Entry(Node, Offset));
836   }
837 
838   /// pop - Remove the last path entry.
pop()839   void pop() {
840     path.pop_back();
841   }
842 
843   /// setSize - Set the size of a node both in the path and in the tree.
844   /// @param Level 0..height. Note that setting the root size won't change
845   ///              map->rootSize.
846   /// @param Size New node size.
setSize(unsigned Level,unsigned Size)847   void setSize(unsigned Level, unsigned Size) {
848     path[Level].size = Size;
849     if (Level)
850       subtree(Level - 1).setSize(Size);
851   }
852 
853   /// setRoot - Clear the path and set a new root node.
854   /// @param Node New root node.
855   /// @param Size New root size.
856   /// @param Offset Offset into root node.
setRoot(void * Node,unsigned Size,unsigned Offset)857   void setRoot(void *Node, unsigned Size, unsigned Offset) {
858     path.clear();
859     path.push_back(Entry(Node, Size, Offset));
860   }
861 
862   /// replaceRoot - Replace the current root node with two new entries after the
863   /// tree height has increased.
864   /// @param Root The new root node.
865   /// @param Size Number of entries in the new root.
866   /// @param Offsets Offsets into the root and first branch nodes.
867   void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
868 
869   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
870   /// @param Level Get the sibling to node(Level).
871   /// @return Left sibling, or NodeRef().
872   NodeRef getLeftSibling(unsigned Level) const;
873 
874   /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
875   /// unaltered.
876   /// @param Level Move node(Level).
877   void moveLeft(unsigned Level);
878 
879   /// fillLeft - Grow path to Height by taking leftmost branches.
880   /// @param Height The target height.
fillLeft(unsigned Height)881   void fillLeft(unsigned Height) {
882     while (height() < Height)
883       push(subtree(height()), 0);
884   }
885 
886   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
887   /// @param Level Get the sibling to node(Level).
888   /// @return Left sibling, or NodeRef().
889   NodeRef getRightSibling(unsigned Level) const;
890 
891   /// moveRight - Move path to the left sibling at Level. Leave nodes below
892   /// Level unaltered.
893   /// @param Level Move node(Level).
894   void moveRight(unsigned Level);
895 
896   /// atBegin - Return true if path is at begin().
atBegin()897   bool atBegin() const {
898     for (unsigned i = 0, e = path.size(); i != e; ++i)
899       if (path[i].offset != 0)
900         return false;
901     return true;
902   }
903 
904   /// atLastEntry - Return true if the path is at the last entry of the node at
905   /// Level.
906   /// @param Level Node to examine.
atLastEntry(unsigned Level)907   bool atLastEntry(unsigned Level) const {
908     return path[Level].offset == path[Level].size - 1;
909   }
910 
911   /// legalizeForInsert - Prepare the path for an insertion at Level. When the
912   /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
913   /// ensures that node(Level) is real by moving back to the last node at Level,
914   /// and setting offset(Level) to size(Level) if required.
915   /// @param Level The level where an insertion is about to take place.
legalizeForInsert(unsigned Level)916   void legalizeForInsert(unsigned Level) {
917     if (valid())
918       return;
919     moveLeft(Level);
920     ++path[Level].offset;
921   }
922 };
923 
924 } // end namespace IntervalMapImpl
925 
926 //===----------------------------------------------------------------------===//
927 //---                          IntervalMap                                ----//
928 //===----------------------------------------------------------------------===//
929 
930 template <typename KeyT, typename ValT,
931           unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
932           typename Traits = IntervalMapInfo<KeyT>>
933 class IntervalMap {
934   using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
935   using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
936   using Branch =
937       IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
938   using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
939   using IdxPair = IntervalMapImpl::IdxPair;
940 
941   // The RootLeaf capacity is given as a template parameter. We must compute the
942   // corresponding RootBranch capacity.
943   enum {
944     DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
945       (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
946     RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
947   };
948 
949   using RootBranch =
950       IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
951 
952   // When branched, we store a global start key as well as the branch node.
953   struct RootBranchData {
954     KeyT start;
955     RootBranch node;
956   };
957 
958 public:
959   using Allocator = typename Sizer::Allocator;
960   using KeyType = KeyT;
961   using ValueType = ValT;
962   using KeyTraits = Traits;
963 
964 private:
965   // The root data is either a RootLeaf or a RootBranchData instance.
966   alignas(RootLeaf) alignas(RootBranchData)
967       AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
968 
969   // Tree height.
970   // 0: Leaves in root.
971   // 1: Root points to leaf.
972   // 2: root->branch->leaf ...
973   unsigned height;
974 
975   // Number of entries in the root node.
976   unsigned rootSize;
977 
978   // Allocator used for creating external nodes.
979   Allocator &allocator;
980 
981   /// Represent data as a node type without breaking aliasing rules.
982   template <typename T>
dataAs()983   T &dataAs() const {
984     return *bit_cast<T *>(const_cast<char *>(data.buffer));
985   }
986 
rootLeaf()987   const RootLeaf &rootLeaf() const {
988     assert(!branched() && "Cannot acces leaf data in branched root");
989     return dataAs<RootLeaf>();
990   }
rootLeaf()991   RootLeaf &rootLeaf() {
992     assert(!branched() && "Cannot acces leaf data in branched root");
993     return dataAs<RootLeaf>();
994   }
995 
rootBranchData()996   RootBranchData &rootBranchData() const {
997     assert(branched() && "Cannot access branch data in non-branched root");
998     return dataAs<RootBranchData>();
999   }
rootBranchData()1000   RootBranchData &rootBranchData() {
1001     assert(branched() && "Cannot access branch data in non-branched root");
1002     return dataAs<RootBranchData>();
1003   }
1004 
rootBranch()1005   const RootBranch &rootBranch() const { return rootBranchData().node; }
rootBranch()1006   RootBranch &rootBranch()             { return rootBranchData().node; }
rootBranchStart()1007   KeyT rootBranchStart() const { return rootBranchData().start; }
rootBranchStart()1008   KeyT &rootBranchStart()      { return rootBranchData().start; }
1009 
newNode()1010   template <typename NodeT> NodeT *newNode() {
1011     return new(allocator.template Allocate<NodeT>()) NodeT();
1012   }
1013 
deleteNode(NodeT * P)1014   template <typename NodeT> void deleteNode(NodeT *P) {
1015     P->~NodeT();
1016     allocator.Deallocate(P);
1017   }
1018 
1019   IdxPair branchRoot(unsigned Position);
1020   IdxPair splitRoot(unsigned Position);
1021 
switchRootToBranch()1022   void switchRootToBranch() {
1023     rootLeaf().~RootLeaf();
1024     height = 1;
1025     new (&rootBranchData()) RootBranchData();
1026   }
1027 
switchRootToLeaf()1028   void switchRootToLeaf() {
1029     rootBranchData().~RootBranchData();
1030     height = 0;
1031     new(&rootLeaf()) RootLeaf();
1032   }
1033 
branched()1034   bool branched() const { return height > 0; }
1035 
1036   ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1037   void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1038                   unsigned Level));
1039   void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1040 
1041 public:
IntervalMap(Allocator & a)1042   explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1043     assert((uintptr_t(data.buffer) & (alignof(RootLeaf) - 1)) == 0 &&
1044            "Insufficient alignment");
1045     new(&rootLeaf()) RootLeaf();
1046   }
1047 
~IntervalMap()1048   ~IntervalMap() {
1049     clear();
1050     rootLeaf().~RootLeaf();
1051   }
1052 
1053   /// empty -  Return true when no intervals are mapped.
empty()1054   bool empty() const {
1055     return rootSize == 0;
1056   }
1057 
1058   /// start - Return the smallest mapped key in a non-empty map.
start()1059   KeyT start() const {
1060     assert(!empty() && "Empty IntervalMap has no start");
1061     return !branched() ? rootLeaf().start(0) : rootBranchStart();
1062   }
1063 
1064   /// stop - Return the largest mapped key in a non-empty map.
stop()1065   KeyT stop() const {
1066     assert(!empty() && "Empty IntervalMap has no stop");
1067     return !branched() ? rootLeaf().stop(rootSize - 1) :
1068                          rootBranch().stop(rootSize - 1);
1069   }
1070 
1071   /// lookup - Return the mapped value at x or NotFound.
1072   ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1073     if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1074       return NotFound;
1075     return branched() ? treeSafeLookup(x, NotFound) :
1076                         rootLeaf().safeLookup(x, NotFound);
1077   }
1078 
1079   /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1080   /// It is assumed that no key in the interval is mapped to another value, but
1081   /// overlapping intervals already mapped to y will be coalesced.
insert(KeyT a,KeyT b,ValT y)1082   void insert(KeyT a, KeyT b, ValT y) {
1083     if (branched() || rootSize == RootLeaf::Capacity)
1084       return find(a).insert(a, b, y);
1085 
1086     // Easy insert into root leaf.
1087     unsigned p = rootLeaf().findFrom(0, rootSize, a);
1088     rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1089   }
1090 
1091   /// clear - Remove all entries.
1092   void clear();
1093 
1094   class const_iterator;
1095   class iterator;
1096   friend class const_iterator;
1097   friend class iterator;
1098 
begin()1099   const_iterator begin() const {
1100     const_iterator I(*this);
1101     I.goToBegin();
1102     return I;
1103   }
1104 
begin()1105   iterator begin() {
1106     iterator I(*this);
1107     I.goToBegin();
1108     return I;
1109   }
1110 
end()1111   const_iterator end() const {
1112     const_iterator I(*this);
1113     I.goToEnd();
1114     return I;
1115   }
1116 
end()1117   iterator end() {
1118     iterator I(*this);
1119     I.goToEnd();
1120     return I;
1121   }
1122 
1123   /// find - Return an iterator pointing to the first interval ending at or
1124   /// after x, or end().
find(KeyT x)1125   const_iterator find(KeyT x) const {
1126     const_iterator I(*this);
1127     I.find(x);
1128     return I;
1129   }
1130 
find(KeyT x)1131   iterator find(KeyT x) {
1132     iterator I(*this);
1133     I.find(x);
1134     return I;
1135   }
1136 
1137   /// overlaps(a, b) - Return true if the intervals in this map overlap with the
1138   /// interval [a;b].
overlaps(KeyT a,KeyT b)1139   bool overlaps(KeyT a, KeyT b) {
1140     assert(Traits::nonEmpty(a, b));
1141     const_iterator I = find(a);
1142     if (!I.valid())
1143       return false;
1144     // [a;b] and [x;y] overlap iff x<=b and a<=y. The find() call guarantees the
1145     // second part (y = find(a).stop()), so it is sufficient to check the first
1146     // one.
1147     return !Traits::stopLess(b, I.start());
1148   }
1149 };
1150 
1151 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1152 /// branched root.
1153 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1154 ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x,ValT NotFound)1155 treeSafeLookup(KeyT x, ValT NotFound) const {
1156   assert(branched() && "treeLookup assumes a branched root");
1157 
1158   IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1159   for (unsigned h = height-1; h; --h)
1160     NR = NR.get<Branch>().safeLookup(x);
1161   return NR.get<Leaf>().safeLookup(x, NotFound);
1162 }
1163 
1164 // branchRoot - Switch from a leaf root to a branched root.
1165 // Return the new (root offset, node offset) corresponding to Position.
1166 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1167 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position)1168 branchRoot(unsigned Position) {
1169   using namespace IntervalMapImpl;
1170   // How many external leaf nodes to hold RootLeaf+1?
1171   const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1172 
1173   // Compute element distribution among new nodes.
1174   unsigned size[Nodes];
1175   IdxPair NewOffset(0, Position);
1176 
1177   // Is is very common for the root node to be smaller than external nodes.
1178   if (Nodes == 1)
1179     size[0] = rootSize;
1180   else
1181     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
1182                            Position, true);
1183 
1184   // Allocate new nodes.
1185   unsigned pos = 0;
1186   NodeRef node[Nodes];
1187   for (unsigned n = 0; n != Nodes; ++n) {
1188     Leaf *L = newNode<Leaf>();
1189     L->copy(rootLeaf(), pos, 0, size[n]);
1190     node[n] = NodeRef(L, size[n]);
1191     pos += size[n];
1192   }
1193 
1194   // Destroy the old leaf node, construct branch node instead.
1195   switchRootToBranch();
1196   for (unsigned n = 0; n != Nodes; ++n) {
1197     rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1198     rootBranch().subtree(n) = node[n];
1199   }
1200   rootBranchStart() = node[0].template get<Leaf>().start(0);
1201   rootSize = Nodes;
1202   return NewOffset;
1203 }
1204 
1205 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1206 // Return the new (root offset, node offset) corresponding to Position.
1207 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1208 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position)1209 splitRoot(unsigned Position) {
1210   using namespace IntervalMapImpl;
1211   // How many external leaf nodes to hold RootBranch+1?
1212   const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1213 
1214   // Compute element distribution among new nodes.
1215   unsigned Size[Nodes];
1216   IdxPair NewOffset(0, Position);
1217 
1218   // Is is very common for the root node to be smaller than external nodes.
1219   if (Nodes == 1)
1220     Size[0] = rootSize;
1221   else
1222     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
1223                            Position, true);
1224 
1225   // Allocate new nodes.
1226   unsigned Pos = 0;
1227   NodeRef Node[Nodes];
1228   for (unsigned n = 0; n != Nodes; ++n) {
1229     Branch *B = newNode<Branch>();
1230     B->copy(rootBranch(), Pos, 0, Size[n]);
1231     Node[n] = NodeRef(B, Size[n]);
1232     Pos += Size[n];
1233   }
1234 
1235   for (unsigned n = 0; n != Nodes; ++n) {
1236     rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1237     rootBranch().subtree(n) = Node[n];
1238   }
1239   rootSize = Nodes;
1240   ++height;
1241   return NewOffset;
1242 }
1243 
1244 /// visitNodes - Visit each external node.
1245 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1246 void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::* f)(IntervalMapImpl::NodeRef,unsigned Height))1247 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1248   if (!branched())
1249     return;
1250   SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1251 
1252   // Collect level 0 nodes from the root.
1253   for (unsigned i = 0; i != rootSize; ++i)
1254     Refs.push_back(rootBranch().subtree(i));
1255 
1256   // Visit all branch nodes.
1257   for (unsigned h = height - 1; h; --h) {
1258     for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1259       for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1260         NextRefs.push_back(Refs[i].subtree(j));
1261       (this->*f)(Refs[i], h);
1262     }
1263     Refs.clear();
1264     Refs.swap(NextRefs);
1265   }
1266 
1267   // Visit all leaf nodes.
1268   for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1269     (this->*f)(Refs[i], 0);
1270 }
1271 
1272 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1273 void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(IntervalMapImpl::NodeRef Node,unsigned Level)1274 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1275   if (Level)
1276     deleteNode(&Node.get<Branch>());
1277   else
1278     deleteNode(&Node.get<Leaf>());
1279 }
1280 
1281 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1282 void IntervalMap<KeyT, ValT, N, Traits>::
clear()1283 clear() {
1284   if (branched()) {
1285     visitNodes(&IntervalMap::deleteNode);
1286     switchRootToLeaf();
1287   }
1288   rootSize = 0;
1289 }
1290 
1291 //===----------------------------------------------------------------------===//
1292 //---                   IntervalMap::const_iterator                       ----//
1293 //===----------------------------------------------------------------------===//
1294 
1295 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1296 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1297   public std::iterator<std::bidirectional_iterator_tag, ValT> {
1298 
1299 protected:
1300   friend class IntervalMap;
1301 
1302   // The map referred to.
1303   IntervalMap *map = nullptr;
1304 
1305   // We store a full path from the root to the current position.
1306   // The path may be partially filled, but never between iterator calls.
1307   IntervalMapImpl::Path path;
1308 
const_iterator(const IntervalMap & map)1309   explicit const_iterator(const IntervalMap &map) :
1310     map(const_cast<IntervalMap*>(&map)) {}
1311 
branched()1312   bool branched() const {
1313     assert(map && "Invalid iterator");
1314     return map->branched();
1315   }
1316 
setRoot(unsigned Offset)1317   void setRoot(unsigned Offset) {
1318     if (branched())
1319       path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1320     else
1321       path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1322   }
1323 
1324   void pathFillFind(KeyT x);
1325   void treeFind(KeyT x);
1326   void treeAdvanceTo(KeyT x);
1327 
1328   /// unsafeStart - Writable access to start() for iterator.
unsafeStart()1329   KeyT &unsafeStart() const {
1330     assert(valid() && "Cannot access invalid iterator");
1331     return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1332                         path.leaf<RootLeaf>().start(path.leafOffset());
1333   }
1334 
1335   /// unsafeStop - Writable access to stop() for iterator.
unsafeStop()1336   KeyT &unsafeStop() const {
1337     assert(valid() && "Cannot access invalid iterator");
1338     return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1339                         path.leaf<RootLeaf>().stop(path.leafOffset());
1340   }
1341 
1342   /// unsafeValue - Writable access to value() for iterator.
unsafeValue()1343   ValT &unsafeValue() const {
1344     assert(valid() && "Cannot access invalid iterator");
1345     return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1346                         path.leaf<RootLeaf>().value(path.leafOffset());
1347   }
1348 
1349 public:
1350   /// const_iterator - Create an iterator that isn't pointing anywhere.
1351   const_iterator() = default;
1352 
1353   /// setMap - Change the map iterated over. This call must be followed by a
1354   /// call to goToBegin(), goToEnd(), or find()
setMap(const IntervalMap & m)1355   void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1356 
1357   /// valid - Return true if the current position is valid, false for end().
valid()1358   bool valid() const { return path.valid(); }
1359 
1360   /// atBegin - Return true if the current position is the first map entry.
atBegin()1361   bool atBegin() const { return path.atBegin(); }
1362 
1363   /// start - Return the beginning of the current interval.
start()1364   const KeyT &start() const { return unsafeStart(); }
1365 
1366   /// stop - Return the end of the current interval.
stop()1367   const KeyT &stop() const { return unsafeStop(); }
1368 
1369   /// value - Return the mapped value at the current interval.
value()1370   const ValT &value() const { return unsafeValue(); }
1371 
1372   const ValT &operator*() const { return value(); }
1373 
1374   bool operator==(const const_iterator &RHS) const {
1375     assert(map == RHS.map && "Cannot compare iterators from different maps");
1376     if (!valid())
1377       return !RHS.valid();
1378     if (path.leafOffset() != RHS.path.leafOffset())
1379       return false;
1380     return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1381   }
1382 
1383   bool operator!=(const const_iterator &RHS) const {
1384     return !operator==(RHS);
1385   }
1386 
1387   /// goToBegin - Move to the first interval in map.
goToBegin()1388   void goToBegin() {
1389     setRoot(0);
1390     if (branched())
1391       path.fillLeft(map->height);
1392   }
1393 
1394   /// goToEnd - Move beyond the last interval in map.
goToEnd()1395   void goToEnd() {
1396     setRoot(map->rootSize);
1397   }
1398 
1399   /// preincrement - Move to the next interval.
1400   const_iterator &operator++() {
1401     assert(valid() && "Cannot increment end()");
1402     if (++path.leafOffset() == path.leafSize() && branched())
1403       path.moveRight(map->height);
1404     return *this;
1405   }
1406 
1407   /// postincrement - Don't do that!
1408   const_iterator operator++(int) {
1409     const_iterator tmp = *this;
1410     operator++();
1411     return tmp;
1412   }
1413 
1414   /// predecrement - Move to the previous interval.
1415   const_iterator &operator--() {
1416     if (path.leafOffset() && (valid() || !branched()))
1417       --path.leafOffset();
1418     else
1419       path.moveLeft(map->height);
1420     return *this;
1421   }
1422 
1423   /// postdecrement - Don't do that!
1424   const_iterator operator--(int) {
1425     const_iterator tmp = *this;
1426     operator--();
1427     return tmp;
1428   }
1429 
1430   /// find - Move to the first interval with stop >= x, or end().
1431   /// This is a full search from the root, the current position is ignored.
find(KeyT x)1432   void find(KeyT x) {
1433     if (branched())
1434       treeFind(x);
1435     else
1436       setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1437   }
1438 
1439   /// advanceTo - Move to the first interval with stop >= x, or end().
1440   /// The search is started from the current position, and no earlier positions
1441   /// can be found. This is much faster than find() for small moves.
advanceTo(KeyT x)1442   void advanceTo(KeyT x) {
1443     if (!valid())
1444       return;
1445     if (branched())
1446       treeAdvanceTo(x);
1447     else
1448       path.leafOffset() =
1449         map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1450   }
1451 };
1452 
1453 /// pathFillFind - Complete path by searching for x.
1454 /// @param x Key to search for.
1455 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1456 void IntervalMap<KeyT, ValT, N, Traits>::
pathFillFind(KeyT x)1457 const_iterator::pathFillFind(KeyT x) {
1458   IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1459   for (unsigned i = map->height - path.height() - 1; i; --i) {
1460     unsigned p = NR.get<Branch>().safeFind(0, x);
1461     path.push(NR, p);
1462     NR = NR.subtree(p);
1463   }
1464   path.push(NR, NR.get<Leaf>().safeFind(0, x));
1465 }
1466 
1467 /// treeFind - Find in a branched tree.
1468 /// @param x Key to search for.
1469 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1470 void IntervalMap<KeyT, ValT, N, Traits>::
treeFind(KeyT x)1471 const_iterator::treeFind(KeyT x) {
1472   setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1473   if (valid())
1474     pathFillFind(x);
1475 }
1476 
1477 /// treeAdvanceTo - Find position after the current one.
1478 /// @param x Key to search for.
1479 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1480 void IntervalMap<KeyT, ValT, N, Traits>::
treeAdvanceTo(KeyT x)1481 const_iterator::treeAdvanceTo(KeyT x) {
1482   // Can we stay on the same leaf node?
1483   if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1484     path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1485     return;
1486   }
1487 
1488   // Drop the current leaf.
1489   path.pop();
1490 
1491   // Search towards the root for a usable subtree.
1492   if (path.height()) {
1493     for (unsigned l = path.height() - 1; l; --l) {
1494       if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1495         // The branch node at l+1 is usable
1496         path.offset(l + 1) =
1497           path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1498         return pathFillFind(x);
1499       }
1500       path.pop();
1501     }
1502     // Is the level-1 Branch usable?
1503     if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1504       path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1505       return pathFillFind(x);
1506     }
1507   }
1508 
1509   // We reached the root.
1510   setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1511   if (valid())
1512     pathFillFind(x);
1513 }
1514 
1515 //===----------------------------------------------------------------------===//
1516 //---                       IntervalMap::iterator                         ----//
1517 //===----------------------------------------------------------------------===//
1518 
1519 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1520 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1521   friend class IntervalMap;
1522 
1523   using IdxPair = IntervalMapImpl::IdxPair;
1524 
iterator(IntervalMap & map)1525   explicit iterator(IntervalMap &map) : const_iterator(map) {}
1526 
1527   void setNodeStop(unsigned Level, KeyT Stop);
1528   bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1529   template <typename NodeT> bool overflow(unsigned Level);
1530   void treeInsert(KeyT a, KeyT b, ValT y);
1531   void eraseNode(unsigned Level);
1532   void treeErase(bool UpdateRoot = true);
1533   bool canCoalesceLeft(KeyT Start, ValT x);
1534   bool canCoalesceRight(KeyT Stop, ValT x);
1535 
1536 public:
1537   /// iterator - Create null iterator.
1538   iterator() = default;
1539 
1540   /// setStart - Move the start of the current interval.
1541   /// This may cause coalescing with the previous interval.
1542   /// @param a New start key, must not overlap the previous interval.
1543   void setStart(KeyT a);
1544 
1545   /// setStop - Move the end of the current interval.
1546   /// This may cause coalescing with the following interval.
1547   /// @param b New stop key, must not overlap the following interval.
1548   void setStop(KeyT b);
1549 
1550   /// setValue - Change the mapped value of the current interval.
1551   /// This may cause coalescing with the previous and following intervals.
1552   /// @param x New value.
1553   void setValue(ValT x);
1554 
1555   /// setStartUnchecked - Move the start of the current interval without
1556   /// checking for coalescing or overlaps.
1557   /// This should only be used when it is known that coalescing is not required.
1558   /// @param a New start key.
setStartUnchecked(KeyT a)1559   void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1560 
1561   /// setStopUnchecked - Move the end of the current interval without checking
1562   /// for coalescing or overlaps.
1563   /// This should only be used when it is known that coalescing is not required.
1564   /// @param b New stop key.
setStopUnchecked(KeyT b)1565   void setStopUnchecked(KeyT b) {
1566     this->unsafeStop() = b;
1567     // Update keys in branch nodes as well.
1568     if (this->path.atLastEntry(this->path.height()))
1569       setNodeStop(this->path.height(), b);
1570   }
1571 
1572   /// setValueUnchecked - Change the mapped value of the current interval
1573   /// without checking for coalescing.
1574   /// @param x New value.
setValueUnchecked(ValT x)1575   void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1576 
1577   /// insert - Insert mapping [a;b] -> y before the current position.
1578   void insert(KeyT a, KeyT b, ValT y);
1579 
1580   /// erase - Erase the current interval.
1581   void erase();
1582 
1583   iterator &operator++() {
1584     const_iterator::operator++();
1585     return *this;
1586   }
1587 
1588   iterator operator++(int) {
1589     iterator tmp = *this;
1590     operator++();
1591     return tmp;
1592   }
1593 
1594   iterator &operator--() {
1595     const_iterator::operator--();
1596     return *this;
1597   }
1598 
1599   iterator operator--(int) {
1600     iterator tmp = *this;
1601     operator--();
1602     return tmp;
1603   }
1604 };
1605 
1606 /// canCoalesceLeft - Can the current interval coalesce to the left after
1607 /// changing start or value?
1608 /// @param Start New start of current interval.
1609 /// @param Value New value for current interval.
1610 /// @return True when updating the current interval would enable coalescing.
1611 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1612 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceLeft(KeyT Start,ValT Value)1613 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1614   using namespace IntervalMapImpl;
1615   Path &P = this->path;
1616   if (!this->branched()) {
1617     unsigned i = P.leafOffset();
1618     RootLeaf &Node = P.leaf<RootLeaf>();
1619     return i && Node.value(i-1) == Value &&
1620                 Traits::adjacent(Node.stop(i-1), Start);
1621   }
1622   // Branched.
1623   if (unsigned i = P.leafOffset()) {
1624     Leaf &Node = P.leaf<Leaf>();
1625     return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1626   } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1627     unsigned i = NR.size() - 1;
1628     Leaf &Node = NR.get<Leaf>();
1629     return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1630   }
1631   return false;
1632 }
1633 
1634 /// canCoalesceRight - Can the current interval coalesce to the right after
1635 /// changing stop or value?
1636 /// @param Stop New stop of current interval.
1637 /// @param Value New value for current interval.
1638 /// @return True when updating the current interval would enable coalescing.
1639 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1640 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceRight(KeyT Stop,ValT Value)1641 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1642   using namespace IntervalMapImpl;
1643   Path &P = this->path;
1644   unsigned i = P.leafOffset() + 1;
1645   if (!this->branched()) {
1646     if (i >= P.leafSize())
1647       return false;
1648     RootLeaf &Node = P.leaf<RootLeaf>();
1649     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1650   }
1651   // Branched.
1652   if (i < P.leafSize()) {
1653     Leaf &Node = P.leaf<Leaf>();
1654     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1655   } else if (NodeRef NR = P.getRightSibling(P.height())) {
1656     Leaf &Node = NR.get<Leaf>();
1657     return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1658   }
1659   return false;
1660 }
1661 
1662 /// setNodeStop - Update the stop key of the current node at level and above.
1663 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1664 void IntervalMap<KeyT, ValT, N, Traits>::
setNodeStop(unsigned Level,KeyT Stop)1665 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1666   // There are no references to the root node, so nothing to update.
1667   if (!Level)
1668     return;
1669   IntervalMapImpl::Path &P = this->path;
1670   // Update nodes pointing to the current node.
1671   while (--Level) {
1672     P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1673     if (!P.atLastEntry(Level))
1674       return;
1675   }
1676   // Update root separately since it has a different layout.
1677   P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1678 }
1679 
1680 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1681 void IntervalMap<KeyT, ValT, N, Traits>::
setStart(KeyT a)1682 iterator::setStart(KeyT a) {
1683   assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
1684   KeyT &CurStart = this->unsafeStart();
1685   if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1686     CurStart = a;
1687     return;
1688   }
1689   // Coalesce with the interval to the left.
1690   --*this;
1691   a = this->start();
1692   erase();
1693   setStartUnchecked(a);
1694 }
1695 
1696 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1697 void IntervalMap<KeyT, ValT, N, Traits>::
setStop(KeyT b)1698 iterator::setStop(KeyT b) {
1699   assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
1700   if (Traits::startLess(b, this->stop()) ||
1701       !canCoalesceRight(b, this->value())) {
1702     setStopUnchecked(b);
1703     return;
1704   }
1705   // Coalesce with interval to the right.
1706   KeyT a = this->start();
1707   erase();
1708   setStartUnchecked(a);
1709 }
1710 
1711 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1712 void IntervalMap<KeyT, ValT, N, Traits>::
setValue(ValT x)1713 iterator::setValue(ValT x) {
1714   setValueUnchecked(x);
1715   if (canCoalesceRight(this->stop(), x)) {
1716     KeyT a = this->start();
1717     erase();
1718     setStartUnchecked(a);
1719   }
1720   if (canCoalesceLeft(this->start(), x)) {
1721     --*this;
1722     KeyT a = this->start();
1723     erase();
1724     setStartUnchecked(a);
1725   }
1726 }
1727 
1728 /// insertNode - insert a node before the current path at level.
1729 /// Leave the current path pointing at the new node.
1730 /// @param Level path index of the node to be inserted.
1731 /// @param Node The node to be inserted.
1732 /// @param Stop The last index in the new node.
1733 /// @return True if the tree height was increased.
1734 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1735 bool IntervalMap<KeyT, ValT, N, Traits>::
insertNode(unsigned Level,IntervalMapImpl::NodeRef Node,KeyT Stop)1736 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1737   assert(Level && "Cannot insert next to the root");
1738   bool SplitRoot = false;
1739   IntervalMap &IM = *this->map;
1740   IntervalMapImpl::Path &P = this->path;
1741 
1742   if (Level == 1) {
1743     // Insert into the root branch node.
1744     if (IM.rootSize < RootBranch::Capacity) {
1745       IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1746       P.setSize(0, ++IM.rootSize);
1747       P.reset(Level);
1748       return SplitRoot;
1749     }
1750 
1751     // We need to split the root while keeping our position.
1752     SplitRoot = true;
1753     IdxPair Offset = IM.splitRoot(P.offset(0));
1754     P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1755 
1756     // Fall through to insert at the new higher level.
1757     ++Level;
1758   }
1759 
1760   // When inserting before end(), make sure we have a valid path.
1761   P.legalizeForInsert(--Level);
1762 
1763   // Insert into the branch node at Level-1.
1764   if (P.size(Level) == Branch::Capacity) {
1765     // Branch node is full, handle handle the overflow.
1766     assert(!SplitRoot && "Cannot overflow after splitting the root");
1767     SplitRoot = overflow<Branch>(Level);
1768     Level += SplitRoot;
1769   }
1770   P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1771   P.setSize(Level, P.size(Level) + 1);
1772   if (P.atLastEntry(Level))
1773     setNodeStop(Level, Stop);
1774   P.reset(Level + 1);
1775   return SplitRoot;
1776 }
1777 
1778 // insert
1779 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1780 void IntervalMap<KeyT, ValT, N, Traits>::
insert(KeyT a,KeyT b,ValT y)1781 iterator::insert(KeyT a, KeyT b, ValT y) {
1782   if (this->branched())
1783     return treeInsert(a, b, y);
1784   IntervalMap &IM = *this->map;
1785   IntervalMapImpl::Path &P = this->path;
1786 
1787   // Try simple root leaf insert.
1788   unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1789 
1790   // Was the root node insert successful?
1791   if (Size <= RootLeaf::Capacity) {
1792     P.setSize(0, IM.rootSize = Size);
1793     return;
1794   }
1795 
1796   // Root leaf node is full, we must branch.
1797   IdxPair Offset = IM.branchRoot(P.leafOffset());
1798   P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1799 
1800   // Now it fits in the new leaf.
1801   treeInsert(a, b, y);
1802 }
1803 
1804 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1805 void IntervalMap<KeyT, ValT, N, Traits>::
treeInsert(KeyT a,KeyT b,ValT y)1806 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1807   using namespace IntervalMapImpl;
1808   Path &P = this->path;
1809 
1810   if (!P.valid())
1811     P.legalizeForInsert(this->map->height);
1812 
1813   // Check if this insertion will extend the node to the left.
1814   if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1815     // Node is growing to the left, will it affect a left sibling node?
1816     if (NodeRef Sib = P.getLeftSibling(P.height())) {
1817       Leaf &SibLeaf = Sib.get<Leaf>();
1818       unsigned SibOfs = Sib.size() - 1;
1819       if (SibLeaf.value(SibOfs) == y &&
1820           Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1821         // This insertion will coalesce with the last entry in SibLeaf. We can
1822         // handle it in two ways:
1823         //  1. Extend SibLeaf.stop to b and be done, or
1824         //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1825         // We prefer 1., but need 2 when coalescing to the right as well.
1826         Leaf &CurLeaf = P.leaf<Leaf>();
1827         P.moveLeft(P.height());
1828         if (Traits::stopLess(b, CurLeaf.start(0)) &&
1829             (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1830           // Easy, just extend SibLeaf and we're done.
1831           setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1832           return;
1833         } else {
1834           // We have both left and right coalescing. Erase the old SibLeaf entry
1835           // and continue inserting the larger interval.
1836           a = SibLeaf.start(SibOfs);
1837           treeErase(/* UpdateRoot= */false);
1838         }
1839       }
1840     } else {
1841       // No left sibling means we are at begin(). Update cached bound.
1842       this->map->rootBranchStart() = a;
1843     }
1844   }
1845 
1846   // When we are inserting at the end of a leaf node, we must update stops.
1847   unsigned Size = P.leafSize();
1848   bool Grow = P.leafOffset() == Size;
1849   Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1850 
1851   // Leaf insertion unsuccessful? Overflow and try again.
1852   if (Size > Leaf::Capacity) {
1853     overflow<Leaf>(P.height());
1854     Grow = P.leafOffset() == P.leafSize();
1855     Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1856     assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1857   }
1858 
1859   // Inserted, update offset and leaf size.
1860   P.setSize(P.height(), Size);
1861 
1862   // Insert was the last node entry, update stops.
1863   if (Grow)
1864     setNodeStop(P.height(), b);
1865 }
1866 
1867 /// erase - erase the current interval and move to the next position.
1868 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1869 void IntervalMap<KeyT, ValT, N, Traits>::
erase()1870 iterator::erase() {
1871   IntervalMap &IM = *this->map;
1872   IntervalMapImpl::Path &P = this->path;
1873   assert(P.valid() && "Cannot erase end()");
1874   if (this->branched())
1875     return treeErase();
1876   IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1877   P.setSize(0, --IM.rootSize);
1878 }
1879 
1880 /// treeErase - erase() for a branched tree.
1881 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1882 void IntervalMap<KeyT, ValT, N, Traits>::
treeErase(bool UpdateRoot)1883 iterator::treeErase(bool UpdateRoot) {
1884   IntervalMap &IM = *this->map;
1885   IntervalMapImpl::Path &P = this->path;
1886   Leaf &Node = P.leaf<Leaf>();
1887 
1888   // Nodes are not allowed to become empty.
1889   if (P.leafSize() == 1) {
1890     IM.deleteNode(&Node);
1891     eraseNode(IM.height);
1892     // Update rootBranchStart if we erased begin().
1893     if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1894       IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1895     return;
1896   }
1897 
1898   // Erase current entry.
1899   Node.erase(P.leafOffset(), P.leafSize());
1900   unsigned NewSize = P.leafSize() - 1;
1901   P.setSize(IM.height, NewSize);
1902   // When we erase the last entry, update stop and move to a legal position.
1903   if (P.leafOffset() == NewSize) {
1904     setNodeStop(IM.height, Node.stop(NewSize - 1));
1905     P.moveRight(IM.height);
1906   } else if (UpdateRoot && P.atBegin())
1907     IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1908 }
1909 
1910 /// eraseNode - Erase the current node at Level from its parent and move path to
1911 /// the first entry of the next sibling node.
1912 /// The node must be deallocated by the caller.
1913 /// @param Level 1..height, the root node cannot be erased.
1914 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1915 void IntervalMap<KeyT, ValT, N, Traits>::
eraseNode(unsigned Level)1916 iterator::eraseNode(unsigned Level) {
1917   assert(Level && "Cannot erase root node");
1918   IntervalMap &IM = *this->map;
1919   IntervalMapImpl::Path &P = this->path;
1920 
1921   if (--Level == 0) {
1922     IM.rootBranch().erase(P.offset(0), IM.rootSize);
1923     P.setSize(0, --IM.rootSize);
1924     // If this cleared the root, switch to height=0.
1925     if (IM.empty()) {
1926       IM.switchRootToLeaf();
1927       this->setRoot(0);
1928       return;
1929     }
1930   } else {
1931     // Remove node ref from branch node at Level.
1932     Branch &Parent = P.node<Branch>(Level);
1933     if (P.size(Level) == 1) {
1934       // Branch node became empty, remove it recursively.
1935       IM.deleteNode(&Parent);
1936       eraseNode(Level);
1937     } else {
1938       // Branch node won't become empty.
1939       Parent.erase(P.offset(Level), P.size(Level));
1940       unsigned NewSize = P.size(Level) - 1;
1941       P.setSize(Level, NewSize);
1942       // If we removed the last branch, update stop and move to a legal pos.
1943       if (P.offset(Level) == NewSize) {
1944         setNodeStop(Level, Parent.stop(NewSize - 1));
1945         P.moveRight(Level);
1946       }
1947     }
1948   }
1949   // Update path cache for the new right sibling position.
1950   if (P.valid()) {
1951     P.reset(Level + 1);
1952     P.offset(Level + 1) = 0;
1953   }
1954 }
1955 
1956 /// overflow - Distribute entries of the current node evenly among
1957 /// its siblings and ensure that the current node is not full.
1958 /// This may require allocating a new node.
1959 /// @tparam NodeT The type of node at Level (Leaf or Branch).
1960 /// @param Level path index of the overflowing node.
1961 /// @return True when the tree height was changed.
1962 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1963 template <typename NodeT>
1964 bool IntervalMap<KeyT, ValT, N, Traits>::
overflow(unsigned Level)1965 iterator::overflow(unsigned Level) {
1966   using namespace IntervalMapImpl;
1967   Path &P = this->path;
1968   unsigned CurSize[4];
1969   NodeT *Node[4];
1970   unsigned Nodes = 0;
1971   unsigned Elements = 0;
1972   unsigned Offset = P.offset(Level);
1973 
1974   // Do we have a left sibling?
1975   NodeRef LeftSib = P.getLeftSibling(Level);
1976   if (LeftSib) {
1977     Offset += Elements = CurSize[Nodes] = LeftSib.size();
1978     Node[Nodes++] = &LeftSib.get<NodeT>();
1979   }
1980 
1981   // Current node.
1982   Elements += CurSize[Nodes] = P.size(Level);
1983   Node[Nodes++] = &P.node<NodeT>(Level);
1984 
1985   // Do we have a right sibling?
1986   NodeRef RightSib = P.getRightSibling(Level);
1987   if (RightSib) {
1988     Elements += CurSize[Nodes] = RightSib.size();
1989     Node[Nodes++] = &RightSib.get<NodeT>();
1990   }
1991 
1992   // Do we need to allocate a new node?
1993   unsigned NewNode = 0;
1994   if (Elements + 1 > Nodes * NodeT::Capacity) {
1995     // Insert NewNode at the penultimate position, or after a single node.
1996     NewNode = Nodes == 1 ? 1 : Nodes - 1;
1997     CurSize[Nodes] = CurSize[NewNode];
1998     Node[Nodes] = Node[NewNode];
1999     CurSize[NewNode] = 0;
2000     Node[NewNode] = this->map->template newNode<NodeT>();
2001     ++Nodes;
2002   }
2003 
2004   // Compute the new element distribution.
2005   unsigned NewSize[4];
2006   IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
2007                                  CurSize, NewSize, Offset, true);
2008   adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
2009 
2010   // Move current location to the leftmost node.
2011   if (LeftSib)
2012     P.moveLeft(Level);
2013 
2014   // Elements have been rearranged, now update node sizes and stops.
2015   bool SplitRoot = false;
2016   unsigned Pos = 0;
2017   while (true) {
2018     KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2019     if (NewNode && Pos == NewNode) {
2020       SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2021       Level += SplitRoot;
2022     } else {
2023       P.setSize(Level, NewSize[Pos]);
2024       setNodeStop(Level, Stop);
2025     }
2026     if (Pos + 1 == Nodes)
2027       break;
2028     P.moveRight(Level);
2029     ++Pos;
2030   }
2031 
2032   // Where was I? Find NewOffset.
2033   while(Pos != NewOffset.first) {
2034     P.moveLeft(Level);
2035     --Pos;
2036   }
2037   P.offset(Level) = NewOffset.second;
2038   return SplitRoot;
2039 }
2040 
2041 //===----------------------------------------------------------------------===//
2042 //---                       IntervalMapOverlaps                           ----//
2043 //===----------------------------------------------------------------------===//
2044 
2045 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2046 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2047 /// should be the same.
2048 ///
2049 /// Typical uses:
2050 ///
2051 /// 1. Test for overlap:
2052 ///    bool overlap = IntervalMapOverlaps(a, b).valid();
2053 ///
2054 /// 2. Enumerate overlaps:
2055 ///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2056 ///
2057 template <typename MapA, typename MapB>
2058 class IntervalMapOverlaps {
2059   using KeyType = typename MapA::KeyType;
2060   using Traits = typename MapA::KeyTraits;
2061 
2062   typename MapA::const_iterator posA;
2063   typename MapB::const_iterator posB;
2064 
2065   /// advance - Move posA and posB forward until reaching an overlap, or until
2066   /// either meets end.
2067   /// Don't move the iterators if they are already overlapping.
advance()2068   void advance() {
2069     if (!valid())
2070       return;
2071 
2072     if (Traits::stopLess(posA.stop(), posB.start())) {
2073       // A ends before B begins. Catch up.
2074       posA.advanceTo(posB.start());
2075       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2076         return;
2077     } else if (Traits::stopLess(posB.stop(), posA.start())) {
2078       // B ends before A begins. Catch up.
2079       posB.advanceTo(posA.start());
2080       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2081         return;
2082     } else
2083       // Already overlapping.
2084       return;
2085 
2086     while (true) {
2087       // Make a.end > b.start.
2088       posA.advanceTo(posB.start());
2089       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2090         return;
2091       // Make b.end > a.start.
2092       posB.advanceTo(posA.start());
2093       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2094         return;
2095     }
2096   }
2097 
2098 public:
2099   /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
IntervalMapOverlaps(const MapA & a,const MapB & b)2100   IntervalMapOverlaps(const MapA &a, const MapB &b)
2101     : posA(b.empty() ? a.end() : a.find(b.start())),
2102       posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2103 
2104   /// valid - Return true if iterator is at an overlap.
valid()2105   bool valid() const {
2106     return posA.valid() && posB.valid();
2107   }
2108 
2109   /// a - access the left hand side in the overlap.
a()2110   const typename MapA::const_iterator &a() const { return posA; }
2111 
2112   /// b - access the right hand side in the overlap.
b()2113   const typename MapB::const_iterator &b() const { return posB; }
2114 
2115   /// start - Beginning of the overlapping interval.
start()2116   KeyType start() const {
2117     KeyType ak = a().start();
2118     KeyType bk = b().start();
2119     return Traits::startLess(ak, bk) ? bk : ak;
2120   }
2121 
2122   /// stop - End of the overlapping interval.
stop()2123   KeyType stop() const {
2124     KeyType ak = a().stop();
2125     KeyType bk = b().stop();
2126     return Traits::startLess(ak, bk) ? ak : bk;
2127   }
2128 
2129   /// skipA - Move to the next overlap that doesn't involve a().
skipA()2130   void skipA() {
2131     ++posA;
2132     advance();
2133   }
2134 
2135   /// skipB - Move to the next overlap that doesn't involve b().
skipB()2136   void skipB() {
2137     ++posB;
2138     advance();
2139   }
2140 
2141   /// Preincrement - Move to the next overlap.
2142   IntervalMapOverlaps &operator++() {
2143     // Bump the iterator that ends first. The other one may have more overlaps.
2144     if (Traits::startLess(posB.stop(), posA.stop()))
2145       skipB();
2146     else
2147       skipA();
2148     return *this;
2149   }
2150 
2151   /// advanceTo - Move to the first overlapping interval with
2152   /// stopLess(x, stop()).
advanceTo(KeyType x)2153   void advanceTo(KeyType x) {
2154     if (!valid())
2155       return;
2156     // Make sure advanceTo sees monotonic keys.
2157     if (Traits::stopLess(posA.stop(), x))
2158       posA.advanceTo(x);
2159     if (Traits::stopLess(posB.stop(), x))
2160       posB.advanceTo(x);
2161     advance();
2162   }
2163 };
2164 
2165 } // end namespace llvm
2166 
2167 #endif // LLVM_ADT_INTERVALMAP_H
2168