1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the SparseSet class derived from the version described in
10 // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
11 // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993.
12 //
13 // A sparse set holds a small number of objects identified by integer keys from
14 // a moderately sized universe. The sparse set uses more memory than other
15 // containers in order to provide faster operations.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_ADT_SPARSESET_H
20 #define LLVM_ADT_SPARSESET_H
21 
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/AllocatorBase.h"
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <limits>
29 #include <utility>
30 
31 namespace llvm {
32 
33 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
34 /// be uniquely converted to a small integer less than the set's universe. This
35 /// class allows the set to hold values that differ from the set's key type as
36 /// long as an index can still be derived from the value. SparseSet never
37 /// directly compares ValueT, only their indices, so it can map keys to
38 /// arbitrary values. SparseSetValTraits computes the index from the value
39 /// object. To compute the index from a key, SparseSet uses a separate
40 /// KeyFunctorT template argument.
41 ///
42 /// A simple type declaration, SparseSet<Type>, handles these cases:
43 /// - unsigned key, identity index, identity value
44 /// - unsigned key, identity index, fat value providing getSparseSetIndex()
45 ///
46 /// The type declaration SparseSet<Type, UnaryFunction> handles:
47 /// - unsigned key, remapped index, identity value (virtual registers)
48 /// - pointer key, pointer-derived index, identity value (node+ID)
49 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
50 ///
51 /// Only other, unexpected cases require specializing SparseSetValTraits.
52 ///
53 /// For best results, ValueT should not require a destructor.
54 ///
55 template<typename ValueT>
56 struct SparseSetValTraits {
getValIndexSparseSetValTraits57   static unsigned getValIndex(const ValueT &Val) {
58     return Val.getSparseSetIndex();
59   }
60 };
61 
62 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
63 /// generic implementation handles ValueT classes which either provide
64 /// getSparseSetIndex() or specialize SparseSetValTraits<>.
65 ///
66 template<typename KeyT, typename ValueT, typename KeyFunctorT>
67 struct SparseSetValFunctor {
operatorSparseSetValFunctor68   unsigned operator()(const ValueT &Val) const {
69     return SparseSetValTraits<ValueT>::getValIndex(Val);
70   }
71 };
72 
73 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
74 /// identity key/value sets.
75 template<typename KeyT, typename KeyFunctorT>
76 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
77   unsigned operator()(const KeyT &Key) const {
78     return KeyFunctorT()(Key);
79   }
80 };
81 
82 /// SparseSet - Fast set implementation for objects that can be identified by
83 /// small unsigned keys.
84 ///
85 /// SparseSet allocates memory proportional to the size of the key universe, so
86 /// it is not recommended for building composite data structures.  It is useful
87 /// for algorithms that require a single set with fast operations.
88 ///
89 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
90 /// clear() and iteration as fast as a vector.  The find(), insert(), and
91 /// erase() operations are all constant time, and typically faster than a hash
92 /// table.  The iteration order doesn't depend on numerical key values, it only
93 /// depends on the order of insert() and erase() operations.  When no elements
94 /// have been erased, the iteration order is the insertion order.
95 ///
96 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
97 /// offers constant-time clear() and size() operations as well as fast
98 /// iteration independent on the size of the universe.
99 ///
100 /// SparseSet contains a dense vector holding all the objects and a sparse
101 /// array holding indexes into the dense vector.  Most of the memory is used by
102 /// the sparse array which is the size of the key universe.  The SparseT
103 /// template parameter provides a space/speed tradeoff for sets holding many
104 /// elements.
105 ///
106 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
107 /// array uses 4 x Universe bytes.
108 ///
109 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
110 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
111 /// the set.
112 ///
113 /// For sets that may grow to thousands of elements, SparseT should be set to
114 /// uint16_t or uint32_t.
115 ///
116 /// @tparam ValueT      The type of objects in the set.
117 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
118 /// @tparam SparseT     An unsigned integer type. See above.
119 ///
120 template<typename ValueT,
121          typename KeyFunctorT = identity<unsigned>,
122          typename SparseT = uint8_t>
123 class SparseSet {
124   static_assert(std::numeric_limits<SparseT>::is_integer &&
125                 !std::numeric_limits<SparseT>::is_signed,
126                 "SparseT must be an unsigned integer type");
127 
128   using KeyT = typename KeyFunctorT::argument_type;
129   using DenseT = SmallVector<ValueT, 8>;
130   using size_type = unsigned;
131   DenseT Dense;
132   SparseT *Sparse = nullptr;
133   unsigned Universe = 0;
134   KeyFunctorT KeyIndexOf;
135   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
136 
137 public:
138   using value_type = ValueT;
139   using reference = ValueT &;
140   using const_reference = const ValueT &;
141   using pointer = ValueT *;
142   using const_pointer = const ValueT *;
143 
144   SparseSet() = default;
145   SparseSet(const SparseSet &) = delete;
146   SparseSet &operator=(const SparseSet &) = delete;
147   ~SparseSet() { free(Sparse); }
148 
149   /// setUniverse - Set the universe size which determines the largest key the
150   /// set can hold.  The universe must be sized before any elements can be
151   /// added.
152   ///
153   /// @param U Universe size. All object keys must be less than U.
154   ///
155   void setUniverse(unsigned U) {
156     // It's not hard to resize the universe on a non-empty set, but it doesn't
157     // seem like a likely use case, so we can add that code when we need it.
158     assert(empty() && "Can only resize universe on an empty map");
159     // Hysteresis prevents needless reallocations.
160     if (U >= Universe/4 && U <= Universe)
161       return;
162     free(Sparse);
163     // The Sparse array doesn't actually need to be initialized, so malloc
164     // would be enough here, but that will cause tools like valgrind to
165     // complain about branching on uninitialized data.
166     Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
167     Universe = U;
168   }
169 
170   // Import trivial vector stuff from DenseT.
171   using iterator = typename DenseT::iterator;
172   using const_iterator = typename DenseT::const_iterator;
173 
174   const_iterator begin() const { return Dense.begin(); }
175   const_iterator end() const { return Dense.end(); }
176   iterator begin() { return Dense.begin(); }
177   iterator end() { return Dense.end(); }
178 
179   /// empty - Returns true if the set is empty.
180   ///
181   /// This is not the same as BitVector::empty().
182   ///
183   bool empty() const { return Dense.empty(); }
184 
185   /// size - Returns the number of elements in the set.
186   ///
187   /// This is not the same as BitVector::size() which returns the size of the
188   /// universe.
189   ///
190   size_type size() const { return Dense.size(); }
191 
192   /// clear - Clears the set.  This is a very fast constant time operation.
193   ///
194   void clear() {
195     // Sparse does not need to be cleared, see find().
196     Dense.clear();
197   }
198 
199   /// findIndex - Find an element by its index.
200   ///
201   /// @param   Idx A valid index to find.
202   /// @returns An iterator to the element identified by key, or end().
203   ///
204   iterator findIndex(unsigned Idx) {
205     assert(Idx < Universe && "Key out of range");
206     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
207     for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
208       const unsigned FoundIdx = ValIndexOf(Dense[i]);
209       assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
210       if (Idx == FoundIdx)
211         return begin() + i;
212       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
213       if (!Stride)
214         break;
215     }
216     return end();
217   }
218 
219   /// find - Find an element by its key.
220   ///
221   /// @param   Key A valid key to find.
222   /// @returns An iterator to the element identified by key, or end().
223   ///
224   iterator find(const KeyT &Key) {
225     return findIndex(KeyIndexOf(Key));
226   }
227 
228   const_iterator find(const KeyT &Key) const {
229     return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
230   }
231 
232   /// count - Returns 1 if this set contains an element identified by Key,
233   /// 0 otherwise.
234   ///
235   size_type count(const KeyT &Key) const {
236     return find(Key) == end() ? 0 : 1;
237   }
238 
239   /// insert - Attempts to insert a new element.
240   ///
241   /// If Val is successfully inserted, return (I, true), where I is an iterator
242   /// pointing to the newly inserted element.
243   ///
244   /// If the set already contains an element with the same key as Val, return
245   /// (I, false), where I is an iterator pointing to the existing element.
246   ///
247   /// Insertion invalidates all iterators.
248   ///
249   std::pair<iterator, bool> insert(const ValueT &Val) {
250     unsigned Idx = ValIndexOf(Val);
251     iterator I = findIndex(Idx);
252     if (I != end())
253       return std::make_pair(I, false);
254     Sparse[Idx] = size();
255     Dense.push_back(Val);
256     return std::make_pair(end() - 1, true);
257   }
258 
259   /// array subscript - If an element already exists with this key, return it.
260   /// Otherwise, automatically construct a new value from Key, insert it,
261   /// and return the newly inserted element.
262   ValueT &operator[](const KeyT &Key) {
263     return *insert(ValueT(Key)).first;
264   }
265 
266   ValueT pop_back_val() {
267     // Sparse does not need to be cleared, see find().
268     return Dense.pop_back_val();
269   }
270 
271   /// erase - Erases an existing element identified by a valid iterator.
272   ///
273   /// This invalidates all iterators, but erase() returns an iterator pointing
274   /// to the next element.  This makes it possible to erase selected elements
275   /// while iterating over the set:
276   ///
277   ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();)
278   ///     if (test(*I))
279   ///       I = Set.erase(I);
280   ///     else
281   ///       ++I;
282   ///
283   /// Note that end() changes when elements are erased, unlike std::list.
284   ///
285   iterator erase(iterator I) {
286     assert(unsigned(I - begin()) < size() && "Invalid iterator");
287     if (I != end() - 1) {
288       *I = Dense.back();
289       unsigned BackIdx = ValIndexOf(Dense.back());
290       assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
291       Sparse[BackIdx] = I - begin();
292     }
293     // This depends on SmallVector::pop_back() not invalidating iterators.
294     // std::vector::pop_back() doesn't give that guarantee.
295     Dense.pop_back();
296     return I;
297   }
298 
299   /// erase - Erases an element identified by Key, if it exists.
300   ///
301   /// @param   Key The key identifying the element to erase.
302   /// @returns True when an element was erased, false if no element was found.
303   ///
304   bool erase(const KeyT &Key) {
305     iterator I = find(Key);
306     if (I == end())
307       return false;
308     erase(I);
309     return true;
310   }
311 };
312 
313 } // end namespace llvm
314 
315 #endif // LLVM_ADT_SPARSESET_H
316