1 //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10 // but for target-specific code rather than target-independent IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
16 
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
24 #include <cassert>
25 #include <memory>
26 #include <vector>
27 
28 namespace llvm {
29 
30 template <>
addRoot(MachineBasicBlock * MBB)31 inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
32     MachineBasicBlock *MBB) {
33   this->Roots.push_back(MBB);
34 }
35 
36 extern template class DomTreeNodeBase<MachineBasicBlock>;
37 extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
38 extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
39 
40 using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
41 
42 //===-------------------------------------
43 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
44 /// compute a normal dominator tree.
45 ///
46 class MachineDominatorTree : public MachineFunctionPass {
47   using DomTreeT = DomTreeBase<MachineBasicBlock>;
48 
49   /// Helper structure used to hold all the basic blocks
50   /// involved in the split of a critical edge.
51   struct CriticalEdge {
52     MachineBasicBlock *FromBB;
53     MachineBasicBlock *ToBB;
54     MachineBasicBlock *NewBB;
55   };
56 
57   /// Pile up all the critical edges to be split.
58   /// The splitting of a critical edge is local and thus, it is possible
59   /// to apply several of those changes at the same time.
60   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
61 
62   /// Remember all the basic blocks that are inserted during
63   /// edge splitting.
64   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
65   /// field of all the elements of CriticalEdgesToSplit.
66   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
67   /// such as BB == elt.NewBB.
68   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
69 
70   /// The DominatorTreeBase that is used to compute a normal dominator tree.
71   std::unique_ptr<DomTreeT> DT;
72 
73   /// Apply all the recorded critical edges to the DT.
74   /// This updates the underlying DT information in a way that uses
75   /// the fast query path of DT as much as possible.
76   ///
77   /// \post CriticalEdgesToSplit.empty().
78   void applySplitCriticalEdges() const;
79 
80 public:
81   static char ID; // Pass ID, replacement for typeid
82 
83   MachineDominatorTree();
MachineDominatorTree(MachineFunction & MF)84   explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) {
85     calculate(MF);
86   }
87 
getBase()88   DomTreeT &getBase() {
89     if (!DT) DT.reset(new DomTreeT());
90     applySplitCriticalEdges();
91     return *DT;
92   }
93 
94   void getAnalysisUsage(AnalysisUsage &AU) const override;
95 
getRoot()96   MachineBasicBlock *getRoot() const {
97     applySplitCriticalEdges();
98     return DT->getRoot();
99   }
100 
getRootNode()101   MachineDomTreeNode *getRootNode() const {
102     applySplitCriticalEdges();
103     return DT->getRootNode();
104   }
105 
106   bool runOnMachineFunction(MachineFunction &F) override;
107 
108   void calculate(MachineFunction &F);
109 
dominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)110   bool dominates(const MachineDomTreeNode *A,
111                  const MachineDomTreeNode *B) const {
112     applySplitCriticalEdges();
113     return DT->dominates(A, B);
114   }
115 
dominates(const MachineBasicBlock * A,const MachineBasicBlock * B)116   bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
117     applySplitCriticalEdges();
118     return DT->dominates(A, B);
119   }
120 
121   // dominates - Return true if A dominates B. This performs the
122   // special checks necessary if A and B are in the same basic block.
dominates(const MachineInstr * A,const MachineInstr * B)123   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
124     applySplitCriticalEdges();
125     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
126     if (BBA != BBB) return DT->dominates(BBA, BBB);
127 
128     // Loop through the basic block until we find A or B.
129     MachineBasicBlock::const_iterator I = BBA->begin();
130     for (; &*I != A && &*I != B; ++I)
131       /*empty*/ ;
132 
133     return &*I == A;
134   }
135 
properlyDominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)136   bool properlyDominates(const MachineDomTreeNode *A,
137                          const MachineDomTreeNode *B) const {
138     applySplitCriticalEdges();
139     return DT->properlyDominates(A, B);
140   }
141 
properlyDominates(const MachineBasicBlock * A,const MachineBasicBlock * B)142   bool properlyDominates(const MachineBasicBlock *A,
143                          const MachineBasicBlock *B) const {
144     applySplitCriticalEdges();
145     return DT->properlyDominates(A, B);
146   }
147 
148   /// findNearestCommonDominator - Find nearest common dominator basic block
149   /// for basic block A and B. If there is no such block then return NULL.
findNearestCommonDominator(MachineBasicBlock * A,MachineBasicBlock * B)150   MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
151                                                 MachineBasicBlock *B) {
152     applySplitCriticalEdges();
153     return DT->findNearestCommonDominator(A, B);
154   }
155 
156   MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
157     applySplitCriticalEdges();
158     return DT->getNode(BB);
159   }
160 
161   /// getNode - return the (Post)DominatorTree node for the specified basic
162   /// block.  This is the same as using operator[] on this class.
163   ///
getNode(MachineBasicBlock * BB)164   MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
165     applySplitCriticalEdges();
166     return DT->getNode(BB);
167   }
168 
169   /// addNewBlock - Add a new node to the dominator tree information.  This
170   /// creates a new node as a child of DomBB dominator node,linking it into
171   /// the children list of the immediate dominator.
addNewBlock(MachineBasicBlock * BB,MachineBasicBlock * DomBB)172   MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
173                                   MachineBasicBlock *DomBB) {
174     applySplitCriticalEdges();
175     return DT->addNewBlock(BB, DomBB);
176   }
177 
178   /// changeImmediateDominator - This method is used to update the dominator
179   /// tree information when a node's immediate dominator changes.
180   ///
changeImmediateDominator(MachineBasicBlock * N,MachineBasicBlock * NewIDom)181   void changeImmediateDominator(MachineBasicBlock *N,
182                                 MachineBasicBlock *NewIDom) {
183     applySplitCriticalEdges();
184     DT->changeImmediateDominator(N, NewIDom);
185   }
186 
changeImmediateDominator(MachineDomTreeNode * N,MachineDomTreeNode * NewIDom)187   void changeImmediateDominator(MachineDomTreeNode *N,
188                                 MachineDomTreeNode *NewIDom) {
189     applySplitCriticalEdges();
190     DT->changeImmediateDominator(N, NewIDom);
191   }
192 
193   /// eraseNode - Removes a node from  the dominator tree. Block must not
194   /// dominate any other blocks. Removes node from its immediate dominator's
195   /// children list. Deletes dominator node associated with basic block BB.
eraseNode(MachineBasicBlock * BB)196   void eraseNode(MachineBasicBlock *BB) {
197     applySplitCriticalEdges();
198     DT->eraseNode(BB);
199   }
200 
201   /// splitBlock - BB is split and now it has one successor. Update dominator
202   /// tree to reflect this change.
splitBlock(MachineBasicBlock * NewBB)203   void splitBlock(MachineBasicBlock* NewBB) {
204     applySplitCriticalEdges();
205     DT->splitBlock(NewBB);
206   }
207 
208   /// isReachableFromEntry - Return true if A is dominated by the entry
209   /// block of the function containing it.
isReachableFromEntry(const MachineBasicBlock * A)210   bool isReachableFromEntry(const MachineBasicBlock *A) {
211     applySplitCriticalEdges();
212     return DT->isReachableFromEntry(A);
213   }
214 
215   void releaseMemory() override;
216 
217   void verifyAnalysis() const override;
218 
219   void print(raw_ostream &OS, const Module*) const override;
220 
221   /// Record that the critical edge (FromBB, ToBB) has been
222   /// split with NewBB.
223   /// This is best to use this method instead of directly update the
224   /// underlying information, because this helps mitigating the
225   /// number of time the DT information is invalidated.
226   ///
227   /// \note Do not use this method with regular edges.
228   ///
229   /// \note To benefit from the compile time improvement incurred by this
230   /// method, the users of this method have to limit the queries to the DT
231   /// interface between two edges splitting. In other words, they have to
232   /// pack the splitting of critical edges as much as possible.
recordSplitCriticalEdge(MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,MachineBasicBlock * NewBB)233   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
234                               MachineBasicBlock *ToBB,
235                               MachineBasicBlock *NewBB) {
236     bool Inserted = NewBBs.insert(NewBB).second;
237     (void)Inserted;
238     assert(Inserted &&
239            "A basic block inserted via edge splitting cannot appear twice");
240     CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
241   }
242 };
243 
244 //===-------------------------------------
245 /// DominatorTree GraphTraits specialization so the DominatorTree can be
246 /// iterable by generic graph iterators.
247 ///
248 
249 template <class Node, class ChildIterator>
250 struct MachineDomTreeGraphTraitsBase {
251   using NodeRef = Node *;
252   using ChildIteratorType = ChildIterator;
253 
getEntryNodeMachineDomTreeGraphTraitsBase254   static NodeRef getEntryNode(NodeRef N) { return N; }
child_beginMachineDomTreeGraphTraitsBase255   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
child_endMachineDomTreeGraphTraitsBase256   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
257 };
258 
259 template <class T> struct GraphTraits;
260 
261 template <>
262 struct GraphTraits<MachineDomTreeNode *>
263     : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
264                                            MachineDomTreeNode::const_iterator> {
265 };
266 
267 template <>
268 struct GraphTraits<const MachineDomTreeNode *>
269     : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
270                                            MachineDomTreeNode::const_iterator> {
271 };
272 
273 template <> struct GraphTraits<MachineDominatorTree*>
274   : public GraphTraits<MachineDomTreeNode *> {
275   static NodeRef getEntryNode(MachineDominatorTree *DT) {
276     return DT->getRootNode();
277   }
278 };
279 
280 } // end namespace llvm
281 
282 #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
283