1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Cheri.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/IntrinsicsAArch64.h"
56 #include "llvm/IR/IntrinsicsX86.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/PatternMatch.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/KnownBits.h"
70 #include "llvm/Support/MathExtras.h"
71 #include <algorithm>
72 #include <array>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace llvm::PatternMatch;
80 
81 const unsigned MaxDepth = 6;
82 
83 // Controls the number of uses of the value searched for possible
84 // dominating comparisons.
85 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
86                                               cl::Hidden, cl::init(20));
87 
88 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
89 /// returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout & DL)90 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
91   if (unsigned BitWidth = Ty->getScalarSizeInBits())
92     return BitWidth;
93 
94   // For CHERI capabilities the usable range here is the address range
95   return DL.getPointerAddrSizeInBits(Ty);
96 }
97 
98 namespace {
99 
100 // Simplifying using an assume can only be done in a particular control-flow
101 // context (the context instruction provides that context). If an assume and
102 // the context instruction are not in the same block then the DT helps in
103 // figuring out if we can use it.
104 struct Query {
105   const DataLayout &DL;
106   AssumptionCache *AC;
107   const Instruction *CxtI;
108   const DominatorTree *DT;
109 
110   // Unlike the other analyses, this may be a nullptr because not all clients
111   // provide it currently.
112   OptimizationRemarkEmitter *ORE;
113 
114   /// Set of assumptions that should be excluded from further queries.
115   /// This is because of the potential for mutual recursion to cause
116   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
117   /// classic case of this is assume(x = y), which will attempt to determine
118   /// bits in x from bits in y, which will attempt to determine bits in y from
119   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
120   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
121   /// (all of which can call computeKnownBits), and so on.
122   std::array<const Value *, MaxDepth> Excluded;
123 
124   /// If true, it is safe to use metadata during simplification.
125   InstrInfoQuery IIQ;
126 
127   unsigned NumExcluded = 0;
128 
Query__anon76eb18c10111::Query129   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
130         const DominatorTree *DT, bool UseInstrInfo,
131         OptimizationRemarkEmitter *ORE = nullptr)
132       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
133 
Query__anon76eb18c10111::Query134   Query(const Query &Q, const Value *NewExcl)
135       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
136         NumExcluded(Q.NumExcluded) {
137     Excluded = Q.Excluded;
138     Excluded[NumExcluded++] = NewExcl;
139     assert(NumExcluded <= Excluded.size());
140   }
141 
isExcluded__anon76eb18c10111::Query142   bool isExcluded(const Value *Value) const {
143     if (NumExcluded == 0)
144       return false;
145     auto End = Excluded.begin() + NumExcluded;
146     return std::find(Excluded.begin(), End, Value) != End;
147   }
148 };
149 
150 } // end anonymous namespace
151 
152 // Given the provided Value and, potentially, a context instruction, return
153 // the preferred context instruction (if any).
safeCxtI(const Value * V,const Instruction * CxtI)154 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
155   // If we've been provided with a context instruction, then use that (provided
156   // it has been inserted).
157   if (CxtI && CxtI->getParent())
158     return CxtI;
159 
160   // If the value is really an already-inserted instruction, then use that.
161   CxtI = dyn_cast<Instruction>(V);
162   if (CxtI && CxtI->getParent())
163     return CxtI;
164 
165   return nullptr;
166 }
167 
getShuffleDemandedElts(const ShuffleVectorInst * Shuf,const APInt & DemandedElts,APInt & DemandedLHS,APInt & DemandedRHS)168 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
169                                    const APInt &DemandedElts,
170                                    APInt &DemandedLHS, APInt &DemandedRHS) {
171   // The length of scalable vectors is unknown at compile time, thus we
172   // cannot check their values
173   if (isa<ScalableVectorType>(Shuf->getType()))
174     return false;
175 
176   int NumElts =
177       cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements();
178   int NumMaskElts = Shuf->getType()->getNumElements();
179   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
180   if (DemandedElts.isNullValue())
181     return true;
182   // Simple case of a shuffle with zeroinitializer.
183   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
184     DemandedLHS.setBit(0);
185     return true;
186   }
187   for (int i = 0; i != NumMaskElts; ++i) {
188     if (!DemandedElts[i])
189       continue;
190     int M = Shuf->getMaskValue(i);
191     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
192 
193     // For undef elements, we don't know anything about the common state of
194     // the shuffle result.
195     if (M == -1)
196       return false;
197     if (M < NumElts)
198       DemandedLHS.setBit(M % NumElts);
199     else
200       DemandedRHS.setBit(M % NumElts);
201   }
202 
203   return true;
204 }
205 
206 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
207                              KnownBits &Known, unsigned Depth, const Query &Q);
208 
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Query & Q)209 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
210                              const Query &Q) {
211   // FIXME: We currently have no way to represent the DemandedElts of a scalable
212   // vector
213   if (isa<ScalableVectorType>(V->getType())) {
214     Known.resetAll();
215     return;
216   }
217 
218   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
219   APInt DemandedElts =
220       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
221   computeKnownBits(V, DemandedElts, Known, Depth, Q);
222 }
223 
computeKnownBits(const Value * V,KnownBits & Known,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)224 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
225                             const DataLayout &DL, unsigned Depth,
226                             AssumptionCache *AC, const Instruction *CxtI,
227                             const DominatorTree *DT,
228                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
229   ::computeKnownBits(V, Known, Depth,
230                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
231 }
232 
computeKnownBits(const Value * V,const APInt & DemandedElts,KnownBits & Known,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)233 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
234                             KnownBits &Known, const DataLayout &DL,
235                             unsigned Depth, AssumptionCache *AC,
236                             const Instruction *CxtI, const DominatorTree *DT,
237                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
238   ::computeKnownBits(V, DemandedElts, Known, Depth,
239                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
240 }
241 
242 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
243                                   unsigned Depth, const Query &Q);
244 
245 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
246                                   const Query &Q);
247 
computeKnownBits(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)248 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
249                                  unsigned Depth, AssumptionCache *AC,
250                                  const Instruction *CxtI,
251                                  const DominatorTree *DT,
252                                  OptimizationRemarkEmitter *ORE,
253                                  bool UseInstrInfo) {
254   return ::computeKnownBits(
255       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
256 }
257 
computeKnownBits(const Value * V,const APInt & DemandedElts,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)258 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
259                                  const DataLayout &DL, unsigned Depth,
260                                  AssumptionCache *AC, const Instruction *CxtI,
261                                  const DominatorTree *DT,
262                                  OptimizationRemarkEmitter *ORE,
263                                  bool UseInstrInfo) {
264   return ::computeKnownBits(
265       V, DemandedElts, Depth,
266       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
267 }
268 
haveNoCommonBitsSet(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)269 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
270                                const DataLayout &DL, AssumptionCache *AC,
271                                const Instruction *CxtI, const DominatorTree *DT,
272                                bool UseInstrInfo) {
273   assert(LHS->getType() == RHS->getType() &&
274          "LHS and RHS should have the same type");
275   assert(LHS->getType()->isIntOrIntVectorTy() &&
276          "LHS and RHS should be integers");
277   // Look for an inverted mask: (X & ~M) op (Y & M).
278   Value *M;
279   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
280       match(RHS, m_c_And(m_Specific(M), m_Value())))
281     return true;
282   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
283       match(LHS, m_c_And(m_Specific(M), m_Value())))
284     return true;
285   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
286   KnownBits LHSKnown(IT->getBitWidth());
287   KnownBits RHSKnown(IT->getBitWidth());
288   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
289   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
290   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
291 }
292 
isOnlyUsedInZeroEqualityComparison(const Instruction * CxtI)293 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
294   for (const User *U : CxtI->users()) {
295     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
296       if (IC->isEquality())
297         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
298           if (C->isNullValue())
299             continue;
300     return false;
301   }
302   return true;
303 }
304 
305 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
306                                    const Query &Q);
307 
isKnownToBeAPowerOfTwo(const Value * V,const DataLayout & DL,bool OrZero,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)308 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
309                                   bool OrZero, unsigned Depth,
310                                   AssumptionCache *AC, const Instruction *CxtI,
311                                   const DominatorTree *DT, bool UseInstrInfo) {
312   return ::isKnownToBeAPowerOfTwo(
313       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
314 }
315 
316 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
317                            unsigned Depth, const Query &Q);
318 
319 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
320 
isKnownNonZero(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)321 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
322                           AssumptionCache *AC, const Instruction *CxtI,
323                           const DominatorTree *DT, bool UseInstrInfo) {
324   return ::isKnownNonZero(V, Depth,
325                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
326 }
327 
isKnownNonNegative(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)328 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
329                               unsigned Depth, AssumptionCache *AC,
330                               const Instruction *CxtI, const DominatorTree *DT,
331                               bool UseInstrInfo) {
332   KnownBits Known =
333       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
334   return Known.isNonNegative();
335 }
336 
isKnownPositive(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)337 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
338                            AssumptionCache *AC, const Instruction *CxtI,
339                            const DominatorTree *DT, bool UseInstrInfo) {
340   if (auto *CI = dyn_cast<ConstantInt>(V))
341     return CI->getValue().isStrictlyPositive();
342 
343   // TODO: We'd doing two recursive queries here.  We should factor this such
344   // that only a single query is needed.
345   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
346          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
347 }
348 
isKnownNegative(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)349 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
350                            AssumptionCache *AC, const Instruction *CxtI,
351                            const DominatorTree *DT, bool UseInstrInfo) {
352   KnownBits Known =
353       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
354   return Known.isNegative();
355 }
356 
357 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
358 
isKnownNonEqual(const Value * V1,const Value * V2,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)359 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
360                            const DataLayout &DL, AssumptionCache *AC,
361                            const Instruction *CxtI, const DominatorTree *DT,
362                            bool UseInstrInfo) {
363   return ::isKnownNonEqual(V1, V2,
364                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
365                                  UseInstrInfo, /*ORE=*/nullptr));
366 }
367 
368 #define DEBUG_TAG(...)                                                         \
369   DEBUG_WITH_TYPE("infer-tag", dbgs() << __func__ << "(d=" << Depth            \
370                                       << "): " << __VA_ARGS__;                 \
371                   dbgs() << " -- "; V->dump())
372 
isKnownUntaggedCapability(const Value * V,unsigned Depth,const DataLayout * DL)373 static bool isKnownUntaggedCapability(const Value *V, unsigned Depth,
374                                       const DataLayout *DL) {
375   assert(V && "No Value?");
376   assert(isCheriPointer(V->getType(), DL));
377   if (Depth >= MaxDepth) {
378     DEBUG_TAG("reached max depth -> false");
379     return false;
380   }
381   if (DL) {
382     V = getBasePtrIgnoringCapabilityAddressManipulation(const_cast<Value *>(V),
383                                                         *DL);
384   }
385   if (isa<ConstantPointerNull>(V)) {
386     DEBUG_TAG("NULL base pointer -> true");
387     return true; // NULL is always untagged
388   } else if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
389     switch (II->getIntrinsicID()) {
390     case Intrinsic::cheri_cap_tag_clear:
391       DEBUG_TAG("ccleartag -> true");
392       return true;
393     case Intrinsic::cheri_cap_offset_set:
394     case Intrinsic::cheri_cap_address_set:
395     case Intrinsic::cheri_cap_perms_and:
396     case Intrinsic::cheri_cap_flags_set:
397     case Intrinsic::cheri_cap_bounds_set:
398     case Intrinsic::cheri_cap_bounds_set_exact:
399       if (isa<ConstantPointerNull>(II->getOperand(0))) {
400         DEBUG_TAG("modifying NULL cap -> true");
401         return true;
402       }
403       // Otherwise check if the source argument is known to be untagged:
404       return isKnownUntaggedCapability(II->getOperand(0), Depth + 1, DL);
405     case Intrinsic::cheri_cap_from_pointer:
406       if (auto CI = dyn_cast<ConstantInt>(II->getOperand(1))) {
407         DEBUG_TAG("CFromPtr on constant -> " << CI->isZeroValue());
408         return CI->isZeroValue(); // cfromptr with zero returns NULL
409       }
410       DEBUG_TAG("CFromPtr on nonconst -> false");
411       return false; // We don't know if the source is NULL -> could be tagged
412     default:
413       DEBUG_TAG("unknown intrinsic -> false");
414       // Any other intrinsic returning a capability could be a tagged value
415       return false;
416     }
417   } else if (const auto *GEPI = dyn_cast<GetElementPtrInst>(V)) {
418     // GEP on NULL has to be untagged
419     DEBUG_TAG("is GEP on NULL? -> "
420               << isa<ConstantPointerNull>(GEPI->getPointerOperand()));
421     return isa<ConstantPointerNull>(GEPI->getPointerOperand());
422   } else if (const auto *ITP = dyn_cast<IntToPtrInst>(V)) {
423     // IntToPtr returns untagged values in the pure capability ABI
424     bool Purecap = DL && isCheriPointer(DL->getAllocaAddrSpace(), DL);
425     DEBUG_TAG("is nonconst inttoptr in" << (Purecap ? "purecap" : "hybrid")
426                                         << " ABI -> " << Purecap);
427     bool IsZero = false;
428     if (auto Constant = dyn_cast<ConstantInt>(ITP->getOperand(0)))
429       IsZero = Constant->isNullValue();
430     return Purecap || IsZero;
431   } else if (const auto *CE = dyn_cast<ConstantExpr>(V)) {
432     if (CE->getOpcode() == Instruction::IntToPtr) {
433       // IntToPtr returns untagged values in the pure capability ABI
434       bool Purecap = DL && isCheriPointer(DL->getAllocaAddrSpace(), DL);
435       DEBUG_TAG("is constant inttoptr in" << (Purecap ? "purecap" : "hybrid")
436                                           << " ABI -> " << Purecap);
437       return Purecap;
438     } else if (CE->getOpcode() == Instruction::GetElementPtr) {
439       if (CE->getOperand(0)->isNullValue()) {
440         DEBUG_TAG("GEP on NULL -> true");
441         return true;
442       } else {
443         DEBUG_TAG("GEP on non-NULL value -> false");
444         return false;
445       }
446     }
447     DEBUG_TAG("unknown constantexpr -> false");
448     return false;
449   }
450   DEBUG_TAG("unknown value -> false");
451   // Anything else could be tagged (what about GEP on NULL?)
452   return false;
453 }
454 
isKnownUntaggedCapability(const Value * V,const DataLayout * DL)455 bool llvm::cheri::isKnownUntaggedCapability(const Value *V,
456                                             const DataLayout *DL) {
457   DEBUG_WITH_TYPE("infer-tag", dbgs() << "Checking if value is untagged:";
458                   V->dump());
459   return ::isKnownUntaggedCapability(V, 0, DL);
460 }
461 
462 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
463                               const Query &Q);
464 
MaskedValueIsZero(const Value * V,const APInt & Mask,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)465 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
466                              const DataLayout &DL, unsigned Depth,
467                              AssumptionCache *AC, const Instruction *CxtI,
468                              const DominatorTree *DT, bool UseInstrInfo) {
469   return ::MaskedValueIsZero(
470       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
471 }
472 
473 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
474                                    unsigned Depth, const Query &Q);
475 
ComputeNumSignBits(const Value * V,unsigned Depth,const Query & Q)476 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
477                                    const Query &Q) {
478   // FIXME: We currently have no way to represent the DemandedElts of a scalable
479   // vector
480   if (isa<ScalableVectorType>(V->getType()))
481     return 1;
482 
483   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
484   APInt DemandedElts =
485       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
486   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
487 }
488 
ComputeNumSignBits(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)489 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
490                                   unsigned Depth, AssumptionCache *AC,
491                                   const Instruction *CxtI,
492                                   const DominatorTree *DT, bool UseInstrInfo) {
493   return ::ComputeNumSignBits(
494       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
495 }
496 
computeKnownBitsAddSub(bool Add,const Value * Op0,const Value * Op1,bool NSW,const APInt & DemandedElts,KnownBits & KnownOut,KnownBits & Known2,unsigned Depth,const Query & Q)497 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
498                                    bool NSW, const APInt &DemandedElts,
499                                    KnownBits &KnownOut, KnownBits &Known2,
500                                    unsigned Depth, const Query &Q) {
501   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
502 
503   // If one operand is unknown and we have no nowrap information,
504   // the result will be unknown independently of the second operand.
505   if (KnownOut.isUnknown() && !NSW)
506     return;
507 
508   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
509   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
510 }
511 
computeKnownBitsMul(const Value * Op0,const Value * Op1,bool NSW,const APInt & DemandedElts,KnownBits & Known,KnownBits & Known2,unsigned Depth,const Query & Q)512 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
513                                 const APInt &DemandedElts, KnownBits &Known,
514                                 KnownBits &Known2, unsigned Depth,
515                                 const Query &Q) {
516   unsigned BitWidth = Known.getBitWidth();
517   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
518   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
519 
520   bool isKnownNegative = false;
521   bool isKnownNonNegative = false;
522   // If the multiplication is known not to overflow, compute the sign bit.
523   if (NSW) {
524     if (Op0 == Op1) {
525       // The product of a number with itself is non-negative.
526       isKnownNonNegative = true;
527     } else {
528       bool isKnownNonNegativeOp1 = Known.isNonNegative();
529       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
530       bool isKnownNegativeOp1 = Known.isNegative();
531       bool isKnownNegativeOp0 = Known2.isNegative();
532       // The product of two numbers with the same sign is non-negative.
533       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
534         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
535       // The product of a negative number and a non-negative number is either
536       // negative or zero.
537       if (!isKnownNonNegative)
538         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
539                            isKnownNonZero(Op0, Depth, Q)) ||
540                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
541                            isKnownNonZero(Op1, Depth, Q));
542     }
543   }
544 
545   assert(!Known.hasConflict() && !Known2.hasConflict());
546   // Compute a conservative estimate for high known-0 bits.
547   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
548                              Known2.countMinLeadingZeros(),
549                              BitWidth) - BitWidth;
550   LeadZ = std::min(LeadZ, BitWidth);
551 
552   // The result of the bottom bits of an integer multiply can be
553   // inferred by looking at the bottom bits of both operands and
554   // multiplying them together.
555   // We can infer at least the minimum number of known trailing bits
556   // of both operands. Depending on number of trailing zeros, we can
557   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
558   // a and b are divisible by m and n respectively.
559   // We then calculate how many of those bits are inferrable and set
560   // the output. For example, the i8 mul:
561   //  a = XXXX1100 (12)
562   //  b = XXXX1110 (14)
563   // We know the bottom 3 bits are zero since the first can be divided by
564   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
565   // Applying the multiplication to the trimmed arguments gets:
566   //    XX11 (3)
567   //    X111 (7)
568   // -------
569   //    XX11
570   //   XX11
571   //  XX11
572   // XX11
573   // -------
574   // XXXXX01
575   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
576   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
577   // The proof for this can be described as:
578   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
579   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
580   //                    umin(countTrailingZeros(C2), C6) +
581   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
582   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
583   // %aa = shl i8 %a, C5
584   // %bb = shl i8 %b, C6
585   // %aaa = or i8 %aa, C1
586   // %bbb = or i8 %bb, C2
587   // %mul = mul i8 %aaa, %bbb
588   // %mask = and i8 %mul, C7
589   //   =>
590   // %mask = i8 ((C1*C2)&C7)
591   // Where C5, C6 describe the known bits of %a, %b
592   // C1, C2 describe the known bottom bits of %a, %b.
593   // C7 describes the mask of the known bits of the result.
594   APInt Bottom0 = Known.One;
595   APInt Bottom1 = Known2.One;
596 
597   // How many times we'd be able to divide each argument by 2 (shr by 1).
598   // This gives us the number of trailing zeros on the multiplication result.
599   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
600   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
601   unsigned TrailZero0 = Known.countMinTrailingZeros();
602   unsigned TrailZero1 = Known2.countMinTrailingZeros();
603   unsigned TrailZ = TrailZero0 + TrailZero1;
604 
605   // Figure out the fewest known-bits operand.
606   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
607                                       TrailBitsKnown1 - TrailZero1);
608   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
609 
610   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
611                       Bottom1.getLoBits(TrailBitsKnown1);
612 
613   Known.resetAll();
614   Known.Zero.setHighBits(LeadZ);
615   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
616   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
617 
618   // Only make use of no-wrap flags if we failed to compute the sign bit
619   // directly.  This matters if the multiplication always overflows, in
620   // which case we prefer to follow the result of the direct computation,
621   // though as the program is invoking undefined behaviour we can choose
622   // whatever we like here.
623   if (isKnownNonNegative && !Known.isNegative())
624     Known.makeNonNegative();
625   else if (isKnownNegative && !Known.isNonNegative())
626     Known.makeNegative();
627 }
628 
computeKnownBitsFromRangeMetadata(const MDNode & Ranges,KnownBits & Known)629 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
630                                              KnownBits &Known) {
631   unsigned BitWidth = Known.getBitWidth();
632   unsigned NumRanges = Ranges.getNumOperands() / 2;
633   assert(NumRanges >= 1);
634 
635   Known.Zero.setAllBits();
636   Known.One.setAllBits();
637 
638   for (unsigned i = 0; i < NumRanges; ++i) {
639     ConstantInt *Lower =
640         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
641     ConstantInt *Upper =
642         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
643     ConstantRange Range(Lower->getValue(), Upper->getValue());
644 
645     // The first CommonPrefixBits of all values in Range are equal.
646     unsigned CommonPrefixBits =
647         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
648 
649     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
650     Known.One &= Range.getUnsignedMax() & Mask;
651     Known.Zero &= ~Range.getUnsignedMax() & Mask;
652   }
653 }
654 
isEphemeralValueOf(const Instruction * I,const Value * E)655 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
656   SmallVector<const Value *, 16> WorkSet(1, I);
657   SmallPtrSet<const Value *, 32> Visited;
658   SmallPtrSet<const Value *, 16> EphValues;
659 
660   // The instruction defining an assumption's condition itself is always
661   // considered ephemeral to that assumption (even if it has other
662   // non-ephemeral users). See r246696's test case for an example.
663   if (is_contained(I->operands(), E))
664     return true;
665 
666   while (!WorkSet.empty()) {
667     const Value *V = WorkSet.pop_back_val();
668     if (!Visited.insert(V).second)
669       continue;
670 
671     // If all uses of this value are ephemeral, then so is this value.
672     if (llvm::all_of(V->users(), [&](const User *U) {
673                                    return EphValues.count(U);
674                                  })) {
675       if (V == E)
676         return true;
677 
678       if (V == I || isSafeToSpeculativelyExecute(V)) {
679        EphValues.insert(V);
680        if (const User *U = dyn_cast<User>(V))
681          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
682               J != JE; ++J)
683            WorkSet.push_back(*J);
684       }
685     }
686   }
687 
688   return false;
689 }
690 
691 // Is this an intrinsic that cannot be speculated but also cannot trap?
isAssumeLikeIntrinsic(const Instruction * I)692 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
693   if (const CallInst *CI = dyn_cast<CallInst>(I))
694     if (Function *F = CI->getCalledFunction())
695       switch (F->getIntrinsicID()) {
696       default: break;
697       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
698       case Intrinsic::assume:
699       case Intrinsic::sideeffect:
700       case Intrinsic::dbg_declare:
701       case Intrinsic::dbg_value:
702       case Intrinsic::dbg_label:
703       case Intrinsic::invariant_start:
704       case Intrinsic::invariant_end:
705       case Intrinsic::lifetime_start:
706       case Intrinsic::lifetime_end:
707       case Intrinsic::objectsize:
708       case Intrinsic::ptr_annotation:
709       case Intrinsic::var_annotation:
710         return true;
711       }
712 
713   return false;
714 }
715 
isValidAssumeForContext(const Instruction * Inv,const Instruction * CxtI,const DominatorTree * DT)716 bool llvm::isValidAssumeForContext(const Instruction *Inv,
717                                    const Instruction *CxtI,
718                                    const DominatorTree *DT) {
719   // There are two restrictions on the use of an assume:
720   //  1. The assume must dominate the context (or the control flow must
721   //     reach the assume whenever it reaches the context).
722   //  2. The context must not be in the assume's set of ephemeral values
723   //     (otherwise we will use the assume to prove that the condition
724   //     feeding the assume is trivially true, thus causing the removal of
725   //     the assume).
726 
727   if (Inv->getParent() == CxtI->getParent()) {
728     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
729     // in the BB.
730     if (Inv->comesBefore(CxtI))
731       return true;
732 
733     // Don't let an assume affect itself - this would cause the problems
734     // `isEphemeralValueOf` is trying to prevent, and it would also make
735     // the loop below go out of bounds.
736     if (Inv == CxtI)
737       return false;
738 
739     // The context comes first, but they're both in the same block.
740     // Make sure there is nothing in between that might interrupt
741     // the control flow, not even CxtI itself.
742     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
743       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
744         return false;
745 
746     return !isEphemeralValueOf(Inv, CxtI);
747   }
748 
749   // Inv and CxtI are in different blocks.
750   if (DT) {
751     if (DT->dominates(Inv, CxtI))
752       return true;
753   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
754     // We don't have a DT, but this trivially dominates.
755     return true;
756   }
757 
758   return false;
759 }
760 
isKnownNonZeroFromAssume(const Value * V,const Query & Q)761 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
762   // Use of assumptions is context-sensitive. If we don't have a context, we
763   // cannot use them!
764   if (!Q.AC || !Q.CxtI)
765     return false;
766 
767   // Note that the patterns below need to be kept in sync with the code
768   // in AssumptionCache::updateAffectedValues.
769 
770   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
771     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
772 
773     Value *RHS;
774     CmpInst::Predicate Pred;
775     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
776       return false;
777     // assume(v u> y) -> assume(v != 0)
778     if (Pred == ICmpInst::ICMP_UGT)
779       return true;
780 
781     // assume(v != 0)
782     // We special-case this one to ensure that we handle `assume(v != null)`.
783     if (Pred == ICmpInst::ICMP_NE)
784       return match(RHS, m_Zero());
785 
786     // All other predicates - rely on generic ConstantRange handling.
787     ConstantInt *CI;
788     if (!match(RHS, m_ConstantInt(CI)))
789       return false;
790     ConstantRange RHSRange(CI->getValue());
791     ConstantRange TrueValues =
792         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
793     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
794   };
795 
796   if (Q.CxtI && V->getType()->isPointerTy()) {
797     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
798     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
799                               V->getType()->getPointerAddressSpace()))
800       AttrKinds.push_back(Attribute::Dereferenceable);
801 
802     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
803       return true;
804   }
805 
806   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
807     if (!AssumeVH)
808       continue;
809     CallInst *I = cast<CallInst>(AssumeVH);
810     assert(I->getFunction() == Q.CxtI->getFunction() &&
811            "Got assumption for the wrong function!");
812     if (Q.isExcluded(I))
813       continue;
814 
815     // Warning: This loop can end up being somewhat performance sensitive.
816     // We're running this loop for once for each value queried resulting in a
817     // runtime of ~O(#assumes * #values).
818 
819     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
820            "must be an assume intrinsic");
821 
822     Value *Arg = I->getArgOperand(0);
823     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
824     if (!Cmp)
825       continue;
826 
827     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
828       return true;
829   }
830 
831   return false;
832 }
833 
computeKnownBitsFromAssume(const Value * V,KnownBits & Known,unsigned Depth,const Query & Q)834 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
835                                        unsigned Depth, const Query &Q) {
836   // Use of assumptions is context-sensitive. If we don't have a context, we
837   // cannot use them!
838   if (!Q.AC || !Q.CxtI)
839     return;
840 
841   unsigned BitWidth = Known.getBitWidth();
842 
843   // Refine Known set if the pointer alignment is set by assume bundles.
844   if (V->getType()->isPointerTy()) {
845     if (RetainedKnowledge RK = getKnowledgeValidInContext(
846             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
847       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
848     }
849   }
850 
851   // Note that the patterns below need to be kept in sync with the code
852   // in AssumptionCache::updateAffectedValues.
853 
854   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
855     if (!AssumeVH)
856       continue;
857     CallInst *I = cast<CallInst>(AssumeVH);
858     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
859            "Got assumption for the wrong function!");
860     if (Q.isExcluded(I))
861       continue;
862 
863     // Warning: This loop can end up being somewhat performance sensitive.
864     // We're running this loop for once for each value queried resulting in a
865     // runtime of ~O(#assumes * #values).
866 
867     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
868            "must be an assume intrinsic");
869 
870     Value *Arg = I->getArgOperand(0);
871 
872     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
873       assert(BitWidth == 1 && "assume operand is not i1?");
874       Known.setAllOnes();
875       return;
876     }
877     if (match(Arg, m_Not(m_Specific(V))) &&
878         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
879       assert(BitWidth == 1 && "assume operand is not i1?");
880       Known.setAllZero();
881       return;
882     }
883 
884     // The remaining tests are all recursive, so bail out if we hit the limit.
885     if (Depth == MaxDepth)
886       continue;
887 
888     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
889     if (!Cmp)
890       continue;
891 
892     // Note that ptrtoint may change the bitwidth.
893     Value *A, *B;
894     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
895 
896     CmpInst::Predicate Pred;
897     uint64_t C;
898     switch (Cmp->getPredicate()) {
899     default:
900       break;
901     case ICmpInst::ICMP_EQ:
902       // assume(v = a)
903       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
904           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
905         KnownBits RHSKnown =
906             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
907         Known.Zero |= RHSKnown.Zero;
908         Known.One  |= RHSKnown.One;
909       // assume(v & b = a)
910       } else if (match(Cmp,
911                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
912                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
913         KnownBits RHSKnown =
914             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
915         KnownBits MaskKnown =
916             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
917 
918         // For those bits in the mask that are known to be one, we can propagate
919         // known bits from the RHS to V.
920         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
921         Known.One  |= RHSKnown.One  & MaskKnown.One;
922       // assume(~(v & b) = a)
923       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
924                                      m_Value(A))) &&
925                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
926         KnownBits RHSKnown =
927             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
928         KnownBits MaskKnown =
929             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
930 
931         // For those bits in the mask that are known to be one, we can propagate
932         // inverted known bits from the RHS to V.
933         Known.Zero |= RHSKnown.One  & MaskKnown.One;
934         Known.One  |= RHSKnown.Zero & MaskKnown.One;
935       // assume(v | b = a)
936       } else if (match(Cmp,
937                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
938                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
939         KnownBits RHSKnown =
940             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
941         KnownBits BKnown =
942             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
943 
944         // For those bits in B that are known to be zero, we can propagate known
945         // bits from the RHS to V.
946         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
947         Known.One  |= RHSKnown.One  & BKnown.Zero;
948       // assume(~(v | b) = a)
949       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
950                                      m_Value(A))) &&
951                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
952         KnownBits RHSKnown =
953             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
954         KnownBits BKnown =
955             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
956 
957         // For those bits in B that are known to be zero, we can propagate
958         // inverted known bits from the RHS to V.
959         Known.Zero |= RHSKnown.One  & BKnown.Zero;
960         Known.One  |= RHSKnown.Zero & BKnown.Zero;
961       // assume(v ^ b = a)
962       } else if (match(Cmp,
963                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
964                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
965         KnownBits RHSKnown =
966             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
967         KnownBits BKnown =
968             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
969 
970         // For those bits in B that are known to be zero, we can propagate known
971         // bits from the RHS to V. For those bits in B that are known to be one,
972         // we can propagate inverted known bits from the RHS to V.
973         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
974         Known.One  |= RHSKnown.One  & BKnown.Zero;
975         Known.Zero |= RHSKnown.One  & BKnown.One;
976         Known.One  |= RHSKnown.Zero & BKnown.One;
977       // assume(~(v ^ b) = a)
978       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
979                                      m_Value(A))) &&
980                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
981         KnownBits RHSKnown =
982             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
983         KnownBits BKnown =
984             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
985 
986         // For those bits in B that are known to be zero, we can propagate
987         // inverted known bits from the RHS to V. For those bits in B that are
988         // known to be one, we can propagate known bits from the RHS to V.
989         Known.Zero |= RHSKnown.One  & BKnown.Zero;
990         Known.One  |= RHSKnown.Zero & BKnown.Zero;
991         Known.Zero |= RHSKnown.Zero & BKnown.One;
992         Known.One  |= RHSKnown.One  & BKnown.One;
993       // assume(v << c = a)
994       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
995                                      m_Value(A))) &&
996                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
997         KnownBits RHSKnown =
998             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
999 
1000         // For those bits in RHS that are known, we can propagate them to known
1001         // bits in V shifted to the right by C.
1002         RHSKnown.Zero.lshrInPlace(C);
1003         Known.Zero |= RHSKnown.Zero;
1004         RHSKnown.One.lshrInPlace(C);
1005         Known.One  |= RHSKnown.One;
1006       // assume(~(v << c) = a)
1007       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
1008                                      m_Value(A))) &&
1009                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
1010         KnownBits RHSKnown =
1011             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1012         // For those bits in RHS that are known, we can propagate them inverted
1013         // to known bits in V shifted to the right by C.
1014         RHSKnown.One.lshrInPlace(C);
1015         Known.Zero |= RHSKnown.One;
1016         RHSKnown.Zero.lshrInPlace(C);
1017         Known.One  |= RHSKnown.Zero;
1018       // assume(v >> c = a)
1019       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
1020                                      m_Value(A))) &&
1021                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
1022         KnownBits RHSKnown =
1023             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1024         // For those bits in RHS that are known, we can propagate them to known
1025         // bits in V shifted to the right by C.
1026         Known.Zero |= RHSKnown.Zero << C;
1027         Known.One  |= RHSKnown.One  << C;
1028       // assume(~(v >> c) = a)
1029       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
1030                                      m_Value(A))) &&
1031                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
1032         KnownBits RHSKnown =
1033             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1034         // For those bits in RHS that are known, we can propagate them inverted
1035         // to known bits in V shifted to the right by C.
1036         Known.Zero |= RHSKnown.One  << C;
1037         Known.One  |= RHSKnown.Zero << C;
1038       }
1039       break;
1040     case ICmpInst::ICMP_SGE:
1041       // assume(v >=_s c) where c is non-negative
1042       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1043           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1044         KnownBits RHSKnown =
1045             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
1046 
1047         if (RHSKnown.isNonNegative()) {
1048           // We know that the sign bit is zero.
1049           Known.makeNonNegative();
1050         }
1051       }
1052       break;
1053     case ICmpInst::ICMP_SGT:
1054       // assume(v >_s c) where c is at least -1.
1055       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1056           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1057         KnownBits RHSKnown =
1058             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
1059 
1060         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
1061           // We know that the sign bit is zero.
1062           Known.makeNonNegative();
1063         }
1064       }
1065       break;
1066     case ICmpInst::ICMP_SLE:
1067       // assume(v <=_s c) where c is negative
1068       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1069           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1070         KnownBits RHSKnown =
1071             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
1072 
1073         if (RHSKnown.isNegative()) {
1074           // We know that the sign bit is one.
1075           Known.makeNegative();
1076         }
1077       }
1078       break;
1079     case ICmpInst::ICMP_SLT:
1080       // assume(v <_s c) where c is non-positive
1081       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1082           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1083         KnownBits RHSKnown =
1084             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1085 
1086         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
1087           // We know that the sign bit is one.
1088           Known.makeNegative();
1089         }
1090       }
1091       break;
1092     case ICmpInst::ICMP_ULE:
1093       // assume(v <=_u c)
1094       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1095           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1096         KnownBits RHSKnown =
1097             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1098 
1099         // Whatever high bits in c are zero are known to be zero.
1100         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1101       }
1102       break;
1103     case ICmpInst::ICMP_ULT:
1104       // assume(v <_u c)
1105       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1106           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1107         KnownBits RHSKnown =
1108             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1109 
1110         // If the RHS is known zero, then this assumption must be wrong (nothing
1111         // is unsigned less than zero). Signal a conflict and get out of here.
1112         if (RHSKnown.isZero()) {
1113           Known.Zero.setAllBits();
1114           Known.One.setAllBits();
1115           break;
1116         }
1117 
1118         // Whatever high bits in c are zero are known to be zero (if c is a power
1119         // of 2, then one more).
1120         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
1121           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
1122         else
1123           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1124       }
1125       break;
1126     }
1127   }
1128 
1129   // If assumptions conflict with each other or previous known bits, then we
1130   // have a logical fallacy. It's possible that the assumption is not reachable,
1131   // so this isn't a real bug. On the other hand, the program may have undefined
1132   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
1133   // clear out the known bits, try to warn the user, and hope for the best.
1134   if (Known.Zero.intersects(Known.One)) {
1135     Known.resetAll();
1136 
1137     if (Q.ORE)
1138       Q.ORE->emit([&]() {
1139         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
1140         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
1141                                           CxtI)
1142                << "Detected conflicting code assumptions. Program may "
1143                   "have undefined behavior, or compiler may have "
1144                   "internal error.";
1145       });
1146   }
1147 }
1148 
1149 /// Compute known bits from a shift operator, including those with a
1150 /// non-constant shift amount. Known is the output of this function. Known2 is a
1151 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
1152 /// operator-specific functions that, given the known-zero or known-one bits
1153 /// respectively, and a shift amount, compute the implied known-zero or
1154 /// known-one bits of the shift operator's result respectively for that shift
1155 /// amount. The results from calling KZF and KOF are conservatively combined for
1156 /// all permitted shift amounts.
computeKnownBitsFromShiftOperator(const Operator * I,const APInt & DemandedElts,KnownBits & Known,KnownBits & Known2,unsigned Depth,const Query & Q,function_ref<APInt (const APInt &,unsigned)> KZF,function_ref<APInt (const APInt &,unsigned)> KOF)1157 static void computeKnownBitsFromShiftOperator(
1158     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1159     KnownBits &Known2, unsigned Depth, const Query &Q,
1160     function_ref<APInt(const APInt &, unsigned)> KZF,
1161     function_ref<APInt(const APInt &, unsigned)> KOF) {
1162   unsigned BitWidth = Known.getBitWidth();
1163 
1164   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1165   if (Known.isConstant()) {
1166     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
1167 
1168     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1169     Known.Zero = KZF(Known.Zero, ShiftAmt);
1170     Known.One  = KOF(Known.One, ShiftAmt);
1171     // If the known bits conflict, this must be an overflowing left shift, so
1172     // the shift result is poison. We can return anything we want. Choose 0 for
1173     // the best folding opportunity.
1174     if (Known.hasConflict())
1175       Known.setAllZero();
1176 
1177     return;
1178   }
1179 
1180   // If the shift amount could be greater than or equal to the bit-width of the
1181   // LHS, the value could be poison, but bail out because the check below is
1182   // expensive.
1183   // TODO: Should we just carry on?
1184   if (Known.getMaxValue().uge(BitWidth)) {
1185     Known.resetAll();
1186     return;
1187   }
1188 
1189   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1190   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1191   // limit value (which implies all bits are known).
1192   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1193   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1194 
1195   // It would be more-clearly correct to use the two temporaries for this
1196   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1197   Known.resetAll();
1198 
1199   // If we know the shifter operand is nonzero, we can sometimes infer more
1200   // known bits. However this is expensive to compute, so be lazy about it and
1201   // only compute it when absolutely necessary.
1202   Optional<bool> ShifterOperandIsNonZero;
1203 
1204   // Early exit if we can't constrain any well-defined shift amount.
1205   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1206       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1207     ShifterOperandIsNonZero =
1208         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1209     if (!*ShifterOperandIsNonZero)
1210       return;
1211   }
1212 
1213   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1214 
1215   Known.Zero.setAllBits();
1216   Known.One.setAllBits();
1217   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1218     // Combine the shifted known input bits only for those shift amounts
1219     // compatible with its known constraints.
1220     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1221       continue;
1222     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1223       continue;
1224     // If we know the shifter is nonzero, we may be able to infer more known
1225     // bits. This check is sunk down as far as possible to avoid the expensive
1226     // call to isKnownNonZero if the cheaper checks above fail.
1227     if (ShiftAmt == 0) {
1228       if (!ShifterOperandIsNonZero.hasValue())
1229         ShifterOperandIsNonZero =
1230             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1231       if (*ShifterOperandIsNonZero)
1232         continue;
1233     }
1234 
1235     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1236     Known.One  &= KOF(Known2.One, ShiftAmt);
1237   }
1238 
1239   // If the known bits conflict, the result is poison. Return a 0 and hope the
1240   // caller can further optimize that.
1241   if (Known.hasConflict())
1242     Known.setAllZero();
1243 }
1244 
computeKnownBitsFromOperator(const Operator * I,const APInt & DemandedElts,KnownBits & Known,unsigned Depth,const Query & Q)1245 static void computeKnownBitsFromOperator(const Operator *I,
1246                                          const APInt &DemandedElts,
1247                                          KnownBits &Known, unsigned Depth,
1248                                          const Query &Q) {
1249   unsigned BitWidth = Known.getBitWidth();
1250 
1251   KnownBits Known2(BitWidth);
1252   switch (I->getOpcode()) {
1253   default: break;
1254   case Instruction::Load:
1255     if (MDNode *MD =
1256             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1257       computeKnownBitsFromRangeMetadata(*MD, Known);
1258     break;
1259   case Instruction::And: {
1260     // If either the LHS or the RHS are Zero, the result is zero.
1261     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1262     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1263 
1264     Known &= Known2;
1265 
1266     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1267     // here we handle the more general case of adding any odd number by
1268     // matching the form add(x, add(x, y)) where y is odd.
1269     // TODO: This could be generalized to clearing any bit set in y where the
1270     // following bit is known to be unset in y.
1271     Value *X = nullptr, *Y = nullptr;
1272     if (!Known.Zero[0] && !Known.One[0] &&
1273         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1274       Known2.resetAll();
1275       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1276       if (Known2.countMinTrailingOnes() > 0)
1277         Known.Zero.setBit(0);
1278     }
1279     break;
1280   }
1281   case Instruction::Or:
1282     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1283     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1284 
1285     Known |= Known2;
1286     break;
1287   case Instruction::Xor:
1288     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1289     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1290 
1291     Known ^= Known2;
1292     break;
1293   case Instruction::Mul: {
1294     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1295     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1296                         Known, Known2, Depth, Q);
1297     break;
1298   }
1299   case Instruction::UDiv: {
1300     // For the purposes of computing leading zeros we can conservatively
1301     // treat a udiv as a logical right shift by the power of 2 known to
1302     // be less than the denominator.
1303     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1304     unsigned LeadZ = Known2.countMinLeadingZeros();
1305 
1306     Known2.resetAll();
1307     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1308     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1309     if (RHSMaxLeadingZeros != BitWidth)
1310       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1311 
1312     Known.Zero.setHighBits(LeadZ);
1313     break;
1314   }
1315   case Instruction::Select: {
1316     const Value *LHS = nullptr, *RHS = nullptr;
1317     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1318     if (SelectPatternResult::isMinOrMax(SPF)) {
1319       computeKnownBits(RHS, Known, Depth + 1, Q);
1320       computeKnownBits(LHS, Known2, Depth + 1, Q);
1321     } else {
1322       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1323       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1324     }
1325 
1326     unsigned MaxHighOnes = 0;
1327     unsigned MaxHighZeros = 0;
1328     if (SPF == SPF_SMAX) {
1329       // If both sides are negative, the result is negative.
1330       if (Known.isNegative() && Known2.isNegative())
1331         // We can derive a lower bound on the result by taking the max of the
1332         // leading one bits.
1333         MaxHighOnes =
1334             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1335       // If either side is non-negative, the result is non-negative.
1336       else if (Known.isNonNegative() || Known2.isNonNegative())
1337         MaxHighZeros = 1;
1338     } else if (SPF == SPF_SMIN) {
1339       // If both sides are non-negative, the result is non-negative.
1340       if (Known.isNonNegative() && Known2.isNonNegative())
1341         // We can derive an upper bound on the result by taking the max of the
1342         // leading zero bits.
1343         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1344                                 Known2.countMinLeadingZeros());
1345       // If either side is negative, the result is negative.
1346       else if (Known.isNegative() || Known2.isNegative())
1347         MaxHighOnes = 1;
1348     } else if (SPF == SPF_UMAX) {
1349       // We can derive a lower bound on the result by taking the max of the
1350       // leading one bits.
1351       MaxHighOnes =
1352           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1353     } else if (SPF == SPF_UMIN) {
1354       // We can derive an upper bound on the result by taking the max of the
1355       // leading zero bits.
1356       MaxHighZeros =
1357           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1358     } else if (SPF == SPF_ABS) {
1359       // RHS from matchSelectPattern returns the negation part of abs pattern.
1360       // If the negate has an NSW flag we can assume the sign bit of the result
1361       // will be 0 because that makes abs(INT_MIN) undefined.
1362       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1363           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1364         MaxHighZeros = 1;
1365     }
1366 
1367     // Only known if known in both the LHS and RHS.
1368     Known.One &= Known2.One;
1369     Known.Zero &= Known2.Zero;
1370     if (MaxHighOnes > 0)
1371       Known.One.setHighBits(MaxHighOnes);
1372     if (MaxHighZeros > 0)
1373       Known.Zero.setHighBits(MaxHighZeros);
1374     break;
1375   }
1376   case Instruction::FPTrunc:
1377   case Instruction::FPExt:
1378   case Instruction::FPToUI:
1379   case Instruction::FPToSI:
1380   case Instruction::SIToFP:
1381   case Instruction::UIToFP:
1382     break; // Can't work with floating point.
1383   case Instruction::PtrToInt:
1384   case Instruction::IntToPtr:
1385     // Fall through and handle them the same as zext/trunc.
1386     LLVM_FALLTHROUGH;
1387   case Instruction::ZExt:
1388   case Instruction::Trunc: {
1389     Type *SrcTy = I->getOperand(0)->getType();
1390 
1391     unsigned SrcBitWidth;
1392     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1393     // which fall through here.
1394     Type *ScalarTy = SrcTy->getScalarType();
1395     SrcBitWidth = ScalarTy->isPointerTy() ?
1396       Q.DL.getPointerAddrSizeInBits(ScalarTy) :
1397       Q.DL.getTypeSizeInBits(ScalarTy);
1398 
1399     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1400     Known = Known.anyextOrTrunc(SrcBitWidth);
1401     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1402     Known = Known.zextOrTrunc(BitWidth);
1403     break;
1404   }
1405   case Instruction::BitCast: {
1406     Type *SrcTy = I->getOperand(0)->getType();
1407     if (SrcTy->isIntOrPtrTy() &&
1408         // TODO: For now, not handling conversions like:
1409         // (bitcast i64 %x to <2 x i32>)
1410         !I->getType()->isVectorTy()) {
1411       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1412       break;
1413     }
1414     break;
1415   }
1416   case Instruction::AddrSpaceCast: {
1417     Type *SrcTy = I->getOperand(0)->getType();
1418     Type *DestTy = I->getType();
1419     // Address space conversions between CHERI capability and integer pointer
1420     // do not affect the virtual address bits
1421     if (SrcTy->isIntOrPtrTy() && isCheriPointer(SrcTy, &Q.DL) != isCheriPointer(DestTy, &Q.DL)) {
1422       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1423       break;
1424     }
1425     break;
1426   }
1427   case Instruction::SExt: {
1428     // Compute the bits in the result that are not present in the input.
1429     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1430 
1431     Known = Known.trunc(SrcBitWidth);
1432     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1433     // If the sign bit of the input is known set or clear, then we know the
1434     // top bits of the result.
1435     Known = Known.sext(BitWidth);
1436     break;
1437   }
1438   case Instruction::Shl: {
1439     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1440     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1441     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1442       APInt KZResult = KnownZero << ShiftAmt;
1443       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1444       // If this shift has "nsw" keyword, then the result is either a poison
1445       // value or has the same sign bit as the first operand.
1446       if (NSW && KnownZero.isSignBitSet())
1447         KZResult.setSignBit();
1448       return KZResult;
1449     };
1450 
1451     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1452       APInt KOResult = KnownOne << ShiftAmt;
1453       if (NSW && KnownOne.isSignBitSet())
1454         KOResult.setSignBit();
1455       return KOResult;
1456     };
1457 
1458     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1459                                       KZF, KOF);
1460     break;
1461   }
1462   case Instruction::LShr: {
1463     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1464     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1465       APInt KZResult = KnownZero.lshr(ShiftAmt);
1466       // High bits known zero.
1467       KZResult.setHighBits(ShiftAmt);
1468       return KZResult;
1469     };
1470 
1471     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1472       return KnownOne.lshr(ShiftAmt);
1473     };
1474 
1475     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1476                                       KZF, KOF);
1477     break;
1478   }
1479   case Instruction::AShr: {
1480     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1481     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1482       return KnownZero.ashr(ShiftAmt);
1483     };
1484 
1485     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1486       return KnownOne.ashr(ShiftAmt);
1487     };
1488 
1489     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1490                                       KZF, KOF);
1491     break;
1492   }
1493   case Instruction::Sub: {
1494     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1495     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1496                            DemandedElts, Known, Known2, Depth, Q);
1497     break;
1498   }
1499   case Instruction::Add: {
1500     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1501     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1502                            DemandedElts, Known, Known2, Depth, Q);
1503     break;
1504   }
1505   case Instruction::SRem:
1506     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1507       APInt RA = Rem->getValue().abs();
1508       if (RA.isPowerOf2()) {
1509         APInt LowBits = RA - 1;
1510         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1511 
1512         // The low bits of the first operand are unchanged by the srem.
1513         Known.Zero = Known2.Zero & LowBits;
1514         Known.One = Known2.One & LowBits;
1515 
1516         // If the first operand is non-negative or has all low bits zero, then
1517         // the upper bits are all zero.
1518         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1519           Known.Zero |= ~LowBits;
1520 
1521         // If the first operand is negative and not all low bits are zero, then
1522         // the upper bits are all one.
1523         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1524           Known.One |= ~LowBits;
1525 
1526         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1527         break;
1528       }
1529     }
1530 
1531     // The sign bit is the LHS's sign bit, except when the result of the
1532     // remainder is zero.
1533     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1534     // If it's known zero, our sign bit is also zero.
1535     if (Known2.isNonNegative())
1536       Known.makeNonNegative();
1537 
1538     break;
1539   case Instruction::URem: {
1540     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1541       const APInt &RA = Rem->getValue();
1542       if (RA.isPowerOf2()) {
1543         APInt LowBits = (RA - 1);
1544         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1545         Known.Zero |= ~LowBits;
1546         Known.One &= LowBits;
1547         break;
1548       }
1549     }
1550 
1551     // Since the result is less than or equal to either operand, any leading
1552     // zero bits in either operand must also exist in the result.
1553     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1554     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1555 
1556     unsigned Leaders =
1557         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1558     Known.resetAll();
1559     Known.Zero.setHighBits(Leaders);
1560     break;
1561   }
1562   case Instruction::Alloca:
1563     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1564     break;
1565   case Instruction::GetElementPtr: {
1566     // Analyze all of the subscripts of this getelementptr instruction
1567     // to determine if we can prove known low zero bits.
1568     KnownBits LocalKnown(BitWidth);
1569     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1570 
1571     const auto *GEP = cast<GEPOperator>(I);
1572     if (GEP->hasAllConstantIndices()) {
1573       // If the GEP indices are all constant we can treat this as an add
1574       APInt GEPOffset(Q.DL.getIndexSizeInBits(GEP->getPointerAddressSpace()), 0);
1575       if (GEP->accumulateConstantOffset(Q.DL, GEPOffset)) {
1576         Known2.One = GEPOffset;
1577         Known2.Zero = ~GEPOffset;
1578         Known = KnownBits::computeForAddSub(
1579             /*Add=*/true, /*NSW=*/false, LocalKnown,
1580             Known2.zextOrTrunc(LocalKnown.getBitWidth()));
1581         break;
1582       }
1583     }
1584 
1585     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1586 
1587     gep_type_iterator GTI = gep_type_begin(I);
1588     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1589       // TrailZ can only become smaller, short-circuit if we hit zero.
1590       if (TrailZ == 0)
1591         break;
1592 
1593       Value *Index = I->getOperand(i);
1594       if (StructType *STy = GTI.getStructTypeOrNull()) {
1595         // Handle struct member offset arithmetic.
1596 
1597         // Handle case when index is vector zeroinitializer
1598         Constant *CIndex = cast<Constant>(Index);
1599         if (CIndex->isZeroValue())
1600           continue;
1601 
1602         if (CIndex->getType()->isVectorTy())
1603           Index = CIndex->getSplatValue();
1604 
1605         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1606         const StructLayout *SL = Q.DL.getStructLayout(STy);
1607         uint64_t Offset = SL->getElementOffset(Idx);
1608         TrailZ = std::min<unsigned>(TrailZ,
1609                                     countTrailingZeros(Offset));
1610       } else {
1611         // Handle array index arithmetic.
1612         Type *IndexedTy = GTI.getIndexedType();
1613         if (!IndexedTy->isSized()) {
1614           TrailZ = 0;
1615           break;
1616         }
1617         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1618         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1619         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1620         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1621         TrailZ = std::min(TrailZ,
1622                           unsigned(countTrailingZeros(TypeSize) +
1623                                    LocalKnown.countMinTrailingZeros()));
1624       }
1625     }
1626 
1627     Known.Zero.setLowBits(TrailZ);
1628     break;
1629   }
1630   case Instruction::PHI: {
1631     const PHINode *P = cast<PHINode>(I);
1632     // Handle the case of a simple two-predecessor recurrence PHI.
1633     // There's a lot more that could theoretically be done here, but
1634     // this is sufficient to catch some interesting cases.
1635     if (P->getNumIncomingValues() == 2) {
1636       for (unsigned i = 0; i != 2; ++i) {
1637         Value *L = P->getIncomingValue(i);
1638         Value *R = P->getIncomingValue(!i);
1639         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1640         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1641         Operator *LU = dyn_cast<Operator>(L);
1642         if (!LU)
1643           continue;
1644         unsigned Opcode = LU->getOpcode();
1645         // Check for operations that have the property that if
1646         // both their operands have low zero bits, the result
1647         // will have low zero bits.
1648         if (Opcode == Instruction::Add ||
1649             Opcode == Instruction::Sub ||
1650             Opcode == Instruction::And ||
1651             Opcode == Instruction::Or ||
1652             Opcode == Instruction::Mul) {
1653           Value *LL = LU->getOperand(0);
1654           Value *LR = LU->getOperand(1);
1655           // Find a recurrence.
1656           if (LL == I)
1657             L = LR;
1658           else if (LR == I)
1659             L = LL;
1660           else
1661             continue; // Check for recurrence with L and R flipped.
1662 
1663           // Change the context instruction to the "edge" that flows into the
1664           // phi. This is important because that is where the value is actually
1665           // "evaluated" even though it is used later somewhere else. (see also
1666           // D69571).
1667           Query RecQ = Q;
1668 
1669           // Ok, we have a PHI of the form L op= R. Check for low
1670           // zero bits.
1671           RecQ.CxtI = RInst;
1672           computeKnownBits(R, Known2, Depth + 1, RecQ);
1673 
1674           // We need to take the minimum number of known bits
1675           KnownBits Known3(BitWidth);
1676           RecQ.CxtI = LInst;
1677           computeKnownBits(L, Known3, Depth + 1, RecQ);
1678 
1679           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1680                                          Known3.countMinTrailingZeros()));
1681 
1682           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1683           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1684             // If initial value of recurrence is nonnegative, and we are adding
1685             // a nonnegative number with nsw, the result can only be nonnegative
1686             // or poison value regardless of the number of times we execute the
1687             // add in phi recurrence. If initial value is negative and we are
1688             // adding a negative number with nsw, the result can only be
1689             // negative or poison value. Similar arguments apply to sub and mul.
1690             //
1691             // (add non-negative, non-negative) --> non-negative
1692             // (add negative, negative) --> negative
1693             if (Opcode == Instruction::Add) {
1694               if (Known2.isNonNegative() && Known3.isNonNegative())
1695                 Known.makeNonNegative();
1696               else if (Known2.isNegative() && Known3.isNegative())
1697                 Known.makeNegative();
1698             }
1699 
1700             // (sub nsw non-negative, negative) --> non-negative
1701             // (sub nsw negative, non-negative) --> negative
1702             else if (Opcode == Instruction::Sub && LL == I) {
1703               if (Known2.isNonNegative() && Known3.isNegative())
1704                 Known.makeNonNegative();
1705               else if (Known2.isNegative() && Known3.isNonNegative())
1706                 Known.makeNegative();
1707             }
1708 
1709             // (mul nsw non-negative, non-negative) --> non-negative
1710             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1711                      Known3.isNonNegative())
1712               Known.makeNonNegative();
1713           }
1714 
1715           break;
1716         }
1717       }
1718     }
1719 
1720     // Unreachable blocks may have zero-operand PHI nodes.
1721     if (P->getNumIncomingValues() == 0)
1722       break;
1723 
1724     // Otherwise take the unions of the known bit sets of the operands,
1725     // taking conservative care to avoid excessive recursion.
1726     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1727       // Skip if every incoming value references to ourself.
1728       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1729         break;
1730 
1731       Known.Zero.setAllBits();
1732       Known.One.setAllBits();
1733       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1734         Value *IncValue = P->getIncomingValue(u);
1735         // Skip direct self references.
1736         if (IncValue == P) continue;
1737 
1738         // Change the context instruction to the "edge" that flows into the
1739         // phi. This is important because that is where the value is actually
1740         // "evaluated" even though it is used later somewhere else. (see also
1741         // D69571).
1742         Query RecQ = Q;
1743         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1744 
1745         Known2 = KnownBits(BitWidth);
1746         // Recurse, but cap the recursion to one level, because we don't
1747         // want to waste time spinning around in loops.
1748         computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ);
1749         Known.Zero &= Known2.Zero;
1750         Known.One &= Known2.One;
1751         // If all bits have been ruled out, there's no need to check
1752         // more operands.
1753         if (!Known.Zero && !Known.One)
1754           break;
1755       }
1756     }
1757     break;
1758   }
1759   case Instruction::Call:
1760   case Instruction::Invoke:
1761     // If range metadata is attached to this call, set known bits from that,
1762     // and then intersect with known bits based on other properties of the
1763     // function.
1764     if (MDNode *MD =
1765             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1766       computeKnownBitsFromRangeMetadata(*MD, Known);
1767     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1768       computeKnownBits(RV, Known2, Depth + 1, Q);
1769       Known.Zero |= Known2.Zero;
1770       Known.One |= Known2.One;
1771     }
1772     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1773       switch (II->getIntrinsicID()) {
1774       default: break;
1775       case Intrinsic::bitreverse:
1776         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1777         Known.Zero |= Known2.Zero.reverseBits();
1778         Known.One |= Known2.One.reverseBits();
1779         break;
1780       case Intrinsic::bswap:
1781         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1782         Known.Zero |= Known2.Zero.byteSwap();
1783         Known.One |= Known2.One.byteSwap();
1784         break;
1785       case Intrinsic::cheri_cap_address_get: {
1786         // This just fetches the virtual address -> treat the same as ptrtoint:
1787         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1788         break;
1789       }
1790       case Intrinsic::cheri_cap_address_set: {
1791         // We can treat it the same as inttoptr:
1792         // The virtual address after csetaddr will be the second argument.
1793         computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1794         break;
1795       }
1796       case Intrinsic::cheri_cap_diff: {
1797         bool NSW = false;
1798         computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1799                                DemandedElts, Known, Known2, Depth, Q);
1800         break;
1801       }
1802       case Intrinsic::ctlz: {
1803         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1804         // If we have a known 1, its position is our upper bound.
1805         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1806         // If this call is undefined for 0, the result will be less than 2^n.
1807         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1808           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1809         unsigned LowBits = Log2_32(PossibleLZ)+1;
1810         Known.Zero.setBitsFrom(LowBits);
1811         break;
1812       }
1813       case Intrinsic::cttz: {
1814         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1815         // If we have a known 1, its position is our upper bound.
1816         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1817         // If this call is undefined for 0, the result will be less than 2^n.
1818         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1819           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1820         unsigned LowBits = Log2_32(PossibleTZ)+1;
1821         Known.Zero.setBitsFrom(LowBits);
1822         break;
1823       }
1824       case Intrinsic::ctpop: {
1825         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1826         // We can bound the space the count needs.  Also, bits known to be zero
1827         // can't contribute to the population.
1828         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1829         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1830         Known.Zero.setBitsFrom(LowBits);
1831         // TODO: we could bound KnownOne using the lower bound on the number
1832         // of bits which might be set provided by popcnt KnownOne2.
1833         break;
1834       }
1835       case Intrinsic::fshr:
1836       case Intrinsic::fshl: {
1837         const APInt *SA;
1838         if (!match(I->getOperand(2), m_APInt(SA)))
1839           break;
1840 
1841         // Normalize to funnel shift left.
1842         uint64_t ShiftAmt = SA->urem(BitWidth);
1843         if (II->getIntrinsicID() == Intrinsic::fshr)
1844           ShiftAmt = BitWidth - ShiftAmt;
1845 
1846         KnownBits Known3(BitWidth);
1847         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1848         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1849 
1850         Known.Zero =
1851             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1852         Known.One =
1853             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1854         break;
1855       }
1856       case Intrinsic::uadd_sat:
1857       case Intrinsic::usub_sat: {
1858         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1859         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1860         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1861 
1862         // Add: Leading ones of either operand are preserved.
1863         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1864         // as leading zeros in the result.
1865         unsigned LeadingKnown;
1866         if (IsAdd)
1867           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1868                                   Known2.countMinLeadingOnes());
1869         else
1870           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1871                                   Known2.countMinLeadingOnes());
1872 
1873         Known = KnownBits::computeForAddSub(
1874             IsAdd, /* NSW */ false, Known, Known2);
1875 
1876         // We select between the operation result and all-ones/zero
1877         // respectively, so we can preserve known ones/zeros.
1878         if (IsAdd) {
1879           Known.One.setHighBits(LeadingKnown);
1880           Known.Zero.clearAllBits();
1881         } else {
1882           Known.Zero.setHighBits(LeadingKnown);
1883           Known.One.clearAllBits();
1884         }
1885         break;
1886       }
1887       case Intrinsic::x86_sse42_crc32_64_64:
1888         Known.Zero.setBitsFrom(32);
1889         break;
1890       }
1891     }
1892     break;
1893   case Instruction::ShuffleVector: {
1894     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1895     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1896     if (!Shuf) {
1897       Known.resetAll();
1898       return;
1899     }
1900     // For undef elements, we don't know anything about the common state of
1901     // the shuffle result.
1902     APInt DemandedLHS, DemandedRHS;
1903     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1904       Known.resetAll();
1905       return;
1906     }
1907     Known.One.setAllBits();
1908     Known.Zero.setAllBits();
1909     if (!!DemandedLHS) {
1910       const Value *LHS = Shuf->getOperand(0);
1911       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1912       // If we don't know any bits, early out.
1913       if (Known.isUnknown())
1914         break;
1915     }
1916     if (!!DemandedRHS) {
1917       const Value *RHS = Shuf->getOperand(1);
1918       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1919       Known.One &= Known2.One;
1920       Known.Zero &= Known2.Zero;
1921     }
1922     break;
1923   }
1924   case Instruction::InsertElement: {
1925     const Value *Vec = I->getOperand(0);
1926     const Value *Elt = I->getOperand(1);
1927     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1928     // Early out if the index is non-constant or out-of-range.
1929     unsigned NumElts = DemandedElts.getBitWidth();
1930     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1931       Known.resetAll();
1932       return;
1933     }
1934     Known.One.setAllBits();
1935     Known.Zero.setAllBits();
1936     unsigned EltIdx = CIdx->getZExtValue();
1937     // Do we demand the inserted element?
1938     if (DemandedElts[EltIdx]) {
1939       computeKnownBits(Elt, Known, Depth + 1, Q);
1940       // If we don't know any bits, early out.
1941       if (Known.isUnknown())
1942         break;
1943     }
1944     // We don't need the base vector element that has been inserted.
1945     APInt DemandedVecElts = DemandedElts;
1946     DemandedVecElts.clearBit(EltIdx);
1947     if (!!DemandedVecElts) {
1948       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1949       Known.One &= Known2.One;
1950       Known.Zero &= Known2.Zero;
1951     }
1952     break;
1953   }
1954   case Instruction::ExtractElement: {
1955     // Look through extract element. If the index is non-constant or
1956     // out-of-range demand all elements, otherwise just the extracted element.
1957     const Value *Vec = I->getOperand(0);
1958     const Value *Idx = I->getOperand(1);
1959     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1960     if (isa<ScalableVectorType>(Vec->getType())) {
1961       // FIXME: there's probably *something* we can do with scalable vectors
1962       Known.resetAll();
1963       break;
1964     }
1965     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1966     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1967     if (CIdx && CIdx->getValue().ult(NumElts))
1968       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1969     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1970     break;
1971   }
1972   case Instruction::ExtractValue:
1973     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1974       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1975       if (EVI->getNumIndices() != 1) break;
1976       if (EVI->getIndices()[0] == 0) {
1977         switch (II->getIntrinsicID()) {
1978         default: break;
1979         case Intrinsic::uadd_with_overflow:
1980         case Intrinsic::sadd_with_overflow:
1981           computeKnownBitsAddSub(true, II->getArgOperand(0),
1982                                  II->getArgOperand(1), false, DemandedElts,
1983                                  Known, Known2, Depth, Q);
1984           break;
1985         case Intrinsic::usub_with_overflow:
1986         case Intrinsic::ssub_with_overflow:
1987           computeKnownBitsAddSub(false, II->getArgOperand(0),
1988                                  II->getArgOperand(1), false, DemandedElts,
1989                                  Known, Known2, Depth, Q);
1990           break;
1991         case Intrinsic::umul_with_overflow:
1992         case Intrinsic::smul_with_overflow:
1993           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1994                               DemandedElts, Known, Known2, Depth, Q);
1995           break;
1996         }
1997       }
1998     }
1999     break;
2000   }
2001 }
2002 
2003 /// Determine which bits of V are known to be either zero or one and return
2004 /// them.
computeKnownBits(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2005 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
2006                            unsigned Depth, const Query &Q) {
2007   KnownBits Known(getBitWidth(V->getType(), Q.DL));
2008   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2009   return Known;
2010 }
2011 
2012 /// Determine which bits of V are known to be either zero or one and return
2013 /// them.
computeKnownBits(const Value * V,unsigned Depth,const Query & Q)2014 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
2015   KnownBits Known(getBitWidth(V->getType(), Q.DL));
2016   computeKnownBits(V, Known, Depth, Q);
2017   return Known;
2018 }
2019 
2020 /// Determine which bits of V are known to be either zero or one and return
2021 /// them in the Known bit set.
2022 ///
2023 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
2024 /// we cannot optimize based on the assumption that it is zero without changing
2025 /// it to be an explicit zero.  If we don't change it to zero, other code could
2026 /// optimized based on the contradictory assumption that it is non-zero.
2027 /// Because instcombine aggressively folds operations with undef args anyway,
2028 /// this won't lose us code quality.
2029 ///
2030 /// This function is defined on values with integer type, values with pointer
2031 /// type, and vectors of integers.  In the case
2032 /// where V is a vector, known zero, and known one values are the
2033 /// same width as the vector element, and the bit is set only if it is true
2034 /// for all of the demanded elements in the vector specified by DemandedElts.
computeKnownBits(const Value * V,const APInt & DemandedElts,KnownBits & Known,unsigned Depth,const Query & Q)2035 void computeKnownBits(const Value *V, const APInt &DemandedElts,
2036                       KnownBits &Known, unsigned Depth, const Query &Q) {
2037   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
2038     // No demanded elts or V is a scalable vector, better to assume we don't
2039     // know anything.
2040     Known.resetAll();
2041     return;
2042   }
2043 
2044   assert(V && "No Value?");
2045   assert(Depth <= MaxDepth && "Limit Search Depth");
2046 
2047 #ifndef NDEBUG
2048   Type *Ty = V->getType();
2049   unsigned BitWidth = Known.getBitWidth();
2050 
2051   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2052          "Not integer or pointer type!");
2053 
2054   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2055     assert(
2056         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2057         "DemandedElt width should equal the fixed vector number of elements");
2058   } else {
2059     assert(DemandedElts == APInt(1, 1) &&
2060            "DemandedElt width should be 1 for scalars");
2061   }
2062 
2063   Type *ScalarTy = Ty->getScalarType();
2064   if (ScalarTy->isPointerTy()) {
2065     assert(BitWidth == Q.DL.getPointerAddrSizeInBits(ScalarTy) &&
2066            "V and Known should have same BitWidth");
2067   } else {
2068     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
2069            "V and Known should have same BitWidth");
2070   }
2071 #endif
2072 
2073   const APInt *C;
2074   if (match(V, m_APInt(C))) {
2075     // We know all of the bits for a scalar constant or a splat vector constant!
2076     Known.One = *C;
2077     Known.Zero = ~Known.One;
2078     return;
2079   }
2080   // Null and aggregate-zero are all-zeros.
2081   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
2082     Known.setAllZero();
2083     return;
2084   }
2085   // Handle a constant vector by taking the intersection of the known bits of
2086   // each element.
2087   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
2088     // We know that CDV must be a vector of integers. Take the intersection of
2089     // each element.
2090     Known.Zero.setAllBits(); Known.One.setAllBits();
2091     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2092       if (!DemandedElts[i])
2093         continue;
2094       APInt Elt = CDV->getElementAsAPInt(i);
2095       Known.Zero &= ~Elt;
2096       Known.One &= Elt;
2097     }
2098     return;
2099   }
2100 
2101   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
2102     // We know that CV must be a vector of integers. Take the intersection of
2103     // each element.
2104     Known.Zero.setAllBits(); Known.One.setAllBits();
2105     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2106       if (!DemandedElts[i])
2107         continue;
2108       Constant *Element = CV->getAggregateElement(i);
2109       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
2110       if (!ElementCI) {
2111         Known.resetAll();
2112         return;
2113       }
2114       const APInt &Elt = ElementCI->getValue();
2115       Known.Zero &= ~Elt;
2116       Known.One &= Elt;
2117     }
2118     return;
2119   }
2120 
2121   // Start out not knowing anything.
2122   Known.resetAll();
2123 
2124   // We can't imply anything about undefs.
2125   if (isa<UndefValue>(V))
2126     return;
2127 
2128   // There's no point in looking through other users of ConstantData for
2129   // assumptions.  Confirm that we've handled them all.
2130   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2131 
2132   // Limit search depth.
2133   // All recursive calls that increase depth must come after this.
2134   if (Depth == MaxDepth)
2135     return;
2136 
2137   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2138   // the bits of its aliasee.
2139   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2140     if (!GA->isInterposable())
2141       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2142     return;
2143   }
2144 
2145   if (const Operator *I = dyn_cast<Operator>(V))
2146     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2147 
2148   // Aligned pointers have trailing zeros - refine Known.Zero set
2149   if (isa<PointerType>(V->getType())) {
2150     Align Alignment = V->getPointerAlignment(Q.DL);
2151     Known.Zero.setLowBits(Log2(Alignment));
2152   }
2153 
2154   // computeKnownBitsFromAssume strictly refines Known.
2155   // Therefore, we run them after computeKnownBitsFromOperator.
2156 
2157   // Check whether a nearby assume intrinsic can determine some known bits.
2158   computeKnownBitsFromAssume(V, Known, Depth, Q);
2159 
2160   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2161 }
2162 
2163 /// Return true if the given value is known to have exactly one
2164 /// bit set when defined. For vectors return true if every element is known to
2165 /// be a power of two when defined. Supports values with integer or pointer
2166 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(const Value * V,bool OrZero,unsigned Depth,const Query & Q)2167 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2168                             const Query &Q) {
2169   assert(Depth <= MaxDepth && "Limit Search Depth");
2170 
2171   // Attempt to match against constants.
2172   if (OrZero && match(V, m_Power2OrZero()))
2173       return true;
2174   if (match(V, m_Power2()))
2175       return true;
2176 
2177   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2178   // it is shifted off the end then the result is undefined.
2179   if (match(V, m_Shl(m_One(), m_Value())))
2180     return true;
2181 
2182   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2183   // the bottom.  If it is shifted off the bottom then the result is undefined.
2184   if (match(V, m_LShr(m_SignMask(), m_Value())))
2185     return true;
2186 
2187   // The remaining tests are all recursive, so bail out if we hit the limit.
2188   if (Depth++ == MaxDepth)
2189     return false;
2190 
2191   Value *X = nullptr, *Y = nullptr;
2192   // A shift left or a logical shift right of a power of two is a power of two
2193   // or zero.
2194   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2195                  match(V, m_LShr(m_Value(X), m_Value()))))
2196     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2197 
2198   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2199     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2200 
2201   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2202     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2203            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2204 
2205   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2206     // A power of two and'd with anything is a power of two or zero.
2207     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2208         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2209       return true;
2210     // X & (-X) is always a power of two or zero.
2211     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2212       return true;
2213     return false;
2214   }
2215 
2216   // Adding a power-of-two or zero to the same power-of-two or zero yields
2217   // either the original power-of-two, a larger power-of-two or zero.
2218   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2219     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2220     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2221         Q.IIQ.hasNoSignedWrap(VOBO)) {
2222       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2223           match(X, m_And(m_Value(), m_Specific(Y))))
2224         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2225           return true;
2226       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2227           match(Y, m_And(m_Value(), m_Specific(X))))
2228         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2229           return true;
2230 
2231       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2232       KnownBits LHSBits(BitWidth);
2233       computeKnownBits(X, LHSBits, Depth, Q);
2234 
2235       KnownBits RHSBits(BitWidth);
2236       computeKnownBits(Y, RHSBits, Depth, Q);
2237       // If i8 V is a power of two or zero:
2238       //  ZeroBits: 1 1 1 0 1 1 1 1
2239       // ~ZeroBits: 0 0 0 1 0 0 0 0
2240       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2241         // If OrZero isn't set, we cannot give back a zero result.
2242         // Make sure either the LHS or RHS has a bit set.
2243         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2244           return true;
2245     }
2246   }
2247 
2248   // An exact divide or right shift can only shift off zero bits, so the result
2249   // is a power of two only if the first operand is a power of two and not
2250   // copying a sign bit (sdiv int_min, 2).
2251   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2252       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2253     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2254                                   Depth, Q);
2255   }
2256 
2257   return false;
2258 }
2259 
2260 /// Test whether a GEP's result is known to be non-null.
2261 ///
2262 /// Uses properties inherent in a GEP to try to determine whether it is known
2263 /// to be non-null.
2264 ///
2265 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(const GEPOperator * GEP,unsigned Depth,const Query & Q)2266 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2267                               const Query &Q) {
2268   const Function *F = nullptr;
2269   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2270     F = I->getFunction();
2271 
2272   if (!GEP->isInBounds() ||
2273       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2274     return false;
2275 
2276   // FIXME: Support vector-GEPs.
2277   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2278 
2279   // If the base pointer is non-null, we cannot walk to a null address with an
2280   // inbounds GEP in address space zero.
2281   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2282     return true;
2283 
2284   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2285   // If so, then the GEP cannot produce a null pointer, as doing so would
2286   // inherently violate the inbounds contract within address space zero.
2287   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2288        GTI != GTE; ++GTI) {
2289     // Struct types are easy -- they must always be indexed by a constant.
2290     if (StructType *STy = GTI.getStructTypeOrNull()) {
2291       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2292       unsigned ElementIdx = OpC->getZExtValue();
2293       const StructLayout *SL = Q.DL.getStructLayout(STy);
2294       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2295       if (ElementOffset > 0)
2296         return true;
2297       continue;
2298     }
2299 
2300     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2301     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2302       continue;
2303 
2304     // Fast path the constant operand case both for efficiency and so we don't
2305     // increment Depth when just zipping down an all-constant GEP.
2306     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2307       if (!OpC->isZero())
2308         return true;
2309       continue;
2310     }
2311 
2312     // We post-increment Depth here because while isKnownNonZero increments it
2313     // as well, when we pop back up that increment won't persist. We don't want
2314     // to recurse 10k times just because we have 10k GEP operands. We don't
2315     // bail completely out because we want to handle constant GEPs regardless
2316     // of depth.
2317     if (Depth++ >= MaxDepth)
2318       continue;
2319 
2320     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2321       return true;
2322   }
2323 
2324   return false;
2325 }
2326 
isKnownNonNullFromDominatingCondition(const Value * V,const Instruction * CtxI,const DominatorTree * DT)2327 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2328                                                   const Instruction *CtxI,
2329                                                   const DominatorTree *DT) {
2330   if (isa<Constant>(V))
2331     return false;
2332 
2333   if (!CtxI || !DT)
2334     return false;
2335 
2336   unsigned NumUsesExplored = 0;
2337   for (auto *U : V->users()) {
2338     // Avoid massive lists
2339     if (NumUsesExplored >= DomConditionsMaxUses)
2340       break;
2341     NumUsesExplored++;
2342 
2343     // If the value is used as an argument to a call or invoke, then argument
2344     // attributes may provide an answer about null-ness.
2345     if (const auto *CB = dyn_cast<CallBase>(U))
2346       if (auto *CalledFunc = CB->getCalledFunction())
2347         for (const Argument &Arg : CalledFunc->args())
2348           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2349               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2350             return true;
2351 
2352     // If the value is used as a load/store, then the pointer must be non null.
2353     if (V == getLoadStorePointerOperand(U)) {
2354       const Instruction *I = cast<Instruction>(U);
2355       if (!NullPointerIsDefined(I->getFunction(),
2356                                 V->getType()->getPointerAddressSpace()) &&
2357           DT->dominates(I, CtxI))
2358         return true;
2359     }
2360 
2361     // Consider only compare instructions uniquely controlling a branch
2362     CmpInst::Predicate Pred;
2363     if (!match(const_cast<User *>(U),
2364                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2365         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2366       continue;
2367 
2368     SmallVector<const User *, 4> WorkList;
2369     SmallPtrSet<const User *, 4> Visited;
2370     for (auto *CmpU : U->users()) {
2371       assert(WorkList.empty() && "Should be!");
2372       if (Visited.insert(CmpU).second)
2373         WorkList.push_back(CmpU);
2374 
2375       while (!WorkList.empty()) {
2376         auto *Curr = WorkList.pop_back_val();
2377 
2378         // If a user is an AND, add all its users to the work list. We only
2379         // propagate "pred != null" condition through AND because it is only
2380         // correct to assume that all conditions of AND are met in true branch.
2381         // TODO: Support similar logic of OR and EQ predicate?
2382         if (Pred == ICmpInst::ICMP_NE)
2383           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2384             if (BO->getOpcode() == Instruction::And) {
2385               for (auto *BOU : BO->users())
2386                 if (Visited.insert(BOU).second)
2387                   WorkList.push_back(BOU);
2388               continue;
2389             }
2390 
2391         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2392           assert(BI->isConditional() && "uses a comparison!");
2393 
2394           BasicBlock *NonNullSuccessor =
2395               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2396           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2397           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2398             return true;
2399         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2400                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2401           return true;
2402         }
2403       }
2404     }
2405   }
2406 
2407   return false;
2408 }
2409 
2410 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2411 /// ensure that the value it's attached to is never Value?  'RangeType' is
2412 /// is the type of the value described by the range.
rangeMetadataExcludesValue(const MDNode * Ranges,const APInt & Value)2413 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2414   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2415   assert(NumRanges >= 1);
2416   for (unsigned i = 0; i < NumRanges; ++i) {
2417     ConstantInt *Lower =
2418         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2419     ConstantInt *Upper =
2420         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2421     ConstantRange Range(Lower->getValue(), Upper->getValue());
2422     if (Range.contains(Value))
2423       return false;
2424   }
2425   return true;
2426 }
2427 
2428 /// Return true if the given value is known to be non-zero when defined. For
2429 /// vectors, return true if every demanded element is known to be non-zero when
2430 /// defined. For pointers, if the context instruction and dominator tree are
2431 /// specified, perform context-sensitive analysis and return true if the
2432 /// pointer couldn't possibly be null at the specified instruction.
2433 /// Supports values with integer or pointer type and vectors of integers.
isKnownNonZero(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2434 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2435                     const Query &Q) {
2436   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2437   // vector
2438   if (isa<ScalableVectorType>(V->getType()))
2439     return false;
2440 
2441   if (auto *C = dyn_cast<Constant>(V)) {
2442     if (C->isNullValue())
2443       return false;
2444     if (isa<ConstantInt>(C))
2445       // Must be non-zero due to null test above.
2446       return true;
2447 
2448     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2449       // See the comment for IntToPtr/PtrToInt instructions below.
2450       if (CE->getOpcode() == Instruction::IntToPtr ||
2451           CE->getOpcode() == Instruction::PtrToInt)
2452         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2453             Q.DL.getTypeSizeInBits(CE->getType()))
2454           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2455     }
2456 
2457     // For constant vectors, check that all elements are undefined or known
2458     // non-zero to determine that the whole vector is known non-zero.
2459     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2460       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2461         if (!DemandedElts[i])
2462           continue;
2463         Constant *Elt = C->getAggregateElement(i);
2464         if (!Elt || Elt->isNullValue())
2465           return false;
2466         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2467           return false;
2468       }
2469       return true;
2470     }
2471 
2472     // A global variable in address space 0 is non null unless extern weak
2473     // or an absolute symbol reference. Other address spaces may have null as a
2474     // valid address for a global, so we can't assume anything.
2475     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2476       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage()) {
2477         unsigned GVAddrSpace = GV->getType()->getAddressSpace();
2478         if (GVAddrSpace == 0 || Q.DL.isFatPointer(GVAddrSpace))
2479           return true;
2480       }
2481     } else
2482       return false;
2483   }
2484 
2485   if (auto *I = dyn_cast<Instruction>(V)) {
2486     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2487       // If the possible ranges don't contain zero, then the value is
2488       // definitely non-zero.
2489       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2490         const APInt ZeroValue(Ty->getBitWidth(), 0);
2491         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2492           return true;
2493       }
2494     }
2495   }
2496 
2497   if (isKnownNonZeroFromAssume(V, Q))
2498     return true;
2499 
2500   // Some of the tests below are recursive, so bail out if we hit the limit.
2501   if (Depth++ >= MaxDepth)
2502     return false;
2503 
2504   // Check for pointer simplifications.
2505   if (V->getType()->isPointerTy()) {
2506     // Alloca never returns null, malloc might.
2507     if (isa<AllocaInst>(V)) {
2508       unsigned AS = Q.DL.getAllocaAddrSpace();
2509       // XXXAR: AMDGPU broke this because their allocaAddressSpace is weird
2510       if (AS == 0 || Q.DL.isFatPointer(AS))
2511         return true;
2512     }
2513 
2514     // A byval, inalloca, or nonnull argument is never null.
2515     if (const Argument *A = dyn_cast<Argument>(V))
2516       if (A->hasPassPointeeByValueAttr() || A->hasNonNullAttr())
2517         return true;
2518 
2519     // A Load tagged with nonnull metadata is never null.
2520     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2521       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2522         return true;
2523 
2524     if (const auto *Call = dyn_cast<CallBase>(V)) {
2525       if (Call->isReturnNonNull())
2526         return true;
2527       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2528         return isKnownNonZero(RP, Depth, Q);
2529     }
2530   }
2531 
2532   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2533     return true;
2534 
2535   // Check for recursive pointer simplifications.
2536   if (V->getType()->isPointerTy()) {
2537     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2538     // do not alter the value, or at least not the nullness property of the
2539     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2540     //
2541     // Note that we have to take special care to avoid looking through
2542     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2543     // as casts that can alter the value, e.g., AddrSpaceCasts.
2544     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2545       if (isGEPKnownNonNull(GEP, Depth, Q))
2546         return true;
2547 
2548     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2549       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2550 
2551     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2552       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2553           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2554         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2555   }
2556 
2557   // Similar to int2ptr above, we can look through ptr2int here if the cast
2558   // is a no-op or an extend and not a truncate.
2559   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2560     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2561         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2562       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2563 
2564   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2565 
2566   // X | Y != 0 if X != 0 or Y != 0.
2567   Value *X = nullptr, *Y = nullptr;
2568   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2569     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2570            isKnownNonZero(Y, DemandedElts, Depth, Q);
2571 
2572   // ext X != 0 if X != 0.
2573   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2574     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2575 
2576   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2577   // if the lowest bit is shifted off the end.
2578   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2579     // shl nuw can't remove any non-zero bits.
2580     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2581     if (Q.IIQ.hasNoUnsignedWrap(BO))
2582       return isKnownNonZero(X, Depth, Q);
2583 
2584     KnownBits Known(BitWidth);
2585     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2586     if (Known.One[0])
2587       return true;
2588   }
2589   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2590   // defined if the sign bit is shifted off the end.
2591   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2592     // shr exact can only shift out zero bits.
2593     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2594     if (BO->isExact())
2595       return isKnownNonZero(X, Depth, Q);
2596 
2597     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2598     if (Known.isNegative())
2599       return true;
2600 
2601     // If the shifter operand is a constant, and all of the bits shifted
2602     // out are known to be zero, and X is known non-zero then at least one
2603     // non-zero bit must remain.
2604     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2605       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2606       // Is there a known one in the portion not shifted out?
2607       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2608         return true;
2609       // Are all the bits to be shifted out known zero?
2610       if (Known.countMinTrailingZeros() >= ShiftVal)
2611         return isKnownNonZero(X, DemandedElts, Depth, Q);
2612     }
2613   }
2614   // div exact can only produce a zero if the dividend is zero.
2615   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2616     return isKnownNonZero(X, DemandedElts, Depth, Q);
2617   }
2618   // X + Y.
2619   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2620     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2621     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2622 
2623     // If X and Y are both non-negative (as signed values) then their sum is not
2624     // zero unless both X and Y are zero.
2625     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2626       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2627           isKnownNonZero(Y, DemandedElts, Depth, Q))
2628         return true;
2629 
2630     // If X and Y are both negative (as signed values) then their sum is not
2631     // zero unless both X and Y equal INT_MIN.
2632     if (XKnown.isNegative() && YKnown.isNegative()) {
2633       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2634       // The sign bit of X is set.  If some other bit is set then X is not equal
2635       // to INT_MIN.
2636       if (XKnown.One.intersects(Mask))
2637         return true;
2638       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2639       // to INT_MIN.
2640       if (YKnown.One.intersects(Mask))
2641         return true;
2642     }
2643 
2644     // The sum of a non-negative number and a power of two is not zero.
2645     if (XKnown.isNonNegative() &&
2646         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2647       return true;
2648     if (YKnown.isNonNegative() &&
2649         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2650       return true;
2651   }
2652   // X * Y.
2653   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2654     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2655     // If X and Y are non-zero then so is X * Y as long as the multiplication
2656     // does not overflow.
2657     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2658         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2659         isKnownNonZero(Y, DemandedElts, Depth, Q))
2660       return true;
2661   }
2662   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2663   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2664     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2665         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2666       return true;
2667   }
2668   // PHI
2669   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2670     // Try and detect a recurrence that monotonically increases from a
2671     // starting value, as these are common as induction variables.
2672     if (PN->getNumIncomingValues() == 2) {
2673       Value *Start = PN->getIncomingValue(0);
2674       Value *Induction = PN->getIncomingValue(1);
2675       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2676         std::swap(Start, Induction);
2677       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2678         if (!C->isZero() && !C->isNegative()) {
2679           ConstantInt *X;
2680           if (Q.IIQ.UseInstrInfo &&
2681               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2682                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2683               !X->isNegative())
2684             return true;
2685         }
2686       }
2687     }
2688     // Check if all incoming values are non-zero constant.
2689     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2690       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2691     });
2692     if (AllNonZeroConstants)
2693       return true;
2694   }
2695   // ExtractElement
2696   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2697     const Value *Vec = EEI->getVectorOperand();
2698     const Value *Idx = EEI->getIndexOperand();
2699     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2700     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
2701     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2702     if (CIdx && CIdx->getValue().ult(NumElts))
2703       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2704     return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2705   }
2706 
2707   KnownBits Known(BitWidth);
2708   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2709   return Known.One != 0;
2710 }
2711 
isKnownNonZero(const Value * V,unsigned Depth,const Query & Q)2712 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2713   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2714   // vector
2715   if (isa<ScalableVectorType>(V->getType()))
2716     return false;
2717 
2718   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2719   APInt DemandedElts =
2720       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2721   return isKnownNonZero(V, DemandedElts, Depth, Q);
2722 }
2723 
2724 /// Return true if V2 == V1 + X, where X is known non-zero.
isAddOfNonZero(const Value * V1,const Value * V2,const Query & Q)2725 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2726   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2727   if (!BO || BO->getOpcode() != Instruction::Add)
2728     return false;
2729   Value *Op = nullptr;
2730   if (V2 == BO->getOperand(0))
2731     Op = BO->getOperand(1);
2732   else if (V2 == BO->getOperand(1))
2733     Op = BO->getOperand(0);
2734   else
2735     return false;
2736   return isKnownNonZero(Op, 0, Q);
2737 }
2738 
2739 /// Return true if it is known that V1 != V2.
isKnownNonEqual(const Value * V1,const Value * V2,const Query & Q)2740 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2741   if (V1 == V2)
2742     return false;
2743   if (V1->getType() != V2->getType())
2744     // We can't look through casts yet.
2745     return false;
2746   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2747     return true;
2748 
2749   if (V1->getType()->isIntOrIntVectorTy()) {
2750     // Are any known bits in V1 contradictory to known bits in V2? If V1
2751     // has a known zero where V2 has a known one, they must not be equal.
2752     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2753     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2754 
2755     if (Known1.Zero.intersects(Known2.One) ||
2756         Known2.Zero.intersects(Known1.One))
2757       return true;
2758   }
2759   return false;
2760 }
2761 
2762 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2763 /// simplify operations downstream. Mask is known to be zero for bits that V
2764 /// cannot have.
2765 ///
2766 /// This function is defined on values with integer type, values with pointer
2767 /// type, and vectors of integers.  In the case
2768 /// where V is a vector, the mask, known zero, and known one values are the
2769 /// same width as the vector element, and the bit is set only if it is true
2770 /// for all of the elements in the vector.
MaskedValueIsZero(const Value * V,const APInt & Mask,unsigned Depth,const Query & Q)2771 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2772                        const Query &Q) {
2773   KnownBits Known(Mask.getBitWidth());
2774   computeKnownBits(V, Known, Depth, Q);
2775   return Mask.isSubsetOf(Known.Zero);
2776 }
2777 
2778 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2779 // Returns the input and lower/upper bounds.
isSignedMinMaxClamp(const Value * Select,const Value * & In,const APInt * & CLow,const APInt * & CHigh)2780 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2781                                 const APInt *&CLow, const APInt *&CHigh) {
2782   assert(isa<Operator>(Select) &&
2783          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2784          "Input should be a Select!");
2785 
2786   const Value *LHS = nullptr, *RHS = nullptr;
2787   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2788   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2789     return false;
2790 
2791   if (!match(RHS, m_APInt(CLow)))
2792     return false;
2793 
2794   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2795   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2796   if (getInverseMinMaxFlavor(SPF) != SPF2)
2797     return false;
2798 
2799   if (!match(RHS2, m_APInt(CHigh)))
2800     return false;
2801 
2802   if (SPF == SPF_SMIN)
2803     std::swap(CLow, CHigh);
2804 
2805   In = LHS2;
2806   return CLow->sle(*CHigh);
2807 }
2808 
2809 /// For vector constants, loop over the elements and find the constant with the
2810 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2811 /// or if any element was not analyzed; otherwise, return the count for the
2812 /// element with the minimum number of sign bits.
computeNumSignBitsVectorConstant(const Value * V,const APInt & DemandedElts,unsigned TyBits)2813 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2814                                                  const APInt &DemandedElts,
2815                                                  unsigned TyBits) {
2816   const auto *CV = dyn_cast<Constant>(V);
2817   if (!CV || !isa<FixedVectorType>(CV->getType()))
2818     return 0;
2819 
2820   unsigned MinSignBits = TyBits;
2821   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2822   for (unsigned i = 0; i != NumElts; ++i) {
2823     if (!DemandedElts[i])
2824       continue;
2825     // If we find a non-ConstantInt, bail out.
2826     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2827     if (!Elt)
2828       return 0;
2829 
2830     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2831   }
2832 
2833   return MinSignBits;
2834 }
2835 
2836 static unsigned ComputeNumSignBitsImpl(const Value *V,
2837                                        const APInt &DemandedElts,
2838                                        unsigned Depth, const Query &Q);
2839 
ComputeNumSignBits(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2840 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2841                                    unsigned Depth, const Query &Q) {
2842   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2843   assert(Result > 0 && "At least one sign bit needs to be present!");
2844   return Result;
2845 }
2846 
2847 /// Return the number of times the sign bit of the register is replicated into
2848 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2849 /// (itself), but other cases can give us information. For example, immediately
2850 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2851 /// other, so we return 3. For vectors, return the number of sign bits for the
2852 /// vector element with the minimum number of known sign bits of the demanded
2853 /// elements in the vector specified by DemandedElts.
ComputeNumSignBitsImpl(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2854 static unsigned ComputeNumSignBitsImpl(const Value *V,
2855                                        const APInt &DemandedElts,
2856                                        unsigned Depth, const Query &Q) {
2857   Type *Ty = V->getType();
2858 
2859   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2860   // vector
2861   if (isa<ScalableVectorType>(Ty))
2862     return 1;
2863 
2864 #ifndef NDEBUG
2865   assert(Depth <= MaxDepth && "Limit Search Depth");
2866 
2867   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2868     assert(
2869         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2870         "DemandedElt width should equal the fixed vector number of elements");
2871   } else {
2872     assert(DemandedElts == APInt(1, 1) &&
2873            "DemandedElt width should be 1 for scalars");
2874   }
2875 #endif
2876 
2877   // We return the minimum number of sign bits that are guaranteed to be present
2878   // in V, so for undef we have to conservatively return 1.  We don't have the
2879   // same behavior for poison though -- that's a FIXME today.
2880 
2881   Type *ScalarTy = Ty->getScalarType();
2882   unsigned TyBits = ScalarTy->isPointerTy() ?
2883     Q.DL.getPointerAddrSizeInBits(ScalarTy) :
2884     Q.DL.getTypeSizeInBits(ScalarTy);
2885 
2886   unsigned Tmp, Tmp2;
2887   unsigned FirstAnswer = 1;
2888 
2889   // Note that ConstantInt is handled by the general computeKnownBits case
2890   // below.
2891 
2892   if (Depth == MaxDepth)
2893     return 1;  // Limit search depth.
2894 
2895   if (auto *U = dyn_cast<Operator>(V)) {
2896     switch (Operator::getOpcode(V)) {
2897     default: break;
2898     case Instruction::SExt:
2899       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2900       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2901 
2902     case Instruction::SDiv: {
2903       const APInt *Denominator;
2904       // sdiv X, C -> adds log(C) sign bits.
2905       if (match(U->getOperand(1), m_APInt(Denominator))) {
2906 
2907         // Ignore non-positive denominator.
2908         if (!Denominator->isStrictlyPositive())
2909           break;
2910 
2911         // Calculate the incoming numerator bits.
2912         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2913 
2914         // Add floor(log(C)) bits to the numerator bits.
2915         return std::min(TyBits, NumBits + Denominator->logBase2());
2916       }
2917       break;
2918     }
2919 
2920     case Instruction::SRem: {
2921       const APInt *Denominator;
2922       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2923       // positive constant.  This let us put a lower bound on the number of sign
2924       // bits.
2925       if (match(U->getOperand(1), m_APInt(Denominator))) {
2926 
2927         // Ignore non-positive denominator.
2928         if (!Denominator->isStrictlyPositive())
2929           break;
2930 
2931         // Calculate the incoming numerator bits. SRem by a positive constant
2932         // can't lower the number of sign bits.
2933         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2934 
2935         // Calculate the leading sign bit constraints by examining the
2936         // denominator.  Given that the denominator is positive, there are two
2937         // cases:
2938         //
2939         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2940         //     (1 << ceilLogBase2(C)).
2941         //
2942         //  2. the numerator is negative. Then the result range is (-C,0] and
2943         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2944         //
2945         // Thus a lower bound on the number of sign bits is `TyBits -
2946         // ceilLogBase2(C)`.
2947 
2948         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2949         return std::max(NumrBits, ResBits);
2950       }
2951       break;
2952     }
2953 
2954     case Instruction::AShr: {
2955       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2956       // ashr X, C   -> adds C sign bits.  Vectors too.
2957       const APInt *ShAmt;
2958       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2959         if (ShAmt->uge(TyBits))
2960           break; // Bad shift.
2961         unsigned ShAmtLimited = ShAmt->getZExtValue();
2962         Tmp += ShAmtLimited;
2963         if (Tmp > TyBits) Tmp = TyBits;
2964       }
2965       return Tmp;
2966     }
2967     case Instruction::Shl: {
2968       const APInt *ShAmt;
2969       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2970         // shl destroys sign bits.
2971         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2972         if (ShAmt->uge(TyBits) ||   // Bad shift.
2973             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2974         Tmp2 = ShAmt->getZExtValue();
2975         return Tmp - Tmp2;
2976       }
2977       break;
2978     }
2979     case Instruction::And:
2980     case Instruction::Or:
2981     case Instruction::Xor: // NOT is handled here.
2982       // Logical binary ops preserve the number of sign bits at the worst.
2983       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2984       if (Tmp != 1) {
2985         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2986         FirstAnswer = std::min(Tmp, Tmp2);
2987         // We computed what we know about the sign bits as our first
2988         // answer. Now proceed to the generic code that uses
2989         // computeKnownBits, and pick whichever answer is better.
2990       }
2991       break;
2992 
2993     case Instruction::Select: {
2994       // If we have a clamp pattern, we know that the number of sign bits will
2995       // be the minimum of the clamp min/max range.
2996       const Value *X;
2997       const APInt *CLow, *CHigh;
2998       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2999         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3000 
3001       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3002       if (Tmp == 1) break;
3003       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3004       return std::min(Tmp, Tmp2);
3005     }
3006 
3007     case Instruction::Add:
3008       // Add can have at most one carry bit.  Thus we know that the output
3009       // is, at worst, one more bit than the inputs.
3010       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3011       if (Tmp == 1) break;
3012 
3013       // Special case decrementing a value (ADD X, -1):
3014       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3015         if (CRHS->isAllOnesValue()) {
3016           KnownBits Known(TyBits);
3017           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3018 
3019           // If the input is known to be 0 or 1, the output is 0/-1, which is
3020           // all sign bits set.
3021           if ((Known.Zero | 1).isAllOnesValue())
3022             return TyBits;
3023 
3024           // If we are subtracting one from a positive number, there is no carry
3025           // out of the result.
3026           if (Known.isNonNegative())
3027             return Tmp;
3028         }
3029 
3030       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3031       if (Tmp2 == 1) break;
3032       return std::min(Tmp, Tmp2) - 1;
3033 
3034     case Instruction::Sub:
3035       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3036       if (Tmp2 == 1) break;
3037 
3038       // Handle NEG.
3039       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3040         if (CLHS->isNullValue()) {
3041           KnownBits Known(TyBits);
3042           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3043           // If the input is known to be 0 or 1, the output is 0/-1, which is
3044           // all sign bits set.
3045           if ((Known.Zero | 1).isAllOnesValue())
3046             return TyBits;
3047 
3048           // If the input is known to be positive (the sign bit is known clear),
3049           // the output of the NEG has the same number of sign bits as the
3050           // input.
3051           if (Known.isNonNegative())
3052             return Tmp2;
3053 
3054           // Otherwise, we treat this like a SUB.
3055         }
3056 
3057       // Sub can have at most one carry bit.  Thus we know that the output
3058       // is, at worst, one more bit than the inputs.
3059       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3060       if (Tmp == 1) break;
3061       return std::min(Tmp, Tmp2) - 1;
3062 
3063     case Instruction::Mul: {
3064       // The output of the Mul can be at most twice the valid bits in the
3065       // inputs.
3066       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3067       if (SignBitsOp0 == 1) break;
3068       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3069       if (SignBitsOp1 == 1) break;
3070       unsigned OutValidBits =
3071           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3072       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3073     }
3074 
3075     case Instruction::PHI: {
3076       const PHINode *PN = cast<PHINode>(U);
3077       unsigned NumIncomingValues = PN->getNumIncomingValues();
3078       // Don't analyze large in-degree PHIs.
3079       if (NumIncomingValues > 4) break;
3080       // Unreachable blocks may have zero-operand PHI nodes.
3081       if (NumIncomingValues == 0) break;
3082 
3083       // Take the minimum of all incoming values.  This can't infinitely loop
3084       // because of our depth threshold.
3085       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
3086       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
3087         if (Tmp == 1) return Tmp;
3088         Tmp = std::min(
3089             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
3090       }
3091       return Tmp;
3092     }
3093 
3094     case Instruction::Trunc:
3095       // FIXME: it's tricky to do anything useful for this, but it is an
3096       // important case for targets like X86.
3097       break;
3098 
3099     case Instruction::ExtractElement:
3100       // Look through extract element. At the moment we keep this simple and
3101       // skip tracking the specific element. But at least we might find
3102       // information valid for all elements of the vector (for example if vector
3103       // is sign extended, shifted, etc).
3104       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3105 
3106     case Instruction::ShuffleVector: {
3107       // Collect the minimum number of sign bits that are shared by every vector
3108       // element referenced by the shuffle.
3109       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3110       if (!Shuf) {
3111         // FIXME: Add support for shufflevector constant expressions.
3112         return 1;
3113       }
3114       APInt DemandedLHS, DemandedRHS;
3115       // For undef elements, we don't know anything about the common state of
3116       // the shuffle result.
3117       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3118         return 1;
3119       Tmp = std::numeric_limits<unsigned>::max();
3120       if (!!DemandedLHS) {
3121         const Value *LHS = Shuf->getOperand(0);
3122         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3123       }
3124       // If we don't know anything, early out and try computeKnownBits
3125       // fall-back.
3126       if (Tmp == 1)
3127         break;
3128       if (!!DemandedRHS) {
3129         const Value *RHS = Shuf->getOperand(1);
3130         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3131         Tmp = std::min(Tmp, Tmp2);
3132       }
3133       // If we don't know anything, early out and try computeKnownBits
3134       // fall-back.
3135       if (Tmp == 1)
3136         break;
3137       assert(Tmp <= Ty->getScalarSizeInBits() &&
3138              "Failed to determine minimum sign bits");
3139       return Tmp;
3140     }
3141     }
3142   }
3143 
3144   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3145   // use this information.
3146 
3147   // If we can examine all elements of a vector constant successfully, we're
3148   // done (we can't do any better than that). If not, keep trying.
3149   if (unsigned VecSignBits =
3150           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3151     return VecSignBits;
3152 
3153   KnownBits Known(TyBits);
3154   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3155 
3156   // If we know that the sign bit is either zero or one, determine the number of
3157   // identical bits in the top of the input value.
3158   return std::max(FirstAnswer, Known.countMinSignBits());
3159 }
3160 
3161 /// This function computes the integer multiple of Base that equals V.
3162 /// If successful, it returns true and returns the multiple in
3163 /// Multiple. If unsuccessful, it returns false. It looks
3164 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)3165 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3166                            bool LookThroughSExt, unsigned Depth) {
3167   assert(V && "No Value?");
3168   assert(Depth <= MaxDepth && "Limit Search Depth");
3169   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3170 
3171   Type *T = V->getType();
3172 
3173   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3174 
3175   if (Base == 0)
3176     return false;
3177 
3178   if (Base == 1) {
3179     Multiple = V;
3180     return true;
3181   }
3182 
3183   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3184   Constant *BaseVal = ConstantInt::get(T, Base);
3185   if (CO && CO == BaseVal) {
3186     // Multiple is 1.
3187     Multiple = ConstantInt::get(T, 1);
3188     return true;
3189   }
3190 
3191   if (CI && CI->getZExtValue() % Base == 0) {
3192     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3193     return true;
3194   }
3195 
3196   if (Depth == MaxDepth) return false;  // Limit search depth.
3197 
3198   Operator *I = dyn_cast<Operator>(V);
3199   if (!I) return false;
3200 
3201   switch (I->getOpcode()) {
3202   default: break;
3203   case Instruction::SExt:
3204     if (!LookThroughSExt) return false;
3205     // otherwise fall through to ZExt
3206     LLVM_FALLTHROUGH;
3207   case Instruction::ZExt:
3208     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3209                            LookThroughSExt, Depth+1);
3210   case Instruction::Shl:
3211   case Instruction::Mul: {
3212     Value *Op0 = I->getOperand(0);
3213     Value *Op1 = I->getOperand(1);
3214 
3215     if (I->getOpcode() == Instruction::Shl) {
3216       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3217       if (!Op1CI) return false;
3218       // Turn Op0 << Op1 into Op0 * 2^Op1
3219       APInt Op1Int = Op1CI->getValue();
3220       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3221       APInt API(Op1Int.getBitWidth(), 0);
3222       API.setBit(BitToSet);
3223       Op1 = ConstantInt::get(V->getContext(), API);
3224     }
3225 
3226     Value *Mul0 = nullptr;
3227     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3228       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3229         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3230           if (Op1C->getType()->getPrimitiveSizeInBits() <
3231               MulC->getType()->getPrimitiveSizeInBits())
3232             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3233           if (Op1C->getType()->getPrimitiveSizeInBits() >
3234               MulC->getType()->getPrimitiveSizeInBits())
3235             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3236 
3237           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3238           Multiple = ConstantExpr::getMul(MulC, Op1C);
3239           return true;
3240         }
3241 
3242       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3243         if (Mul0CI->getValue() == 1) {
3244           // V == Base * Op1, so return Op1
3245           Multiple = Op1;
3246           return true;
3247         }
3248     }
3249 
3250     Value *Mul1 = nullptr;
3251     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3252       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3253         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3254           if (Op0C->getType()->getPrimitiveSizeInBits() <
3255               MulC->getType()->getPrimitiveSizeInBits())
3256             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3257           if (Op0C->getType()->getPrimitiveSizeInBits() >
3258               MulC->getType()->getPrimitiveSizeInBits())
3259             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3260 
3261           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3262           Multiple = ConstantExpr::getMul(MulC, Op0C);
3263           return true;
3264         }
3265 
3266       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3267         if (Mul1CI->getValue() == 1) {
3268           // V == Base * Op0, so return Op0
3269           Multiple = Op0;
3270           return true;
3271         }
3272     }
3273   }
3274   }
3275 
3276   // We could not determine if V is a multiple of Base.
3277   return false;
3278 }
3279 
getIntrinsicForCallSite(const CallBase & CB,const TargetLibraryInfo * TLI)3280 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3281                                             const TargetLibraryInfo *TLI) {
3282   const Function *F = CB.getCalledFunction();
3283   if (!F)
3284     return Intrinsic::not_intrinsic;
3285 
3286   if (F->isIntrinsic())
3287     return F->getIntrinsicID();
3288 
3289   // We are going to infer semantics of a library function based on mapping it
3290   // to an LLVM intrinsic. Check that the library function is available from
3291   // this callbase and in this environment.
3292   LibFunc Func;
3293   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3294       !CB.onlyReadsMemory())
3295     return Intrinsic::not_intrinsic;
3296 
3297   switch (Func) {
3298   default:
3299     break;
3300   case LibFunc_sin:
3301   case LibFunc_sinf:
3302   case LibFunc_sinl:
3303     return Intrinsic::sin;
3304   case LibFunc_cos:
3305   case LibFunc_cosf:
3306   case LibFunc_cosl:
3307     return Intrinsic::cos;
3308   case LibFunc_exp:
3309   case LibFunc_expf:
3310   case LibFunc_expl:
3311     return Intrinsic::exp;
3312   case LibFunc_exp2:
3313   case LibFunc_exp2f:
3314   case LibFunc_exp2l:
3315     return Intrinsic::exp2;
3316   case LibFunc_log:
3317   case LibFunc_logf:
3318   case LibFunc_logl:
3319     return Intrinsic::log;
3320   case LibFunc_log10:
3321   case LibFunc_log10f:
3322   case LibFunc_log10l:
3323     return Intrinsic::log10;
3324   case LibFunc_log2:
3325   case LibFunc_log2f:
3326   case LibFunc_log2l:
3327     return Intrinsic::log2;
3328   case LibFunc_fabs:
3329   case LibFunc_fabsf:
3330   case LibFunc_fabsl:
3331     return Intrinsic::fabs;
3332   case LibFunc_fmin:
3333   case LibFunc_fminf:
3334   case LibFunc_fminl:
3335     return Intrinsic::minnum;
3336   case LibFunc_fmax:
3337   case LibFunc_fmaxf:
3338   case LibFunc_fmaxl:
3339     return Intrinsic::maxnum;
3340   case LibFunc_copysign:
3341   case LibFunc_copysignf:
3342   case LibFunc_copysignl:
3343     return Intrinsic::copysign;
3344   case LibFunc_floor:
3345   case LibFunc_floorf:
3346   case LibFunc_floorl:
3347     return Intrinsic::floor;
3348   case LibFunc_ceil:
3349   case LibFunc_ceilf:
3350   case LibFunc_ceill:
3351     return Intrinsic::ceil;
3352   case LibFunc_trunc:
3353   case LibFunc_truncf:
3354   case LibFunc_truncl:
3355     return Intrinsic::trunc;
3356   case LibFunc_rint:
3357   case LibFunc_rintf:
3358   case LibFunc_rintl:
3359     return Intrinsic::rint;
3360   case LibFunc_nearbyint:
3361   case LibFunc_nearbyintf:
3362   case LibFunc_nearbyintl:
3363     return Intrinsic::nearbyint;
3364   case LibFunc_round:
3365   case LibFunc_roundf:
3366   case LibFunc_roundl:
3367     return Intrinsic::round;
3368   case LibFunc_roundeven:
3369   case LibFunc_roundevenf:
3370   case LibFunc_roundevenl:
3371     return Intrinsic::roundeven;
3372   case LibFunc_pow:
3373   case LibFunc_powf:
3374   case LibFunc_powl:
3375     return Intrinsic::pow;
3376   case LibFunc_sqrt:
3377   case LibFunc_sqrtf:
3378   case LibFunc_sqrtl:
3379     return Intrinsic::sqrt;
3380   }
3381 
3382   return Intrinsic::not_intrinsic;
3383 }
3384 
3385 /// Return true if we can prove that the specified FP value is never equal to
3386 /// -0.0.
3387 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3388 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3389 ///       the same as +0.0 in floating-point ops.
3390 ///
3391 /// NOTE: this function will need to be revisited when we support non-default
3392 /// rounding modes!
CannotBeNegativeZero(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3393 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3394                                 unsigned Depth) {
3395   if (auto *CFP = dyn_cast<ConstantFP>(V))
3396     return !CFP->getValueAPF().isNegZero();
3397 
3398   // Limit search depth.
3399   if (Depth == MaxDepth)
3400     return false;
3401 
3402   auto *Op = dyn_cast<Operator>(V);
3403   if (!Op)
3404     return false;
3405 
3406   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3407   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3408     return true;
3409 
3410   // sitofp and uitofp turn into +0.0 for zero.
3411   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3412     return true;
3413 
3414   if (auto *Call = dyn_cast<CallInst>(Op)) {
3415     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3416     switch (IID) {
3417     default:
3418       break;
3419     // sqrt(-0.0) = -0.0, no other negative results are possible.
3420     case Intrinsic::sqrt:
3421     case Intrinsic::canonicalize:
3422       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3423     // fabs(x) != -0.0
3424     case Intrinsic::fabs:
3425       return true;
3426     }
3427   }
3428 
3429   return false;
3430 }
3431 
3432 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3433 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3434 /// bit despite comparing equal.
cannotBeOrderedLessThanZeroImpl(const Value * V,const TargetLibraryInfo * TLI,bool SignBitOnly,unsigned Depth)3435 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3436                                             const TargetLibraryInfo *TLI,
3437                                             bool SignBitOnly,
3438                                             unsigned Depth) {
3439   // TODO: This function does not do the right thing when SignBitOnly is true
3440   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3441   // which flips the sign bits of NaNs.  See
3442   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3443 
3444   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3445     return !CFP->getValueAPF().isNegative() ||
3446            (!SignBitOnly && CFP->getValueAPF().isZero());
3447   }
3448 
3449   // Handle vector of constants.
3450   if (auto *CV = dyn_cast<Constant>(V)) {
3451     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3452       unsigned NumElts = CVFVTy->getNumElements();
3453       for (unsigned i = 0; i != NumElts; ++i) {
3454         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3455         if (!CFP)
3456           return false;
3457         if (CFP->getValueAPF().isNegative() &&
3458             (SignBitOnly || !CFP->getValueAPF().isZero()))
3459           return false;
3460       }
3461 
3462       // All non-negative ConstantFPs.
3463       return true;
3464     }
3465   }
3466 
3467   if (Depth == MaxDepth)
3468     return false; // Limit search depth.
3469 
3470   const Operator *I = dyn_cast<Operator>(V);
3471   if (!I)
3472     return false;
3473 
3474   switch (I->getOpcode()) {
3475   default:
3476     break;
3477   // Unsigned integers are always nonnegative.
3478   case Instruction::UIToFP:
3479     return true;
3480   case Instruction::FMul:
3481   case Instruction::FDiv:
3482     // X * X is always non-negative or a NaN.
3483     // X / X is always exactly 1.0 or a NaN.
3484     if (I->getOperand(0) == I->getOperand(1) &&
3485         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3486       return true;
3487 
3488     LLVM_FALLTHROUGH;
3489   case Instruction::FAdd:
3490   case Instruction::FRem:
3491     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3492                                            Depth + 1) &&
3493            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3494                                            Depth + 1);
3495   case Instruction::Select:
3496     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3497                                            Depth + 1) &&
3498            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3499                                            Depth + 1);
3500   case Instruction::FPExt:
3501   case Instruction::FPTrunc:
3502     // Widening/narrowing never change sign.
3503     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3504                                            Depth + 1);
3505   case Instruction::ExtractElement:
3506     // Look through extract element. At the moment we keep this simple and skip
3507     // tracking the specific element. But at least we might find information
3508     // valid for all elements of the vector.
3509     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3510                                            Depth + 1);
3511   case Instruction::Call:
3512     const auto *CI = cast<CallInst>(I);
3513     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3514     switch (IID) {
3515     default:
3516       break;
3517     case Intrinsic::maxnum: {
3518       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3519       auto isPositiveNum = [&](Value *V) {
3520         if (SignBitOnly) {
3521           // With SignBitOnly, this is tricky because the result of
3522           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3523           // a constant strictly greater than 0.0.
3524           const APFloat *C;
3525           return match(V, m_APFloat(C)) &&
3526                  *C > APFloat::getZero(C->getSemantics());
3527         }
3528 
3529         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3530         // maxnum can't be ordered-less-than-zero.
3531         return isKnownNeverNaN(V, TLI) &&
3532                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3533       };
3534 
3535       // TODO: This could be improved. We could also check that neither operand
3536       //       has its sign bit set (and at least 1 is not-NAN?).
3537       return isPositiveNum(V0) || isPositiveNum(V1);
3538     }
3539 
3540     case Intrinsic::maximum:
3541       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3542                                              Depth + 1) ||
3543              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3544                                              Depth + 1);
3545     case Intrinsic::minnum:
3546     case Intrinsic::minimum:
3547       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3548                                              Depth + 1) &&
3549              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3550                                              Depth + 1);
3551     case Intrinsic::exp:
3552     case Intrinsic::exp2:
3553     case Intrinsic::fabs:
3554       return true;
3555 
3556     case Intrinsic::sqrt:
3557       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3558       if (!SignBitOnly)
3559         return true;
3560       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3561                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3562 
3563     case Intrinsic::powi:
3564       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3565         // powi(x,n) is non-negative if n is even.
3566         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3567           return true;
3568       }
3569       // TODO: This is not correct.  Given that exp is an integer, here are the
3570       // ways that pow can return a negative value:
3571       //
3572       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3573       //   pow(-0, exp)   --> -inf if exp is negative odd.
3574       //   pow(-0, exp)   --> -0 if exp is positive odd.
3575       //   pow(-inf, exp) --> -0 if exp is negative odd.
3576       //   pow(-inf, exp) --> -inf if exp is positive odd.
3577       //
3578       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3579       // but we must return false if x == -0.  Unfortunately we do not currently
3580       // have a way of expressing this constraint.  See details in
3581       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3582       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3583                                              Depth + 1);
3584 
3585     case Intrinsic::fma:
3586     case Intrinsic::fmuladd:
3587       // x*x+y is non-negative if y is non-negative.
3588       return I->getOperand(0) == I->getOperand(1) &&
3589              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3590              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3591                                              Depth + 1);
3592     }
3593     break;
3594   }
3595   return false;
3596 }
3597 
CannotBeOrderedLessThanZero(const Value * V,const TargetLibraryInfo * TLI)3598 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3599                                        const TargetLibraryInfo *TLI) {
3600   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3601 }
3602 
SignBitMustBeZero(const Value * V,const TargetLibraryInfo * TLI)3603 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3604   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3605 }
3606 
isKnownNeverInfinity(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3607 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3608                                 unsigned Depth) {
3609   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3610 
3611   // If we're told that infinities won't happen, assume they won't.
3612   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3613     if (FPMathOp->hasNoInfs())
3614       return true;
3615 
3616   // Handle scalar constants.
3617   if (auto *CFP = dyn_cast<ConstantFP>(V))
3618     return !CFP->isInfinity();
3619 
3620   if (Depth == MaxDepth)
3621     return false;
3622 
3623   if (auto *Inst = dyn_cast<Instruction>(V)) {
3624     switch (Inst->getOpcode()) {
3625     case Instruction::Select: {
3626       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3627              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3628     }
3629     case Instruction::UIToFP:
3630       // If the input type fits into the floating type the result is finite.
3631       return ilogb(APFloat::getLargest(
3632                  Inst->getType()->getScalarType()->getFltSemantics())) >=
3633              (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
3634     default:
3635       break;
3636     }
3637   }
3638 
3639   // try to handle fixed width vector constants
3640   if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) {
3641     // For vectors, verify that each element is not infinity.
3642     unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
3643     for (unsigned i = 0; i != NumElts; ++i) {
3644       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3645       if (!Elt)
3646         return false;
3647       if (isa<UndefValue>(Elt))
3648         continue;
3649       auto *CElt = dyn_cast<ConstantFP>(Elt);
3650       if (!CElt || CElt->isInfinity())
3651         return false;
3652     }
3653     // All elements were confirmed non-infinity or undefined.
3654     return true;
3655   }
3656 
3657   // was not able to prove that V never contains infinity
3658   return false;
3659 }
3660 
isKnownNeverNaN(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3661 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3662                            unsigned Depth) {
3663   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3664 
3665   // If we're told that NaNs won't happen, assume they won't.
3666   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3667     if (FPMathOp->hasNoNaNs())
3668       return true;
3669 
3670   // Handle scalar constants.
3671   if (auto *CFP = dyn_cast<ConstantFP>(V))
3672     return !CFP->isNaN();
3673 
3674   if (Depth == MaxDepth)
3675     return false;
3676 
3677   if (auto *Inst = dyn_cast<Instruction>(V)) {
3678     switch (Inst->getOpcode()) {
3679     case Instruction::FAdd:
3680     case Instruction::FSub:
3681       // Adding positive and negative infinity produces NaN.
3682       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3683              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3684              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3685               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3686 
3687     case Instruction::FMul:
3688       // Zero multiplied with infinity produces NaN.
3689       // FIXME: If neither side can be zero fmul never produces NaN.
3690       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3691              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3692              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3693              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3694 
3695     case Instruction::FDiv:
3696     case Instruction::FRem:
3697       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3698       return false;
3699 
3700     case Instruction::Select: {
3701       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3702              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3703     }
3704     case Instruction::SIToFP:
3705     case Instruction::UIToFP:
3706       return true;
3707     case Instruction::FPTrunc:
3708     case Instruction::FPExt:
3709       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3710     default:
3711       break;
3712     }
3713   }
3714 
3715   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3716     switch (II->getIntrinsicID()) {
3717     case Intrinsic::canonicalize:
3718     case Intrinsic::fabs:
3719     case Intrinsic::copysign:
3720     case Intrinsic::exp:
3721     case Intrinsic::exp2:
3722     case Intrinsic::floor:
3723     case Intrinsic::ceil:
3724     case Intrinsic::trunc:
3725     case Intrinsic::rint:
3726     case Intrinsic::nearbyint:
3727     case Intrinsic::round:
3728     case Intrinsic::roundeven:
3729       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3730     case Intrinsic::sqrt:
3731       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3732              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3733     case Intrinsic::minnum:
3734     case Intrinsic::maxnum:
3735       // If either operand is not NaN, the result is not NaN.
3736       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3737              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3738     default:
3739       return false;
3740     }
3741   }
3742 
3743   // Try to handle fixed width vector constants
3744   if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) {
3745     // For vectors, verify that each element is not NaN.
3746     unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
3747     for (unsigned i = 0; i != NumElts; ++i) {
3748       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3749       if (!Elt)
3750         return false;
3751       if (isa<UndefValue>(Elt))
3752         continue;
3753       auto *CElt = dyn_cast<ConstantFP>(Elt);
3754       if (!CElt || CElt->isNaN())
3755         return false;
3756     }
3757     // All elements were confirmed not-NaN or undefined.
3758     return true;
3759   }
3760 
3761   // Was not able to prove that V never contains NaN
3762   return false;
3763 }
3764 
isBytewiseValue(Value * V,const DataLayout & DL)3765 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3766 
3767   // All byte-wide stores are splatable, even of arbitrary variables.
3768   if (V->getType()->isIntegerTy(8))
3769     return V;
3770 
3771   LLVMContext &Ctx = V->getContext();
3772 
3773   // Undef don't care.
3774   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3775   if (isa<UndefValue>(V))
3776     return UndefInt8;
3777 
3778   // Return Undef for zero-sized type.
3779   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3780     return UndefInt8;
3781 
3782   Constant *C = dyn_cast<Constant>(V);
3783   if (!C) {
3784     // Conceptually, we could handle things like:
3785     //   %a = zext i8 %X to i16
3786     //   %b = shl i16 %a, 8
3787     //   %c = or i16 %a, %b
3788     // but until there is an example that actually needs this, it doesn't seem
3789     // worth worrying about.
3790     return nullptr;
3791   }
3792 
3793   // Handle 'null' ConstantArrayZero etc.
3794   if (C->isNullValue())
3795     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3796 
3797   // Constant floating-point values can be handled as integer values if the
3798   // corresponding integer value is "byteable".  An important case is 0.0.
3799   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3800     Type *Ty = nullptr;
3801     if (CFP->getType()->isHalfTy())
3802       Ty = Type::getInt16Ty(Ctx);
3803     else if (CFP->getType()->isFloatTy())
3804       Ty = Type::getInt32Ty(Ctx);
3805     else if (CFP->getType()->isDoubleTy())
3806       Ty = Type::getInt64Ty(Ctx);
3807     // Don't handle long double formats, which have strange constraints.
3808     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3809               : nullptr;
3810   }
3811 
3812   // We can handle constant integers that are multiple of 8 bits.
3813   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3814     if (CI->getBitWidth() % 8 == 0) {
3815       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3816       if (!CI->getValue().isSplat(8))
3817         return nullptr;
3818       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3819     }
3820   }
3821 
3822   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3823     if (CE->getOpcode() == Instruction::IntToPtr) {
3824       auto PS = DL.getPointerSizeInBits(
3825           cast<PointerType>(CE->getType())->getAddressSpace());
3826       return isBytewiseValue(
3827           ConstantExpr::getIntegerCast(CE->getOperand(0),
3828                                        Type::getIntNTy(Ctx, PS), false),
3829           DL);
3830     }
3831   }
3832 
3833   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3834     if (LHS == RHS)
3835       return LHS;
3836     if (!LHS || !RHS)
3837       return nullptr;
3838     if (LHS == UndefInt8)
3839       return RHS;
3840     if (RHS == UndefInt8)
3841       return LHS;
3842     return nullptr;
3843   };
3844 
3845   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3846     Value *Val = UndefInt8;
3847     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3848       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3849         return nullptr;
3850     return Val;
3851   }
3852 
3853   if (isa<ConstantAggregate>(C)) {
3854     Value *Val = UndefInt8;
3855     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3856       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3857         return nullptr;
3858     return Val;
3859   }
3860 
3861   // Don't try to handle the handful of other constants.
3862   return nullptr;
3863 }
3864 
3865 // This is the recursive version of BuildSubAggregate. It takes a few different
3866 // arguments. Idxs is the index within the nested struct From that we are
3867 // looking at now (which is of type IndexedType). IdxSkip is the number of
3868 // indices from Idxs that should be left out when inserting into the resulting
3869 // struct. To is the result struct built so far, new insertvalue instructions
3870 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVectorImpl<unsigned> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)3871 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3872                                 SmallVectorImpl<unsigned> &Idxs,
3873                                 unsigned IdxSkip,
3874                                 Instruction *InsertBefore) {
3875   StructType *STy = dyn_cast<StructType>(IndexedType);
3876   if (STy) {
3877     // Save the original To argument so we can modify it
3878     Value *OrigTo = To;
3879     // General case, the type indexed by Idxs is a struct
3880     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3881       // Process each struct element recursively
3882       Idxs.push_back(i);
3883       Value *PrevTo = To;
3884       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3885                              InsertBefore);
3886       Idxs.pop_back();
3887       if (!To) {
3888         // Couldn't find any inserted value for this index? Cleanup
3889         while (PrevTo != OrigTo) {
3890           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3891           PrevTo = Del->getAggregateOperand();
3892           Del->eraseFromParent();
3893         }
3894         // Stop processing elements
3895         break;
3896       }
3897     }
3898     // If we successfully found a value for each of our subaggregates
3899     if (To)
3900       return To;
3901   }
3902   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3903   // the struct's elements had a value that was inserted directly. In the latter
3904   // case, perhaps we can't determine each of the subelements individually, but
3905   // we might be able to find the complete struct somewhere.
3906 
3907   // Find the value that is at that particular spot
3908   Value *V = FindInsertedValue(From, Idxs);
3909 
3910   if (!V)
3911     return nullptr;
3912 
3913   // Insert the value in the new (sub) aggregate
3914   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3915                                  "tmp", InsertBefore);
3916 }
3917 
3918 // This helper takes a nested struct and extracts a part of it (which is again a
3919 // struct) into a new value. For example, given the struct:
3920 // { a, { b, { c, d }, e } }
3921 // and the indices "1, 1" this returns
3922 // { c, d }.
3923 //
3924 // It does this by inserting an insertvalue for each element in the resulting
3925 // struct, as opposed to just inserting a single struct. This will only work if
3926 // each of the elements of the substruct are known (ie, inserted into From by an
3927 // insertvalue instruction somewhere).
3928 //
3929 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)3930 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3931                                 Instruction *InsertBefore) {
3932   assert(InsertBefore && "Must have someplace to insert!");
3933   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3934                                                              idx_range);
3935   Value *To = UndefValue::get(IndexedType);
3936   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3937   unsigned IdxSkip = Idxs.size();
3938 
3939   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3940 }
3941 
3942 /// Given an aggregate and a sequence of indices, see if the scalar value
3943 /// indexed is already around as a register, for example if it was inserted
3944 /// directly into the aggregate.
3945 ///
3946 /// If InsertBefore is not null, this function will duplicate (modified)
3947 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)3948 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3949                                Instruction *InsertBefore) {
3950   // Nothing to index? Just return V then (this is useful at the end of our
3951   // recursion).
3952   if (idx_range.empty())
3953     return V;
3954   // We have indices, so V should have an indexable type.
3955   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3956          "Not looking at a struct or array?");
3957   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3958          "Invalid indices for type?");
3959 
3960   if (Constant *C = dyn_cast<Constant>(V)) {
3961     C = C->getAggregateElement(idx_range[0]);
3962     if (!C) return nullptr;
3963     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3964   }
3965 
3966   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3967     // Loop the indices for the insertvalue instruction in parallel with the
3968     // requested indices
3969     const unsigned *req_idx = idx_range.begin();
3970     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3971          i != e; ++i, ++req_idx) {
3972       if (req_idx == idx_range.end()) {
3973         // We can't handle this without inserting insertvalues
3974         if (!InsertBefore)
3975           return nullptr;
3976 
3977         // The requested index identifies a part of a nested aggregate. Handle
3978         // this specially. For example,
3979         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3980         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3981         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3982         // This can be changed into
3983         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3984         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3985         // which allows the unused 0,0 element from the nested struct to be
3986         // removed.
3987         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3988                                  InsertBefore);
3989       }
3990 
3991       // This insert value inserts something else than what we are looking for.
3992       // See if the (aggregate) value inserted into has the value we are
3993       // looking for, then.
3994       if (*req_idx != *i)
3995         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3996                                  InsertBefore);
3997     }
3998     // If we end up here, the indices of the insertvalue match with those
3999     // requested (though possibly only partially). Now we recursively look at
4000     // the inserted value, passing any remaining indices.
4001     return FindInsertedValue(I->getInsertedValueOperand(),
4002                              makeArrayRef(req_idx, idx_range.end()),
4003                              InsertBefore);
4004   }
4005 
4006   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4007     // If we're extracting a value from an aggregate that was extracted from
4008     // something else, we can extract from that something else directly instead.
4009     // However, we will need to chain I's indices with the requested indices.
4010 
4011     // Calculate the number of indices required
4012     unsigned size = I->getNumIndices() + idx_range.size();
4013     // Allocate some space to put the new indices in
4014     SmallVector<unsigned, 5> Idxs;
4015     Idxs.reserve(size);
4016     // Add indices from the extract value instruction
4017     Idxs.append(I->idx_begin(), I->idx_end());
4018 
4019     // Add requested indices
4020     Idxs.append(idx_range.begin(), idx_range.end());
4021 
4022     assert(Idxs.size() == size
4023            && "Number of indices added not correct?");
4024 
4025     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4026   }
4027   // Otherwise, we don't know (such as, extracting from a function return value
4028   // or load instruction)
4029   return nullptr;
4030 }
4031 
isGEPBasedOnPointerToString(const GEPOperator * GEP,unsigned CharSize)4032 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4033                                        unsigned CharSize) {
4034   // Make sure the GEP has exactly three arguments.
4035   if (GEP->getNumOperands() != 3)
4036     return false;
4037 
4038   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4039   // CharSize.
4040   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4041   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4042     return false;
4043 
4044   // Check to make sure that the first operand of the GEP is an integer and
4045   // has value 0 so that we are sure we're indexing into the initializer.
4046   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4047   if (!FirstIdx || !FirstIdx->isZero())
4048     return false;
4049 
4050   return true;
4051 }
4052 
getConstantDataArrayInfo(const Value * V,ConstantDataArraySlice & Slice,unsigned ElementSize,uint64_t Offset)4053 bool llvm::getConstantDataArrayInfo(const Value *V,
4054                                     ConstantDataArraySlice &Slice,
4055                                     unsigned ElementSize, uint64_t Offset) {
4056   assert(V);
4057 
4058   // Look through bitcast instructions and geps.
4059   V = V->stripPointerCasts();
4060 
4061   // If the value is a GEP instruction or constant expression, treat it as an
4062   // offset.
4063   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4064     // The GEP operator should be based on a pointer to string constant, and is
4065     // indexing into the string constant.
4066     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4067       return false;
4068 
4069     // If the second index isn't a ConstantInt, then this is a variable index
4070     // into the array.  If this occurs, we can't say anything meaningful about
4071     // the string.
4072     uint64_t StartIdx = 0;
4073     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4074       StartIdx = CI->getZExtValue();
4075     else
4076       return false;
4077     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4078                                     StartIdx + Offset);
4079   }
4080 
4081   // The GEP instruction, constant or instruction, must reference a global
4082   // variable that is a constant and is initialized. The referenced constant
4083   // initializer is the array that we'll use for optimization.
4084   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4085   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4086     return false;
4087 
4088   const ConstantDataArray *Array;
4089   ArrayType *ArrayTy;
4090   if (GV->getInitializer()->isNullValue()) {
4091     Type *GVTy = GV->getValueType();
4092     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4093       // A zeroinitializer for the array; there is no ConstantDataArray.
4094       Array = nullptr;
4095     } else {
4096       const DataLayout &DL = GV->getParent()->getDataLayout();
4097       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4098       uint64_t Length = SizeInBytes / (ElementSize / 8);
4099       if (Length <= Offset)
4100         return false;
4101 
4102       Slice.Array = nullptr;
4103       Slice.Offset = 0;
4104       Slice.Length = Length - Offset;
4105       return true;
4106     }
4107   } else {
4108     // This must be a ConstantDataArray.
4109     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4110     if (!Array)
4111       return false;
4112     ArrayTy = Array->getType();
4113   }
4114   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4115     return false;
4116 
4117   uint64_t NumElts = ArrayTy->getArrayNumElements();
4118   if (Offset > NumElts)
4119     return false;
4120 
4121   Slice.Array = Array;
4122   Slice.Offset = Offset;
4123   Slice.Length = NumElts - Offset;
4124   return true;
4125 }
4126 
4127 /// This function computes the length of a null-terminated C string pointed to
4128 /// by V. If successful, it returns true and returns the string in Str.
4129 /// If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)4130 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4131                                  uint64_t Offset, bool TrimAtNul) {
4132   ConstantDataArraySlice Slice;
4133   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4134     return false;
4135 
4136   if (Slice.Array == nullptr) {
4137     if (TrimAtNul) {
4138       Str = StringRef();
4139       return true;
4140     }
4141     if (Slice.Length == 1) {
4142       Str = StringRef("", 1);
4143       return true;
4144     }
4145     // We cannot instantiate a StringRef as we do not have an appropriate string
4146     // of 0s at hand.
4147     return false;
4148   }
4149 
4150   // Start out with the entire array in the StringRef.
4151   Str = Slice.Array->getAsString();
4152   // Skip over 'offset' bytes.
4153   Str = Str.substr(Slice.Offset);
4154 
4155   if (TrimAtNul) {
4156     // Trim off the \0 and anything after it.  If the array is not nul
4157     // terminated, we just return the whole end of string.  The client may know
4158     // some other way that the string is length-bound.
4159     Str = Str.substr(0, Str.find('\0'));
4160   }
4161   return true;
4162 }
4163 
4164 // These next two are very similar to the above, but also look through PHI
4165 // nodes.
4166 // TODO: See if we can integrate these two together.
4167 
4168 /// If we can compute the length of the string pointed to by
4169 /// the specified pointer, return 'len+1'.  If we can't, return 0.
GetStringLengthH(const Value * V,SmallPtrSetImpl<const PHINode * > & PHIs,unsigned CharSize)4170 static uint64_t GetStringLengthH(const Value *V,
4171                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4172                                  unsigned CharSize) {
4173   // Look through noop bitcast instructions.
4174   V = V->stripPointerCasts();
4175 
4176   // If this is a PHI node, there are two cases: either we have already seen it
4177   // or we haven't.
4178   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4179     if (!PHIs.insert(PN).second)
4180       return ~0ULL;  // already in the set.
4181 
4182     // If it was new, see if all the input strings are the same length.
4183     uint64_t LenSoFar = ~0ULL;
4184     for (Value *IncValue : PN->incoming_values()) {
4185       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4186       if (Len == 0) return 0; // Unknown length -> unknown.
4187 
4188       if (Len == ~0ULL) continue;
4189 
4190       if (Len != LenSoFar && LenSoFar != ~0ULL)
4191         return 0;    // Disagree -> unknown.
4192       LenSoFar = Len;
4193     }
4194 
4195     // Success, all agree.
4196     return LenSoFar;
4197   }
4198 
4199   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4200   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4201     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4202     if (Len1 == 0) return 0;
4203     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4204     if (Len2 == 0) return 0;
4205     if (Len1 == ~0ULL) return Len2;
4206     if (Len2 == ~0ULL) return Len1;
4207     if (Len1 != Len2) return 0;
4208     return Len1;
4209   }
4210 
4211   // Otherwise, see if we can read the string.
4212   ConstantDataArraySlice Slice;
4213   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4214     return 0;
4215 
4216   if (Slice.Array == nullptr)
4217     return 1;
4218 
4219   // Search for nul characters
4220   unsigned NullIndex = 0;
4221   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4222     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4223       break;
4224   }
4225 
4226   return NullIndex + 1;
4227 }
4228 
4229 /// If we can compute the length of the string pointed to by
4230 /// the specified pointer, return 'len+1'.  If we can't, return 0.
GetStringLength(const Value * V,unsigned CharSize)4231 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4232   if (!V->getType()->isPointerTy())
4233     return 0;
4234 
4235   SmallPtrSet<const PHINode*, 32> PHIs;
4236   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4237   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4238   // an empty string as a length.
4239   return Len == ~0ULL ? 1 : Len;
4240 }
4241 
4242 const Value *
getArgumentAliasingToReturnedPointer(const CallBase * Call,bool MustPreserveNullness)4243 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4244                                            bool MustPreserveNullness) {
4245   assert(Call &&
4246          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4247   if (const Value *RV = Call->getReturnedArgOperand())
4248     return RV;
4249   // This can be used only as a aliasing property.
4250   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4251           Call, MustPreserveNullness))
4252     return Call->getArgOperand(0);
4253   return nullptr;
4254 }
4255 
isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase * Call,bool MustPreserveNullness)4256 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4257     const CallBase *Call, bool MustPreserveNullness) {
4258   switch (Call->getIntrinsicID()) {
4259   // NOTE: we can't return true for setbounds even though the resulting pointer
4260   // aliases with the target. It might not grant access to the last few bytes!
4261   // If we return true here for setbounds, then GVN will remove some
4262   // loads that would have trapped at runtime. See cheri-intrinisics.ll test.
4263   // case Intrinsic::cheri_cap_bounds_set:
4264   // case Intrinsic::cheri_cap_bounds_set_exact:
4265   // case Intrinsic::cheri_bounded_stack_cap:
4266   case Intrinsic::launder_invariant_group:
4267   case Intrinsic::strip_invariant_group:
4268   case Intrinsic::aarch64_irg:
4269   case Intrinsic::aarch64_tagp:
4270     return true;
4271   case Intrinsic::ptrmask:
4272     return !MustPreserveNullness;
4273   default:
4274     return false;
4275   }
4276 }
4277 
4278 /// \p PN defines a loop-variant pointer to an object.  Check if the
4279 /// previous iteration of the loop was referring to the same object as \p PN.
isSameUnderlyingObjectInLoop(const PHINode * PN,const LoopInfo * LI)4280 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4281                                          const LoopInfo *LI) {
4282   // Find the loop-defined value.
4283   Loop *L = LI->getLoopFor(PN->getParent());
4284   if (PN->getNumIncomingValues() != 2)
4285     return true;
4286 
4287   // Find the value from previous iteration.
4288   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4289   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4290     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4291   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4292     return true;
4293 
4294   // If a new pointer is loaded in the loop, the pointer references a different
4295   // object in every iteration.  E.g.:
4296   //    for (i)
4297   //       int *p = a[i];
4298   //       ...
4299   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4300     if (!L->isLoopInvariant(Load->getPointerOperand()))
4301       return false;
4302   return true;
4303 }
4304 
GetUnderlyingObject(Value * V,const DataLayout & DL,unsigned MaxLookup)4305 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
4306                                  unsigned MaxLookup) {
4307   if (!V->getType()->isPointerTy())
4308     return V;
4309   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4310     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4311       V = GEP->getPointerOperand();
4312     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4313                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4314       V = cast<Operator>(V)->getOperand(0);
4315       if (!V->getType()->isPointerTy())
4316         return V;
4317     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4318       if (GA->isInterposable())
4319         return V;
4320       V = GA->getAliasee();
4321     } else {
4322       if (auto *PHI = dyn_cast<PHINode>(V)) {
4323         // Look through single-arg phi nodes created by LCSSA.
4324         if (PHI->getNumIncomingValues() == 1) {
4325           V = PHI->getIncomingValue(0);
4326           continue;
4327         }
4328       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4329         // CaptureTracking can know about special capturing properties of some
4330         // intrinsics like launder.invariant.group, that can't be expressed with
4331         // the attributes, but have properties like returning aliasing pointer.
4332         // Because some analysis may assume that nocaptured pointer is not
4333         // returned from some special intrinsic (because function would have to
4334         // be marked with returns attribute), it is crucial to use this function
4335         // because it should be in sync with CaptureTracking. Not using it may
4336         // cause weird miscompilations where 2 aliasing pointers are assumed to
4337         // noalias.
4338         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4339           V = RP;
4340           continue;
4341         }
4342       }
4343 
4344       return V;
4345     }
4346     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4347   }
4348   return V;
4349 }
4350 
GetUnderlyingObjects(const Value * V,SmallVectorImpl<const Value * > & Objects,const DataLayout & DL,LoopInfo * LI,unsigned MaxLookup)4351 void llvm::GetUnderlyingObjects(const Value *V,
4352                                 SmallVectorImpl<const Value *> &Objects,
4353                                 const DataLayout &DL, LoopInfo *LI,
4354                                 unsigned MaxLookup) {
4355   SmallPtrSet<const Value *, 4> Visited;
4356   SmallVector<const Value *, 4> Worklist;
4357   Worklist.push_back(V);
4358   do {
4359     const Value *P = Worklist.pop_back_val();
4360     P = GetUnderlyingObject(P, DL, MaxLookup);
4361 
4362     if (!Visited.insert(P).second)
4363       continue;
4364 
4365     if (auto *SI = dyn_cast<SelectInst>(P)) {
4366       Worklist.push_back(SI->getTrueValue());
4367       Worklist.push_back(SI->getFalseValue());
4368       continue;
4369     }
4370 
4371     if (auto *PN = dyn_cast<PHINode>(P)) {
4372       // If this PHI changes the underlying object in every iteration of the
4373       // loop, don't look through it.  Consider:
4374       //   int **A;
4375       //   for (i) {
4376       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4377       //     Curr = A[i];
4378       //     *Prev, *Curr;
4379       //
4380       // Prev is tracking Curr one iteration behind so they refer to different
4381       // underlying objects.
4382       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4383           isSameUnderlyingObjectInLoop(PN, LI))
4384         for (Value *IncValue : PN->incoming_values())
4385           Worklist.push_back(IncValue);
4386       continue;
4387     }
4388 
4389     Objects.push_back(P);
4390   } while (!Worklist.empty());
4391 }
4392 
4393 /// This is the function that does the work of looking through basic
4394 /// ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)4395 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4396   do {
4397     if (const Operator *U = dyn_cast<Operator>(V)) {
4398       // If we find a ptrtoint, we can transfer control back to the
4399       // regular getUnderlyingObjectFromInt.
4400       if (U->getOpcode() == Instruction::PtrToInt)
4401         return U->getOperand(0);
4402       // If we find an add of a constant, a multiplied value, or a phi, it's
4403       // likely that the other operand will lead us to the base
4404       // object. We don't have to worry about the case where the
4405       // object address is somehow being computed by the multiply,
4406       // because our callers only care when the result is an
4407       // identifiable object.
4408       if (U->getOpcode() != Instruction::Add ||
4409           (!isa<ConstantInt>(U->getOperand(1)) &&
4410            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4411            !isa<PHINode>(U->getOperand(1))))
4412         return V;
4413       V = U->getOperand(0);
4414     } else {
4415       return V;
4416     }
4417     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4418   } while (true);
4419 }
4420 
4421 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
4422 /// ptrtoint+arithmetic+inttoptr sequences.
4423 /// It returns false if unidentified object is found in GetUnderlyingObjects.
getUnderlyingObjectsForCodeGen(const Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout & DL)4424 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4425                           SmallVectorImpl<Value *> &Objects,
4426                           const DataLayout &DL) {
4427   SmallPtrSet<const Value *, 16> Visited;
4428   SmallVector<const Value *, 4> Working(1, V);
4429   do {
4430     V = Working.pop_back_val();
4431 
4432     SmallVector<const Value *, 4> Objs;
4433     GetUnderlyingObjects(V, Objs, DL);
4434 
4435     for (const Value *V : Objs) {
4436       if (!Visited.insert(V).second)
4437         continue;
4438       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4439         const Value *O =
4440           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4441         if (O->getType()->isPointerTy()) {
4442           Working.push_back(O);
4443           continue;
4444         }
4445       }
4446       // If GetUnderlyingObjects fails to find an identifiable object,
4447       // getUnderlyingObjectsForCodeGen also fails for safety.
4448       if (!isIdentifiedObject(V)) {
4449         Objects.clear();
4450         return false;
4451       }
4452       Objects.push_back(const_cast<Value *>(V));
4453     }
4454   } while (!Working.empty());
4455   return true;
4456 }
4457 
4458 /// Return true if the only users of this pointer are lifetime markers.
onlyUsedByLifetimeMarkers(const Value * V)4459 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4460   for (const User *U : V->users()) {
4461     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4462     if (!II) return false;
4463 
4464     if (!II->isLifetimeStartOrEnd())
4465       return false;
4466   }
4467   return true;
4468 }
4469 
mustSuppressSpeculation(const LoadInst & LI)4470 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4471   if (!LI.isUnordered())
4472     return true;
4473   const Function &F = *LI.getFunction();
4474   // Speculative load may create a race that did not exist in the source.
4475   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4476     // Speculative load may load data from dirty regions.
4477     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4478     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4479 }
4480 
4481 
isSafeToSpeculativelyExecute(const Value * V,const Instruction * CtxI,const DominatorTree * DT)4482 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4483                                         const Instruction *CtxI,
4484                                         const DominatorTree *DT) {
4485   const Operator *Inst = dyn_cast<Operator>(V);
4486   if (!Inst)
4487     return false;
4488 
4489   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4490     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4491       if (C->canTrap())
4492         return false;
4493 
4494   switch (Inst->getOpcode()) {
4495   default:
4496     return true;
4497   case Instruction::UDiv:
4498   case Instruction::URem: {
4499     // x / y is undefined if y == 0.
4500     const APInt *V;
4501     if (match(Inst->getOperand(1), m_APInt(V)))
4502       return *V != 0;
4503     return false;
4504   }
4505   case Instruction::SDiv:
4506   case Instruction::SRem: {
4507     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4508     const APInt *Numerator, *Denominator;
4509     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4510       return false;
4511     // We cannot hoist this division if the denominator is 0.
4512     if (*Denominator == 0)
4513       return false;
4514     // It's safe to hoist if the denominator is not 0 or -1.
4515     if (*Denominator != -1)
4516       return true;
4517     // At this point we know that the denominator is -1.  It is safe to hoist as
4518     // long we know that the numerator is not INT_MIN.
4519     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4520       return !Numerator->isMinSignedValue();
4521     // The numerator *might* be MinSignedValue.
4522     return false;
4523   }
4524   case Instruction::Load: {
4525     const LoadInst *LI = cast<LoadInst>(Inst);
4526     if (mustSuppressSpeculation(*LI))
4527       return false;
4528     const DataLayout &DL = LI->getModule()->getDataLayout();
4529     return isDereferenceableAndAlignedPointer(
4530         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4531         DL, CtxI, DT);
4532   }
4533   case Instruction::Call: {
4534     auto *CI = cast<const CallInst>(Inst);
4535     const Function *Callee = CI->getCalledFunction();
4536 
4537     // The called function could have undefined behavior or side-effects, even
4538     // if marked readnone nounwind.
4539     return Callee && Callee->isSpeculatable();
4540   }
4541   case Instruction::VAArg:
4542   case Instruction::Alloca:
4543   case Instruction::Invoke:
4544   case Instruction::CallBr:
4545   case Instruction::PHI:
4546   case Instruction::Store:
4547   case Instruction::Ret:
4548   case Instruction::Br:
4549   case Instruction::IndirectBr:
4550   case Instruction::Switch:
4551   case Instruction::Unreachable:
4552   case Instruction::Fence:
4553   case Instruction::AtomicRMW:
4554   case Instruction::AtomicCmpXchg:
4555   case Instruction::LandingPad:
4556   case Instruction::Resume:
4557   case Instruction::CatchSwitch:
4558   case Instruction::CatchPad:
4559   case Instruction::CatchRet:
4560   case Instruction::CleanupPad:
4561   case Instruction::CleanupRet:
4562     return false; // Misc instructions which have effects
4563   }
4564 }
4565 
mayBeMemoryDependent(const Instruction & I)4566 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4567   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4568 }
4569 
4570 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
mapOverflowResult(ConstantRange::OverflowResult OR)4571 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4572   switch (OR) {
4573     case ConstantRange::OverflowResult::MayOverflow:
4574       return OverflowResult::MayOverflow;
4575     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4576       return OverflowResult::AlwaysOverflowsLow;
4577     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4578       return OverflowResult::AlwaysOverflowsHigh;
4579     case ConstantRange::OverflowResult::NeverOverflows:
4580       return OverflowResult::NeverOverflows;
4581   }
4582   llvm_unreachable("Unknown OverflowResult");
4583 }
4584 
4585 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
computeConstantRangeIncludingKnownBits(const Value * V,bool ForSigned,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE=nullptr,bool UseInstrInfo=true)4586 static ConstantRange computeConstantRangeIncludingKnownBits(
4587     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4588     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4589     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4590   KnownBits Known = computeKnownBits(
4591       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4592   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4593   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4594   ConstantRange::PreferredRangeType RangeType =
4595       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4596   return CR1.intersectWith(CR2, RangeType);
4597 }
4598 
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4599 OverflowResult llvm::computeOverflowForUnsignedMul(
4600     const Value *LHS, const Value *RHS, const DataLayout &DL,
4601     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4602     bool UseInstrInfo) {
4603   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4604                                         nullptr, UseInstrInfo);
4605   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4606                                         nullptr, UseInstrInfo);
4607   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4608   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4609   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4610 }
4611 
4612 OverflowResult
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4613 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4614                                   const DataLayout &DL, AssumptionCache *AC,
4615                                   const Instruction *CxtI,
4616                                   const DominatorTree *DT, bool UseInstrInfo) {
4617   // Multiplying n * m significant bits yields a result of n + m significant
4618   // bits. If the total number of significant bits does not exceed the
4619   // result bit width (minus 1), there is no overflow.
4620   // This means if we have enough leading sign bits in the operands
4621   // we can guarantee that the result does not overflow.
4622   // Ref: "Hacker's Delight" by Henry Warren
4623   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4624 
4625   // Note that underestimating the number of sign bits gives a more
4626   // conservative answer.
4627   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4628                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4629 
4630   // First handle the easy case: if we have enough sign bits there's
4631   // definitely no overflow.
4632   if (SignBits > BitWidth + 1)
4633     return OverflowResult::NeverOverflows;
4634 
4635   // There are two ambiguous cases where there can be no overflow:
4636   //   SignBits == BitWidth + 1    and
4637   //   SignBits == BitWidth
4638   // The second case is difficult to check, therefore we only handle the
4639   // first case.
4640   if (SignBits == BitWidth + 1) {
4641     // It overflows only when both arguments are negative and the true
4642     // product is exactly the minimum negative number.
4643     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4644     // For simplicity we just check if at least one side is not negative.
4645     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4646                                           nullptr, UseInstrInfo);
4647     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4648                                           nullptr, UseInstrInfo);
4649     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4650       return OverflowResult::NeverOverflows;
4651   }
4652   return OverflowResult::MayOverflow;
4653 }
4654 
computeOverflowForUnsignedAdd(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4655 OverflowResult llvm::computeOverflowForUnsignedAdd(
4656     const Value *LHS, const Value *RHS, const DataLayout &DL,
4657     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4658     bool UseInstrInfo) {
4659   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4660       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4661       nullptr, UseInstrInfo);
4662   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4663       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4664       nullptr, UseInstrInfo);
4665   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4666 }
4667 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4668 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4669                                                   const Value *RHS,
4670                                                   const AddOperator *Add,
4671                                                   const DataLayout &DL,
4672                                                   AssumptionCache *AC,
4673                                                   const Instruction *CxtI,
4674                                                   const DominatorTree *DT) {
4675   if (Add && Add->hasNoSignedWrap()) {
4676     return OverflowResult::NeverOverflows;
4677   }
4678 
4679   // If LHS and RHS each have at least two sign bits, the addition will look
4680   // like
4681   //
4682   // XX..... +
4683   // YY.....
4684   //
4685   // If the carry into the most significant position is 0, X and Y can't both
4686   // be 1 and therefore the carry out of the addition is also 0.
4687   //
4688   // If the carry into the most significant position is 1, X and Y can't both
4689   // be 0 and therefore the carry out of the addition is also 1.
4690   //
4691   // Since the carry into the most significant position is always equal to
4692   // the carry out of the addition, there is no signed overflow.
4693   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4694       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4695     return OverflowResult::NeverOverflows;
4696 
4697   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4698       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4699   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4700       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4701   OverflowResult OR =
4702       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4703   if (OR != OverflowResult::MayOverflow)
4704     return OR;
4705 
4706   // The remaining code needs Add to be available. Early returns if not so.
4707   if (!Add)
4708     return OverflowResult::MayOverflow;
4709 
4710   // If the sign of Add is the same as at least one of the operands, this add
4711   // CANNOT overflow. If this can be determined from the known bits of the
4712   // operands the above signedAddMayOverflow() check will have already done so.
4713   // The only other way to improve on the known bits is from an assumption, so
4714   // call computeKnownBitsFromAssume() directly.
4715   bool LHSOrRHSKnownNonNegative =
4716       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4717   bool LHSOrRHSKnownNegative =
4718       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4719   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4720     KnownBits AddKnown(LHSRange.getBitWidth());
4721     computeKnownBitsFromAssume(
4722         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4723     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4724         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4725       return OverflowResult::NeverOverflows;
4726   }
4727 
4728   return OverflowResult::MayOverflow;
4729 }
4730 
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4731 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4732                                                    const Value *RHS,
4733                                                    const DataLayout &DL,
4734                                                    AssumptionCache *AC,
4735                                                    const Instruction *CxtI,
4736                                                    const DominatorTree *DT) {
4737   // Checking for conditions implied by dominating conditions may be expensive.
4738   // Limit it to usub_with_overflow calls for now.
4739   if (match(CxtI,
4740             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4741     if (auto C =
4742             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4743       if (*C)
4744         return OverflowResult::NeverOverflows;
4745       return OverflowResult::AlwaysOverflowsLow;
4746     }
4747   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4748       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4749   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4750       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4751   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4752 }
4753 
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4754 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4755                                                  const Value *RHS,
4756                                                  const DataLayout &DL,
4757                                                  AssumptionCache *AC,
4758                                                  const Instruction *CxtI,
4759                                                  const DominatorTree *DT) {
4760   // If LHS and RHS each have at least two sign bits, the subtraction
4761   // cannot overflow.
4762   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4763       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4764     return OverflowResult::NeverOverflows;
4765 
4766   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4767       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4768   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4769       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4770   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4771 }
4772 
isOverflowIntrinsicNoWrap(const WithOverflowInst * WO,const DominatorTree & DT)4773 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4774                                      const DominatorTree &DT) {
4775   SmallVector<const BranchInst *, 2> GuardingBranches;
4776   SmallVector<const ExtractValueInst *, 2> Results;
4777 
4778   for (const User *U : WO->users()) {
4779     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4780       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4781 
4782       if (EVI->getIndices()[0] == 0)
4783         Results.push_back(EVI);
4784       else {
4785         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4786 
4787         for (const auto *U : EVI->users())
4788           if (const auto *B = dyn_cast<BranchInst>(U)) {
4789             assert(B->isConditional() && "How else is it using an i1?");
4790             GuardingBranches.push_back(B);
4791           }
4792       }
4793     } else {
4794       // We are using the aggregate directly in a way we don't want to analyze
4795       // here (storing it to a global, say).
4796       return false;
4797     }
4798   }
4799 
4800   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4801     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4802     if (!NoWrapEdge.isSingleEdge())
4803       return false;
4804 
4805     // Check if all users of the add are provably no-wrap.
4806     for (const auto *Result : Results) {
4807       // If the extractvalue itself is not executed on overflow, the we don't
4808       // need to check each use separately, since domination is transitive.
4809       if (DT.dominates(NoWrapEdge, Result->getParent()))
4810         continue;
4811 
4812       for (auto &RU : Result->uses())
4813         if (!DT.dominates(NoWrapEdge, RU))
4814           return false;
4815     }
4816 
4817     return true;
4818   };
4819 
4820   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4821 }
4822 
canCreatePoison(const Instruction * I)4823 bool llvm::canCreatePoison(const Instruction *I) {
4824   // See whether I has flags that may create poison
4825   if (isa<OverflowingBinaryOperator>(I) &&
4826       (I->hasNoSignedWrap() || I->hasNoUnsignedWrap()))
4827     return true;
4828   if (isa<PossiblyExactOperator>(I) && I->isExact())
4829     return true;
4830   if (auto *FP = dyn_cast<FPMathOperator>(I)) {
4831     auto FMF = FP->getFastMathFlags();
4832     if (FMF.noNaNs() || FMF.noInfs())
4833       return true;
4834   }
4835   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4836     if (GEP->isInBounds())
4837       return true;
4838 
4839   unsigned Opcode = I->getOpcode();
4840 
4841   // Check whether opcode is a poison-generating operation
4842   switch (Opcode) {
4843   case Instruction::Shl:
4844   case Instruction::AShr:
4845   case Instruction::LShr: {
4846     // Shifts return poison if shiftwidth is larger than the bitwidth.
4847     if (auto *C = dyn_cast<Constant>(I->getOperand(1))) {
4848       SmallVector<Constant *, 4> ShiftAmounts;
4849       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4850         unsigned NumElts = FVTy->getNumElements();
4851         for (unsigned i = 0; i < NumElts; ++i)
4852           ShiftAmounts.push_back(C->getAggregateElement(i));
4853       } else if (isa<ScalableVectorType>(C->getType()))
4854         return true; // Can't tell, just return true to be safe
4855       else
4856         ShiftAmounts.push_back(C);
4857 
4858       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4859         auto *CI = dyn_cast<ConstantInt>(C);
4860         return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth();
4861       });
4862       return !Safe;
4863     }
4864     return true;
4865   }
4866   case Instruction::FPToSI:
4867   case Instruction::FPToUI:
4868     // fptosi/ui yields poison if the resulting value does not fit in the
4869     // destination type.
4870     return true;
4871   case Instruction::Call:
4872   case Instruction::CallBr:
4873   case Instruction::Invoke:
4874     // Function calls can return a poison value even if args are non-poison
4875     // values.
4876     return true;
4877   case Instruction::InsertElement:
4878   case Instruction::ExtractElement: {
4879     // If index exceeds the length of the vector, it returns poison
4880     auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
4881     unsigned IdxOp = I->getOpcode() == Instruction::InsertElement ? 2 : 1;
4882     auto *Idx = dyn_cast<ConstantInt>(I->getOperand(IdxOp));
4883     if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min)
4884       return true;
4885     return false;
4886   }
4887   case Instruction::FNeg:
4888   case Instruction::PHI:
4889   case Instruction::Select:
4890   case Instruction::URem:
4891   case Instruction::SRem:
4892   case Instruction::ShuffleVector:
4893   case Instruction::ExtractValue:
4894   case Instruction::InsertValue:
4895   case Instruction::Freeze:
4896   case Instruction::ICmp:
4897   case Instruction::FCmp:
4898   case Instruction::GetElementPtr:
4899     return false;
4900   default:
4901     if (isa<CastInst>(I))
4902       return false;
4903     else if (isa<BinaryOperator>(I))
4904       return false;
4905     // Be conservative and return true.
4906     return true;
4907   }
4908 }
4909 
isGuaranteedNotToBeUndefOrPoison(const Value * V,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth)4910 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
4911                                             const Instruction *CtxI,
4912                                             const DominatorTree *DT,
4913                                             unsigned Depth) {
4914   if (Depth >= MaxDepth)
4915     return false;
4916 
4917   // If the value is a freeze instruction, then it can never
4918   // be undef or poison.
4919   if (isa<FreezeInst>(V))
4920     return true;
4921   // TODO: Some instructions are guaranteed to return neither undef
4922   // nor poison if their arguments are not poison/undef.
4923 
4924   if (auto *C = dyn_cast<Constant>(V)) {
4925     // TODO: We can analyze ConstExpr by opcode to determine if there is any
4926     //       possibility of poison.
4927     if (isa<UndefValue>(C) || isa<ConstantExpr>(C))
4928       return false;
4929 
4930     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4931         isa<ConstantPointerNull>(C) || isa<Function>(C))
4932       return true;
4933 
4934     if (C->getType()->isVectorTy())
4935       return !C->containsUndefElement() && !C->containsConstantExpression();
4936 
4937     // TODO: Recursively analyze aggregates or other constants.
4938     return false;
4939   }
4940 
4941   // Strip cast operations from a pointer value.
4942   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4943   // inbounds with zero offset. To guarantee that the result isn't poison, the
4944   // stripped pointer is checked as it has to be pointing into an allocated
4945   // object or be null `null` to ensure `inbounds` getelement pointers with a
4946   // zero offset could not produce poison.
4947   // It can strip off addrspacecast that do not change bit representation as
4948   // well. We believe that such addrspacecast is equivalent to no-op.
4949   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4950   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4951       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4952     return true;
4953 
4954   auto OpCheck = [&](const Value *V) {
4955     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1);
4956   };
4957 
4958   if (auto *I = dyn_cast<Instruction>(V)) {
4959     switch (I->getOpcode()) {
4960     case Instruction::GetElementPtr: {
4961       auto *GEPI = dyn_cast<GetElementPtrInst>(I);
4962       if (!GEPI->isInBounds() && llvm::all_of(GEPI->operands(), OpCheck))
4963         return true;
4964       break;
4965     }
4966     case Instruction::FCmp: {
4967       auto *FI = dyn_cast<FCmpInst>(I);
4968       if (FI->getFastMathFlags().none() &&
4969           llvm::all_of(FI->operands(), OpCheck))
4970         return true;
4971       break;
4972     }
4973     case Instruction::BitCast:
4974     case Instruction::PHI:
4975     case Instruction::ICmp:
4976       if (llvm::all_of(I->operands(), OpCheck))
4977         return true;
4978       break;
4979     default:
4980       break;
4981     }
4982 
4983     if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1))
4984       // Note: once we have an agreement that poison is a value-wise concept,
4985       // we can remove the isIntegerTy(1) constraint.
4986       return true;
4987   }
4988 
4989   // CxtI may be null or a cloned instruction.
4990   if (!CtxI || !CtxI->getParent() || !DT)
4991     return false;
4992 
4993   auto *DNode = DT->getNode(CtxI->getParent());
4994   if (!DNode)
4995     // Unreachable block
4996     return false;
4997 
4998   // If V is used as a branch condition before reaching CtxI, V cannot be
4999   // undef or poison.
5000   //   br V, BB1, BB2
5001   // BB1:
5002   //   CtxI ; V cannot be undef or poison here
5003   auto *Dominator = DNode->getIDom();
5004   while (Dominator) {
5005     auto *TI = Dominator->getBlock()->getTerminator();
5006 
5007     if (auto BI = dyn_cast<BranchInst>(TI)) {
5008       if (BI->isConditional() && BI->getCondition() == V)
5009         return true;
5010     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5011       if (SI->getCondition() == V)
5012         return true;
5013     }
5014 
5015     Dominator = Dominator->getIDom();
5016   }
5017 
5018   return false;
5019 }
5020 
computeOverflowForSignedAdd(const AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)5021 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5022                                                  const DataLayout &DL,
5023                                                  AssumptionCache *AC,
5024                                                  const Instruction *CxtI,
5025                                                  const DominatorTree *DT) {
5026   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5027                                        Add, DL, AC, CxtI, DT);
5028 }
5029 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)5030 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5031                                                  const Value *RHS,
5032                                                  const DataLayout &DL,
5033                                                  AssumptionCache *AC,
5034                                                  const Instruction *CxtI,
5035                                                  const DominatorTree *DT) {
5036   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5037 }
5038 
isGuaranteedToTransferExecutionToSuccessor(const Instruction * I)5039 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5040   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5041   // of time because it's possible for another thread to interfere with it for an
5042   // arbitrary length of time, but programs aren't allowed to rely on that.
5043 
5044   // If there is no successor, then execution can't transfer to it.
5045   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
5046     return !CRI->unwindsToCaller();
5047   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
5048     return !CatchSwitch->unwindsToCaller();
5049   if (isa<ResumeInst>(I))
5050     return false;
5051   if (isa<ReturnInst>(I))
5052     return false;
5053   if (isa<UnreachableInst>(I))
5054     return false;
5055 
5056   // Calls can throw, or contain an infinite loop, or kill the process.
5057   if (const auto *CB = dyn_cast<CallBase>(I)) {
5058     // Call sites that throw have implicit non-local control flow.
5059     if (!CB->doesNotThrow())
5060       return false;
5061 
5062     // A function which doens't throw and has "willreturn" attribute will
5063     // always return.
5064     if (CB->hasFnAttr(Attribute::WillReturn))
5065       return true;
5066 
5067     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
5068     // etc. and thus not return.  However, LLVM already assumes that
5069     //
5070     //  - Thread exiting actions are modeled as writes to memory invisible to
5071     //    the program.
5072     //
5073     //  - Loops that don't have side effects (side effects are volatile/atomic
5074     //    stores and IO) always terminate (see http://llvm.org/PR965).
5075     //    Furthermore IO itself is also modeled as writes to memory invisible to
5076     //    the program.
5077     //
5078     // We rely on those assumptions here, and use the memory effects of the call
5079     // target as a proxy for checking that it always returns.
5080 
5081     // FIXME: This isn't aggressive enough; a call which only writes to a global
5082     // is guaranteed to return.
5083     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5084   }
5085 
5086   // Other instructions return normally.
5087   return true;
5088 }
5089 
isGuaranteedToTransferExecutionToSuccessor(const BasicBlock * BB)5090 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5091   // TODO: This is slightly conservative for invoke instruction since exiting
5092   // via an exception *is* normal control for them.
5093   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5094     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5095       return false;
5096   return true;
5097 }
5098 
isGuaranteedToExecuteForEveryIteration(const Instruction * I,const Loop * L)5099 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5100                                                   const Loop *L) {
5101   // The loop header is guaranteed to be executed for every iteration.
5102   //
5103   // FIXME: Relax this constraint to cover all basic blocks that are
5104   // guaranteed to be executed at every iteration.
5105   if (I->getParent() != L->getHeader()) return false;
5106 
5107   for (const Instruction &LI : *L->getHeader()) {
5108     if (&LI == I) return true;
5109     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5110   }
5111   llvm_unreachable("Instruction not contained in its own parent basic block.");
5112 }
5113 
propagatesPoison(const Instruction * I)5114 bool llvm::propagatesPoison(const Instruction *I) {
5115   switch (I->getOpcode()) {
5116   case Instruction::Freeze:
5117   case Instruction::Select:
5118   case Instruction::PHI:
5119   case Instruction::Call:
5120   case Instruction::Invoke:
5121     return false;
5122   case Instruction::ICmp:
5123   case Instruction::FCmp:
5124   case Instruction::GetElementPtr:
5125     return true;
5126   default:
5127     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5128       return true;
5129 
5130     // Be conservative and return false.
5131     return false;
5132   }
5133 }
5134 
getGuaranteedNonPoisonOp(const Instruction * I)5135 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) {
5136   switch (I->getOpcode()) {
5137     case Instruction::Store:
5138       return cast<StoreInst>(I)->getPointerOperand();
5139 
5140     case Instruction::Load:
5141       return cast<LoadInst>(I)->getPointerOperand();
5142 
5143     case Instruction::AtomicCmpXchg:
5144       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
5145 
5146     case Instruction::AtomicRMW:
5147       return cast<AtomicRMWInst>(I)->getPointerOperand();
5148 
5149     case Instruction::UDiv:
5150     case Instruction::SDiv:
5151     case Instruction::URem:
5152     case Instruction::SRem:
5153       return I->getOperand(1);
5154 
5155     case Instruction::Call:
5156       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5157         switch (II->getIntrinsicID()) {
5158         case Intrinsic::assume:
5159           return II->getArgOperand(0);
5160         default:
5161           return nullptr;
5162         }
5163       }
5164       return nullptr;
5165 
5166     default:
5167       return nullptr;
5168   }
5169 }
5170 
mustTriggerUB(const Instruction * I,const SmallSet<const Value *,16> & KnownPoison)5171 bool llvm::mustTriggerUB(const Instruction *I,
5172                          const SmallSet<const Value *, 16>& KnownPoison) {
5173   auto *NotPoison = getGuaranteedNonPoisonOp(I);
5174   return (NotPoison && KnownPoison.count(NotPoison));
5175 }
5176 
5177 
programUndefinedIfPoison(const Instruction * PoisonI)5178 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) {
5179   // We currently only look for uses of poison values within the same basic
5180   // block, as that makes it easier to guarantee that the uses will be
5181   // executed given that PoisonI is executed.
5182   //
5183   // FIXME: Expand this to consider uses beyond the same basic block. To do
5184   // this, look out for the distinction between post-dominance and strong
5185   // post-dominance.
5186   const BasicBlock *BB = PoisonI->getParent();
5187 
5188   // Set of instructions that we have proved will yield poison if PoisonI
5189   // does.
5190   SmallSet<const Value *, 16> YieldsPoison;
5191   SmallSet<const BasicBlock *, 4> Visited;
5192   YieldsPoison.insert(PoisonI);
5193   Visited.insert(PoisonI->getParent());
5194 
5195   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
5196 
5197   unsigned Iter = 0;
5198   while (Iter++ < MaxDepth) {
5199     for (auto &I : make_range(Begin, End)) {
5200       if (&I != PoisonI) {
5201         if (mustTriggerUB(&I, YieldsPoison))
5202           return true;
5203         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5204           return false;
5205       }
5206 
5207       // Mark poison that propagates from I through uses of I.
5208       if (YieldsPoison.count(&I)) {
5209         for (const User *User : I.users()) {
5210           const Instruction *UserI = cast<Instruction>(User);
5211           if (propagatesPoison(UserI))
5212             YieldsPoison.insert(User);
5213         }
5214       }
5215     }
5216 
5217     if (auto *NextBB = BB->getSingleSuccessor()) {
5218       if (Visited.insert(NextBB).second) {
5219         BB = NextBB;
5220         Begin = BB->getFirstNonPHI()->getIterator();
5221         End = BB->end();
5222         continue;
5223       }
5224     }
5225 
5226     break;
5227   }
5228   return false;
5229 }
5230 
isKnownNonNaN(const Value * V,FastMathFlags FMF)5231 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5232   if (FMF.noNaNs())
5233     return true;
5234 
5235   if (auto *C = dyn_cast<ConstantFP>(V))
5236     return !C->isNaN();
5237 
5238   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5239     if (!C->getElementType()->isFloatingPointTy())
5240       return false;
5241     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5242       if (C->getElementAsAPFloat(I).isNaN())
5243         return false;
5244     }
5245     return true;
5246   }
5247 
5248   if (isa<ConstantAggregateZero>(V))
5249     return true;
5250 
5251   return false;
5252 }
5253 
isKnownNonZero(const Value * V)5254 static bool isKnownNonZero(const Value *V) {
5255   if (auto *C = dyn_cast<ConstantFP>(V))
5256     return !C->isZero();
5257 
5258   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5259     if (!C->getElementType()->isFloatingPointTy())
5260       return false;
5261     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5262       if (C->getElementAsAPFloat(I).isZero())
5263         return false;
5264     }
5265     return true;
5266   }
5267 
5268   return false;
5269 }
5270 
5271 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5272 /// Given non-min/max outer cmp/select from the clamp pattern this
5273 /// function recognizes if it can be substitued by a "canonical" min/max
5274 /// pattern.
matchFastFloatClamp(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS)5275 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5276                                                Value *CmpLHS, Value *CmpRHS,
5277                                                Value *TrueVal, Value *FalseVal,
5278                                                Value *&LHS, Value *&RHS) {
5279   // Try to match
5280   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5281   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5282   // and return description of the outer Max/Min.
5283 
5284   // First, check if select has inverse order:
5285   if (CmpRHS == FalseVal) {
5286     std::swap(TrueVal, FalseVal);
5287     Pred = CmpInst::getInversePredicate(Pred);
5288   }
5289 
5290   // Assume success now. If there's no match, callers should not use these anyway.
5291   LHS = TrueVal;
5292   RHS = FalseVal;
5293 
5294   const APFloat *FC1;
5295   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5296     return {SPF_UNKNOWN, SPNB_NA, false};
5297 
5298   const APFloat *FC2;
5299   switch (Pred) {
5300   case CmpInst::FCMP_OLT:
5301   case CmpInst::FCMP_OLE:
5302   case CmpInst::FCMP_ULT:
5303   case CmpInst::FCMP_ULE:
5304     if (match(FalseVal,
5305               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5306                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5307         *FC1 < *FC2)
5308       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5309     break;
5310   case CmpInst::FCMP_OGT:
5311   case CmpInst::FCMP_OGE:
5312   case CmpInst::FCMP_UGT:
5313   case CmpInst::FCMP_UGE:
5314     if (match(FalseVal,
5315               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5316                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5317         *FC1 > *FC2)
5318       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5319     break;
5320   default:
5321     break;
5322   }
5323 
5324   return {SPF_UNKNOWN, SPNB_NA, false};
5325 }
5326 
5327 /// Recognize variations of:
5328 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
matchClamp(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal)5329 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5330                                       Value *CmpLHS, Value *CmpRHS,
5331                                       Value *TrueVal, Value *FalseVal) {
5332   // Swap the select operands and predicate to match the patterns below.
5333   if (CmpRHS != TrueVal) {
5334     Pred = ICmpInst::getSwappedPredicate(Pred);
5335     std::swap(TrueVal, FalseVal);
5336   }
5337   const APInt *C1;
5338   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5339     const APInt *C2;
5340     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5341     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5342         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5343       return {SPF_SMAX, SPNB_NA, false};
5344 
5345     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5346     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5347         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5348       return {SPF_SMIN, SPNB_NA, false};
5349 
5350     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5351     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5352         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5353       return {SPF_UMAX, SPNB_NA, false};
5354 
5355     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5356     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5357         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5358       return {SPF_UMIN, SPNB_NA, false};
5359   }
5360   return {SPF_UNKNOWN, SPNB_NA, false};
5361 }
5362 
5363 /// Recognize variations of:
5364 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
matchMinMaxOfMinMax(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TVal,Value * FVal,unsigned Depth)5365 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5366                                                Value *CmpLHS, Value *CmpRHS,
5367                                                Value *TVal, Value *FVal,
5368                                                unsigned Depth) {
5369   // TODO: Allow FP min/max with nnan/nsz.
5370   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5371 
5372   Value *A = nullptr, *B = nullptr;
5373   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5374   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5375     return {SPF_UNKNOWN, SPNB_NA, false};
5376 
5377   Value *C = nullptr, *D = nullptr;
5378   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5379   if (L.Flavor != R.Flavor)
5380     return {SPF_UNKNOWN, SPNB_NA, false};
5381 
5382   // We have something like: x Pred y ? min(a, b) : min(c, d).
5383   // Try to match the compare to the min/max operations of the select operands.
5384   // First, make sure we have the right compare predicate.
5385   switch (L.Flavor) {
5386   case SPF_SMIN:
5387     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5388       Pred = ICmpInst::getSwappedPredicate(Pred);
5389       std::swap(CmpLHS, CmpRHS);
5390     }
5391     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5392       break;
5393     return {SPF_UNKNOWN, SPNB_NA, false};
5394   case SPF_SMAX:
5395     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5396       Pred = ICmpInst::getSwappedPredicate(Pred);
5397       std::swap(CmpLHS, CmpRHS);
5398     }
5399     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5400       break;
5401     return {SPF_UNKNOWN, SPNB_NA, false};
5402   case SPF_UMIN:
5403     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5404       Pred = ICmpInst::getSwappedPredicate(Pred);
5405       std::swap(CmpLHS, CmpRHS);
5406     }
5407     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5408       break;
5409     return {SPF_UNKNOWN, SPNB_NA, false};
5410   case SPF_UMAX:
5411     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5412       Pred = ICmpInst::getSwappedPredicate(Pred);
5413       std::swap(CmpLHS, CmpRHS);
5414     }
5415     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5416       break;
5417     return {SPF_UNKNOWN, SPNB_NA, false};
5418   default:
5419     return {SPF_UNKNOWN, SPNB_NA, false};
5420   }
5421 
5422   // If there is a common operand in the already matched min/max and the other
5423   // min/max operands match the compare operands (either directly or inverted),
5424   // then this is min/max of the same flavor.
5425 
5426   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5427   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5428   if (D == B) {
5429     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5430                                          match(A, m_Not(m_Specific(CmpRHS)))))
5431       return {L.Flavor, SPNB_NA, false};
5432   }
5433   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5434   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5435   if (C == B) {
5436     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5437                                          match(A, m_Not(m_Specific(CmpRHS)))))
5438       return {L.Flavor, SPNB_NA, false};
5439   }
5440   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5441   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5442   if (D == A) {
5443     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5444                                          match(B, m_Not(m_Specific(CmpRHS)))))
5445       return {L.Flavor, SPNB_NA, false};
5446   }
5447   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5448   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5449   if (C == A) {
5450     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5451                                          match(B, m_Not(m_Specific(CmpRHS)))))
5452       return {L.Flavor, SPNB_NA, false};
5453   }
5454 
5455   return {SPF_UNKNOWN, SPNB_NA, false};
5456 }
5457 
5458 /// If the input value is the result of a 'not' op, constant integer, or vector
5459 /// splat of a constant integer, return the bitwise-not source value.
5460 /// TODO: This could be extended to handle non-splat vector integer constants.
getNotValue(Value * V)5461 static Value *getNotValue(Value *V) {
5462   Value *NotV;
5463   if (match(V, m_Not(m_Value(NotV))))
5464     return NotV;
5465 
5466   const APInt *C;
5467   if (match(V, m_APInt(C)))
5468     return ConstantInt::get(V->getType(), ~(*C));
5469 
5470   return nullptr;
5471 }
5472 
5473 /// Match non-obvious integer minimum and maximum sequences.
matchMinMax(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,unsigned Depth)5474 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5475                                        Value *CmpLHS, Value *CmpRHS,
5476                                        Value *TrueVal, Value *FalseVal,
5477                                        Value *&LHS, Value *&RHS,
5478                                        unsigned Depth) {
5479   // Assume success. If there's no match, callers should not use these anyway.
5480   LHS = TrueVal;
5481   RHS = FalseVal;
5482 
5483   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5484   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5485     return SPR;
5486 
5487   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5488   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5489     return SPR;
5490 
5491   // Look through 'not' ops to find disguised min/max.
5492   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5493   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5494   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5495     switch (Pred) {
5496     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5497     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5498     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5499     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5500     default: break;
5501     }
5502   }
5503 
5504   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5505   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5506   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5507     switch (Pred) {
5508     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5509     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5510     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5511     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5512     default: break;
5513     }
5514   }
5515 
5516   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5517     return {SPF_UNKNOWN, SPNB_NA, false};
5518 
5519   // Z = X -nsw Y
5520   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5521   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5522   if (match(TrueVal, m_Zero()) &&
5523       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5524     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5525 
5526   // Z = X -nsw Y
5527   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5528   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5529   if (match(FalseVal, m_Zero()) &&
5530       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5531     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5532 
5533   const APInt *C1;
5534   if (!match(CmpRHS, m_APInt(C1)))
5535     return {SPF_UNKNOWN, SPNB_NA, false};
5536 
5537   // An unsigned min/max can be written with a signed compare.
5538   const APInt *C2;
5539   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5540       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5541     // Is the sign bit set?
5542     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5543     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5544     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5545         C2->isMaxSignedValue())
5546       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5547 
5548     // Is the sign bit clear?
5549     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5550     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5551     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5552         C2->isMinSignedValue())
5553       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5554   }
5555 
5556   return {SPF_UNKNOWN, SPNB_NA, false};
5557 }
5558 
isKnownNegation(const Value * X,const Value * Y,bool NeedNSW)5559 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5560   assert(X && Y && "Invalid operand");
5561 
5562   // X = sub (0, Y) || X = sub nsw (0, Y)
5563   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5564       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5565     return true;
5566 
5567   // Y = sub (0, X) || Y = sub nsw (0, X)
5568   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5569       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5570     return true;
5571 
5572   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5573   Value *A, *B;
5574   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5575                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5576          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5577                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5578 }
5579 
matchSelectPattern(CmpInst::Predicate Pred,FastMathFlags FMF,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,unsigned Depth)5580 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5581                                               FastMathFlags FMF,
5582                                               Value *CmpLHS, Value *CmpRHS,
5583                                               Value *TrueVal, Value *FalseVal,
5584                                               Value *&LHS, Value *&RHS,
5585                                               unsigned Depth) {
5586   if (CmpInst::isFPPredicate(Pred)) {
5587     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5588     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5589     // purpose of identifying min/max. Disregard vector constants with undefined
5590     // elements because those can not be back-propagated for analysis.
5591     Value *OutputZeroVal = nullptr;
5592     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5593         !cast<Constant>(TrueVal)->containsUndefElement())
5594       OutputZeroVal = TrueVal;
5595     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5596              !cast<Constant>(FalseVal)->containsUndefElement())
5597       OutputZeroVal = FalseVal;
5598 
5599     if (OutputZeroVal) {
5600       if (match(CmpLHS, m_AnyZeroFP()))
5601         CmpLHS = OutputZeroVal;
5602       if (match(CmpRHS, m_AnyZeroFP()))
5603         CmpRHS = OutputZeroVal;
5604     }
5605   }
5606 
5607   LHS = CmpLHS;
5608   RHS = CmpRHS;
5609 
5610   // Signed zero may return inconsistent results between implementations.
5611   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5612   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5613   // Therefore, we behave conservatively and only proceed if at least one of the
5614   // operands is known to not be zero or if we don't care about signed zero.
5615   switch (Pred) {
5616   default: break;
5617   // FIXME: Include OGT/OLT/UGT/ULT.
5618   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5619   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5620     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5621         !isKnownNonZero(CmpRHS))
5622       return {SPF_UNKNOWN, SPNB_NA, false};
5623   }
5624 
5625   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5626   bool Ordered = false;
5627 
5628   // When given one NaN and one non-NaN input:
5629   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5630   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5631   //     ordered comparison fails), which could be NaN or non-NaN.
5632   // so here we discover exactly what NaN behavior is required/accepted.
5633   if (CmpInst::isFPPredicate(Pred)) {
5634     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5635     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5636 
5637     if (LHSSafe && RHSSafe) {
5638       // Both operands are known non-NaN.
5639       NaNBehavior = SPNB_RETURNS_ANY;
5640     } else if (CmpInst::isOrdered(Pred)) {
5641       // An ordered comparison will return false when given a NaN, so it
5642       // returns the RHS.
5643       Ordered = true;
5644       if (LHSSafe)
5645         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5646         NaNBehavior = SPNB_RETURNS_NAN;
5647       else if (RHSSafe)
5648         NaNBehavior = SPNB_RETURNS_OTHER;
5649       else
5650         // Completely unsafe.
5651         return {SPF_UNKNOWN, SPNB_NA, false};
5652     } else {
5653       Ordered = false;
5654       // An unordered comparison will return true when given a NaN, so it
5655       // returns the LHS.
5656       if (LHSSafe)
5657         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5658         NaNBehavior = SPNB_RETURNS_OTHER;
5659       else if (RHSSafe)
5660         NaNBehavior = SPNB_RETURNS_NAN;
5661       else
5662         // Completely unsafe.
5663         return {SPF_UNKNOWN, SPNB_NA, false};
5664     }
5665   }
5666 
5667   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5668     std::swap(CmpLHS, CmpRHS);
5669     Pred = CmpInst::getSwappedPredicate(Pred);
5670     if (NaNBehavior == SPNB_RETURNS_NAN)
5671       NaNBehavior = SPNB_RETURNS_OTHER;
5672     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5673       NaNBehavior = SPNB_RETURNS_NAN;
5674     Ordered = !Ordered;
5675   }
5676 
5677   // ([if]cmp X, Y) ? X : Y
5678   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5679     switch (Pred) {
5680     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5681     case ICmpInst::ICMP_UGT:
5682     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5683     case ICmpInst::ICMP_SGT:
5684     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5685     case ICmpInst::ICMP_ULT:
5686     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5687     case ICmpInst::ICMP_SLT:
5688     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5689     case FCmpInst::FCMP_UGT:
5690     case FCmpInst::FCMP_UGE:
5691     case FCmpInst::FCMP_OGT:
5692     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5693     case FCmpInst::FCMP_ULT:
5694     case FCmpInst::FCMP_ULE:
5695     case FCmpInst::FCMP_OLT:
5696     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5697     }
5698   }
5699 
5700   if (isKnownNegation(TrueVal, FalseVal)) {
5701     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5702     // match against either LHS or sext(LHS).
5703     auto MaybeSExtCmpLHS =
5704         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5705     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5706     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5707     if (match(TrueVal, MaybeSExtCmpLHS)) {
5708       // Set the return values. If the compare uses the negated value (-X >s 0),
5709       // swap the return values because the negated value is always 'RHS'.
5710       LHS = TrueVal;
5711       RHS = FalseVal;
5712       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5713         std::swap(LHS, RHS);
5714 
5715       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5716       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5717       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5718         return {SPF_ABS, SPNB_NA, false};
5719 
5720       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5721       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5722         return {SPF_ABS, SPNB_NA, false};
5723 
5724       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5725       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5726       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5727         return {SPF_NABS, SPNB_NA, false};
5728     }
5729     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5730       // Set the return values. If the compare uses the negated value (-X >s 0),
5731       // swap the return values because the negated value is always 'RHS'.
5732       LHS = FalseVal;
5733       RHS = TrueVal;
5734       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5735         std::swap(LHS, RHS);
5736 
5737       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5738       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5739       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5740         return {SPF_NABS, SPNB_NA, false};
5741 
5742       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5743       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5744       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5745         return {SPF_ABS, SPNB_NA, false};
5746     }
5747   }
5748 
5749   if (CmpInst::isIntPredicate(Pred))
5750     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5751 
5752   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5753   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5754   // semantics than minNum. Be conservative in such case.
5755   if (NaNBehavior != SPNB_RETURNS_ANY ||
5756       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5757        !isKnownNonZero(CmpRHS)))
5758     return {SPF_UNKNOWN, SPNB_NA, false};
5759 
5760   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5761 }
5762 
5763 /// Helps to match a select pattern in case of a type mismatch.
5764 ///
5765 /// The function processes the case when type of true and false values of a
5766 /// select instruction differs from type of the cmp instruction operands because
5767 /// of a cast instruction. The function checks if it is legal to move the cast
5768 /// operation after "select". If yes, it returns the new second value of
5769 /// "select" (with the assumption that cast is moved):
5770 /// 1. As operand of cast instruction when both values of "select" are same cast
5771 /// instructions.
5772 /// 2. As restored constant (by applying reverse cast operation) when the first
5773 /// value of the "select" is a cast operation and the second value is a
5774 /// constant.
5775 /// NOTE: We return only the new second value because the first value could be
5776 /// accessed as operand of cast instruction.
lookThroughCast(CmpInst * CmpI,Value * V1,Value * V2,Instruction::CastOps * CastOp)5777 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5778                               Instruction::CastOps *CastOp) {
5779   auto *Cast1 = dyn_cast<CastInst>(V1);
5780   if (!Cast1)
5781     return nullptr;
5782 
5783   *CastOp = Cast1->getOpcode();
5784   Type *SrcTy = Cast1->getSrcTy();
5785   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5786     // If V1 and V2 are both the same cast from the same type, look through V1.
5787     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5788       return Cast2->getOperand(0);
5789     return nullptr;
5790   }
5791 
5792   auto *C = dyn_cast<Constant>(V2);
5793   if (!C)
5794     return nullptr;
5795 
5796   Constant *CastedTo = nullptr;
5797   switch (*CastOp) {
5798   case Instruction::ZExt:
5799     if (CmpI->isUnsigned())
5800       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5801     break;
5802   case Instruction::SExt:
5803     if (CmpI->isSigned())
5804       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5805     break;
5806   case Instruction::Trunc:
5807     Constant *CmpConst;
5808     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5809         CmpConst->getType() == SrcTy) {
5810       // Here we have the following case:
5811       //
5812       //   %cond = cmp iN %x, CmpConst
5813       //   %tr = trunc iN %x to iK
5814       //   %narrowsel = select i1 %cond, iK %t, iK C
5815       //
5816       // We can always move trunc after select operation:
5817       //
5818       //   %cond = cmp iN %x, CmpConst
5819       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5820       //   %tr = trunc iN %widesel to iK
5821       //
5822       // Note that C could be extended in any way because we don't care about
5823       // upper bits after truncation. It can't be abs pattern, because it would
5824       // look like:
5825       //
5826       //   select i1 %cond, x, -x.
5827       //
5828       // So only min/max pattern could be matched. Such match requires widened C
5829       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5830       // CmpConst == C is checked below.
5831       CastedTo = CmpConst;
5832     } else {
5833       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5834     }
5835     break;
5836   case Instruction::FPTrunc:
5837     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5838     break;
5839   case Instruction::FPExt:
5840     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5841     break;
5842   case Instruction::FPToUI:
5843     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5844     break;
5845   case Instruction::FPToSI:
5846     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5847     break;
5848   case Instruction::UIToFP:
5849     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5850     break;
5851   case Instruction::SIToFP:
5852     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5853     break;
5854   default:
5855     break;
5856   }
5857 
5858   if (!CastedTo)
5859     return nullptr;
5860 
5861   // Make sure the cast doesn't lose any information.
5862   Constant *CastedBack =
5863       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5864   if (CastedBack != C)
5865     return nullptr;
5866 
5867   return CastedTo;
5868 }
5869 
matchSelectPattern(Value * V,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp,unsigned Depth)5870 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5871                                              Instruction::CastOps *CastOp,
5872                                              unsigned Depth) {
5873   if (Depth >= MaxDepth)
5874     return {SPF_UNKNOWN, SPNB_NA, false};
5875 
5876   SelectInst *SI = dyn_cast<SelectInst>(V);
5877   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5878 
5879   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5880   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5881 
5882   Value *TrueVal = SI->getTrueValue();
5883   Value *FalseVal = SI->getFalseValue();
5884 
5885   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5886                                             CastOp, Depth);
5887 }
5888 
matchDecomposedSelectPattern(CmpInst * CmpI,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp,unsigned Depth)5889 SelectPatternResult llvm::matchDecomposedSelectPattern(
5890     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5891     Instruction::CastOps *CastOp, unsigned Depth) {
5892   CmpInst::Predicate Pred = CmpI->getPredicate();
5893   Value *CmpLHS = CmpI->getOperand(0);
5894   Value *CmpRHS = CmpI->getOperand(1);
5895   FastMathFlags FMF;
5896   if (isa<FPMathOperator>(CmpI))
5897     FMF = CmpI->getFastMathFlags();
5898 
5899   // Bail out early.
5900   if (CmpI->isEquality())
5901     return {SPF_UNKNOWN, SPNB_NA, false};
5902 
5903   // Deal with type mismatches.
5904   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5905     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5906       // If this is a potential fmin/fmax with a cast to integer, then ignore
5907       // -0.0 because there is no corresponding integer value.
5908       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5909         FMF.setNoSignedZeros();
5910       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5911                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5912                                   LHS, RHS, Depth);
5913     }
5914     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5915       // If this is a potential fmin/fmax with a cast to integer, then ignore
5916       // -0.0 because there is no corresponding integer value.
5917       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5918         FMF.setNoSignedZeros();
5919       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5920                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5921                                   LHS, RHS, Depth);
5922     }
5923   }
5924   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5925                               LHS, RHS, Depth);
5926 }
5927 
getMinMaxPred(SelectPatternFlavor SPF,bool Ordered)5928 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5929   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5930   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5931   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5932   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5933   if (SPF == SPF_FMINNUM)
5934     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5935   if (SPF == SPF_FMAXNUM)
5936     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5937   llvm_unreachable("unhandled!");
5938 }
5939 
getInverseMinMaxFlavor(SelectPatternFlavor SPF)5940 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5941   if (SPF == SPF_SMIN) return SPF_SMAX;
5942   if (SPF == SPF_UMIN) return SPF_UMAX;
5943   if (SPF == SPF_SMAX) return SPF_SMIN;
5944   if (SPF == SPF_UMAX) return SPF_UMIN;
5945   llvm_unreachable("unhandled!");
5946 }
5947 
getInverseMinMaxPred(SelectPatternFlavor SPF)5948 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5949   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5950 }
5951 
5952 /// Return true if "icmp Pred LHS RHS" is always true.
isTruePredicate(CmpInst::Predicate Pred,const Value * LHS,const Value * RHS,const DataLayout & DL,unsigned Depth)5953 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5954                             const Value *RHS, const DataLayout &DL,
5955                             unsigned Depth) {
5956   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5957   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5958     return true;
5959 
5960   switch (Pred) {
5961   default:
5962     return false;
5963 
5964   case CmpInst::ICMP_SLE: {
5965     const APInt *C;
5966 
5967     // LHS s<= LHS +_{nsw} C   if C >= 0
5968     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5969       return !C->isNegative();
5970     return false;
5971   }
5972 
5973   case CmpInst::ICMP_ULE: {
5974     const APInt *C;
5975 
5976     // LHS u<= LHS +_{nuw} C   for any C
5977     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5978       return true;
5979 
5980     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5981     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5982                                        const Value *&X,
5983                                        const APInt *&CA, const APInt *&CB) {
5984       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5985           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5986         return true;
5987 
5988       // If X & C == 0 then (X | C) == X +_{nuw} C
5989       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5990           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5991         KnownBits Known(CA->getBitWidth());
5992         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5993                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5994         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5995           return true;
5996       }
5997 
5998       return false;
5999     };
6000 
6001     const Value *X;
6002     const APInt *CLHS, *CRHS;
6003     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6004       return CLHS->ule(*CRHS);
6005 
6006     return false;
6007   }
6008   }
6009 }
6010 
6011 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6012 /// ALHS ARHS" is true.  Otherwise, return None.
6013 static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred,const Value * ALHS,const Value * ARHS,const Value * BLHS,const Value * BRHS,const DataLayout & DL,unsigned Depth)6014 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6015                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6016                       const DataLayout &DL, unsigned Depth) {
6017   switch (Pred) {
6018   default:
6019     return None;
6020 
6021   case CmpInst::ICMP_SLT:
6022   case CmpInst::ICMP_SLE:
6023     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6024         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6025       return true;
6026     return None;
6027 
6028   case CmpInst::ICMP_ULT:
6029   case CmpInst::ICMP_ULE:
6030     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6031         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6032       return true;
6033     return None;
6034   }
6035 }
6036 
6037 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6038 /// when the operands match, but are swapped.
isMatchingOps(const Value * ALHS,const Value * ARHS,const Value * BLHS,const Value * BRHS,bool & IsSwappedOps)6039 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6040                           const Value *BLHS, const Value *BRHS,
6041                           bool &IsSwappedOps) {
6042 
6043   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6044   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6045   return IsMatchingOps || IsSwappedOps;
6046 }
6047 
6048 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6049 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6050 /// Otherwise, return None if we can't infer anything.
isImpliedCondMatchingOperands(CmpInst::Predicate APred,CmpInst::Predicate BPred,bool AreSwappedOps)6051 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6052                                                     CmpInst::Predicate BPred,
6053                                                     bool AreSwappedOps) {
6054   // Canonicalize the predicate as if the operands were not commuted.
6055   if (AreSwappedOps)
6056     BPred = ICmpInst::getSwappedPredicate(BPred);
6057 
6058   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6059     return true;
6060   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6061     return false;
6062 
6063   return None;
6064 }
6065 
6066 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6067 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6068 /// Otherwise, return None if we can't infer anything.
6069 static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,const ConstantInt * C1,CmpInst::Predicate BPred,const ConstantInt * C2)6070 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6071                                  const ConstantInt *C1,
6072                                  CmpInst::Predicate BPred,
6073                                  const ConstantInt *C2) {
6074   ConstantRange DomCR =
6075       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6076   ConstantRange CR =
6077       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6078   ConstantRange Intersection = DomCR.intersectWith(CR);
6079   ConstantRange Difference = DomCR.difference(CR);
6080   if (Intersection.isEmptySet())
6081     return false;
6082   if (Difference.isEmptySet())
6083     return true;
6084   return None;
6085 }
6086 
6087 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6088 /// false.  Otherwise, return None if we can't infer anything.
isImpliedCondICmps(const ICmpInst * LHS,CmpInst::Predicate BPred,const Value * BLHS,const Value * BRHS,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6089 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6090                                          CmpInst::Predicate BPred,
6091                                          const Value *BLHS, const Value *BRHS,
6092                                          const DataLayout &DL, bool LHSIsTrue,
6093                                          unsigned Depth) {
6094   Value *ALHS = LHS->getOperand(0);
6095   Value *ARHS = LHS->getOperand(1);
6096 
6097   // The rest of the logic assumes the LHS condition is true.  If that's not the
6098   // case, invert the predicate to make it so.
6099   CmpInst::Predicate APred =
6100       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6101 
6102   // Can we infer anything when the two compares have matching operands?
6103   bool AreSwappedOps;
6104   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6105     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6106             APred, BPred, AreSwappedOps))
6107       return Implication;
6108     // No amount of additional analysis will infer the second condition, so
6109     // early exit.
6110     return None;
6111   }
6112 
6113   // Can we infer anything when the LHS operands match and the RHS operands are
6114   // constants (not necessarily matching)?
6115   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6116     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6117             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6118       return Implication;
6119     // No amount of additional analysis will infer the second condition, so
6120     // early exit.
6121     return None;
6122   }
6123 
6124   if (APred == BPred)
6125     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6126   return None;
6127 }
6128 
6129 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6130 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6131 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6132 static Optional<bool>
isImpliedCondAndOr(const BinaryOperator * LHS,CmpInst::Predicate RHSPred,const Value * RHSOp0,const Value * RHSOp1,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6133 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6134                    const Value *RHSOp0, const Value *RHSOp1,
6135 
6136                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6137   // The LHS must be an 'or' or an 'and' instruction.
6138   assert((LHS->getOpcode() == Instruction::And ||
6139           LHS->getOpcode() == Instruction::Or) &&
6140          "Expected LHS to be 'and' or 'or'.");
6141 
6142   assert(Depth <= MaxDepth && "Hit recursion limit");
6143 
6144   // If the result of an 'or' is false, then we know both legs of the 'or' are
6145   // false.  Similarly, if the result of an 'and' is true, then we know both
6146   // legs of the 'and' are true.
6147   Value *ALHS, *ARHS;
6148   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6149       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6150     // FIXME: Make this non-recursion.
6151     if (Optional<bool> Implication = isImpliedCondition(
6152             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6153       return Implication;
6154     if (Optional<bool> Implication = isImpliedCondition(
6155             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6156       return Implication;
6157     return None;
6158   }
6159   return None;
6160 }
6161 
6162 Optional<bool>
isImpliedCondition(const Value * LHS,CmpInst::Predicate RHSPred,const Value * RHSOp0,const Value * RHSOp1,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6163 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6164                          const Value *RHSOp0, const Value *RHSOp1,
6165                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6166   // Bail out when we hit the limit.
6167   if (Depth == MaxDepth)
6168     return None;
6169 
6170   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6171   // example.
6172   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6173     return None;
6174 
6175   Type *OpTy = LHS->getType();
6176   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6177 
6178   // FIXME: Extending the code below to handle vectors.
6179   if (OpTy->isVectorTy())
6180     return None;
6181 
6182   assert(OpTy->isIntegerTy(1) && "implied by above");
6183 
6184   // Both LHS and RHS are icmps.
6185   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6186   if (LHSCmp)
6187     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6188                               Depth);
6189 
6190   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6191   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6192   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6193   if (LHSBO) {
6194     if ((LHSBO->getOpcode() == Instruction::And ||
6195          LHSBO->getOpcode() == Instruction::Or))
6196       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6197                                 Depth);
6198   }
6199   return None;
6200 }
6201 
isImpliedCondition(const Value * LHS,const Value * RHS,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6202 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6203                                         const DataLayout &DL, bool LHSIsTrue,
6204                                         unsigned Depth) {
6205   // LHS ==> RHS by definition
6206   if (LHS == RHS)
6207     return LHSIsTrue;
6208 
6209   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6210   if (RHSCmp)
6211     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6212                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6213                               LHSIsTrue, Depth);
6214   return None;
6215 }
6216 
6217 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6218 // condition dominating ContextI or nullptr, if no condition is found.
6219 static std::pair<Value *, bool>
getDomPredecessorCondition(const Instruction * ContextI)6220 getDomPredecessorCondition(const Instruction *ContextI) {
6221   if (!ContextI || !ContextI->getParent())
6222     return {nullptr, false};
6223 
6224   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6225   // dominator tree (eg, from a SimplifyQuery) instead?
6226   const BasicBlock *ContextBB = ContextI->getParent();
6227   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6228   if (!PredBB)
6229     return {nullptr, false};
6230 
6231   // We need a conditional branch in the predecessor.
6232   Value *PredCond;
6233   BasicBlock *TrueBB, *FalseBB;
6234   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6235     return {nullptr, false};
6236 
6237   // The branch should get simplified. Don't bother simplifying this condition.
6238   if (TrueBB == FalseBB)
6239     return {nullptr, false};
6240 
6241   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6242          "Predecessor block does not point to successor?");
6243 
6244   // Is this condition implied by the predecessor condition?
6245   return {PredCond, TrueBB == ContextBB};
6246 }
6247 
isImpliedByDomCondition(const Value * Cond,const Instruction * ContextI,const DataLayout & DL)6248 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6249                                              const Instruction *ContextI,
6250                                              const DataLayout &DL) {
6251   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6252   auto PredCond = getDomPredecessorCondition(ContextI);
6253   if (PredCond.first)
6254     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6255   return None;
6256 }
6257 
isImpliedByDomCondition(CmpInst::Predicate Pred,const Value * LHS,const Value * RHS,const Instruction * ContextI,const DataLayout & DL)6258 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6259                                              const Value *LHS, const Value *RHS,
6260                                              const Instruction *ContextI,
6261                                              const DataLayout &DL) {
6262   auto PredCond = getDomPredecessorCondition(ContextI);
6263   if (PredCond.first)
6264     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6265                               PredCond.second);
6266   return None;
6267 }
6268 
setLimitsForBinOp(const BinaryOperator & BO,APInt & Lower,APInt & Upper,const InstrInfoQuery & IIQ)6269 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6270                               APInt &Upper, const InstrInfoQuery &IIQ) {
6271   unsigned Width = Lower.getBitWidth();
6272   const APInt *C;
6273   switch (BO.getOpcode()) {
6274   case Instruction::Add:
6275     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6276       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6277       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6278         // 'add nuw x, C' produces [C, UINT_MAX].
6279         Lower = *C;
6280       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6281         if (C->isNegative()) {
6282           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6283           Lower = APInt::getSignedMinValue(Width);
6284           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6285         } else {
6286           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6287           Lower = APInt::getSignedMinValue(Width) + *C;
6288           Upper = APInt::getSignedMaxValue(Width) + 1;
6289         }
6290       }
6291     }
6292     break;
6293 
6294   case Instruction::And:
6295     if (match(BO.getOperand(1), m_APInt(C)))
6296       // 'and x, C' produces [0, C].
6297       Upper = *C + 1;
6298     break;
6299 
6300   case Instruction::Or:
6301     if (match(BO.getOperand(1), m_APInt(C)))
6302       // 'or x, C' produces [C, UINT_MAX].
6303       Lower = *C;
6304     break;
6305 
6306   case Instruction::AShr:
6307     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6308       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6309       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6310       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6311     } else if (match(BO.getOperand(0), m_APInt(C))) {
6312       unsigned ShiftAmount = Width - 1;
6313       if (!C->isNullValue() && IIQ.isExact(&BO))
6314         ShiftAmount = C->countTrailingZeros();
6315       if (C->isNegative()) {
6316         // 'ashr C, x' produces [C, C >> (Width-1)]
6317         Lower = *C;
6318         Upper = C->ashr(ShiftAmount) + 1;
6319       } else {
6320         // 'ashr C, x' produces [C >> (Width-1), C]
6321         Lower = C->ashr(ShiftAmount);
6322         Upper = *C + 1;
6323       }
6324     }
6325     break;
6326 
6327   case Instruction::LShr:
6328     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6329       // 'lshr x, C' produces [0, UINT_MAX >> C].
6330       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6331     } else if (match(BO.getOperand(0), m_APInt(C))) {
6332       // 'lshr C, x' produces [C >> (Width-1), C].
6333       unsigned ShiftAmount = Width - 1;
6334       if (!C->isNullValue() && IIQ.isExact(&BO))
6335         ShiftAmount = C->countTrailingZeros();
6336       Lower = C->lshr(ShiftAmount);
6337       Upper = *C + 1;
6338     }
6339     break;
6340 
6341   case Instruction::Shl:
6342     if (match(BO.getOperand(0), m_APInt(C))) {
6343       if (IIQ.hasNoUnsignedWrap(&BO)) {
6344         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6345         Lower = *C;
6346         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6347       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6348         if (C->isNegative()) {
6349           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6350           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6351           Lower = C->shl(ShiftAmount);
6352           Upper = *C + 1;
6353         } else {
6354           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6355           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6356           Lower = *C;
6357           Upper = C->shl(ShiftAmount) + 1;
6358         }
6359       }
6360     }
6361     break;
6362 
6363   case Instruction::SDiv:
6364     if (match(BO.getOperand(1), m_APInt(C))) {
6365       APInt IntMin = APInt::getSignedMinValue(Width);
6366       APInt IntMax = APInt::getSignedMaxValue(Width);
6367       if (C->isAllOnesValue()) {
6368         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6369         //    where C != -1 and C != 0 and C != 1
6370         Lower = IntMin + 1;
6371         Upper = IntMax + 1;
6372       } else if (C->countLeadingZeros() < Width - 1) {
6373         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6374         //    where C != -1 and C != 0 and C != 1
6375         Lower = IntMin.sdiv(*C);
6376         Upper = IntMax.sdiv(*C);
6377         if (Lower.sgt(Upper))
6378           std::swap(Lower, Upper);
6379         Upper = Upper + 1;
6380         assert(Upper != Lower && "Upper part of range has wrapped!");
6381       }
6382     } else if (match(BO.getOperand(0), m_APInt(C))) {
6383       if (C->isMinSignedValue()) {
6384         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6385         Lower = *C;
6386         Upper = Lower.lshr(1) + 1;
6387       } else {
6388         // 'sdiv C, x' produces [-|C|, |C|].
6389         Upper = C->abs() + 1;
6390         Lower = (-Upper) + 1;
6391       }
6392     }
6393     break;
6394 
6395   case Instruction::UDiv:
6396     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6397       // 'udiv x, C' produces [0, UINT_MAX / C].
6398       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6399     } else if (match(BO.getOperand(0), m_APInt(C))) {
6400       // 'udiv C, x' produces [0, C].
6401       Upper = *C + 1;
6402     }
6403     break;
6404 
6405   case Instruction::SRem:
6406     if (match(BO.getOperand(1), m_APInt(C))) {
6407       // 'srem x, C' produces (-|C|, |C|).
6408       Upper = C->abs();
6409       Lower = (-Upper) + 1;
6410     }
6411     break;
6412 
6413   case Instruction::URem:
6414     if (match(BO.getOperand(1), m_APInt(C)))
6415       // 'urem x, C' produces [0, C).
6416       Upper = *C;
6417     break;
6418 
6419   default:
6420     break;
6421   }
6422 }
6423 
setLimitsForIntrinsic(const IntrinsicInst & II,APInt & Lower,APInt & Upper)6424 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6425                                   APInt &Upper) {
6426   unsigned Width = Lower.getBitWidth();
6427   const APInt *C;
6428   switch (II.getIntrinsicID()) {
6429   case Intrinsic::uadd_sat:
6430     // uadd.sat(x, C) produces [C, UINT_MAX].
6431     if (match(II.getOperand(0), m_APInt(C)) ||
6432         match(II.getOperand(1), m_APInt(C)))
6433       Lower = *C;
6434     break;
6435   case Intrinsic::sadd_sat:
6436     if (match(II.getOperand(0), m_APInt(C)) ||
6437         match(II.getOperand(1), m_APInt(C))) {
6438       if (C->isNegative()) {
6439         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6440         Lower = APInt::getSignedMinValue(Width);
6441         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6442       } else {
6443         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6444         Lower = APInt::getSignedMinValue(Width) + *C;
6445         Upper = APInt::getSignedMaxValue(Width) + 1;
6446       }
6447     }
6448     break;
6449   case Intrinsic::usub_sat:
6450     // usub.sat(C, x) produces [0, C].
6451     if (match(II.getOperand(0), m_APInt(C)))
6452       Upper = *C + 1;
6453     // usub.sat(x, C) produces [0, UINT_MAX - C].
6454     else if (match(II.getOperand(1), m_APInt(C)))
6455       Upper = APInt::getMaxValue(Width) - *C + 1;
6456     break;
6457   case Intrinsic::ssub_sat:
6458     if (match(II.getOperand(0), m_APInt(C))) {
6459       if (C->isNegative()) {
6460         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6461         Lower = APInt::getSignedMinValue(Width);
6462         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6463       } else {
6464         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6465         Lower = *C - APInt::getSignedMaxValue(Width);
6466         Upper = APInt::getSignedMaxValue(Width) + 1;
6467       }
6468     } else if (match(II.getOperand(1), m_APInt(C))) {
6469       if (C->isNegative()) {
6470         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6471         Lower = APInt::getSignedMinValue(Width) - *C;
6472         Upper = APInt::getSignedMaxValue(Width) + 1;
6473       } else {
6474         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6475         Lower = APInt::getSignedMinValue(Width);
6476         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6477       }
6478     }
6479     break;
6480   default:
6481     break;
6482   }
6483 }
6484 
setLimitsForSelectPattern(const SelectInst & SI,APInt & Lower,APInt & Upper,const InstrInfoQuery & IIQ)6485 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6486                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6487   const Value *LHS = nullptr, *RHS = nullptr;
6488   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6489   if (R.Flavor == SPF_UNKNOWN)
6490     return;
6491 
6492   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6493 
6494   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6495     // If the negation part of the abs (in RHS) has the NSW flag,
6496     // then the result of abs(X) is [0..SIGNED_MAX],
6497     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6498     Lower = APInt::getNullValue(BitWidth);
6499     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6500         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6501       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6502     else
6503       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6504     return;
6505   }
6506 
6507   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6508     // The result of -abs(X) is <= 0.
6509     Lower = APInt::getSignedMinValue(BitWidth);
6510     Upper = APInt(BitWidth, 1);
6511     return;
6512   }
6513 
6514   const APInt *C;
6515   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6516     return;
6517 
6518   switch (R.Flavor) {
6519     case SPF_UMIN:
6520       Upper = *C + 1;
6521       break;
6522     case SPF_UMAX:
6523       Lower = *C;
6524       break;
6525     case SPF_SMIN:
6526       Lower = APInt::getSignedMinValue(BitWidth);
6527       Upper = *C + 1;
6528       break;
6529     case SPF_SMAX:
6530       Lower = *C;
6531       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6532       break;
6533     default:
6534       break;
6535   }
6536 }
6537 
computeConstantRange(const Value * V,bool UseInstrInfo,AssumptionCache * AC,const Instruction * CtxI,unsigned Depth)6538 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6539                                          AssumptionCache *AC,
6540                                          const Instruction *CtxI,
6541                                          unsigned Depth) {
6542   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6543 
6544   if (Depth == MaxDepth)
6545     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6546 
6547   const APInt *C;
6548   if (match(V, m_APInt(C)))
6549     return ConstantRange(*C);
6550 
6551   InstrInfoQuery IIQ(UseInstrInfo);
6552   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6553   APInt Lower = APInt(BitWidth, 0);
6554   APInt Upper = APInt(BitWidth, 0);
6555   if (auto *BO = dyn_cast<BinaryOperator>(V))
6556     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6557   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6558     setLimitsForIntrinsic(*II, Lower, Upper);
6559   else if (auto *SI = dyn_cast<SelectInst>(V))
6560     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6561 
6562   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6563 
6564   if (auto *I = dyn_cast<Instruction>(V))
6565     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6566       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6567 
6568   if (CtxI && AC) {
6569     // Try to restrict the range based on information from assumptions.
6570     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6571       if (!AssumeVH)
6572         continue;
6573       CallInst *I = cast<CallInst>(AssumeVH);
6574       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6575              "Got assumption for the wrong function!");
6576       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6577              "must be an assume intrinsic");
6578 
6579       if (!isValidAssumeForContext(I, CtxI, nullptr))
6580         continue;
6581       Value *Arg = I->getArgOperand(0);
6582       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6583       // Currently we just use information from comparisons.
6584       if (!Cmp || Cmp->getOperand(0) != V)
6585         continue;
6586       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6587                                                AC, I, Depth + 1);
6588       CR = CR.intersectWith(
6589           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6590     }
6591   }
6592 
6593   return CR;
6594 }
6595 
6596 static Optional<int64_t>
getOffsetFromIndex(const GEPOperator * GEP,unsigned Idx,const DataLayout & DL)6597 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6598   // Skip over the first indices.
6599   gep_type_iterator GTI = gep_type_begin(GEP);
6600   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6601     /*skip along*/;
6602 
6603   // Compute the offset implied by the rest of the indices.
6604   int64_t Offset = 0;
6605   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6606     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6607     if (!OpC)
6608       return None;
6609     if (OpC->isZero())
6610       continue; // No offset.
6611 
6612     // Handle struct indices, which add their field offset to the pointer.
6613     if (StructType *STy = GTI.getStructTypeOrNull()) {
6614       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6615       continue;
6616     }
6617 
6618     // Otherwise, we have a sequential type like an array or fixed-length
6619     // vector. Multiply the index by the ElementSize.
6620     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6621     if (Size.isScalable())
6622       return None;
6623     Offset += Size.getFixedSize() * OpC->getSExtValue();
6624   }
6625 
6626   return Offset;
6627 }
6628 
isPointerOffset(const Value * Ptr1,const Value * Ptr2,const DataLayout & DL)6629 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6630                                         const DataLayout &DL) {
6631   Ptr1 = Ptr1->stripPointerCasts();
6632   Ptr2 = Ptr2->stripPointerCasts();
6633 
6634   // Handle the trivial case first.
6635   if (Ptr1 == Ptr2) {
6636     return 0;
6637   }
6638 
6639   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6640   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6641 
6642   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6643   // as in "P" and "gep P, 1".
6644   // Also do this iteratively to handle the the following case:
6645   //   Ptr_t1 = GEP Ptr1, c1
6646   //   Ptr_t2 = GEP Ptr_t1, c2
6647   //   Ptr2 = GEP Ptr_t2, c3
6648   // where we will return c1+c2+c3.
6649   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6650   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6651   // are the same, and return the difference between offsets.
6652   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6653                                  const Value *Ptr) -> Optional<int64_t> {
6654     const GEPOperator *GEP_T = GEP;
6655     int64_t OffsetVal = 0;
6656     bool HasSameBase = false;
6657     while (GEP_T) {
6658       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6659       if (!Offset)
6660         return None;
6661       OffsetVal += *Offset;
6662       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6663       if (Op0 == Ptr) {
6664         HasSameBase = true;
6665         break;
6666       }
6667       GEP_T = dyn_cast<GEPOperator>(Op0);
6668     }
6669     if (!HasSameBase)
6670       return None;
6671     return OffsetVal;
6672   };
6673 
6674   if (GEP1) {
6675     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6676     if (Offset)
6677       return -*Offset;
6678   }
6679   if (GEP2) {
6680     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6681     if (Offset)
6682       return Offset;
6683   }
6684 
6685   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6686   // base.  After that base, they may have some number of common (and
6687   // potentially variable) indices.  After that they handle some constant
6688   // offset, which determines their offset from each other.  At this point, we
6689   // handle no other case.
6690   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6691     return None;
6692 
6693   // Skip any common indices and track the GEP types.
6694   unsigned Idx = 1;
6695   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6696     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6697       break;
6698 
6699   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6700   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6701   if (!Offset1 || !Offset2)
6702     return None;
6703   return *Offset2 - *Offset1;
6704 }
6705