1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 
34 using namespace llvm;
35 using namespace PatternMatch;
36 
37 //===----------------------------------------------------------------------===//
38 //                              Constant Class
39 //===----------------------------------------------------------------------===//
40 
isNegativeZeroValue() const41 bool Constant::isNegativeZeroValue() const {
42   // Floating point values have an explicit -0.0 value.
43   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
44     return CFP->isZero() && CFP->isNegative();
45 
46   // Equivalent for a vector of -0.0's.
47   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
48     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
49       if (CV->getElementAsAPFloat(0).isNegZero())
50         return true;
51 
52   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
53     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
54       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
55         return true;
56 
57   // We've already handled true FP case; any other FP vectors can't represent -0.0.
58   if (getType()->isFPOrFPVectorTy())
59     return false;
60 
61   // Otherwise, just use +0.0.
62   return isNullValue();
63 }
64 
65 // Return true iff this constant is positive zero (floating point), negative
66 // zero (floating point), or a null value.
isZeroValue() const67 bool Constant::isZeroValue() const {
68   // Floating point values have an explicit -0.0 value.
69   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
70     return CFP->isZero();
71 
72   // Equivalent for a vector of -0.0's.
73   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
74     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
75       if (CV->getElementAsAPFloat(0).isZero())
76         return true;
77 
78   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
79     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
80       if (SplatCFP && SplatCFP->isZero())
81         return true;
82 
83   // Otherwise, just use +0.0.
84   return isNullValue();
85 }
86 
isNullValue() const87 bool Constant::isNullValue() const {
88   // 0 is null.
89   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
90     return CI->isZero();
91 
92   // +0.0 is null.
93   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
94     return CFP->isZero() && !CFP->isNegative();
95 
96   // constant zero is zero for aggregates, cpnull is null for pointers, none for
97   // tokens.
98   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
99          isa<ConstantTokenNone>(this);
100 }
101 
isAllOnesValue() const102 bool Constant::isAllOnesValue() const {
103   // Check for -1 integers
104   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
105     return CI->isMinusOne();
106 
107   // Check for FP which are bitcasted from -1 integers
108   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
109     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
110 
111   // Check for constant vectors which are splats of -1 values.
112   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
113     if (Constant *Splat = CV->getSplatValue())
114       return Splat->isAllOnesValue();
115 
116   // Check for constant vectors which are splats of -1 values.
117   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
118     if (CV->isSplat()) {
119       if (CV->getElementType()->isFloatingPointTy())
120         return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
121       return CV->getElementAsAPInt(0).isAllOnesValue();
122     }
123   }
124 
125   return false;
126 }
127 
isOneValue() const128 bool Constant::isOneValue() const {
129   // Check for 1 integers
130   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
131     return CI->isOne();
132 
133   // Check for FP which are bitcasted from 1 integers
134   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
135     return CFP->getValueAPF().bitcastToAPInt().isOneValue();
136 
137   // Check for constant vectors which are splats of 1 values.
138   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
139     if (Constant *Splat = CV->getSplatValue())
140       return Splat->isOneValue();
141 
142   // Check for constant vectors which are splats of 1 values.
143   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
144     if (CV->isSplat()) {
145       if (CV->getElementType()->isFloatingPointTy())
146         return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
147       return CV->getElementAsAPInt(0).isOneValue();
148     }
149   }
150 
151   return false;
152 }
153 
isNotOneValue() const154 bool Constant::isNotOneValue() const {
155   // Check for 1 integers
156   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
157     return !CI->isOneValue();
158 
159   // Check for FP which are bitcasted from 1 integers
160   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
161     return !CFP->getValueAPF().bitcastToAPInt().isOneValue();
162 
163   // Check that vectors don't contain 1
164   if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
165     unsigned NumElts = VTy->getNumElements();
166     for (unsigned i = 0; i != NumElts; ++i) {
167       Constant *Elt = this->getAggregateElement(i);
168       if (!Elt || !Elt->isNotOneValue())
169         return false;
170     }
171     return true;
172   }
173 
174   // It *may* contain 1, we can't tell.
175   return false;
176 }
177 
isMinSignedValue() const178 bool Constant::isMinSignedValue() const {
179   // Check for INT_MIN integers
180   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
181     return CI->isMinValue(/*isSigned=*/true);
182 
183   // Check for FP which are bitcasted from INT_MIN integers
184   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
185     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
186 
187   // Check for constant vectors which are splats of INT_MIN values.
188   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
189     if (Constant *Splat = CV->getSplatValue())
190       return Splat->isMinSignedValue();
191 
192   // Check for constant vectors which are splats of INT_MIN values.
193   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
194     if (CV->isSplat()) {
195       if (CV->getElementType()->isFloatingPointTy())
196         return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
197       return CV->getElementAsAPInt(0).isMinSignedValue();
198     }
199   }
200 
201   return false;
202 }
203 
isNotMinSignedValue() const204 bool Constant::isNotMinSignedValue() const {
205   // Check for INT_MIN integers
206   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
207     return !CI->isMinValue(/*isSigned=*/true);
208 
209   // Check for FP which are bitcasted from INT_MIN integers
210   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
211     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
212 
213   // Check that vectors don't contain INT_MIN
214   if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
215     unsigned NumElts = VTy->getNumElements();
216     for (unsigned i = 0; i != NumElts; ++i) {
217       Constant *Elt = this->getAggregateElement(i);
218       if (!Elt || !Elt->isNotMinSignedValue())
219         return false;
220     }
221     return true;
222   }
223 
224   // It *may* contain INT_MIN, we can't tell.
225   return false;
226 }
227 
isFiniteNonZeroFP() const228 bool Constant::isFiniteNonZeroFP() const {
229   if (auto *CFP = dyn_cast<ConstantFP>(this))
230     return CFP->getValueAPF().isFiniteNonZero();
231   auto *VTy = dyn_cast<VectorType>(getType());
232   if (!VTy)
233     return false;
234   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
235     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
236     if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
237       return false;
238   }
239   return true;
240 }
241 
isNormalFP() const242 bool Constant::isNormalFP() const {
243   if (auto *CFP = dyn_cast<ConstantFP>(this))
244     return CFP->getValueAPF().isNormal();
245   auto *VTy = dyn_cast<FixedVectorType>(getType());
246   if (!VTy)
247     return false;
248   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
249     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
250     if (!CFP || !CFP->getValueAPF().isNormal())
251       return false;
252   }
253   return true;
254 }
255 
hasExactInverseFP() const256 bool Constant::hasExactInverseFP() const {
257   if (auto *CFP = dyn_cast<ConstantFP>(this))
258     return CFP->getValueAPF().getExactInverse(nullptr);
259   auto *VTy = dyn_cast<FixedVectorType>(getType());
260   if (!VTy)
261     return false;
262   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
263     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
264     if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
265       return false;
266   }
267   return true;
268 }
269 
isNaN() const270 bool Constant::isNaN() const {
271   if (auto *CFP = dyn_cast<ConstantFP>(this))
272     return CFP->isNaN();
273   auto *VTy = dyn_cast<FixedVectorType>(getType());
274   if (!VTy)
275     return false;
276   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
277     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
278     if (!CFP || !CFP->isNaN())
279       return false;
280   }
281   return true;
282 }
283 
isElementWiseEqual(Value * Y) const284 bool Constant::isElementWiseEqual(Value *Y) const {
285   // Are they fully identical?
286   if (this == Y)
287     return true;
288 
289   // The input value must be a vector constant with the same type.
290   auto *VTy = dyn_cast<VectorType>(getType());
291   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
292     return false;
293 
294   // TODO: Compare pointer constants?
295   if (!(VTy->getElementType()->isIntegerTy() ||
296         VTy->getElementType()->isFloatingPointTy()))
297     return false;
298 
299   // They may still be identical element-wise (if they have `undef`s).
300   // Bitcast to integer to allow exact bitwise comparison for all types.
301   Type *IntTy = VectorType::getInteger(VTy);
302   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
303   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
304   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
305   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
306 }
307 
containsUndefElement() const308 bool Constant::containsUndefElement() const {
309   if (auto *VTy = dyn_cast<VectorType>(getType())) {
310     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
311       if (isa<UndefValue>(getAggregateElement(i)))
312         return true;
313   }
314 
315   return false;
316 }
317 
containsConstantExpression() const318 bool Constant::containsConstantExpression() const {
319   if (auto *VTy = dyn_cast<VectorType>(getType())) {
320     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
321       if (isa<ConstantExpr>(getAggregateElement(i)))
322         return true;
323   }
324 
325   return false;
326 }
327 
328 /// Constructor to create a '0' constant of arbitrary type.
getNullValue(Type * Ty)329 Constant *Constant::getNullValue(Type *Ty) {
330   switch (Ty->getTypeID()) {
331   case Type::IntegerTyID:
332     return ConstantInt::get(Ty, 0);
333   case Type::HalfTyID:
334     return ConstantFP::get(Ty->getContext(),
335                            APFloat::getZero(APFloat::IEEEhalf()));
336   case Type::BFloatTyID:
337     return ConstantFP::get(Ty->getContext(),
338                            APFloat::getZero(APFloat::BFloat()));
339   case Type::FloatTyID:
340     return ConstantFP::get(Ty->getContext(),
341                            APFloat::getZero(APFloat::IEEEsingle()));
342   case Type::DoubleTyID:
343     return ConstantFP::get(Ty->getContext(),
344                            APFloat::getZero(APFloat::IEEEdouble()));
345   case Type::X86_FP80TyID:
346     return ConstantFP::get(Ty->getContext(),
347                            APFloat::getZero(APFloat::x87DoubleExtended()));
348   case Type::FP128TyID:
349     return ConstantFP::get(Ty->getContext(),
350                            APFloat::getZero(APFloat::IEEEquad()));
351   case Type::PPC_FP128TyID:
352     return ConstantFP::get(Ty->getContext(),
353                            APFloat(APFloat::PPCDoubleDouble(),
354                                    APInt::getNullValue(128)));
355   case Type::PointerTyID:
356     return ConstantPointerNull::get(cast<PointerType>(Ty));
357   case Type::StructTyID:
358   case Type::ArrayTyID:
359   case Type::FixedVectorTyID:
360   case Type::ScalableVectorTyID:
361     return ConstantAggregateZero::get(Ty);
362   case Type::TokenTyID:
363     return ConstantTokenNone::get(Ty->getContext());
364   default:
365     // Function, Label, or Opaque type?
366     llvm_unreachable("Cannot create a null constant of that type!");
367   }
368 }
369 
getIntegerValue(Type * Ty,const APInt & V)370 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
371   Type *ScalarTy = Ty->getScalarType();
372 
373   // Create the base integer constant.
374   Constant *C = ConstantInt::get(Ty->getContext(), V);
375 
376   // Convert an integer to a pointer, if necessary.
377   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
378     C = ConstantExpr::getIntToPtr(C, PTy);
379 
380   // Broadcast a scalar to a vector, if necessary.
381   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
382     C = ConstantVector::getSplat(VTy->getElementCount(), C);
383 
384   return C;
385 }
386 
getAllOnesValue(Type * Ty)387 Constant *Constant::getAllOnesValue(Type *Ty) {
388   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
389     return ConstantInt::get(Ty->getContext(),
390                             APInt::getAllOnesValue(ITy->getBitWidth()));
391 
392   if (Ty->isFloatingPointTy()) {
393     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(),
394                                           Ty->getPrimitiveSizeInBits());
395     return ConstantFP::get(Ty->getContext(), FL);
396   }
397 
398   VectorType *VTy = cast<VectorType>(Ty);
399   return ConstantVector::getSplat(VTy->getElementCount(),
400                                   getAllOnesValue(VTy->getElementType()));
401 }
402 
getAggregateElement(unsigned Elt) const403 Constant *Constant::getAggregateElement(unsigned Elt) const {
404   if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
405     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
406 
407   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
408     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
409 
410   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
411     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
412 
413   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
414     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
415                                        : nullptr;
416   return nullptr;
417 }
418 
getAggregateElement(Constant * Elt) const419 Constant *Constant::getAggregateElement(Constant *Elt) const {
420   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
421   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
422     // Check if the constant fits into an uint64_t.
423     if (CI->getValue().getActiveBits() > 64)
424       return nullptr;
425     return getAggregateElement(CI->getZExtValue());
426   }
427   return nullptr;
428 }
429 
destroyConstant()430 void Constant::destroyConstant() {
431   /// First call destroyConstantImpl on the subclass.  This gives the subclass
432   /// a chance to remove the constant from any maps/pools it's contained in.
433   switch (getValueID()) {
434   default:
435     llvm_unreachable("Not a constant!");
436 #define HANDLE_CONSTANT(Name)                                                  \
437   case Value::Name##Val:                                                       \
438     cast<Name>(this)->destroyConstantImpl();                                   \
439     break;
440 #include "llvm/IR/Value.def"
441   }
442 
443   // When a Constant is destroyed, there may be lingering
444   // references to the constant by other constants in the constant pool.  These
445   // constants are implicitly dependent on the module that is being deleted,
446   // but they don't know that.  Because we only find out when the CPV is
447   // deleted, we must now notify all of our users (that should only be
448   // Constants) that they are, in fact, invalid now and should be deleted.
449   //
450   while (!use_empty()) {
451     Value *V = user_back();
452 #ifndef NDEBUG // Only in -g mode...
453     if (!isa<Constant>(V)) {
454       dbgs() << "While deleting: " << *this
455              << "\n\nUse still stuck around after Def is destroyed: " << *V
456              << "\n\n";
457     }
458 #endif
459     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
460     cast<Constant>(V)->destroyConstant();
461 
462     // The constant should remove itself from our use list...
463     assert((use_empty() || user_back() != V) && "Constant not removed!");
464   }
465 
466   // Value has no outstanding references it is safe to delete it now...
467   deleteConstant(this);
468 }
469 
deleteConstant(Constant * C)470 void llvm::deleteConstant(Constant *C) {
471   switch (C->getValueID()) {
472   case Constant::ConstantIntVal:
473     delete static_cast<ConstantInt *>(C);
474     break;
475   case Constant::ConstantFPVal:
476     delete static_cast<ConstantFP *>(C);
477     break;
478   case Constant::ConstantAggregateZeroVal:
479     delete static_cast<ConstantAggregateZero *>(C);
480     break;
481   case Constant::ConstantArrayVal:
482     delete static_cast<ConstantArray *>(C);
483     break;
484   case Constant::ConstantStructVal:
485     delete static_cast<ConstantStruct *>(C);
486     break;
487   case Constant::ConstantVectorVal:
488     delete static_cast<ConstantVector *>(C);
489     break;
490   case Constant::ConstantPointerNullVal:
491     delete static_cast<ConstantPointerNull *>(C);
492     break;
493   case Constant::ConstantDataArrayVal:
494     delete static_cast<ConstantDataArray *>(C);
495     break;
496   case Constant::ConstantDataVectorVal:
497     delete static_cast<ConstantDataVector *>(C);
498     break;
499   case Constant::ConstantTokenNoneVal:
500     delete static_cast<ConstantTokenNone *>(C);
501     break;
502   case Constant::BlockAddressVal:
503     delete static_cast<BlockAddress *>(C);
504     break;
505   case Constant::UndefValueVal:
506     delete static_cast<UndefValue *>(C);
507     break;
508   case Constant::ConstantExprVal:
509     if (isa<UnaryConstantExpr>(C))
510       delete static_cast<UnaryConstantExpr *>(C);
511     else if (isa<BinaryConstantExpr>(C))
512       delete static_cast<BinaryConstantExpr *>(C);
513     else if (isa<SelectConstantExpr>(C))
514       delete static_cast<SelectConstantExpr *>(C);
515     else if (isa<ExtractElementConstantExpr>(C))
516       delete static_cast<ExtractElementConstantExpr *>(C);
517     else if (isa<InsertElementConstantExpr>(C))
518       delete static_cast<InsertElementConstantExpr *>(C);
519     else if (isa<ShuffleVectorConstantExpr>(C))
520       delete static_cast<ShuffleVectorConstantExpr *>(C);
521     else if (isa<ExtractValueConstantExpr>(C))
522       delete static_cast<ExtractValueConstantExpr *>(C);
523     else if (isa<InsertValueConstantExpr>(C))
524       delete static_cast<InsertValueConstantExpr *>(C);
525     else if (isa<GetElementPtrConstantExpr>(C))
526       delete static_cast<GetElementPtrConstantExpr *>(C);
527     else if (isa<CompareConstantExpr>(C))
528       delete static_cast<CompareConstantExpr *>(C);
529     else
530       llvm_unreachable("Unexpected constant expr");
531     break;
532   default:
533     llvm_unreachable("Unexpected constant");
534   }
535 }
536 
canTrapImpl(const Constant * C,SmallPtrSetImpl<const ConstantExpr * > & NonTrappingOps)537 static bool canTrapImpl(const Constant *C,
538                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
539   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
540   // The only thing that could possibly trap are constant exprs.
541   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
542   if (!CE)
543     return false;
544 
545   // ConstantExpr traps if any operands can trap.
546   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
547     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
548       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
549         return true;
550     }
551   }
552 
553   // Otherwise, only specific operations can trap.
554   switch (CE->getOpcode()) {
555   default:
556     return false;
557   case Instruction::UDiv:
558   case Instruction::SDiv:
559   case Instruction::URem:
560   case Instruction::SRem:
561     // Div and rem can trap if the RHS is not known to be non-zero.
562     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
563       return true;
564     return false;
565   }
566 }
567 
canTrap() const568 bool Constant::canTrap() const {
569   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
570   return canTrapImpl(this, NonTrappingOps);
571 }
572 
573 /// Check if C contains a GlobalValue for which Predicate is true.
574 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))575 ConstHasGlobalValuePredicate(const Constant *C,
576                              bool (*Predicate)(const GlobalValue *)) {
577   SmallPtrSet<const Constant *, 8> Visited;
578   SmallVector<const Constant *, 8> WorkList;
579   WorkList.push_back(C);
580   Visited.insert(C);
581 
582   while (!WorkList.empty()) {
583     const Constant *WorkItem = WorkList.pop_back_val();
584     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
585       if (Predicate(GV))
586         return true;
587     for (const Value *Op : WorkItem->operands()) {
588       const Constant *ConstOp = dyn_cast<Constant>(Op);
589       if (!ConstOp)
590         continue;
591       if (Visited.insert(ConstOp).second)
592         WorkList.push_back(ConstOp);
593     }
594   }
595   return false;
596 }
597 
isThreadDependent() const598 bool Constant::isThreadDependent() const {
599   auto DLLImportPredicate = [](const GlobalValue *GV) {
600     return GV->isThreadLocal();
601   };
602   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
603 }
604 
isDLLImportDependent() const605 bool Constant::isDLLImportDependent() const {
606   auto DLLImportPredicate = [](const GlobalValue *GV) {
607     return GV->hasDLLImportStorageClass();
608   };
609   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
610 }
611 
isConstantUsed() const612 bool Constant::isConstantUsed() const {
613   for (const User *U : users()) {
614     const Constant *UC = dyn_cast<Constant>(U);
615     if (!UC || isa<GlobalValue>(UC))
616       return true;
617 
618     if (UC->isConstantUsed())
619       return true;
620   }
621   return false;
622 }
623 
needsRelocation() const624 bool Constant::needsRelocation() const {
625   if (isa<GlobalValue>(this))
626     return true; // Global reference.
627 
628   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
629     return BA->getFunction()->needsRelocation();
630 
631   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
632     if (CE->getOpcode() == Instruction::Sub) {
633       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
634       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
635       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
636           RHS->getOpcode() == Instruction::PtrToInt) {
637         Constant *LHSOp0 = LHS->getOperand(0);
638         Constant *RHSOp0 = RHS->getOperand(0);
639 
640         // While raw uses of blockaddress need to be relocated, differences
641         // between two of them don't when they are for labels in the same
642         // function.  This is a common idiom when creating a table for the
643         // indirect goto extension, so we handle it efficiently here.
644         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
645             cast<BlockAddress>(LHSOp0)->getFunction() ==
646                 cast<BlockAddress>(RHSOp0)->getFunction())
647           return false;
648 
649         // Relative pointers do not need to be dynamically relocated.
650         if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts()))
651           if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts()))
652             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
653               return false;
654       }
655     }
656   }
657 
658   bool Result = false;
659   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
660     Result |= cast<Constant>(getOperand(i))->needsRelocation();
661 
662   return Result;
663 }
664 
665 /// If the specified constantexpr is dead, remove it. This involves recursively
666 /// eliminating any dead users of the constantexpr.
removeDeadUsersOfConstant(const Constant * C)667 static bool removeDeadUsersOfConstant(const Constant *C) {
668   if (isa<GlobalValue>(C)) return false; // Cannot remove this
669 
670   while (!C->use_empty()) {
671     const Constant *User = dyn_cast<Constant>(C->user_back());
672     if (!User) return false; // Non-constant usage;
673     if (!removeDeadUsersOfConstant(User))
674       return false; // Constant wasn't dead
675   }
676 
677   const_cast<Constant*>(C)->destroyConstant();
678   return true;
679 }
680 
681 
removeDeadConstantUsers() const682 void Constant::removeDeadConstantUsers() const {
683   Value::const_user_iterator I = user_begin(), E = user_end();
684   Value::const_user_iterator LastNonDeadUser = E;
685   while (I != E) {
686     const Constant *User = dyn_cast<Constant>(*I);
687     if (!User) {
688       LastNonDeadUser = I;
689       ++I;
690       continue;
691     }
692 
693     if (!removeDeadUsersOfConstant(User)) {
694       // If the constant wasn't dead, remember that this was the last live use
695       // and move on to the next constant.
696       LastNonDeadUser = I;
697       ++I;
698       continue;
699     }
700 
701     // If the constant was dead, then the iterator is invalidated.
702     if (LastNonDeadUser == E)
703       I = user_begin();
704     else
705       I = std::next(LastNonDeadUser);
706   }
707 }
708 
replaceUndefsWith(Constant * C,Constant * Replacement)709 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
710   assert(C && Replacement && "Expected non-nullptr constant arguments");
711   Type *Ty = C->getType();
712   if (match(C, m_Undef())) {
713     assert(Ty == Replacement->getType() && "Expected matching types");
714     return Replacement;
715   }
716 
717   // Don't know how to deal with this constant.
718   auto *VTy = dyn_cast<FixedVectorType>(Ty);
719   if (!VTy)
720     return C;
721 
722   unsigned NumElts = VTy->getNumElements();
723   SmallVector<Constant *, 32> NewC(NumElts);
724   for (unsigned i = 0; i != NumElts; ++i) {
725     Constant *EltC = C->getAggregateElement(i);
726     assert((!EltC || EltC->getType() == Replacement->getType()) &&
727            "Expected matching types");
728     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
729   }
730   return ConstantVector::get(NewC);
731 }
732 
733 
734 //===----------------------------------------------------------------------===//
735 //                                ConstantInt
736 //===----------------------------------------------------------------------===//
737 
ConstantInt(IntegerType * Ty,const APInt & V)738 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
739     : ConstantData(Ty, ConstantIntVal), Val(V) {
740   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
741 }
742 
getTrue(LLVMContext & Context)743 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
744   LLVMContextImpl *pImpl = Context.pImpl;
745   if (!pImpl->TheTrueVal)
746     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
747   return pImpl->TheTrueVal;
748 }
749 
getFalse(LLVMContext & Context)750 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
751   LLVMContextImpl *pImpl = Context.pImpl;
752   if (!pImpl->TheFalseVal)
753     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
754   return pImpl->TheFalseVal;
755 }
756 
getTrue(Type * Ty)757 Constant *ConstantInt::getTrue(Type *Ty) {
758   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
759   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
760   if (auto *VTy = dyn_cast<VectorType>(Ty))
761     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
762   return TrueC;
763 }
764 
getFalse(Type * Ty)765 Constant *ConstantInt::getFalse(Type *Ty) {
766   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
767   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
768   if (auto *VTy = dyn_cast<VectorType>(Ty))
769     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
770   return FalseC;
771 }
772 
773 // Get a ConstantInt from an APInt.
get(LLVMContext & Context,const APInt & V)774 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
775   // get an existing value or the insertion position
776   LLVMContextImpl *pImpl = Context.pImpl;
777   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
778   if (!Slot) {
779     // Get the corresponding integer type for the bit width of the value.
780     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
781     Slot.reset(new ConstantInt(ITy, V));
782   }
783   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
784   return Slot.get();
785 }
786 
get(Type * Ty,uint64_t V,bool isSigned)787 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
788   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
789 
790   // For vectors, broadcast the value.
791   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
792     return ConstantVector::getSplat(VTy->getElementCount(), C);
793 
794   return C;
795 }
796 
get(IntegerType * Ty,uint64_t V,bool isSigned)797 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
798   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
799 }
800 
getSigned(IntegerType * Ty,int64_t V)801 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
802   return get(Ty, V, true);
803 }
804 
getSigned(Type * Ty,int64_t V)805 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
806   return get(Ty, V, true);
807 }
808 
get(Type * Ty,const APInt & V)809 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
810   ConstantInt *C = get(Ty->getContext(), V);
811   assert(C->getType() == Ty->getScalarType() &&
812          "ConstantInt type doesn't match the type implied by its value!");
813 
814   // For vectors, broadcast the value.
815   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
816     return ConstantVector::getSplat(VTy->getElementCount(), C);
817 
818   return C;
819 }
820 
get(IntegerType * Ty,StringRef Str,uint8_t radix)821 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
822   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
823 }
824 
825 /// Remove the constant from the constant table.
destroyConstantImpl()826 void ConstantInt::destroyConstantImpl() {
827   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
828 }
829 
830 //===----------------------------------------------------------------------===//
831 //                                ConstantFP
832 //===----------------------------------------------------------------------===//
833 
TypeToFloatSemantics(Type * Ty)834 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
835   if (Ty->isHalfTy())
836     return &APFloat::IEEEhalf();
837   if (Ty->isBFloatTy())
838     return &APFloat::BFloat();
839   if (Ty->isFloatTy())
840     return &APFloat::IEEEsingle();
841   if (Ty->isDoubleTy())
842     return &APFloat::IEEEdouble();
843   if (Ty->isX86_FP80Ty())
844     return &APFloat::x87DoubleExtended();
845   else if (Ty->isFP128Ty())
846     return &APFloat::IEEEquad();
847 
848   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
849   return &APFloat::PPCDoubleDouble();
850 }
851 
get(Type * Ty,double V)852 Constant *ConstantFP::get(Type *Ty, double V) {
853   LLVMContext &Context = Ty->getContext();
854 
855   APFloat FV(V);
856   bool ignored;
857   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
858              APFloat::rmNearestTiesToEven, &ignored);
859   Constant *C = get(Context, FV);
860 
861   // For vectors, broadcast the value.
862   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
863     return ConstantVector::getSplat(VTy->getElementCount(), C);
864 
865   return C;
866 }
867 
get(Type * Ty,const APFloat & V)868 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
869   ConstantFP *C = get(Ty->getContext(), V);
870   assert(C->getType() == Ty->getScalarType() &&
871          "ConstantFP type doesn't match the type implied by its value!");
872 
873   // For vectors, broadcast the value.
874   if (auto *VTy = dyn_cast<VectorType>(Ty))
875     return ConstantVector::getSplat(VTy->getElementCount(), C);
876 
877   return C;
878 }
879 
get(Type * Ty,StringRef Str)880 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
881   LLVMContext &Context = Ty->getContext();
882 
883   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
884   Constant *C = get(Context, FV);
885 
886   // For vectors, broadcast the value.
887   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
888     return ConstantVector::getSplat(VTy->getElementCount(), C);
889 
890   return C;
891 }
892 
getNaN(Type * Ty,bool Negative,uint64_t Payload)893 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
894   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
895   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
896   Constant *C = get(Ty->getContext(), NaN);
897 
898   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
899     return ConstantVector::getSplat(VTy->getElementCount(), C);
900 
901   return C;
902 }
903 
getQNaN(Type * Ty,bool Negative,APInt * Payload)904 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
905   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
906   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
907   Constant *C = get(Ty->getContext(), NaN);
908 
909   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
910     return ConstantVector::getSplat(VTy->getElementCount(), C);
911 
912   return C;
913 }
914 
getSNaN(Type * Ty,bool Negative,APInt * Payload)915 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
916   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
917   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
918   Constant *C = get(Ty->getContext(), NaN);
919 
920   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
921     return ConstantVector::getSplat(VTy->getElementCount(), C);
922 
923   return C;
924 }
925 
getNegativeZero(Type * Ty)926 Constant *ConstantFP::getNegativeZero(Type *Ty) {
927   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
928   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
929   Constant *C = get(Ty->getContext(), NegZero);
930 
931   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
932     return ConstantVector::getSplat(VTy->getElementCount(), C);
933 
934   return C;
935 }
936 
937 
getZeroValueForNegation(Type * Ty)938 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
939   if (Ty->isFPOrFPVectorTy())
940     return getNegativeZero(Ty);
941 
942   return Constant::getNullValue(Ty);
943 }
944 
945 
946 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)947 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
948   LLVMContextImpl* pImpl = Context.pImpl;
949 
950   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
951 
952   if (!Slot) {
953     Type *Ty;
954     if (&V.getSemantics() == &APFloat::IEEEhalf())
955       Ty = Type::getHalfTy(Context);
956     else if (&V.getSemantics() == &APFloat::BFloat())
957       Ty = Type::getBFloatTy(Context);
958     else if (&V.getSemantics() == &APFloat::IEEEsingle())
959       Ty = Type::getFloatTy(Context);
960     else if (&V.getSemantics() == &APFloat::IEEEdouble())
961       Ty = Type::getDoubleTy(Context);
962     else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
963       Ty = Type::getX86_FP80Ty(Context);
964     else if (&V.getSemantics() == &APFloat::IEEEquad())
965       Ty = Type::getFP128Ty(Context);
966     else {
967       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
968              "Unknown FP format");
969       Ty = Type::getPPC_FP128Ty(Context);
970     }
971     Slot.reset(new ConstantFP(Ty, V));
972   }
973 
974   return Slot.get();
975 }
976 
getInfinity(Type * Ty,bool Negative)977 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
978   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
979   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
980 
981   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
982     return ConstantVector::getSplat(VTy->getElementCount(), C);
983 
984   return C;
985 }
986 
ConstantFP(Type * Ty,const APFloat & V)987 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
988     : ConstantData(Ty, ConstantFPVal), Val(V) {
989   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
990          "FP type Mismatch");
991 }
992 
isExactlyValue(const APFloat & V) const993 bool ConstantFP::isExactlyValue(const APFloat &V) const {
994   return Val.bitwiseIsEqual(V);
995 }
996 
997 /// Remove the constant from the constant table.
destroyConstantImpl()998 void ConstantFP::destroyConstantImpl() {
999   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1000 }
1001 
1002 //===----------------------------------------------------------------------===//
1003 //                   ConstantAggregateZero Implementation
1004 //===----------------------------------------------------------------------===//
1005 
getSequentialElement() const1006 Constant *ConstantAggregateZero::getSequentialElement() const {
1007   if (auto *AT = dyn_cast<ArrayType>(getType()))
1008     return Constant::getNullValue(AT->getElementType());
1009   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1010 }
1011 
getStructElement(unsigned Elt) const1012 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1013   return Constant::getNullValue(getType()->getStructElementType(Elt));
1014 }
1015 
getElementValue(Constant * C) const1016 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1017   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1018     return getSequentialElement();
1019   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1020 }
1021 
getElementValue(unsigned Idx) const1022 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1023   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1024     return getSequentialElement();
1025   return getStructElement(Idx);
1026 }
1027 
getNumElements() const1028 unsigned ConstantAggregateZero::getNumElements() const {
1029   Type *Ty = getType();
1030   if (auto *AT = dyn_cast<ArrayType>(Ty))
1031     return AT->getNumElements();
1032   if (auto *VT = dyn_cast<VectorType>(Ty))
1033     return VT->getNumElements();
1034   return Ty->getStructNumElements();
1035 }
1036 
1037 //===----------------------------------------------------------------------===//
1038 //                         UndefValue Implementation
1039 //===----------------------------------------------------------------------===//
1040 
getSequentialElement() const1041 UndefValue *UndefValue::getSequentialElement() const {
1042   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1043     return UndefValue::get(ATy->getElementType());
1044   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1045 }
1046 
getStructElement(unsigned Elt) const1047 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1048   return UndefValue::get(getType()->getStructElementType(Elt));
1049 }
1050 
getElementValue(Constant * C) const1051 UndefValue *UndefValue::getElementValue(Constant *C) const {
1052   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1053     return getSequentialElement();
1054   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1055 }
1056 
getElementValue(unsigned Idx) const1057 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1058   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1059     return getSequentialElement();
1060   return getStructElement(Idx);
1061 }
1062 
getNumElements() const1063 unsigned UndefValue::getNumElements() const {
1064   Type *Ty = getType();
1065   if (auto *AT = dyn_cast<ArrayType>(Ty))
1066     return AT->getNumElements();
1067   if (auto *VT = dyn_cast<VectorType>(Ty))
1068     return VT->getNumElements();
1069   return Ty->getStructNumElements();
1070 }
1071 
1072 //===----------------------------------------------------------------------===//
1073 //                            ConstantXXX Classes
1074 //===----------------------------------------------------------------------===//
1075 
1076 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)1077 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1078   for (; Start != End; ++Start)
1079     if (*Start != Elt)
1080       return false;
1081   return true;
1082 }
1083 
1084 template <typename SequentialTy, typename ElementTy>
getIntSequenceIfElementsMatch(ArrayRef<Constant * > V)1085 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1086   assert(!V.empty() && "Cannot get empty int sequence.");
1087 
1088   SmallVector<ElementTy, 16> Elts;
1089   for (Constant *C : V)
1090     if (auto *CI = dyn_cast<ConstantInt>(C))
1091       Elts.push_back(CI->getZExtValue());
1092     else
1093       return nullptr;
1094   return SequentialTy::get(V[0]->getContext(), Elts);
1095 }
1096 
1097 template <typename SequentialTy, typename ElementTy>
getFPSequenceIfElementsMatch(ArrayRef<Constant * > V)1098 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1099   assert(!V.empty() && "Cannot get empty FP sequence.");
1100 
1101   SmallVector<ElementTy, 16> Elts;
1102   for (Constant *C : V)
1103     if (auto *CFP = dyn_cast<ConstantFP>(C))
1104       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1105     else
1106       return nullptr;
1107   return SequentialTy::getFP(V[0]->getType(), Elts);
1108 }
1109 
1110 template <typename SequenceTy>
getSequenceIfElementsMatch(Constant * C,ArrayRef<Constant * > V)1111 static Constant *getSequenceIfElementsMatch(Constant *C,
1112                                             ArrayRef<Constant *> V) {
1113   // We speculatively build the elements here even if it turns out that there is
1114   // a constantexpr or something else weird, since it is so uncommon for that to
1115   // happen.
1116   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1117     if (CI->getType()->isIntegerTy(8))
1118       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1119     else if (CI->getType()->isIntegerTy(16))
1120       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1121     else if (CI->getType()->isIntegerTy(32))
1122       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1123     else if (CI->getType()->isIntegerTy(64))
1124       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1125   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1126     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1127       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1128     else if (CFP->getType()->isFloatTy())
1129       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1130     else if (CFP->getType()->isDoubleTy())
1131       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1132   }
1133 
1134   return nullptr;
1135 }
1136 
ConstantAggregate(Type * T,ValueTy VT,ArrayRef<Constant * > V)1137 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1138                                      ArrayRef<Constant *> V)
1139     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1140                V.size()) {
1141   llvm::copy(V, op_begin());
1142 
1143   // Check that types match, unless this is an opaque struct.
1144   if (auto *ST = dyn_cast<StructType>(T)) {
1145     if (ST->isOpaque())
1146       return;
1147     for (unsigned I = 0, E = V.size(); I != E; ++I)
1148       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1149              "Initializer for struct element doesn't match!");
1150   }
1151 }
1152 
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)1153 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1154     : ConstantAggregate(T, ConstantArrayVal, V) {
1155   assert(V.size() == T->getNumElements() &&
1156          "Invalid initializer for constant array");
1157 }
1158 
get(ArrayType * Ty,ArrayRef<Constant * > V)1159 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1160   if (Constant *C = getImpl(Ty, V))
1161     return C;
1162   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1163 }
1164 
getImpl(ArrayType * Ty,ArrayRef<Constant * > V)1165 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1166   // Empty arrays are canonicalized to ConstantAggregateZero.
1167   if (V.empty())
1168     return ConstantAggregateZero::get(Ty);
1169 
1170   for (unsigned i = 0, e = V.size(); i != e; ++i) {
1171     assert(V[i]->getType() == Ty->getElementType() &&
1172            "Wrong type in array element initializer");
1173   }
1174 
1175   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1176   // all undef, return an UndefValue, if "all simple", then return a
1177   // ConstantDataArray.
1178   Constant *C = V[0];
1179   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1180     return UndefValue::get(Ty);
1181 
1182   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1183     return ConstantAggregateZero::get(Ty);
1184 
1185   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1186   // the element type is compatible with ConstantDataVector.  If so, use it.
1187   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1188     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1189 
1190   // Otherwise, we really do want to create a ConstantArray.
1191   return nullptr;
1192 }
1193 
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)1194 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1195                                                ArrayRef<Constant*> V,
1196                                                bool Packed) {
1197   unsigned VecSize = V.size();
1198   SmallVector<Type*, 16> EltTypes(VecSize);
1199   for (unsigned i = 0; i != VecSize; ++i)
1200     EltTypes[i] = V[i]->getType();
1201 
1202   return StructType::get(Context, EltTypes, Packed);
1203 }
1204 
1205 
getTypeForElements(ArrayRef<Constant * > V,bool Packed)1206 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1207                                                bool Packed) {
1208   assert(!V.empty() &&
1209          "ConstantStruct::getTypeForElements cannot be called on empty list");
1210   return getTypeForElements(V[0]->getContext(), V, Packed);
1211 }
1212 
ConstantStruct(StructType * T,ArrayRef<Constant * > V)1213 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1214     : ConstantAggregate(T, ConstantStructVal, V) {
1215   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1216          "Invalid initializer for constant struct");
1217 }
1218 
1219 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)1220 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1221   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1222          "Incorrect # elements specified to ConstantStruct::get");
1223 
1224   // Create a ConstantAggregateZero value if all elements are zeros.
1225   bool isZero = true;
1226   bool isUndef = false;
1227 
1228   if (!V.empty()) {
1229     isUndef = isa<UndefValue>(V[0]);
1230     isZero = V[0]->isNullValue();
1231     if (isUndef || isZero) {
1232       for (unsigned i = 0, e = V.size(); i != e; ++i) {
1233         if (!V[i]->isNullValue())
1234           isZero = false;
1235         if (!isa<UndefValue>(V[i]))
1236           isUndef = false;
1237       }
1238     }
1239   }
1240   if (isZero)
1241     return ConstantAggregateZero::get(ST);
1242   if (isUndef)
1243     return UndefValue::get(ST);
1244 
1245   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1246 }
1247 
ConstantVector(VectorType * T,ArrayRef<Constant * > V)1248 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1249     : ConstantAggregate(T, ConstantVectorVal, V) {
1250   assert(V.size() == T->getNumElements() &&
1251          "Invalid initializer for constant vector");
1252 }
1253 
1254 // ConstantVector accessors.
get(ArrayRef<Constant * > V)1255 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1256   if (Constant *C = getImpl(V))
1257     return C;
1258   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1259   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1260 }
1261 
getImpl(ArrayRef<Constant * > V)1262 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1263   assert(!V.empty() && "Vectors can't be empty");
1264   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1265 
1266   // If this is an all-undef or all-zero vector, return a
1267   // ConstantAggregateZero or UndefValue.
1268   Constant *C = V[0];
1269   bool isZero = C->isNullValue();
1270   bool isUndef = isa<UndefValue>(C);
1271 
1272   if (isZero || isUndef) {
1273     for (unsigned i = 1, e = V.size(); i != e; ++i)
1274       if (V[i] != C) {
1275         isZero = isUndef = false;
1276         break;
1277       }
1278   }
1279 
1280   if (isZero)
1281     return ConstantAggregateZero::get(T);
1282   if (isUndef)
1283     return UndefValue::get(T);
1284 
1285   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1286   // the element type is compatible with ConstantDataVector.  If so, use it.
1287   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1288     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1289 
1290   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1291   // the operand list contains a ConstantExpr or something else strange.
1292   return nullptr;
1293 }
1294 
getSplat(ElementCount EC,Constant * V)1295 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1296   if (!EC.Scalable) {
1297     // If this splat is compatible with ConstantDataVector, use it instead of
1298     // ConstantVector.
1299     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1300         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1301       return ConstantDataVector::getSplat(EC.Min, V);
1302 
1303     SmallVector<Constant *, 32> Elts(EC.Min, V);
1304     return get(Elts);
1305   }
1306 
1307   Type *VTy = VectorType::get(V->getType(), EC);
1308 
1309   if (V->isNullValue())
1310     return ConstantAggregateZero::get(VTy);
1311   else if (isa<UndefValue>(V))
1312     return UndefValue::get(VTy);
1313 
1314   Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1315 
1316   // Move scalar into vector.
1317   Constant *UndefV = UndefValue::get(VTy);
1318   V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0));
1319   // Build shuffle mask to perform the splat.
1320   SmallVector<int, 8> Zeros(EC.Min, 0);
1321   // Splat.
1322   return ConstantExpr::getShuffleVector(V, UndefV, Zeros);
1323 }
1324 
get(LLVMContext & Context)1325 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1326   LLVMContextImpl *pImpl = Context.pImpl;
1327   if (!pImpl->TheNoneToken)
1328     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1329   return pImpl->TheNoneToken.get();
1330 }
1331 
1332 /// Remove the constant from the constant table.
destroyConstantImpl()1333 void ConstantTokenNone::destroyConstantImpl() {
1334   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1335 }
1336 
1337 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1338 // can't be inline because we don't want to #include Instruction.h into
1339 // Constant.h
isCast() const1340 bool ConstantExpr::isCast() const {
1341   return Instruction::isCast(getOpcode());
1342 }
1343 
isCompare() const1344 bool ConstantExpr::isCompare() const {
1345   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1346 }
1347 
isGEPWithNoNotionalOverIndexing() const1348 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1349   if (getOpcode() != Instruction::GetElementPtr) return false;
1350 
1351   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1352   User::const_op_iterator OI = std::next(this->op_begin());
1353 
1354   // The remaining indices may be compile-time known integers within the bounds
1355   // of the corresponding notional static array types.
1356   for (; GEPI != E; ++GEPI, ++OI) {
1357     if (isa<UndefValue>(*OI))
1358       continue;
1359     auto *CI = dyn_cast<ConstantInt>(*OI);
1360     if (!CI || (GEPI.isBoundedSequential() &&
1361                 (CI->getValue().getActiveBits() > 64 ||
1362                  CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1363       return false;
1364   }
1365 
1366   // All the indices checked out.
1367   return true;
1368 }
1369 
hasIndices() const1370 bool ConstantExpr::hasIndices() const {
1371   return getOpcode() == Instruction::ExtractValue ||
1372          getOpcode() == Instruction::InsertValue;
1373 }
1374 
getIndices() const1375 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1376   if (const ExtractValueConstantExpr *EVCE =
1377         dyn_cast<ExtractValueConstantExpr>(this))
1378     return EVCE->Indices;
1379 
1380   return cast<InsertValueConstantExpr>(this)->Indices;
1381 }
1382 
getPredicate() const1383 unsigned ConstantExpr::getPredicate() const {
1384   return cast<CompareConstantExpr>(this)->predicate;
1385 }
1386 
getShuffleMask() const1387 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1388   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1389 }
1390 
getShuffleMaskForBitcode() const1391 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1392   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1393 }
1394 
1395 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1396 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1397   assert(Op->getType() == getOperand(OpNo)->getType() &&
1398          "Replacing operand with value of different type!");
1399   if (getOperand(OpNo) == Op)
1400     return const_cast<ConstantExpr*>(this);
1401 
1402   SmallVector<Constant*, 8> NewOps;
1403   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1404     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1405 
1406   return getWithOperands(NewOps);
1407 }
1408 
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty,bool OnlyIfReduced,Type * SrcTy) const1409 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1410                                         bool OnlyIfReduced, Type *SrcTy) const {
1411   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1412 
1413   // If no operands changed return self.
1414   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1415     return const_cast<ConstantExpr*>(this);
1416 
1417   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1418   switch (getOpcode()) {
1419   case Instruction::Trunc:
1420   case Instruction::ZExt:
1421   case Instruction::SExt:
1422   case Instruction::FPTrunc:
1423   case Instruction::FPExt:
1424   case Instruction::UIToFP:
1425   case Instruction::SIToFP:
1426   case Instruction::FPToUI:
1427   case Instruction::FPToSI:
1428   case Instruction::PtrToInt:
1429   case Instruction::IntToPtr:
1430   case Instruction::BitCast:
1431   case Instruction::AddrSpaceCast:
1432     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1433   case Instruction::Select:
1434     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1435   case Instruction::InsertElement:
1436     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1437                                           OnlyIfReducedTy);
1438   case Instruction::ExtractElement:
1439     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1440   case Instruction::InsertValue:
1441     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1442                                         OnlyIfReducedTy);
1443   case Instruction::ExtractValue:
1444     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1445   case Instruction::ShuffleVector:
1446     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1447                                           OnlyIfReducedTy);
1448   case Instruction::GetElementPtr: {
1449     auto *GEPO = cast<GEPOperator>(this);
1450     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1451     return ConstantExpr::getGetElementPtr(
1452         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1453         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1454   }
1455   case Instruction::ICmp:
1456   case Instruction::FCmp:
1457     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1458                                     OnlyIfReducedTy);
1459   default:
1460     assert(getNumOperands() == 2 && "Must be binary operator?");
1461     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1462                              OnlyIfReducedTy);
1463   }
1464 }
1465 
1466 
1467 //===----------------------------------------------------------------------===//
1468 //                      isValueValidForType implementations
1469 
isValueValidForType(Type * Ty,uint64_t Val)1470 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1471   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1472   if (Ty->isIntegerTy(1))
1473     return Val == 0 || Val == 1;
1474   return isUIntN(NumBits, Val);
1475 }
1476 
isValueValidForType(Type * Ty,int64_t Val)1477 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1478   unsigned NumBits = Ty->getIntegerBitWidth();
1479   if (Ty->isIntegerTy(1))
1480     return Val == 0 || Val == 1 || Val == -1;
1481   return isIntN(NumBits, Val);
1482 }
1483 
isValueValidForType(Type * Ty,const APFloat & Val)1484 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1485   // convert modifies in place, so make a copy.
1486   APFloat Val2 = APFloat(Val);
1487   bool losesInfo;
1488   switch (Ty->getTypeID()) {
1489   default:
1490     return false;         // These can't be represented as floating point!
1491 
1492   // FIXME rounding mode needs to be more flexible
1493   case Type::HalfTyID: {
1494     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1495       return true;
1496     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1497     return !losesInfo;
1498   }
1499   case Type::BFloatTyID: {
1500     if (&Val2.getSemantics() == &APFloat::BFloat())
1501       return true;
1502     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1503     return !losesInfo;
1504   }
1505   case Type::FloatTyID: {
1506     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1507       return true;
1508     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1509     return !losesInfo;
1510   }
1511   case Type::DoubleTyID: {
1512     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1513         &Val2.getSemantics() == &APFloat::BFloat() ||
1514         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1515         &Val2.getSemantics() == &APFloat::IEEEdouble())
1516       return true;
1517     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1518     return !losesInfo;
1519   }
1520   case Type::X86_FP80TyID:
1521     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1522            &Val2.getSemantics() == &APFloat::BFloat() ||
1523            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1524            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1525            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1526   case Type::FP128TyID:
1527     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1528            &Val2.getSemantics() == &APFloat::BFloat() ||
1529            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1530            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1531            &Val2.getSemantics() == &APFloat::IEEEquad();
1532   case Type::PPC_FP128TyID:
1533     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1534            &Val2.getSemantics() == &APFloat::BFloat() ||
1535            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1536            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1537            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1538   }
1539 }
1540 
1541 
1542 //===----------------------------------------------------------------------===//
1543 //                      Factory Function Implementation
1544 
get(Type * Ty)1545 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1546   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1547          "Cannot create an aggregate zero of non-aggregate type!");
1548 
1549   std::unique_ptr<ConstantAggregateZero> &Entry =
1550       Ty->getContext().pImpl->CAZConstants[Ty];
1551   if (!Entry)
1552     Entry.reset(new ConstantAggregateZero(Ty));
1553 
1554   return Entry.get();
1555 }
1556 
1557 /// Remove the constant from the constant table.
destroyConstantImpl()1558 void ConstantAggregateZero::destroyConstantImpl() {
1559   getContext().pImpl->CAZConstants.erase(getType());
1560 }
1561 
1562 /// Remove the constant from the constant table.
destroyConstantImpl()1563 void ConstantArray::destroyConstantImpl() {
1564   getType()->getContext().pImpl->ArrayConstants.remove(this);
1565 }
1566 
1567 
1568 //---- ConstantStruct::get() implementation...
1569 //
1570 
1571 /// Remove the constant from the constant table.
destroyConstantImpl()1572 void ConstantStruct::destroyConstantImpl() {
1573   getType()->getContext().pImpl->StructConstants.remove(this);
1574 }
1575 
1576 /// Remove the constant from the constant table.
destroyConstantImpl()1577 void ConstantVector::destroyConstantImpl() {
1578   getType()->getContext().pImpl->VectorConstants.remove(this);
1579 }
1580 
getSplatValue(bool AllowUndefs) const1581 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1582   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1583   if (isa<ConstantAggregateZero>(this))
1584     return getNullValue(cast<VectorType>(getType())->getElementType());
1585   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1586     return CV->getSplatValue();
1587   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1588     return CV->getSplatValue(AllowUndefs);
1589 
1590   // Check if this is a constant expression splat of the form returned by
1591   // ConstantVector::getSplat()
1592   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1593   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1594       isa<UndefValue>(Shuf->getOperand(1))) {
1595 
1596     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1597     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1598         isa<UndefValue>(IElt->getOperand(0))) {
1599 
1600       ArrayRef<int> Mask = Shuf->getShuffleMask();
1601       Constant *SplatVal = IElt->getOperand(1);
1602       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1603 
1604       if (Index && Index->getValue() == 0 &&
1605           std::all_of(Mask.begin(), Mask.end(), [](int I) { return I == 0; }))
1606         return SplatVal;
1607     }
1608   }
1609 
1610   return nullptr;
1611 }
1612 
getSplatValue(bool AllowUndefs) const1613 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1614   // Check out first element.
1615   Constant *Elt = getOperand(0);
1616   // Then make sure all remaining elements point to the same value.
1617   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1618     Constant *OpC = getOperand(I);
1619     if (OpC == Elt)
1620       continue;
1621 
1622     // Strict mode: any mismatch is not a splat.
1623     if (!AllowUndefs)
1624       return nullptr;
1625 
1626     // Allow undefs mode: ignore undefined elements.
1627     if (isa<UndefValue>(OpC))
1628       continue;
1629 
1630     // If we do not have a defined element yet, use the current operand.
1631     if (isa<UndefValue>(Elt))
1632       Elt = OpC;
1633 
1634     if (OpC != Elt)
1635       return nullptr;
1636   }
1637   return Elt;
1638 }
1639 
getUniqueInteger() const1640 const APInt &Constant::getUniqueInteger() const {
1641   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1642     return CI->getValue();
1643   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1644   const Constant *C = this->getAggregateElement(0U);
1645   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1646   return cast<ConstantInt>(C)->getValue();
1647 }
1648 
1649 //---- ConstantPointerNull::get() implementation.
1650 //
1651 
get(PointerType * Ty)1652 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1653   std::unique_ptr<ConstantPointerNull> &Entry =
1654       Ty->getContext().pImpl->CPNConstants[Ty];
1655   if (!Entry)
1656     Entry.reset(new ConstantPointerNull(Ty));
1657 
1658   return Entry.get();
1659 }
1660 
1661 /// Remove the constant from the constant table.
destroyConstantImpl()1662 void ConstantPointerNull::destroyConstantImpl() {
1663   getContext().pImpl->CPNConstants.erase(getType());
1664 }
1665 
get(Type * Ty)1666 UndefValue *UndefValue::get(Type *Ty) {
1667   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1668   if (!Entry)
1669     Entry.reset(new UndefValue(Ty));
1670 
1671   return Entry.get();
1672 }
1673 
1674 /// Remove the constant from the constant table.
destroyConstantImpl()1675 void UndefValue::destroyConstantImpl() {
1676   // Free the constant and any dangling references to it.
1677   getContext().pImpl->UVConstants.erase(getType());
1678 }
1679 
get(BasicBlock * BB)1680 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1681   assert(BB->getParent() && "Block must have a parent");
1682   return get(BB->getParent(), BB);
1683 }
1684 
get(Function * F,BasicBlock * BB)1685 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1686   BlockAddress *&BA =
1687     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1688   if (!BA)
1689     BA = new BlockAddress(F, BB);
1690 
1691   assert(BA->getFunction() == F && "Basic block moved between functions");
1692   return BA;
1693 }
1694 
BlockAddress(Function * F,BasicBlock * BB)1695 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1696     : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()),
1697                Value::BlockAddressVal, &Op<0>(), 2) {
1698   setOperand(0, F);
1699   setOperand(1, BB);
1700   BB->AdjustBlockAddressRefCount(1);
1701 }
1702 
lookup(const BasicBlock * BB)1703 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1704   if (!BB->hasAddressTaken())
1705     return nullptr;
1706 
1707   const Function *F = BB->getParent();
1708   assert(F && "Block must have a parent");
1709   BlockAddress *BA =
1710       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1711   assert(BA && "Refcount and block address map disagree!");
1712   return BA;
1713 }
1714 
1715 /// Remove the constant from the constant table.
destroyConstantImpl()1716 void BlockAddress::destroyConstantImpl() {
1717   getFunction()->getType()->getContext().pImpl
1718     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1719   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1720 }
1721 
handleOperandChangeImpl(Value * From,Value * To)1722 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1723   // This could be replacing either the Basic Block or the Function.  In either
1724   // case, we have to remove the map entry.
1725   Function *NewF = getFunction();
1726   BasicBlock *NewBB = getBasicBlock();
1727 
1728   if (From == NewF)
1729     NewF = cast<Function>(To->stripPointerCasts());
1730   else {
1731     assert(From == NewBB && "From does not match any operand");
1732     NewBB = cast<BasicBlock>(To);
1733   }
1734 
1735   // See if the 'new' entry already exists, if not, just update this in place
1736   // and return early.
1737   BlockAddress *&NewBA =
1738     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1739   if (NewBA)
1740     return NewBA;
1741 
1742   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1743 
1744   // Remove the old entry, this can't cause the map to rehash (just a
1745   // tombstone will get added).
1746   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1747                                                           getBasicBlock()));
1748   NewBA = this;
1749   setOperand(0, NewF);
1750   setOperand(1, NewBB);
1751   getBasicBlock()->AdjustBlockAddressRefCount(1);
1752 
1753   // If we just want to keep the existing value, then return null.
1754   // Callers know that this means we shouldn't delete this value.
1755   return nullptr;
1756 }
1757 
1758 //---- ConstantExpr::get() implementations.
1759 //
1760 
1761 /// This is a utility function to handle folding of casts and lookup of the
1762 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty,bool OnlyIfReduced=false)1763 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1764                                bool OnlyIfReduced = false) {
1765   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1766   // Fold a few common cases
1767   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1768     return FC;
1769 
1770   if (OnlyIfReduced)
1771     return nullptr;
1772 
1773   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1774 
1775   // Look up the constant in the table first to ensure uniqueness.
1776   ConstantExprKeyType Key(opc, C);
1777 
1778   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1779 }
1780 
1781 #if !defined(NDEBUG)
1782 #define assertCastIsValid(op, S, Ty, msg)                                      \
1783   do {                                                                         \
1784     if (LLVM_UNLIKELY(!CastInst::castIsValid((op), (S), (Ty)))) {              \
1785       errs() << msg << ": op=" << ((int)op) << " S = ";                        \
1786       (S)->getType()->dump();                                                  \
1787       errs() << "Ty = ";                                                       \
1788       (Ty)->dump();                                                            \
1789       assert(false && msg);                                                    \
1790     }                                                                          \
1791   } while (false)
1792 #else
1793 #define assertCastIsValid(op, S, Ty, msg)                                      \
1794   assert(CastInst::castIsValid((op), (S), (Ty)) && msg)
1795 #endif
1796 
getCast(unsigned oc,Constant * C,Type * Ty,bool OnlyIfReduced)1797 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1798                                 bool OnlyIfReduced) {
1799   Instruction::CastOps opc = Instruction::CastOps(oc);
1800   assert(Instruction::isCast(opc) && "opcode out of range");
1801   assert(C && Ty && "Null arguments to getCast");
1802   assertCastIsValid(opc, C, Ty, "Invalid constantexpr cast!");
1803 
1804   switch (opc) {
1805   default:
1806     llvm_unreachable("Invalid cast opcode");
1807   case Instruction::Trunc:
1808     return getTrunc(C, Ty, OnlyIfReduced);
1809   case Instruction::ZExt:
1810     return getZExt(C, Ty, OnlyIfReduced);
1811   case Instruction::SExt:
1812     return getSExt(C, Ty, OnlyIfReduced);
1813   case Instruction::FPTrunc:
1814     return getFPTrunc(C, Ty, OnlyIfReduced);
1815   case Instruction::FPExt:
1816     return getFPExtend(C, Ty, OnlyIfReduced);
1817   case Instruction::UIToFP:
1818     return getUIToFP(C, Ty, OnlyIfReduced);
1819   case Instruction::SIToFP:
1820     return getSIToFP(C, Ty, OnlyIfReduced);
1821   case Instruction::FPToUI:
1822     return getFPToUI(C, Ty, OnlyIfReduced);
1823   case Instruction::FPToSI:
1824     return getFPToSI(C, Ty, OnlyIfReduced);
1825   case Instruction::PtrToInt:
1826     return getPtrToInt(C, Ty, OnlyIfReduced);
1827   case Instruction::IntToPtr:
1828     return getIntToPtr(C, Ty, OnlyIfReduced);
1829   case Instruction::BitCast:
1830     return getBitCast(C, Ty, OnlyIfReduced);
1831   case Instruction::AddrSpaceCast:
1832     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1833   }
1834 }
1835 
getZExtOrBitCast(Constant * C,Type * Ty)1836 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1837   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1838     return getBitCast(C, Ty);
1839   return getZExt(C, Ty);
1840 }
1841 
getSExtOrBitCast(Constant * C,Type * Ty)1842 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1843   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1844     return getBitCast(C, Ty);
1845   return getSExt(C, Ty);
1846 }
1847 
getTruncOrBitCast(Constant * C,Type * Ty)1848 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1849   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1850     return getBitCast(C, Ty);
1851   return getTrunc(C, Ty);
1852 }
1853 
getPointerCast(Constant * S,Type * Ty)1854 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1855   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1856   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1857           "Invalid cast");
1858 
1859   if (Ty->isIntOrIntVectorTy())
1860     return getPtrToInt(S, Ty);
1861 
1862   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1863   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1864     return getAddrSpaceCast(S, Ty);
1865 
1866   return getBitCast(S, Ty);
1867 }
1868 
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)1869 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1870                                                          Type *Ty) {
1871   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1872   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1873 
1874   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1875     return getAddrSpaceCast(S, Ty);
1876 
1877   return getBitCast(S, Ty);
1878 }
1879 
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1880 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1881   assert(C->getType()->isIntOrIntVectorTy() &&
1882          Ty->isIntOrIntVectorTy() && "Invalid cast");
1883   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1884   unsigned DstBits = Ty->getScalarSizeInBits();
1885   Instruction::CastOps opcode =
1886     (SrcBits == DstBits ? Instruction::BitCast :
1887      (SrcBits > DstBits ? Instruction::Trunc :
1888       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1889   return getCast(opcode, C, Ty);
1890 }
1891 
getFPCast(Constant * C,Type * Ty)1892 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1893   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1894          "Invalid cast");
1895   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1896   unsigned DstBits = Ty->getScalarSizeInBits();
1897   if (SrcBits == DstBits)
1898     return C; // Avoid a useless cast
1899   Instruction::CastOps opcode =
1900     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1901   return getCast(opcode, C, Ty);
1902 }
1903 
getTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1904 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1905   if (C->getType() == Ty)
1906     return C;
1907 #ifndef NDEBUG
1908   bool fromVec = isa<VectorType>(C->getType());
1909   bool toVec = isa<VectorType>(Ty);
1910 #endif
1911   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1912   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1913   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1914   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1915          "SrcTy must be larger than DestTy for Trunc!");
1916 
1917   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1918 }
1919 
getSExt(Constant * C,Type * Ty,bool OnlyIfReduced)1920 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1921 #ifndef NDEBUG
1922   bool fromVec = isa<VectorType>(C->getType());
1923   bool toVec = isa<VectorType>(Ty);
1924 #endif
1925   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1926   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1927   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1928   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1929          "SrcTy must be smaller than DestTy for SExt!");
1930 
1931   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1932 }
1933 
getZExt(Constant * C,Type * Ty,bool OnlyIfReduced)1934 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1935 #ifndef NDEBUG
1936   bool fromVec = isa<VectorType>(C->getType());
1937   bool toVec = isa<VectorType>(Ty);
1938 #endif
1939   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1940   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1941   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1942   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1943          "SrcTy must be smaller than DestTy for ZExt!");
1944 
1945   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1946 }
1947 
getFPTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1948 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1949 #ifndef NDEBUG
1950   bool fromVec = isa<VectorType>(C->getType());
1951   bool toVec = isa<VectorType>(Ty);
1952 #endif
1953   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1954   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1955          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1956          "This is an illegal floating point truncation!");
1957   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1958 }
1959 
getFPExtend(Constant * C,Type * Ty,bool OnlyIfReduced)1960 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1961 #ifndef NDEBUG
1962   bool fromVec = isa<VectorType>(C->getType());
1963   bool toVec = isa<VectorType>(Ty);
1964 #endif
1965   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1966   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1967          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1968          "This is an illegal floating point extension!");
1969   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1970 }
1971 
getUIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1972 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1973 #ifndef NDEBUG
1974   bool fromVec = isa<VectorType>(C->getType());
1975   bool toVec = isa<VectorType>(Ty);
1976 #endif
1977   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1978   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1979          "This is an illegal uint to floating point cast!");
1980   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1981 }
1982 
getSIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1983 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1984 #ifndef NDEBUG
1985   bool fromVec = isa<VectorType>(C->getType());
1986   bool toVec = isa<VectorType>(Ty);
1987 #endif
1988   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1989   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1990          "This is an illegal sint to floating point cast!");
1991   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1992 }
1993 
getFPToUI(Constant * C,Type * Ty,bool OnlyIfReduced)1994 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1995 #ifndef NDEBUG
1996   bool fromVec = isa<VectorType>(C->getType());
1997   bool toVec = isa<VectorType>(Ty);
1998 #endif
1999   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2000   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2001          "This is an illegal floating point to uint cast!");
2002   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2003 }
2004 
getFPToSI(Constant * C,Type * Ty,bool OnlyIfReduced)2005 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2006 #ifndef NDEBUG
2007   bool fromVec = isa<VectorType>(C->getType());
2008   bool toVec = isa<VectorType>(Ty);
2009 #endif
2010   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2011   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2012          "This is an illegal floating point to sint cast!");
2013   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2014 }
2015 
getPtrToInt(Constant * C,Type * DstTy,bool OnlyIfReduced)2016 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2017                                     bool OnlyIfReduced) {
2018   assert(C->getType()->isPtrOrPtrVectorTy() &&
2019          "PtrToInt source must be pointer or pointer vector");
2020   assert(DstTy->isIntOrIntVectorTy() &&
2021          "PtrToInt destination must be integer or integer vector");
2022   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2023   if (isa<VectorType>(C->getType()))
2024     assert(cast<VectorType>(C->getType())->getNumElements() ==
2025                cast<VectorType>(DstTy)->getNumElements() &&
2026            "Invalid cast between a different number of vector elements");
2027   if (C->getType()->getPointerAddressSpace() == 200) {  // FIXME: hardcoded AS200
2028     assert(DstTy->getIntegerBitWidth() <= 64);
2029   }
2030   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2031 }
2032 
getIntToPtr(Constant * C,Type * DstTy,bool OnlyIfReduced)2033 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2034                                     bool OnlyIfReduced) {
2035   assert(C->getType()->isIntOrIntVectorTy() &&
2036          "IntToPtr source must be integer or integer vector");
2037   assert(DstTy->isPtrOrPtrVectorTy() &&
2038          "IntToPtr destination must be a pointer or pointer vector");
2039   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2040   if (isa<VectorType>(C->getType()))
2041     assert(cast<VectorType>(C->getType())->getNumElements() ==
2042                cast<VectorType>(DstTy)->getNumElements() &&
2043            "Invalid cast between a different number of vector elements");
2044   if (DstTy->getPointerAddressSpace() == 200) {  // FIXME: hardcoded AS200
2045     assert(C->getType()->getIntegerBitWidth() <= 64);
2046   }
2047   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2048 }
2049 
getBitCast(Constant * C,Type * DstTy,bool OnlyIfReduced)2050 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2051                                    bool OnlyIfReduced) {
2052   assertCastIsValid(Instruction::BitCast, C, DstTy,
2053                     "Invalid constantexpr bitcast!");
2054 
2055   // It is common to ask for a bitcast of a value to its own type, handle this
2056   // speedily.
2057   if (C->getType() == DstTy) return C;
2058 
2059   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2060 }
2061 
getAddrSpaceCast(Constant * C,Type * DstTy,bool OnlyIfReduced)2062 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2063                                          bool OnlyIfReduced) {
2064   assertCastIsValid(Instruction::AddrSpaceCast, C, DstTy,
2065                     "Invalid constantexpr addrspacecast!");
2066 
2067   // Canonicalize addrspacecasts between different pointer types by first
2068   // bitcasting the pointer type and then converting the address space.
2069   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2070   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2071   Type *DstElemTy = DstScalarTy->getElementType();
2072   if (SrcScalarTy->getElementType() != DstElemTy) {
2073     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
2074     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2075       // Handle vectors of pointers.
2076       MidTy = FixedVectorType::get(MidTy, VT->getNumElements());
2077     }
2078     C = getBitCast(C, MidTy);
2079   }
2080   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2081 }
2082 
get(unsigned Opcode,Constant * C,unsigned Flags,Type * OnlyIfReducedTy)2083 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2084                             Type *OnlyIfReducedTy) {
2085   // Check the operands for consistency first.
2086   assert(Instruction::isUnaryOp(Opcode) &&
2087          "Invalid opcode in unary constant expression");
2088 
2089 #ifndef NDEBUG
2090   switch (Opcode) {
2091   case Instruction::FNeg:
2092     assert(C->getType()->isFPOrFPVectorTy() &&
2093            "Tried to create a floating-point operation on a "
2094            "non-floating-point type!");
2095     break;
2096   default:
2097     break;
2098   }
2099 #endif
2100 
2101   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2102     return FC;
2103 
2104   if (OnlyIfReducedTy == C->getType())
2105     return nullptr;
2106 
2107   Constant *ArgVec[] = { C };
2108   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2109 
2110   LLVMContextImpl *pImpl = C->getContext().pImpl;
2111   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2112 }
2113 
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags,Type * OnlyIfReducedTy)2114 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2115                             unsigned Flags, Type *OnlyIfReducedTy) {
2116   // Check the operands for consistency first.
2117   assert(Instruction::isBinaryOp(Opcode) &&
2118          "Invalid opcode in binary constant expression");
2119   assert(C1->getType() == C2->getType() &&
2120          "Operand types in binary constant expression should match");
2121 
2122 #ifndef NDEBUG
2123   switch (Opcode) {
2124   case Instruction::Add:
2125   case Instruction::Sub:
2126   case Instruction::Mul:
2127   case Instruction::UDiv:
2128   case Instruction::SDiv:
2129   case Instruction::URem:
2130   case Instruction::SRem:
2131     assert(C1->getType()->isIntOrIntVectorTy() &&
2132            "Tried to create an integer operation on a non-integer type!");
2133     break;
2134   case Instruction::FAdd:
2135   case Instruction::FSub:
2136   case Instruction::FMul:
2137   case Instruction::FDiv:
2138   case Instruction::FRem:
2139     assert(C1->getType()->isFPOrFPVectorTy() &&
2140            "Tried to create a floating-point operation on a "
2141            "non-floating-point type!");
2142     break;
2143   case Instruction::And:
2144   case Instruction::Or:
2145   case Instruction::Xor:
2146     assert(C1->getType()->isIntOrIntVectorTy() &&
2147            "Tried to create a logical operation on a non-integral type!");
2148     break;
2149   case Instruction::Shl:
2150   case Instruction::LShr:
2151   case Instruction::AShr:
2152     assert(C1->getType()->isIntOrIntVectorTy() &&
2153            "Tried to create a shift operation on a non-integer type!");
2154     break;
2155   default:
2156     break;
2157   }
2158 #endif
2159 
2160   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2161     return FC;
2162 
2163   if (OnlyIfReducedTy == C1->getType())
2164     return nullptr;
2165 
2166   Constant *ArgVec[] = { C1, C2 };
2167   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2168 
2169   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2170   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2171 }
2172 
getSizeOf(Type * Ty)2173 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2174   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2175   // Note that a non-inbounds gep is used, as null isn't within any object.
2176   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2177   Constant *GEP = getGetElementPtr(
2178       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2179   return getPtrToInt(GEP,
2180                      Type::getInt64Ty(Ty->getContext()));
2181 }
2182 
getAlignOf(Type * Ty)2183 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2184   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2185   // Note that a non-inbounds gep is used, as null isn't within any object.
2186   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2187   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2188   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2189   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2190   Constant *Indices[2] = { Zero, One };
2191   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2192   return getPtrToInt(GEP,
2193                      Type::getInt64Ty(Ty->getContext()));
2194 }
2195 
getOffsetOf(StructType * STy,unsigned FieldNo)2196 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2197   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2198                                            FieldNo));
2199 }
2200 
getOffsetOf(Type * Ty,Constant * FieldNo)2201 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2202   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2203   // Note that a non-inbounds gep is used, as null isn't within any object.
2204   Constant *GEPIdx[] = {
2205     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2206     FieldNo
2207   };
2208   Constant *GEP = getGetElementPtr(
2209       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2210   return getPtrToInt(GEP,
2211                      Type::getInt64Ty(Ty->getContext()));
2212 }
2213 
getCompare(unsigned short Predicate,Constant * C1,Constant * C2,bool OnlyIfReduced)2214 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2215                                    Constant *C2, bool OnlyIfReduced) {
2216   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2217 
2218   switch (Predicate) {
2219   default: llvm_unreachable("Invalid CmpInst predicate");
2220   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2221   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2222   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2223   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2224   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2225   case CmpInst::FCMP_TRUE:
2226     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2227 
2228   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2229   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2230   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2231   case CmpInst::ICMP_SLE:
2232     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2233   }
2234 }
2235 
getSelect(Constant * C,Constant * V1,Constant * V2,Type * OnlyIfReducedTy)2236 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2237                                   Type *OnlyIfReducedTy) {
2238   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2239 
2240   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2241     return SC;        // Fold common cases
2242 
2243   if (OnlyIfReducedTy == V1->getType())
2244     return nullptr;
2245 
2246   Constant *ArgVec[] = { C, V1, V2 };
2247   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2248 
2249   LLVMContextImpl *pImpl = C->getContext().pImpl;
2250   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2251 }
2252 
getGetElementPtr(Type * Ty,Constant * C,ArrayRef<Value * > Idxs,bool InBounds,Optional<unsigned> InRangeIndex,Type * OnlyIfReducedTy)2253 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2254                                          ArrayRef<Value *> Idxs, bool InBounds,
2255                                          Optional<unsigned> InRangeIndex,
2256                                          Type *OnlyIfReducedTy) {
2257   if (!Ty)
2258     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2259   else
2260     assert(Ty ==
2261            cast<PointerType>(C->getType()->getScalarType())->getElementType());
2262 
2263   if (Constant *FC =
2264           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2265     return FC;          // Fold a few common cases.
2266 
2267   // Get the result type of the getelementptr!
2268   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2269   assert(DestTy && "GEP indices invalid!");
2270   unsigned AS = C->getType()->getPointerAddressSpace();
2271   Type *ReqTy = DestTy->getPointerTo(AS);
2272 
2273   ElementCount EltCount = {0, false};
2274   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2275     EltCount = VecTy->getElementCount();
2276   else
2277     for (auto Idx : Idxs)
2278       if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2279         EltCount = VecTy->getElementCount();
2280 
2281   if (EltCount.Min != 0)
2282     ReqTy = VectorType::get(ReqTy, EltCount);
2283 
2284   if (OnlyIfReducedTy == ReqTy)
2285     return nullptr;
2286 
2287   // Look up the constant in the table first to ensure uniqueness
2288   std::vector<Constant*> ArgVec;
2289   ArgVec.reserve(1 + Idxs.size());
2290   ArgVec.push_back(C);
2291   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2292   for (; GTI != GTE; ++GTI) {
2293     auto *Idx = cast<Constant>(GTI.getOperand());
2294     assert(
2295         (!isa<VectorType>(Idx->getType()) ||
2296          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2297         "getelementptr index type missmatch");
2298 
2299     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2300       Idx = Idx->getSplatValue();
2301     } else if (GTI.isSequential() && EltCount.Min != 0 &&
2302                !Idx->getType()->isVectorTy()) {
2303       Idx = ConstantVector::getSplat(EltCount, Idx);
2304     }
2305     ArgVec.push_back(Idx);
2306   }
2307 
2308   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2309   if (InRangeIndex && *InRangeIndex < 63)
2310     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2311   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2312                                 SubClassOptionalData, None, None, Ty);
2313 
2314   LLVMContextImpl *pImpl = C->getContext().pImpl;
2315   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2316 }
2317 
getICmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2318 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2319                                 Constant *RHS, bool OnlyIfReduced) {
2320   assert(LHS->getType() == RHS->getType());
2321   assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2322          "Invalid ICmp Predicate");
2323 
2324   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2325     return FC;          // Fold a few common cases...
2326 
2327   if (OnlyIfReduced)
2328     return nullptr;
2329 
2330   // Look up the constant in the table first to ensure uniqueness
2331   Constant *ArgVec[] = { LHS, RHS };
2332   // Get the key type with both the opcode and predicate
2333   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2334 
2335   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2336   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2337     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2338 
2339   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2340   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2341 }
2342 
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2343 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2344                                 Constant *RHS, bool OnlyIfReduced) {
2345   assert(LHS->getType() == RHS->getType());
2346   assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2347          "Invalid FCmp Predicate");
2348 
2349   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2350     return FC;          // Fold a few common cases...
2351 
2352   if (OnlyIfReduced)
2353     return nullptr;
2354 
2355   // Look up the constant in the table first to ensure uniqueness
2356   Constant *ArgVec[] = { LHS, RHS };
2357   // Get the key type with both the opcode and predicate
2358   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2359 
2360   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2361   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2362     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2363 
2364   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2365   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2366 }
2367 
getExtractElement(Constant * Val,Constant * Idx,Type * OnlyIfReducedTy)2368 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2369                                           Type *OnlyIfReducedTy) {
2370   assert(Val->getType()->isVectorTy() &&
2371          "Tried to create extractelement operation on non-vector type!");
2372   assert(Idx->getType()->isIntegerTy() &&
2373          "Extractelement index must be an integer type!");
2374 
2375   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2376     return FC;          // Fold a few common cases.
2377 
2378   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2379   if (OnlyIfReducedTy == ReqTy)
2380     return nullptr;
2381 
2382   // Look up the constant in the table first to ensure uniqueness
2383   Constant *ArgVec[] = { Val, Idx };
2384   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2385 
2386   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2387   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2388 }
2389 
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx,Type * OnlyIfReducedTy)2390 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2391                                          Constant *Idx, Type *OnlyIfReducedTy) {
2392   assert(Val->getType()->isVectorTy() &&
2393          "Tried to create insertelement operation on non-vector type!");
2394   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2395          "Insertelement types must match!");
2396   assert(Idx->getType()->isIntegerTy() &&
2397          "Insertelement index must be i32 type!");
2398 
2399   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2400     return FC;          // Fold a few common cases.
2401 
2402   if (OnlyIfReducedTy == Val->getType())
2403     return nullptr;
2404 
2405   // Look up the constant in the table first to ensure uniqueness
2406   Constant *ArgVec[] = { Val, Elt, Idx };
2407   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2408 
2409   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2410   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2411 }
2412 
getShuffleVector(Constant * V1,Constant * V2,ArrayRef<int> Mask,Type * OnlyIfReducedTy)2413 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2414                                          ArrayRef<int> Mask,
2415                                          Type *OnlyIfReducedTy) {
2416   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2417          "Invalid shuffle vector constant expr operands!");
2418 
2419   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2420     return FC;          // Fold a few common cases.
2421 
2422   unsigned NElts = Mask.size();
2423   auto V1VTy = cast<VectorType>(V1->getType());
2424   Type *EltTy = V1VTy->getElementType();
2425   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2426   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2427 
2428   if (OnlyIfReducedTy == ShufTy)
2429     return nullptr;
2430 
2431   // Look up the constant in the table first to ensure uniqueness
2432   Constant *ArgVec[] = {V1, V2};
2433   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2434 
2435   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2436   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2437 }
2438 
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2439 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2440                                        ArrayRef<unsigned> Idxs,
2441                                        Type *OnlyIfReducedTy) {
2442   assert(Agg->getType()->isFirstClassType() &&
2443          "Non-first-class type for constant insertvalue expression");
2444 
2445   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2446                                           Idxs) == Val->getType() &&
2447          "insertvalue indices invalid!");
2448   Type *ReqTy = Val->getType();
2449 
2450   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2451     return FC;
2452 
2453   if (OnlyIfReducedTy == ReqTy)
2454     return nullptr;
2455 
2456   Constant *ArgVec[] = { Agg, Val };
2457   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2458 
2459   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2460   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2461 }
2462 
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2463 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2464                                         Type *OnlyIfReducedTy) {
2465   assert(Agg->getType()->isFirstClassType() &&
2466          "Tried to create extractelement operation on non-first-class type!");
2467 
2468   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2469   (void)ReqTy;
2470   assert(ReqTy && "extractvalue indices invalid!");
2471 
2472   assert(Agg->getType()->isFirstClassType() &&
2473          "Non-first-class type for constant extractvalue expression");
2474   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2475     return FC;
2476 
2477   if (OnlyIfReducedTy == ReqTy)
2478     return nullptr;
2479 
2480   Constant *ArgVec[] = { Agg };
2481   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2482 
2483   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2484   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2485 }
2486 
getNeg(Constant * C,bool HasNUW,bool HasNSW)2487 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2488   assert(C->getType()->isIntOrIntVectorTy() &&
2489          "Cannot NEG a nonintegral value!");
2490   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2491                 C, HasNUW, HasNSW);
2492 }
2493 
getFNeg(Constant * C)2494 Constant *ConstantExpr::getFNeg(Constant *C) {
2495   assert(C->getType()->isFPOrFPVectorTy() &&
2496          "Cannot FNEG a non-floating-point value!");
2497   return get(Instruction::FNeg, C);
2498 }
2499 
getNot(Constant * C)2500 Constant *ConstantExpr::getNot(Constant *C) {
2501   assert(C->getType()->isIntOrIntVectorTy() &&
2502          "Cannot NOT a nonintegral value!");
2503   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2504 }
2505 
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2506 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2507                                bool HasNUW, bool HasNSW) {
2508   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2509                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2510   return get(Instruction::Add, C1, C2, Flags);
2511 }
2512 
getFAdd(Constant * C1,Constant * C2)2513 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2514   return get(Instruction::FAdd, C1, C2);
2515 }
2516 
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2517 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2518                                bool HasNUW, bool HasNSW) {
2519   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2520                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2521   return get(Instruction::Sub, C1, C2, Flags);
2522 }
2523 
getFSub(Constant * C1,Constant * C2)2524 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2525   return get(Instruction::FSub, C1, C2);
2526 }
2527 
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2528 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2529                                bool HasNUW, bool HasNSW) {
2530   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2531                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2532   return get(Instruction::Mul, C1, C2, Flags);
2533 }
2534 
getFMul(Constant * C1,Constant * C2)2535 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2536   return get(Instruction::FMul, C1, C2);
2537 }
2538 
getUDiv(Constant * C1,Constant * C2,bool isExact)2539 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2540   return get(Instruction::UDiv, C1, C2,
2541              isExact ? PossiblyExactOperator::IsExact : 0);
2542 }
2543 
getSDiv(Constant * C1,Constant * C2,bool isExact)2544 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2545   return get(Instruction::SDiv, C1, C2,
2546              isExact ? PossiblyExactOperator::IsExact : 0);
2547 }
2548 
getFDiv(Constant * C1,Constant * C2)2549 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2550   return get(Instruction::FDiv, C1, C2);
2551 }
2552 
getURem(Constant * C1,Constant * C2)2553 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2554   return get(Instruction::URem, C1, C2);
2555 }
2556 
getSRem(Constant * C1,Constant * C2)2557 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2558   return get(Instruction::SRem, C1, C2);
2559 }
2560 
getFRem(Constant * C1,Constant * C2)2561 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2562   return get(Instruction::FRem, C1, C2);
2563 }
2564 
getAnd(Constant * C1,Constant * C2)2565 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2566   return get(Instruction::And, C1, C2);
2567 }
2568 
getOr(Constant * C1,Constant * C2)2569 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2570   return get(Instruction::Or, C1, C2);
2571 }
2572 
getXor(Constant * C1,Constant * C2)2573 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2574   return get(Instruction::Xor, C1, C2);
2575 }
2576 
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2577 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2578                                bool HasNUW, bool HasNSW) {
2579   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2580                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2581   return get(Instruction::Shl, C1, C2, Flags);
2582 }
2583 
getLShr(Constant * C1,Constant * C2,bool isExact)2584 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2585   return get(Instruction::LShr, C1, C2,
2586              isExact ? PossiblyExactOperator::IsExact : 0);
2587 }
2588 
getAShr(Constant * C1,Constant * C2,bool isExact)2589 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2590   return get(Instruction::AShr, C1, C2,
2591              isExact ? PossiblyExactOperator::IsExact : 0);
2592 }
2593 
getBinOpIdentity(unsigned Opcode,Type * Ty,bool AllowRHSConstant)2594 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2595                                          bool AllowRHSConstant) {
2596   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2597 
2598   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2599   if (Instruction::isCommutative(Opcode)) {
2600     switch (Opcode) {
2601       case Instruction::Add: // X + 0 = X
2602       case Instruction::Or:  // X | 0 = X
2603       case Instruction::Xor: // X ^ 0 = X
2604         return Constant::getNullValue(Ty);
2605       case Instruction::Mul: // X * 1 = X
2606         return ConstantInt::get(Ty, 1);
2607       case Instruction::And: // X & -1 = X
2608         return Constant::getAllOnesValue(Ty);
2609       case Instruction::FAdd: // X + -0.0 = X
2610         // TODO: If the fadd has 'nsz', should we return +0.0?
2611         return ConstantFP::getNegativeZero(Ty);
2612       case Instruction::FMul: // X * 1.0 = X
2613         return ConstantFP::get(Ty, 1.0);
2614       default:
2615         llvm_unreachable("Every commutative binop has an identity constant");
2616     }
2617   }
2618 
2619   // Non-commutative opcodes: AllowRHSConstant must be set.
2620   if (!AllowRHSConstant)
2621     return nullptr;
2622 
2623   switch (Opcode) {
2624     case Instruction::Sub:  // X - 0 = X
2625     case Instruction::Shl:  // X << 0 = X
2626     case Instruction::LShr: // X >>u 0 = X
2627     case Instruction::AShr: // X >> 0 = X
2628     case Instruction::FSub: // X - 0.0 = X
2629       return Constant::getNullValue(Ty);
2630     case Instruction::SDiv: // X / 1 = X
2631     case Instruction::UDiv: // X /u 1 = X
2632       return ConstantInt::get(Ty, 1);
2633     case Instruction::FDiv: // X / 1.0 = X
2634       return ConstantFP::get(Ty, 1.0);
2635     default:
2636       return nullptr;
2637   }
2638 }
2639 
getBinOpAbsorber(unsigned Opcode,Type * Ty)2640 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2641   switch (Opcode) {
2642   default:
2643     // Doesn't have an absorber.
2644     return nullptr;
2645 
2646   case Instruction::Or:
2647     return Constant::getAllOnesValue(Ty);
2648 
2649   case Instruction::And:
2650   case Instruction::Mul:
2651     return Constant::getNullValue(Ty);
2652   }
2653 }
2654 
2655 /// Remove the constant from the constant table.
destroyConstantImpl()2656 void ConstantExpr::destroyConstantImpl() {
2657   getType()->getContext().pImpl->ExprConstants.remove(this);
2658 }
2659 
getOpcodeName() const2660 const char *ConstantExpr::getOpcodeName() const {
2661   return Instruction::getOpcodeName(getOpcode());
2662 }
2663 
GetElementPtrConstantExpr(Type * SrcElementTy,Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2664 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2665     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2666     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2667                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2668                        (IdxList.size() + 1),
2669                    IdxList.size() + 1),
2670       SrcElementTy(SrcElementTy),
2671       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2672   Op<0>() = C;
2673   Use *OperandList = getOperandList();
2674   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2675     OperandList[i+1] = IdxList[i];
2676 }
2677 
getSourceElementType() const2678 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2679   return SrcElementTy;
2680 }
2681 
getResultElementType() const2682 Type *GetElementPtrConstantExpr::getResultElementType() const {
2683   return ResElementTy;
2684 }
2685 
2686 //===----------------------------------------------------------------------===//
2687 //                       ConstantData* implementations
2688 
getElementType() const2689 Type *ConstantDataSequential::getElementType() const {
2690   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2691     return ATy->getElementType();
2692   return cast<VectorType>(getType())->getElementType();
2693 }
2694 
getRawDataValues() const2695 StringRef ConstantDataSequential::getRawDataValues() const {
2696   return StringRef(DataElements, getNumElements()*getElementByteSize());
2697 }
2698 
isElementTypeCompatible(Type * Ty)2699 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2700   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2701     return true;
2702   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2703     switch (IT->getBitWidth()) {
2704     case 8:
2705     case 16:
2706     case 32:
2707     case 64:
2708       return true;
2709     default: break;
2710     }
2711   }
2712   return false;
2713 }
2714 
getNumElements() const2715 unsigned ConstantDataSequential::getNumElements() const {
2716   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2717     return AT->getNumElements();
2718   return cast<VectorType>(getType())->getNumElements();
2719 }
2720 
2721 
getElementByteSize() const2722 uint64_t ConstantDataSequential::getElementByteSize() const {
2723   return getElementType()->getPrimitiveSizeInBits()/8;
2724 }
2725 
2726 /// Return the start of the specified element.
getElementPointer(unsigned Elt) const2727 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2728   assert(Elt < getNumElements() && "Invalid Elt");
2729   return DataElements+Elt*getElementByteSize();
2730 }
2731 
2732 
2733 /// Return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2734 static bool isAllZeros(StringRef Arr) {
2735   for (char I : Arr)
2736     if (I != 0)
2737       return false;
2738   return true;
2739 }
2740 
2741 /// This is the underlying implementation of all of the
2742 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2743 /// the correct element type.  We take the bytes in as a StringRef because
2744 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2745 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2746 #ifndef NDEBUG
2747   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2748     assert(isElementTypeCompatible(ATy->getElementType()));
2749   else
2750     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2751 #endif
2752   // If the elements are all zero or there are no elements, return a CAZ, which
2753   // is more dense and canonical.
2754   if (isAllZeros(Elements))
2755     return ConstantAggregateZero::get(Ty);
2756 
2757   // Do a lookup to see if we have already formed one of these.
2758   auto &Slot =
2759       *Ty->getContext()
2760            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2761            .first;
2762 
2763   // The bucket can point to a linked list of different CDS's that have the same
2764   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2765   // of i8, or a 1-element array of i32.  They'll both end up in the same
2766   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2767   ConstantDataSequential **Entry = &Slot.second;
2768   for (ConstantDataSequential *Node = *Entry; Node;
2769        Entry = &Node->Next, Node = *Entry)
2770     if (Node->getType() == Ty)
2771       return Node;
2772 
2773   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2774   // and return it.
2775   if (isa<ArrayType>(Ty))
2776     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2777 
2778   assert(isa<VectorType>(Ty));
2779   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2780 }
2781 
destroyConstantImpl()2782 void ConstantDataSequential::destroyConstantImpl() {
2783   // Remove the constant from the StringMap.
2784   StringMap<ConstantDataSequential*> &CDSConstants =
2785     getType()->getContext().pImpl->CDSConstants;
2786 
2787   StringMap<ConstantDataSequential*>::iterator Slot =
2788     CDSConstants.find(getRawDataValues());
2789 
2790   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2791 
2792   ConstantDataSequential **Entry = &Slot->getValue();
2793 
2794   // Remove the entry from the hash table.
2795   if (!(*Entry)->Next) {
2796     // If there is only one value in the bucket (common case) it must be this
2797     // entry, and removing the entry should remove the bucket completely.
2798     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2799     getContext().pImpl->CDSConstants.erase(Slot);
2800   } else {
2801     // Otherwise, there are multiple entries linked off the bucket, unlink the
2802     // node we care about but keep the bucket around.
2803     for (ConstantDataSequential *Node = *Entry; ;
2804          Entry = &Node->Next, Node = *Entry) {
2805       assert(Node && "Didn't find entry in its uniquing hash table!");
2806       // If we found our entry, unlink it from the list and we're done.
2807       if (Node == this) {
2808         *Entry = Node->Next;
2809         break;
2810       }
2811     }
2812   }
2813 
2814   // If we were part of a list, make sure that we don't delete the list that is
2815   // still owned by the uniquing map.
2816   Next = nullptr;
2817 }
2818 
2819 /// getFP() constructors - Return a constant of array type with a float
2820 /// element type taken from argument `ElementType', and count taken from
2821 /// argument `Elts'.  The amount of bits of the contained type must match the
2822 /// number of bits of the type contained in the passed in ArrayRef.
2823 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2824 /// that this can return a ConstantAggregateZero object.
getFP(Type * ElementType,ArrayRef<uint16_t> Elts)2825 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
2826   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2827          "Element type is not a 16-bit float type");
2828   Type *Ty = ArrayType::get(ElementType, Elts.size());
2829   const char *Data = reinterpret_cast<const char *>(Elts.data());
2830   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2831 }
getFP(Type * ElementType,ArrayRef<uint32_t> Elts)2832 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
2833   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2834   Type *Ty = ArrayType::get(ElementType, Elts.size());
2835   const char *Data = reinterpret_cast<const char *>(Elts.data());
2836   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2837 }
getFP(Type * ElementType,ArrayRef<uint64_t> Elts)2838 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
2839   assert(ElementType->isDoubleTy() &&
2840          "Element type is not a 64-bit float type");
2841   Type *Ty = ArrayType::get(ElementType, Elts.size());
2842   const char *Data = reinterpret_cast<const char *>(Elts.data());
2843   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2844 }
2845 
getString(LLVMContext & Context,StringRef Str,bool AddNull)2846 Constant *ConstantDataArray::getString(LLVMContext &Context,
2847                                        StringRef Str, bool AddNull) {
2848   if (!AddNull) {
2849     const uint8_t *Data = Str.bytes_begin();
2850     return get(Context, makeArrayRef(Data, Str.size()));
2851   }
2852 
2853   SmallVector<uint8_t, 64> ElementVals;
2854   ElementVals.append(Str.begin(), Str.end());
2855   ElementVals.push_back(0);
2856   return get(Context, ElementVals);
2857 }
2858 
2859 /// get() constructors - Return a constant with vector type with an element
2860 /// count and element type matching the ArrayRef passed in.  Note that this
2861 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2862 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2863   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
2864   const char *Data = reinterpret_cast<const char *>(Elts.data());
2865   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2866 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2867 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2868   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
2869   const char *Data = reinterpret_cast<const char *>(Elts.data());
2870   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2871 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2872 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2873   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
2874   const char *Data = reinterpret_cast<const char *>(Elts.data());
2875   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2876 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2877 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2878   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
2879   const char *Data = reinterpret_cast<const char *>(Elts.data());
2880   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2881 }
get(LLVMContext & Context,ArrayRef<float> Elts)2882 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2883   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
2884   const char *Data = reinterpret_cast<const char *>(Elts.data());
2885   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2886 }
get(LLVMContext & Context,ArrayRef<double> Elts)2887 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2888   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
2889   const char *Data = reinterpret_cast<const char *>(Elts.data());
2890   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2891 }
2892 
2893 /// getFP() constructors - Return a constant of vector type with a float
2894 /// element type taken from argument `ElementType', and count taken from
2895 /// argument `Elts'.  The amount of bits of the contained type must match the
2896 /// number of bits of the type contained in the passed in ArrayRef.
2897 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2898 /// that this can return a ConstantAggregateZero object.
getFP(Type * ElementType,ArrayRef<uint16_t> Elts)2899 Constant *ConstantDataVector::getFP(Type *ElementType,
2900                                     ArrayRef<uint16_t> Elts) {
2901   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2902          "Element type is not a 16-bit float type");
2903   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2904   const char *Data = reinterpret_cast<const char *>(Elts.data());
2905   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2906 }
getFP(Type * ElementType,ArrayRef<uint32_t> Elts)2907 Constant *ConstantDataVector::getFP(Type *ElementType,
2908                                     ArrayRef<uint32_t> Elts) {
2909   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2910   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2911   const char *Data = reinterpret_cast<const char *>(Elts.data());
2912   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2913 }
getFP(Type * ElementType,ArrayRef<uint64_t> Elts)2914 Constant *ConstantDataVector::getFP(Type *ElementType,
2915                                     ArrayRef<uint64_t> Elts) {
2916   assert(ElementType->isDoubleTy() &&
2917          "Element type is not a 64-bit float type");
2918   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2919   const char *Data = reinterpret_cast<const char *>(Elts.data());
2920   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2921 }
2922 
getSplat(unsigned NumElts,Constant * V)2923 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2924   assert(isElementTypeCompatible(V->getType()) &&
2925          "Element type not compatible with ConstantData");
2926   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2927     if (CI->getType()->isIntegerTy(8)) {
2928       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2929       return get(V->getContext(), Elts);
2930     }
2931     if (CI->getType()->isIntegerTy(16)) {
2932       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2933       return get(V->getContext(), Elts);
2934     }
2935     if (CI->getType()->isIntegerTy(32)) {
2936       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2937       return get(V->getContext(), Elts);
2938     }
2939     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2940     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2941     return get(V->getContext(), Elts);
2942   }
2943 
2944   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2945     if (CFP->getType()->isHalfTy()) {
2946       SmallVector<uint16_t, 16> Elts(
2947           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2948       return getFP(V->getType(), Elts);
2949     }
2950     if (CFP->getType()->isBFloatTy()) {
2951       SmallVector<uint16_t, 16> Elts(
2952           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2953       return getFP(V->getType(), Elts);
2954     }
2955     if (CFP->getType()->isFloatTy()) {
2956       SmallVector<uint32_t, 16> Elts(
2957           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2958       return getFP(V->getType(), Elts);
2959     }
2960     if (CFP->getType()->isDoubleTy()) {
2961       SmallVector<uint64_t, 16> Elts(
2962           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2963       return getFP(V->getType(), Elts);
2964     }
2965   }
2966   return ConstantVector::getSplat({NumElts, false}, V);
2967 }
2968 
2969 
getElementAsInteger(unsigned Elt) const2970 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2971   assert(isa<IntegerType>(getElementType()) &&
2972          "Accessor can only be used when element is an integer");
2973   const char *EltPtr = getElementPointer(Elt);
2974 
2975   // The data is stored in host byte order, make sure to cast back to the right
2976   // type to load with the right endianness.
2977   switch (getElementType()->getIntegerBitWidth()) {
2978   default: llvm_unreachable("Invalid bitwidth for CDS");
2979   case 8:
2980     return *reinterpret_cast<const uint8_t *>(EltPtr);
2981   case 16:
2982     return *reinterpret_cast<const uint16_t *>(EltPtr);
2983   case 32:
2984     return *reinterpret_cast<const uint32_t *>(EltPtr);
2985   case 64:
2986     return *reinterpret_cast<const uint64_t *>(EltPtr);
2987   }
2988 }
2989 
getElementAsAPInt(unsigned Elt) const2990 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2991   assert(isa<IntegerType>(getElementType()) &&
2992          "Accessor can only be used when element is an integer");
2993   const char *EltPtr = getElementPointer(Elt);
2994 
2995   // The data is stored in host byte order, make sure to cast back to the right
2996   // type to load with the right endianness.
2997   switch (getElementType()->getIntegerBitWidth()) {
2998   default: llvm_unreachable("Invalid bitwidth for CDS");
2999   case 8: {
3000     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3001     return APInt(8, EltVal);
3002   }
3003   case 16: {
3004     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3005     return APInt(16, EltVal);
3006   }
3007   case 32: {
3008     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3009     return APInt(32, EltVal);
3010   }
3011   case 64: {
3012     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3013     return APInt(64, EltVal);
3014   }
3015   }
3016 }
3017 
getElementAsAPFloat(unsigned Elt) const3018 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3019   const char *EltPtr = getElementPointer(Elt);
3020 
3021   switch (getElementType()->getTypeID()) {
3022   default:
3023     llvm_unreachable("Accessor can only be used when element is float/double!");
3024   case Type::HalfTyID: {
3025     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3026     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3027   }
3028   case Type::BFloatTyID: {
3029     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3030     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3031   }
3032   case Type::FloatTyID: {
3033     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3034     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3035   }
3036   case Type::DoubleTyID: {
3037     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3038     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3039   }
3040   }
3041 }
3042 
getElementAsFloat(unsigned Elt) const3043 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3044   assert(getElementType()->isFloatTy() &&
3045          "Accessor can only be used when element is a 'float'");
3046   return *reinterpret_cast<const float *>(getElementPointer(Elt));
3047 }
3048 
getElementAsDouble(unsigned Elt) const3049 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3050   assert(getElementType()->isDoubleTy() &&
3051          "Accessor can only be used when element is a 'float'");
3052   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3053 }
3054 
getElementAsConstant(unsigned Elt) const3055 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3056   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3057       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3058     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3059 
3060   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3061 }
3062 
isString(unsigned CharSize) const3063 bool ConstantDataSequential::isString(unsigned CharSize) const {
3064   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3065 }
3066 
isCString() const3067 bool ConstantDataSequential::isCString() const {
3068   if (!isString())
3069     return false;
3070 
3071   StringRef Str = getAsString();
3072 
3073   // The last value must be nul.
3074   if (Str.back() != 0) return false;
3075 
3076   // Other elements must be non-nul.
3077   return Str.drop_back().find(0) == StringRef::npos;
3078 }
3079 
isSplatData() const3080 bool ConstantDataVector::isSplatData() const {
3081   const char *Base = getRawDataValues().data();
3082 
3083   // Compare elements 1+ to the 0'th element.
3084   unsigned EltSize = getElementByteSize();
3085   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3086     if (memcmp(Base, Base+i*EltSize, EltSize))
3087       return false;
3088 
3089   return true;
3090 }
3091 
isSplat() const3092 bool ConstantDataVector::isSplat() const {
3093   if (!IsSplatSet) {
3094     IsSplatSet = true;
3095     IsSplat = isSplatData();
3096   }
3097   return IsSplat;
3098 }
3099 
getSplatValue() const3100 Constant *ConstantDataVector::getSplatValue() const {
3101   // If they're all the same, return the 0th one as a representative.
3102   return isSplat() ? getElementAsConstant(0) : nullptr;
3103 }
3104 
3105 //===----------------------------------------------------------------------===//
3106 //                handleOperandChange implementations
3107 
3108 /// Update this constant array to change uses of
3109 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3110 /// etc.
3111 ///
3112 /// Note that we intentionally replace all uses of From with To here.  Consider
3113 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3114 /// ConstantArray::handleOperandChange is only invoked once, and that
3115 /// single invocation handles all 1000 uses.  Handling them one at a time would
3116 /// work, but would be really slow because it would have to unique each updated
3117 /// array instance.
3118 ///
handleOperandChange(Value * From,Value * To)3119 void Constant::handleOperandChange(Value *From, Value *To) {
3120   Value *Replacement = nullptr;
3121   switch (getValueID()) {
3122   default:
3123     llvm_unreachable("Not a constant!");
3124 #define HANDLE_CONSTANT(Name)                                                  \
3125   case Value::Name##Val:                                                       \
3126     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3127     break;
3128 #include "llvm/IR/Value.def"
3129   }
3130 
3131   // If handleOperandChangeImpl returned nullptr, then it handled
3132   // replacing itself and we don't want to delete or replace anything else here.
3133   if (!Replacement)
3134     return;
3135 
3136   // I do need to replace this with an existing value.
3137   assert(Replacement != this && "I didn't contain From!");
3138 
3139   // Everyone using this now uses the replacement.
3140   replaceAllUsesWith(Replacement);
3141 
3142   // Delete the old constant!
3143   destroyConstant();
3144 }
3145 
handleOperandChangeImpl(Value * From,Value * To)3146 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3147   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3148   Constant *ToC = cast<Constant>(To);
3149 
3150   SmallVector<Constant*, 8> Values;
3151   Values.reserve(getNumOperands());  // Build replacement array.
3152 
3153   // Fill values with the modified operands of the constant array.  Also,
3154   // compute whether this turns into an all-zeros array.
3155   unsigned NumUpdated = 0;
3156 
3157   // Keep track of whether all the values in the array are "ToC".
3158   bool AllSame = true;
3159   Use *OperandList = getOperandList();
3160   unsigned OperandNo = 0;
3161   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3162     Constant *Val = cast<Constant>(O->get());
3163     if (Val == From) {
3164       OperandNo = (O - OperandList);
3165       Val = ToC;
3166       ++NumUpdated;
3167     }
3168     Values.push_back(Val);
3169     AllSame &= Val == ToC;
3170   }
3171 
3172   if (AllSame && ToC->isNullValue())
3173     return ConstantAggregateZero::get(getType());
3174 
3175   if (AllSame && isa<UndefValue>(ToC))
3176     return UndefValue::get(getType());
3177 
3178   // Check for any other type of constant-folding.
3179   if (Constant *C = getImpl(getType(), Values))
3180     return C;
3181 
3182   // Update to the new value.
3183   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3184       Values, this, From, ToC, NumUpdated, OperandNo);
3185 }
3186 
handleOperandChangeImpl(Value * From,Value * To)3187 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3188   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3189   Constant *ToC = cast<Constant>(To);
3190 
3191   Use *OperandList = getOperandList();
3192 
3193   SmallVector<Constant*, 8> Values;
3194   Values.reserve(getNumOperands());  // Build replacement struct.
3195 
3196   // Fill values with the modified operands of the constant struct.  Also,
3197   // compute whether this turns into an all-zeros struct.
3198   unsigned NumUpdated = 0;
3199   bool AllSame = true;
3200   unsigned OperandNo = 0;
3201   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3202     Constant *Val = cast<Constant>(O->get());
3203     if (Val == From) {
3204       OperandNo = (O - OperandList);
3205       Val = ToC;
3206       ++NumUpdated;
3207     }
3208     Values.push_back(Val);
3209     AllSame &= Val == ToC;
3210   }
3211 
3212   if (AllSame && ToC->isNullValue())
3213     return ConstantAggregateZero::get(getType());
3214 
3215   if (AllSame && isa<UndefValue>(ToC))
3216     return UndefValue::get(getType());
3217 
3218   // Update to the new value.
3219   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3220       Values, this, From, ToC, NumUpdated, OperandNo);
3221 }
3222 
handleOperandChangeImpl(Value * From,Value * To)3223 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3224   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3225   Constant *ToC = cast<Constant>(To);
3226 
3227   SmallVector<Constant*, 8> Values;
3228   Values.reserve(getNumOperands());  // Build replacement array...
3229   unsigned NumUpdated = 0;
3230   unsigned OperandNo = 0;
3231   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3232     Constant *Val = getOperand(i);
3233     if (Val == From) {
3234       OperandNo = i;
3235       ++NumUpdated;
3236       Val = ToC;
3237     }
3238     Values.push_back(Val);
3239   }
3240 
3241   if (Constant *C = getImpl(Values))
3242     return C;
3243 
3244   // Update to the new value.
3245   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3246       Values, this, From, ToC, NumUpdated, OperandNo);
3247 }
3248 
handleOperandChangeImpl(Value * From,Value * ToV)3249 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3250   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3251   Constant *To = cast<Constant>(ToV);
3252 
3253   SmallVector<Constant*, 8> NewOps;
3254   unsigned NumUpdated = 0;
3255   unsigned OperandNo = 0;
3256   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3257     Constant *Op = getOperand(i);
3258     if (Op == From) {
3259       OperandNo = i;
3260       ++NumUpdated;
3261       Op = To;
3262     }
3263     NewOps.push_back(Op);
3264   }
3265   assert(NumUpdated && "I didn't contain From!");
3266 
3267   if (Constant *C = getWithOperands(NewOps, getType(), true))
3268     return C;
3269 
3270   // Update to the new value.
3271   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3272       NewOps, this, From, To, NumUpdated, OperandNo);
3273 }
3274 
getAsInstruction() const3275 Instruction *ConstantExpr::getAsInstruction() const {
3276   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
3277   ArrayRef<Value*> Ops(ValueOperands);
3278 
3279   switch (getOpcode()) {
3280   case Instruction::Trunc:
3281   case Instruction::ZExt:
3282   case Instruction::SExt:
3283   case Instruction::FPTrunc:
3284   case Instruction::FPExt:
3285   case Instruction::UIToFP:
3286   case Instruction::SIToFP:
3287   case Instruction::FPToUI:
3288   case Instruction::FPToSI:
3289   case Instruction::PtrToInt:
3290   case Instruction::IntToPtr:
3291   case Instruction::BitCast:
3292   case Instruction::AddrSpaceCast:
3293     return CastInst::Create((Instruction::CastOps)getOpcode(),
3294                             Ops[0], getType());
3295   case Instruction::Select:
3296     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3297   case Instruction::InsertElement:
3298     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3299   case Instruction::ExtractElement:
3300     return ExtractElementInst::Create(Ops[0], Ops[1]);
3301   case Instruction::InsertValue:
3302     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3303   case Instruction::ExtractValue:
3304     return ExtractValueInst::Create(Ops[0], getIndices());
3305   case Instruction::ShuffleVector:
3306     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask());
3307 
3308   case Instruction::GetElementPtr: {
3309     const auto *GO = cast<GEPOperator>(this);
3310     if (GO->isInBounds())
3311       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3312                                                Ops[0], Ops.slice(1));
3313     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3314                                      Ops.slice(1));
3315   }
3316   case Instruction::ICmp:
3317   case Instruction::FCmp:
3318     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3319                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3320   case Instruction::FNeg:
3321     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3322   default:
3323     assert(getNumOperands() == 2 && "Must be binary operator?");
3324     BinaryOperator *BO =
3325       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3326                              Ops[0], Ops[1]);
3327     if (isa<OverflowingBinaryOperator>(BO)) {
3328       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3329                                OverflowingBinaryOperator::NoUnsignedWrap);
3330       BO->setHasNoSignedWrap(SubclassOptionalData &
3331                              OverflowingBinaryOperator::NoSignedWrap);
3332     }
3333     if (isa<PossiblyExactOperator>(BO))
3334       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3335     return BO;
3336   }
3337 }
3338