1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass adds instructions to enable whole quad mode for pixel
11 /// shaders, and whole wavefront mode for all programs.
12 ///
13 /// Whole quad mode is required for derivative computations, but it interferes
14 /// with shader side effects (stores and atomics). This pass is run on the
15 /// scheduled machine IR but before register coalescing, so that machine SSA is
16 /// available for analysis. It ensures that WQM is enabled when necessary, but
17 /// disabled around stores and atomics.
18 ///
19 /// When necessary, this pass creates a function prolog
20 ///
21 /// S_MOV_B64 LiveMask, EXEC
22 /// S_WQM_B64 EXEC, EXEC
23 ///
24 /// to enter WQM at the top of the function and surrounds blocks of Exact
25 /// instructions by
26 ///
27 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask
28 /// ...
29 /// S_MOV_B64 EXEC, Tmp
30 ///
31 /// We also compute when a sequence of instructions requires Whole Wavefront
32 /// Mode (WWM) and insert instructions to save and restore it:
33 ///
34 /// S_OR_SAVEEXEC_B64 Tmp, -1
35 /// ...
36 /// S_MOV_B64 EXEC, Tmp
37 ///
38 /// In order to avoid excessive switching during sequences of Exact
39 /// instructions, the pass first analyzes which instructions must be run in WQM
40 /// (aka which instructions produce values that lead to derivative
41 /// computations).
42 ///
43 /// Basic blocks are always exited in WQM as long as some successor needs WQM.
44 ///
45 /// There is room for improvement given better control flow analysis:
46 ///
47 /// (1) at the top level (outside of control flow statements, and as long as
48 /// kill hasn't been used), one SGPR can be saved by recovering WQM from
49 /// the LiveMask (this is implemented for the entry block).
50 ///
51 /// (2) when entire regions (e.g. if-else blocks or entire loops) only
52 /// consist of exact and don't-care instructions, the switch only has to
53 /// be done at the entry and exit points rather than potentially in each
54 /// block of the region.
55 ///
56 //===----------------------------------------------------------------------===//
57
58 #include "AMDGPU.h"
59 #include "AMDGPUSubtarget.h"
60 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
61 #include "SIInstrInfo.h"
62 #include "SIMachineFunctionInfo.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/MapVector.h"
65 #include "llvm/ADT/PostOrderIterator.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/StringRef.h"
68 #include "llvm/CodeGen/LiveInterval.h"
69 #include "llvm/CodeGen/LiveIntervals.h"
70 #include "llvm/CodeGen/MachineBasicBlock.h"
71 #include "llvm/CodeGen/MachineFunction.h"
72 #include "llvm/CodeGen/MachineFunctionPass.h"
73 #include "llvm/CodeGen/MachineInstr.h"
74 #include "llvm/CodeGen/MachineInstrBuilder.h"
75 #include "llvm/CodeGen/MachineOperand.h"
76 #include "llvm/CodeGen/MachineRegisterInfo.h"
77 #include "llvm/CodeGen/SlotIndexes.h"
78 #include "llvm/CodeGen/TargetRegisterInfo.h"
79 #include "llvm/IR/CallingConv.h"
80 #include "llvm/IR/DebugLoc.h"
81 #include "llvm/InitializePasses.h"
82 #include "llvm/MC/MCRegisterInfo.h"
83 #include "llvm/Pass.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include <cassert>
87 #include <vector>
88
89 using namespace llvm;
90
91 #define DEBUG_TYPE "si-wqm"
92
93 namespace {
94
95 enum {
96 StateWQM = 0x1,
97 StateWWM = 0x2,
98 StateExact = 0x4,
99 };
100
101 struct PrintState {
102 public:
103 int State;
104
PrintState__anon4b8df04c0111::PrintState105 explicit PrintState(int State) : State(State) {}
106 };
107
108 #ifndef NDEBUG
operator <<(raw_ostream & OS,const PrintState & PS)109 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
110 if (PS.State & StateWQM)
111 OS << "WQM";
112 if (PS.State & StateWWM) {
113 if (PS.State & StateWQM)
114 OS << '|';
115 OS << "WWM";
116 }
117 if (PS.State & StateExact) {
118 if (PS.State & (StateWQM | StateWWM))
119 OS << '|';
120 OS << "Exact";
121 }
122
123 return OS;
124 }
125 #endif
126
127 struct InstrInfo {
128 char Needs = 0;
129 char Disabled = 0;
130 char OutNeeds = 0;
131 };
132
133 struct BlockInfo {
134 char Needs = 0;
135 char InNeeds = 0;
136 char OutNeeds = 0;
137 };
138
139 struct WorkItem {
140 MachineBasicBlock *MBB = nullptr;
141 MachineInstr *MI = nullptr;
142
143 WorkItem() = default;
WorkItem__anon4b8df04c0111::WorkItem144 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
WorkItem__anon4b8df04c0111::WorkItem145 WorkItem(MachineInstr *MI) : MI(MI) {}
146 };
147
148 class SIWholeQuadMode : public MachineFunctionPass {
149 private:
150 CallingConv::ID CallingConv;
151 const SIInstrInfo *TII;
152 const SIRegisterInfo *TRI;
153 const GCNSubtarget *ST;
154 MachineRegisterInfo *MRI;
155 LiveIntervals *LIS;
156
157 DenseMap<const MachineInstr *, InstrInfo> Instructions;
158 MapVector<MachineBasicBlock *, BlockInfo> Blocks;
159 SmallVector<MachineInstr *, 1> LiveMaskQueries;
160 SmallVector<MachineInstr *, 4> LowerToMovInstrs;
161 SmallVector<MachineInstr *, 4> LowerToCopyInstrs;
162
163 void printInfo();
164
165 void markInstruction(MachineInstr &MI, char Flag,
166 std::vector<WorkItem> &Worklist);
167 void markInstructionUses(const MachineInstr &MI, char Flag,
168 std::vector<WorkItem> &Worklist);
169 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
170 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
171 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
172 char analyzeFunction(MachineFunction &MF);
173
174 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
175 MachineBasicBlock::iterator Before);
176 MachineBasicBlock::iterator
177 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
178 MachineBasicBlock::iterator Last, bool PreferLast,
179 bool SaveSCC);
180 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
181 unsigned SaveWQM, unsigned LiveMaskReg);
182 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
183 unsigned SavedWQM);
184 void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
185 unsigned SaveOrig);
186 void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
187 unsigned SavedOrig);
188 void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry);
189
190 void lowerLiveMaskQueries(unsigned LiveMaskReg);
191 void lowerCopyInstrs();
192
193 public:
194 static char ID;
195
SIWholeQuadMode()196 SIWholeQuadMode() :
197 MachineFunctionPass(ID) { }
198
199 bool runOnMachineFunction(MachineFunction &MF) override;
200
getPassName() const201 StringRef getPassName() const override { return "SI Whole Quad Mode"; }
202
getAnalysisUsage(AnalysisUsage & AU) const203 void getAnalysisUsage(AnalysisUsage &AU) const override {
204 AU.addRequired<LiveIntervals>();
205 AU.addPreserved<SlotIndexes>();
206 AU.addPreserved<LiveIntervals>();
207 AU.setPreservesCFG();
208 MachineFunctionPass::getAnalysisUsage(AU);
209 }
210 };
211
212 } // end anonymous namespace
213
214 char SIWholeQuadMode::ID = 0;
215
216 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
217 false)
218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
219 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
220 false)
221
222 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
223
createSIWholeQuadModePass()224 FunctionPass *llvm::createSIWholeQuadModePass() {
225 return new SIWholeQuadMode;
226 }
227
228 #ifndef NDEBUG
printInfo()229 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
230 for (const auto &BII : Blocks) {
231 dbgs() << "\n"
232 << printMBBReference(*BII.first) << ":\n"
233 << " InNeeds = " << PrintState(BII.second.InNeeds)
234 << ", Needs = " << PrintState(BII.second.Needs)
235 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";
236
237 for (const MachineInstr &MI : *BII.first) {
238 auto III = Instructions.find(&MI);
239 if (III == Instructions.end())
240 continue;
241
242 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs)
243 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
244 }
245 }
246 }
247 #endif
248
markInstruction(MachineInstr & MI,char Flag,std::vector<WorkItem> & Worklist)249 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
250 std::vector<WorkItem> &Worklist) {
251 InstrInfo &II = Instructions[&MI];
252
253 assert(!(Flag & StateExact) && Flag != 0);
254
255 // Remove any disabled states from the flag. The user that required it gets
256 // an undefined value in the helper lanes. For example, this can happen if
257 // the result of an atomic is used by instruction that requires WQM, where
258 // ignoring the request for WQM is correct as per the relevant specs.
259 Flag &= ~II.Disabled;
260
261 // Ignore if the flag is already encompassed by the existing needs, or we
262 // just disabled everything.
263 if ((II.Needs & Flag) == Flag)
264 return;
265
266 II.Needs |= Flag;
267 Worklist.push_back(&MI);
268 }
269
270 /// Mark all instructions defining the uses in \p MI with \p Flag.
markInstructionUses(const MachineInstr & MI,char Flag,std::vector<WorkItem> & Worklist)271 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
272 std::vector<WorkItem> &Worklist) {
273 for (const MachineOperand &Use : MI.uses()) {
274 if (!Use.isReg() || !Use.isUse())
275 continue;
276
277 Register Reg = Use.getReg();
278
279 // Handle physical registers that we need to track; this is mostly relevant
280 // for VCC, which can appear as the (implicit) input of a uniform branch,
281 // e.g. when a loop counter is stored in a VGPR.
282 if (!Register::isVirtualRegister(Reg)) {
283 if (Reg == AMDGPU::EXEC || Reg == AMDGPU::EXEC_LO)
284 continue;
285
286 for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) {
287 LiveRange &LR = LIS->getRegUnit(*RegUnit);
288 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
289 if (!Value)
290 continue;
291
292 // Since we're in machine SSA, we do not need to track physical
293 // registers across basic blocks.
294 if (Value->isPHIDef())
295 continue;
296
297 markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag,
298 Worklist);
299 }
300
301 continue;
302 }
303
304 for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg()))
305 markInstruction(DefMI, Flag, Worklist);
306 }
307 }
308
309 // Scan instructions to determine which ones require an Exact execmask and
310 // which ones seed WQM requirements.
scanInstructions(MachineFunction & MF,std::vector<WorkItem> & Worklist)311 char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
312 std::vector<WorkItem> &Worklist) {
313 char GlobalFlags = 0;
314 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
315 SmallVector<MachineInstr *, 4> SetInactiveInstrs;
316 SmallVector<MachineInstr *, 4> SoftWQMInstrs;
317
318 // We need to visit the basic blocks in reverse post-order so that we visit
319 // defs before uses, in particular so that we don't accidentally mark an
320 // instruction as needing e.g. WQM before visiting it and realizing it needs
321 // WQM disabled.
322 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
323 for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) {
324 MachineBasicBlock &MBB = **BI;
325 BlockInfo &BBI = Blocks[&MBB];
326
327 for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
328 MachineInstr &MI = *II;
329 InstrInfo &III = Instructions[&MI];
330 unsigned Opcode = MI.getOpcode();
331 char Flags = 0;
332
333 if (TII->isWQM(Opcode)) {
334 // Sampling instructions don't need to produce results for all pixels
335 // in a quad, they just require all inputs of a quad to have been
336 // computed for derivatives.
337 markInstructionUses(MI, StateWQM, Worklist);
338 GlobalFlags |= StateWQM;
339 continue;
340 } else if (Opcode == AMDGPU::WQM) {
341 // The WQM intrinsic requires its output to have all the helper lanes
342 // correct, so we need it to be in WQM.
343 Flags = StateWQM;
344 LowerToCopyInstrs.push_back(&MI);
345 } else if (Opcode == AMDGPU::SOFT_WQM) {
346 LowerToCopyInstrs.push_back(&MI);
347 SoftWQMInstrs.push_back(&MI);
348 continue;
349 } else if (Opcode == AMDGPU::WWM) {
350 // The WWM intrinsic doesn't make the same guarantee, and plus it needs
351 // to be executed in WQM or Exact so that its copy doesn't clobber
352 // inactive lanes.
353 markInstructionUses(MI, StateWWM, Worklist);
354 GlobalFlags |= StateWWM;
355 LowerToMovInstrs.push_back(&MI);
356 continue;
357 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
358 Opcode == AMDGPU::V_SET_INACTIVE_B64) {
359 III.Disabled = StateWWM;
360 MachineOperand &Inactive = MI.getOperand(2);
361 if (Inactive.isReg()) {
362 if (Inactive.isUndef()) {
363 LowerToCopyInstrs.push_back(&MI);
364 } else {
365 Register Reg = Inactive.getReg();
366 if (Register::isVirtualRegister(Reg)) {
367 for (MachineInstr &DefMI : MRI->def_instructions(Reg))
368 markInstruction(DefMI, StateWWM, Worklist);
369 }
370 }
371 }
372 SetInactiveInstrs.push_back(&MI);
373 continue;
374 } else if (TII->isDisableWQM(MI)) {
375 BBI.Needs |= StateExact;
376 if (!(BBI.InNeeds & StateExact)) {
377 BBI.InNeeds |= StateExact;
378 Worklist.push_back(&MBB);
379 }
380 GlobalFlags |= StateExact;
381 III.Disabled = StateWQM | StateWWM;
382 continue;
383 } else {
384 if (Opcode == AMDGPU::SI_PS_LIVE) {
385 LiveMaskQueries.push_back(&MI);
386 } else if (WQMOutputs) {
387 // The function is in machine SSA form, which means that physical
388 // VGPRs correspond to shader inputs and outputs. Inputs are
389 // only used, outputs are only defined.
390 for (const MachineOperand &MO : MI.defs()) {
391 if (!MO.isReg())
392 continue;
393
394 Register Reg = MO.getReg();
395
396 if (!Register::isVirtualRegister(Reg) &&
397 TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) {
398 Flags = StateWQM;
399 break;
400 }
401 }
402 }
403
404 if (!Flags)
405 continue;
406 }
407
408 markInstruction(MI, Flags, Worklist);
409 GlobalFlags |= Flags;
410 }
411 }
412
413 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
414 // ever used anywhere in the function. This implements the corresponding
415 // semantics of @llvm.amdgcn.set.inactive.
416 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm.
417 if (GlobalFlags & StateWQM) {
418 for (MachineInstr *MI : SetInactiveInstrs)
419 markInstruction(*MI, StateWQM, Worklist);
420 for (MachineInstr *MI : SoftWQMInstrs)
421 markInstruction(*MI, StateWQM, Worklist);
422 }
423
424 return GlobalFlags;
425 }
426
propagateInstruction(MachineInstr & MI,std::vector<WorkItem> & Worklist)427 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
428 std::vector<WorkItem>& Worklist) {
429 MachineBasicBlock *MBB = MI.getParent();
430 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
431 BlockInfo &BI = Blocks[MBB];
432
433 // Control flow-type instructions and stores to temporary memory that are
434 // followed by WQM computations must themselves be in WQM.
435 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
436 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
437 Instructions[&MI].Needs = StateWQM;
438 II.Needs = StateWQM;
439 }
440
441 // Propagate to block level
442 if (II.Needs & StateWQM) {
443 BI.Needs |= StateWQM;
444 if (!(BI.InNeeds & StateWQM)) {
445 BI.InNeeds |= StateWQM;
446 Worklist.push_back(MBB);
447 }
448 }
449
450 // Propagate backwards within block
451 if (MachineInstr *PrevMI = MI.getPrevNode()) {
452 char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds;
453 if (!PrevMI->isPHI()) {
454 InstrInfo &PrevII = Instructions[PrevMI];
455 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
456 PrevII.OutNeeds |= InNeeds;
457 Worklist.push_back(PrevMI);
458 }
459 }
460 }
461
462 // Propagate WQM flag to instruction inputs
463 assert(!(II.Needs & StateExact));
464
465 if (II.Needs != 0)
466 markInstructionUses(MI, II.Needs, Worklist);
467
468 // Ensure we process a block containing WWM, even if it does not require any
469 // WQM transitions.
470 if (II.Needs & StateWWM)
471 BI.Needs |= StateWWM;
472 }
473
propagateBlock(MachineBasicBlock & MBB,std::vector<WorkItem> & Worklist)474 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
475 std::vector<WorkItem>& Worklist) {
476 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.
477
478 // Propagate through instructions
479 if (!MBB.empty()) {
480 MachineInstr *LastMI = &*MBB.rbegin();
481 InstrInfo &LastII = Instructions[LastMI];
482 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
483 LastII.OutNeeds |= BI.OutNeeds;
484 Worklist.push_back(LastMI);
485 }
486 }
487
488 // Predecessor blocks must provide for our WQM/Exact needs.
489 for (MachineBasicBlock *Pred : MBB.predecessors()) {
490 BlockInfo &PredBI = Blocks[Pred];
491 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
492 continue;
493
494 PredBI.OutNeeds |= BI.InNeeds;
495 PredBI.InNeeds |= BI.InNeeds;
496 Worklist.push_back(Pred);
497 }
498
499 // All successors must be prepared to accept the same set of WQM/Exact data.
500 for (MachineBasicBlock *Succ : MBB.successors()) {
501 BlockInfo &SuccBI = Blocks[Succ];
502 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
503 continue;
504
505 SuccBI.InNeeds |= BI.OutNeeds;
506 Worklist.push_back(Succ);
507 }
508 }
509
analyzeFunction(MachineFunction & MF)510 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
511 std::vector<WorkItem> Worklist;
512 char GlobalFlags = scanInstructions(MF, Worklist);
513
514 while (!Worklist.empty()) {
515 WorkItem WI = Worklist.back();
516 Worklist.pop_back();
517
518 if (WI.MI)
519 propagateInstruction(*WI.MI, Worklist);
520 else
521 propagateBlock(*WI.MBB, Worklist);
522 }
523
524 return GlobalFlags;
525 }
526
527 MachineBasicBlock::iterator
saveSCC(MachineBasicBlock & MBB,MachineBasicBlock::iterator Before)528 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
529 MachineBasicBlock::iterator Before) {
530 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
531
532 MachineInstr *Save =
533 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
534 .addReg(AMDGPU::SCC);
535 MachineInstr *Restore =
536 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
537 .addReg(SaveReg);
538
539 LIS->InsertMachineInstrInMaps(*Save);
540 LIS->InsertMachineInstrInMaps(*Restore);
541 LIS->createAndComputeVirtRegInterval(SaveReg);
542
543 return Restore;
544 }
545
546 // Return an iterator in the (inclusive) range [First, Last] at which
547 // instructions can be safely inserted, keeping in mind that some of the
548 // instructions we want to add necessarily clobber SCC.
prepareInsertion(MachineBasicBlock & MBB,MachineBasicBlock::iterator First,MachineBasicBlock::iterator Last,bool PreferLast,bool SaveSCC)549 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
550 MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
551 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
552 if (!SaveSCC)
553 return PreferLast ? Last : First;
554
555 LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
556 auto MBBE = MBB.end();
557 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
558 : LIS->getMBBEndIdx(&MBB);
559 SlotIndex LastIdx =
560 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
561 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
562 const LiveRange::Segment *S;
563
564 for (;;) {
565 S = LR.getSegmentContaining(Idx);
566 if (!S)
567 break;
568
569 if (PreferLast) {
570 SlotIndex Next = S->start.getBaseIndex();
571 if (Next < FirstIdx)
572 break;
573 Idx = Next;
574 } else {
575 SlotIndex Next = S->end.getNextIndex().getBaseIndex();
576 if (Next > LastIdx)
577 break;
578 Idx = Next;
579 }
580 }
581
582 MachineBasicBlock::iterator MBBI;
583
584 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
585 MBBI = MI;
586 else {
587 assert(Idx == LIS->getMBBEndIdx(&MBB));
588 MBBI = MBB.end();
589 }
590
591 if (S)
592 MBBI = saveSCC(MBB, MBBI);
593
594 return MBBI;
595 }
596
toExact(MachineBasicBlock & MBB,MachineBasicBlock::iterator Before,unsigned SaveWQM,unsigned LiveMaskReg)597 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
598 MachineBasicBlock::iterator Before,
599 unsigned SaveWQM, unsigned LiveMaskReg) {
600 MachineInstr *MI;
601
602 if (SaveWQM) {
603 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ?
604 AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64),
605 SaveWQM)
606 .addReg(LiveMaskReg);
607 } else {
608 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
609 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ?
610 AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64),
611 Exec)
612 .addReg(Exec)
613 .addReg(LiveMaskReg);
614 }
615
616 LIS->InsertMachineInstrInMaps(*MI);
617 }
618
toWQM(MachineBasicBlock & MBB,MachineBasicBlock::iterator Before,unsigned SavedWQM)619 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
620 MachineBasicBlock::iterator Before,
621 unsigned SavedWQM) {
622 MachineInstr *MI;
623
624 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
625 if (SavedWQM) {
626 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec)
627 .addReg(SavedWQM);
628 } else {
629 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ?
630 AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64),
631 Exec)
632 .addReg(Exec);
633 }
634
635 LIS->InsertMachineInstrInMaps(*MI);
636 }
637
toWWM(MachineBasicBlock & MBB,MachineBasicBlock::iterator Before,unsigned SaveOrig)638 void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB,
639 MachineBasicBlock::iterator Before,
640 unsigned SaveOrig) {
641 MachineInstr *MI;
642
643 assert(SaveOrig);
644 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_WWM), SaveOrig)
645 .addImm(-1);
646 LIS->InsertMachineInstrInMaps(*MI);
647 }
648
fromWWM(MachineBasicBlock & MBB,MachineBasicBlock::iterator Before,unsigned SavedOrig)649 void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB,
650 MachineBasicBlock::iterator Before,
651 unsigned SavedOrig) {
652 MachineInstr *MI;
653
654 assert(SavedOrig);
655 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM),
656 ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC)
657 .addReg(SavedOrig);
658 LIS->InsertMachineInstrInMaps(*MI);
659 }
660
processBlock(MachineBasicBlock & MBB,unsigned LiveMaskReg,bool isEntry)661 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
662 bool isEntry) {
663 auto BII = Blocks.find(&MBB);
664 if (BII == Blocks.end())
665 return;
666
667 const BlockInfo &BI = BII->second;
668
669 // This is a non-entry block that is WQM throughout, so no need to do
670 // anything.
671 if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact)
672 return;
673
674 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
675 << ":\n");
676
677 unsigned SavedWQMReg = 0;
678 unsigned SavedNonWWMReg = 0;
679 bool WQMFromExec = isEntry;
680 char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
681 char NonWWMState = 0;
682 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
683
684 auto II = MBB.getFirstNonPHI(), IE = MBB.end();
685 if (isEntry)
686 ++II; // Skip the instruction that saves LiveMask
687
688 // This stores the first instruction where it's safe to switch from WQM to
689 // Exact or vice versa.
690 MachineBasicBlock::iterator FirstWQM = IE;
691
692 // This stores the first instruction where it's safe to switch from WWM to
693 // Exact/WQM or to switch to WWM. It must always be the same as, or after,
694 // FirstWQM since if it's safe to switch to/from WWM, it must be safe to
695 // switch to/from WQM as well.
696 MachineBasicBlock::iterator FirstWWM = IE;
697 for (;;) {
698 MachineBasicBlock::iterator Next = II;
699 char Needs = StateExact | StateWQM; // WWM is disabled by default
700 char OutNeeds = 0;
701
702 if (FirstWQM == IE)
703 FirstWQM = II;
704
705 if (FirstWWM == IE)
706 FirstWWM = II;
707
708 // First, figure out the allowed states (Needs) based on the propagated
709 // flags.
710 if (II != IE) {
711 MachineInstr &MI = *II;
712
713 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) {
714 auto III = Instructions.find(&MI);
715 if (III != Instructions.end()) {
716 if (III->second.Needs & StateWWM)
717 Needs = StateWWM;
718 else if (III->second.Needs & StateWQM)
719 Needs = StateWQM;
720 else
721 Needs &= ~III->second.Disabled;
722 OutNeeds = III->second.OutNeeds;
723 }
724 } else {
725 // If the instruction doesn't actually need a correct EXEC, then we can
726 // safely leave WWM enabled.
727 Needs = StateExact | StateWQM | StateWWM;
728 }
729
730 if (MI.isTerminator() && OutNeeds == StateExact)
731 Needs = StateExact;
732
733 if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact)
734 MI.getOperand(3).setImm(1);
735
736 ++Next;
737 } else {
738 // End of basic block
739 if (BI.OutNeeds & StateWQM)
740 Needs = StateWQM;
741 else if (BI.OutNeeds == StateExact)
742 Needs = StateExact;
743 else
744 Needs = StateWQM | StateExact;
745 }
746
747 // Now, transition if necessary.
748 if (!(Needs & State)) {
749 MachineBasicBlock::iterator First;
750 if (State == StateWWM || Needs == StateWWM) {
751 // We must switch to or from WWM
752 First = FirstWWM;
753 } else {
754 // We only need to switch to/from WQM, so we can use FirstWQM
755 First = FirstWQM;
756 }
757
758 MachineBasicBlock::iterator Before =
759 prepareInsertion(MBB, First, II, Needs == StateWQM,
760 Needs == StateExact || WQMFromExec);
761
762 if (State == StateWWM) {
763 assert(SavedNonWWMReg);
764 fromWWM(MBB, Before, SavedNonWWMReg);
765 LIS->createAndComputeVirtRegInterval(SavedNonWWMReg);
766 SavedNonWWMReg = 0;
767 State = NonWWMState;
768 }
769
770 if (Needs == StateWWM) {
771 NonWWMState = State;
772 assert(!SavedNonWWMReg);
773 SavedNonWWMReg = MRI->createVirtualRegister(BoolRC);
774 toWWM(MBB, Before, SavedNonWWMReg);
775 State = StateWWM;
776 } else {
777 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
778 if (!WQMFromExec && (OutNeeds & StateWQM)) {
779 assert(!SavedWQMReg);
780 SavedWQMReg = MRI->createVirtualRegister(BoolRC);
781 }
782
783 toExact(MBB, Before, SavedWQMReg, LiveMaskReg);
784 State = StateExact;
785 } else if (State == StateExact && (Needs & StateWQM) &&
786 !(Needs & StateExact)) {
787 assert(WQMFromExec == (SavedWQMReg == 0));
788
789 toWQM(MBB, Before, SavedWQMReg);
790
791 if (SavedWQMReg) {
792 LIS->createAndComputeVirtRegInterval(SavedWQMReg);
793 SavedWQMReg = 0;
794 }
795 State = StateWQM;
796 } else {
797 // We can get here if we transitioned from WWM to a non-WWM state that
798 // already matches our needs, but we shouldn't need to do anything.
799 assert(Needs & State);
800 }
801 }
802 }
803
804 if (Needs != (StateExact | StateWQM | StateWWM)) {
805 if (Needs != (StateExact | StateWQM))
806 FirstWQM = IE;
807 FirstWWM = IE;
808 }
809
810 if (II == IE)
811 break;
812 II = Next;
813 }
814 assert(!SavedWQMReg);
815 assert(!SavedNonWWMReg);
816 }
817
lowerLiveMaskQueries(unsigned LiveMaskReg)818 void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) {
819 for (MachineInstr *MI : LiveMaskQueries) {
820 const DebugLoc &DL = MI->getDebugLoc();
821 Register Dest = MI->getOperand(0).getReg();
822 MachineInstr *Copy =
823 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
824 .addReg(LiveMaskReg);
825
826 LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
827 MI->eraseFromParent();
828 }
829 }
830
lowerCopyInstrs()831 void SIWholeQuadMode::lowerCopyInstrs() {
832 for (MachineInstr *MI : LowerToMovInstrs) {
833 assert(MI->getNumExplicitOperands() == 2);
834
835 const Register Reg = MI->getOperand(0).getReg();
836
837 if (TRI->isVGPR(*MRI, Reg)) {
838 const TargetRegisterClass *regClass = Register::isVirtualRegister(Reg)
839 ? MRI->getRegClass(Reg)
840 : TRI->getPhysRegClass(Reg);
841
842 const unsigned MovOp = TII->getMovOpcode(regClass);
843 MI->setDesc(TII->get(MovOp));
844
845 // And make it implicitly depend on exec (like all VALU movs should do).
846 MI->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
847 } else {
848 MI->setDesc(TII->get(AMDGPU::COPY));
849 }
850 }
851 for (MachineInstr *MI : LowerToCopyInstrs) {
852 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 ||
853 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) {
854 assert(MI->getNumExplicitOperands() == 3);
855 // the only reason we should be here is V_SET_INACTIVE has
856 // an undef input so it is being replaced by a simple copy.
857 // There should be a second undef source that we should remove.
858 assert(MI->getOperand(2).isUndef());
859 MI->RemoveOperand(2);
860 MI->untieRegOperand(1);
861 } else {
862 assert(MI->getNumExplicitOperands() == 2);
863 }
864
865 MI->setDesc(TII->get(AMDGPU::COPY));
866 }
867 }
868
runOnMachineFunction(MachineFunction & MF)869 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
870 Instructions.clear();
871 Blocks.clear();
872 LiveMaskQueries.clear();
873 LowerToCopyInstrs.clear();
874 LowerToMovInstrs.clear();
875 CallingConv = MF.getFunction().getCallingConv();
876
877 ST = &MF.getSubtarget<GCNSubtarget>();
878
879 TII = ST->getInstrInfo();
880 TRI = &TII->getRegisterInfo();
881 MRI = &MF.getRegInfo();
882 LIS = &getAnalysis<LiveIntervals>();
883
884 char GlobalFlags = analyzeFunction(MF);
885 unsigned LiveMaskReg = 0;
886 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
887 if (!(GlobalFlags & StateWQM)) {
888 lowerLiveMaskQueries(Exec);
889 if (!(GlobalFlags & StateWWM) && LowerToCopyInstrs.empty() && LowerToMovInstrs.empty())
890 return !LiveMaskQueries.empty();
891 } else {
892 // Store a copy of the original live mask when required
893 MachineBasicBlock &Entry = MF.front();
894 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();
895
896 if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) {
897 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC());
898 MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(),
899 TII->get(AMDGPU::COPY), LiveMaskReg)
900 .addReg(Exec);
901 LIS->InsertMachineInstrInMaps(*MI);
902 }
903
904 lowerLiveMaskQueries(LiveMaskReg);
905
906 if (GlobalFlags == StateWQM) {
907 // For a shader that needs only WQM, we can just set it once.
908 auto MI = BuildMI(Entry, EntryMI, DebugLoc(),
909 TII->get(ST->isWave32() ? AMDGPU::S_WQM_B32
910 : AMDGPU::S_WQM_B64),
911 Exec)
912 .addReg(Exec);
913 LIS->InsertMachineInstrInMaps(*MI);
914
915 lowerCopyInstrs();
916 // EntryMI may become invalid here
917 return true;
918 }
919 }
920
921 LLVM_DEBUG(printInfo());
922
923 lowerCopyInstrs();
924
925 // Handle the general case
926 for (auto BII : Blocks)
927 processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin());
928
929 if (LiveMaskReg)
930 LIS->createAndComputeVirtRegInterval(LiveMaskReg);
931
932 // Physical registers like SCC aren't tracked by default anyway, so just
933 // removing the ranges we computed is the simplest option for maintaining
934 // the analysis results.
935 LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
936
937 return true;
938 }
939