1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include <utility>
33 
34 namespace llvm {
35 
36   namespace PPCISD {
37 
38     // When adding a NEW PPCISD node please add it to the correct position in
39     // the enum. The order of elements in this enum matters!
40     // Values that are added after this entry:
41     //     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
42     // are considered memory opcodes and are treated differently than entries
43     // that come before it. For example, ADD or MUL should be placed before
44     // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
45     // after it.
46   enum NodeType : unsigned {
47     // Start the numbering where the builtin ops and target ops leave off.
48     FIRST_NUMBER = ISD::BUILTIN_OP_END,
49 
50     /// FSEL - Traditional three-operand fsel node.
51     ///
52     FSEL,
53 
54     /// XSMAXCDP, XSMINCDP - C-type min/max instructions.
55     XSMAXCDP,
56     XSMINCDP,
57 
58     /// FCFID - The FCFID instruction, taking an f64 operand and producing
59     /// and f64 value containing the FP representation of the integer that
60     /// was temporarily in the f64 operand.
61     FCFID,
62 
63     /// Newer FCFID[US] integer-to-floating-point conversion instructions for
64     /// unsigned integers and single-precision outputs.
65     FCFIDU,
66     FCFIDS,
67     FCFIDUS,
68 
69     /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
70     /// operand, producing an f64 value containing the integer representation
71     /// of that FP value.
72     FCTIDZ,
73     FCTIWZ,
74 
75     /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
76     /// unsigned integers with round toward zero.
77     FCTIDUZ,
78     FCTIWUZ,
79 
80     /// Floating-point-to-interger conversion instructions
81     FP_TO_UINT_IN_VSR,
82     FP_TO_SINT_IN_VSR,
83 
84     /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
85     /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
86     VEXTS,
87 
88     /// Reciprocal estimate instructions (unary FP ops).
89     FRE,
90     FRSQRTE,
91 
92     /// VPERM - The PPC VPERM Instruction.
93     ///
94     VPERM,
95 
96     /// XXSPLT - The PPC VSX splat instructions
97     ///
98     XXSPLT,
99 
100     /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
101     /// converting immediate single precision numbers to double precision
102     /// vector or scalar.
103     XXSPLTI_SP_TO_DP,
104 
105     /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
106     ///
107     XXSPLTI32DX,
108 
109     /// VECINSERT - The PPC vector insert instruction
110     ///
111     VECINSERT,
112 
113     /// VECSHL - The PPC vector shift left instruction
114     ///
115     VECSHL,
116 
117     /// XXPERMDI - The PPC XXPERMDI instruction
118     ///
119     XXPERMDI,
120 
121     /// The CMPB instruction (takes two operands of i32 or i64).
122     CMPB,
123 
124     /// Hi/Lo - These represent the high and low 16-bit parts of a global
125     /// address respectively.  These nodes have two operands, the first of
126     /// which must be a TargetGlobalAddress, and the second of which must be a
127     /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
128     /// though these are usually folded into other nodes.
129     Hi,
130     Lo,
131 
132     /// The following two target-specific nodes are used for calls through
133     /// function pointers in the 64-bit SVR4 ABI.
134 
135     /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
136     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
137     /// compute an allocation on the stack.
138     DYNALLOC,
139 
140     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
141     /// compute an offset from native SP to the address  of the most recent
142     /// dynamic alloca.
143     DYNAREAOFFSET,
144 
145     /// To avoid stack clash, allocation is performed by block and each block is
146     /// probed.
147     PROBED_ALLOCA,
148 
149     /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
150     /// at function entry, used for PIC code.
151     GlobalBaseReg,
152 
153     /// These nodes represent PPC shifts.
154     ///
155     /// For scalar types, only the last `n + 1` bits of the shift amounts
156     /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
157     /// for exact behaviors.
158     ///
159     /// For vector types, only the last n bits are used. See vsld.
160     SRL,
161     SRA,
162     SHL,
163 
164     /// FNMSUB - Negated multiply-subtract instruction.
165     FNMSUB,
166 
167     /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
168     /// word and shift left immediate.
169     EXTSWSLI,
170 
171     /// The combination of sra[wd]i and addze used to implemented signed
172     /// integer division by a power of 2. The first operand is the dividend,
173     /// and the second is the constant shift amount (representing the
174     /// divisor).
175     SRA_ADDZE,
176 
177     /// CALL - A direct function call.
178     /// CALL_NOP is a call with the special NOP which follows 64-bit
179     /// CALL_NOTOC the caller does not use the TOC.
180     /// SVR4 calls and 32-bit/64-bit AIX calls.
181     CALL,
182     CALL_NOP,
183     CALL_NOTOC,
184 
185     /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
186     /// MTCTR instruction.
187     MTCTR,
188 
189     /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
190     /// BCTRL instruction.
191     BCTRL,
192 
193     /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
194     /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
195     /// and 64-bit AIX.
196     BCTRL_LOAD_TOC,
197 
198     /// Return with a flag operand, matched by 'blr'
199     RET_FLAG,
200 
201     /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
202     /// This copies the bits corresponding to the specified CRREG into the
203     /// resultant GPR.  Bits corresponding to other CR regs are undefined.
204     MFOCRF,
205 
206     /// Direct move from a VSX register to a GPR
207     MFVSR,
208 
209     /// Direct move from a GPR to a VSX register (algebraic)
210     MTVSRA,
211 
212     /// Direct move from a GPR to a VSX register (zero)
213     MTVSRZ,
214 
215     /// Direct move of 2 consecutive GPR to a VSX register.
216     BUILD_FP128,
217 
218     /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
219     /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
220     /// unsupported for this target.
221     /// Merge 2 GPRs to a single SPE register.
222     BUILD_SPE64,
223 
224     /// Extract SPE register component, second argument is high or low.
225     EXTRACT_SPE,
226 
227     /// Extract a subvector from signed integer vector and convert to FP.
228     /// It is primarily used to convert a (widened) illegal integer vector
229     /// type to a legal floating point vector type.
230     /// For example v2i32 -> widened to v4i32 -> v2f64
231     SINT_VEC_TO_FP,
232 
233     /// Extract a subvector from unsigned integer vector and convert to FP.
234     /// As with SINT_VEC_TO_FP, used for converting illegal types.
235     UINT_VEC_TO_FP,
236 
237     /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
238     /// place the value into the least significant element of the most
239     /// significant doubleword in the vector. This is not element zero for
240     /// anything smaller than a doubleword on either endianness. This node has
241     /// the same semantics as SCALAR_TO_VECTOR except that the value remains in
242     /// the aforementioned location in the vector register.
243     SCALAR_TO_VECTOR_PERMUTED,
244 
245     // FIXME: Remove these once the ANDI glue bug is fixed:
246     /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
247     /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
248     /// implement truncation of i32 or i64 to i1.
249     ANDI_rec_1_EQ_BIT,
250     ANDI_rec_1_GT_BIT,
251 
252     // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
253     // target (returns (Lo, Hi)). It takes a chain operand.
254     READ_TIME_BASE,
255 
256     // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
257     EH_SJLJ_SETJMP,
258 
259     // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
260     EH_SJLJ_LONGJMP,
261 
262     /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
263     /// instructions.  For lack of better number, we use the opcode number
264     /// encoding for the OPC field to identify the compare.  For example, 838
265     /// is VCMPGTSH.
266     VCMP,
267 
268     /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
269     /// altivec VCMP*o instructions.  For lack of better number, we use the
270     /// opcode number encoding for the OPC field to identify the compare.  For
271     /// example, 838 is VCMPGTSH.
272     VCMPo,
273 
274     /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
275     /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
276     /// condition register to branch on, OPC is the branch opcode to use (e.g.
277     /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
278     /// an optional input flag argument.
279     COND_BRANCH,
280 
281     /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
282     /// loops.
283     BDNZ,
284     BDZ,
285 
286     /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
287     /// towards zero.  Used only as part of the long double-to-int
288     /// conversion sequence.
289     FADDRTZ,
290 
291     /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
292     MFFS,
293 
294     /// TC_RETURN - A tail call return.
295     ///   operand #0 chain
296     ///   operand #1 callee (register or absolute)
297     ///   operand #2 stack adjustment
298     ///   operand #3 optional in flag
299     TC_RETURN,
300 
301     /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
302     CR6SET,
303     CR6UNSET,
304 
305     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
306     /// for non-position independent code on PPC32.
307     PPC32_GOT,
308 
309     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
310     /// local dynamic TLS and position indendepent code on PPC32.
311     PPC32_PICGOT,
312 
313     /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
314     /// TLS model, produces an ADDIS8 instruction that adds the GOT
315     /// base to sym\@got\@tprel\@ha.
316     ADDIS_GOT_TPREL_HA,
317 
318     /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
319     /// TLS model, produces a LD instruction with base register G8RReg
320     /// and offset sym\@got\@tprel\@l.  This completes the addition that
321     /// finds the offset of "sym" relative to the thread pointer.
322     LD_GOT_TPREL_L,
323 
324     /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
325     /// model, produces an ADD instruction that adds the contents of
326     /// G8RReg to the thread pointer.  Symbol contains a relocation
327     /// sym\@tls which is to be replaced by the thread pointer and
328     /// identifies to the linker that the instruction is part of a
329     /// TLS sequence.
330     ADD_TLS,
331 
332     /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
333     /// model, produces an ADDIS8 instruction that adds the GOT base
334     /// register to sym\@got\@tlsgd\@ha.
335     ADDIS_TLSGD_HA,
336 
337     /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
338     /// model, produces an ADDI8 instruction that adds G8RReg to
339     /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
340     /// ADDIS_TLSGD_L_ADDR until after register assignment.
341     ADDI_TLSGD_L,
342 
343     /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
344     /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
345     /// ADDIS_TLSGD_L_ADDR until after register assignment.
346     GET_TLS_ADDR,
347 
348     /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
349     /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
350     /// register assignment.
351     ADDI_TLSGD_L_ADDR,
352 
353     /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
354     /// model, produces an ADDIS8 instruction that adds the GOT base
355     /// register to sym\@got\@tlsld\@ha.
356     ADDIS_TLSLD_HA,
357 
358     /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
359     /// model, produces an ADDI8 instruction that adds G8RReg to
360     /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
361     /// ADDIS_TLSLD_L_ADDR until after register assignment.
362     ADDI_TLSLD_L,
363 
364     /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
365     /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
366     /// ADDIS_TLSLD_L_ADDR until after register assignment.
367     GET_TLSLD_ADDR,
368 
369     /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
370     /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
371     /// following register assignment.
372     ADDI_TLSLD_L_ADDR,
373 
374     /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
375     /// model, produces an ADDIS8 instruction that adds X3 to
376     /// sym\@dtprel\@ha.
377     ADDIS_DTPREL_HA,
378 
379     /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
380     /// model, produces an ADDI8 instruction that adds G8RReg to
381     /// sym\@got\@dtprel\@l.
382     ADDI_DTPREL_L,
383 
384     /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
385     /// during instruction selection to optimize a BUILD_VECTOR into
386     /// operations on splats.  This is necessary to avoid losing these
387     /// optimizations due to constant folding.
388     VADD_SPLAT,
389 
390     /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
391     /// operand identifies the operating system entry point.
392     SC,
393 
394     /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
395     CLRBHRB,
396 
397     /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
398     /// history rolling buffer entry.
399     MFBHRBE,
400 
401     /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
402     RFEBB,
403 
404     /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
405     /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
406     /// or stxvd2x instruction.  The chain is necessary because the
407     /// sequence replaces a load and needs to provide the same number
408     /// of outputs.
409     XXSWAPD,
410 
411     /// An SDNode for swaps that are not associated with any loads/stores
412     /// and thereby have no chain.
413     SWAP_NO_CHAIN,
414 
415     /// An SDNode for Power9 vector absolute value difference.
416     /// operand #0 vector
417     /// operand #1 vector
418     /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
419     /// the most significant bit for signed i32
420     ///
421     /// Power9 VABSD* instructions are designed to support unsigned integer
422     /// vectors (byte/halfword/word), if we want to make use of them for signed
423     /// integer vectors, we have to flip their sign bits first. To flip sign bit
424     /// for byte/halfword integer vector would become inefficient, but for word
425     /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
426     /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
427     ///               => VABSDUW((XVNEGSP a), (XVNEGSP b))
428     VABSD,
429 
430     /// QVFPERM = This corresponds to the QPX qvfperm instruction.
431     QVFPERM,
432 
433     /// QVGPCI = This corresponds to the QPX qvgpci instruction.
434     QVGPCI,
435 
436     /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
437     QVALIGNI,
438 
439     /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
440     QVESPLATI,
441 
442     /// QBFLT = Access the underlying QPX floating-point boolean
443     /// representation.
444     QBFLT,
445 
446     /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
447     /// lower (IDX=1) half of v4f32 to v2f64.
448     FP_EXTEND_HALF,
449 
450     /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
451     /// either through an add like PADDI or through a PC Relative load like
452     /// PLD.
453     MAT_PCREL_ADDR,
454 
455     /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
456     /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
457     /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
458     /// i32.
459     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
460 
461     /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
462     /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
463     /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
464     /// or i32.
465     LBRX,
466 
467     /// STFIWX - The STFIWX instruction.  The first operand is an input token
468     /// chain, then an f64 value to store, then an address to store it to.
469     STFIWX,
470 
471     /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
472     /// load which sign-extends from a 32-bit integer value into the
473     /// destination 64-bit register.
474     LFIWAX,
475 
476     /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
477     /// load which zero-extends from a 32-bit integer value into the
478     /// destination 64-bit register.
479     LFIWZX,
480 
481     /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
482     /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
483     /// This can be used for converting loaded integers to floating point.
484     LXSIZX,
485 
486     /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
487     /// chain, then an f64 value to store, then an address to store it to,
488     /// followed by a byte-width for the store.
489     STXSIX,
490 
491     /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
492     /// Maps directly to an lxvd2x instruction that will be followed by
493     /// an xxswapd.
494     LXVD2X,
495 
496     /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
497     /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
498     /// the vector type to load vector in big-endian element order.
499     LOAD_VEC_BE,
500 
501     /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
502     /// v2f32 value into the lower half of a VSR register.
503     LD_VSX_LH,
504 
505     /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
506     /// instructions such as LXVDSX, LXVWSX.
507     LD_SPLAT,
508 
509     /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
510     /// Maps directly to an stxvd2x instruction that will be preceded by
511     /// an xxswapd.
512     STXVD2X,
513 
514     /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
515     /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
516     /// the vector type to store vector in big-endian element order.
517     STORE_VEC_BE,
518 
519     /// Store scalar integers from VSR.
520     ST_VSR_SCAL_INT,
521 
522     /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
523     /// The 4xf32 load used for v4i1 constants.
524     QVLFSb,
525 
526     /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
527     /// except they ensure that the compare input is zero-extended for
528     /// sub-word versions because the atomic loads zero-extend.
529     ATOMIC_CMP_SWAP_8,
530     ATOMIC_CMP_SWAP_16,
531 
532     /// GPRC = TOC_ENTRY GA, TOC
533     /// Loads the entry for GA from the TOC, where the TOC base is given by
534     /// the last operand.
535     TOC_ENTRY
536   };
537 
538   } // end namespace PPCISD
539 
540   /// Define some predicates that are used for node matching.
541   namespace PPC {
542 
543     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
544     /// VPKUHUM instruction.
545     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
546                               SelectionDAG &DAG);
547 
548     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
549     /// VPKUWUM instruction.
550     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
551                               SelectionDAG &DAG);
552 
553     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
554     /// VPKUDUM instruction.
555     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
556                               SelectionDAG &DAG);
557 
558     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
559     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
560     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
561                             unsigned ShuffleKind, SelectionDAG &DAG);
562 
563     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
564     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
565     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
566                             unsigned ShuffleKind, SelectionDAG &DAG);
567 
568     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
569     /// a VMRGEW or VMRGOW instruction
570     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
571                              unsigned ShuffleKind, SelectionDAG &DAG);
572     /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
573     /// for a XXSLDWI instruction.
574     bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
575                               bool &Swap, bool IsLE);
576 
577     /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
578     /// for a XXBRH instruction.
579     bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
580 
581     /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
582     /// for a XXBRW instruction.
583     bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
584 
585     /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
586     /// for a XXBRD instruction.
587     bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
588 
589     /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
590     /// for a XXBRQ instruction.
591     bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
592 
593     /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
594     /// for a XXPERMDI instruction.
595     bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
596                               bool &Swap, bool IsLE);
597 
598     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
599     /// shift amount, otherwise return -1.
600     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
601                             SelectionDAG &DAG);
602 
603     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
604     /// specifies a splat of a single element that is suitable for input to
605     /// VSPLTB/VSPLTH/VSPLTW.
606     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
607 
608     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
609     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
610     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
611     /// vector into the other. This function will also set a couple of
612     /// output parameters for how much the source vector needs to be shifted and
613     /// what byte number needs to be specified for the instruction to put the
614     /// element in the desired location of the target vector.
615     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
616                          unsigned &InsertAtByte, bool &Swap, bool IsLE);
617 
618     /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
619     /// appropriate for PPC mnemonics (which have a big endian bias - namely
620     /// elements are counted from the left of the vector register).
621     unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
622                                         SelectionDAG &DAG);
623 
624     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
625     /// formed by using a vspltis[bhw] instruction of the specified element
626     /// size, return the constant being splatted.  The ByteSize field indicates
627     /// the number of bytes of each element [124] -> [bhw].
628     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
629 
630     /// If this is a qvaligni shuffle mask, return the shift
631     /// amount, otherwise return -1.
632     int isQVALIGNIShuffleMask(SDNode *N);
633 
634   } // end namespace PPC
635 
636   class PPCTargetLowering : public TargetLowering {
637     const PPCSubtarget &Subtarget;
638 
639   public:
640     explicit PPCTargetLowering(const PPCTargetMachine &TM,
641                                const PPCSubtarget &STI);
642 
643     /// getTargetNodeName() - This method returns the name of a target specific
644     /// DAG node.
645     const char *getTargetNodeName(unsigned Opcode) const override;
646 
isSelectSupported(SelectSupportKind Kind)647     bool isSelectSupported(SelectSupportKind Kind) const override {
648       // PowerPC does not support scalar condition selects on vectors.
649       return (Kind != SelectSupportKind::ScalarCondVectorVal);
650     }
651 
652     /// getPreferredVectorAction - The code we generate when vector types are
653     /// legalized by promoting the integer element type is often much worse
654     /// than code we generate if we widen the type for applicable vector types.
655     /// The issue with promoting is that the vector is scalaraized, individual
656     /// elements promoted and then the vector is rebuilt. So say we load a pair
657     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
658     /// loads, moves back into VSR's (or memory ops if we don't have moves) and
659     /// then the VPERM for the shuffle. All in all a very slow sequence.
getPreferredVectorAction(MVT VT)660     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
661       const override {
662       if (VT.getVectorNumElements() != 1 && VT.getScalarSizeInBits() % 8 == 0)
663         return TypeWidenVector;
664       return TargetLoweringBase::getPreferredVectorAction(VT);
665     }
666 
667     bool useSoftFloat() const override;
668 
669     bool hasSPE() const;
670 
getScalarShiftAmountTy(const DataLayout &,EVT)671     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
672       return MVT::i32;
673     }
674 
isCheapToSpeculateCttz()675     bool isCheapToSpeculateCttz() const override {
676       return true;
677     }
678 
isCheapToSpeculateCtlz()679     bool isCheapToSpeculateCtlz() const override {
680       return true;
681     }
682 
isCtlzFast()683     bool isCtlzFast() const override {
684       return true;
685     }
686 
isEqualityCmpFoldedWithSignedCmp()687     bool isEqualityCmpFoldedWithSignedCmp() const override {
688       return false;
689     }
690 
hasAndNotCompare(SDValue)691     bool hasAndNotCompare(SDValue) const override {
692       return true;
693     }
694 
695     bool preferIncOfAddToSubOfNot(EVT VT) const override;
696 
convertSetCCLogicToBitwiseLogic(EVT VT)697     bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
698       return VT.isScalarInteger();
699     }
700 
701     SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
702                                  bool OptForSize, NegatibleCost &Cost,
703                                  unsigned Depth = 0) const override;
704 
705     /// getSetCCResultType - Return the ISD::SETCC ValueType
706     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
707                            EVT VT) const override;
708 
709     /// Return true if target always beneficiates from combining into FMA for a
710     /// given value type. This must typically return false on targets where FMA
711     /// takes more cycles to execute than FADD.
712     bool enableAggressiveFMAFusion(EVT VT) const override;
713 
714     /// getPreIndexedAddressParts - returns true by value, base pointer and
715     /// offset pointer and addressing mode by reference if the node's address
716     /// can be legally represented as pre-indexed load / store address.
717     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
718                                    SDValue &Offset,
719                                    ISD::MemIndexedMode &AM,
720                                    SelectionDAG &DAG) const override;
721 
722     /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
723     /// it can be more efficiently represented as [r+imm].
724     bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
725                                 SelectionDAG &DAG) const;
726 
727     /// SelectAddressRegReg - Given the specified addressed, check to see if it
728     /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
729     /// is non-zero, only accept displacement which is not suitable for [r+imm].
730     /// Returns false if it can be represented by [r+imm], which are preferred.
731     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
732                              SelectionDAG &DAG,
733                              MaybeAlign EncodingAlignment = None) const;
734 
735     /// SelectAddressRegImm - Returns true if the address N can be represented
736     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
737     /// is not better represented as reg+reg. If \p EncodingAlignment is
738     /// non-zero, only accept displacements suitable for instruction encoding
739     /// requirement, i.e. multiples of 4 for DS form.
740     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
741                              SelectionDAG &DAG,
742                              MaybeAlign EncodingAlignment) const;
743 
744     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
745     /// represented as an indexed [r+r] operation.
746     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
747                                  SelectionDAG &DAG) const;
748 
749     /// SelectAddressPCRel - Represent the specified address as pc relative to
750     /// be represented as [pc+imm]
751     bool SelectAddressPCRel(SDValue N, SDValue &Base) const;
752 
753     Sched::Preference getSchedulingPreference(SDNode *N) const override;
754 
755     /// LowerOperation - Provide custom lowering hooks for some operations.
756     ///
757     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
758 
759     /// ReplaceNodeResults - Replace the results of node with an illegal result
760     /// type with new values built out of custom code.
761     ///
762     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
763                             SelectionDAG &DAG) const override;
764 
765     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
766     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
767 
768     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
769 
770     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
771                           SmallVectorImpl<SDNode *> &Created) const override;
772 
773     Register getRegisterByName(const char* RegName, LLT VT,
774                                const MachineFunction &MF) const override;
775 
776     void computeKnownBitsForTargetNode(const SDValue Op,
777                                        KnownBits &Known,
778                                        const APInt &DemandedElts,
779                                        const SelectionDAG &DAG,
780                                        unsigned Depth = 0) const override;
781 
782     Align getPrefLoopAlignment(MachineLoop *ML) const override;
783 
shouldInsertFencesForAtomic(const Instruction * I)784     bool shouldInsertFencesForAtomic(const Instruction *I) const override {
785       return true;
786     }
787 
788     Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
789                                   AtomicOrdering Ord) const override;
790     Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
791                                    AtomicOrdering Ord) const override;
792 
793     MachineBasicBlock *
794     EmitInstrWithCustomInserter(MachineInstr &MI,
795                                 MachineBasicBlock *MBB) const override;
796     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
797                                         MachineBasicBlock *MBB,
798                                         unsigned AtomicSize,
799                                         unsigned BinOpcode,
800                                         unsigned CmpOpcode = 0,
801                                         unsigned CmpPred = 0) const;
802     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
803                                                 MachineBasicBlock *MBB,
804                                                 bool is8bit,
805                                                 unsigned Opcode,
806                                                 unsigned CmpOpcode = 0,
807                                                 unsigned CmpPred = 0) const;
808 
809     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
810                                         MachineBasicBlock *MBB) const;
811 
812     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
813                                          MachineBasicBlock *MBB) const;
814 
815     MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
816                                         MachineBasicBlock *MBB) const;
817 
818     bool hasInlineStackProbe(MachineFunction &MF) const override;
819 
820     unsigned getStackProbeSize(MachineFunction &MF) const;
821 
822     ConstraintType getConstraintType(StringRef Constraint) const override;
823 
824     /// Examine constraint string and operand type and determine a weight value.
825     /// The operand object must already have been set up with the operand type.
826     ConstraintWeight getSingleConstraintMatchWeight(
827       AsmOperandInfo &info, const char *constraint) const override;
828 
829     std::pair<unsigned, const TargetRegisterClass *>
830     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
831                                  StringRef Constraint, MVT VT) const override;
832 
833     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
834     /// function arguments in the caller parameter area.  This is the actual
835     /// alignment, not its logarithm.
836     unsigned getByValTypeAlignment(Type *Ty,
837                                    const DataLayout &DL) const override;
838 
839     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
840     /// vector.  If it is invalid, don't add anything to Ops.
841     void LowerAsmOperandForConstraint(SDValue Op,
842                                       std::string &Constraint,
843                                       std::vector<SDValue> &Ops,
844                                       SelectionDAG &DAG) const override;
845 
846     unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode)847     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
848       if (ConstraintCode == "es")
849         return InlineAsm::Constraint_es;
850       else if (ConstraintCode == "o")
851         return InlineAsm::Constraint_o;
852       else if (ConstraintCode == "Q")
853         return InlineAsm::Constraint_Q;
854       else if (ConstraintCode == "Z")
855         return InlineAsm::Constraint_Z;
856       else if (ConstraintCode == "Zy")
857         return InlineAsm::Constraint_Zy;
858       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
859     }
860 
861     /// isLegalAddressingMode - Return true if the addressing mode represented
862     /// by AM is legal for this target, for a load/store of the specified type.
863     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
864                                Type *Ty, unsigned AS,
865                                Instruction *I = nullptr) const override;
866 
867     /// isLegalICmpImmediate - Return true if the specified immediate is legal
868     /// icmp immediate, that is the target has icmp instructions which can
869     /// compare a register against the immediate without having to materialize
870     /// the immediate into a register.
871     bool isLegalICmpImmediate(int64_t Imm) const override;
872 
873     /// isLegalAddImmediate - Return true if the specified immediate is legal
874     /// add immediate, that is the target has add instructions which can
875     /// add a register and the immediate without having to materialize
876     /// the immediate into a register.
877     bool isLegalAddImmediate(int64_t Imm) const override;
878 
879     /// isTruncateFree - Return true if it's free to truncate a value of
880     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
881     /// register X1 to i32 by referencing its sub-register R1.
882     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
883     bool isTruncateFree(EVT VT1, EVT VT2) const override;
884 
885     bool isZExtFree(SDValue Val, EVT VT2) const override;
886 
887     bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
888 
889     /// Returns true if it is beneficial to convert a load of a constant
890     /// to just the constant itself.
891     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
892                                            Type *Ty) const override;
893 
convertSelectOfConstantsToMath(EVT VT)894     bool convertSelectOfConstantsToMath(EVT VT) const override {
895       return true;
896     }
897 
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT)898     bool isDesirableToTransformToIntegerOp(unsigned Opc,
899                                            EVT VT) const override {
900       // Only handle float load/store pair because float(fpr) load/store
901       // instruction has more cycles than integer(gpr) load/store in PPC.
902       if (Opc != ISD::LOAD && Opc != ISD::STORE)
903         return false;
904       if (VT != MVT::f32 && VT != MVT::f64)
905         return false;
906 
907       return true;
908     }
909 
910     // Returns true if the address of the global is stored in TOC entry.
911     bool isAccessedAsGotIndirect(SDValue N) const;
912 
913     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
914 
915     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
916                             const CallInst &I,
917                             MachineFunction &MF,
918                             unsigned Intrinsic) const override;
919 
920     /// It returns EVT::Other if the type should be determined using generic
921     /// target-independent logic.
922     EVT getOptimalMemOpType(const MemOp &Op,
923                             const AttributeList &FuncAttributes) const override;
924 
925     /// Is unaligned memory access allowed for the given type, and is it fast
926     /// relative to software emulation.
927     bool allowsMisalignedMemoryAccesses(
928         EVT VT, unsigned AddrSpace, unsigned Align = 1,
929         MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
930         bool *Fast = nullptr) const override;
931 
932     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
933     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
934     /// expanded to FMAs when this method returns true, otherwise fmuladd is
935     /// expanded to fmul + fadd.
936     bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
937                                     EVT VT) const override;
938 
939     bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
940 
941     /// isProfitableToHoist - Check if it is profitable to hoist instruction
942     /// \p I to its dominator block.
943     /// For example, it is not profitable if \p I and it's only user can form a
944     /// FMA instruction, because Powerpc prefers FMADD.
945     bool isProfitableToHoist(Instruction *I) const override;
946 
947     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
948 
949     // Should we expand the build vector with shuffles?
950     bool
951     shouldExpandBuildVectorWithShuffles(EVT VT,
952                                         unsigned DefinedValues) const override;
953 
954     /// createFastISel - This method returns a target-specific FastISel object,
955     /// or null if the target does not support "fast" instruction selection.
956     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
957                              const TargetLibraryInfo *LibInfo) const override;
958 
959     /// Returns true if an argument of type Ty needs to be passed in a
960     /// contiguous block of registers in calling convention CallConv.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)961     bool functionArgumentNeedsConsecutiveRegisters(
962       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
963       // We support any array type as "consecutive" block in the parameter
964       // save area.  The element type defines the alignment requirement and
965       // whether the argument should go in GPRs, FPRs, or VRs if available.
966       //
967       // Note that clang uses this capability both to implement the ELFv2
968       // homogeneous float/vector aggregate ABI, and to avoid having to use
969       // "byval" when passing aggregates that might fully fit in registers.
970       return Ty->isArrayTy();
971     }
972 
973     /// If a physical register, this returns the register that receives the
974     /// exception address on entry to an EH pad.
975     Register
976     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
977 
978     /// If a physical register, this returns the register that receives the
979     /// exception typeid on entry to a landing pad.
980     Register
981     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
982 
983     /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a
984     /// specific type is cheaper than a multiply followed by a shift.
985     /// This is true for words and doublewords on 64-bit PowerPC.
986     bool isMulhCheaperThanMulShift(EVT Type) const override;
987 
988     /// Override to support customized stack guard loading.
989     bool useLoadStackGuardNode() const override;
990     void insertSSPDeclarations(Module &M) const override;
991 
992     bool isFPImmLegal(const APFloat &Imm, EVT VT,
993                       bool ForCodeSize) const override;
994 
995     unsigned getJumpTableEncoding() const override;
996     bool isJumpTableRelative() const override;
997     SDValue getPICJumpTableRelocBase(SDValue Table,
998                                      SelectionDAG &DAG) const override;
999     const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1000                                                unsigned JTI,
1001                                                MCContext &Ctx) const override;
1002 
1003     /// Structure that collects some common arguments that get passed around
1004     /// between the functions for call lowering.
1005     struct CallFlags {
1006       const CallingConv::ID CallConv;
1007       const bool IsTailCall : 1;
1008       const bool IsVarArg : 1;
1009       const bool IsPatchPoint : 1;
1010       const bool IsIndirect : 1;
1011       const bool HasNest : 1;
1012       const bool NoMerge : 1;
1013 
CallFlagsCallFlags1014       CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg,
1015                 bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
1016           : CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg),
1017             IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect),
1018             HasNest(HasNest), NoMerge(NoMerge) {}
1019     };
1020 
1021   private:
1022     struct ReuseLoadInfo {
1023       SDValue Ptr;
1024       SDValue Chain;
1025       SDValue ResChain;
1026       MachinePointerInfo MPI;
1027       bool IsDereferenceable = false;
1028       bool IsInvariant = false;
1029       Align Alignment;
1030       AAMDNodes AAInfo;
1031       const MDNode *Ranges = nullptr;
1032 
1033       ReuseLoadInfo() = default;
1034 
MMOFlagsReuseLoadInfo1035       MachineMemOperand::Flags MMOFlags() const {
1036         MachineMemOperand::Flags F = MachineMemOperand::MONone;
1037         if (IsDereferenceable)
1038           F |= MachineMemOperand::MODereferenceable;
1039         if (IsInvariant)
1040           F |= MachineMemOperand::MOInvariant;
1041         return F;
1042       }
1043     };
1044 
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)1045     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
1046       // Addrspacecasts are always noops.
1047       return true;
1048     }
1049 
1050     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1051                              SelectionDAG &DAG,
1052                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
1053     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
1054                          SelectionDAG &DAG) const;
1055 
1056     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1057                                 SelectionDAG &DAG, const SDLoc &dl) const;
1058     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1059                                      const SDLoc &dl) const;
1060 
1061     bool directMoveIsProfitable(const SDValue &Op) const;
1062     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1063                                      const SDLoc &dl) const;
1064 
1065     SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1066                                  const SDLoc &dl) const;
1067 
1068     SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1069 
1070     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1071     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1072 
1073     bool
1074     IsEligibleForTailCallOptimization(SDValue Callee,
1075                                       CallingConv::ID CalleeCC,
1076                                       bool isVarArg,
1077                                       const SmallVectorImpl<ISD::InputArg> &Ins,
1078                                       SelectionDAG& DAG) const;
1079 
1080     bool IsEligibleForTailCallOptimization_64SVR4(
1081         SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB,
1082         bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs,
1083         const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const;
1084 
1085     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1086                                          SDValue Chain, SDValue &LROpOut,
1087                                          SDValue &FPOpOut,
1088                                          const SDLoc &dl) const;
1089 
1090     SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1091 
1092     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1093     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1094     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1095     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1096     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1097     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1098     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1099     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1100     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1101     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1102     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1103     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1104     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1105     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1106     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1107     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1108     SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1109     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1110     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1111     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1112     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1113     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1114                            const SDLoc &dl) const;
1115     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1116     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
1117     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1118     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1119     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1120     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1121     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1122     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1123     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1124     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1125     SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1126     SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1127     SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1128     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1129     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
1130     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1131     SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
1132     SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1133     SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
1134 
1135     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1136     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1137 
1138     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1139                             CallingConv::ID CallConv, bool isVarArg,
1140                             const SmallVectorImpl<ISD::InputArg> &Ins,
1141                             const SDLoc &dl, SelectionDAG &DAG,
1142                             SmallVectorImpl<SDValue> &InVals) const;
1143 
1144     SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
1145                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1146                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
1147                        SDValue &Callee, int SPDiff, unsigned NumBytes,
1148                        const SmallVectorImpl<ISD::InputArg> &Ins,
1149                        SmallVectorImpl<SDValue> &InVals,
1150                        const CallBase *CB) const;
1151 
1152     SDValue
1153     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1154                          const SmallVectorImpl<ISD::InputArg> &Ins,
1155                          const SDLoc &dl, SelectionDAG &DAG,
1156                          SmallVectorImpl<SDValue> &InVals) const override;
1157 
1158     SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1159                       SmallVectorImpl<SDValue> &InVals) const override;
1160 
1161     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1162                         bool isVarArg,
1163                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1164                         LLVMContext &Context) const override;
1165 
1166     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1167                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1168                         const SmallVectorImpl<SDValue> &OutVals,
1169                         const SDLoc &dl, SelectionDAG &DAG) const override;
1170 
1171     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1172                               SelectionDAG &DAG, SDValue ArgVal,
1173                               const SDLoc &dl) const;
1174 
1175     SDValue LowerFormalArguments_AIX(
1176         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1177         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1178         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1179     SDValue LowerFormalArguments_Darwin(
1180         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1181         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1182         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1183     SDValue LowerFormalArguments_64SVR4(
1184         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1185         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1186         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1187     SDValue LowerFormalArguments_32SVR4(
1188         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1189         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1190         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1191 
1192     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1193                                        SDValue CallSeqStart,
1194                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1195                                        const SDLoc &dl) const;
1196 
1197     SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee, CallFlags CFlags,
1198                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1199                              const SmallVectorImpl<SDValue> &OutVals,
1200                              const SmallVectorImpl<ISD::InputArg> &Ins,
1201                              const SDLoc &dl, SelectionDAG &DAG,
1202                              SmallVectorImpl<SDValue> &InVals,
1203                              const CallBase *CB) const;
1204     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1205                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1206                              const SmallVectorImpl<SDValue> &OutVals,
1207                              const SmallVectorImpl<ISD::InputArg> &Ins,
1208                              const SDLoc &dl, SelectionDAG &DAG,
1209                              SmallVectorImpl<SDValue> &InVals,
1210                              const CallBase *CB) const;
1211     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1212                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1213                              const SmallVectorImpl<SDValue> &OutVals,
1214                              const SmallVectorImpl<ISD::InputArg> &Ins,
1215                              const SDLoc &dl, SelectionDAG &DAG,
1216                              SmallVectorImpl<SDValue> &InVals,
1217                              const CallBase *CB) const;
1218     SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
1219                           const SmallVectorImpl<ISD::OutputArg> &Outs,
1220                           const SmallVectorImpl<SDValue> &OutVals,
1221                           const SmallVectorImpl<ISD::InputArg> &Ins,
1222                           const SDLoc &dl, SelectionDAG &DAG,
1223                           SmallVectorImpl<SDValue> &InVals,
1224                           const CallBase *CB) const;
1225 
1226     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1227     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1228     SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1229 
1230     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1231     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1232     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1233     SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1234     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1235     SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1236     SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1237     SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1238     SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1239     SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1240     SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
1241     SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1242     SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1243     SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
1244     SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
1245     SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
1246                                  SelectionDAG &DAG) const;
1247     SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1248                                  DAGCombinerInfo &DCI) const;
1249 
1250     /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1251     /// SETCC with integer subtraction when (1) there is a legal way of doing it
1252     /// (2) keeping the result of comparison in GPR has performance benefit.
1253     SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1254 
1255     SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1256                             int &RefinementSteps, bool &UseOneConstNR,
1257                             bool Reciprocal) const override;
1258     SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1259                              int &RefinementSteps) const override;
1260     unsigned combineRepeatedFPDivisors() const override;
1261 
1262     SDValue
1263     combineElementTruncationToVectorTruncation(SDNode *N,
1264                                                DAGCombinerInfo &DCI) const;
1265 
1266     /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1267     /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1268     /// essentially any shuffle of v8i16 vectors that just inserts one element
1269     /// from one vector into the other.
1270     SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1271 
1272     /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1273     /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1274     /// essentially v16i8 vector version of VINSERTH.
1275     SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1276 
1277     /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
1278     /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
1279     SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1280 
1281     // Return whether the call instruction can potentially be optimized to a
1282     // tail call. This will cause the optimizers to attempt to move, or
1283     // duplicate return instructions to help enable tail call optimizations.
1284     bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1285     bool hasBitPreservingFPLogic(EVT VT) const override;
1286     bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1287   }; // end class PPCTargetLowering
1288 
1289   namespace PPC {
1290 
1291     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1292                              const TargetLibraryInfo *LibInfo);
1293 
1294   } // end namespace PPC
1295 
1296   bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1297   bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1298 
1299   bool convertToNonDenormSingle(APInt &ArgAPInt);
1300   bool convertToNonDenormSingle(APFloat &ArgAPFloat);
1301 
1302 } // end namespace llvm
1303 
1304 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
1305