1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
getCacheSize(TargetTransformInfo::CacheLevel Level) const68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
getNumberOfRegisters(unsigned ClassID) const119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
getRegisterBitWidth(bool Vector) const132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
getLoadStoreVecRegBitWidth(unsigned) const150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
getMaxInterleaveFactor(unsigned VF)154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // TODO: Handle more cost kinds.
181   if (CostKind != TTI::TCK_RecipThroughput)
182     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
183                                          Op2Info, Opd1PropInfo,
184                                          Opd2PropInfo, Args, CxtI);
185   // Legalize the type.
186   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
187 
188   int ISD = TLI->InstructionOpcodeToISD(Opcode);
189   assert(ISD && "Invalid opcode");
190 
191   static const CostTblEntry GLMCostTable[] = {
192     { ISD::FDIV,  MVT::f32,   18 }, // divss
193     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
194     { ISD::FDIV,  MVT::f64,   33 }, // divsd
195     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
196   };
197 
198   if (ST->useGLMDivSqrtCosts())
199     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
200                                             LT.second))
201       return LT.first * Entry->Cost;
202 
203   static const CostTblEntry SLMCostTable[] = {
204     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
205     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
206     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
207     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
208     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
209     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
210     { ISD::FDIV,  MVT::f32,   17 }, // divss
211     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
212     { ISD::FDIV,  MVT::f64,   32 }, // divsd
213     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
214     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
215     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
216     // v2i64/v4i64 mul is custom lowered as a series of long:
217     // multiplies(3), shifts(3) and adds(2)
218     // slm muldq version throughput is 2 and addq throughput 4
219     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
220     //       3X4 (addq throughput) = 17
221     { ISD::MUL,   MVT::v2i64, 17 },
222     // slm addq\subq throughput is 4
223     { ISD::ADD,   MVT::v2i64, 4  },
224     { ISD::SUB,   MVT::v2i64, 4  },
225   };
226 
227   if (ST->isSLM()) {
228     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
229       // Check if the operands can be shrinked into a smaller datatype.
230       bool Op1Signed = false;
231       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
232       bool Op2Signed = false;
233       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
234 
235       bool signedMode = Op1Signed | Op2Signed;
236       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
237 
238       if (OpMinSize <= 7)
239         return LT.first * 3; // pmullw/sext
240       if (!signedMode && OpMinSize <= 8)
241         return LT.first * 3; // pmullw/zext
242       if (OpMinSize <= 15)
243         return LT.first * 5; // pmullw/pmulhw/pshuf
244       if (!signedMode && OpMinSize <= 16)
245         return LT.first * 5; // pmullw/pmulhw/pshuf
246     }
247 
248     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
249                                             LT.second)) {
250       return LT.first * Entry->Cost;
251     }
252   }
253 
254   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
255        ISD == ISD::UREM) &&
256       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
257        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
258       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
259     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
260       // On X86, vector signed division by constants power-of-two are
261       // normally expanded to the sequence SRA + SRL + ADD + SRA.
262       // The OperandValue properties may not be the same as that of the previous
263       // operation; conservatively assume OP_None.
264       int Cost =
265           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
266                                      Op2Info,
267                                      TargetTransformInfo::OP_None,
268                                      TargetTransformInfo::OP_None);
269       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
270                                      Op2Info,
271                                      TargetTransformInfo::OP_None,
272                                      TargetTransformInfo::OP_None);
273       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
274                                      Op2Info,
275                                      TargetTransformInfo::OP_None,
276                                      TargetTransformInfo::OP_None);
277 
278       if (ISD == ISD::SREM) {
279         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
280         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
281                                        Op2Info);
282         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
283                                        Op2Info);
284       }
285 
286       return Cost;
287     }
288 
289     // Vector unsigned division/remainder will be simplified to shifts/masks.
290     if (ISD == ISD::UDIV)
291       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
292                                     Op1Info, Op2Info,
293                                     TargetTransformInfo::OP_None,
294                                     TargetTransformInfo::OP_None);
295 
296     else // UREM
297       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
298                                     Op1Info, Op2Info,
299                                     TargetTransformInfo::OP_None,
300                                     TargetTransformInfo::OP_None);
301   }
302 
303   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
304     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
305     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
306     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
307   };
308 
309   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310       ST->hasBWI()) {
311     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
312                                             LT.second))
313       return LT.first * Entry->Cost;
314   }
315 
316   static const CostTblEntry AVX512UniformConstCostTable[] = {
317     { ISD::SRA,  MVT::v2i64,   1 },
318     { ISD::SRA,  MVT::v4i64,   1 },
319     { ISD::SRA,  MVT::v8i64,   1 },
320 
321     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
322     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
323     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
324   };
325 
326   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
327       ST->hasAVX512()) {
328     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
329                                             LT.second))
330       return LT.first * Entry->Cost;
331   }
332 
333   static const CostTblEntry AVX2UniformConstCostTable[] = {
334     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
335     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
336     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
337 
338     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
339   };
340 
341   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
342       ST->hasAVX2()) {
343     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
344                                             LT.second))
345       return LT.first * Entry->Cost;
346   }
347 
348   static const CostTblEntry SSE2UniformConstCostTable[] = {
349     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
350     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
351     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
352 
353     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
354     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
355     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
356   };
357 
358   // XOP has faster vXi8 shifts.
359   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
360       ST->hasSSE2() && !ST->hasXOP()) {
361     if (const auto *Entry =
362             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
363       return LT.first * Entry->Cost;
364   }
365 
366   static const CostTblEntry AVX512BWConstCostTable[] = {
367     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
368     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
369     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
370     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
371     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
372     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
373     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
374     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
375   };
376 
377   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
378        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
379       ST->hasBWI()) {
380     if (const auto *Entry =
381             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
382       return LT.first * Entry->Cost;
383   }
384 
385   static const CostTblEntry AVX512ConstCostTable[] = {
386     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
387     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
388     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
389     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
390     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
391     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
392     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
393     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
394     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
395     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
396     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
397     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
398   };
399 
400   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
401        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
402       ST->hasAVX512()) {
403     if (const auto *Entry =
404             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
405       return LT.first * Entry->Cost;
406   }
407 
408   static const CostTblEntry AVX2ConstCostTable[] = {
409     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
410     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
411     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
412     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
413     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
414     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
415     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
416     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
417     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
418     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
419     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
420     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
421   };
422 
423   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
424        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
425       ST->hasAVX2()) {
426     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
427       return LT.first * Entry->Cost;
428   }
429 
430   static const CostTblEntry SSE2ConstCostTable[] = {
431     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
432     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
433     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
434     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
435     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
436     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
437     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
438     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
439     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
440     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
441     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
442     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
443     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
444     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
445     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
446     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
447     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
448     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
449     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
450     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
451     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
452     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
453     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
454     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
455   };
456 
457   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
458        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
459       ST->hasSSE2()) {
460     // pmuldq sequence.
461     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
462       return LT.first * 32;
463     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
464       return LT.first * 38;
465     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
466       return LT.first * 15;
467     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
468       return LT.first * 20;
469 
470     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
471       return LT.first * Entry->Cost;
472   }
473 
474   static const CostTblEntry AVX512BWShiftCostTable[] = {
475     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
476     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
477     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
478 
479     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
480     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
481     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
482 
483     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
484     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
485     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
486   };
487 
488   if (ST->hasBWI())
489     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
490       return LT.first * Entry->Cost;
491 
492   static const CostTblEntry AVX2UniformCostTable[] = {
493     // Uniform splats are cheaper for the following instructions.
494     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
495     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
496     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
497     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
498     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
499     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
500   };
501 
502   if (ST->hasAVX2() &&
503       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
504        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
505     if (const auto *Entry =
506             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
507       return LT.first * Entry->Cost;
508   }
509 
510   static const CostTblEntry SSE2UniformCostTable[] = {
511     // Uniform splats are cheaper for the following instructions.
512     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
513     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
514     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
515 
516     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
517     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
518     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
519 
520     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
521     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
522   };
523 
524   if (ST->hasSSE2() &&
525       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
526        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
527     if (const auto *Entry =
528             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
529       return LT.first * Entry->Cost;
530   }
531 
532   static const CostTblEntry AVX512DQCostTable[] = {
533     { ISD::MUL,  MVT::v2i64, 1 },
534     { ISD::MUL,  MVT::v4i64, 1 },
535     { ISD::MUL,  MVT::v8i64, 1 }
536   };
537 
538   // Look for AVX512DQ lowering tricks for custom cases.
539   if (ST->hasDQI())
540     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
541       return LT.first * Entry->Cost;
542 
543   static const CostTblEntry AVX512BWCostTable[] = {
544     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
545     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
546     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
547 
548     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
549     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
550     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
551   };
552 
553   // Look for AVX512BW lowering tricks for custom cases.
554   if (ST->hasBWI())
555     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
556       return LT.first * Entry->Cost;
557 
558   static const CostTblEntry AVX512CostTable[] = {
559     { ISD::SHL,     MVT::v16i32,     1 },
560     { ISD::SRL,     MVT::v16i32,     1 },
561     { ISD::SRA,     MVT::v16i32,     1 },
562 
563     { ISD::SHL,     MVT::v8i64,      1 },
564     { ISD::SRL,     MVT::v8i64,      1 },
565 
566     { ISD::SRA,     MVT::v2i64,      1 },
567     { ISD::SRA,     MVT::v4i64,      1 },
568     { ISD::SRA,     MVT::v8i64,      1 },
569 
570     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
571     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
572     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
573     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
574     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
575     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
576     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
577 
578     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
579     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
580     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
581 
582     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
583     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
584     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
585   };
586 
587   if (ST->hasAVX512())
588     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
589       return LT.first * Entry->Cost;
590 
591   static const CostTblEntry AVX2ShiftCostTable[] = {
592     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
593     // customize them to detect the cases where shift amount is a scalar one.
594     { ISD::SHL,     MVT::v4i32,    1 },
595     { ISD::SRL,     MVT::v4i32,    1 },
596     { ISD::SRA,     MVT::v4i32,    1 },
597     { ISD::SHL,     MVT::v8i32,    1 },
598     { ISD::SRL,     MVT::v8i32,    1 },
599     { ISD::SRA,     MVT::v8i32,    1 },
600     { ISD::SHL,     MVT::v2i64,    1 },
601     { ISD::SRL,     MVT::v2i64,    1 },
602     { ISD::SHL,     MVT::v4i64,    1 },
603     { ISD::SRL,     MVT::v4i64,    1 },
604   };
605 
606   if (ST->hasAVX512()) {
607     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
608         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
609          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
610       // On AVX512, a packed v32i16 shift left by a constant build_vector
611       // is lowered into a vector multiply (vpmullw).
612       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
613                                     Op1Info, Op2Info,
614                                     TargetTransformInfo::OP_None,
615                                     TargetTransformInfo::OP_None);
616   }
617 
618   // Look for AVX2 lowering tricks.
619   if (ST->hasAVX2()) {
620     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
621         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
622          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
623       // On AVX2, a packed v16i16 shift left by a constant build_vector
624       // is lowered into a vector multiply (vpmullw).
625       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
626                                     Op1Info, Op2Info,
627                                     TargetTransformInfo::OP_None,
628                                     TargetTransformInfo::OP_None);
629 
630     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
631       return LT.first * Entry->Cost;
632   }
633 
634   static const CostTblEntry XOPShiftCostTable[] = {
635     // 128bit shifts take 1cy, but right shifts require negation beforehand.
636     { ISD::SHL,     MVT::v16i8,    1 },
637     { ISD::SRL,     MVT::v16i8,    2 },
638     { ISD::SRA,     MVT::v16i8,    2 },
639     { ISD::SHL,     MVT::v8i16,    1 },
640     { ISD::SRL,     MVT::v8i16,    2 },
641     { ISD::SRA,     MVT::v8i16,    2 },
642     { ISD::SHL,     MVT::v4i32,    1 },
643     { ISD::SRL,     MVT::v4i32,    2 },
644     { ISD::SRA,     MVT::v4i32,    2 },
645     { ISD::SHL,     MVT::v2i64,    1 },
646     { ISD::SRL,     MVT::v2i64,    2 },
647     { ISD::SRA,     MVT::v2i64,    2 },
648     // 256bit shifts require splitting if AVX2 didn't catch them above.
649     { ISD::SHL,     MVT::v32i8,  2+2 },
650     { ISD::SRL,     MVT::v32i8,  4+2 },
651     { ISD::SRA,     MVT::v32i8,  4+2 },
652     { ISD::SHL,     MVT::v16i16, 2+2 },
653     { ISD::SRL,     MVT::v16i16, 4+2 },
654     { ISD::SRA,     MVT::v16i16, 4+2 },
655     { ISD::SHL,     MVT::v8i32,  2+2 },
656     { ISD::SRL,     MVT::v8i32,  4+2 },
657     { ISD::SRA,     MVT::v8i32,  4+2 },
658     { ISD::SHL,     MVT::v4i64,  2+2 },
659     { ISD::SRL,     MVT::v4i64,  4+2 },
660     { ISD::SRA,     MVT::v4i64,  4+2 },
661   };
662 
663   // Look for XOP lowering tricks.
664   if (ST->hasXOP()) {
665     // If the right shift is constant then we'll fold the negation so
666     // it's as cheap as a left shift.
667     int ShiftISD = ISD;
668     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
669         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
670          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
671       ShiftISD = ISD::SHL;
672     if (const auto *Entry =
673             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
674       return LT.first * Entry->Cost;
675   }
676 
677   static const CostTblEntry SSE2UniformShiftCostTable[] = {
678     // Uniform splats are cheaper for the following instructions.
679     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
680     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
681     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
682 
683     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
684     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
685     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
686 
687     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
688     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
689     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
690     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
691   };
692 
693   if (ST->hasSSE2() &&
694       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
695        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
696 
697     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
698     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
699       return LT.first * 4; // 2*psrad + shuffle.
700 
701     if (const auto *Entry =
702             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
703       return LT.first * Entry->Cost;
704   }
705 
706   if (ISD == ISD::SHL &&
707       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
708     MVT VT = LT.second;
709     // Vector shift left by non uniform constant can be lowered
710     // into vector multiply.
711     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
712         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
713       ISD = ISD::MUL;
714   }
715 
716   static const CostTblEntry AVX2CostTable[] = {
717     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
718     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
719     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
720     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
721 
722     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
723     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
724     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
725     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
726 
727     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
728     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
729     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
730     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
731     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
732     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
733 
734     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
735     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
736     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
737     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
738     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
739     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
740     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
741     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
742 
743     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
744     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
745     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
746     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
747     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
748 
749     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
750     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
751     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
752     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
753     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
754     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
755 
756     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
757     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
758     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
759     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
760     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
761     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
762   };
763 
764   // Look for AVX2 lowering tricks for custom cases.
765   if (ST->hasAVX2())
766     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
767       return LT.first * Entry->Cost;
768 
769   static const CostTblEntry AVX1CostTable[] = {
770     // We don't have to scalarize unsupported ops. We can issue two half-sized
771     // operations and we only need to extract the upper YMM half.
772     // Two ops + 1 extract + 1 insert = 4.
773     { ISD::MUL,     MVT::v16i16,     4 },
774     { ISD::MUL,     MVT::v8i32,      4 },
775     { ISD::SUB,     MVT::v32i8,      4 },
776     { ISD::ADD,     MVT::v32i8,      4 },
777     { ISD::SUB,     MVT::v16i16,     4 },
778     { ISD::ADD,     MVT::v16i16,     4 },
779     { ISD::SUB,     MVT::v8i32,      4 },
780     { ISD::ADD,     MVT::v8i32,      4 },
781     { ISD::SUB,     MVT::v4i64,      4 },
782     { ISD::ADD,     MVT::v4i64,      4 },
783 
784     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
785     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
786     // Because we believe v4i64 to be a legal type, we must also include the
787     // extract+insert in the cost table. Therefore, the cost here is 18
788     // instead of 8.
789     { ISD::MUL,     MVT::v4i64,     18 },
790 
791     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
792 
793     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
794     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
795     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
796     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
797     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
798     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
799   };
800 
801   if (ST->hasAVX())
802     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
803       return LT.first * Entry->Cost;
804 
805   static const CostTblEntry SSE42CostTable[] = {
806     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
807     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
808     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
809     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
810 
811     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
812     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
813     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
814     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
815 
816     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
817     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
818     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
819     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
820 
821     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
822     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
823     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
824     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
825   };
826 
827   if (ST->hasSSE42())
828     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
829       return LT.first * Entry->Cost;
830 
831   static const CostTblEntry SSE41CostTable[] = {
832     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
833     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
834     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
835     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
836     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
837     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
838 
839     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
840     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
841     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
842     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
843     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
844     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
845 
846     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
847     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
848     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
849     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
850     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
851     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
852 
853     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
854   };
855 
856   if (ST->hasSSE41())
857     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
858       return LT.first * Entry->Cost;
859 
860   static const CostTblEntry SSE2CostTable[] = {
861     // We don't correctly identify costs of casts because they are marked as
862     // custom.
863     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
864     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
865     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
866     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
867     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
868 
869     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
870     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
871     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
872     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
873     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
874 
875     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
876     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
877     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
878     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
879     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
880 
881     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
882     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
883     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
884     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
885 
886     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
887     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
888     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
889     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
890 
891     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
892     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
893 
894     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
895     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
896   };
897 
898   if (ST->hasSSE2())
899     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
900       return LT.first * Entry->Cost;
901 
902   static const CostTblEntry SSE1CostTable[] = {
903     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
904     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
905 
906     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
907     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
908 
909     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
910     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
911 
912     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
913     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
914     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
915 
916     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
917     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
918     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
919   };
920 
921   if (ST->hasSSE1())
922     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
923       return LT.first * Entry->Cost;
924 
925   // It is not a good idea to vectorize division. We have to scalarize it and
926   // in the process we will often end up having to spilling regular
927   // registers. The overhead of division is going to dominate most kernels
928   // anyways so try hard to prevent vectorization of division - it is
929   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
930   // to hide "20 cycles" for each lane.
931   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
932                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
933     int ScalarCost = getArithmeticInstrCost(
934         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
935         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
936     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
937   }
938 
939   // Fallback to the default implementation.
940   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
941 }
942 
getShuffleCost(TTI::ShuffleKind Kind,VectorType * BaseTp,int Index,VectorType * SubTp)943 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
944                                int Index, VectorType *SubTp) {
945   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
946   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
947   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
948 
949   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
950   if (Kind == TTI::SK_Transpose)
951     Kind = TTI::SK_PermuteTwoSrc;
952 
953   // For Broadcasts we are splatting the first element from the first input
954   // register, so only need to reference that input and all the output
955   // registers are the same.
956   if (Kind == TTI::SK_Broadcast)
957     LT.first = 1;
958 
959   // Subvector extractions are free if they start at the beginning of a
960   // vector and cheap if the subvectors are aligned.
961   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
962     int NumElts = LT.second.getVectorNumElements();
963     if ((Index % NumElts) == 0)
964       return 0;
965     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
966     if (SubLT.second.isVector()) {
967       int NumSubElts = SubLT.second.getVectorNumElements();
968       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
969         return SubLT.first;
970       // Handle some cases for widening legalization. For now we only handle
971       // cases where the original subvector was naturally aligned and evenly
972       // fit in its legalized subvector type.
973       // FIXME: Remove some of the alignment restrictions.
974       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
975       // vectors.
976       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
977       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
978           (NumSubElts % OrigSubElts) == 0 &&
979           LT.second.getVectorElementType() ==
980               SubLT.second.getVectorElementType() &&
981           LT.second.getVectorElementType().getSizeInBits() ==
982               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
983         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
984                "Unexpected number of elements!");
985         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
986                                            LT.second.getVectorNumElements());
987         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
988                                            SubLT.second.getVectorNumElements());
989         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
990         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
991                                          ExtractIndex, SubTy);
992 
993         // If the original size is 32-bits or more, we can use pshufd. Otherwise
994         // if we have SSSE3 we can use pshufb.
995         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
996           return ExtractCost + 1; // pshufd or pshufb
997 
998         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
999                "Unexpected vector size");
1000 
1001         return ExtractCost + 2; // worst case pshufhw + pshufd
1002       }
1003     }
1004   }
1005 
1006   // Handle some common (illegal) sub-vector types as they are often very cheap
1007   // to shuffle even on targets without PSHUFB.
1008   EVT VT = TLI->getValueType(DL, BaseTp);
1009   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1010       !ST->hasSSSE3()) {
1011      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1012       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1013       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1014       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1015       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1016       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1017 
1018       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1019       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1020       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1021       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1022 
1023       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1024       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1025       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1026       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1027       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1028 
1029       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1030       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1031       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1032       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1033       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1034     };
1035 
1036     if (ST->hasSSE2())
1037       if (const auto *Entry =
1038               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1039         return Entry->Cost;
1040   }
1041 
1042   // We are going to permute multiple sources and the result will be in multiple
1043   // destinations. Providing an accurate cost only for splits where the element
1044   // type remains the same.
1045   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1046     MVT LegalVT = LT.second;
1047     if (LegalVT.isVector() &&
1048         LegalVT.getVectorElementType().getSizeInBits() ==
1049             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1050         LegalVT.getVectorNumElements() <
1051             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1052 
1053       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1054       unsigned LegalVTSize = LegalVT.getStoreSize();
1055       // Number of source vectors after legalization:
1056       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1057       // Number of destination vectors after legalization:
1058       unsigned NumOfDests = LT.first;
1059 
1060       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1061                                               LegalVT.getVectorNumElements());
1062 
1063       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1064       return NumOfShuffles *
1065              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
1066     }
1067 
1068     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1069   }
1070 
1071   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1072   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1073     // We assume that source and destination have the same vector type.
1074     int NumOfDests = LT.first;
1075     int NumOfShufflesPerDest = LT.first * 2 - 1;
1076     LT.first = NumOfDests * NumOfShufflesPerDest;
1077   }
1078 
1079   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1080       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1081       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1082 
1083       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1084       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1085 
1086       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1087       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1088       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1089   };
1090 
1091   if (ST->hasVBMI())
1092     if (const auto *Entry =
1093             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1094       return LT.first * Entry->Cost;
1095 
1096   static const CostTblEntry AVX512BWShuffleTbl[] = {
1097       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1098       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1099 
1100       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1101       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1102       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1103 
1104       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1105       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1106       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1107 
1108       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1109       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1110       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1111       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1112   };
1113 
1114   if (ST->hasBWI())
1115     if (const auto *Entry =
1116             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1117       return LT.first * Entry->Cost;
1118 
1119   static const CostTblEntry AVX512ShuffleTbl[] = {
1120       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1121       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1122       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1123       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1124       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1125       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1126 
1127       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1128       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1129       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1130       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1131 
1132       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1133       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1134       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1135       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1136       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1137       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1138       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1139       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1140       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1141       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1142       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1143       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1144       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1145 
1146       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1147       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1148       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1149       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1150       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1151       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1152       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1153       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1154       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1155       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1156       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1157       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1158 
1159       // FIXME: This just applies the type legalization cost rules above
1160       // assuming these completely split.
1161       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1162       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1163       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1164       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1165   };
1166 
1167   if (ST->hasAVX512())
1168     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1169       return LT.first * Entry->Cost;
1170 
1171   static const CostTblEntry AVX2ShuffleTbl[] = {
1172       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1173       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1174       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1175       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1176       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1177       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1178 
1179       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1180       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1181       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1182       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1183       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1184       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1185 
1186       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1187       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1188 
1189       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1190       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1191       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1192       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1193       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1194                                                   // + vpblendvb
1195       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1196                                                   // + vpblendvb
1197 
1198       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1199       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1200       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1201       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1202       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1203                                                // + vpblendvb
1204       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1205                                                // + vpblendvb
1206   };
1207 
1208   if (ST->hasAVX2())
1209     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1210       return LT.first * Entry->Cost;
1211 
1212   static const CostTblEntry XOPShuffleTbl[] = {
1213       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1214       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1215       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1216       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1217       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1218                                                   // + vinsertf128
1219       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1220                                                   // + vinsertf128
1221 
1222       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1223                                                // + vinsertf128
1224       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1225       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1226                                                // + vinsertf128
1227       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1228   };
1229 
1230   if (ST->hasXOP())
1231     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1232       return LT.first * Entry->Cost;
1233 
1234   static const CostTblEntry AVX1ShuffleTbl[] = {
1235       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1236       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1237       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1238       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1239       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1240       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1241 
1242       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1243       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1244       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1245       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1246       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1247                                          // + vinsertf128
1248       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1249                                          // + vinsertf128
1250 
1251       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1252       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1253       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1254       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1255       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1256       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1257 
1258       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1259       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1260       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1261       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1262       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1263                                                   // + 2*por + vinsertf128
1264       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1265                                                   // + 2*por + vinsertf128
1266 
1267       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1268       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1269       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1270       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1271       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1272                                                 // + 4*por + vinsertf128
1273       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1274                                                 // + 4*por + vinsertf128
1275   };
1276 
1277   if (ST->hasAVX())
1278     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1279       return LT.first * Entry->Cost;
1280 
1281   static const CostTblEntry SSE41ShuffleTbl[] = {
1282       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1283       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1284       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1285       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1286       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1287       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1288   };
1289 
1290   if (ST->hasSSE41())
1291     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1292       return LT.first * Entry->Cost;
1293 
1294   static const CostTblEntry SSSE3ShuffleTbl[] = {
1295       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1296       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1297 
1298       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1299       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1300 
1301       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1302       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1303 
1304       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1305       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1306 
1307       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1308       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1309   };
1310 
1311   if (ST->hasSSSE3())
1312     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1313       return LT.first * Entry->Cost;
1314 
1315   static const CostTblEntry SSE2ShuffleTbl[] = {
1316       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1317       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1318       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1319       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1320       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1321 
1322       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1323       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1324       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1325       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1326       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1327                                         // + 2*pshufd + 2*unpck + packus
1328 
1329       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1330       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1331       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1332       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1333       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1334 
1335       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1336       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1337       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1338       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1339                                                   // + pshufd/unpck
1340     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1341                                                   // + 2*pshufd + 2*unpck + 2*packus
1342 
1343     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1344     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1345     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1346     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1347     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1348   };
1349 
1350   if (ST->hasSSE2())
1351     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1352       return LT.first * Entry->Cost;
1353 
1354   static const CostTblEntry SSE1ShuffleTbl[] = {
1355     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1356     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1357     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1358     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1359     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1360   };
1361 
1362   if (ST->hasSSE1())
1363     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1364       return LT.first * Entry->Cost;
1365 
1366   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1367 }
1368 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,TTI::TargetCostKind CostKind,const Instruction * I)1369 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1370                                  TTI::TargetCostKind CostKind,
1371                                  const Instruction *I) {
1372   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1373   assert(ISD && "Invalid opcode");
1374 
1375   // TODO: Allow non-throughput costs that aren't binary.
1376   auto AdjustCost = [&CostKind](int Cost) {
1377     if (CostKind != TTI::TCK_RecipThroughput)
1378       return Cost == 0 ? 0 : 1;
1379     return Cost;
1380   };
1381 
1382   // FIXME: Need a better design of the cost table to handle non-simple types of
1383   // potential massive combinations (elem_num x src_type x dst_type).
1384 
1385   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1386     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1387     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1388 
1389     // Mask sign extend has an instruction.
1390     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1391     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1392     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1393     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1394     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1395     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1396     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1397     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1398     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1399     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1400     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1401 
1402     // Mask zero extend is a sext + shift.
1403     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1404     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1405     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1406     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1407     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1408     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1409     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1410     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1411     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1412     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1413     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1414 
1415     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1416     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1417     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1418     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1419     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1420     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1421     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1422     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1423     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1424     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1425     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1426     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1427     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1428   };
1429 
1430   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1431     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1432     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1433 
1434     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1435     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1436 
1437     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1438     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1439 
1440     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1441     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1442   };
1443 
1444   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1445   // 256-bit wide vectors.
1446 
1447   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1448     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1449     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1450     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1451 
1452     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1453     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1454     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1455     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1456     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1457     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1458     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1459     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1460     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1461     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1462     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1463     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1464     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1465     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1466     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1467     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1468     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1469     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1470     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1471     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1472     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1473     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1474 
1475     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1476     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1477 
1478     // Sign extend is zmm vpternlogd+vptruncdb.
1479     // Zero extend is zmm broadcast load+vptruncdw.
1480     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1481     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1482     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1483     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1484     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1485     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1486     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1487     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1488 
1489     // Sign extend is zmm vpternlogd+vptruncdw.
1490     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1491     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1492     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1493     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1494     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1495     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1496     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1497     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1498     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1499 
1500     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1501     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1502     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1503     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1504     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1505     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1506     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1507     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1508     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1509     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1510 
1511     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1512     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1513     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1514     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1515 
1516     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1517     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1518     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1519     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1520     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1521     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1522     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1523     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1524     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1525     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1526 
1527     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1528     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1529 
1530     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1531     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1532     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1533     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1534     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1535     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1536     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1537     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1538 
1539     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1540     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1541     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1542     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1543     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1544     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1545     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1546     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1547     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1548     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1549 
1550     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1551     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1552     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1553     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1554 
1555     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1556     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1557     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1558     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1559     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1560     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1561   };
1562 
1563   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1564     // Mask sign extend has an instruction.
1565     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1566     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1567     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1568     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1569     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1570     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1571     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1572     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1573     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1574 
1575     // Mask zero extend is a sext + shift.
1576     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1577     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1578     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1579     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1580     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1581     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1582     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1583     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1584     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1585 
1586     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1587     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1588     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1589     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1590     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1591     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1592     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1593     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1594     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1595     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1596   };
1597 
1598   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1599     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1600     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1601     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1602     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1603 
1604     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1605     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1606     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1607     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1608 
1609     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1610     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1611     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1612     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1613 
1614     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1615     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1616     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1617     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1618   };
1619 
1620   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1621     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1622     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1623     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1624     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1625     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1626     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1627     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1628     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1629     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1630     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1631     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1632     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1633     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1634     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1635 
1636     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1637     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1638     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1639     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1640     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1641     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1642     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1643     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1644     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1645     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1646 
1647     // sign extend is vpcmpeq+maskedmove+vpmovdw
1648     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1649     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1650     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1651     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1652     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1653     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1654     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1655     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1656     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1657 
1658     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1659     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1660     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1661     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1662     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1663     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1664     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1665     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1666     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1667     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1668 
1669     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1670     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1671     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1672     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1673     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1674     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1675     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1676     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1677     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1678     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1679     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1680     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1681     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1682     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1683 
1684     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1685     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1686 
1687     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1688     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1689 
1690     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1691     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1692 
1693     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1694     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1695     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1696     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1697     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1698   };
1699 
1700   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1701     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1702     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1703     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1704     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1705     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1706     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1707     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1708     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1709     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1710     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1711     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1712     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1713     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1714     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1715     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1716     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1717     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1718     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1719     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1720     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1721 
1722     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1723     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1724 
1725     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1726     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1727     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1728     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1729 
1730     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1731     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1732 
1733     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1734   };
1735 
1736   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1737     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1738     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1739     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1740     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1741     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1742     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1743     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1744     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1745     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1746     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1747     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1748     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1749     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1750     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1751     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1752     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1753     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1754     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1755 
1756     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1757     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1758     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1759     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1760     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1761 
1762     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1763     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1764     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1765     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1766     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1767     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1768     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1769     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1770     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1771     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1772 
1773     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1774     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1775     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1776     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1777     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1778     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1779     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1780     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1781     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1782     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1783     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1784     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1785 
1786     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1787     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1788     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1789     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1790     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1791     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1792     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1793     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1794     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1795     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1796     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1797     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1798     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1799     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1800     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1801     // The generic code to compute the scalar overhead is currently broken.
1802     // Workaround this limitation by estimating the scalarization overhead
1803     // here. We have roughly 10 instructions per scalar element.
1804     // Multiply that by the vector width.
1805     // FIXME: remove that when PR19268 is fixed.
1806     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1807     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1808 
1809     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1810     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1811     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1812     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1813 
1814     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1815     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1816     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1817     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1818     // This node is expanded into scalarized operations but BasicTTI is overly
1819     // optimistic estimating its cost.  It computes 3 per element (one
1820     // vector-extract, one scalar conversion and one vector-insert).  The
1821     // problem is that the inserts form a read-modify-write chain so latency
1822     // should be factored in too.  Inflating the cost per element by 1.
1823     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1824     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1825 
1826     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1827     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1828   };
1829 
1830   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1831     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1832     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1833     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1834     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1835     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1836     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1837 
1838     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1839     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1840     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1841     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1842     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1843     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1844     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1845     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1846     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1847     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1848     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1849     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1850     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1851     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1852     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1853     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1854     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1855     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1856 
1857     // These truncates end up widening elements.
1858     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1859     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1860     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1861 
1862     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1863     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1864     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1865     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1866     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1867     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1868     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1869     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1870     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1871 
1872     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1873     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1874 
1875     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1876     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1877 
1878     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1879     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1880     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1881   };
1882 
1883   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1884     // These are somewhat magic numbers justified by looking at the output of
1885     // Intel's IACA, running some kernels and making sure when we take
1886     // legalization into account the throughput will be overestimated.
1887     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1888     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1889     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1890     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1891     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1892     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1893     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1894     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1895     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1896 
1897     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1898     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1899     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1900     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1901     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1902     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1903     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1904     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1905 
1906     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1907     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1908     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1909     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1910     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1911     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1912 
1913     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1914 
1915     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1916     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1917 
1918     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1919     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1920     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1921     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1922     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1923     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1924     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1925     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1926 
1927     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1928     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1929     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1930     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1931     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1932     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1933     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1934     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1935     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1936     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1937     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1938     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1939     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1940     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1941     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1942     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1943     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1944     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1945     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1946     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1947     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1948     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1949     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1950     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1951 
1952     // These truncates are really widening elements.
1953     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1954     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1955     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1956     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1957     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1958     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1959 
1960     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1961     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1962     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1963     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1964     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1965     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1966     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1967     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1968     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1969     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1970     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1971     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1972     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1973     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1974     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1975   };
1976 
1977   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1978   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1979 
1980   if (ST->hasSSE2() && !ST->hasAVX()) {
1981     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1982                                                    LTDest.second, LTSrc.second))
1983       return AdjustCost(LTSrc.first * Entry->Cost);
1984   }
1985 
1986   EVT SrcTy = TLI->getValueType(DL, Src);
1987   EVT DstTy = TLI->getValueType(DL, Dst);
1988 
1989   // The function getSimpleVT only handles simple value types.
1990   if (!SrcTy.isSimple() || !DstTy.isSimple())
1991     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind));
1992 
1993   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1994   MVT SimpleDstTy = DstTy.getSimpleVT();
1995 
1996   if (ST->useAVX512Regs()) {
1997     if (ST->hasBWI())
1998       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1999                                                      SimpleDstTy, SimpleSrcTy))
2000         return AdjustCost(Entry->Cost);
2001 
2002     if (ST->hasDQI())
2003       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2004                                                      SimpleDstTy, SimpleSrcTy))
2005         return AdjustCost(Entry->Cost);
2006 
2007     if (ST->hasAVX512())
2008       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2009                                                      SimpleDstTy, SimpleSrcTy))
2010         return AdjustCost(Entry->Cost);
2011   }
2012 
2013   if (ST->hasBWI())
2014     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2015                                                    SimpleDstTy, SimpleSrcTy))
2016       return AdjustCost(Entry->Cost);
2017 
2018   if (ST->hasDQI())
2019     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2020                                                    SimpleDstTy, SimpleSrcTy))
2021       return AdjustCost(Entry->Cost);
2022 
2023   if (ST->hasAVX512())
2024     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2025                                                    SimpleDstTy, SimpleSrcTy))
2026       return AdjustCost(Entry->Cost);
2027 
2028   if (ST->hasAVX2()) {
2029     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2030                                                    SimpleDstTy, SimpleSrcTy))
2031       return AdjustCost(Entry->Cost);
2032   }
2033 
2034   if (ST->hasAVX()) {
2035     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2036                                                    SimpleDstTy, SimpleSrcTy))
2037       return AdjustCost(Entry->Cost);
2038   }
2039 
2040   if (ST->hasSSE41()) {
2041     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2042                                                    SimpleDstTy, SimpleSrcTy))
2043       return AdjustCost(Entry->Cost);
2044   }
2045 
2046   if (ST->hasSSE2()) {
2047     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2048                                                    SimpleDstTy, SimpleSrcTy))
2049       return AdjustCost(Entry->Cost);
2050   }
2051 
2052   return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I));
2053 }
2054 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,TTI::TargetCostKind CostKind,const Instruction * I)2055 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2056                                    TTI::TargetCostKind CostKind,
2057                                    const Instruction *I) {
2058   // TODO: Handle other cost kinds.
2059   if (CostKind != TTI::TCK_RecipThroughput)
2060     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2061 
2062   // Legalize the type.
2063   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2064 
2065   MVT MTy = LT.second;
2066 
2067   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2068   assert(ISD && "Invalid opcode");
2069 
2070   unsigned ExtraCost = 0;
2071   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2072     // Some vector comparison predicates cost extra instructions.
2073     if (MTy.isVector() &&
2074         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2075           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2076           ST->hasBWI())) {
2077       switch (cast<CmpInst>(I)->getPredicate()) {
2078       case CmpInst::Predicate::ICMP_NE:
2079         // xor(cmpeq(x,y),-1)
2080         ExtraCost = 1;
2081         break;
2082       case CmpInst::Predicate::ICMP_SGE:
2083       case CmpInst::Predicate::ICMP_SLE:
2084         // xor(cmpgt(x,y),-1)
2085         ExtraCost = 1;
2086         break;
2087       case CmpInst::Predicate::ICMP_ULT:
2088       case CmpInst::Predicate::ICMP_UGT:
2089         // cmpgt(xor(x,signbit),xor(y,signbit))
2090         // xor(cmpeq(pmaxu(x,y),x),-1)
2091         ExtraCost = 2;
2092         break;
2093       case CmpInst::Predicate::ICMP_ULE:
2094       case CmpInst::Predicate::ICMP_UGE:
2095         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2096             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2097           // cmpeq(psubus(x,y),0)
2098           // cmpeq(pminu(x,y),x)
2099           ExtraCost = 1;
2100         } else {
2101           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2102           ExtraCost = 3;
2103         }
2104         break;
2105       default:
2106         break;
2107       }
2108     }
2109   }
2110 
2111   static const CostTblEntry SLMCostTbl[] = {
2112     // slm pcmpeq/pcmpgt throughput is 2
2113     { ISD::SETCC,   MVT::v2i64,   2 },
2114   };
2115 
2116   static const CostTblEntry AVX512BWCostTbl[] = {
2117     { ISD::SETCC,   MVT::v32i16,  1 },
2118     { ISD::SETCC,   MVT::v64i8,   1 },
2119 
2120     { ISD::SELECT,  MVT::v32i16,  1 },
2121     { ISD::SELECT,  MVT::v64i8,   1 },
2122   };
2123 
2124   static const CostTblEntry AVX512CostTbl[] = {
2125     { ISD::SETCC,   MVT::v8i64,   1 },
2126     { ISD::SETCC,   MVT::v16i32,  1 },
2127     { ISD::SETCC,   MVT::v8f64,   1 },
2128     { ISD::SETCC,   MVT::v16f32,  1 },
2129 
2130     { ISD::SELECT,  MVT::v8i64,   1 },
2131     { ISD::SELECT,  MVT::v16i32,  1 },
2132     { ISD::SELECT,  MVT::v8f64,   1 },
2133     { ISD::SELECT,  MVT::v16f32,  1 },
2134 
2135     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2136     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2137 
2138     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2139     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2140   };
2141 
2142   static const CostTblEntry AVX2CostTbl[] = {
2143     { ISD::SETCC,   MVT::v4i64,   1 },
2144     { ISD::SETCC,   MVT::v8i32,   1 },
2145     { ISD::SETCC,   MVT::v16i16,  1 },
2146     { ISD::SETCC,   MVT::v32i8,   1 },
2147 
2148     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2149     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2150     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2151     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2152   };
2153 
2154   static const CostTblEntry AVX1CostTbl[] = {
2155     { ISD::SETCC,   MVT::v4f64,   1 },
2156     { ISD::SETCC,   MVT::v8f32,   1 },
2157     // AVX1 does not support 8-wide integer compare.
2158     { ISD::SETCC,   MVT::v4i64,   4 },
2159     { ISD::SETCC,   MVT::v8i32,   4 },
2160     { ISD::SETCC,   MVT::v16i16,  4 },
2161     { ISD::SETCC,   MVT::v32i8,   4 },
2162 
2163     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2164     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2165     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2166     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2167     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2168     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2169   };
2170 
2171   static const CostTblEntry SSE42CostTbl[] = {
2172     { ISD::SETCC,   MVT::v2f64,   1 },
2173     { ISD::SETCC,   MVT::v4f32,   1 },
2174     { ISD::SETCC,   MVT::v2i64,   1 },
2175   };
2176 
2177   static const CostTblEntry SSE41CostTbl[] = {
2178     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2179     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2180     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2181     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2182     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2183     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2184   };
2185 
2186   static const CostTblEntry SSE2CostTbl[] = {
2187     { ISD::SETCC,   MVT::v2f64,   2 },
2188     { ISD::SETCC,   MVT::f64,     1 },
2189     { ISD::SETCC,   MVT::v2i64,   8 },
2190     { ISD::SETCC,   MVT::v4i32,   1 },
2191     { ISD::SETCC,   MVT::v8i16,   1 },
2192     { ISD::SETCC,   MVT::v16i8,   1 },
2193 
2194     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2195     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2196     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2197     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2198     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2199   };
2200 
2201   static const CostTblEntry SSE1CostTbl[] = {
2202     { ISD::SETCC,   MVT::v4f32,   2 },
2203     { ISD::SETCC,   MVT::f32,     1 },
2204 
2205     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2206   };
2207 
2208   if (ST->isSLM())
2209     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2210       return LT.first * (ExtraCost + Entry->Cost);
2211 
2212   if (ST->hasBWI())
2213     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2214       return LT.first * (ExtraCost + Entry->Cost);
2215 
2216   if (ST->hasAVX512())
2217     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2218       return LT.first * (ExtraCost + Entry->Cost);
2219 
2220   if (ST->hasAVX2())
2221     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2222       return LT.first * (ExtraCost + Entry->Cost);
2223 
2224   if (ST->hasAVX())
2225     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2226       return LT.first * (ExtraCost + Entry->Cost);
2227 
2228   if (ST->hasSSE42())
2229     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2230       return LT.first * (ExtraCost + Entry->Cost);
2231 
2232   if (ST->hasSSE41())
2233     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2234       return LT.first * (ExtraCost + Entry->Cost);
2235 
2236   if (ST->hasSSE2())
2237     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2238       return LT.first * (ExtraCost + Entry->Cost);
2239 
2240   if (ST->hasSSE1())
2241     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2242       return LT.first * (ExtraCost + Entry->Cost);
2243 
2244   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2245 }
2246 
getAtomicMemIntrinsicMaxElementSize() const2247 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2248 
getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2249 int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
2250   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
2251 
2252   // Costs should match the codegen from:
2253   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2254   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2255   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2256   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2257   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2258   static const CostTblEntry AVX512CDCostTbl[] = {
2259     { ISD::CTLZ,       MVT::v8i64,   1 },
2260     { ISD::CTLZ,       MVT::v16i32,  1 },
2261     { ISD::CTLZ,       MVT::v32i16,  8 },
2262     { ISD::CTLZ,       MVT::v64i8,  20 },
2263     { ISD::CTLZ,       MVT::v4i64,   1 },
2264     { ISD::CTLZ,       MVT::v8i32,   1 },
2265     { ISD::CTLZ,       MVT::v16i16,  4 },
2266     { ISD::CTLZ,       MVT::v32i8,  10 },
2267     { ISD::CTLZ,       MVT::v2i64,   1 },
2268     { ISD::CTLZ,       MVT::v4i32,   1 },
2269     { ISD::CTLZ,       MVT::v8i16,   4 },
2270     { ISD::CTLZ,       MVT::v16i8,   4 },
2271   };
2272   static const CostTblEntry AVX512BWCostTbl[] = {
2273     { ISD::BITREVERSE, MVT::v8i64,   5 },
2274     { ISD::BITREVERSE, MVT::v16i32,  5 },
2275     { ISD::BITREVERSE, MVT::v32i16,  5 },
2276     { ISD::BITREVERSE, MVT::v64i8,   5 },
2277     { ISD::CTLZ,       MVT::v8i64,  23 },
2278     { ISD::CTLZ,       MVT::v16i32, 22 },
2279     { ISD::CTLZ,       MVT::v32i16, 18 },
2280     { ISD::CTLZ,       MVT::v64i8,  17 },
2281     { ISD::CTPOP,      MVT::v8i64,   7 },
2282     { ISD::CTPOP,      MVT::v16i32, 11 },
2283     { ISD::CTPOP,      MVT::v32i16,  9 },
2284     { ISD::CTPOP,      MVT::v64i8,   6 },
2285     { ISD::CTTZ,       MVT::v8i64,  10 },
2286     { ISD::CTTZ,       MVT::v16i32, 14 },
2287     { ISD::CTTZ,       MVT::v32i16, 12 },
2288     { ISD::CTTZ,       MVT::v64i8,   9 },
2289     { ISD::SADDSAT,    MVT::v32i16,  1 },
2290     { ISD::SADDSAT,    MVT::v64i8,   1 },
2291     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2292     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2293     { ISD::UADDSAT,    MVT::v32i16,  1 },
2294     { ISD::UADDSAT,    MVT::v64i8,   1 },
2295     { ISD::USUBSAT,    MVT::v32i16,  1 },
2296     { ISD::USUBSAT,    MVT::v64i8,   1 },
2297   };
2298   static const CostTblEntry AVX512CostTbl[] = {
2299     { ISD::BITREVERSE, MVT::v8i64,  36 },
2300     { ISD::BITREVERSE, MVT::v16i32, 24 },
2301     { ISD::BITREVERSE, MVT::v32i16, 10 },
2302     { ISD::BITREVERSE, MVT::v64i8,  10 },
2303     { ISD::CTLZ,       MVT::v8i64,  29 },
2304     { ISD::CTLZ,       MVT::v16i32, 35 },
2305     { ISD::CTLZ,       MVT::v32i16, 28 },
2306     { ISD::CTLZ,       MVT::v64i8,  18 },
2307     { ISD::CTPOP,      MVT::v8i64,  16 },
2308     { ISD::CTPOP,      MVT::v16i32, 24 },
2309     { ISD::CTPOP,      MVT::v32i16, 18 },
2310     { ISD::CTPOP,      MVT::v64i8,  12 },
2311     { ISD::CTTZ,       MVT::v8i64,  20 },
2312     { ISD::CTTZ,       MVT::v16i32, 28 },
2313     { ISD::CTTZ,       MVT::v32i16, 24 },
2314     { ISD::CTTZ,       MVT::v64i8,  18 },
2315     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2316     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2317     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2318     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2319     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2320     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2321     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2322     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2323     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2324     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2325     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2326     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2327     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2328     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2329     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2330     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2331     { ISD::FMAXNUM,    MVT::f32,     2 },
2332     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2333     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2334     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2335     { ISD::FMAXNUM,    MVT::f64,     2 },
2336     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2337     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2338     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2339   };
2340   static const CostTblEntry XOPCostTbl[] = {
2341     { ISD::BITREVERSE, MVT::v4i64,   4 },
2342     { ISD::BITREVERSE, MVT::v8i32,   4 },
2343     { ISD::BITREVERSE, MVT::v16i16,  4 },
2344     { ISD::BITREVERSE, MVT::v32i8,   4 },
2345     { ISD::BITREVERSE, MVT::v2i64,   1 },
2346     { ISD::BITREVERSE, MVT::v4i32,   1 },
2347     { ISD::BITREVERSE, MVT::v8i16,   1 },
2348     { ISD::BITREVERSE, MVT::v16i8,   1 },
2349     { ISD::BITREVERSE, MVT::i64,     3 },
2350     { ISD::BITREVERSE, MVT::i32,     3 },
2351     { ISD::BITREVERSE, MVT::i16,     3 },
2352     { ISD::BITREVERSE, MVT::i8,      3 }
2353   };
2354   static const CostTblEntry AVX2CostTbl[] = {
2355     { ISD::BITREVERSE, MVT::v4i64,   5 },
2356     { ISD::BITREVERSE, MVT::v8i32,   5 },
2357     { ISD::BITREVERSE, MVT::v16i16,  5 },
2358     { ISD::BITREVERSE, MVT::v32i8,   5 },
2359     { ISD::BSWAP,      MVT::v4i64,   1 },
2360     { ISD::BSWAP,      MVT::v8i32,   1 },
2361     { ISD::BSWAP,      MVT::v16i16,  1 },
2362     { ISD::CTLZ,       MVT::v4i64,  23 },
2363     { ISD::CTLZ,       MVT::v8i32,  18 },
2364     { ISD::CTLZ,       MVT::v16i16, 14 },
2365     { ISD::CTLZ,       MVT::v32i8,   9 },
2366     { ISD::CTPOP,      MVT::v4i64,   7 },
2367     { ISD::CTPOP,      MVT::v8i32,  11 },
2368     { ISD::CTPOP,      MVT::v16i16,  9 },
2369     { ISD::CTPOP,      MVT::v32i8,   6 },
2370     { ISD::CTTZ,       MVT::v4i64,  10 },
2371     { ISD::CTTZ,       MVT::v8i32,  14 },
2372     { ISD::CTTZ,       MVT::v16i16, 12 },
2373     { ISD::CTTZ,       MVT::v32i8,   9 },
2374     { ISD::SADDSAT,    MVT::v16i16,  1 },
2375     { ISD::SADDSAT,    MVT::v32i8,   1 },
2376     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2377     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2378     { ISD::UADDSAT,    MVT::v16i16,  1 },
2379     { ISD::UADDSAT,    MVT::v32i8,   1 },
2380     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2381     { ISD::USUBSAT,    MVT::v16i16,  1 },
2382     { ISD::USUBSAT,    MVT::v32i8,   1 },
2383     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2384     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2385     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2386     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2387     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2388     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2389     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2390   };
2391   static const CostTblEntry AVX1CostTbl[] = {
2392     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2393     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2394     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2395     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2396     { ISD::BSWAP,      MVT::v4i64,   4 },
2397     { ISD::BSWAP,      MVT::v8i32,   4 },
2398     { ISD::BSWAP,      MVT::v16i16,  4 },
2399     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2400     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2401     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2402     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2403     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2404     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2405     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2406     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2407     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2408     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2409     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2410     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2411     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2412     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2413     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2414     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2415     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2416     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2417     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2418     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2419     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2420     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2421     { ISD::FMAXNUM,    MVT::f32,     3 },
2422     { ISD::FMAXNUM,    MVT::v4f32,   3 },
2423     { ISD::FMAXNUM,    MVT::v8f32,   5 },
2424     { ISD::FMAXNUM,    MVT::f64,     3 },
2425     { ISD::FMAXNUM,    MVT::v2f64,   3 },
2426     { ISD::FMAXNUM,    MVT::v4f64,   5 },
2427     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2428     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2429     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2430     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2431     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2432     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2433   };
2434   static const CostTblEntry GLMCostTbl[] = {
2435     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2436     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2437     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2438     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2439   };
2440   static const CostTblEntry SLMCostTbl[] = {
2441     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2442     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2443     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2444     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2445   };
2446   static const CostTblEntry SSE42CostTbl[] = {
2447     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2448     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2449     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2450     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2451   };
2452   static const CostTblEntry SSSE3CostTbl[] = {
2453     { ISD::BITREVERSE, MVT::v2i64,   5 },
2454     { ISD::BITREVERSE, MVT::v4i32,   5 },
2455     { ISD::BITREVERSE, MVT::v8i16,   5 },
2456     { ISD::BITREVERSE, MVT::v16i8,   5 },
2457     { ISD::BSWAP,      MVT::v2i64,   1 },
2458     { ISD::BSWAP,      MVT::v4i32,   1 },
2459     { ISD::BSWAP,      MVT::v8i16,   1 },
2460     { ISD::CTLZ,       MVT::v2i64,  23 },
2461     { ISD::CTLZ,       MVT::v4i32,  18 },
2462     { ISD::CTLZ,       MVT::v8i16,  14 },
2463     { ISD::CTLZ,       MVT::v16i8,   9 },
2464     { ISD::CTPOP,      MVT::v2i64,   7 },
2465     { ISD::CTPOP,      MVT::v4i32,  11 },
2466     { ISD::CTPOP,      MVT::v8i16,   9 },
2467     { ISD::CTPOP,      MVT::v16i8,   6 },
2468     { ISD::CTTZ,       MVT::v2i64,  10 },
2469     { ISD::CTTZ,       MVT::v4i32,  14 },
2470     { ISD::CTTZ,       MVT::v8i16,  12 },
2471     { ISD::CTTZ,       MVT::v16i8,   9 }
2472   };
2473   static const CostTblEntry SSE2CostTbl[] = {
2474     { ISD::BITREVERSE, MVT::v2i64,  29 },
2475     { ISD::BITREVERSE, MVT::v4i32,  27 },
2476     { ISD::BITREVERSE, MVT::v8i16,  27 },
2477     { ISD::BITREVERSE, MVT::v16i8,  20 },
2478     { ISD::BSWAP,      MVT::v2i64,   7 },
2479     { ISD::BSWAP,      MVT::v4i32,   7 },
2480     { ISD::BSWAP,      MVT::v8i16,   7 },
2481     { ISD::CTLZ,       MVT::v2i64,  25 },
2482     { ISD::CTLZ,       MVT::v4i32,  26 },
2483     { ISD::CTLZ,       MVT::v8i16,  20 },
2484     { ISD::CTLZ,       MVT::v16i8,  17 },
2485     { ISD::CTPOP,      MVT::v2i64,  12 },
2486     { ISD::CTPOP,      MVT::v4i32,  15 },
2487     { ISD::CTPOP,      MVT::v8i16,  13 },
2488     { ISD::CTPOP,      MVT::v16i8,  10 },
2489     { ISD::CTTZ,       MVT::v2i64,  14 },
2490     { ISD::CTTZ,       MVT::v4i32,  18 },
2491     { ISD::CTTZ,       MVT::v8i16,  16 },
2492     { ISD::CTTZ,       MVT::v16i8,  13 },
2493     { ISD::SADDSAT,    MVT::v8i16,   1 },
2494     { ISD::SADDSAT,    MVT::v16i8,   1 },
2495     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2496     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2497     { ISD::UADDSAT,    MVT::v8i16,   1 },
2498     { ISD::UADDSAT,    MVT::v16i8,   1 },
2499     { ISD::USUBSAT,    MVT::v8i16,   1 },
2500     { ISD::USUBSAT,    MVT::v16i8,   1 },
2501     { ISD::FMAXNUM,    MVT::f64,     4 },
2502     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2503     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2504     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2505   };
2506   static const CostTblEntry SSE1CostTbl[] = {
2507     { ISD::FMAXNUM,    MVT::f32,     4 },
2508     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2509     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2510     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2511   };
2512   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2513     { ISD::CTTZ,       MVT::i64,     1 },
2514   };
2515   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2516     { ISD::CTTZ,       MVT::i32,     1 },
2517     { ISD::CTTZ,       MVT::i16,     1 },
2518     { ISD::CTTZ,       MVT::i8,      1 },
2519   };
2520   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2521     { ISD::CTLZ,       MVT::i64,     1 },
2522   };
2523   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2524     { ISD::CTLZ,       MVT::i32,     1 },
2525     { ISD::CTLZ,       MVT::i16,     1 },
2526     { ISD::CTLZ,       MVT::i8,      1 },
2527   };
2528   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2529     { ISD::CTPOP,      MVT::i64,     1 },
2530   };
2531   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2532     { ISD::CTPOP,      MVT::i32,     1 },
2533     { ISD::CTPOP,      MVT::i16,     1 },
2534     { ISD::CTPOP,      MVT::i8,      1 },
2535   };
2536   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2537     { ISD::BITREVERSE, MVT::i64,    14 },
2538     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2539     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2540     { ISD::CTPOP,      MVT::i64,    10 },
2541     { ISD::SADDO,      MVT::i64,     1 },
2542     { ISD::UADDO,      MVT::i64,     1 },
2543   };
2544   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2545     { ISD::BITREVERSE, MVT::i32,    14 },
2546     { ISD::BITREVERSE, MVT::i16,    14 },
2547     { ISD::BITREVERSE, MVT::i8,     11 },
2548     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2549     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2550     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2551     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2552     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2553     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2554     { ISD::CTPOP,      MVT::i32,     8 },
2555     { ISD::CTPOP,      MVT::i16,     9 },
2556     { ISD::CTPOP,      MVT::i8,      7 },
2557     { ISD::SADDO,      MVT::i32,     1 },
2558     { ISD::SADDO,      MVT::i16,     1 },
2559     { ISD::SADDO,      MVT::i8,      1 },
2560     { ISD::UADDO,      MVT::i32,     1 },
2561     { ISD::UADDO,      MVT::i16,     1 },
2562     { ISD::UADDO,      MVT::i8,      1 },
2563   };
2564 
2565   Type *RetTy = ICA.getReturnType();
2566   Type *OpTy = RetTy;
2567   Intrinsic::ID IID = ICA.getID();
2568   unsigned ISD = ISD::DELETED_NODE;
2569   switch (IID) {
2570   default:
2571     break;
2572   case Intrinsic::bitreverse:
2573     ISD = ISD::BITREVERSE;
2574     break;
2575   case Intrinsic::bswap:
2576     ISD = ISD::BSWAP;
2577     break;
2578   case Intrinsic::ctlz:
2579     ISD = ISD::CTLZ;
2580     break;
2581   case Intrinsic::ctpop:
2582     ISD = ISD::CTPOP;
2583     break;
2584   case Intrinsic::cttz:
2585     ISD = ISD::CTTZ;
2586     break;
2587   case Intrinsic::maxnum:
2588   case Intrinsic::minnum:
2589     // FMINNUM has same costs so don't duplicate.
2590     ISD = ISD::FMAXNUM;
2591     break;
2592   case Intrinsic::sadd_sat:
2593     ISD = ISD::SADDSAT;
2594     break;
2595   case Intrinsic::ssub_sat:
2596     ISD = ISD::SSUBSAT;
2597     break;
2598   case Intrinsic::uadd_sat:
2599     ISD = ISD::UADDSAT;
2600     break;
2601   case Intrinsic::usub_sat:
2602     ISD = ISD::USUBSAT;
2603     break;
2604   case Intrinsic::sqrt:
2605     ISD = ISD::FSQRT;
2606     break;
2607   case Intrinsic::sadd_with_overflow:
2608   case Intrinsic::ssub_with_overflow:
2609     // SSUBO has same costs so don't duplicate.
2610     ISD = ISD::SADDO;
2611     OpTy = RetTy->getContainedType(0);
2612     break;
2613   case Intrinsic::uadd_with_overflow:
2614   case Intrinsic::usub_with_overflow:
2615     // USUBO has same costs so don't duplicate.
2616     ISD = ISD::UADDO;
2617     OpTy = RetTy->getContainedType(0);
2618     break;
2619   }
2620 
2621   if (ISD != ISD::DELETED_NODE) {
2622     // Legalize the type.
2623     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2624     MVT MTy = LT.second;
2625 
2626     // Attempt to lookup cost.
2627     if (ST->useGLMDivSqrtCosts())
2628       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2629         return LT.first * Entry->Cost;
2630 
2631     if (ST->isSLM())
2632       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2633         return LT.first * Entry->Cost;
2634 
2635     if (ST->hasCDI())
2636       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2637         return LT.first * Entry->Cost;
2638 
2639     if (ST->hasBWI())
2640       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2641         return LT.first * Entry->Cost;
2642 
2643     if (ST->hasAVX512())
2644       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2645         return LT.first * Entry->Cost;
2646 
2647     if (ST->hasXOP())
2648       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2649         return LT.first * Entry->Cost;
2650 
2651     if (ST->hasAVX2())
2652       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2653         return LT.first * Entry->Cost;
2654 
2655     if (ST->hasAVX())
2656       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2657         return LT.first * Entry->Cost;
2658 
2659     if (ST->hasSSE42())
2660       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2661         return LT.first * Entry->Cost;
2662 
2663     if (ST->hasSSSE3())
2664       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2665         return LT.first * Entry->Cost;
2666 
2667     if (ST->hasSSE2())
2668       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2669         return LT.first * Entry->Cost;
2670 
2671     if (ST->hasSSE1())
2672       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2673         return LT.first * Entry->Cost;
2674 
2675     if (ST->hasBMI()) {
2676       if (ST->is64Bit())
2677         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2678           return LT.first * Entry->Cost;
2679 
2680       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2681         return LT.first * Entry->Cost;
2682     }
2683 
2684     if (ST->hasLZCNT()) {
2685       if (ST->is64Bit())
2686         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2687           return LT.first * Entry->Cost;
2688 
2689       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2690         return LT.first * Entry->Cost;
2691     }
2692 
2693     if (ST->hasPOPCNT()) {
2694       if (ST->is64Bit())
2695         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2696           return LT.first * Entry->Cost;
2697 
2698       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2699         return LT.first * Entry->Cost;
2700     }
2701 
2702     // TODO - add BMI (TZCNT) scalar handling
2703 
2704     if (ST->is64Bit())
2705       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2706         return LT.first * Entry->Cost;
2707 
2708     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2709       return LT.first * Entry->Cost;
2710   }
2711 
2712   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2713 }
2714 
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2715 int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2716                                       TTI::TargetCostKind CostKind) {
2717   if (CostKind != TTI::TCK_RecipThroughput)
2718     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2719 
2720   if (ICA.isTypeBasedOnly())
2721     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2722 
2723   static const CostTblEntry AVX512CostTbl[] = {
2724     { ISD::ROTL,       MVT::v8i64,   1 },
2725     { ISD::ROTL,       MVT::v4i64,   1 },
2726     { ISD::ROTL,       MVT::v2i64,   1 },
2727     { ISD::ROTL,       MVT::v16i32,  1 },
2728     { ISD::ROTL,       MVT::v8i32,   1 },
2729     { ISD::ROTL,       MVT::v4i32,   1 },
2730     { ISD::ROTR,       MVT::v8i64,   1 },
2731     { ISD::ROTR,       MVT::v4i64,   1 },
2732     { ISD::ROTR,       MVT::v2i64,   1 },
2733     { ISD::ROTR,       MVT::v16i32,  1 },
2734     { ISD::ROTR,       MVT::v8i32,   1 },
2735     { ISD::ROTR,       MVT::v4i32,   1 }
2736   };
2737   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2738   static const CostTblEntry XOPCostTbl[] = {
2739     { ISD::ROTL,       MVT::v4i64,   4 },
2740     { ISD::ROTL,       MVT::v8i32,   4 },
2741     { ISD::ROTL,       MVT::v16i16,  4 },
2742     { ISD::ROTL,       MVT::v32i8,   4 },
2743     { ISD::ROTL,       MVT::v2i64,   1 },
2744     { ISD::ROTL,       MVT::v4i32,   1 },
2745     { ISD::ROTL,       MVT::v8i16,   1 },
2746     { ISD::ROTL,       MVT::v16i8,   1 },
2747     { ISD::ROTR,       MVT::v4i64,   6 },
2748     { ISD::ROTR,       MVT::v8i32,   6 },
2749     { ISD::ROTR,       MVT::v16i16,  6 },
2750     { ISD::ROTR,       MVT::v32i8,   6 },
2751     { ISD::ROTR,       MVT::v2i64,   2 },
2752     { ISD::ROTR,       MVT::v4i32,   2 },
2753     { ISD::ROTR,       MVT::v8i16,   2 },
2754     { ISD::ROTR,       MVT::v16i8,   2 }
2755   };
2756   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2757     { ISD::ROTL,       MVT::i64,     1 },
2758     { ISD::ROTR,       MVT::i64,     1 },
2759     { ISD::FSHL,       MVT::i64,     4 }
2760   };
2761   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2762     { ISD::ROTL,       MVT::i32,     1 },
2763     { ISD::ROTL,       MVT::i16,     1 },
2764     { ISD::ROTL,       MVT::i8,      1 },
2765     { ISD::ROTR,       MVT::i32,     1 },
2766     { ISD::ROTR,       MVT::i16,     1 },
2767     { ISD::ROTR,       MVT::i8,      1 },
2768     { ISD::FSHL,       MVT::i32,     4 },
2769     { ISD::FSHL,       MVT::i16,     4 },
2770     { ISD::FSHL,       MVT::i8,      4 }
2771   };
2772 
2773   Intrinsic::ID IID = ICA.getID();
2774   Type *RetTy = ICA.getReturnType();
2775   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
2776   unsigned ISD = ISD::DELETED_NODE;
2777   switch (IID) {
2778   default:
2779     break;
2780   case Intrinsic::fshl:
2781     ISD = ISD::FSHL;
2782     if (Args[0] == Args[1])
2783       ISD = ISD::ROTL;
2784     break;
2785   case Intrinsic::fshr:
2786     // FSHR has same costs so don't duplicate.
2787     ISD = ISD::FSHL;
2788     if (Args[0] == Args[1])
2789       ISD = ISD::ROTR;
2790     break;
2791   }
2792 
2793   if (ISD != ISD::DELETED_NODE) {
2794     // Legalize the type.
2795     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2796     MVT MTy = LT.second;
2797 
2798     // Attempt to lookup cost.
2799     if (ST->hasAVX512())
2800       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2801         return LT.first * Entry->Cost;
2802 
2803     if (ST->hasXOP())
2804       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2805         return LT.first * Entry->Cost;
2806 
2807     if (ST->is64Bit())
2808       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2809         return LT.first * Entry->Cost;
2810 
2811     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2812       return LT.first * Entry->Cost;
2813   }
2814 
2815   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2816 }
2817 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)2818 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2819   static const CostTblEntry SLMCostTbl[] = {
2820      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2821      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2822      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2823      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2824    };
2825 
2826   assert(Val->isVectorTy() && "This must be a vector type");
2827   Type *ScalarType = Val->getScalarType();
2828   int RegisterFileMoveCost = 0;
2829 
2830   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2831                        Opcode == Instruction::InsertElement)) {
2832     // Legalize the type.
2833     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2834 
2835     // This type is legalized to a scalar type.
2836     if (!LT.second.isVector())
2837       return 0;
2838 
2839     // The type may be split. Normalize the index to the new type.
2840     unsigned NumElts = LT.second.getVectorNumElements();
2841     unsigned SubNumElts = NumElts;
2842     Index = Index % NumElts;
2843 
2844     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
2845     // For inserts, we also need to insert the subvector back.
2846     if (LT.second.getSizeInBits() > 128) {
2847       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
2848       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2849       SubNumElts = NumElts / NumSubVecs;
2850       if (SubNumElts <= Index) {
2851         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
2852         Index %= SubNumElts;
2853       }
2854     }
2855 
2856     if (Index == 0) {
2857       // Floating point scalars are already located in index #0.
2858       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
2859       // true for all.
2860       if (ScalarType->isFloatingPointTy())
2861         return RegisterFileMoveCost;
2862 
2863       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
2864       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
2865         return 1 + RegisterFileMoveCost;
2866     }
2867 
2868     int ISD = TLI->InstructionOpcodeToISD(Opcode);
2869     assert(ISD && "Unexpected vector opcode");
2870     MVT MScalarTy = LT.second.getScalarType();
2871     if (ST->isSLM())
2872       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
2873         return Entry->Cost + RegisterFileMoveCost;
2874 
2875     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
2876     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2877         (MScalarTy.isInteger() && ST->hasSSE41()))
2878       return 1 + RegisterFileMoveCost;
2879 
2880     // Assume insertps is relatively cheap on all targets.
2881     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
2882         Opcode == Instruction::InsertElement)
2883       return 1 + RegisterFileMoveCost;
2884 
2885     // For extractions we just need to shuffle the element to index 0, which
2886     // should be very cheap (assume cost = 1). For insertions we need to shuffle
2887     // the elements to its destination. In both cases we must handle the
2888     // subvector move(s).
2889     // If the vector type is already less than 128-bits then don't reduce it.
2890     // TODO: Under what circumstances should we shuffle using the full width?
2891     int ShuffleCost = 1;
2892     if (Opcode == Instruction::InsertElement) {
2893       auto *SubTy = cast<VectorType>(Val);
2894       EVT VT = TLI->getValueType(DL, Val);
2895       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
2896         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
2897       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
2898     }
2899     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
2900     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
2901   }
2902 
2903   // Add to the base cost if we know that the extracted element of a vector is
2904   // destined to be moved to and used in the integer register file.
2905   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2906     RegisterFileMoveCost += 1;
2907 
2908   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2909 }
2910 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract)2911 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
2912                                               const APInt &DemandedElts,
2913                                               bool Insert, bool Extract) {
2914   unsigned Cost = 0;
2915 
2916   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
2917   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
2918   if (Insert) {
2919     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2920     MVT MScalarTy = LT.second.getScalarType();
2921 
2922     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2923         (MScalarTy.isInteger() && ST->hasSSE41()) ||
2924         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
2925       // For types we can insert directly, insertion into 128-bit sub vectors is
2926       // cheap, followed by a cheap chain of concatenations.
2927       if (LT.second.getSizeInBits() <= 128) {
2928         Cost +=
2929             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
2930       } else {
2931         unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2932         Cost += (PowerOf2Ceil(NumSubVecs) - 1) * LT.first;
2933         Cost += DemandedElts.countPopulation();
2934 
2935         // For vXf32 cases, insertion into the 0'th index in each v4f32
2936         // 128-bit vector is free.
2937         // NOTE: This assumes legalization widens vXf32 vectors.
2938         if (MScalarTy == MVT::f32)
2939           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
2940                i < e; i += 4)
2941             if (DemandedElts[i])
2942               Cost--;
2943       }
2944     } else if (LT.second.isVector()) {
2945       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
2946       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
2947       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
2948       // considered cheap.
2949       if (Ty->isIntOrIntVectorTy())
2950         Cost += DemandedElts.countPopulation();
2951 
2952       // Get the smaller of the legalized or original pow2-extended number of
2953       // vector elements, which represents the number of unpacks we'll end up
2954       // performing.
2955       unsigned NumElts = LT.second.getVectorNumElements();
2956       unsigned Pow2Elts =
2957           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
2958       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
2959     }
2960   }
2961 
2962   // TODO: Use default extraction for now, but we should investigate extending this
2963   // to handle repeated subvector extraction.
2964   if (Extract)
2965     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
2966 
2967   return Cost;
2968 }
2969 
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)2970 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
2971                                 MaybeAlign Alignment, unsigned AddressSpace,
2972                                 TTI::TargetCostKind CostKind,
2973                                 const Instruction *I) {
2974   // TODO: Handle other cost kinds.
2975   if (CostKind != TTI::TCK_RecipThroughput) {
2976     if (isa_and_nonnull<StoreInst>(I)) {
2977       Value *Ptr = I->getOperand(1);
2978       // Store instruction with index and scale costs 2 Uops.
2979       // Check the preceding GEP to identify non-const indices.
2980       if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
2981         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
2982           return TTI::TCC_Basic * 2;
2983       }
2984     }
2985     return TTI::TCC_Basic;
2986   }
2987 
2988   // Handle non-power-of-two vectors such as <3 x float>
2989   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
2990     unsigned NumElem = VTy->getNumElements();
2991 
2992     // Handle a few common cases:
2993     // <3 x float>
2994     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2995       // Cost = 64 bit store + extract + 32 bit store.
2996       return 3;
2997 
2998     // <3 x double>
2999     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
3000       // Cost = 128 bit store + unpack + 64 bit store.
3001       return 3;
3002 
3003     // Assume that all other non-power-of-two numbers are scalarized.
3004     if (!isPowerOf2_32(NumElem)) {
3005       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3006       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
3007                                         AddressSpace, CostKind);
3008       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
3009                                                Opcode == Instruction::Load,
3010                                                Opcode == Instruction::Store);
3011       return NumElem * Cost + SplitCost;
3012     }
3013   }
3014 
3015   // Type legalization can't handle structs
3016   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
3017     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3018                                   CostKind);
3019 
3020   // Legalize the type.
3021   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3022   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3023          "Invalid Opcode");
3024 
3025   // Each load/store unit costs 1.
3026   int Cost = LT.first * 1;
3027 
3028   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3029   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3030   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3031     Cost *= 2;
3032 
3033   return Cost;
3034 }
3035 
getMaskedMemoryOpCost(unsigned Opcode,Type * SrcTy,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)3036 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
3037                                       Align Alignment, unsigned AddressSpace,
3038                                       TTI::TargetCostKind CostKind) {
3039   bool IsLoad = (Instruction::Load == Opcode);
3040   bool IsStore = (Instruction::Store == Opcode);
3041 
3042   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3043   if (!SrcVTy)
3044     // To calculate scalar take the regular cost, without mask
3045     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3046 
3047   unsigned NumElem = SrcVTy->getNumElements();
3048   auto *MaskTy =
3049       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3050   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3051       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
3052       !isPowerOf2_32(NumElem)) {
3053     // Scalarization
3054     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3055     int MaskSplitCost =
3056         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3057     int ScalarCompareCost = getCmpSelInstrCost(
3058         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3059         CostKind);
3060     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3061     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3062     int ValueSplitCost =
3063         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3064     int MemopCost =
3065         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3066                                          Alignment, AddressSpace, CostKind);
3067     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3068   }
3069 
3070   // Legalize the type.
3071   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3072   auto VT = TLI->getValueType(DL, SrcVTy);
3073   int Cost = 0;
3074   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3075       LT.second.getVectorNumElements() == NumElem)
3076     // Promotion requires expand/truncate for data and a shuffle for mask.
3077     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
3078             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
3079 
3080   else if (LT.second.getVectorNumElements() > NumElem) {
3081     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3082                                            LT.second.getVectorNumElements());
3083     // Expanding requires fill mask with zeroes
3084     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
3085   }
3086 
3087   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3088   if (!ST->hasAVX512())
3089     return Cost + LT.first * (IsLoad ? 2 : 8);
3090 
3091   // AVX-512 masked load/store is cheapper
3092   return Cost + LT.first;
3093 }
3094 
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)3095 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3096                                           const SCEV *Ptr) {
3097   // Address computations in vectorized code with non-consecutive addresses will
3098   // likely result in more instructions compared to scalar code where the
3099   // computation can more often be merged into the index mode. The resulting
3100   // extra micro-ops can significantly decrease throughput.
3101   const unsigned NumVectorInstToHideOverhead = 10;
3102 
3103   // Cost modeling of Strided Access Computation is hidden by the indexing
3104   // modes of X86 regardless of the stride value. We dont believe that there
3105   // is a difference between constant strided access in gerenal and constant
3106   // strided value which is less than or equal to 64.
3107   // Even in the case of (loop invariant) stride whose value is not known at
3108   // compile time, the address computation will not incur more than one extra
3109   // ADD instruction.
3110   if (Ty->isVectorTy() && SE) {
3111     if (!BaseT::isStridedAccess(Ptr))
3112       return NumVectorInstToHideOverhead;
3113     if (!BaseT::getConstantStrideStep(SE, Ptr))
3114       return 1;
3115   }
3116 
3117   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3118 }
3119 
getArithmeticReductionCost(unsigned Opcode,VectorType * ValTy,bool IsPairwise,TTI::TargetCostKind CostKind)3120 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3121                                            bool IsPairwise,
3122                                            TTI::TargetCostKind CostKind) {
3123   // Just use the default implementation for pair reductions.
3124   if (IsPairwise)
3125     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3126 
3127   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3128   // and make it as the cost.
3129 
3130   static const CostTblEntry SLMCostTblNoPairWise[] = {
3131     { ISD::FADD,  MVT::v2f64,   3 },
3132     { ISD::ADD,   MVT::v2i64,   5 },
3133   };
3134 
3135   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3136     { ISD::FADD,  MVT::v2f64,   2 },
3137     { ISD::FADD,  MVT::v4f32,   4 },
3138     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3139     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3140     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3141     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3142     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3143     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3144     { ISD::ADD,   MVT::v2i8,    2 },
3145     { ISD::ADD,   MVT::v4i8,    2 },
3146     { ISD::ADD,   MVT::v8i8,    2 },
3147     { ISD::ADD,   MVT::v16i8,   3 },
3148   };
3149 
3150   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3151     { ISD::FADD,  MVT::v4f64,   3 },
3152     { ISD::FADD,  MVT::v4f32,   3 },
3153     { ISD::FADD,  MVT::v8f32,   4 },
3154     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3155     { ISD::ADD,   MVT::v4i64,   3 },
3156     { ISD::ADD,   MVT::v8i32,   5 },
3157     { ISD::ADD,   MVT::v16i16,  5 },
3158     { ISD::ADD,   MVT::v32i8,   4 },
3159   };
3160 
3161   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3162   assert(ISD && "Invalid opcode");
3163 
3164   // Before legalizing the type, give a chance to look up illegal narrow types
3165   // in the table.
3166   // FIXME: Is there a better way to do this?
3167   EVT VT = TLI->getValueType(DL, ValTy);
3168   if (VT.isSimple()) {
3169     MVT MTy = VT.getSimpleVT();
3170     if (ST->isSLM())
3171       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3172         return Entry->Cost;
3173 
3174     if (ST->hasAVX())
3175       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3176         return Entry->Cost;
3177 
3178     if (ST->hasSSE2())
3179       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3180         return Entry->Cost;
3181   }
3182 
3183   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3184 
3185   MVT MTy = LT.second;
3186 
3187   auto *ValVTy = cast<FixedVectorType>(ValTy);
3188 
3189   unsigned ArithmeticCost = 0;
3190   if (LT.first != 1 && MTy.isVector() &&
3191       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3192     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3193     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3194                                             MTy.getVectorNumElements());
3195     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3196     ArithmeticCost *= LT.first - 1;
3197   }
3198 
3199   if (ST->isSLM())
3200     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3201       return ArithmeticCost + Entry->Cost;
3202 
3203   if (ST->hasAVX())
3204     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3205       return ArithmeticCost + Entry->Cost;
3206 
3207   if (ST->hasSSE2())
3208     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3209       return ArithmeticCost + Entry->Cost;
3210 
3211   // FIXME: These assume a naive kshift+binop lowering, which is probably
3212   // conservative in most cases.
3213   static const CostTblEntry AVX512BoolReduction[] = {
3214     { ISD::AND,  MVT::v2i1,   3 },
3215     { ISD::AND,  MVT::v4i1,   5 },
3216     { ISD::AND,  MVT::v8i1,   7 },
3217     { ISD::AND,  MVT::v16i1,  9 },
3218     { ISD::AND,  MVT::v32i1, 11 },
3219     { ISD::AND,  MVT::v64i1, 13 },
3220     { ISD::OR,   MVT::v2i1,   3 },
3221     { ISD::OR,   MVT::v4i1,   5 },
3222     { ISD::OR,   MVT::v8i1,   7 },
3223     { ISD::OR,   MVT::v16i1,  9 },
3224     { ISD::OR,   MVT::v32i1, 11 },
3225     { ISD::OR,   MVT::v64i1, 13 },
3226   };
3227 
3228   static const CostTblEntry AVX2BoolReduction[] = {
3229     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3230     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3231     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3232     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3233   };
3234 
3235   static const CostTblEntry AVX1BoolReduction[] = {
3236     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3237     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3238     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3239     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3240     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3241     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3242     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3243     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3244   };
3245 
3246   static const CostTblEntry SSE2BoolReduction[] = {
3247     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3248     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3249     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3250     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3251     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3252     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3253     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3254     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3255   };
3256 
3257   // Handle bool allof/anyof patterns.
3258   if (ValVTy->getElementType()->isIntegerTy(1)) {
3259     unsigned ArithmeticCost = 0;
3260     if (LT.first != 1 && MTy.isVector() &&
3261         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3262       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3263       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3264                                               MTy.getVectorNumElements());
3265       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3266       ArithmeticCost *= LT.first - 1;
3267     }
3268 
3269     if (ST->hasAVX512())
3270       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3271         return ArithmeticCost + Entry->Cost;
3272     if (ST->hasAVX2())
3273       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3274         return ArithmeticCost + Entry->Cost;
3275     if (ST->hasAVX())
3276       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3277         return ArithmeticCost + Entry->Cost;
3278     if (ST->hasSSE2())
3279       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3280         return ArithmeticCost + Entry->Cost;
3281 
3282     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3283                                              CostKind);
3284   }
3285 
3286   unsigned NumVecElts = ValVTy->getNumElements();
3287   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3288 
3289   // Special case power of 2 reductions where the scalar type isn't changed
3290   // by type legalization.
3291   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3292     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3293                                              CostKind);
3294 
3295   unsigned ReductionCost = 0;
3296 
3297   auto *Ty = ValVTy;
3298   if (LT.first != 1 && MTy.isVector() &&
3299       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3300     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3301     Ty = FixedVectorType::get(ValVTy->getElementType(),
3302                               MTy.getVectorNumElements());
3303     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3304     ReductionCost *= LT.first - 1;
3305     NumVecElts = MTy.getVectorNumElements();
3306   }
3307 
3308   // Now handle reduction with the legal type, taking into account size changes
3309   // at each level.
3310   while (NumVecElts > 1) {
3311     // Determine the size of the remaining vector we need to reduce.
3312     unsigned Size = NumVecElts * ScalarSize;
3313     NumVecElts /= 2;
3314     // If we're reducing from 256/512 bits, use an extract_subvector.
3315     if (Size > 128) {
3316       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3317       ReductionCost +=
3318           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3319       Ty = SubTy;
3320     } else if (Size == 128) {
3321       // Reducing from 128 bits is a permute of v2f64/v2i64.
3322       FixedVectorType *ShufTy;
3323       if (ValVTy->isFloatingPointTy())
3324         ShufTy =
3325             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3326       else
3327         ShufTy =
3328             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3329       ReductionCost +=
3330           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3331     } else if (Size == 64) {
3332       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3333       FixedVectorType *ShufTy;
3334       if (ValVTy->isFloatingPointTy())
3335         ShufTy =
3336             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3337       else
3338         ShufTy =
3339             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3340       ReductionCost +=
3341           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3342     } else {
3343       // Reducing from smaller size is a shift by immediate.
3344       auto *ShiftTy = FixedVectorType::get(
3345           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3346       ReductionCost += getArithmeticInstrCost(
3347           Instruction::LShr, ShiftTy, CostKind,
3348           TargetTransformInfo::OK_AnyValue,
3349           TargetTransformInfo::OK_UniformConstantValue,
3350           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3351     }
3352 
3353     // Add the arithmetic op for this level.
3354     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3355   }
3356 
3357   // Add the final extract element to the cost.
3358   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3359 }
3360 
getMinMaxCost(Type * Ty,Type * CondTy,bool IsUnsigned)3361 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3362   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3363 
3364   MVT MTy = LT.second;
3365 
3366   int ISD;
3367   if (Ty->isIntOrIntVectorTy()) {
3368     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3369   } else {
3370     assert(Ty->isFPOrFPVectorTy() &&
3371            "Expected float point or integer vector type.");
3372     ISD = ISD::FMINNUM;
3373   }
3374 
3375   static const CostTblEntry SSE1CostTbl[] = {
3376     {ISD::FMINNUM, MVT::v4f32, 1},
3377   };
3378 
3379   static const CostTblEntry SSE2CostTbl[] = {
3380     {ISD::FMINNUM, MVT::v2f64, 1},
3381     {ISD::SMIN,    MVT::v8i16, 1},
3382     {ISD::UMIN,    MVT::v16i8, 1},
3383   };
3384 
3385   static const CostTblEntry SSE41CostTbl[] = {
3386     {ISD::SMIN,    MVT::v4i32, 1},
3387     {ISD::UMIN,    MVT::v4i32, 1},
3388     {ISD::UMIN,    MVT::v8i16, 1},
3389     {ISD::SMIN,    MVT::v16i8, 1},
3390   };
3391 
3392   static const CostTblEntry SSE42CostTbl[] = {
3393     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3394   };
3395 
3396   static const CostTblEntry AVX1CostTbl[] = {
3397     {ISD::FMINNUM, MVT::v8f32,  1},
3398     {ISD::FMINNUM, MVT::v4f64,  1},
3399     {ISD::SMIN,    MVT::v8i32,  3},
3400     {ISD::UMIN,    MVT::v8i32,  3},
3401     {ISD::SMIN,    MVT::v16i16, 3},
3402     {ISD::UMIN,    MVT::v16i16, 3},
3403     {ISD::SMIN,    MVT::v32i8,  3},
3404     {ISD::UMIN,    MVT::v32i8,  3},
3405   };
3406 
3407   static const CostTblEntry AVX2CostTbl[] = {
3408     {ISD::SMIN,    MVT::v8i32,  1},
3409     {ISD::UMIN,    MVT::v8i32,  1},
3410     {ISD::SMIN,    MVT::v16i16, 1},
3411     {ISD::UMIN,    MVT::v16i16, 1},
3412     {ISD::SMIN,    MVT::v32i8,  1},
3413     {ISD::UMIN,    MVT::v32i8,  1},
3414   };
3415 
3416   static const CostTblEntry AVX512CostTbl[] = {
3417     {ISD::FMINNUM, MVT::v16f32, 1},
3418     {ISD::FMINNUM, MVT::v8f64,  1},
3419     {ISD::SMIN,    MVT::v2i64,  1},
3420     {ISD::UMIN,    MVT::v2i64,  1},
3421     {ISD::SMIN,    MVT::v4i64,  1},
3422     {ISD::UMIN,    MVT::v4i64,  1},
3423     {ISD::SMIN,    MVT::v8i64,  1},
3424     {ISD::UMIN,    MVT::v8i64,  1},
3425     {ISD::SMIN,    MVT::v16i32, 1},
3426     {ISD::UMIN,    MVT::v16i32, 1},
3427   };
3428 
3429   static const CostTblEntry AVX512BWCostTbl[] = {
3430     {ISD::SMIN,    MVT::v32i16, 1},
3431     {ISD::UMIN,    MVT::v32i16, 1},
3432     {ISD::SMIN,    MVT::v64i8,  1},
3433     {ISD::UMIN,    MVT::v64i8,  1},
3434   };
3435 
3436   // If we have a native MIN/MAX instruction for this type, use it.
3437   if (ST->hasBWI())
3438     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3439       return LT.first * Entry->Cost;
3440 
3441   if (ST->hasAVX512())
3442     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3443       return LT.first * Entry->Cost;
3444 
3445   if (ST->hasAVX2())
3446     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3447       return LT.first * Entry->Cost;
3448 
3449   if (ST->hasAVX())
3450     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3451       return LT.first * Entry->Cost;
3452 
3453   if (ST->hasSSE42())
3454     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3455       return LT.first * Entry->Cost;
3456 
3457   if (ST->hasSSE41())
3458     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3459       return LT.first * Entry->Cost;
3460 
3461   if (ST->hasSSE2())
3462     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3463       return LT.first * Entry->Cost;
3464 
3465   if (ST->hasSSE1())
3466     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3467       return LT.first * Entry->Cost;
3468 
3469   unsigned CmpOpcode;
3470   if (Ty->isFPOrFPVectorTy()) {
3471     CmpOpcode = Instruction::FCmp;
3472   } else {
3473     assert(Ty->isIntOrIntVectorTy() &&
3474            "expecting floating point or integer type for min/max reduction");
3475     CmpOpcode = Instruction::ICmp;
3476   }
3477 
3478   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3479   // Otherwise fall back to cmp+select.
3480   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CostKind) +
3481          getCmpSelInstrCost(Instruction::Select, Ty, CondTy, CostKind);
3482 }
3483 
getMinMaxReductionCost(VectorType * ValTy,VectorType * CondTy,bool IsPairwise,bool IsUnsigned,TTI::TargetCostKind CostKind)3484 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3485                                        bool IsPairwise, bool IsUnsigned,
3486                                        TTI::TargetCostKind CostKind) {
3487   // Just use the default implementation for pair reductions.
3488   if (IsPairwise)
3489     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3490                                          CostKind);
3491 
3492   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3493 
3494   MVT MTy = LT.second;
3495 
3496   int ISD;
3497   if (ValTy->isIntOrIntVectorTy()) {
3498     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3499   } else {
3500     assert(ValTy->isFPOrFPVectorTy() &&
3501            "Expected float point or integer vector type.");
3502     ISD = ISD::FMINNUM;
3503   }
3504 
3505   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3506   // and make it as the cost.
3507 
3508   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3509       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3510       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3511       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3512   };
3513 
3514   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3515       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3516       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3517       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3518       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3519       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3520       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3521       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3522       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3523       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3524       {ISD::SMIN, MVT::v16i8, 6},
3525       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3526       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3527       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3528       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3529   };
3530 
3531   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3532       {ISD::SMIN, MVT::v16i16, 6},
3533       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3534       {ISD::SMIN, MVT::v32i8, 8},
3535       {ISD::UMIN, MVT::v32i8, 8},
3536   };
3537 
3538   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3539       {ISD::SMIN, MVT::v32i16, 8},
3540       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3541       {ISD::SMIN, MVT::v64i8, 10},
3542       {ISD::UMIN, MVT::v64i8, 10},
3543   };
3544 
3545   // Before legalizing the type, give a chance to look up illegal narrow types
3546   // in the table.
3547   // FIXME: Is there a better way to do this?
3548   EVT VT = TLI->getValueType(DL, ValTy);
3549   if (VT.isSimple()) {
3550     MVT MTy = VT.getSimpleVT();
3551     if (ST->hasBWI())
3552       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3553         return Entry->Cost;
3554 
3555     if (ST->hasAVX())
3556       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3557         return Entry->Cost;
3558 
3559     if (ST->hasSSE41())
3560       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3561         return Entry->Cost;
3562 
3563     if (ST->hasSSE2())
3564       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3565         return Entry->Cost;
3566   }
3567 
3568   auto *ValVTy = cast<FixedVectorType>(ValTy);
3569   unsigned NumVecElts = ValVTy->getNumElements();
3570 
3571   auto *Ty = ValVTy;
3572   unsigned MinMaxCost = 0;
3573   if (LT.first != 1 && MTy.isVector() &&
3574       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3575     // Type needs to be split. We need LT.first - 1 operations ops.
3576     Ty = FixedVectorType::get(ValVTy->getElementType(),
3577                               MTy.getVectorNumElements());
3578     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
3579                                            MTy.getVectorNumElements());
3580     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3581     MinMaxCost *= LT.first - 1;
3582     NumVecElts = MTy.getVectorNumElements();
3583   }
3584 
3585   if (ST->hasBWI())
3586     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3587       return MinMaxCost + Entry->Cost;
3588 
3589   if (ST->hasAVX())
3590     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3591       return MinMaxCost + Entry->Cost;
3592 
3593   if (ST->hasSSE41())
3594     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3595       return MinMaxCost + Entry->Cost;
3596 
3597   if (ST->hasSSE2())
3598     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3599       return MinMaxCost + Entry->Cost;
3600 
3601   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3602 
3603   // Special case power of 2 reductions where the scalar type isn't changed
3604   // by type legalization.
3605   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3606       ScalarSize != MTy.getScalarSizeInBits())
3607     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3608                                          CostKind);
3609 
3610   // Now handle reduction with the legal type, taking into account size changes
3611   // at each level.
3612   while (NumVecElts > 1) {
3613     // Determine the size of the remaining vector we need to reduce.
3614     unsigned Size = NumVecElts * ScalarSize;
3615     NumVecElts /= 2;
3616     // If we're reducing from 256/512 bits, use an extract_subvector.
3617     if (Size > 128) {
3618       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3619       MinMaxCost +=
3620           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3621       Ty = SubTy;
3622     } else if (Size == 128) {
3623       // Reducing from 128 bits is a permute of v2f64/v2i64.
3624       VectorType *ShufTy;
3625       if (ValTy->isFloatingPointTy())
3626         ShufTy =
3627             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3628       else
3629         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3630       MinMaxCost +=
3631           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3632     } else if (Size == 64) {
3633       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3634       FixedVectorType *ShufTy;
3635       if (ValTy->isFloatingPointTy())
3636         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3637       else
3638         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3639       MinMaxCost +=
3640           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3641     } else {
3642       // Reducing from smaller size is a shift by immediate.
3643       auto *ShiftTy = FixedVectorType::get(
3644           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3645       MinMaxCost += getArithmeticInstrCost(
3646           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3647           TargetTransformInfo::OK_AnyValue,
3648           TargetTransformInfo::OK_UniformConstantValue,
3649           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3650     }
3651 
3652     // Add the arithmetic op for this level.
3653     auto *SubCondTy =
3654         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3655     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3656   }
3657 
3658   // Add the final extract element to the cost.
3659   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3660 }
3661 
3662 /// Calculate the cost of materializing a 64-bit value. This helper
3663 /// method might only calculate a fraction of a larger immediate. Therefore it
3664 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val)3665 int X86TTIImpl::getIntImmCost(int64_t Val) {
3666   if (Val == 0)
3667     return TTI::TCC_Free;
3668 
3669   if (isInt<32>(Val))
3670     return TTI::TCC_Basic;
3671 
3672   return 2 * TTI::TCC_Basic;
3673 }
3674 
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)3675 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3676                               TTI::TargetCostKind CostKind) {
3677   assert(Ty->isIntegerTy());
3678 
3679   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3680   if (BitSize == 0)
3681     return ~0U;
3682 
3683   // Never hoist constants larger than 128bit, because this might lead to
3684   // incorrect code generation or assertions in codegen.
3685   // Fixme: Create a cost model for types larger than i128 once the codegen
3686   // issues have been fixed.
3687   if (BitSize > 128)
3688     return TTI::TCC_Free;
3689 
3690   if (Imm == 0)
3691     return TTI::TCC_Free;
3692 
3693   // Sign-extend all constants to a multiple of 64-bit.
3694   APInt ImmVal = Imm;
3695   if (BitSize % 64 != 0)
3696     ImmVal = Imm.sext(alignTo(BitSize, 64));
3697 
3698   // Split the constant into 64-bit chunks and calculate the cost for each
3699   // chunk.
3700   int Cost = 0;
3701   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3702     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3703     int64_t Val = Tmp.getSExtValue();
3704     Cost += getIntImmCost(Val);
3705   }
3706   // We need at least one instruction to materialize the constant.
3707   return std::max(1, Cost);
3708 }
3709 
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)3710 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3711                                   Type *Ty, TTI::TargetCostKind CostKind) {
3712   assert(Ty->isIntegerTy());
3713 
3714   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3715   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3716   // here, so that constant hoisting will ignore this constant.
3717   if (BitSize == 0)
3718     return TTI::TCC_Free;
3719 
3720   unsigned ImmIdx = ~0U;
3721   switch (Opcode) {
3722   default:
3723     return TTI::TCC_Free;
3724   case Instruction::GetElementPtr:
3725     // Always hoist the base address of a GetElementPtr. This prevents the
3726     // creation of new constants for every base constant that gets constant
3727     // folded with the offset.
3728     if (Idx == 0)
3729       return 2 * TTI::TCC_Basic;
3730     return TTI::TCC_Free;
3731   case Instruction::Store:
3732     ImmIdx = 0;
3733     break;
3734   case Instruction::ICmp:
3735     // This is an imperfect hack to prevent constant hoisting of
3736     // compares that might be trying to check if a 64-bit value fits in
3737     // 32-bits. The backend can optimize these cases using a right shift by 32.
3738     // Ideally we would check the compare predicate here. There also other
3739     // similar immediates the backend can use shifts for.
3740     if (Idx == 1 && Imm.getBitWidth() == 64) {
3741       uint64_t ImmVal = Imm.getZExtValue();
3742       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3743         return TTI::TCC_Free;
3744     }
3745     ImmIdx = 1;
3746     break;
3747   case Instruction::And:
3748     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3749     // by using a 32-bit operation with implicit zero extension. Detect such
3750     // immediates here as the normal path expects bit 31 to be sign extended.
3751     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3752       return TTI::TCC_Free;
3753     ImmIdx = 1;
3754     break;
3755   case Instruction::Add:
3756   case Instruction::Sub:
3757     // For add/sub, we can use the opposite instruction for INT32_MIN.
3758     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3759       return TTI::TCC_Free;
3760     ImmIdx = 1;
3761     break;
3762   case Instruction::UDiv:
3763   case Instruction::SDiv:
3764   case Instruction::URem:
3765   case Instruction::SRem:
3766     // Division by constant is typically expanded later into a different
3767     // instruction sequence. This completely changes the constants.
3768     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3769     return TTI::TCC_Free;
3770   case Instruction::Mul:
3771   case Instruction::Or:
3772   case Instruction::Xor:
3773     ImmIdx = 1;
3774     break;
3775   // Always return TCC_Free for the shift value of a shift instruction.
3776   case Instruction::Shl:
3777   case Instruction::LShr:
3778   case Instruction::AShr:
3779     if (Idx == 1)
3780       return TTI::TCC_Free;
3781     break;
3782   case Instruction::Trunc:
3783   case Instruction::ZExt:
3784   case Instruction::SExt:
3785   case Instruction::IntToPtr:
3786   case Instruction::PtrToInt:
3787   case Instruction::BitCast:
3788   case Instruction::PHI:
3789   case Instruction::Call:
3790   case Instruction::Select:
3791   case Instruction::Ret:
3792   case Instruction::Load:
3793     break;
3794   }
3795 
3796   if (Idx == ImmIdx) {
3797     int NumConstants = divideCeil(BitSize, 64);
3798     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3799     return (Cost <= NumConstants * TTI::TCC_Basic)
3800                ? static_cast<int>(TTI::TCC_Free)
3801                : Cost;
3802   }
3803 
3804   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3805 }
3806 
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)3807 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3808                                     const APInt &Imm, Type *Ty,
3809                                     TTI::TargetCostKind CostKind) {
3810   assert(Ty->isIntegerTy());
3811 
3812   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3813   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3814   // here, so that constant hoisting will ignore this constant.
3815   if (BitSize == 0)
3816     return TTI::TCC_Free;
3817 
3818   switch (IID) {
3819   default:
3820     return TTI::TCC_Free;
3821   case Intrinsic::sadd_with_overflow:
3822   case Intrinsic::uadd_with_overflow:
3823   case Intrinsic::ssub_with_overflow:
3824   case Intrinsic::usub_with_overflow:
3825   case Intrinsic::smul_with_overflow:
3826   case Intrinsic::umul_with_overflow:
3827     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3828       return TTI::TCC_Free;
3829     break;
3830   case Intrinsic::experimental_stackmap:
3831     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3832       return TTI::TCC_Free;
3833     break;
3834   case Intrinsic::experimental_patchpoint_void:
3835   case Intrinsic::experimental_patchpoint_i64:
3836     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3837       return TTI::TCC_Free;
3838     break;
3839   }
3840   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3841 }
3842 
3843 unsigned
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind)3844 X86TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
3845   if (CostKind != TTI::TCK_RecipThroughput)
3846     return Opcode == Instruction::PHI ? 0 : 1;
3847   // Branches are assumed to be predicted.
3848   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
3849 }
3850 
3851 // Return an average cost of Gather / Scatter instruction, maybe improved later
getGSVectorCost(unsigned Opcode,Type * SrcVTy,const Value * Ptr,Align Alignment,unsigned AddressSpace)3852 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
3853                                 Align Alignment, unsigned AddressSpace) {
3854 
3855   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3856   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
3857 
3858   // Try to reduce index size from 64 bit (default for GEP)
3859   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3860   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3861   // to split. Also check that the base pointer is the same for all lanes,
3862   // and that there's at most one variable index.
3863   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
3864     unsigned IndexSize = DL.getPointerSizeInBits();
3865     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3866     if (IndexSize < 64 || !GEP)
3867       return IndexSize;
3868 
3869     unsigned NumOfVarIndices = 0;
3870     const Value *Ptrs = GEP->getPointerOperand();
3871     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3872       return IndexSize;
3873     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3874       if (isa<Constant>(GEP->getOperand(i)))
3875         continue;
3876       Type *IndxTy = GEP->getOperand(i)->getType();
3877       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
3878         IndxTy = IndexVTy->getElementType();
3879       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3880           !isa<SExtInst>(GEP->getOperand(i))) ||
3881          ++NumOfVarIndices > 1)
3882         return IndexSize; // 64
3883     }
3884     return (unsigned)32;
3885   };
3886 
3887   // Trying to reduce IndexSize to 32 bits for vector 16.
3888   // By default the IndexSize is equal to pointer size.
3889   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3890                            ? getIndexSizeInBits(Ptr, DL)
3891                            : DL.getPointerSizeInBits();
3892 
3893   auto *IndexVTy = FixedVectorType::get(
3894       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
3895   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3896   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3897   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3898   if (SplitFactor > 1) {
3899     // Handle splitting of vector of pointers
3900     auto *SplitSrcTy =
3901         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3902     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3903                                          AddressSpace);
3904   }
3905 
3906   // The gather / scatter cost is given by Intel architects. It is a rough
3907   // number since we are looking at one instruction in a time.
3908   const int GSOverhead = (Opcode == Instruction::Load)
3909                              ? ST->getGatherOverhead()
3910                              : ST->getScatterOverhead();
3911   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3912                                            MaybeAlign(Alignment), AddressSpace,
3913                                            TTI::TCK_RecipThroughput);
3914 }
3915 
3916 /// Return the cost of full scalarization of gather / scatter operation.
3917 ///
3918 /// Opcode - Load or Store instruction.
3919 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3920 /// VariableMask - The mask is non-constant at compile time.
3921 /// Alignment - Alignment for one element.
3922 /// AddressSpace - pointer[s] address space.
3923 ///
getGSScalarCost(unsigned Opcode,Type * SrcVTy,bool VariableMask,Align Alignment,unsigned AddressSpace)3924 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3925                                 bool VariableMask, Align Alignment,
3926                                 unsigned AddressSpace) {
3927   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
3928   APInt DemandedElts = APInt::getAllOnesValue(VF);
3929   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3930 
3931   int MaskUnpackCost = 0;
3932   if (VariableMask) {
3933     auto *MaskTy =
3934         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3935     MaskUnpackCost =
3936         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3937     int ScalarCompareCost =
3938       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3939                          nullptr, CostKind);
3940     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3941     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3942   }
3943 
3944   // The cost of the scalar loads/stores.
3945   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3946                                           MaybeAlign(Alignment), AddressSpace,
3947                                           CostKind);
3948 
3949   int InsertExtractCost = 0;
3950   if (Opcode == Instruction::Load)
3951     for (unsigned i = 0; i < VF; ++i)
3952       // Add the cost of inserting each scalar load into the vector
3953       InsertExtractCost +=
3954         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3955   else
3956     for (unsigned i = 0; i < VF; ++i)
3957       // Add the cost of extracting each element out of the data vector
3958       InsertExtractCost +=
3959         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3960 
3961   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3962 }
3963 
3964 /// Calculate the cost of Gather / Scatter operation
getGatherScatterOpCost(unsigned Opcode,Type * SrcVTy,const Value * Ptr,bool VariableMask,Align Alignment,TTI::TargetCostKind CostKind,const Instruction * I=nullptr)3965 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
3966                                        const Value *Ptr, bool VariableMask,
3967                                        Align Alignment,
3968                                        TTI::TargetCostKind CostKind,
3969                                        const Instruction *I = nullptr) {
3970 
3971   if (CostKind != TTI::TCK_RecipThroughput)
3972     return 1;
3973 
3974   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3975   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
3976   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3977   if (!PtrTy && Ptr->getType()->isVectorTy())
3978     PtrTy = dyn_cast<PointerType>(
3979         cast<VectorType>(Ptr->getType())->getElementType());
3980   assert(PtrTy && "Unexpected type for Ptr argument");
3981   unsigned AddressSpace = PtrTy->getAddressSpace();
3982 
3983   bool Scalarize = false;
3984   if ((Opcode == Instruction::Load &&
3985        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
3986       (Opcode == Instruction::Store &&
3987        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
3988     Scalarize = true;
3989   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3990   // Vector-4 of gather/scatter instruction does not exist on KNL.
3991   // We can extend it to 8 elements, but zeroing upper bits of
3992   // the mask vector will add more instructions. Right now we give the scalar
3993   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3994   // is better in the VariableMask case.
3995   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3996     Scalarize = true;
3997 
3998   if (Scalarize)
3999     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4000                            AddressSpace);
4001 
4002   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4003 }
4004 
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)4005 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4006                                TargetTransformInfo::LSRCost &C2) {
4007     // X86 specific here are "instruction number 1st priority".
4008     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4009                     C1.NumIVMuls, C1.NumBaseAdds,
4010                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4011            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4012                     C2.NumIVMuls, C2.NumBaseAdds,
4013                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4014 }
4015 
canMacroFuseCmp()4016 bool X86TTIImpl::canMacroFuseCmp() {
4017   return ST->hasMacroFusion() || ST->hasBranchFusion();
4018 }
4019 
isLegalMaskedLoad(Type * DataTy,Align Alignment)4020 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4021   if (!ST->hasAVX())
4022     return false;
4023 
4024   // The backend can't handle a single element vector.
4025   if (isa<VectorType>(DataTy) &&
4026       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4027     return false;
4028   Type *ScalarTy = DataTy->getScalarType();
4029 
4030   if (ScalarTy->isPointerTy())
4031     return true;
4032 
4033   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4034     return true;
4035 
4036   if (!ScalarTy->isIntegerTy())
4037     return false;
4038 
4039   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4040   return IntWidth == 32 || IntWidth == 64 ||
4041          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4042 }
4043 
isLegalMaskedStore(Type * DataType,Align Alignment)4044 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4045   return isLegalMaskedLoad(DataType, Alignment);
4046 }
4047 
isLegalNTLoad(Type * DataType,Align Alignment)4048 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4049   unsigned DataSize = DL.getTypeStoreSize(DataType);
4050   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4051   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4052   // (the equivalent stores only require AVX).
4053   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4054     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4055 
4056   return false;
4057 }
4058 
isLegalNTStore(Type * DataType,Align Alignment)4059 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4060   unsigned DataSize = DL.getTypeStoreSize(DataType);
4061 
4062   // SSE4A supports nontemporal stores of float and double at arbitrary
4063   // alignment.
4064   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4065     return true;
4066 
4067   // Besides the SSE4A subtarget exception above, only aligned stores are
4068   // available nontemporaly on any other subtarget.  And only stores with a size
4069   // of 4..32 bytes (powers of 2, only) are permitted.
4070   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4071       !isPowerOf2_32(DataSize))
4072     return false;
4073 
4074   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4075   // loads require AVX2).
4076   if (DataSize == 32)
4077     return ST->hasAVX();
4078   else if (DataSize == 16)
4079     return ST->hasSSE1();
4080   return true;
4081 }
4082 
isLegalMaskedExpandLoad(Type * DataTy)4083 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4084   if (!isa<VectorType>(DataTy))
4085     return false;
4086 
4087   if (!ST->hasAVX512())
4088     return false;
4089 
4090   // The backend can't handle a single element vector.
4091   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4092     return false;
4093 
4094   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4095 
4096   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4097     return true;
4098 
4099   if (!ScalarTy->isIntegerTy())
4100     return false;
4101 
4102   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4103   return IntWidth == 32 || IntWidth == 64 ||
4104          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4105 }
4106 
isLegalMaskedCompressStore(Type * DataTy)4107 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4108   return isLegalMaskedExpandLoad(DataTy);
4109 }
4110 
isLegalMaskedGather(Type * DataTy,Align Alignment)4111 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4112   // Some CPUs have better gather performance than others.
4113   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4114   // enable gather with a -march.
4115   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4116     return false;
4117 
4118   // This function is called now in two cases: from the Loop Vectorizer
4119   // and from the Scalarizer.
4120   // When the Loop Vectorizer asks about legality of the feature,
4121   // the vectorization factor is not calculated yet. The Loop Vectorizer
4122   // sends a scalar type and the decision is based on the width of the
4123   // scalar element.
4124   // Later on, the cost model will estimate usage this intrinsic based on
4125   // the vector type.
4126   // The Scalarizer asks again about legality. It sends a vector type.
4127   // In this case we can reject non-power-of-2 vectors.
4128   // We also reject single element vectors as the type legalizer can't
4129   // scalarize it.
4130   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4131     unsigned NumElts = DataVTy->getNumElements();
4132     if (NumElts == 1 || !isPowerOf2_32(NumElts))
4133       return false;
4134   }
4135   Type *ScalarTy = DataTy->getScalarType();
4136   if (ScalarTy->isPointerTy())
4137     return true;
4138 
4139   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4140     return true;
4141 
4142   if (!ScalarTy->isIntegerTy())
4143     return false;
4144 
4145   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4146   return IntWidth == 32 || IntWidth == 64;
4147 }
4148 
isLegalMaskedScatter(Type * DataType,Align Alignment)4149 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4150   // AVX2 doesn't support scatter
4151   if (!ST->hasAVX512())
4152     return false;
4153   return isLegalMaskedGather(DataType, Alignment);
4154 }
4155 
hasDivRemOp(Type * DataType,bool IsSigned)4156 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4157   EVT VT = TLI->getValueType(DL, DataType);
4158   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4159 }
4160 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)4161 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4162   return false;
4163 }
4164 
areInlineCompatible(const Function * Caller,const Function * Callee) const4165 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4166                                      const Function *Callee) const {
4167   const TargetMachine &TM = getTLI()->getTargetMachine();
4168 
4169   // Work this as a subsetting of subtarget features.
4170   const FeatureBitset &CallerBits =
4171       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4172   const FeatureBitset &CalleeBits =
4173       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4174 
4175   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4176   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4177   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4178 }
4179 
areFunctionArgsABICompatible(const Function * Caller,const Function * Callee,SmallPtrSetImpl<Argument * > & Args) const4180 bool X86TTIImpl::areFunctionArgsABICompatible(
4181     const Function *Caller, const Function *Callee,
4182     SmallPtrSetImpl<Argument *> &Args) const {
4183   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4184     return false;
4185 
4186   // If we get here, we know the target features match. If one function
4187   // considers 512-bit vectors legal and the other does not, consider them
4188   // incompatible.
4189   const TargetMachine &TM = getTLI()->getTargetMachine();
4190 
4191   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4192       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4193     return true;
4194 
4195   // Consider the arguments compatible if they aren't vectors or aggregates.
4196   // FIXME: Look at the size of vectors.
4197   // FIXME: Look at the element types of aggregates to see if there are vectors.
4198   // FIXME: The API of this function seems intended to allow arguments
4199   // to be removed from the set, but the caller doesn't check if the set
4200   // becomes empty so that may not work in practice.
4201   return llvm::none_of(Args, [](Argument *A) {
4202     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4203     return EltTy->isVectorTy() || EltTy->isAggregateType();
4204   });
4205 }
4206 
4207 X86TTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const4208 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4209   TTI::MemCmpExpansionOptions Options;
4210   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4211   Options.NumLoadsPerBlock = 2;
4212   // All GPR and vector loads can be unaligned.
4213   Options.AllowOverlappingLoads = true;
4214   if (IsZeroCmp) {
4215     // Only enable vector loads for equality comparison. Right now the vector
4216     // version is not as fast for three way compare (see #33329).
4217     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4218     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4219     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4220     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4221   }
4222   if (ST->is64Bit()) {
4223     Options.LoadSizes.push_back(8);
4224   }
4225   Options.LoadSizes.push_back(4);
4226   Options.LoadSizes.push_back(2);
4227   Options.LoadSizes.push_back(1);
4228   return Options;
4229 }
4230 
enableInterleavedAccessVectorization()4231 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4232   // TODO: We expect this to be beneficial regardless of arch,
4233   // but there are currently some unexplained performance artifacts on Atom.
4234   // As a temporary solution, disable on Atom.
4235   return !(ST->isAtom());
4236 }
4237 
4238 // Get estimation for interleaved load/store operations for AVX2.
4239 // \p Factor is the interleaved-access factor (stride) - number of
4240 // (interleaved) elements in the group.
4241 // \p Indices contains the indices for a strided load: when the
4242 // interleaved load has gaps they indicate which elements are used.
4243 // If Indices is empty (or if the number of indices is equal to the size
4244 // of the interleaved-access as given in \p Factor) the access has no gaps.
4245 //
4246 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4247 // computing the cost using a generic formula as a function of generic
4248 // shuffles. We therefore use a lookup table instead, filled according to
4249 // the instruction sequences that codegen currently generates.
getInterleavedMemoryOpCostAVX2(unsigned Opcode,FixedVectorType * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)4250 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4251     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4252     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4253     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4254 
4255   if (UseMaskForCond || UseMaskForGaps)
4256     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4257                                              Alignment, AddressSpace, CostKind,
4258                                              UseMaskForCond, UseMaskForGaps);
4259 
4260   // We currently Support only fully-interleaved groups, with no gaps.
4261   // TODO: Support also strided loads (interleaved-groups with gaps).
4262   if (Indices.size() && Indices.size() != Factor)
4263     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4264                                              Alignment, AddressSpace,
4265                                              CostKind);
4266 
4267   // VecTy for interleave memop is <VF*Factor x Elt>.
4268   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4269   // VecTy = <12 x i32>.
4270   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4271 
4272   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4273   // the VF=2, while v2i128 is an unsupported MVT vector type
4274   // (see MachineValueType.h::getVectorVT()).
4275   if (!LegalVT.isVector())
4276     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4277                                              Alignment, AddressSpace,
4278                                              CostKind);
4279 
4280   unsigned VF = VecTy->getNumElements() / Factor;
4281   Type *ScalarTy = VecTy->getElementType();
4282 
4283   // Calculate the number of memory operations (NumOfMemOps), required
4284   // for load/store the VecTy.
4285   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4286   unsigned LegalVTSize = LegalVT.getStoreSize();
4287   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4288 
4289   // Get the cost of one memory operation.
4290   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4291                                              LegalVT.getVectorNumElements());
4292   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4293                                        MaybeAlign(Alignment), AddressSpace,
4294                                        CostKind);
4295 
4296   auto *VT = FixedVectorType::get(ScalarTy, VF);
4297   EVT ETy = TLI->getValueType(DL, VT);
4298   if (!ETy.isSimple())
4299     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4300                                              Alignment, AddressSpace,
4301                                              CostKind);
4302 
4303   // TODO: Complete for other data-types and strides.
4304   // Each combination of Stride, ElementTy and VF results in a different
4305   // sequence; The cost tables are therefore accessed with:
4306   // Factor (stride) and VectorType=VFxElemType.
4307   // The Cost accounts only for the shuffle sequence;
4308   // The cost of the loads/stores is accounted for separately.
4309   //
4310   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4311     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4312     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4313 
4314     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4315     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4316     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4317     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4318     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4319     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4320 
4321     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4322     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4323     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4324     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4325     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4326 
4327     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4328   };
4329 
4330   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4331     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4332     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4333 
4334     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4335     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4336     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4337     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4338     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4339 
4340     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4341     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4342     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4343     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4344     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4345   };
4346 
4347   if (Opcode == Instruction::Load) {
4348     if (const auto *Entry =
4349             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4350       return NumOfMemOps * MemOpCost + Entry->Cost;
4351   } else {
4352     assert(Opcode == Instruction::Store &&
4353            "Expected Store Instruction at this  point");
4354     if (const auto *Entry =
4355             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4356       return NumOfMemOps * MemOpCost + Entry->Cost;
4357   }
4358 
4359   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4360                                            Alignment, AddressSpace, CostKind);
4361 }
4362 
4363 // Get estimation for interleaved load/store operations and strided load.
4364 // \p Indices contains indices for strided load.
4365 // \p Factor - the factor of interleaving.
4366 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
getInterleavedMemoryOpCostAVX512(unsigned Opcode,FixedVectorType * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)4367 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4368     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4369     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4370     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4371 
4372   if (UseMaskForCond || UseMaskForGaps)
4373     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4374                                              Alignment, AddressSpace, CostKind,
4375                                              UseMaskForCond, UseMaskForGaps);
4376 
4377   // VecTy for interleave memop is <VF*Factor x Elt>.
4378   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4379   // VecTy = <12 x i32>.
4380 
4381   // Calculate the number of memory operations (NumOfMemOps), required
4382   // for load/store the VecTy.
4383   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4384   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4385   unsigned LegalVTSize = LegalVT.getStoreSize();
4386   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4387 
4388   // Get the cost of one memory operation.
4389   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4390                                              LegalVT.getVectorNumElements());
4391   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4392                                        MaybeAlign(Alignment), AddressSpace,
4393                                        CostKind);
4394 
4395   unsigned VF = VecTy->getNumElements() / Factor;
4396   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4397 
4398   if (Opcode == Instruction::Load) {
4399     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4400     // contain the cost of the optimized shuffle sequence that the
4401     // X86InterleavedAccess pass will generate.
4402     // The cost of loads and stores are computed separately from the table.
4403 
4404     // X86InterleavedAccess support only the following interleaved-access group.
4405     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4406         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4407         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4408         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4409     };
4410 
4411     if (const auto *Entry =
4412             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4413       return NumOfMemOps * MemOpCost + Entry->Cost;
4414     //If an entry does not exist, fallback to the default implementation.
4415 
4416     // Kind of shuffle depends on number of loaded values.
4417     // If we load the entire data in one register, we can use a 1-src shuffle.
4418     // Otherwise, we'll merge 2 sources in each operation.
4419     TTI::ShuffleKind ShuffleKind =
4420         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4421 
4422     unsigned ShuffleCost =
4423         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
4424 
4425     unsigned NumOfLoadsInInterleaveGrp =
4426         Indices.size() ? Indices.size() : Factor;
4427     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4428                                           VecTy->getNumElements() / Factor);
4429     unsigned NumOfResults =
4430         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4431         NumOfLoadsInInterleaveGrp;
4432 
4433     // About a half of the loads may be folded in shuffles when we have only
4434     // one result. If we have more than one result, we do not fold loads at all.
4435     unsigned NumOfUnfoldedLoads =
4436         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4437 
4438     // Get a number of shuffle operations per result.
4439     unsigned NumOfShufflesPerResult =
4440         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4441 
4442     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4443     // When we have more than one destination, we need additional instructions
4444     // to keep sources.
4445     unsigned NumOfMoves = 0;
4446     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4447       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4448 
4449     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4450                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4451 
4452     return Cost;
4453   }
4454 
4455   // Store.
4456   assert(Opcode == Instruction::Store &&
4457          "Expected Store Instruction at this  point");
4458   // X86InterleavedAccess support only the following interleaved-access group.
4459   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4460       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4461       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4462       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4463 
4464       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4465       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4466       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4467       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4468   };
4469 
4470   if (const auto *Entry =
4471           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4472     return NumOfMemOps * MemOpCost + Entry->Cost;
4473   //If an entry does not exist, fallback to the default implementation.
4474 
4475   // There is no strided stores meanwhile. And store can't be folded in
4476   // shuffle.
4477   unsigned NumOfSources = Factor; // The number of values to be merged.
4478   unsigned ShuffleCost =
4479       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
4480   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4481 
4482   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4483   // We need additional instructions to keep sources.
4484   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4485   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4486              NumOfMoves;
4487   return Cost;
4488 }
4489 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)4490 int X86TTIImpl::getInterleavedMemoryOpCost(
4491     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
4492     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
4493     bool UseMaskForCond, bool UseMaskForGaps) {
4494   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4495     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4496     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4497         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4498       return true;
4499     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4500       return HasBW;
4501     return false;
4502   };
4503   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4504     return getInterleavedMemoryOpCostAVX512(
4505         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4506         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4507   if (ST->hasAVX2())
4508     return getInterleavedMemoryOpCostAVX2(
4509         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4510         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4511 
4512   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4513                                            Alignment, AddressSpace, CostKind,
4514                                            UseMaskForCond, UseMaskForGaps);
4515 }
4516