1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 
95 // Max recursion depth for collectBitParts used when detecting bswap and
96 // bitreverse idioms
97 static const unsigned BitPartRecursionMaxDepth = 64;
98 
99 //===----------------------------------------------------------------------===//
100 //  Local constant propagation.
101 //
102 
103 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
104 /// constant value, convert it into an unconditional branch to the constant
105 /// destination.  This is a nontrivial operation because the successors of this
106 /// basic block must have their PHI nodes updated.
107 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
108 /// conditions and indirectbr addresses this might make dead if
109 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI,DomTreeUpdater * DTU)110 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
111                                   const TargetLibraryInfo *TLI,
112                                   DomTreeUpdater *DTU) {
113   Instruction *T = BB->getTerminator();
114   IRBuilder<> Builder(T);
115 
116   // Branch - See if we are conditional jumping on constant
117   if (auto *BI = dyn_cast<BranchInst>(T)) {
118     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
119     BasicBlock *Dest1 = BI->getSuccessor(0);
120     BasicBlock *Dest2 = BI->getSuccessor(1);
121 
122     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
123       // Are we branching on constant?
124       // YES.  Change to unconditional branch...
125       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
126       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
127 
128       // Let the basic block know that we are letting go of it.  Based on this,
129       // it will adjust it's PHI nodes.
130       OldDest->removePredecessor(BB);
131 
132       // Replace the conditional branch with an unconditional one.
133       Builder.CreateBr(Destination);
134       BI->eraseFromParent();
135       if (DTU)
136         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
137       return true;
138     }
139 
140     if (Dest2 == Dest1) {       // Conditional branch to same location?
141       // This branch matches something like this:
142       //     br bool %cond, label %Dest, label %Dest
143       // and changes it into:  br label %Dest
144 
145       // Let the basic block know that we are letting go of one copy of it.
146       assert(BI->getParent() && "Terminator not inserted in block!");
147       Dest1->removePredecessor(BI->getParent());
148 
149       // Replace the conditional branch with an unconditional one.
150       Builder.CreateBr(Dest1);
151       Value *Cond = BI->getCondition();
152       BI->eraseFromParent();
153       if (DeleteDeadConditions)
154         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
155       return true;
156     }
157     return false;
158   }
159 
160   if (auto *SI = dyn_cast<SwitchInst>(T)) {
161     // If we are switching on a constant, we can convert the switch to an
162     // unconditional branch.
163     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
164     BasicBlock *DefaultDest = SI->getDefaultDest();
165     BasicBlock *TheOnlyDest = DefaultDest;
166 
167     // If the default is unreachable, ignore it when searching for TheOnlyDest.
168     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
169         SI->getNumCases() > 0) {
170       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
171     }
172 
173     // Figure out which case it goes to.
174     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
175       // Found case matching a constant operand?
176       if (i->getCaseValue() == CI) {
177         TheOnlyDest = i->getCaseSuccessor();
178         break;
179       }
180 
181       // Check to see if this branch is going to the same place as the default
182       // dest.  If so, eliminate it as an explicit compare.
183       if (i->getCaseSuccessor() == DefaultDest) {
184         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
185         unsigned NCases = SI->getNumCases();
186         // Fold the case metadata into the default if there will be any branches
187         // left, unless the metadata doesn't match the switch.
188         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
189           // Collect branch weights into a vector.
190           SmallVector<uint32_t, 8> Weights;
191           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
192                ++MD_i) {
193             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
194             Weights.push_back(CI->getValue().getZExtValue());
195           }
196           // Merge weight of this case to the default weight.
197           unsigned idx = i->getCaseIndex();
198           Weights[0] += Weights[idx+1];
199           // Remove weight for this case.
200           std::swap(Weights[idx+1], Weights.back());
201           Weights.pop_back();
202           SI->setMetadata(LLVMContext::MD_prof,
203                           MDBuilder(BB->getContext()).
204                           createBranchWeights(Weights));
205         }
206         // Remove this entry.
207         BasicBlock *ParentBB = SI->getParent();
208         DefaultDest->removePredecessor(ParentBB);
209         i = SI->removeCase(i);
210         e = SI->case_end();
211         if (DTU)
212           DTU->applyUpdatesPermissive(
213               {{DominatorTree::Delete, ParentBB, DefaultDest}});
214         continue;
215       }
216 
217       // Otherwise, check to see if the switch only branches to one destination.
218       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
219       // destinations.
220       if (i->getCaseSuccessor() != TheOnlyDest)
221         TheOnlyDest = nullptr;
222 
223       // Increment this iterator as we haven't removed the case.
224       ++i;
225     }
226 
227     if (CI && !TheOnlyDest) {
228       // Branching on a constant, but not any of the cases, go to the default
229       // successor.
230       TheOnlyDest = SI->getDefaultDest();
231     }
232 
233     // If we found a single destination that we can fold the switch into, do so
234     // now.
235     if (TheOnlyDest) {
236       // Insert the new branch.
237       Builder.CreateBr(TheOnlyDest);
238       BasicBlock *BB = SI->getParent();
239       std::vector <DominatorTree::UpdateType> Updates;
240       if (DTU)
241         Updates.reserve(SI->getNumSuccessors() - 1);
242 
243       // Remove entries from PHI nodes which we no longer branch to...
244       for (BasicBlock *Succ : successors(SI)) {
245         // Found case matching a constant operand?
246         if (Succ == TheOnlyDest) {
247           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
248         } else {
249           Succ->removePredecessor(BB);
250           if (DTU)
251             Updates.push_back({DominatorTree::Delete, BB, Succ});
252         }
253       }
254 
255       // Delete the old switch.
256       Value *Cond = SI->getCondition();
257       SI->eraseFromParent();
258       if (DeleteDeadConditions)
259         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
260       if (DTU)
261         DTU->applyUpdatesPermissive(Updates);
262       return true;
263     }
264 
265     if (SI->getNumCases() == 1) {
266       // Otherwise, we can fold this switch into a conditional branch
267       // instruction if it has only one non-default destination.
268       auto FirstCase = *SI->case_begin();
269       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
270           FirstCase.getCaseValue(), "cond");
271 
272       // Insert the new branch.
273       BranchInst *NewBr = Builder.CreateCondBr(Cond,
274                                                FirstCase.getCaseSuccessor(),
275                                                SI->getDefaultDest());
276       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
277       if (MD && MD->getNumOperands() == 3) {
278         ConstantInt *SICase =
279             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
280         ConstantInt *SIDef =
281             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
282         assert(SICase && SIDef);
283         // The TrueWeight should be the weight for the single case of SI.
284         NewBr->setMetadata(LLVMContext::MD_prof,
285                         MDBuilder(BB->getContext()).
286                         createBranchWeights(SICase->getValue().getZExtValue(),
287                                             SIDef->getValue().getZExtValue()));
288       }
289 
290       // Update make.implicit metadata to the newly-created conditional branch.
291       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
292       if (MakeImplicitMD)
293         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
294 
295       // Delete the old switch.
296       SI->eraseFromParent();
297       return true;
298     }
299     return false;
300   }
301 
302   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
303     // indirectbr blockaddress(@F, @BB) -> br label @BB
304     if (auto *BA =
305           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
306       BasicBlock *TheOnlyDest = BA->getBasicBlock();
307       std::vector <DominatorTree::UpdateType> Updates;
308       if (DTU)
309         Updates.reserve(IBI->getNumDestinations() - 1);
310 
311       // Insert the new branch.
312       Builder.CreateBr(TheOnlyDest);
313 
314       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
315         if (IBI->getDestination(i) == TheOnlyDest) {
316           TheOnlyDest = nullptr;
317         } else {
318           BasicBlock *ParentBB = IBI->getParent();
319           BasicBlock *DestBB = IBI->getDestination(i);
320           DestBB->removePredecessor(ParentBB);
321           if (DTU)
322             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
323         }
324       }
325       Value *Address = IBI->getAddress();
326       IBI->eraseFromParent();
327       if (DeleteDeadConditions)
328         // Delete pointer cast instructions.
329         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
330 
331       // Also zap the blockaddress constant if there are no users remaining,
332       // otherwise the destination is still marked as having its address taken.
333       if (BA->use_empty())
334         BA->destroyConstant();
335 
336       // If we didn't find our destination in the IBI successor list, then we
337       // have undefined behavior.  Replace the unconditional branch with an
338       // 'unreachable' instruction.
339       if (TheOnlyDest) {
340         BB->getTerminator()->eraseFromParent();
341         new UnreachableInst(BB->getContext(), BB);
342       }
343 
344       if (DTU)
345         DTU->applyUpdatesPermissive(Updates);
346       return true;
347     }
348   }
349 
350   return false;
351 }
352 
353 //===----------------------------------------------------------------------===//
354 //  Local dead code elimination.
355 //
356 
357 /// isInstructionTriviallyDead - Return true if the result produced by the
358 /// instruction is not used, and the instruction has no side effects.
359 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)360 bool llvm::isInstructionTriviallyDead(Instruction *I,
361                                       const TargetLibraryInfo *TLI) {
362   if (!I->use_empty())
363     return false;
364   return wouldInstructionBeTriviallyDead(I, TLI);
365 }
366 
wouldInstructionBeTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)367 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
368                                            const TargetLibraryInfo *TLI) {
369   if (I->isTerminator())
370     return false;
371 
372   // We don't want the landingpad-like instructions removed by anything this
373   // general.
374   if (I->isEHPad())
375     return false;
376 
377   // We don't want debug info removed by anything this general, unless
378   // debug info is empty.
379   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
380     if (DDI->getAddress())
381       return false;
382     return true;
383   }
384   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
385     if (DVI->getValue())
386       return false;
387     return true;
388   }
389   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
390     if (DLI->getLabel())
391       return false;
392     return true;
393   }
394 
395   if (!I->mayHaveSideEffects())
396     return true;
397 
398   // Special case intrinsics that "may have side effects" but can be deleted
399   // when dead.
400   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
401     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
402     if (II->getIntrinsicID() == Intrinsic::stacksave ||
403         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
404       return true;
405 
406     if (II->isLifetimeStartOrEnd()) {
407       auto *Arg = II->getArgOperand(1);
408       // Lifetime intrinsics are dead when their right-hand is undef.
409       if (isa<UndefValue>(Arg))
410         return true;
411       // If the right-hand is an alloc, global, or argument and the only uses
412       // are lifetime intrinsics then the intrinsics are dead.
413       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
414         return llvm::all_of(Arg->uses(), [](Use &Use) {
415           if (IntrinsicInst *IntrinsicUse =
416                   dyn_cast<IntrinsicInst>(Use.getUser()))
417             return IntrinsicUse->isLifetimeStartOrEnd();
418           return false;
419         });
420       return false;
421     }
422 
423     // Assumptions are dead if their condition is trivially true.  Guards on
424     // true are operationally no-ops.  In the future we can consider more
425     // sophisticated tradeoffs for guards considering potential for check
426     // widening, but for now we keep things simple.
427     if ((II->getIntrinsicID() == Intrinsic::assume &&
428          isAssumeWithEmptyBundle(*II)) ||
429         II->getIntrinsicID() == Intrinsic::experimental_guard) {
430       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
431         return !Cond->isZero();
432 
433       return false;
434     }
435   }
436 
437   if (isAllocLikeFn(I, TLI))
438     return true;
439 
440   if (CallInst *CI = isFreeCall(I, TLI))
441     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
442       return C->isNullValue() || isa<UndefValue>(C);
443 
444   if (auto *Call = dyn_cast<CallBase>(I))
445     if (isMathLibCallNoop(Call, TLI))
446       return true;
447 
448   return false;
449 }
450 
451 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
452 /// trivially dead instruction, delete it.  If that makes any of its operands
453 /// trivially dead, delete them too, recursively.  Return true if any
454 /// instructions were deleted.
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)455 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
456     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
457     std::function<void(Value *)> AboutToDeleteCallback) {
458   Instruction *I = dyn_cast<Instruction>(V);
459   if (!I || !isInstructionTriviallyDead(I, TLI))
460     return false;
461 
462   SmallVector<WeakTrackingVH, 16> DeadInsts;
463   DeadInsts.push_back(I);
464   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
465                                              AboutToDeleteCallback);
466 
467   return true;
468 }
469 
RecursivelyDeleteTriviallyDeadInstructionsPermissive(SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)470 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
471     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
472     MemorySSAUpdater *MSSAU,
473     std::function<void(Value *)> AboutToDeleteCallback) {
474   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
475   for (; S != E; ++S) {
476     auto *I = cast<Instruction>(DeadInsts[S]);
477     if (!isInstructionTriviallyDead(I)) {
478       DeadInsts[S] = nullptr;
479       ++Alive;
480     }
481   }
482   if (Alive == E)
483     return false;
484   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
485                                              AboutToDeleteCallback);
486   return true;
487 }
488 
RecursivelyDeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)489 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
490     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
491     MemorySSAUpdater *MSSAU,
492     std::function<void(Value *)> AboutToDeleteCallback) {
493   // Process the dead instruction list until empty.
494   while (!DeadInsts.empty()) {
495     Value *V = DeadInsts.pop_back_val();
496     Instruction *I = cast_or_null<Instruction>(V);
497     if (!I)
498       continue;
499     assert(isInstructionTriviallyDead(I, TLI) &&
500            "Live instruction found in dead worklist!");
501     assert(I->use_empty() && "Instructions with uses are not dead.");
502 
503     // Don't lose the debug info while deleting the instructions.
504     salvageDebugInfo(*I);
505 
506     if (AboutToDeleteCallback)
507       AboutToDeleteCallback(I);
508 
509     // Null out all of the instruction's operands to see if any operand becomes
510     // dead as we go.
511     for (Use &OpU : I->operands()) {
512       Value *OpV = OpU.get();
513       OpU.set(nullptr);
514 
515       if (!OpV->use_empty())
516         continue;
517 
518       // If the operand is an instruction that became dead as we nulled out the
519       // operand, and if it is 'trivially' dead, delete it in a future loop
520       // iteration.
521       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
522         if (isInstructionTriviallyDead(OpI, TLI))
523           DeadInsts.push_back(OpI);
524     }
525     if (MSSAU)
526       MSSAU->removeMemoryAccess(I);
527 
528     I->eraseFromParent();
529   }
530 }
531 
replaceDbgUsesWithUndef(Instruction * I)532 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
533   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
534   findDbgUsers(DbgUsers, I);
535   for (auto *DII : DbgUsers) {
536     Value *Undef = UndefValue::get(I->getType());
537     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
538                                             ValueAsMetadata::get(Undef)));
539   }
540   return !DbgUsers.empty();
541 }
542 
543 /// areAllUsesEqual - Check whether the uses of a value are all the same.
544 /// This is similar to Instruction::hasOneUse() except this will also return
545 /// true when there are no uses or multiple uses that all refer to the same
546 /// value.
areAllUsesEqual(Instruction * I)547 static bool areAllUsesEqual(Instruction *I) {
548   Value::user_iterator UI = I->user_begin();
549   Value::user_iterator UE = I->user_end();
550   if (UI == UE)
551     return true;
552 
553   User *TheUse = *UI;
554   for (++UI; UI != UE; ++UI) {
555     if (*UI != TheUse)
556       return false;
557   }
558   return true;
559 }
560 
561 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
562 /// dead PHI node, due to being a def-use chain of single-use nodes that
563 /// either forms a cycle or is terminated by a trivially dead instruction,
564 /// delete it.  If that makes any of its operands trivially dead, delete them
565 /// too, recursively.  Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI,llvm::MemorySSAUpdater * MSSAU)566 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
567                                         const TargetLibraryInfo *TLI,
568                                         llvm::MemorySSAUpdater *MSSAU) {
569   SmallPtrSet<Instruction*, 4> Visited;
570   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
571        I = cast<Instruction>(*I->user_begin())) {
572     if (I->use_empty())
573       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
574 
575     // If we find an instruction more than once, we're on a cycle that
576     // won't prove fruitful.
577     if (!Visited.insert(I).second) {
578       // Break the cycle and delete the instruction and its operands.
579       I->replaceAllUsesWith(UndefValue::get(I->getType()));
580       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
581       return true;
582     }
583   }
584   return false;
585 }
586 
587 static bool
simplifyAndDCEInstruction(Instruction * I,SmallSetVector<Instruction *,16> & WorkList,const DataLayout & DL,const TargetLibraryInfo * TLI)588 simplifyAndDCEInstruction(Instruction *I,
589                           SmallSetVector<Instruction *, 16> &WorkList,
590                           const DataLayout &DL,
591                           const TargetLibraryInfo *TLI) {
592   if (isInstructionTriviallyDead(I, TLI)) {
593     salvageDebugInfo(*I);
594 
595     // Null out all of the instruction's operands to see if any operand becomes
596     // dead as we go.
597     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
598       Value *OpV = I->getOperand(i);
599       I->setOperand(i, nullptr);
600 
601       if (!OpV->use_empty() || I == OpV)
602         continue;
603 
604       // If the operand is an instruction that became dead as we nulled out the
605       // operand, and if it is 'trivially' dead, delete it in a future loop
606       // iteration.
607       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
608         if (isInstructionTriviallyDead(OpI, TLI))
609           WorkList.insert(OpI);
610     }
611 
612     I->eraseFromParent();
613 
614     return true;
615   }
616 
617   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
618     // Add the users to the worklist. CAREFUL: an instruction can use itself,
619     // in the case of a phi node.
620     for (User *U : I->users()) {
621       if (U != I) {
622         WorkList.insert(cast<Instruction>(U));
623       }
624     }
625 
626     // Replace the instruction with its simplified value.
627     bool Changed = false;
628     if (!I->use_empty()) {
629       I->replaceAllUsesWith(SimpleV);
630       Changed = true;
631     }
632     if (isInstructionTriviallyDead(I, TLI)) {
633       I->eraseFromParent();
634       Changed = true;
635     }
636     return Changed;
637   }
638   return false;
639 }
640 
641 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
642 /// simplify any instructions in it and recursively delete dead instructions.
643 ///
644 /// This returns true if it changed the code, note that it can delete
645 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetLibraryInfo * TLI)646 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
647                                        const TargetLibraryInfo *TLI) {
648   bool MadeChange = false;
649   const DataLayout &DL = BB->getModule()->getDataLayout();
650 
651 #ifndef NDEBUG
652   // In debug builds, ensure that the terminator of the block is never replaced
653   // or deleted by these simplifications. The idea of simplification is that it
654   // cannot introduce new instructions, and there is no way to replace the
655   // terminator of a block without introducing a new instruction.
656   AssertingVH<Instruction> TerminatorVH(&BB->back());
657 #endif
658 
659   SmallSetVector<Instruction *, 16> WorkList;
660   // Iterate over the original function, only adding insts to the worklist
661   // if they actually need to be revisited. This avoids having to pre-init
662   // the worklist with the entire function's worth of instructions.
663   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
664        BI != E;) {
665     assert(!BI->isTerminator());
666     Instruction *I = &*BI;
667     ++BI;
668 
669     // We're visiting this instruction now, so make sure it's not in the
670     // worklist from an earlier visit.
671     if (!WorkList.count(I))
672       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
673   }
674 
675   while (!WorkList.empty()) {
676     Instruction *I = WorkList.pop_back_val();
677     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
678   }
679   return MadeChange;
680 }
681 
682 //===----------------------------------------------------------------------===//
683 //  Control Flow Graph Restructuring.
684 //
685 
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred,DomTreeUpdater * DTU)686 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
687                                         DomTreeUpdater *DTU) {
688   // This only adjusts blocks with PHI nodes.
689   if (!isa<PHINode>(BB->begin()))
690     return;
691 
692   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
693   // them down.  This will leave us with single entry phi nodes and other phis
694   // that can be removed.
695   BB->removePredecessor(Pred, true);
696 
697   WeakTrackingVH PhiIt = &BB->front();
698   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
699     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
700     Value *OldPhiIt = PhiIt;
701 
702     if (!recursivelySimplifyInstruction(PN))
703       continue;
704 
705     // If recursive simplification ended up deleting the next PHI node we would
706     // iterate to, then our iterator is invalid, restart scanning from the top
707     // of the block.
708     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
709   }
710   if (DTU)
711     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
712 }
713 
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,DomTreeUpdater * DTU)714 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
715                                        DomTreeUpdater *DTU) {
716 
717   // If BB has single-entry PHI nodes, fold them.
718   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
719     Value *NewVal = PN->getIncomingValue(0);
720     // Replace self referencing PHI with undef, it must be dead.
721     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
722     PN->replaceAllUsesWith(NewVal);
723     PN->eraseFromParent();
724   }
725 
726   BasicBlock *PredBB = DestBB->getSinglePredecessor();
727   assert(PredBB && "Block doesn't have a single predecessor!");
728 
729   bool ReplaceEntryBB = false;
730   if (PredBB == &DestBB->getParent()->getEntryBlock())
731     ReplaceEntryBB = true;
732 
733   // DTU updates: Collect all the edges that enter
734   // PredBB. These dominator edges will be redirected to DestBB.
735   SmallVector<DominatorTree::UpdateType, 32> Updates;
736 
737   if (DTU) {
738     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
739     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
740       Updates.push_back({DominatorTree::Delete, *I, PredBB});
741       // This predecessor of PredBB may already have DestBB as a successor.
742       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
743         Updates.push_back({DominatorTree::Insert, *I, DestBB});
744     }
745   }
746 
747   // Zap anything that took the address of DestBB.  Not doing this will give the
748   // address an invalid value.
749   if (DestBB->hasAddressTaken()) {
750     BlockAddress *BA = BlockAddress::get(DestBB);
751     Constant *Replacement =
752       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
753     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
754                                                      BA->getType()));
755     BA->destroyConstant();
756   }
757 
758   // Anything that branched to PredBB now branches to DestBB.
759   PredBB->replaceAllUsesWith(DestBB);
760 
761   // Splice all the instructions from PredBB to DestBB.
762   PredBB->getTerminator()->eraseFromParent();
763   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
764   new UnreachableInst(PredBB->getContext(), PredBB);
765 
766   // If the PredBB is the entry block of the function, move DestBB up to
767   // become the entry block after we erase PredBB.
768   if (ReplaceEntryBB)
769     DestBB->moveAfter(PredBB);
770 
771   if (DTU) {
772     assert(PredBB->getInstList().size() == 1 &&
773            isa<UnreachableInst>(PredBB->getTerminator()) &&
774            "The successor list of PredBB isn't empty before "
775            "applying corresponding DTU updates.");
776     DTU->applyUpdatesPermissive(Updates);
777     DTU->deleteBB(PredBB);
778     // Recalculation of DomTree is needed when updating a forward DomTree and
779     // the Entry BB is replaced.
780     if (ReplaceEntryBB && DTU->hasDomTree()) {
781       // The entry block was removed and there is no external interface for
782       // the dominator tree to be notified of this change. In this corner-case
783       // we recalculate the entire tree.
784       DTU->recalculate(*(DestBB->getParent()));
785     }
786   }
787 
788   else {
789     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
790   }
791 }
792 
793 /// Return true if we can choose one of these values to use in place of the
794 /// other. Note that we will always choose the non-undef value to keep.
CanMergeValues(Value * First,Value * Second)795 static bool CanMergeValues(Value *First, Value *Second) {
796   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
797 }
798 
799 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
800 /// branch to Succ, into Succ.
801 ///
802 /// Assumption: Succ is the single successor for BB.
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)803 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
804   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
805 
806   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
807                     << Succ->getName() << "\n");
808   // Shortcut, if there is only a single predecessor it must be BB and merging
809   // is always safe
810   if (Succ->getSinglePredecessor()) return true;
811 
812   // Make a list of the predecessors of BB
813   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
814 
815   // Look at all the phi nodes in Succ, to see if they present a conflict when
816   // merging these blocks
817   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
818     PHINode *PN = cast<PHINode>(I);
819 
820     // If the incoming value from BB is again a PHINode in
821     // BB which has the same incoming value for *PI as PN does, we can
822     // merge the phi nodes and then the blocks can still be merged
823     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
824     if (BBPN && BBPN->getParent() == BB) {
825       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
826         BasicBlock *IBB = PN->getIncomingBlock(PI);
827         if (BBPreds.count(IBB) &&
828             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
829                             PN->getIncomingValue(PI))) {
830           LLVM_DEBUG(dbgs()
831                      << "Can't fold, phi node " << PN->getName() << " in "
832                      << Succ->getName() << " is conflicting with "
833                      << BBPN->getName() << " with regard to common predecessor "
834                      << IBB->getName() << "\n");
835           return false;
836         }
837       }
838     } else {
839       Value* Val = PN->getIncomingValueForBlock(BB);
840       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
841         // See if the incoming value for the common predecessor is equal to the
842         // one for BB, in which case this phi node will not prevent the merging
843         // of the block.
844         BasicBlock *IBB = PN->getIncomingBlock(PI);
845         if (BBPreds.count(IBB) &&
846             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
847           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
848                             << " in " << Succ->getName()
849                             << " is conflicting with regard to common "
850                             << "predecessor " << IBB->getName() << "\n");
851           return false;
852         }
853       }
854     }
855   }
856 
857   return true;
858 }
859 
860 using PredBlockVector = SmallVector<BasicBlock *, 16>;
861 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
862 
863 /// Determines the value to use as the phi node input for a block.
864 ///
865 /// Select between \p OldVal any value that we know flows from \p BB
866 /// to a particular phi on the basis of which one (if either) is not
867 /// undef. Update IncomingValues based on the selected value.
868 ///
869 /// \param OldVal The value we are considering selecting.
870 /// \param BB The block that the value flows in from.
871 /// \param IncomingValues A map from block-to-value for other phi inputs
872 /// that we have examined.
873 ///
874 /// \returns the selected value.
selectIncomingValueForBlock(Value * OldVal,BasicBlock * BB,IncomingValueMap & IncomingValues)875 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
876                                           IncomingValueMap &IncomingValues) {
877   if (!isa<UndefValue>(OldVal)) {
878     assert((!IncomingValues.count(BB) ||
879             IncomingValues.find(BB)->second == OldVal) &&
880            "Expected OldVal to match incoming value from BB!");
881 
882     IncomingValues.insert(std::make_pair(BB, OldVal));
883     return OldVal;
884   }
885 
886   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
887   if (It != IncomingValues.end()) return It->second;
888 
889   return OldVal;
890 }
891 
892 /// Create a map from block to value for the operands of a
893 /// given phi.
894 ///
895 /// Create a map from block to value for each non-undef value flowing
896 /// into \p PN.
897 ///
898 /// \param PN The phi we are collecting the map for.
899 /// \param IncomingValues [out] The map from block to value for this phi.
gatherIncomingValuesToPhi(PHINode * PN,IncomingValueMap & IncomingValues)900 static void gatherIncomingValuesToPhi(PHINode *PN,
901                                       IncomingValueMap &IncomingValues) {
902   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
903     BasicBlock *BB = PN->getIncomingBlock(i);
904     Value *V = PN->getIncomingValue(i);
905 
906     if (!isa<UndefValue>(V))
907       IncomingValues.insert(std::make_pair(BB, V));
908   }
909 }
910 
911 /// Replace the incoming undef values to a phi with the values
912 /// from a block-to-value map.
913 ///
914 /// \param PN The phi we are replacing the undefs in.
915 /// \param IncomingValues A map from block to value.
replaceUndefValuesInPhi(PHINode * PN,const IncomingValueMap & IncomingValues)916 static void replaceUndefValuesInPhi(PHINode *PN,
917                                     const IncomingValueMap &IncomingValues) {
918   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
919     Value *V = PN->getIncomingValue(i);
920 
921     if (!isa<UndefValue>(V)) continue;
922 
923     BasicBlock *BB = PN->getIncomingBlock(i);
924     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
925     if (It == IncomingValues.end()) continue;
926 
927     PN->setIncomingValue(i, It->second);
928   }
929 }
930 
931 /// Replace a value flowing from a block to a phi with
932 /// potentially multiple instances of that value flowing from the
933 /// block's predecessors to the phi.
934 ///
935 /// \param BB The block with the value flowing into the phi.
936 /// \param BBPreds The predecessors of BB.
937 /// \param PN The phi that we are updating.
redirectValuesFromPredecessorsToPhi(BasicBlock * BB,const PredBlockVector & BBPreds,PHINode * PN)938 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
939                                                 const PredBlockVector &BBPreds,
940                                                 PHINode *PN) {
941   Value *OldVal = PN->removeIncomingValue(BB, false);
942   assert(OldVal && "No entry in PHI for Pred BB!");
943 
944   IncomingValueMap IncomingValues;
945 
946   // We are merging two blocks - BB, and the block containing PN - and
947   // as a result we need to redirect edges from the predecessors of BB
948   // to go to the block containing PN, and update PN
949   // accordingly. Since we allow merging blocks in the case where the
950   // predecessor and successor blocks both share some predecessors,
951   // and where some of those common predecessors might have undef
952   // values flowing into PN, we want to rewrite those values to be
953   // consistent with the non-undef values.
954 
955   gatherIncomingValuesToPhi(PN, IncomingValues);
956 
957   // If this incoming value is one of the PHI nodes in BB, the new entries
958   // in the PHI node are the entries from the old PHI.
959   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
960     PHINode *OldValPN = cast<PHINode>(OldVal);
961     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
962       // Note that, since we are merging phi nodes and BB and Succ might
963       // have common predecessors, we could end up with a phi node with
964       // identical incoming branches. This will be cleaned up later (and
965       // will trigger asserts if we try to clean it up now, without also
966       // simplifying the corresponding conditional branch).
967       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
968       Value *PredVal = OldValPN->getIncomingValue(i);
969       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
970                                                     IncomingValues);
971 
972       // And add a new incoming value for this predecessor for the
973       // newly retargeted branch.
974       PN->addIncoming(Selected, PredBB);
975     }
976   } else {
977     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
978       // Update existing incoming values in PN for this
979       // predecessor of BB.
980       BasicBlock *PredBB = BBPreds[i];
981       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
982                                                     IncomingValues);
983 
984       // And add a new incoming value for this predecessor for the
985       // newly retargeted branch.
986       PN->addIncoming(Selected, PredBB);
987     }
988   }
989 
990   replaceUndefValuesInPhi(PN, IncomingValues);
991 }
992 
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB,DomTreeUpdater * DTU)993 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
994                                                    DomTreeUpdater *DTU) {
995   assert(BB != &BB->getParent()->getEntryBlock() &&
996          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
997 
998   // We can't eliminate infinite loops.
999   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1000   if (BB == Succ) return false;
1001 
1002   // Check to see if merging these blocks would cause conflicts for any of the
1003   // phi nodes in BB or Succ. If not, we can safely merge.
1004   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1005 
1006   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1007   // has uses which will not disappear when the PHI nodes are merged.  It is
1008   // possible to handle such cases, but difficult: it requires checking whether
1009   // BB dominates Succ, which is non-trivial to calculate in the case where
1010   // Succ has multiple predecessors.  Also, it requires checking whether
1011   // constructing the necessary self-referential PHI node doesn't introduce any
1012   // conflicts; this isn't too difficult, but the previous code for doing this
1013   // was incorrect.
1014   //
1015   // Note that if this check finds a live use, BB dominates Succ, so BB is
1016   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1017   // folding the branch isn't profitable in that case anyway.
1018   if (!Succ->getSinglePredecessor()) {
1019     BasicBlock::iterator BBI = BB->begin();
1020     while (isa<PHINode>(*BBI)) {
1021       for (Use &U : BBI->uses()) {
1022         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1023           if (PN->getIncomingBlock(U) != BB)
1024             return false;
1025         } else {
1026           return false;
1027         }
1028       }
1029       ++BBI;
1030     }
1031   }
1032 
1033   // We cannot fold the block if it's a branch to an already present callbr
1034   // successor because that creates duplicate successors.
1035   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1036     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1037       if (Succ == CBI->getDefaultDest())
1038         return false;
1039       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1040         if (Succ == CBI->getIndirectDest(i))
1041           return false;
1042     }
1043   }
1044 
1045   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1046 
1047   SmallVector<DominatorTree::UpdateType, 32> Updates;
1048   if (DTU) {
1049     Updates.push_back({DominatorTree::Delete, BB, Succ});
1050     // All predecessors of BB will be moved to Succ.
1051     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1052       Updates.push_back({DominatorTree::Delete, *I, BB});
1053       // This predecessor of BB may already have Succ as a successor.
1054       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1055         Updates.push_back({DominatorTree::Insert, *I, Succ});
1056     }
1057   }
1058 
1059   if (isa<PHINode>(Succ->begin())) {
1060     // If there is more than one pred of succ, and there are PHI nodes in
1061     // the successor, then we need to add incoming edges for the PHI nodes
1062     //
1063     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1064 
1065     // Loop over all of the PHI nodes in the successor of BB.
1066     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1067       PHINode *PN = cast<PHINode>(I);
1068 
1069       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1070     }
1071   }
1072 
1073   if (Succ->getSinglePredecessor()) {
1074     // BB is the only predecessor of Succ, so Succ will end up with exactly
1075     // the same predecessors BB had.
1076 
1077     // Copy over any phi, debug or lifetime instruction.
1078     BB->getTerminator()->eraseFromParent();
1079     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1080                                BB->getInstList());
1081   } else {
1082     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1083       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1084       assert(PN->use_empty() && "There shouldn't be any uses here!");
1085       PN->eraseFromParent();
1086     }
1087   }
1088 
1089   // If the unconditional branch we replaced contains llvm.loop metadata, we
1090   // add the metadata to the branch instructions in the predecessors.
1091   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1092   Instruction *TI = BB->getTerminator();
1093   if (TI)
1094     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1095       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1096         BasicBlock *Pred = *PI;
1097         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1098       }
1099 
1100   // Everything that jumped to BB now goes to Succ.
1101   BB->replaceAllUsesWith(Succ);
1102   if (!Succ->hasName()) Succ->takeName(BB);
1103 
1104   // Clear the successor list of BB to match updates applying to DTU later.
1105   if (BB->getTerminator())
1106     BB->getInstList().pop_back();
1107   new UnreachableInst(BB->getContext(), BB);
1108   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1109                            "applying corresponding DTU updates.");
1110 
1111   if (DTU) {
1112     DTU->applyUpdatesPermissive(Updates);
1113     DTU->deleteBB(BB);
1114   } else {
1115     BB->eraseFromParent(); // Delete the old basic block.
1116   }
1117   return true;
1118 }
1119 
EliminateDuplicatePHINodes(BasicBlock * BB)1120 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1121   // This implementation doesn't currently consider undef operands
1122   // specially. Theoretically, two phis which are identical except for
1123   // one having an undef where the other doesn't could be collapsed.
1124 
1125   struct PHIDenseMapInfo {
1126     static PHINode *getEmptyKey() {
1127       return DenseMapInfo<PHINode *>::getEmptyKey();
1128     }
1129 
1130     static PHINode *getTombstoneKey() {
1131       return DenseMapInfo<PHINode *>::getTombstoneKey();
1132     }
1133 
1134     static unsigned getHashValue(PHINode *PN) {
1135       // Compute a hash value on the operands. Instcombine will likely have
1136       // sorted them, which helps expose duplicates, but we have to check all
1137       // the operands to be safe in case instcombine hasn't run.
1138       return static_cast<unsigned>(hash_combine(
1139           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1140           hash_combine_range(PN->block_begin(), PN->block_end())));
1141     }
1142 
1143     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1144       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1145           RHS == getEmptyKey() || RHS == getTombstoneKey())
1146         return LHS == RHS;
1147       return LHS->isIdenticalTo(RHS);
1148     }
1149   };
1150 
1151   // Set of unique PHINodes.
1152   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1153 
1154   // Examine each PHI.
1155   bool Changed = false;
1156   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1157     auto Inserted = PHISet.insert(PN);
1158     if (!Inserted.second) {
1159       // A duplicate. Replace this PHI with its duplicate.
1160       PN->replaceAllUsesWith(*Inserted.first);
1161       PN->eraseFromParent();
1162       Changed = true;
1163 
1164       // The RAUW can change PHIs that we already visited. Start over from the
1165       // beginning.
1166       PHISet.clear();
1167       I = BB->begin();
1168     }
1169   }
1170 
1171   return Changed;
1172 }
1173 
1174 /// enforceKnownAlignment - If the specified pointer points to an object that
1175 /// we control, modify the object's alignment to PrefAlign. This isn't
1176 /// often possible though. If alignment is important, a more reliable approach
1177 /// is to simply align all global variables and allocation instructions to
1178 /// their preferred alignment from the beginning.
enforceKnownAlignment(Value * V,Align Alignment,Align PrefAlign,const DataLayout & DL)1179 static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign,
1180                                    const DataLayout &DL) {
1181   assert(PrefAlign > Alignment);
1182 
1183   V = V->stripPointerCasts();
1184 
1185   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1186     // TODO: ideally, computeKnownBits ought to have used
1187     // AllocaInst::getAlignment() in its computation already, making
1188     // the below max redundant. But, as it turns out,
1189     // stripPointerCasts recurses through infinite layers of bitcasts,
1190     // while computeKnownBits is not allowed to traverse more than 6
1191     // levels.
1192     Alignment = std::max(AI->getAlign(), Alignment);
1193     if (PrefAlign <= Alignment)
1194       return Alignment;
1195 
1196     // If the preferred alignment is greater than the natural stack alignment
1197     // then don't round up. This avoids dynamic stack realignment.
1198     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1199       return Alignment;
1200     AI->setAlignment(PrefAlign);
1201     return PrefAlign;
1202   }
1203 
1204   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1205     // TODO: as above, this shouldn't be necessary.
1206     Alignment = max(GO->getAlign(), Alignment);
1207     if (PrefAlign <= Alignment)
1208       return Alignment;
1209 
1210     // If there is a large requested alignment and we can, bump up the alignment
1211     // of the global.  If the memory we set aside for the global may not be the
1212     // memory used by the final program then it is impossible for us to reliably
1213     // enforce the preferred alignment.
1214     if (!GO->canIncreaseAlignment())
1215       return Alignment;
1216 
1217     GO->setAlignment(PrefAlign);
1218     return PrefAlign;
1219   }
1220 
1221   return Alignment;
1222 }
1223 
getOrEnforceKnownAlignment(Value * V,MaybeAlign PrefAlign,const DataLayout & DL,const Instruction * CxtI,AssumptionCache * AC,const DominatorTree * DT)1224 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1225                                        const DataLayout &DL,
1226                                        const Instruction *CxtI,
1227                                        AssumptionCache *AC,
1228                                        const DominatorTree *DT) {
1229   assert(V->getType()->isPointerTy() &&
1230          "getOrEnforceKnownAlignment expects a pointer!");
1231   unsigned BitWidth = DL.getPointerAddrSizeInBits(V->getType());
1232 
1233   KnownBits Known(BitWidth);
1234   computeKnownBits(V, Known, DL, 0, AC, CxtI, DT);
1235   unsigned TrailZ = Known.countMinTrailingZeros();
1236 
1237   // Avoid trouble with ridiculously large TrailZ values, such as
1238   // those computed from a null pointer.
1239   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1240   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1241 
1242   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1243 
1244   if (PrefAlign && *PrefAlign > Alignment)
1245     Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL);
1246 
1247   // We don't need to make any adjustment.
1248   return Alignment;
1249 }
1250 
1251 ///===---------------------------------------------------------------------===//
1252 ///  Dbg Intrinsic utilities
1253 ///
1254 
1255 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
PhiHasDebugValue(DILocalVariable * DIVar,DIExpression * DIExpr,PHINode * APN)1256 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1257                              DIExpression *DIExpr,
1258                              PHINode *APN) {
1259   // Since we can't guarantee that the original dbg.declare instrinsic
1260   // is removed by LowerDbgDeclare(), we need to make sure that we are
1261   // not inserting the same dbg.value intrinsic over and over.
1262   SmallVector<DbgValueInst *, 1> DbgValues;
1263   findDbgValues(DbgValues, APN);
1264   for (auto *DVI : DbgValues) {
1265     assert(DVI->getValue() == APN);
1266     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1267       return true;
1268   }
1269   return false;
1270 }
1271 
1272 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1273 /// (or fragment of the variable) described by \p DII.
1274 ///
1275 /// This is primarily intended as a helper for the different
1276 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1277 /// converted describes an alloca'd variable, so we need to use the
1278 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1279 /// identified as covering an n-bit fragment, if the store size of i1 is at
1280 /// least n bits.
valueCoversEntireFragment(Type * ValTy,DbgVariableIntrinsic * DII)1281 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1282   const DataLayout &DL = DII->getModule()->getDataLayout();
1283   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1284   if (auto FragmentSize = DII->getFragmentSizeInBits())
1285     return ValueSize >= *FragmentSize;
1286   // We can't always calculate the size of the DI variable (e.g. if it is a
1287   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1288   // intead.
1289   if (DII->isAddressOfVariable())
1290     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1291       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1292         return ValueSize >= *FragmentSize;
1293   // Could not determine size of variable. Conservatively return false.
1294   return false;
1295 }
1296 
1297 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1298 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1299 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1300 /// case this DebugLoc leaks into any adjacent instructions.
getDebugValueLoc(DbgVariableIntrinsic * DII,Instruction * Src)1301 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1302   // Original dbg.declare must have a location.
1303   DebugLoc DeclareLoc = DII->getDebugLoc();
1304   MDNode *Scope = DeclareLoc.getScope();
1305   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1306   // Produce an unknown location with the correct scope / inlinedAt fields.
1307   return DebugLoc::get(0, 0, Scope, InlinedAt);
1308 }
1309 
1310 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1311 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,StoreInst * SI,DIBuilder & Builder)1312 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1313                                            StoreInst *SI, DIBuilder &Builder) {
1314   assert(DII->isAddressOfVariable());
1315   auto *DIVar = DII->getVariable();
1316   assert(DIVar && "Missing variable");
1317   auto *DIExpr = DII->getExpression();
1318   Value *DV = SI->getValueOperand();
1319 
1320   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1321 
1322   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1323     // FIXME: If storing to a part of the variable described by the dbg.declare,
1324     // then we want to insert a dbg.value for the corresponding fragment.
1325     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1326                       << *DII << '\n');
1327     // For now, when there is a store to parts of the variable (but we do not
1328     // know which part) we insert an dbg.value instrinsic to indicate that we
1329     // know nothing about the variable's content.
1330     DV = UndefValue::get(DV->getType());
1331     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1332     return;
1333   }
1334 
1335   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1336 }
1337 
1338 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1339 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,LoadInst * LI,DIBuilder & Builder)1340 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1341                                            LoadInst *LI, DIBuilder &Builder) {
1342   auto *DIVar = DII->getVariable();
1343   auto *DIExpr = DII->getExpression();
1344   assert(DIVar && "Missing variable");
1345 
1346   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1347     // FIXME: If only referring to a part of the variable described by the
1348     // dbg.declare, then we want to insert a dbg.value for the corresponding
1349     // fragment.
1350     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1351                       << *DII << '\n');
1352     return;
1353   }
1354 
1355   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1356 
1357   // We are now tracking the loaded value instead of the address. In the
1358   // future if multi-location support is added to the IR, it might be
1359   // preferable to keep tracking both the loaded value and the original
1360   // address in case the alloca can not be elided.
1361   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1362       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1363   DbgValue->insertAfter(LI);
1364 }
1365 
1366 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1367 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,PHINode * APN,DIBuilder & Builder)1368 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1369                                            PHINode *APN, DIBuilder &Builder) {
1370   auto *DIVar = DII->getVariable();
1371   auto *DIExpr = DII->getExpression();
1372   assert(DIVar && "Missing variable");
1373 
1374   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1375     return;
1376 
1377   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1378     // FIXME: If only referring to a part of the variable described by the
1379     // dbg.declare, then we want to insert a dbg.value for the corresponding
1380     // fragment.
1381     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1382                       << *DII << '\n');
1383     return;
1384   }
1385 
1386   BasicBlock *BB = APN->getParent();
1387   auto InsertionPt = BB->getFirstInsertionPt();
1388 
1389   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1390 
1391   // The block may be a catchswitch block, which does not have a valid
1392   // insertion point.
1393   // FIXME: Insert dbg.value markers in the successors when appropriate.
1394   if (InsertionPt != BB->end())
1395     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1396 }
1397 
1398 /// Determine whether this alloca is either a VLA or an array.
isArray(AllocaInst * AI)1399 static bool isArray(AllocaInst *AI) {
1400   return AI->isArrayAllocation() ||
1401          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1402 }
1403 
1404 /// Determine whether this alloca is a structure.
isStructure(AllocaInst * AI)1405 static bool isStructure(AllocaInst *AI) {
1406   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1407 }
1408 
1409 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1410 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)1411 bool llvm::LowerDbgDeclare(Function &F) {
1412   bool Changed = false;
1413   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1414   SmallVector<DbgDeclareInst *, 4> Dbgs;
1415   for (auto &FI : F)
1416     for (Instruction &BI : FI)
1417       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1418         Dbgs.push_back(DDI);
1419 
1420   if (Dbgs.empty())
1421     return Changed;
1422 
1423   for (auto &I : Dbgs) {
1424     DbgDeclareInst *DDI = I;
1425     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1426     // If this is an alloca for a scalar variable, insert a dbg.value
1427     // at each load and store to the alloca and erase the dbg.declare.
1428     // The dbg.values allow tracking a variable even if it is not
1429     // stored on the stack, while the dbg.declare can only describe
1430     // the stack slot (and at a lexical-scope granularity). Later
1431     // passes will attempt to elide the stack slot.
1432     if (!AI || isArray(AI) || isStructure(AI))
1433       continue;
1434 
1435     // A volatile load/store means that the alloca can't be elided anyway.
1436     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1437           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1438             return LI->isVolatile();
1439           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1440             return SI->isVolatile();
1441           return false;
1442         }))
1443       continue;
1444 
1445     SmallVector<const Value *, 8> WorkList;
1446     WorkList.push_back(AI);
1447     while (!WorkList.empty()) {
1448       const Value *V = WorkList.pop_back_val();
1449       for (auto &AIUse : V->uses()) {
1450         User *U = AIUse.getUser();
1451         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1452           if (AIUse.getOperandNo() == 1)
1453             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1454         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1455           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1456         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1457           // This is a call by-value or some other instruction that takes a
1458           // pointer to the variable. Insert a *value* intrinsic that describes
1459           // the variable by dereferencing the alloca.
1460           if (!CI->isLifetimeStartOrEnd()) {
1461             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1462             auto *DerefExpr =
1463                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1464             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1465                                         NewLoc, CI);
1466           }
1467         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1468           if (BI->getType()->isPointerTy())
1469             WorkList.push_back(BI);
1470         }
1471       }
1472     }
1473     DDI->eraseFromParent();
1474     Changed = true;
1475   }
1476 
1477   if (Changed)
1478   for (BasicBlock &BB : F)
1479     RemoveRedundantDbgInstrs(&BB);
1480 
1481   return Changed;
1482 }
1483 
1484 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
insertDebugValuesForPHIs(BasicBlock * BB,SmallVectorImpl<PHINode * > & InsertedPHIs)1485 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1486                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1487   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1488   if (InsertedPHIs.size() == 0)
1489     return;
1490 
1491   // Map existing PHI nodes to their dbg.values.
1492   ValueToValueMapTy DbgValueMap;
1493   for (auto &I : *BB) {
1494     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1495       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1496         DbgValueMap.insert({Loc, DbgII});
1497     }
1498   }
1499   if (DbgValueMap.size() == 0)
1500     return;
1501 
1502   // Then iterate through the new PHIs and look to see if they use one of the
1503   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1504   // propagate the info through the new PHI.
1505   LLVMContext &C = BB->getContext();
1506   for (auto PHI : InsertedPHIs) {
1507     BasicBlock *Parent = PHI->getParent();
1508     // Avoid inserting an intrinsic into an EH block.
1509     if (Parent->getFirstNonPHI()->isEHPad())
1510       continue;
1511     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1512     for (auto VI : PHI->operand_values()) {
1513       auto V = DbgValueMap.find(VI);
1514       if (V != DbgValueMap.end()) {
1515         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1516         Instruction *NewDbgII = DbgII->clone();
1517         NewDbgII->setOperand(0, PhiMAV);
1518         auto InsertionPt = Parent->getFirstInsertionPt();
1519         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1520         NewDbgII->insertBefore(&*InsertionPt);
1521       }
1522     }
1523   }
1524 }
1525 
1526 /// Finds all intrinsics declaring local variables as living in the memory that
1527 /// 'V' points to. This may include a mix of dbg.declare and
1528 /// dbg.addr intrinsics.
FindDbgAddrUses(Value * V)1529 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1530   // This function is hot. Check whether the value has any metadata to avoid a
1531   // DenseMap lookup.
1532   if (!V->isUsedByMetadata())
1533     return {};
1534   auto *L = LocalAsMetadata::getIfExists(V);
1535   if (!L)
1536     return {};
1537   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1538   if (!MDV)
1539     return {};
1540 
1541   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1542   for (User *U : MDV->users()) {
1543     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1544       if (DII->isAddressOfVariable())
1545         Declares.push_back(DII);
1546   }
1547 
1548   return Declares;
1549 }
1550 
FindDbgDeclareUses(Value * V)1551 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1552   TinyPtrVector<DbgDeclareInst *> DDIs;
1553   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1554     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1555       DDIs.push_back(DDI);
1556   return DDIs;
1557 }
1558 
findDbgValues(SmallVectorImpl<DbgValueInst * > & DbgValues,Value * V)1559 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1560   // This function is hot. Check whether the value has any metadata to avoid a
1561   // DenseMap lookup.
1562   if (!V->isUsedByMetadata())
1563     return;
1564   if (auto *L = LocalAsMetadata::getIfExists(V))
1565     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1566       for (User *U : MDV->users())
1567         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1568           DbgValues.push_back(DVI);
1569 }
1570 
findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic * > & DbgUsers,Value * V)1571 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1572                         Value *V) {
1573   // This function is hot. Check whether the value has any metadata to avoid a
1574   // DenseMap lookup.
1575   if (!V->isUsedByMetadata())
1576     return;
1577   if (auto *L = LocalAsMetadata::getIfExists(V))
1578     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1579       for (User *U : MDV->users())
1580         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1581           DbgUsers.push_back(DII);
1582 }
1583 
replaceDbgDeclare(Value * Address,Value * NewAddress,DIBuilder & Builder,uint8_t DIExprFlags,int Offset)1584 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1585                              DIBuilder &Builder, uint8_t DIExprFlags,
1586                              int Offset) {
1587   auto DbgAddrs = FindDbgAddrUses(Address);
1588   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1589     DebugLoc Loc = DII->getDebugLoc();
1590     auto *DIVar = DII->getVariable();
1591     auto *DIExpr = DII->getExpression();
1592     assert(DIVar && "Missing variable");
1593     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1594     // Insert llvm.dbg.declare immediately before DII, and remove old
1595     // llvm.dbg.declare.
1596     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1597     DII->eraseFromParent();
1598   }
1599   return !DbgAddrs.empty();
1600 }
1601 
replaceOneDbgValueForAlloca(DbgValueInst * DVI,Value * NewAddress,DIBuilder & Builder,int Offset)1602 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1603                                         DIBuilder &Builder, int Offset) {
1604   DebugLoc Loc = DVI->getDebugLoc();
1605   auto *DIVar = DVI->getVariable();
1606   auto *DIExpr = DVI->getExpression();
1607   assert(DIVar && "Missing variable");
1608 
1609   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1610   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1611   // it and give up.
1612   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1613       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1614     return;
1615 
1616   // Insert the offset before the first deref.
1617   // We could just change the offset argument of dbg.value, but it's unsigned...
1618   if (Offset)
1619     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1620 
1621   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1622   DVI->eraseFromParent();
1623 }
1624 
replaceDbgValueForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,int Offset)1625 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1626                                     DIBuilder &Builder, int Offset) {
1627   if (auto *L = LocalAsMetadata::getIfExists(AI))
1628     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1629       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1630         Use &U = *UI++;
1631         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1632           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1633       }
1634 }
1635 
1636 /// Wrap \p V in a ValueAsMetadata instance.
wrapValueInMetadata(LLVMContext & C,Value * V)1637 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1638   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1639 }
1640 
1641 /// Where possible to salvage debug information for \p I do so
1642 /// and return True. If not possible mark undef and return False.
salvageDebugInfo(Instruction & I)1643 void llvm::salvageDebugInfo(Instruction &I) {
1644   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1645   findDbgUsers(DbgUsers, &I);
1646   salvageDebugInfoForDbgValues(I, DbgUsers);
1647 }
1648 
salvageDebugInfoForDbgValues(Instruction & I,ArrayRef<DbgVariableIntrinsic * > DbgUsers)1649 void llvm::salvageDebugInfoForDbgValues(
1650     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1651   auto &Ctx = I.getContext();
1652   bool Salvaged = false;
1653   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1654 
1655   for (auto *DII : DbgUsers) {
1656     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1657     // are implicitly pointing out the value as a DWARF memory location
1658     // description.
1659     bool StackValue = isa<DbgValueInst>(DII);
1660 
1661     DIExpression *DIExpr =
1662         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1663 
1664     // salvageDebugInfoImpl should fail on examining the first element of
1665     // DbgUsers, or none of them.
1666     if (!DIExpr)
1667       break;
1668 
1669     DII->setOperand(0, wrapMD(I.getOperand(0)));
1670     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1671     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1672     Salvaged = true;
1673   }
1674 
1675   if (Salvaged)
1676     return;
1677 
1678   for (auto *DII : DbgUsers) {
1679     Value *Undef = UndefValue::get(I.getType());
1680     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1681                                             ValueAsMetadata::get(Undef)));
1682   }
1683 }
1684 
salvageDebugInfoImpl(Instruction & I,DIExpression * SrcDIExpr,bool WithStackValue)1685 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1686                                          DIExpression *SrcDIExpr,
1687                                          bool WithStackValue) {
1688   auto &M = *I.getModule();
1689   auto &DL = M.getDataLayout();
1690 
1691   // Apply a vector of opcodes to the source DIExpression.
1692   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1693     DIExpression *DIExpr = SrcDIExpr;
1694     if (!Ops.empty()) {
1695       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1696     }
1697     return DIExpr;
1698   };
1699 
1700   // Apply the given offset to the source DIExpression.
1701   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1702     SmallVector<uint64_t, 8> Ops;
1703     DIExpression::appendOffset(Ops, Offset);
1704     return doSalvage(Ops);
1705   };
1706 
1707   // initializer-list helper for applying operators to the source DIExpression.
1708   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1709     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1710     return doSalvage(Ops);
1711   };
1712 
1713   if (auto *CI = dyn_cast<CastInst>(&I)) {
1714     // No-op casts are irrelevant for debug info.
1715     if (CI->isNoopCast(DL))
1716       return SrcDIExpr;
1717 
1718     Type *Type = CI->getType();
1719     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1720     if (Type->isVectorTy() ||
1721         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1722       return nullptr;
1723 
1724     Value *FromValue = CI->getOperand(0);
1725     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1726     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1727 
1728     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1729                                             isa<SExtInst>(&I)));
1730   }
1731 
1732   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1733     unsigned BitWidth =
1734         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1735     // Rewrite a constant GEP into a DIExpression.
1736     APInt Offset(BitWidth, 0);
1737     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1738       return applyOffset(Offset.getSExtValue());
1739     } else {
1740       return nullptr;
1741     }
1742   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1743     // Rewrite binary operations with constant integer operands.
1744     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1745     if (!ConstInt || ConstInt->getBitWidth() > 64)
1746       return nullptr;
1747 
1748     uint64_t Val = ConstInt->getSExtValue();
1749     switch (BI->getOpcode()) {
1750     case Instruction::Add:
1751       return applyOffset(Val);
1752     case Instruction::Sub:
1753       return applyOffset(-int64_t(Val));
1754     case Instruction::Mul:
1755       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1756     case Instruction::SDiv:
1757       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1758     case Instruction::SRem:
1759       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1760     case Instruction::Or:
1761       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1762     case Instruction::And:
1763       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1764     case Instruction::Xor:
1765       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1766     case Instruction::Shl:
1767       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1768     case Instruction::LShr:
1769       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1770     case Instruction::AShr:
1771       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1772     default:
1773       // TODO: Salvage constants from each kind of binop we know about.
1774       return nullptr;
1775     }
1776     // *Not* to do: we should not attempt to salvage load instructions,
1777     // because the validity and lifetime of a dbg.value containing
1778     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1779   }
1780   return nullptr;
1781 }
1782 
1783 /// A replacement for a dbg.value expression.
1784 using DbgValReplacement = Optional<DIExpression *>;
1785 
1786 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1787 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1788 /// changes are made.
rewriteDebugUsers(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT,function_ref<DbgValReplacement (DbgVariableIntrinsic & DII)> RewriteExpr)1789 static bool rewriteDebugUsers(
1790     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1791     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1792   // Find debug users of From.
1793   SmallVector<DbgVariableIntrinsic *, 1> Users;
1794   findDbgUsers(Users, &From);
1795   if (Users.empty())
1796     return false;
1797 
1798   // Prevent use-before-def of To.
1799   bool Changed = false;
1800   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1801   if (isa<Instruction>(&To)) {
1802     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1803 
1804     for (auto *DII : Users) {
1805       // It's common to see a debug user between From and DomPoint. Move it
1806       // after DomPoint to preserve the variable update without any reordering.
1807       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1808         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1809         DII->moveAfter(&DomPoint);
1810         Changed = true;
1811 
1812       // Users which otherwise aren't dominated by the replacement value must
1813       // be salvaged or deleted.
1814       } else if (!DT.dominates(&DomPoint, DII)) {
1815         UndefOrSalvage.insert(DII);
1816       }
1817     }
1818   }
1819 
1820   // Update debug users without use-before-def risk.
1821   for (auto *DII : Users) {
1822     if (UndefOrSalvage.count(DII))
1823       continue;
1824 
1825     LLVMContext &Ctx = DII->getContext();
1826     DbgValReplacement DVR = RewriteExpr(*DII);
1827     if (!DVR)
1828       continue;
1829 
1830     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1831     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1832     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1833     Changed = true;
1834   }
1835 
1836   if (!UndefOrSalvage.empty()) {
1837     // Try to salvage the remaining debug users.
1838     salvageDebugInfo(From);
1839     Changed = true;
1840   }
1841 
1842   return Changed;
1843 }
1844 
1845 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1846 /// losslessly preserve the bits and semantics of the value. This predicate is
1847 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1848 ///
1849 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1850 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1851 /// and also does not allow lossless pointer <-> integer conversions.
isBitCastSemanticsPreserving(const DataLayout & DL,Type * FromTy,Type * ToTy)1852 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1853                                          Type *ToTy) {
1854   // Trivially compatible types.
1855   if (FromTy == ToTy)
1856     return true;
1857 
1858   // Handle compatible pointer <-> integer conversions.
1859   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1860     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1861     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1862                               !DL.isNonIntegralPointerType(ToTy);
1863     return SameSize && LosslessConversion;
1864   }
1865 
1866   // TODO: This is not exhaustive.
1867   return false;
1868 }
1869 
replaceAllDbgUsesWith(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT)1870 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1871                                  Instruction &DomPoint, DominatorTree &DT) {
1872   // Exit early if From has no debug users.
1873   if (!From.isUsedByMetadata())
1874     return false;
1875 
1876   assert(&From != &To && "Can't replace something with itself");
1877 
1878   Type *FromTy = From.getType();
1879   Type *ToTy = To.getType();
1880 
1881   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1882     return DII.getExpression();
1883   };
1884 
1885   // Handle no-op conversions.
1886   Module &M = *From.getModule();
1887   const DataLayout &DL = M.getDataLayout();
1888   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1889     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1890 
1891   // Handle integer-to-integer widening and narrowing.
1892   // FIXME: Use DW_OP_convert when it's available everywhere.
1893   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1894     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1895     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1896     assert(FromBits != ToBits && "Unexpected no-op conversion");
1897 
1898     // When the width of the result grows, assume that a debugger will only
1899     // access the low `FromBits` bits when inspecting the source variable.
1900     if (FromBits < ToBits)
1901       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1902 
1903     // The width of the result has shrunk. Use sign/zero extension to describe
1904     // the source variable's high bits.
1905     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1906       DILocalVariable *Var = DII.getVariable();
1907 
1908       // Without knowing signedness, sign/zero extension isn't possible.
1909       auto Signedness = Var->getSignedness();
1910       if (!Signedness)
1911         return None;
1912 
1913       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1914       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1915                                      Signed);
1916     };
1917     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1918   }
1919 
1920   // TODO: Floating-point conversions, vectors.
1921   return false;
1922 }
1923 
removeAllNonTerminatorAndEHPadInstructions(BasicBlock * BB)1924 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1925   unsigned NumDeadInst = 0;
1926   // Delete the instructions backwards, as it has a reduced likelihood of
1927   // having to update as many def-use and use-def chains.
1928   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1929   while (EndInst != &BB->front()) {
1930     // Delete the next to last instruction.
1931     Instruction *Inst = &*--EndInst->getIterator();
1932     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1933       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1934     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1935       EndInst = Inst;
1936       continue;
1937     }
1938     if (!isa<DbgInfoIntrinsic>(Inst))
1939       ++NumDeadInst;
1940     Inst->eraseFromParent();
1941   }
1942   return NumDeadInst;
1943 }
1944 
changeToUnreachable(Instruction * I,bool UseLLVMTrap,bool PreserveLCSSA,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)1945 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1946                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
1947                                    MemorySSAUpdater *MSSAU) {
1948   BasicBlock *BB = I->getParent();
1949   std::vector <DominatorTree::UpdateType> Updates;
1950 
1951   if (MSSAU)
1952     MSSAU->changeToUnreachable(I);
1953 
1954   // Loop over all of the successors, removing BB's entry from any PHI
1955   // nodes.
1956   if (DTU)
1957     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1958   for (BasicBlock *Successor : successors(BB)) {
1959     Successor->removePredecessor(BB, PreserveLCSSA);
1960     if (DTU)
1961       Updates.push_back({DominatorTree::Delete, BB, Successor});
1962   }
1963   // Insert a call to llvm.trap right before this.  This turns the undefined
1964   // behavior into a hard fail instead of falling through into random code.
1965   if (UseLLVMTrap) {
1966     Function *TrapFn =
1967       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1968     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1969     CallTrap->setDebugLoc(I->getDebugLoc());
1970   }
1971   auto *UI = new UnreachableInst(I->getContext(), I);
1972   UI->setDebugLoc(I->getDebugLoc());
1973 
1974   // All instructions after this are dead.
1975   unsigned NumInstrsRemoved = 0;
1976   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1977   while (BBI != BBE) {
1978     if (!BBI->use_empty())
1979       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1980     BB->getInstList().erase(BBI++);
1981     ++NumInstrsRemoved;
1982   }
1983   if (DTU)
1984     DTU->applyUpdatesPermissive(Updates);
1985   return NumInstrsRemoved;
1986 }
1987 
createCallMatchingInvoke(InvokeInst * II)1988 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1989   SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1990   SmallVector<OperandBundleDef, 1> OpBundles;
1991   II->getOperandBundlesAsDefs(OpBundles);
1992   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1993                                        II->getCalledOperand(), Args, OpBundles);
1994   NewCall->setCallingConv(II->getCallingConv());
1995   NewCall->setAttributes(II->getAttributes());
1996   NewCall->setDebugLoc(II->getDebugLoc());
1997   NewCall->copyMetadata(*II);
1998 
1999   // If the invoke had profile metadata, try converting them for CallInst.
2000   uint64_t TotalWeight;
2001   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2002     // Set the total weight if it fits into i32, otherwise reset.
2003     MDBuilder MDB(NewCall->getContext());
2004     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2005                           ? nullptr
2006                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2007     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2008   }
2009 
2010   return NewCall;
2011 }
2012 
2013 /// changeToCall - Convert the specified invoke into a normal call.
changeToCall(InvokeInst * II,DomTreeUpdater * DTU)2014 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2015   CallInst *NewCall = createCallMatchingInvoke(II);
2016   NewCall->takeName(II);
2017   NewCall->insertBefore(II);
2018   II->replaceAllUsesWith(NewCall);
2019 
2020   // Follow the call by a branch to the normal destination.
2021   BasicBlock *NormalDestBB = II->getNormalDest();
2022   BranchInst::Create(NormalDestBB, II);
2023 
2024   // Update PHI nodes in the unwind destination
2025   BasicBlock *BB = II->getParent();
2026   BasicBlock *UnwindDestBB = II->getUnwindDest();
2027   UnwindDestBB->removePredecessor(BB);
2028   II->eraseFromParent();
2029   if (DTU)
2030     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
2031 }
2032 
changeToInvokeAndSplitBasicBlock(CallInst * CI,BasicBlock * UnwindEdge)2033 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2034                                                    BasicBlock *UnwindEdge) {
2035   BasicBlock *BB = CI->getParent();
2036 
2037   // Convert this function call into an invoke instruction.  First, split the
2038   // basic block.
2039   BasicBlock *Split =
2040       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2041 
2042   // Delete the unconditional branch inserted by splitBasicBlock
2043   BB->getInstList().pop_back();
2044 
2045   // Create the new invoke instruction.
2046   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2047   SmallVector<OperandBundleDef, 1> OpBundles;
2048 
2049   CI->getOperandBundlesAsDefs(OpBundles);
2050 
2051   // Note: we're round tripping operand bundles through memory here, and that
2052   // can potentially be avoided with a cleverer API design that we do not have
2053   // as of this time.
2054 
2055   InvokeInst *II =
2056       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2057                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2058   II->setDebugLoc(CI->getDebugLoc());
2059   II->setCallingConv(CI->getCallingConv());
2060   II->setAttributes(CI->getAttributes());
2061 
2062   // Make sure that anything using the call now uses the invoke!  This also
2063   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2064   CI->replaceAllUsesWith(II);
2065 
2066   // Delete the original call
2067   Split->getInstList().pop_front();
2068   return Split;
2069 }
2070 
markAliveBlocks(Function & F,SmallPtrSetImpl<BasicBlock * > & Reachable,DomTreeUpdater * DTU=nullptr)2071 static bool markAliveBlocks(Function &F,
2072                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2073                             DomTreeUpdater *DTU = nullptr) {
2074   SmallVector<BasicBlock*, 128> Worklist;
2075   BasicBlock *BB = &F.front();
2076   Worklist.push_back(BB);
2077   Reachable.insert(BB);
2078   bool Changed = false;
2079   do {
2080     BB = Worklist.pop_back_val();
2081 
2082     // Do a quick scan of the basic block, turning any obviously unreachable
2083     // instructions into LLVM unreachable insts.  The instruction combining pass
2084     // canonicalizes unreachable insts into stores to null or undef.
2085     for (Instruction &I : *BB) {
2086       if (auto *CI = dyn_cast<CallInst>(&I)) {
2087         Value *Callee = CI->getCalledOperand();
2088         // Handle intrinsic calls.
2089         if (Function *F = dyn_cast<Function>(Callee)) {
2090           auto IntrinsicID = F->getIntrinsicID();
2091           // Assumptions that are known to be false are equivalent to
2092           // unreachable. Also, if the condition is undefined, then we make the
2093           // choice most beneficial to the optimizer, and choose that to also be
2094           // unreachable.
2095           if (IntrinsicID == Intrinsic::assume) {
2096             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2097               // Don't insert a call to llvm.trap right before the unreachable.
2098               changeToUnreachable(CI, false, false, DTU);
2099               Changed = true;
2100               break;
2101             }
2102           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2103             // A call to the guard intrinsic bails out of the current
2104             // compilation unit if the predicate passed to it is false. If the
2105             // predicate is a constant false, then we know the guard will bail
2106             // out of the current compile unconditionally, so all code following
2107             // it is dead.
2108             //
2109             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2110             // guards to treat `undef` as `false` since a guard on `undef` can
2111             // still be useful for widening.
2112             if (match(CI->getArgOperand(0), m_Zero()))
2113               if (!isa<UnreachableInst>(CI->getNextNode())) {
2114                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2115                                     false, DTU);
2116                 Changed = true;
2117                 break;
2118               }
2119           }
2120         } else if ((isa<ConstantPointerNull>(Callee) &&
2121                     !NullPointerIsDefined(CI->getFunction())) ||
2122                    isa<UndefValue>(Callee)) {
2123           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2124           Changed = true;
2125           break;
2126         }
2127         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2128           // If we found a call to a no-return function, insert an unreachable
2129           // instruction after it.  Make sure there isn't *already* one there
2130           // though.
2131           if (!isa<UnreachableInst>(CI->getNextNode())) {
2132             // Don't insert a call to llvm.trap right before the unreachable.
2133             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2134             Changed = true;
2135           }
2136           break;
2137         }
2138       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2139         // Store to undef and store to null are undefined and used to signal
2140         // that they should be changed to unreachable by passes that can't
2141         // modify the CFG.
2142 
2143         // Don't touch volatile stores.
2144         if (SI->isVolatile()) continue;
2145 
2146         Value *Ptr = SI->getOperand(1);
2147 
2148         if (isa<UndefValue>(Ptr) ||
2149             (isa<ConstantPointerNull>(Ptr) &&
2150              !NullPointerIsDefined(SI->getFunction(),
2151                                    SI->getPointerAddressSpace()))) {
2152           changeToUnreachable(SI, true, false, DTU);
2153           Changed = true;
2154           break;
2155         }
2156       }
2157     }
2158 
2159     Instruction *Terminator = BB->getTerminator();
2160     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2161       // Turn invokes that call 'nounwind' functions into ordinary calls.
2162       Value *Callee = II->getCalledOperand();
2163       if ((isa<ConstantPointerNull>(Callee) &&
2164            !NullPointerIsDefined(BB->getParent())) ||
2165           isa<UndefValue>(Callee)) {
2166         changeToUnreachable(II, true, false, DTU);
2167         Changed = true;
2168       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2169         if (II->use_empty() && II->onlyReadsMemory()) {
2170           // jump to the normal destination branch.
2171           BasicBlock *NormalDestBB = II->getNormalDest();
2172           BasicBlock *UnwindDestBB = II->getUnwindDest();
2173           BranchInst::Create(NormalDestBB, II);
2174           UnwindDestBB->removePredecessor(II->getParent());
2175           II->eraseFromParent();
2176           if (DTU)
2177             DTU->applyUpdatesPermissive(
2178                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2179         } else
2180           changeToCall(II, DTU);
2181         Changed = true;
2182       }
2183     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2184       // Remove catchpads which cannot be reached.
2185       struct CatchPadDenseMapInfo {
2186         static CatchPadInst *getEmptyKey() {
2187           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2188         }
2189 
2190         static CatchPadInst *getTombstoneKey() {
2191           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2192         }
2193 
2194         static unsigned getHashValue(CatchPadInst *CatchPad) {
2195           return static_cast<unsigned>(hash_combine_range(
2196               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2197         }
2198 
2199         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2200           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2201               RHS == getEmptyKey() || RHS == getTombstoneKey())
2202             return LHS == RHS;
2203           return LHS->isIdenticalTo(RHS);
2204         }
2205       };
2206 
2207       // Set of unique CatchPads.
2208       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2209                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2210           HandlerSet;
2211       detail::DenseSetEmpty Empty;
2212       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2213                                              E = CatchSwitch->handler_end();
2214            I != E; ++I) {
2215         BasicBlock *HandlerBB = *I;
2216         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2217         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2218           CatchSwitch->removeHandler(I);
2219           --I;
2220           --E;
2221           Changed = true;
2222         }
2223       }
2224     }
2225 
2226     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2227     for (BasicBlock *Successor : successors(BB))
2228       if (Reachable.insert(Successor).second)
2229         Worklist.push_back(Successor);
2230   } while (!Worklist.empty());
2231   return Changed;
2232 }
2233 
removeUnwindEdge(BasicBlock * BB,DomTreeUpdater * DTU)2234 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2235   Instruction *TI = BB->getTerminator();
2236 
2237   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2238     changeToCall(II, DTU);
2239     return;
2240   }
2241 
2242   Instruction *NewTI;
2243   BasicBlock *UnwindDest;
2244 
2245   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2246     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2247     UnwindDest = CRI->getUnwindDest();
2248   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2249     auto *NewCatchSwitch = CatchSwitchInst::Create(
2250         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2251         CatchSwitch->getName(), CatchSwitch);
2252     for (BasicBlock *PadBB : CatchSwitch->handlers())
2253       NewCatchSwitch->addHandler(PadBB);
2254 
2255     NewTI = NewCatchSwitch;
2256     UnwindDest = CatchSwitch->getUnwindDest();
2257   } else {
2258     llvm_unreachable("Could not find unwind successor");
2259   }
2260 
2261   NewTI->takeName(TI);
2262   NewTI->setDebugLoc(TI->getDebugLoc());
2263   UnwindDest->removePredecessor(BB);
2264   TI->replaceAllUsesWith(NewTI);
2265   TI->eraseFromParent();
2266   if (DTU)
2267     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2268 }
2269 
2270 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2271 /// if they are in a dead cycle.  Return true if a change was made, false
2272 /// otherwise.
removeUnreachableBlocks(Function & F,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2273 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2274                                    MemorySSAUpdater *MSSAU) {
2275   SmallPtrSet<BasicBlock *, 16> Reachable;
2276   bool Changed = markAliveBlocks(F, Reachable, DTU);
2277 
2278   // If there are unreachable blocks in the CFG...
2279   if (Reachable.size() == F.size())
2280     return Changed;
2281 
2282   assert(Reachable.size() < F.size());
2283   NumRemoved += F.size() - Reachable.size();
2284 
2285   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2286   for (BasicBlock &BB : F) {
2287     // Skip reachable basic blocks
2288     if (Reachable.count(&BB))
2289       continue;
2290     DeadBlockSet.insert(&BB);
2291   }
2292 
2293   if (MSSAU)
2294     MSSAU->removeBlocks(DeadBlockSet);
2295 
2296   // Loop over all of the basic blocks that are not reachable, dropping all of
2297   // their internal references. Update DTU if available.
2298   std::vector<DominatorTree::UpdateType> Updates;
2299   for (auto *BB : DeadBlockSet) {
2300     for (BasicBlock *Successor : successors(BB)) {
2301       if (!DeadBlockSet.count(Successor))
2302         Successor->removePredecessor(BB);
2303       if (DTU)
2304         Updates.push_back({DominatorTree::Delete, BB, Successor});
2305     }
2306     BB->dropAllReferences();
2307     if (DTU) {
2308       Instruction *TI = BB->getTerminator();
2309       assert(TI && "Basic block should have a terminator");
2310       // Terminators like invoke can have users. We have to replace their users,
2311       // before removing them.
2312       if (!TI->use_empty())
2313         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2314       TI->eraseFromParent();
2315       new UnreachableInst(BB->getContext(), BB);
2316       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2317                                "applying corresponding DTU updates.");
2318     }
2319   }
2320 
2321   if (DTU) {
2322     DTU->applyUpdatesPermissive(Updates);
2323     bool Deleted = false;
2324     for (auto *BB : DeadBlockSet) {
2325       if (DTU->isBBPendingDeletion(BB))
2326         --NumRemoved;
2327       else
2328         Deleted = true;
2329       DTU->deleteBB(BB);
2330     }
2331     if (!Deleted)
2332       return false;
2333   } else {
2334     for (auto *BB : DeadBlockSet)
2335       BB->eraseFromParent();
2336   }
2337 
2338   return true;
2339 }
2340 
combineMetadata(Instruction * K,const Instruction * J,ArrayRef<unsigned> KnownIDs,bool DoesKMove)2341 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2342                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2343   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2344   K->dropUnknownNonDebugMetadata(KnownIDs);
2345   K->getAllMetadataOtherThanDebugLoc(Metadata);
2346   for (const auto &MD : Metadata) {
2347     unsigned Kind = MD.first;
2348     MDNode *JMD = J->getMetadata(Kind);
2349     MDNode *KMD = MD.second;
2350 
2351     switch (Kind) {
2352       default:
2353         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2354         break;
2355       case LLVMContext::MD_dbg:
2356         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2357       case LLVMContext::MD_tbaa:
2358         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2359         break;
2360       case LLVMContext::MD_alias_scope:
2361         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2362         break;
2363       case LLVMContext::MD_noalias:
2364       case LLVMContext::MD_mem_parallel_loop_access:
2365         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2366         break;
2367       case LLVMContext::MD_access_group:
2368         K->setMetadata(LLVMContext::MD_access_group,
2369                        intersectAccessGroups(K, J));
2370         break;
2371       case LLVMContext::MD_range:
2372 
2373         // If K does move, use most generic range. Otherwise keep the range of
2374         // K.
2375         if (DoesKMove)
2376           // FIXME: If K does move, we should drop the range info and nonnull.
2377           //        Currently this function is used with DoesKMove in passes
2378           //        doing hoisting/sinking and the current behavior of using the
2379           //        most generic range is correct in those cases.
2380           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2381         break;
2382       case LLVMContext::MD_fpmath:
2383         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2384         break;
2385       case LLVMContext::MD_invariant_load:
2386         // Only set the !invariant.load if it is present in both instructions.
2387         K->setMetadata(Kind, JMD);
2388         break;
2389       case LLVMContext::MD_nonnull:
2390         // If K does move, keep nonull if it is present in both instructions.
2391         if (DoesKMove)
2392           K->setMetadata(Kind, JMD);
2393         break;
2394       case LLVMContext::MD_invariant_group:
2395         // Preserve !invariant.group in K.
2396         break;
2397       case LLVMContext::MD_align:
2398         K->setMetadata(Kind,
2399           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2400         break;
2401       case LLVMContext::MD_dereferenceable:
2402       case LLVMContext::MD_dereferenceable_or_null:
2403         K->setMetadata(Kind,
2404           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2405         break;
2406       case LLVMContext::MD_preserve_access_index:
2407         // Preserve !preserve.access.index in K.
2408         break;
2409     }
2410   }
2411   // Set !invariant.group from J if J has it. If both instructions have it
2412   // then we will just pick it from J - even when they are different.
2413   // Also make sure that K is load or store - f.e. combining bitcast with load
2414   // could produce bitcast with invariant.group metadata, which is invalid.
2415   // FIXME: we should try to preserve both invariant.group md if they are
2416   // different, but right now instruction can only have one invariant.group.
2417   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2418     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2419       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2420 }
2421 
combineMetadataForCSE(Instruction * K,const Instruction * J,bool KDominatesJ)2422 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2423                                  bool KDominatesJ) {
2424   unsigned KnownIDs[] = {
2425       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2426       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2427       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2428       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2429       LLVMContext::MD_dereferenceable,
2430       LLVMContext::MD_dereferenceable_or_null,
2431       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2432   combineMetadata(K, J, KnownIDs, KDominatesJ);
2433 }
2434 
copyMetadataForLoad(LoadInst & Dest,const LoadInst & Source)2435 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2436   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2437   Source.getAllMetadata(MD);
2438   MDBuilder MDB(Dest.getContext());
2439   Type *NewType = Dest.getType();
2440   const DataLayout &DL = Source.getModule()->getDataLayout();
2441   for (const auto &MDPair : MD) {
2442     unsigned ID = MDPair.first;
2443     MDNode *N = MDPair.second;
2444     // Note, essentially every kind of metadata should be preserved here! This
2445     // routine is supposed to clone a load instruction changing *only its type*.
2446     // The only metadata it makes sense to drop is metadata which is invalidated
2447     // when the pointer type changes. This should essentially never be the case
2448     // in LLVM, but we explicitly switch over only known metadata to be
2449     // conservatively correct. If you are adding metadata to LLVM which pertains
2450     // to loads, you almost certainly want to add it here.
2451     switch (ID) {
2452     case LLVMContext::MD_dbg:
2453     case LLVMContext::MD_tbaa:
2454     case LLVMContext::MD_prof:
2455     case LLVMContext::MD_fpmath:
2456     case LLVMContext::MD_tbaa_struct:
2457     case LLVMContext::MD_invariant_load:
2458     case LLVMContext::MD_alias_scope:
2459     case LLVMContext::MD_noalias:
2460     case LLVMContext::MD_nontemporal:
2461     case LLVMContext::MD_mem_parallel_loop_access:
2462     case LLVMContext::MD_access_group:
2463       // All of these directly apply.
2464       Dest.setMetadata(ID, N);
2465       break;
2466 
2467     case LLVMContext::MD_nonnull:
2468       copyNonnullMetadata(Source, N, Dest);
2469       break;
2470 
2471     case LLVMContext::MD_align:
2472     case LLVMContext::MD_dereferenceable:
2473     case LLVMContext::MD_dereferenceable_or_null:
2474       // These only directly apply if the new type is also a pointer.
2475       if (NewType->isPointerTy())
2476         Dest.setMetadata(ID, N);
2477       break;
2478 
2479     case LLVMContext::MD_range:
2480       copyRangeMetadata(DL, Source, N, Dest);
2481       break;
2482     }
2483   }
2484 }
2485 
patchReplacementInstruction(Instruction * I,Value * Repl)2486 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2487   auto *ReplInst = dyn_cast<Instruction>(Repl);
2488   if (!ReplInst)
2489     return;
2490 
2491   // Patch the replacement so that it is not more restrictive than the value
2492   // being replaced.
2493   // Note that if 'I' is a load being replaced by some operation,
2494   // for example, by an arithmetic operation, then andIRFlags()
2495   // would just erase all math flags from the original arithmetic
2496   // operation, which is clearly not wanted and not needed.
2497   if (!isa<LoadInst>(I))
2498     ReplInst->andIRFlags(I);
2499 
2500   // FIXME: If both the original and replacement value are part of the
2501   // same control-flow region (meaning that the execution of one
2502   // guarantees the execution of the other), then we can combine the
2503   // noalias scopes here and do better than the general conservative
2504   // answer used in combineMetadata().
2505 
2506   // In general, GVN unifies expressions over different control-flow
2507   // regions, and so we need a conservative combination of the noalias
2508   // scopes.
2509   static const unsigned KnownIDs[] = {
2510       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2511       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2512       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2513       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2514       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2515   combineMetadata(ReplInst, I, KnownIDs, false);
2516 }
2517 
2518 template <typename RootType, typename DominatesFn>
replaceDominatedUsesWith(Value * From,Value * To,const RootType & Root,const DominatesFn & Dominates)2519 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2520                                          const RootType &Root,
2521                                          const DominatesFn &Dominates) {
2522   assert(From->getType() == To->getType());
2523 
2524   unsigned Count = 0;
2525   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2526        UI != UE;) {
2527     Use &U = *UI++;
2528     if (!Dominates(Root, U))
2529       continue;
2530     U.set(To);
2531     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2532                       << "' as " << *To << " in " << *U << "\n");
2533     ++Count;
2534   }
2535   return Count;
2536 }
2537 
replaceNonLocalUsesWith(Instruction * From,Value * To)2538 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2539    assert(From->getType() == To->getType());
2540    auto *BB = From->getParent();
2541    unsigned Count = 0;
2542 
2543   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2544        UI != UE;) {
2545     Use &U = *UI++;
2546     auto *I = cast<Instruction>(U.getUser());
2547     if (I->getParent() == BB)
2548       continue;
2549     U.set(To);
2550     ++Count;
2551   }
2552   return Count;
2553 }
2554 
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlockEdge & Root)2555 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2556                                         DominatorTree &DT,
2557                                         const BasicBlockEdge &Root) {
2558   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2559     return DT.dominates(Root, U);
2560   };
2561   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2562 }
2563 
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlock * BB)2564 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2565                                         DominatorTree &DT,
2566                                         const BasicBlock *BB) {
2567   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2568     auto *I = cast<Instruction>(U.getUser())->getParent();
2569     return DT.properlyDominates(BB, I);
2570   };
2571   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2572 }
2573 
callsGCLeafFunction(const CallBase * Call,const TargetLibraryInfo & TLI)2574 bool llvm::callsGCLeafFunction(const CallBase *Call,
2575                                const TargetLibraryInfo &TLI) {
2576   // Check if the function is specifically marked as a gc leaf function.
2577   if (Call->hasFnAttr("gc-leaf-function"))
2578     return true;
2579   if (const Function *F = Call->getCalledFunction()) {
2580     if (F->hasFnAttribute("gc-leaf-function"))
2581       return true;
2582 
2583     if (auto IID = F->getIntrinsicID())
2584       // Most LLVM intrinsics do not take safepoints.
2585       return IID != Intrinsic::experimental_gc_statepoint &&
2586              IID != Intrinsic::experimental_deoptimize;
2587   }
2588 
2589   // Lib calls can be materialized by some passes, and won't be
2590   // marked as 'gc-leaf-function.' All available Libcalls are
2591   // GC-leaf.
2592   LibFunc LF;
2593   if (TLI.getLibFunc(*Call, LF)) {
2594     return TLI.has(LF);
2595   }
2596 
2597   return false;
2598 }
2599 
copyNonnullMetadata(const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2600 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2601                                LoadInst &NewLI) {
2602   auto *NewTy = NewLI.getType();
2603 
2604   // This only directly applies if the new type is also a pointer.
2605   if (NewTy->isPointerTy()) {
2606     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2607     return;
2608   }
2609 
2610   // The only other translation we can do is to integral loads with !range
2611   // metadata.
2612   if (!NewTy->isIntegerTy())
2613     return;
2614 
2615   MDBuilder MDB(NewLI.getContext());
2616   const Value *Ptr = OldLI.getPointerOperand();
2617   auto *ITy = cast<IntegerType>(NewTy);
2618   auto *NullInt = ConstantExpr::getPtrToInt(
2619       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2620   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2621   NewLI.setMetadata(LLVMContext::MD_range,
2622                     MDB.createRange(NonNullInt, NullInt));
2623 }
2624 
copyRangeMetadata(const DataLayout & DL,const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2625 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2626                              MDNode *N, LoadInst &NewLI) {
2627   auto *NewTy = NewLI.getType();
2628 
2629   // Give up unless it is converted to a pointer where there is a single very
2630   // valuable mapping we can do reliably.
2631   // FIXME: It would be nice to propagate this in more ways, but the type
2632   // conversions make it hard.
2633   if (!NewTy->isPointerTy())
2634     return;
2635 
2636   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2637   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2638     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2639     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2640   }
2641 }
2642 
dropDebugUsers(Instruction & I)2643 void llvm::dropDebugUsers(Instruction &I) {
2644   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2645   findDbgUsers(DbgUsers, &I);
2646   for (auto *DII : DbgUsers)
2647     DII->eraseFromParent();
2648 }
2649 
hoistAllInstructionsInto(BasicBlock * DomBlock,Instruction * InsertPt,BasicBlock * BB)2650 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2651                                     BasicBlock *BB) {
2652   // Since we are moving the instructions out of its basic block, we do not
2653   // retain their original debug locations (DILocations) and debug intrinsic
2654   // instructions.
2655   //
2656   // Doing so would degrade the debugging experience and adversely affect the
2657   // accuracy of profiling information.
2658   //
2659   // Currently, when hoisting the instructions, we take the following actions:
2660   // - Remove their debug intrinsic instructions.
2661   // - Set their debug locations to the values from the insertion point.
2662   //
2663   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2664   // need to be deleted, is because there will not be any instructions with a
2665   // DILocation in either branch left after performing the transformation. We
2666   // can only insert a dbg.value after the two branches are joined again.
2667   //
2668   // See PR38762, PR39243 for more details.
2669   //
2670   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2671   // encode predicated DIExpressions that yield different results on different
2672   // code paths.
2673   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2674     Instruction *I = &*II;
2675     I->dropUnknownNonDebugMetadata();
2676     if (I->isUsedByMetadata())
2677       dropDebugUsers(*I);
2678     if (isa<DbgInfoIntrinsic>(I)) {
2679       // Remove DbgInfo Intrinsics.
2680       II = I->eraseFromParent();
2681       continue;
2682     }
2683     I->setDebugLoc(InsertPt->getDebugLoc());
2684     ++II;
2685   }
2686   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2687                                  BB->begin(),
2688                                  BB->getTerminator()->getIterator());
2689 }
2690 
2691 namespace {
2692 
2693 /// A potential constituent of a bitreverse or bswap expression. See
2694 /// collectBitParts for a fuller explanation.
2695 struct BitPart {
BitPart__anon6243f5c70b11::BitPart2696   BitPart(Value *P, unsigned BW) : Provider(P) {
2697     Provenance.resize(BW);
2698   }
2699 
2700   /// The Value that this is a bitreverse/bswap of.
2701   Value *Provider;
2702 
2703   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2704   /// in Provider becomes bit B in the result of this expression.
2705   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2706 
2707   enum { Unset = -1 };
2708 };
2709 
2710 } // end anonymous namespace
2711 
2712 /// Analyze the specified subexpression and see if it is capable of providing
2713 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2714 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2715 /// the output of the expression came from a corresponding bit in some other
2716 /// value. This function is recursive, and the end result is a mapping of
2717 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2718 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2719 ///
2720 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2721 /// that the expression deposits the low byte of %X into the high byte of the
2722 /// result and that all other bits are zero. This expression is accepted and a
2723 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2724 /// [0-7].
2725 ///
2726 /// To avoid revisiting values, the BitPart results are memoized into the
2727 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2728 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2729 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2730 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2731 /// type instead to provide the same functionality.
2732 ///
2733 /// Because we pass around references into \c BPS, we must use a container that
2734 /// does not invalidate internal references (std::map instead of DenseMap).
2735 static const Optional<BitPart> &
collectBitParts(Value * V,bool MatchBSwaps,bool MatchBitReversals,std::map<Value *,Optional<BitPart>> & BPS,int Depth)2736 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2737                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2738   auto I = BPS.find(V);
2739   if (I != BPS.end())
2740     return I->second;
2741 
2742   auto &Result = BPS[V] = None;
2743   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2744 
2745   // Prevent stack overflow by limiting the recursion depth
2746   if (Depth == BitPartRecursionMaxDepth) {
2747     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2748     return Result;
2749   }
2750 
2751   if (Instruction *I = dyn_cast<Instruction>(V)) {
2752     // If this is an or instruction, it may be an inner node of the bswap.
2753     if (I->getOpcode() == Instruction::Or) {
2754       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2755                                 MatchBitReversals, BPS, Depth + 1);
2756       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2757                                 MatchBitReversals, BPS, Depth + 1);
2758       if (!A || !B)
2759         return Result;
2760 
2761       // Try and merge the two together.
2762       if (!A->Provider || A->Provider != B->Provider)
2763         return Result;
2764 
2765       Result = BitPart(A->Provider, BitWidth);
2766       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2767         if (A->Provenance[i] != BitPart::Unset &&
2768             B->Provenance[i] != BitPart::Unset &&
2769             A->Provenance[i] != B->Provenance[i])
2770           return Result = None;
2771 
2772         if (A->Provenance[i] == BitPart::Unset)
2773           Result->Provenance[i] = B->Provenance[i];
2774         else
2775           Result->Provenance[i] = A->Provenance[i];
2776       }
2777 
2778       return Result;
2779     }
2780 
2781     // If this is a logical shift by a constant, recurse then shift the result.
2782     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2783       unsigned BitShift =
2784           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2785       // Ensure the shift amount is defined.
2786       if (BitShift > BitWidth)
2787         return Result;
2788 
2789       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2790                                   MatchBitReversals, BPS, Depth + 1);
2791       if (!Res)
2792         return Result;
2793       Result = Res;
2794 
2795       // Perform the "shift" on BitProvenance.
2796       auto &P = Result->Provenance;
2797       if (I->getOpcode() == Instruction::Shl) {
2798         P.erase(std::prev(P.end(), BitShift), P.end());
2799         P.insert(P.begin(), BitShift, BitPart::Unset);
2800       } else {
2801         P.erase(P.begin(), std::next(P.begin(), BitShift));
2802         P.insert(P.end(), BitShift, BitPart::Unset);
2803       }
2804 
2805       return Result;
2806     }
2807 
2808     // If this is a logical 'and' with a mask that clears bits, recurse then
2809     // unset the appropriate bits.
2810     if (I->getOpcode() == Instruction::And &&
2811         isa<ConstantInt>(I->getOperand(1))) {
2812       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2813       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2814 
2815       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2816       // early exit.
2817       unsigned NumMaskedBits = AndMask.countPopulation();
2818       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2819         return Result;
2820 
2821       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2822                                   MatchBitReversals, BPS, Depth + 1);
2823       if (!Res)
2824         return Result;
2825       Result = Res;
2826 
2827       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2828         // If the AndMask is zero for this bit, clear the bit.
2829         if ((AndMask & Bit) == 0)
2830           Result->Provenance[i] = BitPart::Unset;
2831       return Result;
2832     }
2833 
2834     // If this is a zext instruction zero extend the result.
2835     if (I->getOpcode() == Instruction::ZExt) {
2836       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2837                                   MatchBitReversals, BPS, Depth + 1);
2838       if (!Res)
2839         return Result;
2840 
2841       Result = BitPart(Res->Provider, BitWidth);
2842       auto NarrowBitWidth =
2843           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2844       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2845         Result->Provenance[i] = Res->Provenance[i];
2846       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2847         Result->Provenance[i] = BitPart::Unset;
2848       return Result;
2849     }
2850   }
2851 
2852   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2853   // the input value to the bswap/bitreverse.
2854   Result = BitPart(V, BitWidth);
2855   for (unsigned i = 0; i < BitWidth; ++i)
2856     Result->Provenance[i] = i;
2857   return Result;
2858 }
2859 
bitTransformIsCorrectForBSwap(unsigned From,unsigned To,unsigned BitWidth)2860 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2861                                           unsigned BitWidth) {
2862   if (From % 8 != To % 8)
2863     return false;
2864   // Convert from bit indices to byte indices and check for a byte reversal.
2865   From >>= 3;
2866   To >>= 3;
2867   BitWidth >>= 3;
2868   return From == BitWidth - To - 1;
2869 }
2870 
bitTransformIsCorrectForBitReverse(unsigned From,unsigned To,unsigned BitWidth)2871 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2872                                                unsigned BitWidth) {
2873   return From == BitWidth - To - 1;
2874 }
2875 
recognizeBSwapOrBitReverseIdiom(Instruction * I,bool MatchBSwaps,bool MatchBitReversals,SmallVectorImpl<Instruction * > & InsertedInsts)2876 bool llvm::recognizeBSwapOrBitReverseIdiom(
2877     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2878     SmallVectorImpl<Instruction *> &InsertedInsts) {
2879   if (Operator::getOpcode(I) != Instruction::Or)
2880     return false;
2881   if (!MatchBSwaps && !MatchBitReversals)
2882     return false;
2883   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2884   if (!ITy || ITy->getBitWidth() > 128)
2885     return false;   // Can't do vectors or integers > 128 bits.
2886   unsigned BW = ITy->getBitWidth();
2887 
2888   unsigned DemandedBW = BW;
2889   IntegerType *DemandedTy = ITy;
2890   if (I->hasOneUse()) {
2891     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2892       DemandedTy = cast<IntegerType>(Trunc->getType());
2893       DemandedBW = DemandedTy->getBitWidth();
2894     }
2895   }
2896 
2897   // Try to find all the pieces corresponding to the bswap.
2898   std::map<Value *, Optional<BitPart>> BPS;
2899   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2900   if (!Res)
2901     return false;
2902   auto &BitProvenance = Res->Provenance;
2903 
2904   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2905   // only byteswap values with an even number of bytes.
2906   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2907   for (unsigned i = 0; i < DemandedBW; ++i) {
2908     OKForBSwap &=
2909         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2910     OKForBitReverse &=
2911         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2912   }
2913 
2914   Intrinsic::ID Intrin;
2915   if (OKForBSwap && MatchBSwaps)
2916     Intrin = Intrinsic::bswap;
2917   else if (OKForBitReverse && MatchBitReversals)
2918     Intrin = Intrinsic::bitreverse;
2919   else
2920     return false;
2921 
2922   if (ITy != DemandedTy) {
2923     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2924     Value *Provider = Res->Provider;
2925     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2926     // We may need to truncate the provider.
2927     if (DemandedTy != ProviderTy) {
2928       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2929                                      "trunc", I);
2930       InsertedInsts.push_back(Trunc);
2931       Provider = Trunc;
2932     }
2933     auto *CI = CallInst::Create(F, Provider, "rev", I);
2934     InsertedInsts.push_back(CI);
2935     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2936     InsertedInsts.push_back(ExtInst);
2937     return true;
2938   }
2939 
2940   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2941   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2942   return true;
2943 }
2944 
2945 // CodeGen has special handling for some string functions that may replace
2946 // them with target-specific intrinsics.  Since that'd skip our interceptors
2947 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2948 // we mark affected calls as NoBuiltin, which will disable optimization
2949 // in CodeGen.
maybeMarkSanitizerLibraryCallNoBuiltin(CallInst * CI,const TargetLibraryInfo * TLI)2950 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2951     CallInst *CI, const TargetLibraryInfo *TLI) {
2952   Function *F = CI->getCalledFunction();
2953   LibFunc Func;
2954   if (F && !F->hasLocalLinkage() && F->hasName() &&
2955       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2956       !F->doesNotAccessMemory())
2957     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2958 }
2959 
canReplaceOperandWithVariable(const Instruction * I,unsigned OpIdx)2960 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2961   // We can't have a PHI with a metadata type.
2962   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2963     return false;
2964 
2965   // Early exit.
2966   if (!isa<Constant>(I->getOperand(OpIdx)))
2967     return true;
2968 
2969   switch (I->getOpcode()) {
2970   default:
2971     return true;
2972   case Instruction::Call:
2973   case Instruction::Invoke: {
2974     const auto &CB = cast<CallBase>(*I);
2975 
2976     // Can't handle inline asm. Skip it.
2977     if (CB.isInlineAsm())
2978       return false;
2979 
2980     // Constant bundle operands may need to retain their constant-ness for
2981     // correctness.
2982     if (CB.isBundleOperand(OpIdx))
2983       return false;
2984 
2985     if (OpIdx < CB.getNumArgOperands()) {
2986       // Some variadic intrinsics require constants in the variadic arguments,
2987       // which currently aren't markable as immarg.
2988       if (isa<IntrinsicInst>(CB) &&
2989           OpIdx >= CB.getFunctionType()->getNumParams()) {
2990         // This is known to be OK for stackmap.
2991         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
2992       }
2993 
2994       // gcroot is a special case, since it requires a constant argument which
2995       // isn't also required to be a simple ConstantInt.
2996       if (CB.getIntrinsicID() == Intrinsic::gcroot)
2997         return false;
2998 
2999       // Some intrinsic operands are required to be immediates.
3000       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3001     }
3002 
3003     // It is never allowed to replace the call argument to an intrinsic, but it
3004     // may be possible for a call.
3005     return !isa<IntrinsicInst>(CB);
3006   }
3007   case Instruction::ShuffleVector:
3008     // Shufflevector masks are constant.
3009     return OpIdx != 2;
3010   case Instruction::Switch:
3011   case Instruction::ExtractValue:
3012     // All operands apart from the first are constant.
3013     return OpIdx == 0;
3014   case Instruction::InsertValue:
3015     // All operands apart from the first and the second are constant.
3016     return OpIdx < 2;
3017   case Instruction::Alloca:
3018     // Static allocas (constant size in the entry block) are handled by
3019     // prologue/epilogue insertion so they're free anyway. We definitely don't
3020     // want to make them non-constant.
3021     return !cast<AllocaInst>(I)->isStaticAlloca();
3022   case Instruction::GetElementPtr:
3023     if (OpIdx == 0)
3024       return true;
3025     gep_type_iterator It = gep_type_begin(I);
3026     for (auto E = std::next(It, OpIdx); It != E; ++It)
3027       if (It.isStruct())
3028         return false;
3029     return true;
3030   }
3031 }
3032 
3033 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
findAllocaForValue(Value * V,AllocaForValueMapTy & AllocaForValue)3034 AllocaInst *llvm::findAllocaForValue(Value *V,
3035                                      AllocaForValueMapTy &AllocaForValue) {
3036   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
3037     return AI;
3038   // See if we've already calculated (or started to calculate) alloca for a
3039   // given value.
3040   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3041   if (I != AllocaForValue.end())
3042     return I->second;
3043   // Store 0 while we're calculating alloca for value V to avoid
3044   // infinite recursion if the value references itself.
3045   AllocaForValue[V] = nullptr;
3046   AllocaInst *Res = nullptr;
3047   if (CastInst *CI = dyn_cast<CastInst>(V))
3048     Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
3049   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3050     for (Value *IncValue : PN->incoming_values()) {
3051       // Allow self-referencing phi-nodes.
3052       if (IncValue == PN)
3053         continue;
3054       AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
3055       // AI for incoming values should exist and should all be equal.
3056       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3057         return nullptr;
3058       Res = IncValueAI;
3059     }
3060   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3061     Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3062   } else {
3063     LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3064                       << *V << "\n");
3065   }
3066   if (Res)
3067     AllocaForValue[V] = Res;
3068   return Res;
3069 }
3070 
invertCondition(Value * Condition)3071 Value *llvm::invertCondition(Value *Condition) {
3072   // First: Check if it's a constant
3073   if (Constant *C = dyn_cast<Constant>(Condition))
3074     return ConstantExpr::getNot(C);
3075 
3076   // Second: If the condition is already inverted, return the original value
3077   Value *NotCondition;
3078   if (match(Condition, m_Not(m_Value(NotCondition))))
3079     return NotCondition;
3080 
3081   BasicBlock *Parent = nullptr;
3082   Instruction *Inst = dyn_cast<Instruction>(Condition);
3083   if (Inst)
3084     Parent = Inst->getParent();
3085   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3086     Parent = &Arg->getParent()->getEntryBlock();
3087   assert(Parent && "Unsupported condition to invert");
3088 
3089   // Third: Check all the users for an invert
3090   for (User *U : Condition->users())
3091     if (Instruction *I = dyn_cast<Instruction>(U))
3092       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3093         return I;
3094 
3095   // Last option: Create a new instruction
3096   auto *Inverted =
3097       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3098   if (Inst && !isa<PHINode>(Inst))
3099     Inverted->insertAfter(Inst);
3100   else
3101     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3102   return Inverted;
3103 }
3104