1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2010      INRIA Saclay
4  * Copyright 2012      Ecole Normale Superieure
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, K.U.Leuven, Departement
9  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12  * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13  */
14 
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include <isl_seq.h>
18 #include <isl/set.h>
19 #include <isl/lp.h>
20 #include <isl/map.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
23 #include "isl_tab.h"
24 #include <isl_mat_private.h>
25 #include <isl_vec_private.h>
26 
27 #include <bset_to_bmap.c>
28 #include <bset_from_bmap.c>
29 #include <set_to_map.c>
30 #include <set_from_map.c>
31 
isl_basic_map_implicit_equalities(__isl_take isl_basic_map * bmap)32 __isl_give isl_basic_map *isl_basic_map_implicit_equalities(
33 	__isl_take isl_basic_map *bmap)
34 {
35 	struct isl_tab *tab;
36 
37 	if (!bmap)
38 		return bmap;
39 
40 	bmap = isl_basic_map_gauss(bmap, NULL);
41 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
42 		return bmap;
43 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
44 		return bmap;
45 	if (bmap->n_ineq <= 1)
46 		return bmap;
47 
48 	tab = isl_tab_from_basic_map(bmap, 0);
49 	if (isl_tab_detect_implicit_equalities(tab) < 0)
50 		goto error;
51 	bmap = isl_basic_map_update_from_tab(bmap, tab);
52 	isl_tab_free(tab);
53 	bmap = isl_basic_map_gauss(bmap, NULL);
54 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
55 	return bmap;
56 error:
57 	isl_tab_free(tab);
58 	isl_basic_map_free(bmap);
59 	return NULL;
60 }
61 
isl_basic_set_implicit_equalities(struct isl_basic_set * bset)62 struct isl_basic_set *isl_basic_set_implicit_equalities(
63 						struct isl_basic_set *bset)
64 {
65 	return bset_from_bmap(
66 		isl_basic_map_implicit_equalities(bset_to_bmap(bset)));
67 }
68 
69 /* Make eq[row][col] of both bmaps equal so we can add the row
70  * add the column to the common matrix.
71  * Note that because of the echelon form, the columns of row row
72  * after column col are zero.
73  */
set_common_multiple(struct isl_basic_set * bset1,struct isl_basic_set * bset2,unsigned row,unsigned col)74 static void set_common_multiple(
75 	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
76 	unsigned row, unsigned col)
77 {
78 	isl_int m, c;
79 
80 	if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
81 		return;
82 
83 	isl_int_init(c);
84 	isl_int_init(m);
85 	isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
86 	isl_int_divexact(c, m, bset1->eq[row][col]);
87 	isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
88 	isl_int_divexact(c, m, bset2->eq[row][col]);
89 	isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
90 	isl_int_clear(c);
91 	isl_int_clear(m);
92 }
93 
94 /* Delete a given equality, moving all the following equalities one up.
95  */
delete_row(struct isl_basic_set * bset,unsigned row)96 static void delete_row(struct isl_basic_set *bset, unsigned row)
97 {
98 	isl_int *t;
99 	int r;
100 
101 	t = bset->eq[row];
102 	bset->n_eq--;
103 	for (r = row; r < bset->n_eq; ++r)
104 		bset->eq[r] = bset->eq[r+1];
105 	bset->eq[bset->n_eq] = t;
106 }
107 
108 /* Make first row entries in column col of bset1 identical to
109  * those of bset2, using the fact that entry bset1->eq[row][col]=a
110  * is non-zero.  Initially, these elements of bset1 are all zero.
111  * For each row i < row, we set
112  *		A[i] = a * A[i] + B[i][col] * A[row]
113  *		B[i] = a * B[i]
114  * so that
115  *		A[i][col] = B[i][col] = a * old(B[i][col])
116  */
construct_column(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2,unsigned row,unsigned col)117 static isl_stat construct_column(
118 	__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
119 	unsigned row, unsigned col)
120 {
121 	int r;
122 	isl_int a;
123 	isl_int b;
124 	isl_size total;
125 
126 	total = isl_basic_set_dim(bset1, isl_dim_set);
127 	if (total < 0)
128 		return isl_stat_error;
129 
130 	isl_int_init(a);
131 	isl_int_init(b);
132 	for (r = 0; r < row; ++r) {
133 		if (isl_int_is_zero(bset2->eq[r][col]))
134 			continue;
135 		isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
136 		isl_int_divexact(a, bset1->eq[row][col], b);
137 		isl_int_divexact(b, bset2->eq[r][col], b);
138 		isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
139 					      b, bset1->eq[row], 1 + total);
140 		isl_seq_scale(bset2->eq[r], bset2->eq[r], a, 1 + total);
141 	}
142 	isl_int_clear(a);
143 	isl_int_clear(b);
144 	delete_row(bset1, row);
145 
146 	return isl_stat_ok;
147 }
148 
149 /* Make first row entries in column col of bset1 identical to
150  * those of bset2, using only these entries of the two matrices.
151  * Let t be the last row with different entries.
152  * For each row i < t, we set
153  *	A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
154  *	B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
155  * so that
156  *	A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
157  */
transform_column(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2,unsigned row,unsigned col)158 static isl_bool transform_column(
159 	__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
160 	unsigned row, unsigned col)
161 {
162 	int i, t;
163 	isl_int a, b, g;
164 	isl_size total;
165 
166 	for (t = row-1; t >= 0; --t)
167 		if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
168 			break;
169 	if (t < 0)
170 		return isl_bool_false;
171 
172 	total = isl_basic_set_dim(bset1, isl_dim_set);
173 	if (total < 0)
174 		return isl_bool_error;
175 	isl_int_init(a);
176 	isl_int_init(b);
177 	isl_int_init(g);
178 	isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
179 	for (i = 0; i < t; ++i) {
180 		isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
181 		isl_int_gcd(g, a, b);
182 		isl_int_divexact(a, a, g);
183 		isl_int_divexact(g, b, g);
184 		isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
185 				1 + total);
186 		isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
187 				1 + total);
188 	}
189 	isl_int_clear(a);
190 	isl_int_clear(b);
191 	isl_int_clear(g);
192 	delete_row(bset1, t);
193 	delete_row(bset2, t);
194 	return isl_bool_true;
195 }
196 
197 /* The implementation is based on Section 5.2 of Michael Karr,
198  * "Affine Relationships Among Variables of a Program",
199  * except that the echelon form we use starts from the last column
200  * and that we are dealing with integer coefficients.
201  */
affine_hull(__isl_take isl_basic_set * bset1,__isl_take isl_basic_set * bset2)202 static __isl_give isl_basic_set *affine_hull(
203 	__isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
204 {
205 	isl_size dim;
206 	unsigned total;
207 	int col;
208 	int row;
209 
210 	dim = isl_basic_set_dim(bset1, isl_dim_set);
211 	if (dim < 0 || !bset2)
212 		goto error;
213 
214 	total = 1 + dim;
215 
216 	row = 0;
217 	for (col = total-1; col >= 0; --col) {
218 		int is_zero1 = row >= bset1->n_eq ||
219 			isl_int_is_zero(bset1->eq[row][col]);
220 		int is_zero2 = row >= bset2->n_eq ||
221 			isl_int_is_zero(bset2->eq[row][col]);
222 		if (!is_zero1 && !is_zero2) {
223 			set_common_multiple(bset1, bset2, row, col);
224 			++row;
225 		} else if (!is_zero1 && is_zero2) {
226 			if (construct_column(bset1, bset2, row, col) < 0)
227 				goto error;
228 		} else if (is_zero1 && !is_zero2) {
229 			if (construct_column(bset2, bset1, row, col) < 0)
230 				goto error;
231 		} else {
232 			isl_bool transform;
233 
234 			transform = transform_column(bset1, bset2, row, col);
235 			if (transform < 0)
236 				goto error;
237 			if (transform)
238 				--row;
239 		}
240 	}
241 	isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
242 	isl_basic_set_free(bset2);
243 	bset1 = isl_basic_set_normalize_constraints(bset1);
244 	return bset1;
245 error:
246 	isl_basic_set_free(bset1);
247 	isl_basic_set_free(bset2);
248 	return NULL;
249 }
250 
251 /* Find an integer point in the set represented by "tab"
252  * that lies outside of the equality "eq" e(x) = 0.
253  * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
254  * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
255  * The point, if found, is returned.
256  * If no point can be found, a zero-length vector is returned.
257  *
258  * Before solving an ILP problem, we first check if simply
259  * adding the normal of the constraint to one of the known
260  * integer points in the basic set represented by "tab"
261  * yields another point inside the basic set.
262  *
263  * The caller of this function ensures that the tableau is bounded or
264  * that tab->basis and tab->n_unbounded have been set appropriately.
265  */
outside_point(struct isl_tab * tab,isl_int * eq,int up)266 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
267 {
268 	struct isl_ctx *ctx;
269 	struct isl_vec *sample = NULL;
270 	struct isl_tab_undo *snap;
271 	unsigned dim;
272 
273 	if (!tab)
274 		return NULL;
275 	ctx = tab->mat->ctx;
276 
277 	dim = tab->n_var;
278 	sample = isl_vec_alloc(ctx, 1 + dim);
279 	if (!sample)
280 		return NULL;
281 	isl_int_set_si(sample->el[0], 1);
282 	isl_seq_combine(sample->el + 1,
283 		ctx->one, tab->bmap->sample->el + 1,
284 		up ? ctx->one : ctx->negone, eq + 1, dim);
285 	if (isl_basic_map_contains(tab->bmap, sample))
286 		return sample;
287 	isl_vec_free(sample);
288 	sample = NULL;
289 
290 	snap = isl_tab_snap(tab);
291 
292 	if (!up)
293 		isl_seq_neg(eq, eq, 1 + dim);
294 	isl_int_sub_ui(eq[0], eq[0], 1);
295 
296 	if (isl_tab_extend_cons(tab, 1) < 0)
297 		goto error;
298 	if (isl_tab_add_ineq(tab, eq) < 0)
299 		goto error;
300 
301 	sample = isl_tab_sample(tab);
302 
303 	isl_int_add_ui(eq[0], eq[0], 1);
304 	if (!up)
305 		isl_seq_neg(eq, eq, 1 + dim);
306 
307 	if (sample && isl_tab_rollback(tab, snap) < 0)
308 		goto error;
309 
310 	return sample;
311 error:
312 	isl_vec_free(sample);
313 	return NULL;
314 }
315 
isl_basic_set_recession_cone(__isl_take isl_basic_set * bset)316 __isl_give isl_basic_set *isl_basic_set_recession_cone(
317 	__isl_take isl_basic_set *bset)
318 {
319 	int i;
320 	isl_bool empty;
321 
322 	empty = isl_basic_set_plain_is_empty(bset);
323 	if (empty < 0)
324 		return isl_basic_set_free(bset);
325 	if (empty)
326 		return bset;
327 
328 	bset = isl_basic_set_cow(bset);
329 	if (isl_basic_set_check_no_locals(bset) < 0)
330 		return isl_basic_set_free(bset);
331 
332 	for (i = 0; i < bset->n_eq; ++i)
333 		isl_int_set_si(bset->eq[i][0], 0);
334 
335 	for (i = 0; i < bset->n_ineq; ++i)
336 		isl_int_set_si(bset->ineq[i][0], 0);
337 
338 	ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
339 	return isl_basic_set_implicit_equalities(bset);
340 }
341 
342 /* Move "sample" to a point that is one up (or down) from the original
343  * point in dimension "pos".
344  */
adjacent_point(__isl_keep isl_vec * sample,int pos,int up)345 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
346 {
347 	if (up)
348 		isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
349 	else
350 		isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
351 }
352 
353 /* Check if any points that are adjacent to "sample" also belong to "bset".
354  * If so, add them to "hull" and return the updated hull.
355  *
356  * Before checking whether and adjacent point belongs to "bset", we first
357  * check whether it already belongs to "hull" as this test is typically
358  * much cheaper.
359  */
add_adjacent_points(__isl_take isl_basic_set * hull,__isl_take isl_vec * sample,__isl_keep isl_basic_set * bset)360 static __isl_give isl_basic_set *add_adjacent_points(
361 	__isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
362 	__isl_keep isl_basic_set *bset)
363 {
364 	int i, up;
365 	isl_size dim;
366 
367 	dim = isl_basic_set_dim(hull, isl_dim_set);
368 	if (!sample || dim < 0)
369 		goto error;
370 
371 	for (i = 0; i < dim; ++i) {
372 		for (up = 0; up <= 1; ++up) {
373 			int contains;
374 			isl_basic_set *point;
375 
376 			adjacent_point(sample, i, up);
377 			contains = isl_basic_set_contains(hull, sample);
378 			if (contains < 0)
379 				goto error;
380 			if (contains) {
381 				adjacent_point(sample, i, !up);
382 				continue;
383 			}
384 			contains = isl_basic_set_contains(bset, sample);
385 			if (contains < 0)
386 				goto error;
387 			if (contains) {
388 				point = isl_basic_set_from_vec(
389 							isl_vec_copy(sample));
390 				hull = affine_hull(hull, point);
391 			}
392 			adjacent_point(sample, i, !up);
393 			if (contains)
394 				break;
395 		}
396 	}
397 
398 	isl_vec_free(sample);
399 
400 	return hull;
401 error:
402 	isl_vec_free(sample);
403 	isl_basic_set_free(hull);
404 	return NULL;
405 }
406 
407 /* Extend an initial (under-)approximation of the affine hull of basic
408  * set represented by the tableau "tab"
409  * by looking for points that do not satisfy one of the equalities
410  * in the current approximation and adding them to that approximation
411  * until no such points can be found any more.
412  *
413  * The caller of this function ensures that "tab" is bounded or
414  * that tab->basis and tab->n_unbounded have been set appropriately.
415  *
416  * "bset" may be either NULL or the basic set represented by "tab".
417  * If "bset" is not NULL, we check for any point we find if any
418  * of its adjacent points also belong to "bset".
419  */
extend_affine_hull(struct isl_tab * tab,__isl_take isl_basic_set * hull,__isl_keep isl_basic_set * bset)420 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
421 	__isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
422 {
423 	int i, j;
424 	unsigned dim;
425 
426 	if (!tab || !hull)
427 		goto error;
428 
429 	dim = tab->n_var;
430 
431 	if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
432 		goto error;
433 
434 	for (i = 0; i < dim; ++i) {
435 		struct isl_vec *sample;
436 		struct isl_basic_set *point;
437 		for (j = 0; j < hull->n_eq; ++j) {
438 			sample = outside_point(tab, hull->eq[j], 1);
439 			if (!sample)
440 				goto error;
441 			if (sample->size > 0)
442 				break;
443 			isl_vec_free(sample);
444 			sample = outside_point(tab, hull->eq[j], 0);
445 			if (!sample)
446 				goto error;
447 			if (sample->size > 0)
448 				break;
449 			isl_vec_free(sample);
450 
451 			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
452 				goto error;
453 		}
454 		if (j == hull->n_eq)
455 			break;
456 		if (tab->samples &&
457 		    isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
458 			hull = isl_basic_set_free(hull);
459 		if (bset)
460 			hull = add_adjacent_points(hull, isl_vec_copy(sample),
461 						    bset);
462 		point = isl_basic_set_from_vec(sample);
463 		hull = affine_hull(hull, point);
464 		if (!hull)
465 			return NULL;
466 	}
467 
468 	return hull;
469 error:
470 	isl_basic_set_free(hull);
471 	return NULL;
472 }
473 
474 /* Construct an initial underapproximation of the hull of "bset"
475  * from "sample" and any of its adjacent points that also belong to "bset".
476  */
initialize_hull(__isl_keep isl_basic_set * bset,__isl_take isl_vec * sample)477 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
478 	__isl_take isl_vec *sample)
479 {
480 	isl_basic_set *hull;
481 
482 	hull = isl_basic_set_from_vec(isl_vec_copy(sample));
483 	hull = add_adjacent_points(hull, sample, bset);
484 
485 	return hull;
486 }
487 
488 /* Look for all equalities satisfied by the integer points in bset,
489  * which is assumed to be bounded.
490  *
491  * The equalities are obtained by successively looking for
492  * a point that is affinely independent of the points found so far.
493  * In particular, for each equality satisfied by the points so far,
494  * we check if there is any point on a hyperplane parallel to the
495  * corresponding hyperplane shifted by at least one (in either direction).
496  */
uset_affine_hull_bounded(__isl_take isl_basic_set * bset)497 static __isl_give isl_basic_set *uset_affine_hull_bounded(
498 	__isl_take isl_basic_set *bset)
499 {
500 	struct isl_vec *sample = NULL;
501 	struct isl_basic_set *hull;
502 	struct isl_tab *tab = NULL;
503 	isl_size dim;
504 
505 	if (isl_basic_set_plain_is_empty(bset))
506 		return bset;
507 
508 	dim = isl_basic_set_dim(bset, isl_dim_set);
509 	if (dim < 0)
510 		return isl_basic_set_free(bset);
511 
512 	if (bset->sample && bset->sample->size == 1 + dim) {
513 		int contains = isl_basic_set_contains(bset, bset->sample);
514 		if (contains < 0)
515 			goto error;
516 		if (contains) {
517 			if (dim == 0)
518 				return bset;
519 			sample = isl_vec_copy(bset->sample);
520 		} else {
521 			isl_vec_free(bset->sample);
522 			bset->sample = NULL;
523 		}
524 	}
525 
526 	tab = isl_tab_from_basic_set(bset, 1);
527 	if (!tab)
528 		goto error;
529 	if (tab->empty) {
530 		isl_tab_free(tab);
531 		isl_vec_free(sample);
532 		return isl_basic_set_set_to_empty(bset);
533 	}
534 
535 	if (!sample) {
536 		struct isl_tab_undo *snap;
537 		snap = isl_tab_snap(tab);
538 		sample = isl_tab_sample(tab);
539 		if (isl_tab_rollback(tab, snap) < 0)
540 			goto error;
541 		isl_vec_free(tab->bmap->sample);
542 		tab->bmap->sample = isl_vec_copy(sample);
543 	}
544 
545 	if (!sample)
546 		goto error;
547 	if (sample->size == 0) {
548 		isl_tab_free(tab);
549 		isl_vec_free(sample);
550 		return isl_basic_set_set_to_empty(bset);
551 	}
552 
553 	hull = initialize_hull(bset, sample);
554 
555 	hull = extend_affine_hull(tab, hull, bset);
556 	isl_basic_set_free(bset);
557 	isl_tab_free(tab);
558 
559 	return hull;
560 error:
561 	isl_vec_free(sample);
562 	isl_tab_free(tab);
563 	isl_basic_set_free(bset);
564 	return NULL;
565 }
566 
567 /* Given an unbounded tableau and an integer point satisfying the tableau,
568  * construct an initial affine hull containing the recession cone
569  * shifted to the given point.
570  *
571  * The unbounded directions are taken from the last rows of the basis,
572  * which is assumed to have been initialized appropriately.
573  */
initial_hull(struct isl_tab * tab,__isl_take isl_vec * vec)574 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
575 	__isl_take isl_vec *vec)
576 {
577 	int i;
578 	int k;
579 	struct isl_basic_set *bset = NULL;
580 	struct isl_ctx *ctx;
581 	isl_size dim;
582 
583 	if (!vec || !tab)
584 		return NULL;
585 	ctx = vec->ctx;
586 	isl_assert(ctx, vec->size != 0, goto error);
587 
588 	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
589 	dim = isl_basic_set_dim(bset, isl_dim_set);
590 	if (dim < 0)
591 		goto error;
592 	dim -= tab->n_unbounded;
593 	for (i = 0; i < dim; ++i) {
594 		k = isl_basic_set_alloc_equality(bset);
595 		if (k < 0)
596 			goto error;
597 		isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
598 			    vec->size - 1);
599 		isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
600 				      vec->size - 1, &bset->eq[k][0]);
601 		isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
602 	}
603 	bset->sample = vec;
604 	bset = isl_basic_set_gauss(bset, NULL);
605 
606 	return bset;
607 error:
608 	isl_basic_set_free(bset);
609 	isl_vec_free(vec);
610 	return NULL;
611 }
612 
613 /* Given a tableau of a set and a tableau of the corresponding
614  * recession cone, detect and add all equalities to the tableau.
615  * If the tableau is bounded, then we can simply keep the
616  * tableau in its state after the return from extend_affine_hull.
617  * However, if the tableau is unbounded, then
618  * isl_tab_set_initial_basis_with_cone will add some additional
619  * constraints to the tableau that have to be removed again.
620  * In this case, we therefore rollback to the state before
621  * any constraints were added and then add the equalities back in.
622  */
isl_tab_detect_equalities(struct isl_tab * tab,struct isl_tab * tab_cone)623 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
624 	struct isl_tab *tab_cone)
625 {
626 	int j;
627 	struct isl_vec *sample;
628 	struct isl_basic_set *hull = NULL;
629 	struct isl_tab_undo *snap;
630 
631 	if (!tab || !tab_cone)
632 		goto error;
633 
634 	snap = isl_tab_snap(tab);
635 
636 	isl_mat_free(tab->basis);
637 	tab->basis = NULL;
638 
639 	isl_assert(tab->mat->ctx, tab->bmap, goto error);
640 	isl_assert(tab->mat->ctx, tab->samples, goto error);
641 	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
642 	isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
643 
644 	if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
645 		goto error;
646 
647 	sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
648 	if (!sample)
649 		goto error;
650 
651 	isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
652 
653 	isl_vec_free(tab->bmap->sample);
654 	tab->bmap->sample = isl_vec_copy(sample);
655 
656 	if (tab->n_unbounded == 0)
657 		hull = isl_basic_set_from_vec(isl_vec_copy(sample));
658 	else
659 		hull = initial_hull(tab, isl_vec_copy(sample));
660 
661 	for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
662 		isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
663 		hull = affine_hull(hull,
664 				isl_basic_set_from_vec(isl_vec_copy(sample)));
665 	}
666 
667 	isl_vec_free(sample);
668 
669 	hull = extend_affine_hull(tab, hull, NULL);
670 	if (!hull)
671 		goto error;
672 
673 	if (tab->n_unbounded == 0) {
674 		isl_basic_set_free(hull);
675 		return tab;
676 	}
677 
678 	if (isl_tab_rollback(tab, snap) < 0)
679 		goto error;
680 
681 	if (hull->n_eq > tab->n_zero) {
682 		for (j = 0; j < hull->n_eq; ++j) {
683 			isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
684 			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
685 				goto error;
686 		}
687 	}
688 
689 	isl_basic_set_free(hull);
690 
691 	return tab;
692 error:
693 	isl_basic_set_free(hull);
694 	isl_tab_free(tab);
695 	return NULL;
696 }
697 
698 /* Compute the affine hull of "bset", where "cone" is the recession cone
699  * of "bset".
700  *
701  * We first compute a unimodular transformation that puts the unbounded
702  * directions in the last dimensions.  In particular, we take a transformation
703  * that maps all equalities to equalities (in HNF) on the first dimensions.
704  * Let x be the original dimensions and y the transformed, with y_1 bounded
705  * and y_2 unbounded.
706  *
707  *	       [ y_1 ]			[ y_1 ]   [ Q_1 ]
708  *	x = U  [ y_2 ]			[ y_2 ] = [ Q_2 ] x
709  *
710  * Let's call the input basic set S.  We compute S' = preimage(S, U)
711  * and drop the final dimensions including any constraints involving them.
712  * This results in set S''.
713  * Then we compute the affine hull A'' of S''.
714  * Let F y_1 >= g be the constraint system of A''.  In the transformed
715  * space the y_2 are unbounded, so we can add them back without any constraints,
716  * resulting in
717  *
718  *		        [ y_1 ]
719  *		[ F 0 ] [ y_2 ] >= g
720  * or
721  *		        [ Q_1 ]
722  *		[ F 0 ] [ Q_2 ] x >= g
723  * or
724  *		F Q_1 x >= g
725  *
726  * The affine hull in the original space is then obtained as
727  * A = preimage(A'', Q_1).
728  */
affine_hull_with_cone(struct isl_basic_set * bset,struct isl_basic_set * cone)729 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
730 	struct isl_basic_set *cone)
731 {
732 	isl_size total;
733 	unsigned cone_dim;
734 	struct isl_basic_set *hull;
735 	struct isl_mat *M, *U, *Q;
736 
737 	total = isl_basic_set_dim(cone, isl_dim_all);
738 	if (!bset || total < 0)
739 		goto error;
740 
741 	cone_dim = total - cone->n_eq;
742 
743 	M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
744 	M = isl_mat_left_hermite(M, 0, &U, &Q);
745 	if (!M)
746 		goto error;
747 	isl_mat_free(M);
748 
749 	U = isl_mat_lin_to_aff(U);
750 	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
751 
752 	bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
753 							cone_dim);
754 	bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
755 
756 	Q = isl_mat_lin_to_aff(Q);
757 	Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
758 
759 	if (bset && bset->sample && bset->sample->size == 1 + total)
760 		bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
761 
762 	hull = uset_affine_hull_bounded(bset);
763 
764 	if (!hull) {
765 		isl_mat_free(Q);
766 		isl_mat_free(U);
767 	} else {
768 		struct isl_vec *sample = isl_vec_copy(hull->sample);
769 		U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
770 		if (sample && sample->size > 0)
771 			sample = isl_mat_vec_product(U, sample);
772 		else
773 			isl_mat_free(U);
774 		hull = isl_basic_set_preimage(hull, Q);
775 		if (hull) {
776 			isl_vec_free(hull->sample);
777 			hull->sample = sample;
778 		} else
779 			isl_vec_free(sample);
780 	}
781 
782 	isl_basic_set_free(cone);
783 
784 	return hull;
785 error:
786 	isl_basic_set_free(bset);
787 	isl_basic_set_free(cone);
788 	return NULL;
789 }
790 
791 /* Look for all equalities satisfied by the integer points in bset,
792  * which is assumed not to have any explicit equalities.
793  *
794  * The equalities are obtained by successively looking for
795  * a point that is affinely independent of the points found so far.
796  * In particular, for each equality satisfied by the points so far,
797  * we check if there is any point on a hyperplane parallel to the
798  * corresponding hyperplane shifted by at least one (in either direction).
799  *
800  * Before looking for any outside points, we first compute the recession
801  * cone.  The directions of this recession cone will always be part
802  * of the affine hull, so there is no need for looking for any points
803  * in these directions.
804  * In particular, if the recession cone is full-dimensional, then
805  * the affine hull is simply the whole universe.
806  */
uset_affine_hull(struct isl_basic_set * bset)807 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
808 {
809 	struct isl_basic_set *cone;
810 	isl_size total;
811 
812 	if (isl_basic_set_plain_is_empty(bset))
813 		return bset;
814 
815 	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
816 	if (!cone)
817 		goto error;
818 	if (cone->n_eq == 0) {
819 		isl_space *space;
820 		space = isl_basic_set_get_space(bset);
821 		isl_basic_set_free(cone);
822 		isl_basic_set_free(bset);
823 		return isl_basic_set_universe(space);
824 	}
825 
826 	total = isl_basic_set_dim(cone, isl_dim_all);
827 	if (total < 0)
828 		bset = isl_basic_set_free(bset);
829 	if (cone->n_eq < total)
830 		return affine_hull_with_cone(bset, cone);
831 
832 	isl_basic_set_free(cone);
833 	return uset_affine_hull_bounded(bset);
834 error:
835 	isl_basic_set_free(bset);
836 	return NULL;
837 }
838 
839 /* Look for all equalities satisfied by the integer points in bmap
840  * that are independent of the equalities already explicitly available
841  * in bmap.
842  *
843  * We first remove all equalities already explicitly available,
844  * then look for additional equalities in the reduced space
845  * and then transform the result to the original space.
846  * The original equalities are _not_ added to this set.  This is
847  * the responsibility of the calling function.
848  * The resulting basic set has all meaning about the dimensions removed.
849  * In particular, dimensions that correspond to existential variables
850  * in bmap and that are found to be fixed are not removed.
851  */
equalities_in_underlying_set(struct isl_basic_map * bmap)852 static struct isl_basic_set *equalities_in_underlying_set(
853 						struct isl_basic_map *bmap)
854 {
855 	struct isl_mat *T1 = NULL;
856 	struct isl_mat *T2 = NULL;
857 	struct isl_basic_set *bset = NULL;
858 	struct isl_basic_set *hull = NULL;
859 
860 	bset = isl_basic_map_underlying_set(bmap);
861 	if (!bset)
862 		return NULL;
863 	if (bset->n_eq)
864 		bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
865 	if (!bset)
866 		goto error;
867 
868 	hull = uset_affine_hull(bset);
869 	if (!T2)
870 		return hull;
871 
872 	if (!hull) {
873 		isl_mat_free(T1);
874 		isl_mat_free(T2);
875 	} else {
876 		struct isl_vec *sample = isl_vec_copy(hull->sample);
877 		if (sample && sample->size > 0)
878 			sample = isl_mat_vec_product(T1, sample);
879 		else
880 			isl_mat_free(T1);
881 		hull = isl_basic_set_preimage(hull, T2);
882 		if (hull) {
883 			isl_vec_free(hull->sample);
884 			hull->sample = sample;
885 		} else
886 			isl_vec_free(sample);
887 	}
888 
889 	return hull;
890 error:
891 	isl_mat_free(T1);
892 	isl_mat_free(T2);
893 	isl_basic_set_free(bset);
894 	isl_basic_set_free(hull);
895 	return NULL;
896 }
897 
898 /* Detect and make explicit all equalities satisfied by the (integer)
899  * points in bmap.
900  */
isl_basic_map_detect_equalities(__isl_take isl_basic_map * bmap)901 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
902 	__isl_take isl_basic_map *bmap)
903 {
904 	int i, j;
905 	isl_size total;
906 	struct isl_basic_set *hull = NULL;
907 
908 	if (!bmap)
909 		return NULL;
910 	if (bmap->n_ineq == 0)
911 		return bmap;
912 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
913 		return bmap;
914 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
915 		return bmap;
916 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
917 		return isl_basic_map_implicit_equalities(bmap);
918 
919 	hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
920 	if (!hull)
921 		goto error;
922 	if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
923 		isl_basic_set_free(hull);
924 		return isl_basic_map_set_to_empty(bmap);
925 	}
926 	bmap = isl_basic_map_extend(bmap, 0, hull->n_eq, 0);
927 	total = isl_basic_set_dim(hull, isl_dim_all);
928 	if (total < 0)
929 		goto error;
930 	for (i = 0; i < hull->n_eq; ++i) {
931 		j = isl_basic_map_alloc_equality(bmap);
932 		if (j < 0)
933 			goto error;
934 		isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + total);
935 	}
936 	isl_vec_free(bmap->sample);
937 	bmap->sample = isl_vec_copy(hull->sample);
938 	isl_basic_set_free(hull);
939 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
940 	bmap = isl_basic_map_simplify(bmap);
941 	return isl_basic_map_finalize(bmap);
942 error:
943 	isl_basic_set_free(hull);
944 	isl_basic_map_free(bmap);
945 	return NULL;
946 }
947 
isl_basic_set_detect_equalities(__isl_take isl_basic_set * bset)948 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
949 						__isl_take isl_basic_set *bset)
950 {
951 	return bset_from_bmap(
952 		isl_basic_map_detect_equalities(bset_to_bmap(bset)));
953 }
954 
isl_map_detect_equalities(__isl_take isl_map * map)955 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
956 {
957 	return isl_map_inline_foreach_basic_map(map,
958 					    &isl_basic_map_detect_equalities);
959 }
960 
isl_set_detect_equalities(__isl_take isl_set * set)961 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
962 {
963 	return set_from_map(isl_map_detect_equalities(set_to_map(set)));
964 }
965 
966 /* Return the superset of "bmap" described by the equalities
967  * satisfied by "bmap" that are already known.
968  */
isl_basic_map_plain_affine_hull(__isl_take isl_basic_map * bmap)969 __isl_give isl_basic_map *isl_basic_map_plain_affine_hull(
970 	__isl_take isl_basic_map *bmap)
971 {
972 	bmap = isl_basic_map_cow(bmap);
973 	if (bmap)
974 		isl_basic_map_free_inequality(bmap, bmap->n_ineq);
975 	bmap = isl_basic_map_finalize(bmap);
976 	return bmap;
977 }
978 
979 /* Return the superset of "bset" described by the equalities
980  * satisfied by "bset" that are already known.
981  */
isl_basic_set_plain_affine_hull(__isl_take isl_basic_set * bset)982 __isl_give isl_basic_set *isl_basic_set_plain_affine_hull(
983 	__isl_take isl_basic_set *bset)
984 {
985 	return isl_basic_map_plain_affine_hull(bset);
986 }
987 
988 /* After computing the rational affine hull (by detecting the implicit
989  * equalities), we compute the additional equalities satisfied by
990  * the integer points (if any) and add the original equalities back in.
991  */
isl_basic_map_affine_hull(__isl_take isl_basic_map * bmap)992 __isl_give isl_basic_map *isl_basic_map_affine_hull(
993 	__isl_take isl_basic_map *bmap)
994 {
995 	bmap = isl_basic_map_detect_equalities(bmap);
996 	bmap = isl_basic_map_plain_affine_hull(bmap);
997 	return bmap;
998 }
999 
isl_basic_set_affine_hull(struct isl_basic_set * bset)1000 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
1001 {
1002 	return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset)));
1003 }
1004 
1005 /* Given a rational affine matrix "M", add stride constraints to "bmap"
1006  * that ensure that
1007  *
1008  *		M(x)
1009  *
1010  * is an integer vector.  The variables x include all the variables
1011  * of "bmap" except the unknown divs.
1012  *
1013  * If d is the common denominator of M, then we need to impose that
1014  *
1015  *		d M(x) = 0 	mod d
1016  *
1017  * or
1018  *
1019  *		exists alpha : d M(x) = d alpha
1020  *
1021  * This function is similar to add_strides in isl_morph.c
1022  */
add_strides(__isl_take isl_basic_map * bmap,__isl_keep isl_mat * M,int n_known)1023 static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
1024 	__isl_keep isl_mat *M, int n_known)
1025 {
1026 	int i, div, k;
1027 	isl_int gcd;
1028 
1029 	if (isl_int_is_one(M->row[0][0]))
1030 		return bmap;
1031 
1032 	bmap = isl_basic_map_extend(bmap, M->n_row - 1, M->n_row - 1, 0);
1033 
1034 	isl_int_init(gcd);
1035 	for (i = 1; i < M->n_row; ++i) {
1036 		isl_seq_gcd(M->row[i], M->n_col, &gcd);
1037 		if (isl_int_is_divisible_by(gcd, M->row[0][0]))
1038 			continue;
1039 		div = isl_basic_map_alloc_div(bmap);
1040 		if (div < 0)
1041 			goto error;
1042 		isl_int_set_si(bmap->div[div][0], 0);
1043 		k = isl_basic_map_alloc_equality(bmap);
1044 		if (k < 0)
1045 			goto error;
1046 		isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
1047 		isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
1048 		isl_int_set(bmap->eq[k][M->n_col - n_known + div],
1049 			    M->row[0][0]);
1050 	}
1051 	isl_int_clear(gcd);
1052 
1053 	return bmap;
1054 error:
1055 	isl_int_clear(gcd);
1056 	isl_basic_map_free(bmap);
1057 	return NULL;
1058 }
1059 
1060 /* If there are any equalities that involve (multiple) unknown divs,
1061  * then extract the stride information encoded by those equalities
1062  * and make it explicitly available in "bmap".
1063  *
1064  * We first sort the divs so that the unknown divs appear last and
1065  * then we count how many equalities involve these divs.
1066  *
1067  * Let these equalities be of the form
1068  *
1069  *		A(x) + B y = 0
1070  *
1071  * where y represents the unknown divs and x the remaining variables.
1072  * Let [H 0] be the Hermite Normal Form of B, i.e.,
1073  *
1074  *		B = [H 0] Q
1075  *
1076  * Then x is a solution of the equalities iff
1077  *
1078  *		H^-1 A(x) (= - [I 0] Q y)
1079  *
1080  * is an integer vector.  Let d be the common denominator of H^-1.
1081  * We impose
1082  *
1083  *		d H^-1 A(x) = d alpha
1084  *
1085  * in add_strides, with alpha fresh existentially quantified variables.
1086  */
isl_basic_map_make_strides_explicit(__isl_take isl_basic_map * bmap)1087 static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
1088 	__isl_take isl_basic_map *bmap)
1089 {
1090 	isl_bool known;
1091 	int n_known;
1092 	int n, n_col;
1093 	isl_size v_div;
1094 	isl_ctx *ctx;
1095 	isl_mat *A, *B, *M;
1096 
1097 	known = isl_basic_map_divs_known(bmap);
1098 	if (known < 0)
1099 		return isl_basic_map_free(bmap);
1100 	if (known)
1101 		return bmap;
1102 	bmap = isl_basic_map_sort_divs(bmap);
1103 	bmap = isl_basic_map_gauss(bmap, NULL);
1104 	if (!bmap)
1105 		return NULL;
1106 
1107 	for (n_known = 0; n_known < bmap->n_div; ++n_known)
1108 		if (isl_int_is_zero(bmap->div[n_known][0]))
1109 			break;
1110 	ctx = isl_basic_map_get_ctx(bmap);
1111 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1112 	if (v_div < 0)
1113 		return isl_basic_map_free(bmap);
1114 	for (n = 0; n < bmap->n_eq; ++n)
1115 		if (isl_seq_first_non_zero(bmap->eq[n] + 1 + v_div + n_known,
1116 					    bmap->n_div - n_known) == -1)
1117 			break;
1118 	if (n == 0)
1119 		return bmap;
1120 	B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + v_div + n_known);
1121 	n_col = bmap->n_div - n_known;
1122 	A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + v_div + n_known, n_col);
1123 	A = isl_mat_left_hermite(A, 0, NULL, NULL);
1124 	A = isl_mat_drop_cols(A, n, n_col - n);
1125 	A = isl_mat_lin_to_aff(A);
1126 	A = isl_mat_right_inverse(A);
1127 	B = isl_mat_insert_zero_rows(B, 0, 1);
1128 	B = isl_mat_set_element_si(B, 0, 0, 1);
1129 	M = isl_mat_product(A, B);
1130 	if (!M)
1131 		return isl_basic_map_free(bmap);
1132 	bmap = add_strides(bmap, M, n_known);
1133 	bmap = isl_basic_map_gauss(bmap, NULL);
1134 	isl_mat_free(M);
1135 
1136 	return bmap;
1137 }
1138 
1139 /* Compute the affine hull of each basic map in "map" separately
1140  * and make all stride information explicit so that we can remove
1141  * all unknown divs without losing this information.
1142  * The result is also guaranteed to be gaussed.
1143  *
1144  * In simple cases where a div is determined by an equality,
1145  * calling isl_basic_map_gauss is enough to make the stride information
1146  * explicit, as it will derive an explicit representation for the div
1147  * from the equality.  If, however, the stride information
1148  * is encoded through multiple unknown divs then we need to make
1149  * some extra effort in isl_basic_map_make_strides_explicit.
1150  */
isl_map_local_affine_hull(__isl_take isl_map * map)1151 static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
1152 {
1153 	int i;
1154 
1155 	map = isl_map_cow(map);
1156 	if (!map)
1157 		return NULL;
1158 
1159 	for (i = 0; i < map->n; ++i) {
1160 		map->p[i] = isl_basic_map_affine_hull(map->p[i]);
1161 		map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1162 		map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
1163 		if (!map->p[i])
1164 			return isl_map_free(map);
1165 	}
1166 
1167 	return map;
1168 }
1169 
isl_set_local_affine_hull(__isl_take isl_set * set)1170 static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
1171 {
1172 	return isl_map_local_affine_hull(set);
1173 }
1174 
1175 /* Return an empty basic map living in the same space as "map".
1176  */
replace_map_by_empty_basic_map(__isl_take isl_map * map)1177 static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
1178 	__isl_take isl_map *map)
1179 {
1180 	isl_space *space;
1181 
1182 	space = isl_map_get_space(map);
1183 	isl_map_free(map);
1184 	return isl_basic_map_empty(space);
1185 }
1186 
1187 /* Compute the affine hull of "map".
1188  *
1189  * We first compute the affine hull of each basic map separately.
1190  * Then we align the divs and recompute the affine hulls of the basic
1191  * maps since some of them may now have extra divs.
1192  * In order to avoid performing parametric integer programming to
1193  * compute explicit expressions for the divs, possible leading to
1194  * an explosion in the number of basic maps, we first drop all unknown
1195  * divs before aligning the divs.  Note that isl_map_local_affine_hull tries
1196  * to make sure that all stride information is explicitly available
1197  * in terms of known divs.  This involves calling isl_basic_set_gauss,
1198  * which is also needed because affine_hull assumes its input has been gaussed,
1199  * while isl_map_affine_hull may be called on input that has not been gaussed,
1200  * in particular from initial_facet_constraint.
1201  * Similarly, align_divs may reorder some divs so that we need to
1202  * gauss the result again.
1203  * Finally, we combine the individual affine hulls into a single
1204  * affine hull.
1205  */
isl_map_affine_hull(__isl_take isl_map * map)1206 __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
1207 {
1208 	struct isl_basic_map *model = NULL;
1209 	struct isl_basic_map *hull = NULL;
1210 	struct isl_set *set;
1211 	isl_basic_set *bset;
1212 
1213 	map = isl_map_detect_equalities(map);
1214 	map = isl_map_local_affine_hull(map);
1215 	map = isl_map_remove_empty_parts(map);
1216 	map = isl_map_remove_unknown_divs(map);
1217 	map = isl_map_align_divs_internal(map);
1218 
1219 	if (!map)
1220 		return NULL;
1221 
1222 	if (map->n == 0)
1223 		return replace_map_by_empty_basic_map(map);
1224 
1225 	model = isl_basic_map_copy(map->p[0]);
1226 	set = isl_map_underlying_set(map);
1227 	set = isl_set_cow(set);
1228 	set = isl_set_local_affine_hull(set);
1229 	if (!set)
1230 		goto error;
1231 
1232 	while (set->n > 1)
1233 		set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1234 
1235 	bset = isl_basic_set_copy(set->p[0]);
1236 	hull = isl_basic_map_overlying_set(bset, model);
1237 	isl_set_free(set);
1238 	hull = isl_basic_map_simplify(hull);
1239 	return isl_basic_map_finalize(hull);
1240 error:
1241 	isl_basic_map_free(model);
1242 	isl_set_free(set);
1243 	return NULL;
1244 }
1245 
isl_set_affine_hull(struct isl_set * set)1246 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1247 {
1248 	return bset_from_bmap(isl_map_affine_hull(set_to_map(set)));
1249 }
1250