1 // -*- C++ -*-
2 //===-- lexicographical_compare.pass.cpp ----------------------------------===//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // UNSUPPORTED: c++98, c++03, c++11, c++14
11 
12 #include "support/pstl_test_config.h"
13 
14 #include <iostream>
15 #include <execution>
16 #include <algorithm>
17 
18 #include "support/utils.h"
19 
20 using namespace TestUtils;
21 
22 struct test_one_policy
23 {
24 
25     template <typename ExecutionPolicy, typename Iterator1, typename Iterator2, typename Predicate>
26     void
operator ()test_one_policy27     operator()(ExecutionPolicy&& exec, Iterator1 begin1, Iterator1 end1, Iterator2 begin2, Iterator2 end2,
28                Predicate pred)
29     {
30         const bool expected = std::lexicographical_compare(begin1, end1, begin2, end2, pred);
31         const bool actual = std::lexicographical_compare(exec, begin1, end1, begin2, end2, pred);
32         EXPECT_TRUE(actual == expected, "wrong return result from lexicographical compare with predicate");
33     }
34 
35     template <typename ExecutionPolicy, typename Iterator1, typename Iterator2>
36     void
operator ()test_one_policy37     operator()(ExecutionPolicy&& exec, Iterator1 begin1, Iterator1 end1, Iterator2 begin2, Iterator2 end2)
38     {
39         const bool expected = std::lexicographical_compare(begin1, end1, begin2, end2);
40         const bool actual = std::lexicographical_compare(exec, begin1, end1, begin2, end2);
41         EXPECT_TRUE(actual == expected, "wrong return result from lexicographical compare without predicate");
42     }
43 };
44 
45 template <typename T1, typename T2, typename Predicate>
46 void
test(Predicate pred)47 test(Predicate pred)
48 {
49 
50     const std::size_t max_n = 1000000;
51     Sequence<T1> in1(max_n, [](std::size_t k) { return T1(k); });
52     Sequence<T2> in2(2 * max_n, [](std::size_t k) { return T2(k); });
53 
54     std::size_t n2;
55 
56     // Test case: Call algorithm's version without predicate.
57     invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.cbegin() + 3 * max_n / 10,
58                            in2.cbegin() + 5 * max_n / 10);
59 
60     // Test case: If one range is a prefix of another, the shorter range is lexicographically less than the other.
61     std::size_t max_n2 = max_n / 10;
62     invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + max_n, in2.cbegin(), in2.cbegin() + max_n2,
63                            pred);
64     invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + max_n, in2.begin() + max_n2,
65                            in2.begin() + 3 * max_n2, pred);
66 
67     // Test case: If one range is a prefix of another, the shorter range is lexicographically less than the other.
68     max_n2 = 2 * max_n;
69     invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.begin(), in2.begin() + max_n2,
70                            pred);
71 
72     for (std::size_t n1 = 0; n1 <= max_n; n1 = n1 <= 16 ? n1 + 1 : std::size_t(3.1415 * n1))
73     {
74         // Test case: If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically equal.
75         n2 = n1;
76         invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
77 
78         n2 = n1;
79         // Test case: two ranges have different elements and are of the same length (second sequence less than first)
80         std::size_t ind = n1 / 2;
81         in2[ind] = T2(-1);
82         invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
83         in2[ind] = T2(ind);
84 
85         // Test case: two ranges have different elements and are of the same length (first sequence less than second)
86         ind = n1 / 5;
87         in1[ind] = T1(-1);
88         invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.cbegin(), in2.cbegin() + n2, pred);
89         in1[ind] = T1(ind);
90     }
91 }
92 
93 template <typename Predicate>
94 void
test_string(Predicate pred)95 test_string(Predicate pred)
96 {
97 
98     const std::size_t max_n = 1000000;
99     std::string in1 = "";
100     std::string in2 = "";
101     for (std::size_t n1 = 0; n1 <= max_n; ++n1)
102     {
103         in1 += n1;
104     }
105 
106     for (std::size_t n1 = 0; n1 <= 2 * max_n; ++n1)
107     {
108         in2 += n1;
109     }
110 
111     std::size_t n2;
112 
113     for (std::size_t n1 = 0; n1 < in1.size(); n1 = n1 <= 16 ? n1 + 1 : std::size_t(3.1415 * n1))
114     {
115         // Test case: If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically equal.
116         n2 = n1;
117         invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
118 
119         n2 = n1;
120         // Test case: two ranges have different elements and are of the same length (second sequence less than first)
121         in2[n1 / 2] = 'a';
122         invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
123 
124         // Test case: two ranges have different elements and are of the same length (first sequence less than second)
125         in1[n1 / 5] = 'a';
126         invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.cbegin(), in2.cbegin() + n2, pred);
127     }
128     invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.cbegin() + 3 * max_n / 10,
129                            in2.cbegin() + 5 * max_n / 10);
130 }
131 
132 template <typename T>
133 struct LocalWrapper
134 {
LocalWrapperLocalWrapper135     explicit LocalWrapper(std::size_t k) : my_val(k) {}
136     bool
operator <LocalWrapper137     operator<(const LocalWrapper<T>& w) const
138     {
139         return my_val < w.my_val;
140     }
141 
142   private:
143     T my_val;
144 };
145 
146 template <typename T>
147 struct test_non_const
148 {
149     template <typename Policy, typename FirstIterator, typename SecondInterator>
150     void
operator ()test_non_const151     operator()(Policy&& exec, FirstIterator first_iter, SecondInterator second_iter)
152     {
153         invoke_if(exec, [&]() {
154             lexicographical_compare(exec, first_iter, first_iter, second_iter, second_iter, non_const(std::less<T>()));
155         });
156     }
157 };
158 
159 int
main()160 main()
161 {
162     test<uint16_t, float64_t>(std::less<float64_t>());
163     test<float32_t, int32_t>(std::greater<float32_t>());
164 #if !_PSTL_ICC_18_TEST_EARLY_EXIT_AVX_RELEASE_BROKEN
165     test<float64_t, int32_t>([](const float64_t x, const int32_t y) { return x * x < y * y; });
166 #endif
167     test<LocalWrapper<int32_t>, LocalWrapper<int32_t>>(
168         [](const LocalWrapper<int32_t>& x, const LocalWrapper<int32_t>& y) { return x < y; });
169     test_string([](const char x, const char y) { return x < y; });
170 
171     test_algo_basic_double<int32_t>(run_for_rnd_fw<test_non_const<int32_t>>());
172 
173     std::cout << done() << std::endl;
174     return 0;
175 }
176