1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24 
25 namespace {
26 class X86_64 : public TargetInfo {
27 public:
28   X86_64();
29   int getTlsGdRelaxSkip(RelType type) const override;
30   RelExpr getRelExpr(RelType type, const Symbol &s,
31                      const uint8_t *loc) const override;
32   RelType getDynRel(RelType type) const override;
33   void writeGotPltHeader(uint8_t *buf) const override;
34   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
36   void writePltHeader(uint8_t *buf) const override;
37   void writePlt(uint8_t *buf, const Symbol &sym,
38                 uint64_t pltEntryAddr) const override;
39   void relocate(uint8_t *loc, const Relocation &rel,
40                 uint64_t val) const override;
41   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
42   void applyJumpInstrMod(uint8_t *loc, JumpModType type,
43                          unsigned size) const override;
44 
45   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46                           const uint8_t *loc) const override;
47   void relaxGot(uint8_t *loc, const Relocation &rel,
48                 uint64_t val) const override;
49   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
50                       uint64_t val) const override;
51   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
52                       uint64_t val) const override;
53   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
54                       uint64_t val) const override;
55   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
56                       uint64_t val) const override;
57   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
58                                         uint8_t stOther) const override;
59   bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
60                              InputSection *nextIS) const override;
61 };
62 } // namespace
63 
64 // This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
65 // appropriately sized instructions are used to fill the gaps between sections
66 // which are executed during fall through.
67 static const std::vector<std::vector<uint8_t>> nopInstructions = {
68     {0x90},
69     {0x66, 0x90},
70     {0x0f, 0x1f, 0x00},
71     {0x0f, 0x1f, 0x40, 0x00},
72     {0x0f, 0x1f, 0x44, 0x00, 0x00},
73     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
74     {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
75     {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
76     {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
77 
X86_64()78 X86_64::X86_64() {
79   copyRel = R_X86_64_COPY;
80   gotRel = R_X86_64_GLOB_DAT;
81   pltRel = R_X86_64_JUMP_SLOT;
82   relativeRel = R_X86_64_RELATIVE;
83   iRelativeRel = R_X86_64_IRELATIVE;
84   symbolicRel = R_X86_64_64;
85   tlsDescRel = R_X86_64_TLSDESC;
86   tlsGotRel = R_X86_64_TPOFF64;
87   tlsModuleIndexRel = R_X86_64_DTPMOD64;
88   tlsOffsetRel = R_X86_64_DTPOFF64;
89   gotBaseSymInGotPlt = true;
90   gotEntrySize = 8;
91   pltHeaderSize = 16;
92   pltEntrySize = 16;
93   ipltEntrySize = 16;
94   trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
95   nopInstrs = nopInstructions;
96 
97   // Align to the large page size (known as a superpage or huge page).
98   // FreeBSD automatically promotes large, superpage-aligned allocations.
99   defaultImageBase = 0x200000;
100 }
101 
getTlsGdRelaxSkip(RelType type) const102 int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; }
103 
104 // Opcodes for the different X86_64 jmp instructions.
105 enum JmpInsnOpcode : uint32_t {
106   J_JMP_32,
107   J_JNE_32,
108   J_JE_32,
109   J_JG_32,
110   J_JGE_32,
111   J_JB_32,
112   J_JBE_32,
113   J_JL_32,
114   J_JLE_32,
115   J_JA_32,
116   J_JAE_32,
117   J_UNKNOWN,
118 };
119 
120 // Given the first (optional) and second byte of the insn's opcode, this
121 // returns the corresponding enum value.
getJmpInsnType(const uint8_t * first,const uint8_t * second)122 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
123                                     const uint8_t *second) {
124   if (*second == 0xe9)
125     return J_JMP_32;
126 
127   if (first == nullptr)
128     return J_UNKNOWN;
129 
130   if (*first == 0x0f) {
131     switch (*second) {
132     case 0x84:
133       return J_JE_32;
134     case 0x85:
135       return J_JNE_32;
136     case 0x8f:
137       return J_JG_32;
138     case 0x8d:
139       return J_JGE_32;
140     case 0x82:
141       return J_JB_32;
142     case 0x86:
143       return J_JBE_32;
144     case 0x8c:
145       return J_JL_32;
146     case 0x8e:
147       return J_JLE_32;
148     case 0x87:
149       return J_JA_32;
150     case 0x83:
151       return J_JAE_32;
152     }
153   }
154   return J_UNKNOWN;
155 }
156 
157 // Return the relocation index for input section IS with a specific Offset.
158 // Returns the maximum size of the vector if no such relocation is found.
getRelocationWithOffset(const InputSection & is,uint64_t offset)159 static unsigned getRelocationWithOffset(const InputSection &is,
160                                         uint64_t offset) {
161   unsigned size = is.relocations.size();
162   for (unsigned i = size - 1; i + 1 > 0; --i) {
163     if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE)
164       return i;
165   }
166   return size;
167 }
168 
169 // Returns true if R corresponds to a relocation used for a jump instruction.
170 // TODO: Once special relocations for relaxable jump instructions are available,
171 // this should be modified to use those relocations.
isRelocationForJmpInsn(Relocation & R)172 static bool isRelocationForJmpInsn(Relocation &R) {
173   return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
174          R.type == R_X86_64_PC8;
175 }
176 
177 // Return true if Relocation R points to the first instruction in the
178 // next section.
179 // TODO: Delete this once psABI reserves a new relocation type for fall thru
180 // jumps.
isFallThruRelocation(InputSection & is,InputFile * file,InputSection * nextIS,Relocation & r)181 static bool isFallThruRelocation(InputSection &is, InputFile *file,
182                                  InputSection *nextIS, Relocation &r) {
183   if (!isRelocationForJmpInsn(r))
184     return false;
185 
186   uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
187   uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
188       file, r.type, r.addend, addrLoc, *r.sym, r.expr);
189 
190   // If this jmp is a fall thru, the target offset is the beginning of the
191   // next section.
192   uint64_t nextSectionOffset =
193       nextIS->getOutputSection()->addr + nextIS->outSecOff;
194   return (addrLoc + 4 + targetOffset) == nextSectionOffset;
195 }
196 
197 // Return the jmp instruction opcode that is the inverse of the given
198 // opcode.  For example, JE inverted is JNE.
invertJmpOpcode(const JmpInsnOpcode opcode)199 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
200   switch (opcode) {
201   case J_JE_32:
202     return J_JNE_32;
203   case J_JNE_32:
204     return J_JE_32;
205   case J_JG_32:
206     return J_JLE_32;
207   case J_JGE_32:
208     return J_JL_32;
209   case J_JB_32:
210     return J_JAE_32;
211   case J_JBE_32:
212     return J_JA_32;
213   case J_JL_32:
214     return J_JGE_32;
215   case J_JLE_32:
216     return J_JG_32;
217   case J_JA_32:
218     return J_JBE_32;
219   case J_JAE_32:
220     return J_JB_32;
221   default:
222     return J_UNKNOWN;
223   }
224 }
225 
226 // Deletes direct jump instruction in input sections that jumps to the
227 // following section as it is not required.  If there are two consecutive jump
228 // instructions, it checks if they can be flipped and one can be deleted.
229 // For example:
230 // .section .text
231 // a.BB.foo:
232 //    ...
233 //    10: jne aa.BB.foo
234 //    16: jmp bar
235 // aa.BB.foo:
236 //    ...
237 //
238 // can be converted to:
239 // a.BB.foo:
240 //   ...
241 //   10: je bar  #jne flipped to je and the jmp is deleted.
242 // aa.BB.foo:
243 //   ...
deleteFallThruJmpInsn(InputSection & is,InputFile * file,InputSection * nextIS) const244 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
245                                    InputSection *nextIS) const {
246   const unsigned sizeOfDirectJmpInsn = 5;
247 
248   if (nextIS == nullptr)
249     return false;
250 
251   if (is.getSize() < sizeOfDirectJmpInsn)
252     return false;
253 
254   // If this jmp insn can be removed, it is the last insn and the
255   // relocation is 4 bytes before the end.
256   unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
257   if (rIndex == is.relocations.size())
258     return false;
259 
260   Relocation &r = is.relocations[rIndex];
261 
262   // Check if the relocation corresponds to a direct jmp.
263   const uint8_t *secContents = is.data().data();
264   // If it is not a direct jmp instruction, there is nothing to do here.
265   if (*(secContents + r.offset - 1) != 0xe9)
266     return false;
267 
268   if (isFallThruRelocation(is, file, nextIS, r)) {
269     // This is a fall thru and can be deleted.
270     r.expr = R_NONE;
271     r.offset = 0;
272     is.drop_back(sizeOfDirectJmpInsn);
273     is.nopFiller = true;
274     return true;
275   }
276 
277   // Now, check if flip and delete is possible.
278   const unsigned sizeOfJmpCCInsn = 6;
279   // To flip, there must be atleast one JmpCC and one direct jmp.
280   if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
281     return 0;
282 
283   unsigned rbIndex =
284       getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
285   if (rbIndex == is.relocations.size())
286     return 0;
287 
288   Relocation &rB = is.relocations[rbIndex];
289 
290   const uint8_t *jmpInsnB = secContents + rB.offset - 1;
291   JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
292   if (jmpOpcodeB == J_UNKNOWN)
293     return false;
294 
295   if (!isFallThruRelocation(is, file, nextIS, rB))
296     return false;
297 
298   // jmpCC jumps to the fall thru block, the branch can be flipped and the
299   // jmp can be deleted.
300   JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
301   if (jInvert == J_UNKNOWN)
302     return false;
303   is.jumpInstrMods.push_back({jInvert, (rB.offset - 1), 4});
304   // Move R's values to rB except the offset.
305   rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
306   // Cancel R
307   r.expr = R_NONE;
308   r.offset = 0;
309   is.drop_back(sizeOfDirectJmpInsn);
310   is.nopFiller = true;
311   return true;
312 }
313 
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const314 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
315                            const uint8_t *loc) const {
316   if (type == R_X86_64_GOTTPOFF)
317     config->hasStaticTlsModel = true;
318 
319   switch (type) {
320   case R_X86_64_8:
321   case R_X86_64_16:
322   case R_X86_64_32:
323   case R_X86_64_32S:
324   case R_X86_64_64:
325     return R_ABS;
326   case R_X86_64_DTPOFF32:
327   case R_X86_64_DTPOFF64:
328     return R_DTPREL;
329   case R_X86_64_TPOFF32:
330     return R_TPREL;
331   case R_X86_64_TLSDESC_CALL:
332     return R_TLSDESC_CALL;
333   case R_X86_64_TLSLD:
334     return R_TLSLD_PC;
335   case R_X86_64_TLSGD:
336     return R_TLSGD_PC;
337   case R_X86_64_SIZE32:
338   case R_X86_64_SIZE64:
339     return R_SIZE;
340   case R_X86_64_PLT32:
341     return R_PLT_PC;
342   case R_X86_64_PC8:
343   case R_X86_64_PC16:
344   case R_X86_64_PC32:
345   case R_X86_64_PC64:
346     return R_PC;
347   case R_X86_64_GOT32:
348   case R_X86_64_GOT64:
349     return R_GOTPLT;
350   case R_X86_64_GOTPC32_TLSDESC:
351     return R_TLSDESC_PC;
352   case R_X86_64_GOTPCREL:
353   case R_X86_64_GOTPCRELX:
354   case R_X86_64_REX_GOTPCRELX:
355   case R_X86_64_GOTTPOFF:
356     return R_GOT_PC;
357   case R_X86_64_GOTOFF64:
358     return R_GOTPLTREL;
359   case R_X86_64_GOTPC32:
360   case R_X86_64_GOTPC64:
361     return R_GOTPLTONLY_PC;
362   case R_X86_64_NONE:
363     return R_NONE;
364   default:
365     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
366           ") against symbol " + toString(s));
367     return R_NONE;
368   }
369 }
370 
writeGotPltHeader(uint8_t * buf) const371 void X86_64::writeGotPltHeader(uint8_t *buf) const {
372   // The first entry holds the value of _DYNAMIC. It is not clear why that is
373   // required, but it is documented in the psabi and the glibc dynamic linker
374   // seems to use it (note that this is relevant for linking ld.so, not any
375   // other program).
376   write64le(buf, mainPart->dynamic->getVA());
377 }
378 
writeGotPlt(uint8_t * buf,const Symbol & s) const379 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
380   // See comments in X86::writeGotPlt.
381   write64le(buf, s.getPltVA() + 6);
382 }
383 
writeIgotPlt(uint8_t * buf,const Symbol & s) const384 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
385   // An x86 entry is the address of the ifunc resolver function (for -z rel).
386   if (config->writeAddends)
387     write64le(buf, s.getVA());
388 }
389 
writePltHeader(uint8_t * buf) const390 void X86_64::writePltHeader(uint8_t *buf) const {
391   const uint8_t pltData[] = {
392       0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
393       0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
394       0x0f, 0x1f, 0x40, 0x00, // nop
395   };
396   memcpy(buf, pltData, sizeof(pltData));
397   uint64_t gotPlt = in.gotPlt->getVA();
398   uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
399   write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
400   write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
401 }
402 
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const403 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
404                       uint64_t pltEntryAddr) const {
405   const uint8_t inst[] = {
406       0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
407       0x68, 0, 0, 0, 0,       // pushq <relocation index>
408       0xe9, 0, 0, 0, 0,       // jmpq plt[0]
409   };
410   memcpy(buf, inst, sizeof(inst));
411 
412   write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
413   write32le(buf + 7, sym.pltIndex);
414   write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
415 }
416 
getDynRel(RelType type) const417 RelType X86_64::getDynRel(RelType type) const {
418   if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
419       type == R_X86_64_SIZE64)
420     return type;
421   return R_X86_64_NONE;
422 }
423 
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const424 void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
425                             uint64_t val) const {
426   if (rel.type == R_X86_64_TLSGD) {
427     // Convert
428     //   .byte 0x66
429     //   leaq x@tlsgd(%rip), %rdi
430     //   .word 0x6666
431     //   rex64
432     //   call __tls_get_addr@plt
433     // to the following two instructions.
434     const uint8_t inst[] = {
435         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
436         0x00, 0x00,                            // mov %fs:0x0,%rax
437         0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
438     };
439     memcpy(loc - 4, inst, sizeof(inst));
440 
441     // The original code used a pc relative relocation and so we have to
442     // compensate for the -4 in had in the addend.
443     write32le(loc + 8, val + 4);
444   } else {
445     // Convert
446     //   lea x@tlsgd(%rip), %rax
447     //   call *(%rax)
448     // to the following two instructions.
449     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
450     if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
451       error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
452                                         "in callq *x@tlsdesc(%rip), %rax");
453       return;
454     }
455     // movq $x@tpoff(%rip),%rax
456     loc[-2] = 0xc7;
457     loc[-1] = 0xc0;
458     write32le(loc, val + 4);
459     // xchg ax,ax
460     loc[4] = 0x66;
461     loc[5] = 0x90;
462   }
463 }
464 
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const465 void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
466                             uint64_t val) const {
467   if (rel.type == R_X86_64_TLSGD) {
468     // Convert
469     //   .byte 0x66
470     //   leaq x@tlsgd(%rip), %rdi
471     //   .word 0x6666
472     //   rex64
473     //   call __tls_get_addr@plt
474     // to the following two instructions.
475     const uint8_t inst[] = {
476         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
477         0x00, 0x00,                            // mov %fs:0x0,%rax
478         0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
479     };
480     memcpy(loc - 4, inst, sizeof(inst));
481 
482     // Both code sequences are PC relatives, but since we are moving the
483     // constant forward by 8 bytes we have to subtract the value by 8.
484     write32le(loc + 8, val - 8);
485   } else {
486     // Convert
487     //   lea x@tlsgd(%rip), %rax
488     //   call *(%rax)
489     // to the following two instructions.
490     assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
491     if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
492       error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
493                                         "in callq *x@tlsdesc(%rip), %rax");
494       return;
495     }
496     // movq x@gottpoff(%rip),%rax
497     loc[-2] = 0x8b;
498     write32le(loc, val);
499     // xchg ax,ax
500     loc[4] = 0x66;
501     loc[5] = 0x90;
502   }
503 }
504 
505 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
506 // R_X86_64_TPOFF32 so that it does not use GOT.
relaxTlsIeToLe(uint8_t * loc,const Relocation &,uint64_t val) const507 void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &,
508                             uint64_t val) const {
509   uint8_t *inst = loc - 3;
510   uint8_t reg = loc[-1] >> 3;
511   uint8_t *regSlot = loc - 1;
512 
513   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
514   // because LEA with these registers needs 4 bytes to encode and thus
515   // wouldn't fit the space.
516 
517   if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
518     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
519     memcpy(inst, "\x48\x81\xc4", 3);
520   } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
521     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
522     memcpy(inst, "\x49\x81\xc4", 3);
523   } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
524     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
525     memcpy(inst, "\x4d\x8d", 2);
526     *regSlot = 0x80 | (reg << 3) | reg;
527   } else if (memcmp(inst, "\x48\x03", 2) == 0) {
528     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
529     memcpy(inst, "\x48\x8d", 2);
530     *regSlot = 0x80 | (reg << 3) | reg;
531   } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
532     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
533     memcpy(inst, "\x49\xc7", 2);
534     *regSlot = 0xc0 | reg;
535   } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
536     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
537     memcpy(inst, "\x48\xc7", 2);
538     *regSlot = 0xc0 | reg;
539   } else {
540     error(getErrorLocation(loc - 3) +
541           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
542   }
543 
544   // The original code used a PC relative relocation.
545   // Need to compensate for the -4 it had in the addend.
546   write32le(loc, val + 4);
547 }
548 
relaxTlsLdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const549 void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
550                             uint64_t val) const {
551   if (rel.type == R_X86_64_DTPOFF64) {
552     write64le(loc, val);
553     return;
554   }
555   if (rel.type == R_X86_64_DTPOFF32) {
556     write32le(loc, val);
557     return;
558   }
559 
560   const uint8_t inst[] = {
561       0x66, 0x66,                                           // .word 0x6666
562       0x66,                                                 // .byte 0x66
563       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
564   };
565 
566   if (loc[4] == 0xe8) {
567     // Convert
568     //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
569     //   callq __tls_get_addr@PLT             # e8 <disp32>
570     //   leaq bar@dtpoff(%rax), %rcx
571     // to
572     //   .word 0x6666
573     //   .byte 0x66
574     //   mov %fs:0,%rax
575     //   leaq bar@tpoff(%rax), %rcx
576     memcpy(loc - 3, inst, sizeof(inst));
577     return;
578   }
579 
580   if (loc[4] == 0xff && loc[5] == 0x15) {
581     // Convert
582     //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
583     //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
584     // to
585     //   .long  0x66666666
586     //   movq   %fs:0,%rax
587     // See "Table 11.9: LD -> LE Code Transition (LP64)" in
588     // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
589     loc[-3] = 0x66;
590     memcpy(loc - 2, inst, sizeof(inst));
591     return;
592   }
593 
594   error(getErrorLocation(loc - 3) +
595         "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
596 }
597 
598 // A JumpInstrMod at a specific offset indicates that the jump instruction
599 // opcode at that offset must be modified.  This is specifically used to relax
600 // jump instructions with basic block sections.  This function looks at the
601 // JumpMod and effects the change.
applyJumpInstrMod(uint8_t * loc,JumpModType type,unsigned size) const602 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
603                                unsigned size) const {
604   switch (type) {
605   case J_JMP_32:
606     if (size == 4)
607       *loc = 0xe9;
608     else
609       *loc = 0xeb;
610     break;
611   case J_JE_32:
612     if (size == 4) {
613       loc[-1] = 0x0f;
614       *loc = 0x84;
615     } else
616       *loc = 0x74;
617     break;
618   case J_JNE_32:
619     if (size == 4) {
620       loc[-1] = 0x0f;
621       *loc = 0x85;
622     } else
623       *loc = 0x75;
624     break;
625   case J_JG_32:
626     if (size == 4) {
627       loc[-1] = 0x0f;
628       *loc = 0x8f;
629     } else
630       *loc = 0x7f;
631     break;
632   case J_JGE_32:
633     if (size == 4) {
634       loc[-1] = 0x0f;
635       *loc = 0x8d;
636     } else
637       *loc = 0x7d;
638     break;
639   case J_JB_32:
640     if (size == 4) {
641       loc[-1] = 0x0f;
642       *loc = 0x82;
643     } else
644       *loc = 0x72;
645     break;
646   case J_JBE_32:
647     if (size == 4) {
648       loc[-1] = 0x0f;
649       *loc = 0x86;
650     } else
651       *loc = 0x76;
652     break;
653   case J_JL_32:
654     if (size == 4) {
655       loc[-1] = 0x0f;
656       *loc = 0x8c;
657     } else
658       *loc = 0x7c;
659     break;
660   case J_JLE_32:
661     if (size == 4) {
662       loc[-1] = 0x0f;
663       *loc = 0x8e;
664     } else
665       *loc = 0x7e;
666     break;
667   case J_JA_32:
668     if (size == 4) {
669       loc[-1] = 0x0f;
670       *loc = 0x87;
671     } else
672       *loc = 0x77;
673     break;
674   case J_JAE_32:
675     if (size == 4) {
676       loc[-1] = 0x0f;
677       *loc = 0x83;
678     } else
679       *loc = 0x73;
680     break;
681   case J_UNKNOWN:
682     llvm_unreachable("Unknown Jump Relocation");
683   }
684 }
685 
getImplicitAddend(const uint8_t * buf,RelType type) const686 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
687   switch (type) {
688   case R_X86_64_8:
689   case R_X86_64_PC8:
690     return SignExtend64<8>(*buf);
691   case R_X86_64_16:
692   case R_X86_64_PC16:
693     return SignExtend64<16>(read16le(buf));
694   case R_X86_64_32:
695   case R_X86_64_32S:
696   case R_X86_64_TPOFF32:
697   case R_X86_64_GOT32:
698   case R_X86_64_GOTPC32:
699   case R_X86_64_GOTPC32_TLSDESC:
700   case R_X86_64_GOTPCREL:
701   case R_X86_64_GOTPCRELX:
702   case R_X86_64_REX_GOTPCRELX:
703   case R_X86_64_PC32:
704   case R_X86_64_GOTTPOFF:
705   case R_X86_64_PLT32:
706   case R_X86_64_TLSGD:
707   case R_X86_64_TLSLD:
708   case R_X86_64_DTPOFF32:
709   case R_X86_64_SIZE32:
710     return SignExtend64<32>(read32le(buf));
711   case R_X86_64_64:
712   case R_X86_64_TPOFF64:
713   case R_X86_64_DTPOFF64:
714   case R_X86_64_DTPMOD64:
715   case R_X86_64_PC64:
716   case R_X86_64_SIZE64:
717   case R_X86_64_GLOB_DAT:
718   case R_X86_64_GOT64:
719   case R_X86_64_GOTOFF64:
720   case R_X86_64_GOTPC64:
721   case R_X86_64_IRELATIVE:
722   case R_X86_64_RELATIVE:
723     return read64le(buf);
724   case R_X86_64_JUMP_SLOT:
725   case R_X86_64_NONE:
726     // These relocations are defined as not having an implicit addend.
727     return 0;
728   default:
729     internalLinkerError(getErrorLocation(buf),
730                         "cannot read addend for relocation " + toString(type));
731     return 0;
732   }
733 }
734 
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const735 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
736   switch (rel.type) {
737   case R_X86_64_8:
738     checkIntUInt(loc, val, 8, rel);
739     *loc = val;
740     break;
741   case R_X86_64_PC8:
742     checkInt(loc, val, 8, rel);
743     *loc = val;
744     break;
745   case R_X86_64_16:
746     checkIntUInt(loc, val, 16, rel);
747     write16le(loc, val);
748     break;
749   case R_X86_64_PC16:
750     checkInt(loc, val, 16, rel);
751     write16le(loc, val);
752     break;
753   case R_X86_64_32:
754     checkUInt(loc, val, 32, rel);
755     write32le(loc, val);
756     break;
757   case R_X86_64_32S:
758   case R_X86_64_TPOFF32:
759   case R_X86_64_GOT32:
760   case R_X86_64_GOTPC32:
761   case R_X86_64_GOTPC32_TLSDESC:
762   case R_X86_64_GOTPCREL:
763   case R_X86_64_GOTPCRELX:
764   case R_X86_64_REX_GOTPCRELX:
765   case R_X86_64_PC32:
766   case R_X86_64_GOTTPOFF:
767   case R_X86_64_PLT32:
768   case R_X86_64_TLSGD:
769   case R_X86_64_TLSLD:
770   case R_X86_64_DTPOFF32:
771   case R_X86_64_SIZE32:
772     checkInt(loc, val, 32, rel);
773     write32le(loc, val);
774     break;
775   case R_X86_64_64:
776   case R_X86_64_DTPOFF64:
777   case R_X86_64_PC64:
778   case R_X86_64_SIZE64:
779   case R_X86_64_GOT64:
780   case R_X86_64_GOTOFF64:
781   case R_X86_64_GOTPC64:
782     write64le(loc, val);
783     break;
784   default:
785     llvm_unreachable("unknown relocation");
786   }
787 }
788 
adjustGotPcExpr(RelType type,int64_t addend,const uint8_t * loc) const789 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
790                                 const uint8_t *loc) const {
791   // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
792   // with addend != -4. Such an instruction does not load the full GOT entry, so
793   // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
794   // (addend=0) loads the high 32 bits of the GOT entry.
795   if ((type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX) ||
796       addend != -4)
797     return R_GOT_PC;
798   const uint8_t op = loc[-2];
799   const uint8_t modRm = loc[-1];
800 
801   // FIXME: When PIC is disabled and foo is defined locally in the
802   // lower 32 bit address space, memory operand in mov can be converted into
803   // immediate operand. Otherwise, mov must be changed to lea. We support only
804   // latter relaxation at this moment.
805   if (op == 0x8b)
806     return R_RELAX_GOT_PC;
807 
808   // Relax call and jmp.
809   if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
810     return R_RELAX_GOT_PC;
811 
812   // We don't support test/binop instructions without a REX prefix.
813   if (type == R_X86_64_GOTPCRELX)
814     return R_GOT_PC;
815 
816   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
817   // If PIC then no relaxation is available.
818   return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
819 }
820 
821 // A subset of relaxations can only be applied for no-PIC. This method
822 // handles such relaxations. Instructions encoding information was taken from:
823 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
824 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
825 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
relaxGotNoPic(uint8_t * loc,uint64_t val,uint8_t op,uint8_t modRm)826 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
827                           uint8_t modRm) {
828   const uint8_t rex = loc[-3];
829   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
830   if (op == 0x85) {
831     // See "TEST-Logical Compare" (4-428 Vol. 2B),
832     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
833 
834     // ModR/M byte has form XX YYY ZZZ, where
835     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
836     // XX has different meanings:
837     // 00: The operand's memory address is in reg1.
838     // 01: The operand's memory address is reg1 + a byte-sized displacement.
839     // 10: The operand's memory address is reg1 + a word-sized displacement.
840     // 11: The operand is reg1 itself.
841     // If an instruction requires only one operand, the unused reg2 field
842     // holds extra opcode bits rather than a register code
843     // 0xC0 == 11 000 000 binary.
844     // 0x38 == 00 111 000 binary.
845     // We transfer reg2 to reg1 here as operand.
846     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
847     loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
848 
849     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
850     // See "TEST-Logical Compare" (4-428 Vol. 2B).
851     loc[-2] = 0xf7;
852 
853     // Move R bit to the B bit in REX byte.
854     // REX byte is encoded as 0100WRXB, where
855     // 0100 is 4bit fixed pattern.
856     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
857     //   default operand size is used (which is 32-bit for most but not all
858     //   instructions).
859     // REX.R This 1-bit value is an extension to the MODRM.reg field.
860     // REX.X This 1-bit value is an extension to the SIB.index field.
861     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
862     // SIB.base field.
863     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
864     loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
865     write32le(loc, val);
866     return;
867   }
868 
869   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
870   // or xor operations.
871 
872   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
873   // Logic is close to one for test instruction above, but we also
874   // write opcode extension here, see below for details.
875   loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
876 
877   // Primary opcode is 0x81, opcode extension is one of:
878   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
879   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
880   // This value was wrote to MODRM.reg in a line above.
881   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
882   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
883   // descriptions about each operation.
884   loc[-2] = 0x81;
885   loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
886   write32le(loc, val);
887 }
888 
relaxGot(uint8_t * loc,const Relocation & rel,uint64_t val) const889 void X86_64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
890   checkInt(loc, val, 32, rel);
891   const uint8_t op = loc[-2];
892   const uint8_t modRm = loc[-1];
893 
894   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
895   if (op == 0x8b) {
896     loc[-2] = 0x8d;
897     write32le(loc, val);
898     return;
899   }
900 
901   if (op != 0xff) {
902     // We are relaxing a rip relative to an absolute, so compensate
903     // for the old -4 addend.
904     assert(!config->isPic);
905     relaxGotNoPic(loc, val + 4, op, modRm);
906     return;
907   }
908 
909   // Convert call/jmp instructions.
910   if (modRm == 0x15) {
911     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
912     // Instead we convert to "addr32 call foo" where addr32 is an instruction
913     // prefix. That makes result expression to be a single instruction.
914     loc[-2] = 0x67; // addr32 prefix
915     loc[-1] = 0xe8; // call
916     write32le(loc, val);
917     return;
918   }
919 
920   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
921   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
922   assert(modRm == 0x25);
923   loc[-2] = 0xe9; // jmp
924   loc[3] = 0x90;  // nop
925   write32le(loc - 1, val + 1);
926 }
927 
928 // A split-stack prologue starts by checking the amount of stack remaining
929 // in one of two ways:
930 // A) Comparing of the stack pointer to a field in the tcb.
931 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
adjustPrologueForCrossSplitStack(uint8_t * loc,uint8_t * end,uint8_t stOther) const932 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
933                                               uint8_t stOther) const {
934   if (!config->is64) {
935     error("Target doesn't support split stacks.");
936     return false;
937   }
938 
939   if (loc + 8 >= end)
940     return false;
941 
942   // Replace "cmp %fs:0x70,%rsp" and subsequent branch
943   // with "stc, nopl 0x0(%rax,%rax,1)"
944   if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
945     memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
946     return true;
947   }
948 
949   // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
950   // be r10 or r11. The lea instruction feeds a subsequent compare which checks
951   // if there is X available stack space. Making X larger effectively reserves
952   // that much additional space. The stack grows downward so subtract the value.
953   if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
954       memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
955     // The offset bytes are encoded four bytes after the start of the
956     // instruction.
957     write32le(loc + 4, read32le(loc + 4) - 0x4000);
958     return true;
959   }
960   return false;
961 }
962 
963 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
964 // entries containing endbr64 instructions. A PLT entry will be split into two
965 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
966 namespace {
967 class IntelIBT : public X86_64 {
968 public:
969   IntelIBT();
970   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
971   void writePlt(uint8_t *buf, const Symbol &sym,
972                 uint64_t pltEntryAddr) const override;
973   void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
974 
975   static const unsigned IBTPltHeaderSize = 16;
976 };
977 } // namespace
978 
IntelIBT()979 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
980 
writeGotPlt(uint8_t * buf,const Symbol & s) const981 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
982   uint64_t va =
983       in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
984   write64le(buf, va);
985 }
986 
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const987 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
988                         uint64_t pltEntryAddr) const {
989   const uint8_t Inst[] = {
990       0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
991       0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
992       0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
993   };
994   memcpy(buf, Inst, sizeof(Inst));
995   write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
996 }
997 
writeIBTPlt(uint8_t * buf,size_t numEntries) const998 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
999   writePltHeader(buf);
1000   buf += IBTPltHeaderSize;
1001 
1002   const uint8_t inst[] = {
1003       0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
1004       0x68, 0,    0,    0,    0, // pushq <relocation index>
1005       0xe9, 0,    0,    0,    0, // jmpq plt[0]
1006       0x66, 0x90,                // nop
1007   };
1008 
1009   for (size_t i = 0; i < numEntries; ++i) {
1010     memcpy(buf, inst, sizeof(inst));
1011     write32le(buf + 5, i);
1012     write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1013     buf += sizeof(inst);
1014   }
1015 }
1016 
1017 // These nonstandard PLT entries are to migtigate Spectre v2 security
1018 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1019 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1020 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1021 // indirect jump. That instruction sequence is so-called "retpoline".
1022 //
1023 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1024 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1025 // that option is given, we can omit code for symbol lazy resolution.
1026 namespace {
1027 class Retpoline : public X86_64 {
1028 public:
1029   Retpoline();
1030   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1031   void writePltHeader(uint8_t *buf) const override;
1032   void writePlt(uint8_t *buf, const Symbol &sym,
1033                 uint64_t pltEntryAddr) const override;
1034 };
1035 
1036 class RetpolineZNow : public X86_64 {
1037 public:
1038   RetpolineZNow();
writeGotPlt(uint8_t * buf,const Symbol & s) const1039   void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1040   void writePltHeader(uint8_t *buf) const override;
1041   void writePlt(uint8_t *buf, const Symbol &sym,
1042                 uint64_t pltEntryAddr) const override;
1043 };
1044 } // namespace
1045 
Retpoline()1046 Retpoline::Retpoline() {
1047   pltHeaderSize = 48;
1048   pltEntrySize = 32;
1049   ipltEntrySize = 32;
1050 }
1051 
writeGotPlt(uint8_t * buf,const Symbol & s) const1052 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1053   write64le(buf, s.getPltVA() + 17);
1054 }
1055 
writePltHeader(uint8_t * buf) const1056 void Retpoline::writePltHeader(uint8_t *buf) const {
1057   const uint8_t insn[] = {
1058       0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
1059       0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
1060       0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
1061       0xf3, 0x90,                               // 12: loop: pause
1062       0x0f, 0xae, 0xe8,                         // 14:   lfence
1063       0xeb, 0xf9,                               // 17:   jmp loop
1064       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
1065       0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
1066       0xc3,                                     // 24:   ret
1067       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
1068       0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
1069   };
1070   memcpy(buf, insn, sizeof(insn));
1071 
1072   uint64_t gotPlt = in.gotPlt->getVA();
1073   uint64_t plt = in.plt->getVA();
1074   write32le(buf + 2, gotPlt - plt - 6 + 8);
1075   write32le(buf + 9, gotPlt - plt - 13 + 16);
1076 }
1077 
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const1078 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1079                          uint64_t pltEntryAddr) const {
1080   const uint8_t insn[] = {
1081       0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
1082       0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
1083       0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
1084       0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
1085       0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
1086       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1087   };
1088   memcpy(buf, insn, sizeof(insn));
1089 
1090   uint64_t off = pltEntryAddr - in.plt->getVA();
1091 
1092   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1093   write32le(buf + 8, -off - 12 + 32);
1094   write32le(buf + 13, -off - 17 + 18);
1095   write32le(buf + 18, sym.pltIndex);
1096   write32le(buf + 23, -off - 27);
1097 }
1098 
RetpolineZNow()1099 RetpolineZNow::RetpolineZNow() {
1100   pltHeaderSize = 32;
1101   pltEntrySize = 16;
1102   ipltEntrySize = 16;
1103 }
1104 
writePltHeader(uint8_t * buf) const1105 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1106   const uint8_t insn[] = {
1107       0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
1108       0xf3, 0x90,                   // 5:  loop: pause
1109       0x0f, 0xae, 0xe8,             // 7:    lfence
1110       0xeb, 0xf9,                   // a:    jmp loop
1111       0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
1112       0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
1113       0xc3,                         // 14:   ret
1114       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
1115       0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
1116       0xcc,                         // 1f:   int3; padding
1117   };
1118   memcpy(buf, insn, sizeof(insn));
1119 }
1120 
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const1121 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1122                              uint64_t pltEntryAddr) const {
1123   const uint8_t insn[] = {
1124       0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1125       0xe9, 0,    0,    0,    0,       // jmp plt+0
1126       0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
1127   };
1128   memcpy(buf, insn, sizeof(insn));
1129 
1130   write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1131   write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1132 }
1133 
getTargetInfo()1134 static TargetInfo *getTargetInfo() {
1135   if (config->zRetpolineplt) {
1136     if (config->zNow) {
1137       static RetpolineZNow t;
1138       return &t;
1139     }
1140     static Retpoline t;
1141     return &t;
1142   }
1143 
1144   if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1145     static IntelIBT t;
1146     return &t;
1147   }
1148 
1149   static X86_64 t;
1150   return &t;
1151 }
1152 
getX86_64TargetInfo()1153 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1154