1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
print(raw_ostream & OS) const251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
getType() const379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
isZero() const409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
isOne() const415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
isAllOnesValue() const421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
isNonConstantNegative() const427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
SCEVCouldNotCompute()439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
classof(const SCEV * S)442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
getConstant(ConstantInt * V)446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
getConstant(const APInt & Val)457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
SCEVCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID,const SCEV * Op,Type * ITy)473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
deleted()506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
allUsesReplacedWith(Value * New)517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
isSizeOf(Type * & AllocTy) const527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
isAlignOf(Type * & AllocTy) const543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
isOffsetOf(Type * & CTy,Constant * & FieldNo) const567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
hasHugeExpression(ArrayRef<const SCEV * > Ops)896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
evaluateAtIteration(ArrayRef<const SCEV * > Operands,const SCEV * It,ScalarEvolution & SE)1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
getLosslessPtrToIntExpr(const SCEV * Op,unsigned Depth)1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
getPtrToIntExpr(const SCEV * Op,Type * Ty)1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
getTruncateExpr(const SCEV * Op,Type * Ty,unsigned Depth)1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
getOverflowLimitForStep__anonb5a706170511::ExtendOpTraits1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
getOverflowLimitForStep__anonb5a706170511::ExtendOpTraits1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
willNotOverflow(Instruction::BinaryOps BinOp,bool Signed,const SCEV * LHS,const SCEV * RHS)2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator * OBO)2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   // <0,+,nonnegative><nw> is also nuw
2394   // TODO: Add corresponding nsw case
2395   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2396       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2397       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2398     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2399 
2400   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2401   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2402       Ops.size() == 2) {
2403     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2404       if (UDiv->getOperand(1) == Ops[1])
2405         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2406     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2407       if (UDiv->getOperand(1) == Ops[0])
2408         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2409   }
2410 
2411   return Flags;
2412 }
2413 
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2414 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2415   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2416 }
2417 
2418 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2419 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2420                                         SCEV::NoWrapFlags OrigFlags,
2421                                         unsigned Depth) {
2422   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2423          "only nuw or nsw allowed");
2424   assert(!Ops.empty() && "Cannot get empty add!");
2425   if (Ops.size() == 1) return Ops[0];
2426 #ifndef NDEBUG
2427   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2428   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2429     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2430            "SCEVAddExpr operand types don't match!");
2431   unsigned NumPtrs = count_if(
2432       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2433   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2434 #endif
2435 
2436   // Sort by complexity, this groups all similar expression types together.
2437   GroupByComplexity(Ops, &LI, DT);
2438 
2439   // If there are any constants, fold them together.
2440   unsigned Idx = 0;
2441   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2442     ++Idx;
2443     assert(Idx < Ops.size());
2444     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2445       // We found two constants, fold them together!
2446       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2447       if (Ops.size() == 2) return Ops[0];
2448       Ops.erase(Ops.begin()+1);  // Erase the folded element
2449       LHSC = cast<SCEVConstant>(Ops[0]);
2450     }
2451 
2452     // If we are left with a constant zero being added, strip it off.
2453     if (LHSC->getValue()->isZero()) {
2454       Ops.erase(Ops.begin());
2455       --Idx;
2456     }
2457 
2458     if (Ops.size() == 1) return Ops[0];
2459   }
2460 
2461   // Delay expensive flag strengthening until necessary.
2462   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2463     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2464   };
2465 
2466   // Limit recursion calls depth.
2467   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2468     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2469 
2470   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2471     // Don't strengthen flags if we have no new information.
2472     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2473     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2474       Add->setNoWrapFlags(ComputeFlags(Ops));
2475     return S;
2476   }
2477 
2478   // Okay, check to see if the same value occurs in the operand list more than
2479   // once.  If so, merge them together into an multiply expression.  Since we
2480   // sorted the list, these values are required to be adjacent.
2481   Type *Ty = Ops[0]->getType();
2482   bool FoundMatch = false;
2483   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2484     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2485       // Scan ahead to count how many equal operands there are.
2486       unsigned Count = 2;
2487       while (i+Count != e && Ops[i+Count] == Ops[i])
2488         ++Count;
2489       // Merge the values into a multiply.
2490       const SCEV *Scale = getConstant(Ty, Count);
2491       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2492       if (Ops.size() == Count)
2493         return Mul;
2494       Ops[i] = Mul;
2495       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2496       --i; e -= Count - 1;
2497       FoundMatch = true;
2498     }
2499   if (FoundMatch)
2500     return getAddExpr(Ops, OrigFlags, Depth + 1);
2501 
2502   // Check for truncates. If all the operands are truncated from the same
2503   // type, see if factoring out the truncate would permit the result to be
2504   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2505   // if the contents of the resulting outer trunc fold to something simple.
2506   auto FindTruncSrcType = [&]() -> Type * {
2507     // We're ultimately looking to fold an addrec of truncs and muls of only
2508     // constants and truncs, so if we find any other types of SCEV
2509     // as operands of the addrec then we bail and return nullptr here.
2510     // Otherwise, we return the type of the operand of a trunc that we find.
2511     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2512       return T->getOperand()->getType();
2513     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2514       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2515       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2516         return T->getOperand()->getType();
2517     }
2518     return nullptr;
2519   };
2520   if (auto *SrcType = FindTruncSrcType()) {
2521     SmallVector<const SCEV *, 8> LargeOps;
2522     bool Ok = true;
2523     // Check all the operands to see if they can be represented in the
2524     // source type of the truncate.
2525     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2526       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2527         if (T->getOperand()->getType() != SrcType) {
2528           Ok = false;
2529           break;
2530         }
2531         LargeOps.push_back(T->getOperand());
2532       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2533         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2534       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2535         SmallVector<const SCEV *, 8> LargeMulOps;
2536         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2537           if (const SCEVTruncateExpr *T =
2538                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2539             if (T->getOperand()->getType() != SrcType) {
2540               Ok = false;
2541               break;
2542             }
2543             LargeMulOps.push_back(T->getOperand());
2544           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2545             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2546           } else {
2547             Ok = false;
2548             break;
2549           }
2550         }
2551         if (Ok)
2552           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2553       } else {
2554         Ok = false;
2555         break;
2556       }
2557     }
2558     if (Ok) {
2559       // Evaluate the expression in the larger type.
2560       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2561       // If it folds to something simple, use it. Otherwise, don't.
2562       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2563         return getTruncateExpr(Fold, Ty);
2564     }
2565   }
2566 
2567   if (Ops.size() == 2) {
2568     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2569     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2570     // C1).
2571     const SCEV *A = Ops[0];
2572     const SCEV *B = Ops[1];
2573     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2574     auto *C = dyn_cast<SCEVConstant>(A);
2575     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2576       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2577       auto C2 = C->getAPInt();
2578       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2579 
2580       APInt ConstAdd = C1 + C2;
2581       auto AddFlags = AddExpr->getNoWrapFlags();
2582       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2583       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2584           ConstAdd.ule(C1)) {
2585         PreservedFlags =
2586             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2587       }
2588 
2589       // Adding a constant with the same sign and small magnitude is NSW, if the
2590       // original AddExpr was NSW.
2591       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2592           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2593           ConstAdd.abs().ule(C1.abs())) {
2594         PreservedFlags =
2595             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2596       }
2597 
2598       if (PreservedFlags != SCEV::FlagAnyWrap) {
2599         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2600         NewOps[0] = getConstant(ConstAdd);
2601         return getAddExpr(NewOps, PreservedFlags);
2602       }
2603     }
2604   }
2605 
2606   // Skip past any other cast SCEVs.
2607   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2608     ++Idx;
2609 
2610   // If there are add operands they would be next.
2611   if (Idx < Ops.size()) {
2612     bool DeletedAdd = false;
2613     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2614     // common NUW flag for expression after inlining. Other flags cannot be
2615     // preserved, because they may depend on the original order of operations.
2616     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2617     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2618       if (Ops.size() > AddOpsInlineThreshold ||
2619           Add->getNumOperands() > AddOpsInlineThreshold)
2620         break;
2621       // If we have an add, expand the add operands onto the end of the operands
2622       // list.
2623       Ops.erase(Ops.begin()+Idx);
2624       Ops.append(Add->op_begin(), Add->op_end());
2625       DeletedAdd = true;
2626       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2627     }
2628 
2629     // If we deleted at least one add, we added operands to the end of the list,
2630     // and they are not necessarily sorted.  Recurse to resort and resimplify
2631     // any operands we just acquired.
2632     if (DeletedAdd)
2633       return getAddExpr(Ops, CommonFlags, Depth + 1);
2634   }
2635 
2636   // Skip over the add expression until we get to a multiply.
2637   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2638     ++Idx;
2639 
2640   // Check to see if there are any folding opportunities present with
2641   // operands multiplied by constant values.
2642   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2643     uint64_t BitWidth = getTypeSizeInBits(Ty);
2644     DenseMap<const SCEV *, APInt> M;
2645     SmallVector<const SCEV *, 8> NewOps;
2646     APInt AccumulatedConstant(BitWidth, 0);
2647     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2648                                      Ops.data(), Ops.size(),
2649                                      APInt(BitWidth, 1), *this)) {
2650       struct APIntCompare {
2651         bool operator()(const APInt &LHS, const APInt &RHS) const {
2652           return LHS.ult(RHS);
2653         }
2654       };
2655 
2656       // Some interesting folding opportunity is present, so its worthwhile to
2657       // re-generate the operands list. Group the operands by constant scale,
2658       // to avoid multiplying by the same constant scale multiple times.
2659       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2660       for (const SCEV *NewOp : NewOps)
2661         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2662       // Re-generate the operands list.
2663       Ops.clear();
2664       if (AccumulatedConstant != 0)
2665         Ops.push_back(getConstant(AccumulatedConstant));
2666       for (auto &MulOp : MulOpLists) {
2667         if (MulOp.first == 1) {
2668           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2669         } else if (MulOp.first != 0) {
2670           Ops.push_back(getMulExpr(
2671               getConstant(MulOp.first),
2672               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2673               SCEV::FlagAnyWrap, Depth + 1));
2674         }
2675       }
2676       if (Ops.empty())
2677         return getZero(Ty);
2678       if (Ops.size() == 1)
2679         return Ops[0];
2680       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2681     }
2682   }
2683 
2684   // If we are adding something to a multiply expression, make sure the
2685   // something is not already an operand of the multiply.  If so, merge it into
2686   // the multiply.
2687   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2688     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2689     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2690       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2691       if (isa<SCEVConstant>(MulOpSCEV))
2692         continue;
2693       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2694         if (MulOpSCEV == Ops[AddOp]) {
2695           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2696           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2697           if (Mul->getNumOperands() != 2) {
2698             // If the multiply has more than two operands, we must get the
2699             // Y*Z term.
2700             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2701                                                 Mul->op_begin()+MulOp);
2702             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2703             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2704           }
2705           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2706           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2707           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2708                                             SCEV::FlagAnyWrap, Depth + 1);
2709           if (Ops.size() == 2) return OuterMul;
2710           if (AddOp < Idx) {
2711             Ops.erase(Ops.begin()+AddOp);
2712             Ops.erase(Ops.begin()+Idx-1);
2713           } else {
2714             Ops.erase(Ops.begin()+Idx);
2715             Ops.erase(Ops.begin()+AddOp-1);
2716           }
2717           Ops.push_back(OuterMul);
2718           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2719         }
2720 
2721       // Check this multiply against other multiplies being added together.
2722       for (unsigned OtherMulIdx = Idx+1;
2723            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2724            ++OtherMulIdx) {
2725         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2726         // If MulOp occurs in OtherMul, we can fold the two multiplies
2727         // together.
2728         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2729              OMulOp != e; ++OMulOp)
2730           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2731             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2732             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2733             if (Mul->getNumOperands() != 2) {
2734               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2735                                                   Mul->op_begin()+MulOp);
2736               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2737               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2738             }
2739             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2740             if (OtherMul->getNumOperands() != 2) {
2741               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2742                                                   OtherMul->op_begin()+OMulOp);
2743               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2744               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2745             }
2746             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2747             const SCEV *InnerMulSum =
2748                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2750                                               SCEV::FlagAnyWrap, Depth + 1);
2751             if (Ops.size() == 2) return OuterMul;
2752             Ops.erase(Ops.begin()+Idx);
2753             Ops.erase(Ops.begin()+OtherMulIdx-1);
2754             Ops.push_back(OuterMul);
2755             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2756           }
2757       }
2758     }
2759   }
2760 
2761   // If there are any add recurrences in the operands list, see if any other
2762   // added values are loop invariant.  If so, we can fold them into the
2763   // recurrence.
2764   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2765     ++Idx;
2766 
2767   // Scan over all recurrences, trying to fold loop invariants into them.
2768   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2769     // Scan all of the other operands to this add and add them to the vector if
2770     // they are loop invariant w.r.t. the recurrence.
2771     SmallVector<const SCEV *, 8> LIOps;
2772     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2773     const Loop *AddRecLoop = AddRec->getLoop();
2774     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2775       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2776         LIOps.push_back(Ops[i]);
2777         Ops.erase(Ops.begin()+i);
2778         --i; --e;
2779       }
2780 
2781     // If we found some loop invariants, fold them into the recurrence.
2782     if (!LIOps.empty()) {
2783       // Compute nowrap flags for the addition of the loop-invariant ops and
2784       // the addrec. Temporarily push it as an operand for that purpose. These
2785       // flags are valid in the scope of the addrec only.
2786       LIOps.push_back(AddRec);
2787       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2788       LIOps.pop_back();
2789 
2790       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2791       LIOps.push_back(AddRec->getStart());
2792 
2793       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2794 
2795       // It is not in general safe to propagate flags valid on an add within
2796       // the addrec scope to one outside it.  We must prove that the inner
2797       // scope is guaranteed to execute if the outer one does to be able to
2798       // safely propagate.  We know the program is undefined if poison is
2799       // produced on the inner scoped addrec.  We also know that *for this use*
2800       // the outer scoped add can't overflow (because of the flags we just
2801       // computed for the inner scoped add) without the program being undefined.
2802       // Proving that entry to the outer scope neccesitates entry to the inner
2803       // scope, thus proves the program undefined if the flags would be violated
2804       // in the outer scope.
2805       SCEV::NoWrapFlags AddFlags = Flags;
2806       if (AddFlags != SCEV::FlagAnyWrap) {
2807         auto *DefI = getDefiningScopeBound(LIOps);
2808         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2809         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2810           AddFlags = SCEV::FlagAnyWrap;
2811       }
2812       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2813 
2814       // Build the new addrec. Propagate the NUW and NSW flags if both the
2815       // outer add and the inner addrec are guaranteed to have no overflow.
2816       // Always propagate NW.
2817       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2818       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2819 
2820       // If all of the other operands were loop invariant, we are done.
2821       if (Ops.size() == 1) return NewRec;
2822 
2823       // Otherwise, add the folded AddRec by the non-invariant parts.
2824       for (unsigned i = 0;; ++i)
2825         if (Ops[i] == AddRec) {
2826           Ops[i] = NewRec;
2827           break;
2828         }
2829       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2830     }
2831 
2832     // Okay, if there weren't any loop invariants to be folded, check to see if
2833     // there are multiple AddRec's with the same loop induction variable being
2834     // added together.  If so, we can fold them.
2835     for (unsigned OtherIdx = Idx+1;
2836          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2837          ++OtherIdx) {
2838       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2839       // so that the 1st found AddRecExpr is dominated by all others.
2840       assert(DT.dominates(
2841            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2842            AddRec->getLoop()->getHeader()) &&
2843         "AddRecExprs are not sorted in reverse dominance order?");
2844       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2845         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2846         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2847         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2848              ++OtherIdx) {
2849           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2850           if (OtherAddRec->getLoop() == AddRecLoop) {
2851             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2852                  i != e; ++i) {
2853               if (i >= AddRecOps.size()) {
2854                 AddRecOps.append(OtherAddRec->op_begin()+i,
2855                                  OtherAddRec->op_end());
2856                 break;
2857               }
2858               SmallVector<const SCEV *, 2> TwoOps = {
2859                   AddRecOps[i], OtherAddRec->getOperand(i)};
2860               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2861             }
2862             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2863           }
2864         }
2865         // Step size has changed, so we cannot guarantee no self-wraparound.
2866         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2867         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2868       }
2869     }
2870 
2871     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2872     // next one.
2873   }
2874 
2875   // Okay, it looks like we really DO need an add expr.  Check to see if we
2876   // already have one, otherwise create a new one.
2877   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2878 }
2879 
2880 const SCEV *
getOrCreateAddExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2881 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2882                                     SCEV::NoWrapFlags Flags) {
2883   FoldingSetNodeID ID;
2884   ID.AddInteger(scAddExpr);
2885   for (const SCEV *Op : Ops)
2886     ID.AddPointer(Op);
2887   void *IP = nullptr;
2888   SCEVAddExpr *S =
2889       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2890   if (!S) {
2891     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2892     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2893     S = new (SCEVAllocator)
2894         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2895     UniqueSCEVs.InsertNode(S, IP);
2896     addToLoopUseLists(S);
2897   }
2898   S->setNoWrapFlags(Flags);
2899   return S;
2900 }
2901 
2902 const SCEV *
getOrCreateAddRecExpr(ArrayRef<const SCEV * > Ops,const Loop * L,SCEV::NoWrapFlags Flags)2903 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2904                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2905   FoldingSetNodeID ID;
2906   ID.AddInteger(scAddRecExpr);
2907   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2908     ID.AddPointer(Ops[i]);
2909   ID.AddPointer(L);
2910   void *IP = nullptr;
2911   SCEVAddRecExpr *S =
2912       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2913   if (!S) {
2914     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2915     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2916     S = new (SCEVAllocator)
2917         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2918     UniqueSCEVs.InsertNode(S, IP);
2919     addToLoopUseLists(S);
2920   }
2921   setNoWrapFlags(S, Flags);
2922   return S;
2923 }
2924 
2925 const SCEV *
getOrCreateMulExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2926 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2927                                     SCEV::NoWrapFlags Flags) {
2928   FoldingSetNodeID ID;
2929   ID.AddInteger(scMulExpr);
2930   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2931     ID.AddPointer(Ops[i]);
2932   void *IP = nullptr;
2933   SCEVMulExpr *S =
2934     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2935   if (!S) {
2936     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2937     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2938     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2939                                         O, Ops.size());
2940     UniqueSCEVs.InsertNode(S, IP);
2941     addToLoopUseLists(S);
2942   }
2943   S->setNoWrapFlags(Flags);
2944   return S;
2945 }
2946 
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2947 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2948   uint64_t k = i*j;
2949   if (j > 1 && k / j != i) Overflow = true;
2950   return k;
2951 }
2952 
2953 /// Compute the result of "n choose k", the binomial coefficient.  If an
2954 /// intermediate computation overflows, Overflow will be set and the return will
2955 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2956 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2957   // We use the multiplicative formula:
2958   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2959   // At each iteration, we take the n-th term of the numeral and divide by the
2960   // (k-n)th term of the denominator.  This division will always produce an
2961   // integral result, and helps reduce the chance of overflow in the
2962   // intermediate computations. However, we can still overflow even when the
2963   // final result would fit.
2964 
2965   if (n == 0 || n == k) return 1;
2966   if (k > n) return 0;
2967 
2968   if (k > n/2)
2969     k = n-k;
2970 
2971   uint64_t r = 1;
2972   for (uint64_t i = 1; i <= k; ++i) {
2973     r = umul_ov(r, n-(i-1), Overflow);
2974     r /= i;
2975   }
2976   return r;
2977 }
2978 
2979 /// Determine if any of the operands in this SCEV are a constant or if
2980 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2981 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2982   struct FindConstantInAddMulChain {
2983     bool FoundConstant = false;
2984 
2985     bool follow(const SCEV *S) {
2986       FoundConstant |= isa<SCEVConstant>(S);
2987       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2988     }
2989 
2990     bool isDone() const {
2991       return FoundConstant;
2992     }
2993   };
2994 
2995   FindConstantInAddMulChain F;
2996   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2997   ST.visitAll(StartExpr);
2998   return F.FoundConstant;
2999 }
3000 
3001 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)3002 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3003                                         SCEV::NoWrapFlags OrigFlags,
3004                                         unsigned Depth) {
3005   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3006          "only nuw or nsw allowed");
3007   assert(!Ops.empty() && "Cannot get empty mul!");
3008   if (Ops.size() == 1) return Ops[0];
3009 #ifndef NDEBUG
3010   Type *ETy = Ops[0]->getType();
3011   assert(!ETy->isPointerTy());
3012   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3013     assert(Ops[i]->getType() == ETy &&
3014            "SCEVMulExpr operand types don't match!");
3015 #endif
3016 
3017   // Sort by complexity, this groups all similar expression types together.
3018   GroupByComplexity(Ops, &LI, DT);
3019 
3020   // If there are any constants, fold them together.
3021   unsigned Idx = 0;
3022   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3023     ++Idx;
3024     assert(Idx < Ops.size());
3025     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3026       // We found two constants, fold them together!
3027       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3028       if (Ops.size() == 2) return Ops[0];
3029       Ops.erase(Ops.begin()+1);  // Erase the folded element
3030       LHSC = cast<SCEVConstant>(Ops[0]);
3031     }
3032 
3033     // If we have a multiply of zero, it will always be zero.
3034     if (LHSC->getValue()->isZero())
3035       return LHSC;
3036 
3037     // If we are left with a constant one being multiplied, strip it off.
3038     if (LHSC->getValue()->isOne()) {
3039       Ops.erase(Ops.begin());
3040       --Idx;
3041     }
3042 
3043     if (Ops.size() == 1)
3044       return Ops[0];
3045   }
3046 
3047   // Delay expensive flag strengthening until necessary.
3048   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3049     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3050   };
3051 
3052   // Limit recursion calls depth.
3053   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3054     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3055 
3056   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3057     // Don't strengthen flags if we have no new information.
3058     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3059     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3060       Mul->setNoWrapFlags(ComputeFlags(Ops));
3061     return S;
3062   }
3063 
3064   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3065     if (Ops.size() == 2) {
3066       // C1*(C2+V) -> C1*C2 + C1*V
3067       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3068         // If any of Add's ops are Adds or Muls with a constant, apply this
3069         // transformation as well.
3070         //
3071         // TODO: There are some cases where this transformation is not
3072         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3073         // this transformation should be narrowed down.
3074         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3075           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3076                                        SCEV::FlagAnyWrap, Depth + 1),
3077                             getMulExpr(LHSC, Add->getOperand(1),
3078                                        SCEV::FlagAnyWrap, Depth + 1),
3079                             SCEV::FlagAnyWrap, Depth + 1);
3080 
3081       if (Ops[0]->isAllOnesValue()) {
3082         // If we have a mul by -1 of an add, try distributing the -1 among the
3083         // add operands.
3084         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3085           SmallVector<const SCEV *, 4> NewOps;
3086           bool AnyFolded = false;
3087           for (const SCEV *AddOp : Add->operands()) {
3088             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3089                                          Depth + 1);
3090             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3091             NewOps.push_back(Mul);
3092           }
3093           if (AnyFolded)
3094             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3095         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3096           // Negation preserves a recurrence's no self-wrap property.
3097           SmallVector<const SCEV *, 4> Operands;
3098           for (const SCEV *AddRecOp : AddRec->operands())
3099             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3100                                           Depth + 1));
3101 
3102           return getAddRecExpr(Operands, AddRec->getLoop(),
3103                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3104         }
3105       }
3106     }
3107   }
3108 
3109   // Skip over the add expression until we get to a multiply.
3110   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3111     ++Idx;
3112 
3113   // If there are mul operands inline them all into this expression.
3114   if (Idx < Ops.size()) {
3115     bool DeletedMul = false;
3116     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3117       if (Ops.size() > MulOpsInlineThreshold)
3118         break;
3119       // If we have an mul, expand the mul operands onto the end of the
3120       // operands list.
3121       Ops.erase(Ops.begin()+Idx);
3122       Ops.append(Mul->op_begin(), Mul->op_end());
3123       DeletedMul = true;
3124     }
3125 
3126     // If we deleted at least one mul, we added operands to the end of the
3127     // list, and they are not necessarily sorted.  Recurse to resort and
3128     // resimplify any operands we just acquired.
3129     if (DeletedMul)
3130       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3131   }
3132 
3133   // If there are any add recurrences in the operands list, see if any other
3134   // added values are loop invariant.  If so, we can fold them into the
3135   // recurrence.
3136   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3137     ++Idx;
3138 
3139   // Scan over all recurrences, trying to fold loop invariants into them.
3140   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3141     // Scan all of the other operands to this mul and add them to the vector
3142     // if they are loop invariant w.r.t. the recurrence.
3143     SmallVector<const SCEV *, 8> LIOps;
3144     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3145     const Loop *AddRecLoop = AddRec->getLoop();
3146     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3147       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3148         LIOps.push_back(Ops[i]);
3149         Ops.erase(Ops.begin()+i);
3150         --i; --e;
3151       }
3152 
3153     // If we found some loop invariants, fold them into the recurrence.
3154     if (!LIOps.empty()) {
3155       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3156       SmallVector<const SCEV *, 4> NewOps;
3157       NewOps.reserve(AddRec->getNumOperands());
3158       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3159       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3160         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3161                                     SCEV::FlagAnyWrap, Depth + 1));
3162 
3163       // Build the new addrec. Propagate the NUW and NSW flags if both the
3164       // outer mul and the inner addrec are guaranteed to have no overflow.
3165       //
3166       // No self-wrap cannot be guaranteed after changing the step size, but
3167       // will be inferred if either NUW or NSW is true.
3168       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3169       const SCEV *NewRec = getAddRecExpr(
3170           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3171 
3172       // If all of the other operands were loop invariant, we are done.
3173       if (Ops.size() == 1) return NewRec;
3174 
3175       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3176       for (unsigned i = 0;; ++i)
3177         if (Ops[i] == AddRec) {
3178           Ops[i] = NewRec;
3179           break;
3180         }
3181       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3182     }
3183 
3184     // Okay, if there weren't any loop invariants to be folded, check to see
3185     // if there are multiple AddRec's with the same loop induction variable
3186     // being multiplied together.  If so, we can fold them.
3187 
3188     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3189     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3190     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3191     //   ]]],+,...up to x=2n}.
3192     // Note that the arguments to choose() are always integers with values
3193     // known at compile time, never SCEV objects.
3194     //
3195     // The implementation avoids pointless extra computations when the two
3196     // addrec's are of different length (mathematically, it's equivalent to
3197     // an infinite stream of zeros on the right).
3198     bool OpsModified = false;
3199     for (unsigned OtherIdx = Idx+1;
3200          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3201          ++OtherIdx) {
3202       const SCEVAddRecExpr *OtherAddRec =
3203         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3204       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3205         continue;
3206 
3207       // Limit max number of arguments to avoid creation of unreasonably big
3208       // SCEVAddRecs with very complex operands.
3209       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3210           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3211         continue;
3212 
3213       bool Overflow = false;
3214       Type *Ty = AddRec->getType();
3215       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3216       SmallVector<const SCEV*, 7> AddRecOps;
3217       for (int x = 0, xe = AddRec->getNumOperands() +
3218              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3219         SmallVector <const SCEV *, 7> SumOps;
3220         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3221           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3222           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3223                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3224                z < ze && !Overflow; ++z) {
3225             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3226             uint64_t Coeff;
3227             if (LargerThan64Bits)
3228               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3229             else
3230               Coeff = Coeff1*Coeff2;
3231             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3232             const SCEV *Term1 = AddRec->getOperand(y-z);
3233             const SCEV *Term2 = OtherAddRec->getOperand(z);
3234             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3235                                         SCEV::FlagAnyWrap, Depth + 1));
3236           }
3237         }
3238         if (SumOps.empty())
3239           SumOps.push_back(getZero(Ty));
3240         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3241       }
3242       if (!Overflow) {
3243         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3244                                               SCEV::FlagAnyWrap);
3245         if (Ops.size() == 2) return NewAddRec;
3246         Ops[Idx] = NewAddRec;
3247         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3248         OpsModified = true;
3249         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3250         if (!AddRec)
3251           break;
3252       }
3253     }
3254     if (OpsModified)
3255       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3256 
3257     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3258     // next one.
3259   }
3260 
3261   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3262   // already have one, otherwise create a new one.
3263   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3264 }
3265 
3266 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3267 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3268                                          const SCEV *RHS) {
3269   assert(getEffectiveSCEVType(LHS->getType()) ==
3270          getEffectiveSCEVType(RHS->getType()) &&
3271          "SCEVURemExpr operand types don't match!");
3272 
3273   // Short-circuit easy cases
3274   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3275     // If constant is one, the result is trivial
3276     if (RHSC->getValue()->isOne())
3277       return getZero(LHS->getType()); // X urem 1 --> 0
3278 
3279     // If constant is a power of two, fold into a zext(trunc(LHS)).
3280     if (RHSC->getAPInt().isPowerOf2()) {
3281       Type *FullTy = LHS->getType();
3282       Type *TruncTy =
3283           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3284       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3285     }
3286   }
3287 
3288   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3289   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3290   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3291   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3292 }
3293 
3294 /// Get a canonical unsigned division expression, or something simpler if
3295 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3296 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3297                                          const SCEV *RHS) {
3298   assert(!LHS->getType()->isPointerTy() &&
3299          "SCEVUDivExpr operand can't be pointer!");
3300   assert(LHS->getType() == RHS->getType() &&
3301          "SCEVUDivExpr operand types don't match!");
3302 
3303   FoldingSetNodeID ID;
3304   ID.AddInteger(scUDivExpr);
3305   ID.AddPointer(LHS);
3306   ID.AddPointer(RHS);
3307   void *IP = nullptr;
3308   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3309     return S;
3310 
3311   // 0 udiv Y == 0
3312   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3313     if (LHSC->getValue()->isZero())
3314       return LHS;
3315 
3316   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3317     if (RHSC->getValue()->isOne())
3318       return LHS;                               // X udiv 1 --> x
3319     // If the denominator is zero, the result of the udiv is undefined. Don't
3320     // try to analyze it, because the resolution chosen here may differ from
3321     // the resolution chosen in other parts of the compiler.
3322     if (!RHSC->getValue()->isZero()) {
3323       // Determine if the division can be folded into the operands of
3324       // its operands.
3325       // TODO: Generalize this to non-constants by using known-bits information.
3326       Type *Ty = LHS->getType();
3327       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3328       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3329       // For non-power-of-two values, effectively round the value up to the
3330       // nearest power of two.
3331       if (!RHSC->getAPInt().isPowerOf2())
3332         ++MaxShiftAmt;
3333       IntegerType *ExtTy =
3334         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3335       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3336         if (const SCEVConstant *Step =
3337             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3338           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3339           const APInt &StepInt = Step->getAPInt();
3340           const APInt &DivInt = RHSC->getAPInt();
3341           if (!StepInt.urem(DivInt) &&
3342               getZeroExtendExpr(AR, ExtTy) ==
3343               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3344                             getZeroExtendExpr(Step, ExtTy),
3345                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3346             SmallVector<const SCEV *, 4> Operands;
3347             for (const SCEV *Op : AR->operands())
3348               Operands.push_back(getUDivExpr(Op, RHS));
3349             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3350           }
3351           /// Get a canonical UDivExpr for a recurrence.
3352           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3353           // We can currently only fold X%N if X is constant.
3354           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3355           if (StartC && !DivInt.urem(StepInt) &&
3356               getZeroExtendExpr(AR, ExtTy) ==
3357               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3358                             getZeroExtendExpr(Step, ExtTy),
3359                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3360             const APInt &StartInt = StartC->getAPInt();
3361             const APInt &StartRem = StartInt.urem(StepInt);
3362             if (StartRem != 0) {
3363               const SCEV *NewLHS =
3364                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3365                                 AR->getLoop(), SCEV::FlagNW);
3366               if (LHS != NewLHS) {
3367                 LHS = NewLHS;
3368 
3369                 // Reset the ID to include the new LHS, and check if it is
3370                 // already cached.
3371                 ID.clear();
3372                 ID.AddInteger(scUDivExpr);
3373                 ID.AddPointer(LHS);
3374                 ID.AddPointer(RHS);
3375                 IP = nullptr;
3376                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3377                   return S;
3378               }
3379             }
3380           }
3381         }
3382       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3383       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3384         SmallVector<const SCEV *, 4> Operands;
3385         for (const SCEV *Op : M->operands())
3386           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3387         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3388           // Find an operand that's safely divisible.
3389           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3390             const SCEV *Op = M->getOperand(i);
3391             const SCEV *Div = getUDivExpr(Op, RHSC);
3392             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3393               Operands = SmallVector<const SCEV *, 4>(M->operands());
3394               Operands[i] = Div;
3395               return getMulExpr(Operands);
3396             }
3397           }
3398       }
3399 
3400       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3401       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3402         if (auto *DivisorConstant =
3403                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3404           bool Overflow = false;
3405           APInt NewRHS =
3406               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3407           if (Overflow) {
3408             return getConstant(RHSC->getType(), 0, false);
3409           }
3410           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3411         }
3412       }
3413 
3414       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3415       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3416         SmallVector<const SCEV *, 4> Operands;
3417         for (const SCEV *Op : A->operands())
3418           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3419         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3420           Operands.clear();
3421           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3422             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3423             if (isa<SCEVUDivExpr>(Op) ||
3424                 getMulExpr(Op, RHS) != A->getOperand(i))
3425               break;
3426             Operands.push_back(Op);
3427           }
3428           if (Operands.size() == A->getNumOperands())
3429             return getAddExpr(Operands);
3430         }
3431       }
3432 
3433       // Fold if both operands are constant.
3434       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3435         Constant *LHSCV = LHSC->getValue();
3436         Constant *RHSCV = RHSC->getValue();
3437         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3438                                                                    RHSCV)));
3439       }
3440     }
3441   }
3442 
3443   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3444   // changes). Make sure we get a new one.
3445   IP = nullptr;
3446   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3447   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3448                                              LHS, RHS);
3449   UniqueSCEVs.InsertNode(S, IP);
3450   addToLoopUseLists(S);
3451   return S;
3452 }
3453 
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3454 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3455   APInt A = C1->getAPInt().abs();
3456   APInt B = C2->getAPInt().abs();
3457   uint32_t ABW = A.getBitWidth();
3458   uint32_t BBW = B.getBitWidth();
3459 
3460   if (ABW > BBW)
3461     B = B.zext(ABW);
3462   else if (ABW < BBW)
3463     A = A.zext(BBW);
3464 
3465   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3466 }
3467 
3468 /// Get a canonical unsigned division expression, or something simpler if
3469 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3470 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3471 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3472 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3473                                               const SCEV *RHS) {
3474   // TODO: we could try to find factors in all sorts of things, but for now we
3475   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3476   // end of this file for inspiration.
3477 
3478   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3479   if (!Mul || !Mul->hasNoUnsignedWrap())
3480     return getUDivExpr(LHS, RHS);
3481 
3482   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3483     // If the mulexpr multiplies by a constant, then that constant must be the
3484     // first element of the mulexpr.
3485     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3486       if (LHSCst == RHSCst) {
3487         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3488         return getMulExpr(Operands);
3489       }
3490 
3491       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3492       // that there's a factor provided by one of the other terms. We need to
3493       // check.
3494       APInt Factor = gcd(LHSCst, RHSCst);
3495       if (!Factor.isIntN(1)) {
3496         LHSCst =
3497             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3498         RHSCst =
3499             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3500         SmallVector<const SCEV *, 2> Operands;
3501         Operands.push_back(LHSCst);
3502         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3503         LHS = getMulExpr(Operands);
3504         RHS = RHSCst;
3505         Mul = dyn_cast<SCEVMulExpr>(LHS);
3506         if (!Mul)
3507           return getUDivExactExpr(LHS, RHS);
3508       }
3509     }
3510   }
3511 
3512   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3513     if (Mul->getOperand(i) == RHS) {
3514       SmallVector<const SCEV *, 2> Operands;
3515       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3516       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3517       return getMulExpr(Operands);
3518     }
3519   }
3520 
3521   return getUDivExpr(LHS, RHS);
3522 }
3523 
3524 /// Get an add recurrence expression for the specified loop.  Simplify the
3525 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3526 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3527                                            const Loop *L,
3528                                            SCEV::NoWrapFlags Flags) {
3529   SmallVector<const SCEV *, 4> Operands;
3530   Operands.push_back(Start);
3531   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3532     if (StepChrec->getLoop() == L) {
3533       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3534       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3535     }
3536 
3537   Operands.push_back(Step);
3538   return getAddRecExpr(Operands, L, Flags);
3539 }
3540 
3541 /// Get an add recurrence expression for the specified loop.  Simplify the
3542 /// expression as much as possible.
3543 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3544 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3545                                const Loop *L, SCEV::NoWrapFlags Flags) {
3546   if (Operands.size() == 1) return Operands[0];
3547 #ifndef NDEBUG
3548   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3549   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3550     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3551            "SCEVAddRecExpr operand types don't match!");
3552     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3553   }
3554   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3555     assert(isLoopInvariant(Operands[i], L) &&
3556            "SCEVAddRecExpr operand is not loop-invariant!");
3557 #endif
3558 
3559   if (Operands.back()->isZero()) {
3560     Operands.pop_back();
3561     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3562   }
3563 
3564   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3565   // use that information to infer NUW and NSW flags. However, computing a
3566   // BE count requires calling getAddRecExpr, so we may not yet have a
3567   // meaningful BE count at this point (and if we don't, we'd be stuck
3568   // with a SCEVCouldNotCompute as the cached BE count).
3569 
3570   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3571 
3572   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3573   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3574     const Loop *NestedLoop = NestedAR->getLoop();
3575     if (L->contains(NestedLoop)
3576             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3577             : (!NestedLoop->contains(L) &&
3578                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3579       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3580       Operands[0] = NestedAR->getStart();
3581       // AddRecs require their operands be loop-invariant with respect to their
3582       // loops. Don't perform this transformation if it would break this
3583       // requirement.
3584       bool AllInvariant = all_of(
3585           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3586 
3587       if (AllInvariant) {
3588         // Create a recurrence for the outer loop with the same step size.
3589         //
3590         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3591         // inner recurrence has the same property.
3592         SCEV::NoWrapFlags OuterFlags =
3593           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3594 
3595         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3596         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3597           return isLoopInvariant(Op, NestedLoop);
3598         });
3599 
3600         if (AllInvariant) {
3601           // Ok, both add recurrences are valid after the transformation.
3602           //
3603           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3604           // the outer recurrence has the same property.
3605           SCEV::NoWrapFlags InnerFlags =
3606             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3607           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3608         }
3609       }
3610       // Reset Operands to its original state.
3611       Operands[0] = NestedAR;
3612     }
3613   }
3614 
3615   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3616   // already have one, otherwise create a new one.
3617   return getOrCreateAddRecExpr(Operands, L, Flags);
3618 }
3619 
3620 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3621 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3622                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3623   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3624   // getSCEV(Base)->getType() has the same address space as Base->getType()
3625   // because SCEV::getType() preserves the address space.
3626   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3627   const bool AssumeInBoundsFlags = [&]() {
3628     if (!GEP->isInBounds())
3629       return false;
3630 
3631     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3632     // but to do that, we have to ensure that said flag is valid in the entire
3633     // defined scope of the SCEV.
3634     auto *GEPI = dyn_cast<Instruction>(GEP);
3635     // TODO: non-instructions have global scope.  We might be able to prove
3636     // some global scope cases
3637     return GEPI && isSCEVExprNeverPoison(GEPI);
3638   }();
3639 
3640   SCEV::NoWrapFlags OffsetWrap =
3641     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3642 
3643   Type *CurTy = GEP->getType();
3644   bool FirstIter = true;
3645   SmallVector<const SCEV *, 4> Offsets;
3646   for (const SCEV *IndexExpr : IndexExprs) {
3647     // Compute the (potentially symbolic) offset in bytes for this index.
3648     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3649       // For a struct, add the member offset.
3650       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3651       unsigned FieldNo = Index->getZExtValue();
3652       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3653       Offsets.push_back(FieldOffset);
3654 
3655       // Update CurTy to the type of the field at Index.
3656       CurTy = STy->getTypeAtIndex(Index);
3657     } else {
3658       // Update CurTy to its element type.
3659       if (FirstIter) {
3660         assert(isa<PointerType>(CurTy) &&
3661                "The first index of a GEP indexes a pointer");
3662         CurTy = GEP->getSourceElementType();
3663         FirstIter = false;
3664       } else {
3665         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3666       }
3667       // For an array, add the element offset, explicitly scaled.
3668       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3669       // Getelementptr indices are signed.
3670       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3671 
3672       // Multiply the index by the element size to compute the element offset.
3673       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3674       Offsets.push_back(LocalOffset);
3675     }
3676   }
3677 
3678   // Handle degenerate case of GEP without offsets.
3679   if (Offsets.empty())
3680     return BaseExpr;
3681 
3682   // Add the offsets together, assuming nsw if inbounds.
3683   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3684   // Add the base address and the offset. We cannot use the nsw flag, as the
3685   // base address is unsigned. However, if we know that the offset is
3686   // non-negative, we can use nuw.
3687   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3688                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3689   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3690   assert(BaseExpr->getType() == GEPExpr->getType() &&
3691          "GEP should not change type mid-flight.");
3692   return GEPExpr;
3693 }
3694 
findExistingSCEVInCache(SCEVTypes SCEVType,ArrayRef<const SCEV * > Ops)3695 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3696                                                ArrayRef<const SCEV *> Ops) {
3697   FoldingSetNodeID ID;
3698   ID.AddInteger(SCEVType);
3699   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3700     ID.AddPointer(Ops[i]);
3701   void *IP = nullptr;
3702   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3703 }
3704 
getAbsExpr(const SCEV * Op,bool IsNSW)3705 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3706   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3707   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3708 }
3709 
getMinMaxExpr(SCEVTypes Kind,SmallVectorImpl<const SCEV * > & Ops)3710 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3711                                            SmallVectorImpl<const SCEV *> &Ops) {
3712   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3713   if (Ops.size() == 1) return Ops[0];
3714 #ifndef NDEBUG
3715   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3716   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3717     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3718            "Operand types don't match!");
3719     assert(Ops[0]->getType()->isPointerTy() ==
3720                Ops[i]->getType()->isPointerTy() &&
3721            "min/max should be consistently pointerish");
3722   }
3723 #endif
3724 
3725   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3726   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3727 
3728   // Sort by complexity, this groups all similar expression types together.
3729   GroupByComplexity(Ops, &LI, DT);
3730 
3731   // Check if we have created the same expression before.
3732   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3733     return S;
3734   }
3735 
3736   // If there are any constants, fold them together.
3737   unsigned Idx = 0;
3738   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3739     ++Idx;
3740     assert(Idx < Ops.size());
3741     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3742       if (Kind == scSMaxExpr)
3743         return APIntOps::smax(LHS, RHS);
3744       else if (Kind == scSMinExpr)
3745         return APIntOps::smin(LHS, RHS);
3746       else if (Kind == scUMaxExpr)
3747         return APIntOps::umax(LHS, RHS);
3748       else if (Kind == scUMinExpr)
3749         return APIntOps::umin(LHS, RHS);
3750       llvm_unreachable("Unknown SCEV min/max opcode");
3751     };
3752 
3753     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3754       // We found two constants, fold them together!
3755       ConstantInt *Fold = ConstantInt::get(
3756           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3757       Ops[0] = getConstant(Fold);
3758       Ops.erase(Ops.begin()+1);  // Erase the folded element
3759       if (Ops.size() == 1) return Ops[0];
3760       LHSC = cast<SCEVConstant>(Ops[0]);
3761     }
3762 
3763     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3764     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3765 
3766     if (IsMax ? IsMinV : IsMaxV) {
3767       // If we are left with a constant minimum(/maximum)-int, strip it off.
3768       Ops.erase(Ops.begin());
3769       --Idx;
3770     } else if (IsMax ? IsMaxV : IsMinV) {
3771       // If we have a max(/min) with a constant maximum(/minimum)-int,
3772       // it will always be the extremum.
3773       return LHSC;
3774     }
3775 
3776     if (Ops.size() == 1) return Ops[0];
3777   }
3778 
3779   // Find the first operation of the same kind
3780   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3781     ++Idx;
3782 
3783   // Check to see if one of the operands is of the same kind. If so, expand its
3784   // operands onto our operand list, and recurse to simplify.
3785   if (Idx < Ops.size()) {
3786     bool DeletedAny = false;
3787     while (Ops[Idx]->getSCEVType() == Kind) {
3788       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3789       Ops.erase(Ops.begin()+Idx);
3790       Ops.append(SMME->op_begin(), SMME->op_end());
3791       DeletedAny = true;
3792     }
3793 
3794     if (DeletedAny)
3795       return getMinMaxExpr(Kind, Ops);
3796   }
3797 
3798   // Okay, check to see if the same value occurs in the operand list twice.  If
3799   // so, delete one.  Since we sorted the list, these values are required to
3800   // be adjacent.
3801   llvm::CmpInst::Predicate GEPred =
3802       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3803   llvm::CmpInst::Predicate LEPred =
3804       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3805   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3806   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3807   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3808     if (Ops[i] == Ops[i + 1] ||
3809         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3810       //  X op Y op Y  -->  X op Y
3811       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3812       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3813       --i;
3814       --e;
3815     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3816                                                Ops[i + 1])) {
3817       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3818       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3819       --i;
3820       --e;
3821     }
3822   }
3823 
3824   if (Ops.size() == 1) return Ops[0];
3825 
3826   assert(!Ops.empty() && "Reduced smax down to nothing!");
3827 
3828   // Okay, it looks like we really DO need an expr.  Check to see if we
3829   // already have one, otherwise create a new one.
3830   FoldingSetNodeID ID;
3831   ID.AddInteger(Kind);
3832   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3833     ID.AddPointer(Ops[i]);
3834   void *IP = nullptr;
3835   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3836   if (ExistingSCEV)
3837     return ExistingSCEV;
3838   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3839   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3840   SCEV *S = new (SCEVAllocator)
3841       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3842 
3843   UniqueSCEVs.InsertNode(S, IP);
3844   addToLoopUseLists(S);
3845   return S;
3846 }
3847 
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3848 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3849   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3850   return getSMaxExpr(Ops);
3851 }
3852 
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3853 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3854   return getMinMaxExpr(scSMaxExpr, Ops);
3855 }
3856 
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3857 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3858   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3859   return getUMaxExpr(Ops);
3860 }
3861 
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3862 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3863   return getMinMaxExpr(scUMaxExpr, Ops);
3864 }
3865 
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3866 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3867                                          const SCEV *RHS) {
3868   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3869   return getSMinExpr(Ops);
3870 }
3871 
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3872 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3873   return getMinMaxExpr(scSMinExpr, Ops);
3874 }
3875 
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3876 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3877                                          const SCEV *RHS) {
3878   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3879   return getUMinExpr(Ops);
3880 }
3881 
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3882 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3883   return getMinMaxExpr(scUMinExpr, Ops);
3884 }
3885 
3886 const SCEV *
getSizeOfScalableVectorExpr(Type * IntTy,ScalableVectorType * ScalableTy)3887 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3888                                              ScalableVectorType *ScalableTy) {
3889   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3890   Constant *One = ConstantInt::get(IntTy, 1);
3891   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3892   // Note that the expression we created is the final expression, we don't
3893   // want to simplify it any further Also, if we call a normal getSCEV(),
3894   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3895   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3896 }
3897 
getSizeOfExpr(Type * IntTy,Type * AllocTy)3898 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3899   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3900     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3901   // We can bypass creating a target-independent constant expression and then
3902   // folding it back into a ConstantInt. This is just a compile-time
3903   // optimization.
3904   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3905 }
3906 
getStoreSizeOfExpr(Type * IntTy,Type * StoreTy)3907 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3908   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3909     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3910   // We can bypass creating a target-independent constant expression and then
3911   // folding it back into a ConstantInt. This is just a compile-time
3912   // optimization.
3913   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3914 }
3915 
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3916 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3917                                              StructType *STy,
3918                                              unsigned FieldNo) {
3919   // We can bypass creating a target-independent constant expression and then
3920   // folding it back into a ConstantInt. This is just a compile-time
3921   // optimization.
3922   return getConstant(
3923       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3924 }
3925 
getUnknown(Value * V)3926 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3927   // Don't attempt to do anything other than create a SCEVUnknown object
3928   // here.  createSCEV only calls getUnknown after checking for all other
3929   // interesting possibilities, and any other code that calls getUnknown
3930   // is doing so in order to hide a value from SCEV canonicalization.
3931 
3932   FoldingSetNodeID ID;
3933   ID.AddInteger(scUnknown);
3934   ID.AddPointer(V);
3935   void *IP = nullptr;
3936   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3937     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3938            "Stale SCEVUnknown in uniquing map!");
3939     return S;
3940   }
3941   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3942                                             FirstUnknown);
3943   FirstUnknown = cast<SCEVUnknown>(S);
3944   UniqueSCEVs.InsertNode(S, IP);
3945   return S;
3946 }
3947 
3948 //===----------------------------------------------------------------------===//
3949 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3950 //
3951 
3952 /// Test if values of the given type are analyzable within the SCEV
3953 /// framework. This primarily includes integer types, and it can optionally
3954 /// include pointer types if the ScalarEvolution class has access to
3955 /// target-specific information.
isSCEVable(Type * Ty) const3956 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3957   // Integers and pointers are always SCEVable.
3958   return Ty->isIntOrPtrTy();
3959 }
3960 
3961 /// Return the size in bits of the specified type, for which isSCEVable must
3962 /// return true.
getTypeSizeInBits(Type * Ty) const3963 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3964   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3965   if (Ty->isPointerTy())
3966     return getDataLayout().getIndexTypeSizeInBits(Ty);
3967   return getDataLayout().getTypeSizeInBits(Ty);
3968 }
3969 
3970 /// Return a type with the same bitwidth as the given type and which represents
3971 /// how SCEV will treat the given type, for which isSCEVable must return
3972 /// true. For pointer types, this is the pointer index sized integer type.
getEffectiveSCEVType(Type * Ty) const3973 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3974   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3975 
3976   if (Ty->isIntegerTy())
3977     return Ty;
3978 
3979   // The only other support type is pointer.
3980   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3981   return getDataLayout().getIndexType(Ty);
3982 }
3983 
getWiderType(Type * T1,Type * T2) const3984 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3985   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3986 }
3987 
getCouldNotCompute()3988 const SCEV *ScalarEvolution::getCouldNotCompute() {
3989   return CouldNotCompute.get();
3990 }
3991 
checkValidity(const SCEV * S) const3992 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3993   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3994     auto *SU = dyn_cast<SCEVUnknown>(S);
3995     return SU && SU->getValue() == nullptr;
3996   });
3997 
3998   return !ContainsNulls;
3999 }
4000 
containsAddRecurrence(const SCEV * S)4001 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4002   HasRecMapType::iterator I = HasRecMap.find(S);
4003   if (I != HasRecMap.end())
4004     return I->second;
4005 
4006   bool FoundAddRec =
4007       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4008   HasRecMap.insert({S, FoundAddRec});
4009   return FoundAddRec;
4010 }
4011 
4012 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
4013 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
4014 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)4015 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4016   const auto *Add = dyn_cast<SCEVAddExpr>(S);
4017   if (!Add)
4018     return {S, nullptr};
4019 
4020   if (Add->getNumOperands() != 2)
4021     return {S, nullptr};
4022 
4023   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4024   if (!ConstOp)
4025     return {S, nullptr};
4026 
4027   return {Add->getOperand(1), ConstOp->getValue()};
4028 }
4029 
4030 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4031 /// by the value and offset from any ValueOffsetPair in the set.
4032 ScalarEvolution::ValueOffsetPairSetVector *
getSCEVValues(const SCEV * S)4033 ScalarEvolution::getSCEVValues(const SCEV *S) {
4034   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4035   if (SI == ExprValueMap.end())
4036     return nullptr;
4037 #ifndef NDEBUG
4038   if (VerifySCEVMap) {
4039     // Check there is no dangling Value in the set returned.
4040     for (const auto &VE : SI->second)
4041       assert(ValueExprMap.count(VE.first));
4042   }
4043 #endif
4044   return &SI->second;
4045 }
4046 
4047 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4048 /// cannot be used separately. eraseValueFromMap should be used to remove
4049 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)4050 void ScalarEvolution::eraseValueFromMap(Value *V) {
4051   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4052   if (I != ValueExprMap.end()) {
4053     const SCEV *S = I->second;
4054     // Remove {V, 0} from the set of ExprValueMap[S]
4055     if (auto *SV = getSCEVValues(S))
4056       SV->remove({V, nullptr});
4057 
4058     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4059     const SCEV *Stripped;
4060     ConstantInt *Offset;
4061     std::tie(Stripped, Offset) = splitAddExpr(S);
4062     if (Offset != nullptr) {
4063       if (auto *SV = getSCEVValues(Stripped))
4064         SV->remove({V, Offset});
4065     }
4066     ValueExprMap.erase(V);
4067   }
4068 }
4069 
4070 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4071 /// TODO: In reality it is better to check the poison recursively
4072 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)4073 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4074   if (auto *I = dyn_cast<Instruction>(V)) {
4075     if (isa<OverflowingBinaryOperator>(I)) {
4076       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4077         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4078           return true;
4079         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4080           return true;
4081       }
4082     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4083       return true;
4084   }
4085   return false;
4086 }
4087 
4088 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4089 /// create a new one.
getSCEV(Value * V)4090 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4091   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4092 
4093   const SCEV *S = getExistingSCEV(V);
4094   if (S == nullptr) {
4095     S = createSCEV(V);
4096     // During PHI resolution, it is possible to create two SCEVs for the same
4097     // V, so it is needed to double check whether V->S is inserted into
4098     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4099     std::pair<ValueExprMapType::iterator, bool> Pair =
4100         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4101     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4102       ExprValueMap[S].insert({V, nullptr});
4103 
4104       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4105       // ExprValueMap.
4106       const SCEV *Stripped = S;
4107       ConstantInt *Offset = nullptr;
4108       std::tie(Stripped, Offset) = splitAddExpr(S);
4109       // If stripped is SCEVUnknown, don't bother to save
4110       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4111       // increase the complexity of the expansion code.
4112       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4113       // because it may generate add/sub instead of GEP in SCEV expansion.
4114       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4115           !isa<GetElementPtrInst>(V))
4116         ExprValueMap[Stripped].insert({V, Offset});
4117     }
4118   }
4119   return S;
4120 }
4121 
getExistingSCEV(Value * V)4122 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4123   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4124 
4125   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4126   if (I != ValueExprMap.end()) {
4127     const SCEV *S = I->second;
4128     if (checkValidity(S))
4129       return S;
4130     eraseValueFromMap(V);
4131     forgetMemoizedResults(S);
4132   }
4133   return nullptr;
4134 }
4135 
4136 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)4137 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4138                                              SCEV::NoWrapFlags Flags) {
4139   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4140     return getConstant(
4141                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4142 
4143   Type *Ty = V->getType();
4144   Ty = getEffectiveSCEVType(Ty);
4145   return getMulExpr(V, getMinusOne(Ty), Flags);
4146 }
4147 
4148 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)4149 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4150   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4151   if (!Add || Add->getNumOperands() != 2 ||
4152       !Add->getOperand(0)->isAllOnesValue())
4153     return nullptr;
4154 
4155   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4156   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4157       !AddRHS->getOperand(0)->isAllOnesValue())
4158     return nullptr;
4159 
4160   return AddRHS->getOperand(1);
4161 }
4162 
4163 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)4164 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4165   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4166 
4167   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4168     return getConstant(
4169                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4170 
4171   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4172   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4173     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4174       SmallVector<const SCEV *, 2> MatchedOperands;
4175       for (const SCEV *Operand : MME->operands()) {
4176         const SCEV *Matched = MatchNotExpr(Operand);
4177         if (!Matched)
4178           return (const SCEV *)nullptr;
4179         MatchedOperands.push_back(Matched);
4180       }
4181       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4182                            MatchedOperands);
4183     };
4184     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4185       return Replaced;
4186   }
4187 
4188   Type *Ty = V->getType();
4189   Ty = getEffectiveSCEVType(Ty);
4190   return getMinusSCEV(getMinusOne(Ty), V);
4191 }
4192 
removePointerBase(const SCEV * P)4193 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4194   assert(P->getType()->isPointerTy());
4195 
4196   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4197     // The base of an AddRec is the first operand.
4198     SmallVector<const SCEV *> Ops{AddRec->operands()};
4199     Ops[0] = removePointerBase(Ops[0]);
4200     // Don't try to transfer nowrap flags for now. We could in some cases
4201     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4202     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4203   }
4204   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4205     // The base of an Add is the pointer operand.
4206     SmallVector<const SCEV *> Ops{Add->operands()};
4207     const SCEV **PtrOp = nullptr;
4208     for (const SCEV *&AddOp : Ops) {
4209       if (AddOp->getType()->isPointerTy()) {
4210         assert(!PtrOp && "Cannot have multiple pointer ops");
4211         PtrOp = &AddOp;
4212       }
4213     }
4214     *PtrOp = removePointerBase(*PtrOp);
4215     // Don't try to transfer nowrap flags for now. We could in some cases
4216     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4217     return getAddExpr(Ops);
4218   }
4219   // Any other expression must be a pointer base.
4220   return getZero(P->getType());
4221 }
4222 
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)4223 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4224                                           SCEV::NoWrapFlags Flags,
4225                                           unsigned Depth) {
4226   // Fast path: X - X --> 0.
4227   if (LHS == RHS)
4228     return getZero(LHS->getType());
4229 
4230   // If we subtract two pointers with different pointer bases, bail.
4231   // Eventually, we're going to add an assertion to getMulExpr that we
4232   // can't multiply by a pointer.
4233   if (RHS->getType()->isPointerTy()) {
4234     if (!LHS->getType()->isPointerTy() ||
4235         getPointerBase(LHS) != getPointerBase(RHS))
4236       return getCouldNotCompute();
4237     LHS = removePointerBase(LHS);
4238     RHS = removePointerBase(RHS);
4239   }
4240 
4241   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4242   // makes it so that we cannot make much use of NUW.
4243   auto AddFlags = SCEV::FlagAnyWrap;
4244   const bool RHSIsNotMinSigned =
4245       !getSignedRangeMin(RHS).isMinSignedValue();
4246   if (hasFlags(Flags, SCEV::FlagNSW)) {
4247     // Let M be the minimum representable signed value. Then (-1)*RHS
4248     // signed-wraps if and only if RHS is M. That can happen even for
4249     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4250     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4251     // (-1)*RHS, we need to prove that RHS != M.
4252     //
4253     // If LHS is non-negative and we know that LHS - RHS does not
4254     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4255     // either by proving that RHS > M or that LHS >= 0.
4256     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4257       AddFlags = SCEV::FlagNSW;
4258     }
4259   }
4260 
4261   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4262   // RHS is NSW and LHS >= 0.
4263   //
4264   // The difficulty here is that the NSW flag may have been proven
4265   // relative to a loop that is to be found in a recurrence in LHS and
4266   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4267   // larger scope than intended.
4268   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4269 
4270   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4271 }
4272 
getTruncateOrZeroExtend(const SCEV * V,Type * Ty,unsigned Depth)4273 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4274                                                      unsigned Depth) {
4275   Type *SrcTy = V->getType();
4276   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4277          "Cannot truncate or zero extend with non-integer arguments!");
4278   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4279     return V;  // No conversion
4280   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4281     return getTruncateExpr(V, Ty, Depth);
4282   return getZeroExtendExpr(V, Ty, Depth);
4283 }
4284 
getTruncateOrSignExtend(const SCEV * V,Type * Ty,unsigned Depth)4285 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4286                                                      unsigned Depth) {
4287   Type *SrcTy = V->getType();
4288   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4289          "Cannot truncate or zero extend with non-integer arguments!");
4290   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4291     return V;  // No conversion
4292   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4293     return getTruncateExpr(V, Ty, Depth);
4294   return getSignExtendExpr(V, Ty, Depth);
4295 }
4296 
4297 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4298 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4299   Type *SrcTy = V->getType();
4300   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4301          "Cannot noop or zero extend with non-integer arguments!");
4302   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4303          "getNoopOrZeroExtend cannot truncate!");
4304   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4305     return V;  // No conversion
4306   return getZeroExtendExpr(V, Ty);
4307 }
4308 
4309 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4310 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4311   Type *SrcTy = V->getType();
4312   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4313          "Cannot noop or sign extend with non-integer arguments!");
4314   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4315          "getNoopOrSignExtend cannot truncate!");
4316   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4317     return V;  // No conversion
4318   return getSignExtendExpr(V, Ty);
4319 }
4320 
4321 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4322 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4323   Type *SrcTy = V->getType();
4324   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4325          "Cannot noop or any extend with non-integer arguments!");
4326   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4327          "getNoopOrAnyExtend cannot truncate!");
4328   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4329     return V;  // No conversion
4330   return getAnyExtendExpr(V, Ty);
4331 }
4332 
4333 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4334 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4335   Type *SrcTy = V->getType();
4336   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4337          "Cannot truncate or noop with non-integer arguments!");
4338   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4339          "getTruncateOrNoop cannot extend!");
4340   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4341     return V;  // No conversion
4342   return getTruncateExpr(V, Ty);
4343 }
4344 
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4345 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4346                                                         const SCEV *RHS) {
4347   const SCEV *PromotedLHS = LHS;
4348   const SCEV *PromotedRHS = RHS;
4349 
4350   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4351     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4352   else
4353     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4354 
4355   return getUMaxExpr(PromotedLHS, PromotedRHS);
4356 }
4357 
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4358 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4359                                                         const SCEV *RHS) {
4360   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4361   return getUMinFromMismatchedTypes(Ops);
4362 }
4363 
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)4364 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4365     SmallVectorImpl<const SCEV *> &Ops) {
4366   assert(!Ops.empty() && "At least one operand must be!");
4367   // Trivial case.
4368   if (Ops.size() == 1)
4369     return Ops[0];
4370 
4371   // Find the max type first.
4372   Type *MaxType = nullptr;
4373   for (auto *S : Ops)
4374     if (MaxType)
4375       MaxType = getWiderType(MaxType, S->getType());
4376     else
4377       MaxType = S->getType();
4378   assert(MaxType && "Failed to find maximum type!");
4379 
4380   // Extend all ops to max type.
4381   SmallVector<const SCEV *, 2> PromotedOps;
4382   for (auto *S : Ops)
4383     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4384 
4385   // Generate umin.
4386   return getUMinExpr(PromotedOps);
4387 }
4388 
getPointerBase(const SCEV * V)4389 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4390   // A pointer operand may evaluate to a nonpointer expression, such as null.
4391   if (!V->getType()->isPointerTy())
4392     return V;
4393 
4394   while (true) {
4395     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4396       V = AddRec->getStart();
4397     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4398       const SCEV *PtrOp = nullptr;
4399       for (const SCEV *AddOp : Add->operands()) {
4400         if (AddOp->getType()->isPointerTy()) {
4401           assert(!PtrOp && "Cannot have multiple pointer ops");
4402           PtrOp = AddOp;
4403         }
4404       }
4405       assert(PtrOp && "Must have pointer op");
4406       V = PtrOp;
4407     } else // Not something we can look further into.
4408       return V;
4409   }
4410 }
4411 
4412 /// Push users of the given Instruction onto the given Worklist.
4413 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)4414 PushDefUseChildren(Instruction *I,
4415                    SmallVectorImpl<Instruction *> &Worklist) {
4416   // Push the def-use children onto the Worklist stack.
4417   for (User *U : I->users())
4418     Worklist.push_back(cast<Instruction>(U));
4419 }
4420 
forgetSymbolicName(Instruction * PN,const SCEV * SymName)4421 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4422   SmallVector<Instruction *, 16> Worklist;
4423   PushDefUseChildren(PN, Worklist);
4424 
4425   SmallPtrSet<Instruction *, 8> Visited;
4426   Visited.insert(PN);
4427   while (!Worklist.empty()) {
4428     Instruction *I = Worklist.pop_back_val();
4429     if (!Visited.insert(I).second)
4430       continue;
4431 
4432     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4433     if (It != ValueExprMap.end()) {
4434       const SCEV *Old = It->second;
4435 
4436       // Short-circuit the def-use traversal if the symbolic name
4437       // ceases to appear in expressions.
4438       if (Old != SymName && !hasOperand(Old, SymName))
4439         continue;
4440 
4441       // SCEVUnknown for a PHI either means that it has an unrecognized
4442       // structure, it's a PHI that's in the progress of being computed
4443       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4444       // additional loop trip count information isn't going to change anything.
4445       // In the second case, createNodeForPHI will perform the necessary
4446       // updates on its own when it gets to that point. In the third, we do
4447       // want to forget the SCEVUnknown.
4448       if (!isa<PHINode>(I) ||
4449           !isa<SCEVUnknown>(Old) ||
4450           (I != PN && Old == SymName)) {
4451         eraseValueFromMap(It->first);
4452         forgetMemoizedResults(Old);
4453       }
4454     }
4455 
4456     PushDefUseChildren(I, Worklist);
4457   }
4458 }
4459 
4460 namespace {
4461 
4462 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4463 /// expression in case its Loop is L. If it is not L then
4464 /// if IgnoreOtherLoops is true then use AddRec itself
4465 /// otherwise rewrite cannot be done.
4466 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4467 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4468 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4469   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4470                              bool IgnoreOtherLoops = true) {
4471     SCEVInitRewriter Rewriter(L, SE);
4472     const SCEV *Result = Rewriter.visit(S);
4473     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4474       return SE.getCouldNotCompute();
4475     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4476                ? SE.getCouldNotCompute()
4477                : Result;
4478   }
4479 
visitUnknown(const SCEVUnknown * Expr)4480   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4481     if (!SE.isLoopInvariant(Expr, L))
4482       SeenLoopVariantSCEVUnknown = true;
4483     return Expr;
4484   }
4485 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4486   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4487     // Only re-write AddRecExprs for this loop.
4488     if (Expr->getLoop() == L)
4489       return Expr->getStart();
4490     SeenOtherLoops = true;
4491     return Expr;
4492   }
4493 
hasSeenLoopVariantSCEVUnknown()4494   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4495 
hasSeenOtherLoops()4496   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4497 
4498 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4499   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4500       : SCEVRewriteVisitor(SE), L(L) {}
4501 
4502   const Loop *L;
4503   bool SeenLoopVariantSCEVUnknown = false;
4504   bool SeenOtherLoops = false;
4505 };
4506 
4507 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4508 /// increment expression in case its Loop is L. If it is not L then
4509 /// use AddRec itself.
4510 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4511 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4512 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4513   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4514     SCEVPostIncRewriter Rewriter(L, SE);
4515     const SCEV *Result = Rewriter.visit(S);
4516     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4517         ? SE.getCouldNotCompute()
4518         : Result;
4519   }
4520 
visitUnknown(const SCEVUnknown * Expr)4521   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4522     if (!SE.isLoopInvariant(Expr, L))
4523       SeenLoopVariantSCEVUnknown = true;
4524     return Expr;
4525   }
4526 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4527   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4528     // Only re-write AddRecExprs for this loop.
4529     if (Expr->getLoop() == L)
4530       return Expr->getPostIncExpr(SE);
4531     SeenOtherLoops = true;
4532     return Expr;
4533   }
4534 
hasSeenLoopVariantSCEVUnknown()4535   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4536 
hasSeenOtherLoops()4537   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4538 
4539 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4540   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4541       : SCEVRewriteVisitor(SE), L(L) {}
4542 
4543   const Loop *L;
4544   bool SeenLoopVariantSCEVUnknown = false;
4545   bool SeenOtherLoops = false;
4546 };
4547 
4548 /// This class evaluates the compare condition by matching it against the
4549 /// condition of loop latch. If there is a match we assume a true value
4550 /// for the condition while building SCEV nodes.
4551 class SCEVBackedgeConditionFolder
4552     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4553 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4554   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4555                              ScalarEvolution &SE) {
4556     bool IsPosBECond = false;
4557     Value *BECond = nullptr;
4558     if (BasicBlock *Latch = L->getLoopLatch()) {
4559       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4560       if (BI && BI->isConditional()) {
4561         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4562                "Both outgoing branches should not target same header!");
4563         BECond = BI->getCondition();
4564         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4565       } else {
4566         return S;
4567       }
4568     }
4569     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4570     return Rewriter.visit(S);
4571   }
4572 
visitUnknown(const SCEVUnknown * Expr)4573   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4574     const SCEV *Result = Expr;
4575     bool InvariantF = SE.isLoopInvariant(Expr, L);
4576 
4577     if (!InvariantF) {
4578       Instruction *I = cast<Instruction>(Expr->getValue());
4579       switch (I->getOpcode()) {
4580       case Instruction::Select: {
4581         SelectInst *SI = cast<SelectInst>(I);
4582         Optional<const SCEV *> Res =
4583             compareWithBackedgeCondition(SI->getCondition());
4584         if (Res.hasValue()) {
4585           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4586           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4587         }
4588         break;
4589       }
4590       default: {
4591         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4592         if (Res.hasValue())
4593           Result = Res.getValue();
4594         break;
4595       }
4596       }
4597     }
4598     return Result;
4599   }
4600 
4601 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4602   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4603                                        bool IsPosBECond, ScalarEvolution &SE)
4604       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4605         IsPositiveBECond(IsPosBECond) {}
4606 
4607   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4608 
4609   const Loop *L;
4610   /// Loop back condition.
4611   Value *BackedgeCond = nullptr;
4612   /// Set to true if loop back is on positive branch condition.
4613   bool IsPositiveBECond;
4614 };
4615 
4616 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4617 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4618 
4619   // If value matches the backedge condition for loop latch,
4620   // then return a constant evolution node based on loopback
4621   // branch taken.
4622   if (BackedgeCond == IC)
4623     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4624                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4625   return None;
4626 }
4627 
4628 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4629 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4630   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4631                              ScalarEvolution &SE) {
4632     SCEVShiftRewriter Rewriter(L, SE);
4633     const SCEV *Result = Rewriter.visit(S);
4634     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4635   }
4636 
visitUnknown(const SCEVUnknown * Expr)4637   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4638     // Only allow AddRecExprs for this loop.
4639     if (!SE.isLoopInvariant(Expr, L))
4640       Valid = false;
4641     return Expr;
4642   }
4643 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4644   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4645     if (Expr->getLoop() == L && Expr->isAffine())
4646       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4647     Valid = false;
4648     return Expr;
4649   }
4650 
isValid()4651   bool isValid() { return Valid; }
4652 
4653 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4654   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4655       : SCEVRewriteVisitor(SE), L(L) {}
4656 
4657   const Loop *L;
4658   bool Valid = true;
4659 };
4660 
4661 } // end anonymous namespace
4662 
4663 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4664 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4665   if (!AR->isAffine())
4666     return SCEV::FlagAnyWrap;
4667 
4668   using OBO = OverflowingBinaryOperator;
4669 
4670   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4671 
4672   if (!AR->hasNoSignedWrap()) {
4673     ConstantRange AddRecRange = getSignedRange(AR);
4674     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4675 
4676     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4677         Instruction::Add, IncRange, OBO::NoSignedWrap);
4678     if (NSWRegion.contains(AddRecRange))
4679       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4680   }
4681 
4682   if (!AR->hasNoUnsignedWrap()) {
4683     ConstantRange AddRecRange = getUnsignedRange(AR);
4684     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4685 
4686     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4687         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4688     if (NUWRegion.contains(AddRecRange))
4689       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4690   }
4691 
4692   return Result;
4693 }
4694 
4695 SCEV::NoWrapFlags
proveNoSignedWrapViaInduction(const SCEVAddRecExpr * AR)4696 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4697   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4698 
4699   if (AR->hasNoSignedWrap())
4700     return Result;
4701 
4702   if (!AR->isAffine())
4703     return Result;
4704 
4705   const SCEV *Step = AR->getStepRecurrence(*this);
4706   const Loop *L = AR->getLoop();
4707 
4708   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4709   // Note that this serves two purposes: It filters out loops that are
4710   // simply not analyzable, and it covers the case where this code is
4711   // being called from within backedge-taken count analysis, such that
4712   // attempting to ask for the backedge-taken count would likely result
4713   // in infinite recursion. In the later case, the analysis code will
4714   // cope with a conservative value, and it will take care to purge
4715   // that value once it has finished.
4716   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4717 
4718   // Normally, in the cases we can prove no-overflow via a
4719   // backedge guarding condition, we can also compute a backedge
4720   // taken count for the loop.  The exceptions are assumptions and
4721   // guards present in the loop -- SCEV is not great at exploiting
4722   // these to compute max backedge taken counts, but can still use
4723   // these to prove lack of overflow.  Use this fact to avoid
4724   // doing extra work that may not pay off.
4725 
4726   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4727       AC.assumptions().empty())
4728     return Result;
4729 
4730   // If the backedge is guarded by a comparison with the pre-inc  value the
4731   // addrec is safe. Also, if the entry is guarded by a comparison with the
4732   // start value and the backedge is guarded by a comparison with the post-inc
4733   // value, the addrec is safe.
4734   ICmpInst::Predicate Pred;
4735   const SCEV *OverflowLimit =
4736     getSignedOverflowLimitForStep(Step, &Pred, this);
4737   if (OverflowLimit &&
4738       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4739        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4740     Result = setFlags(Result, SCEV::FlagNSW);
4741   }
4742   return Result;
4743 }
4744 SCEV::NoWrapFlags
proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr * AR)4745 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4746   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4747 
4748   if (AR->hasNoUnsignedWrap())
4749     return Result;
4750 
4751   if (!AR->isAffine())
4752     return Result;
4753 
4754   const SCEV *Step = AR->getStepRecurrence(*this);
4755   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4756   const Loop *L = AR->getLoop();
4757 
4758   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4759   // Note that this serves two purposes: It filters out loops that are
4760   // simply not analyzable, and it covers the case where this code is
4761   // being called from within backedge-taken count analysis, such that
4762   // attempting to ask for the backedge-taken count would likely result
4763   // in infinite recursion. In the later case, the analysis code will
4764   // cope with a conservative value, and it will take care to purge
4765   // that value once it has finished.
4766   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4767 
4768   // Normally, in the cases we can prove no-overflow via a
4769   // backedge guarding condition, we can also compute a backedge
4770   // taken count for the loop.  The exceptions are assumptions and
4771   // guards present in the loop -- SCEV is not great at exploiting
4772   // these to compute max backedge taken counts, but can still use
4773   // these to prove lack of overflow.  Use this fact to avoid
4774   // doing extra work that may not pay off.
4775 
4776   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4777       AC.assumptions().empty())
4778     return Result;
4779 
4780   // If the backedge is guarded by a comparison with the pre-inc  value the
4781   // addrec is safe. Also, if the entry is guarded by a comparison with the
4782   // start value and the backedge is guarded by a comparison with the post-inc
4783   // value, the addrec is safe.
4784   if (isKnownPositive(Step)) {
4785     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4786                                 getUnsignedRangeMax(Step));
4787     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4788         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4789       Result = setFlags(Result, SCEV::FlagNUW);
4790     }
4791   }
4792 
4793   return Result;
4794 }
4795 
4796 namespace {
4797 
4798 /// Represents an abstract binary operation.  This may exist as a
4799 /// normal instruction or constant expression, or may have been
4800 /// derived from an expression tree.
4801 struct BinaryOp {
4802   unsigned Opcode;
4803   Value *LHS;
4804   Value *RHS;
4805   bool IsNSW = false;
4806   bool IsNUW = false;
4807 
4808   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4809   /// constant expression.
4810   Operator *Op = nullptr;
4811 
BinaryOp__anonb5a706171411::BinaryOp4812   explicit BinaryOp(Operator *Op)
4813       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4814         Op(Op) {
4815     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4816       IsNSW = OBO->hasNoSignedWrap();
4817       IsNUW = OBO->hasNoUnsignedWrap();
4818     }
4819   }
4820 
BinaryOp__anonb5a706171411::BinaryOp4821   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4822                     bool IsNUW = false)
4823       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4824 };
4825 
4826 } // end anonymous namespace
4827 
4828 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4829 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4830   auto *Op = dyn_cast<Operator>(V);
4831   if (!Op)
4832     return None;
4833 
4834   // Implementation detail: all the cleverness here should happen without
4835   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4836   // SCEV expressions when possible, and we should not break that.
4837 
4838   switch (Op->getOpcode()) {
4839   case Instruction::Add:
4840   case Instruction::Sub:
4841   case Instruction::Mul:
4842   case Instruction::UDiv:
4843   case Instruction::URem:
4844   case Instruction::And:
4845   case Instruction::Or:
4846   case Instruction::AShr:
4847   case Instruction::Shl:
4848     return BinaryOp(Op);
4849 
4850   case Instruction::Xor:
4851     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4852       // If the RHS of the xor is a signmask, then this is just an add.
4853       // Instcombine turns add of signmask into xor as a strength reduction step.
4854       if (RHSC->getValue().isSignMask())
4855         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4856     return BinaryOp(Op);
4857 
4858   case Instruction::LShr:
4859     // Turn logical shift right of a constant into a unsigned divide.
4860     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4861       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4862 
4863       // If the shift count is not less than the bitwidth, the result of
4864       // the shift is undefined. Don't try to analyze it, because the
4865       // resolution chosen here may differ from the resolution chosen in
4866       // other parts of the compiler.
4867       if (SA->getValue().ult(BitWidth)) {
4868         Constant *X =
4869             ConstantInt::get(SA->getContext(),
4870                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4871         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4872       }
4873     }
4874     return BinaryOp(Op);
4875 
4876   case Instruction::ExtractValue: {
4877     auto *EVI = cast<ExtractValueInst>(Op);
4878     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4879       break;
4880 
4881     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4882     if (!WO)
4883       break;
4884 
4885     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4886     bool Signed = WO->isSigned();
4887     // TODO: Should add nuw/nsw flags for mul as well.
4888     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4889       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4890 
4891     // Now that we know that all uses of the arithmetic-result component of
4892     // CI are guarded by the overflow check, we can go ahead and pretend
4893     // that the arithmetic is non-overflowing.
4894     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4895                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4896   }
4897 
4898   default:
4899     break;
4900   }
4901 
4902   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4903   // semantics as a Sub, return a binary sub expression.
4904   if (auto *II = dyn_cast<IntrinsicInst>(V))
4905     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4906       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4907 
4908   return None;
4909 }
4910 
4911 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4912 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4913 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4914 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4915 /// follows one of the following patterns:
4916 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4917 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4918 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4919 /// we return the type of the truncation operation, and indicate whether the
4920 /// truncated type should be treated as signed/unsigned by setting
4921 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4922 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4923                                bool &Signed, ScalarEvolution &SE) {
4924   // The case where Op == SymbolicPHI (that is, with no type conversions on
4925   // the way) is handled by the regular add recurrence creating logic and
4926   // would have already been triggered in createAddRecForPHI. Reaching it here
4927   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4928   // because one of the other operands of the SCEVAddExpr updating this PHI is
4929   // not invariant).
4930   //
4931   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4932   // this case predicates that allow us to prove that Op == SymbolicPHI will
4933   // be added.
4934   if (Op == SymbolicPHI)
4935     return nullptr;
4936 
4937   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4938   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4939   if (SourceBits != NewBits)
4940     return nullptr;
4941 
4942   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4943   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4944   if (!SExt && !ZExt)
4945     return nullptr;
4946   const SCEVTruncateExpr *Trunc =
4947       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4948            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4949   if (!Trunc)
4950     return nullptr;
4951   const SCEV *X = Trunc->getOperand();
4952   if (X != SymbolicPHI)
4953     return nullptr;
4954   Signed = SExt != nullptr;
4955   return Trunc->getType();
4956 }
4957 
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4958 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4959   if (!PN->getType()->isIntegerTy())
4960     return nullptr;
4961   const Loop *L = LI.getLoopFor(PN->getParent());
4962   if (!L || L->getHeader() != PN->getParent())
4963     return nullptr;
4964   return L;
4965 }
4966 
4967 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4968 // computation that updates the phi follows the following pattern:
4969 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4970 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4971 // If so, try to see if it can be rewritten as an AddRecExpr under some
4972 // Predicates. If successful, return them as a pair. Also cache the results
4973 // of the analysis.
4974 //
4975 // Example usage scenario:
4976 //    Say the Rewriter is called for the following SCEV:
4977 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4978 //    where:
4979 //         %X = phi i64 (%Start, %BEValue)
4980 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4981 //    and call this function with %SymbolicPHI = %X.
4982 //
4983 //    The analysis will find that the value coming around the backedge has
4984 //    the following SCEV:
4985 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4986 //    Upon concluding that this matches the desired pattern, the function
4987 //    will return the pair {NewAddRec, SmallPredsVec} where:
4988 //         NewAddRec = {%Start,+,%Step}
4989 //         SmallPredsVec = {P1, P2, P3} as follows:
4990 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4991 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4992 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4993 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4994 //    under the predicates {P1,P2,P3}.
4995 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4996 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4997 //
4998 // TODO's:
4999 //
5000 // 1) Extend the Induction descriptor to also support inductions that involve
5001 //    casts: When needed (namely, when we are called in the context of the
5002 //    vectorizer induction analysis), a Set of cast instructions will be
5003 //    populated by this method, and provided back to isInductionPHI. This is
5004 //    needed to allow the vectorizer to properly record them to be ignored by
5005 //    the cost model and to avoid vectorizing them (otherwise these casts,
5006 //    which are redundant under the runtime overflow checks, will be
5007 //    vectorized, which can be costly).
5008 //
5009 // 2) Support additional induction/PHISCEV patterns: We also want to support
5010 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5011 //    after the induction update operation (the induction increment):
5012 //
5013 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5014 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5015 //
5016 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5017 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5018 //
5019 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5020 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)5021 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5022   SmallVector<const SCEVPredicate *, 3> Predicates;
5023 
5024   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5025   // return an AddRec expression under some predicate.
5026 
5027   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5028   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5029   assert(L && "Expecting an integer loop header phi");
5030 
5031   // The loop may have multiple entrances or multiple exits; we can analyze
5032   // this phi as an addrec if it has a unique entry value and a unique
5033   // backedge value.
5034   Value *BEValueV = nullptr, *StartValueV = nullptr;
5035   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5036     Value *V = PN->getIncomingValue(i);
5037     if (L->contains(PN->getIncomingBlock(i))) {
5038       if (!BEValueV) {
5039         BEValueV = V;
5040       } else if (BEValueV != V) {
5041         BEValueV = nullptr;
5042         break;
5043       }
5044     } else if (!StartValueV) {
5045       StartValueV = V;
5046     } else if (StartValueV != V) {
5047       StartValueV = nullptr;
5048       break;
5049     }
5050   }
5051   if (!BEValueV || !StartValueV)
5052     return None;
5053 
5054   const SCEV *BEValue = getSCEV(BEValueV);
5055 
5056   // If the value coming around the backedge is an add with the symbolic
5057   // value we just inserted, possibly with casts that we can ignore under
5058   // an appropriate runtime guard, then we found a simple induction variable!
5059   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5060   if (!Add)
5061     return None;
5062 
5063   // If there is a single occurrence of the symbolic value, possibly
5064   // casted, replace it with a recurrence.
5065   unsigned FoundIndex = Add->getNumOperands();
5066   Type *TruncTy = nullptr;
5067   bool Signed;
5068   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5069     if ((TruncTy =
5070              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5071       if (FoundIndex == e) {
5072         FoundIndex = i;
5073         break;
5074       }
5075 
5076   if (FoundIndex == Add->getNumOperands())
5077     return None;
5078 
5079   // Create an add with everything but the specified operand.
5080   SmallVector<const SCEV *, 8> Ops;
5081   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5082     if (i != FoundIndex)
5083       Ops.push_back(Add->getOperand(i));
5084   const SCEV *Accum = getAddExpr(Ops);
5085 
5086   // The runtime checks will not be valid if the step amount is
5087   // varying inside the loop.
5088   if (!isLoopInvariant(Accum, L))
5089     return None;
5090 
5091   // *** Part2: Create the predicates
5092 
5093   // Analysis was successful: we have a phi-with-cast pattern for which we
5094   // can return an AddRec expression under the following predicates:
5095   //
5096   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5097   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5098   // P2: An Equal predicate that guarantees that
5099   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5100   // P3: An Equal predicate that guarantees that
5101   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5102   //
5103   // As we next prove, the above predicates guarantee that:
5104   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5105   //
5106   //
5107   // More formally, we want to prove that:
5108   //     Expr(i+1) = Start + (i+1) * Accum
5109   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5110   //
5111   // Given that:
5112   // 1) Expr(0) = Start
5113   // 2) Expr(1) = Start + Accum
5114   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5115   // 3) Induction hypothesis (step i):
5116   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5117   //
5118   // Proof:
5119   //  Expr(i+1) =
5120   //   = Start + (i+1)*Accum
5121   //   = (Start + i*Accum) + Accum
5122   //   = Expr(i) + Accum
5123   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5124   //                                                             :: from step i
5125   //
5126   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5127   //
5128   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5129   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5130   //     + Accum                                                     :: from P3
5131   //
5132   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5133   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5134   //
5135   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5136   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5137   //
5138   // By induction, the same applies to all iterations 1<=i<n:
5139   //
5140 
5141   // Create a truncated addrec for which we will add a no overflow check (P1).
5142   const SCEV *StartVal = getSCEV(StartValueV);
5143   const SCEV *PHISCEV =
5144       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5145                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5146 
5147   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5148   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5149   // will be constant.
5150   //
5151   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5152   // add P1.
5153   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5154     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5155         Signed ? SCEVWrapPredicate::IncrementNSSW
5156                : SCEVWrapPredicate::IncrementNUSW;
5157     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5158     Predicates.push_back(AddRecPred);
5159   }
5160 
5161   // Create the Equal Predicates P2,P3:
5162 
5163   // It is possible that the predicates P2 and/or P3 are computable at
5164   // compile time due to StartVal and/or Accum being constants.
5165   // If either one is, then we can check that now and escape if either P2
5166   // or P3 is false.
5167 
5168   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5169   // for each of StartVal and Accum
5170   auto getExtendedExpr = [&](const SCEV *Expr,
5171                              bool CreateSignExtend) -> const SCEV * {
5172     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5173     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5174     const SCEV *ExtendedExpr =
5175         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5176                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5177     return ExtendedExpr;
5178   };
5179 
5180   // Given:
5181   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5182   //               = getExtendedExpr(Expr)
5183   // Determine whether the predicate P: Expr == ExtendedExpr
5184   // is known to be false at compile time
5185   auto PredIsKnownFalse = [&](const SCEV *Expr,
5186                               const SCEV *ExtendedExpr) -> bool {
5187     return Expr != ExtendedExpr &&
5188            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5189   };
5190 
5191   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5192   if (PredIsKnownFalse(StartVal, StartExtended)) {
5193     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5194     return None;
5195   }
5196 
5197   // The Step is always Signed (because the overflow checks are either
5198   // NSSW or NUSW)
5199   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5200   if (PredIsKnownFalse(Accum, AccumExtended)) {
5201     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5202     return None;
5203   }
5204 
5205   auto AppendPredicate = [&](const SCEV *Expr,
5206                              const SCEV *ExtendedExpr) -> void {
5207     if (Expr != ExtendedExpr &&
5208         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5209       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5210       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5211       Predicates.push_back(Pred);
5212     }
5213   };
5214 
5215   AppendPredicate(StartVal, StartExtended);
5216   AppendPredicate(Accum, AccumExtended);
5217 
5218   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5219   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5220   // into NewAR if it will also add the runtime overflow checks specified in
5221   // Predicates.
5222   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5223 
5224   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5225       std::make_pair(NewAR, Predicates);
5226   // Remember the result of the analysis for this SCEV at this locayyytion.
5227   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5228   return PredRewrite;
5229 }
5230 
5231 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)5232 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5233   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5234   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5235   if (!L)
5236     return None;
5237 
5238   // Check to see if we already analyzed this PHI.
5239   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5240   if (I != PredicatedSCEVRewrites.end()) {
5241     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5242         I->second;
5243     // Analysis was done before and failed to create an AddRec:
5244     if (Rewrite.first == SymbolicPHI)
5245       return None;
5246     // Analysis was done before and succeeded to create an AddRec under
5247     // a predicate:
5248     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5249     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5250     return Rewrite;
5251   }
5252 
5253   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5254     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5255 
5256   // Record in the cache that the analysis failed
5257   if (!Rewrite) {
5258     SmallVector<const SCEVPredicate *, 3> Predicates;
5259     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5260     return None;
5261   }
5262 
5263   return Rewrite;
5264 }
5265 
5266 // FIXME: This utility is currently required because the Rewriter currently
5267 // does not rewrite this expression:
5268 // {0, +, (sext ix (trunc iy to ix) to iy)}
5269 // into {0, +, %step},
5270 // even when the following Equal predicate exists:
5271 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const5272 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5273     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5274   if (AR1 == AR2)
5275     return true;
5276 
5277   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5278     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5279         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5280       return false;
5281     return true;
5282   };
5283 
5284   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5285       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5286     return false;
5287   return true;
5288 }
5289 
5290 /// A helper function for createAddRecFromPHI to handle simple cases.
5291 ///
5292 /// This function tries to find an AddRec expression for the simplest (yet most
5293 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5294 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5295 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)5296 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5297                                                       Value *BEValueV,
5298                                                       Value *StartValueV) {
5299   const Loop *L = LI.getLoopFor(PN->getParent());
5300   assert(L && L->getHeader() == PN->getParent());
5301   assert(BEValueV && StartValueV);
5302 
5303   auto BO = MatchBinaryOp(BEValueV, DT);
5304   if (!BO)
5305     return nullptr;
5306 
5307   if (BO->Opcode != Instruction::Add)
5308     return nullptr;
5309 
5310   const SCEV *Accum = nullptr;
5311   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5312     Accum = getSCEV(BO->RHS);
5313   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5314     Accum = getSCEV(BO->LHS);
5315 
5316   if (!Accum)
5317     return nullptr;
5318 
5319   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5320   if (BO->IsNUW)
5321     Flags = setFlags(Flags, SCEV::FlagNUW);
5322   if (BO->IsNSW)
5323     Flags = setFlags(Flags, SCEV::FlagNSW);
5324 
5325   const SCEV *StartVal = getSCEV(StartValueV);
5326   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5327 
5328   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5329 
5330   // We can add Flags to the post-inc expression only if we
5331   // know that it is *undefined behavior* for BEValueV to
5332   // overflow.
5333   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5334     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5335       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5336 
5337   return PHISCEV;
5338 }
5339 
createAddRecFromPHI(PHINode * PN)5340 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5341   const Loop *L = LI.getLoopFor(PN->getParent());
5342   if (!L || L->getHeader() != PN->getParent())
5343     return nullptr;
5344 
5345   // The loop may have multiple entrances or multiple exits; we can analyze
5346   // this phi as an addrec if it has a unique entry value and a unique
5347   // backedge value.
5348   Value *BEValueV = nullptr, *StartValueV = nullptr;
5349   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5350     Value *V = PN->getIncomingValue(i);
5351     if (L->contains(PN->getIncomingBlock(i))) {
5352       if (!BEValueV) {
5353         BEValueV = V;
5354       } else if (BEValueV != V) {
5355         BEValueV = nullptr;
5356         break;
5357       }
5358     } else if (!StartValueV) {
5359       StartValueV = V;
5360     } else if (StartValueV != V) {
5361       StartValueV = nullptr;
5362       break;
5363     }
5364   }
5365   if (!BEValueV || !StartValueV)
5366     return nullptr;
5367 
5368   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5369          "PHI node already processed?");
5370 
5371   // First, try to find AddRec expression without creating a fictituos symbolic
5372   // value for PN.
5373   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5374     return S;
5375 
5376   // Handle PHI node value symbolically.
5377   const SCEV *SymbolicName = getUnknown(PN);
5378   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5379 
5380   // Using this symbolic name for the PHI, analyze the value coming around
5381   // the back-edge.
5382   const SCEV *BEValue = getSCEV(BEValueV);
5383 
5384   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5385   // has a special value for the first iteration of the loop.
5386 
5387   // If the value coming around the backedge is an add with the symbolic
5388   // value we just inserted, then we found a simple induction variable!
5389   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5390     // If there is a single occurrence of the symbolic value, replace it
5391     // with a recurrence.
5392     unsigned FoundIndex = Add->getNumOperands();
5393     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5394       if (Add->getOperand(i) == SymbolicName)
5395         if (FoundIndex == e) {
5396           FoundIndex = i;
5397           break;
5398         }
5399 
5400     if (FoundIndex != Add->getNumOperands()) {
5401       // Create an add with everything but the specified operand.
5402       SmallVector<const SCEV *, 8> Ops;
5403       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5404         if (i != FoundIndex)
5405           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5406                                                              L, *this));
5407       const SCEV *Accum = getAddExpr(Ops);
5408 
5409       // This is not a valid addrec if the step amount is varying each
5410       // loop iteration, but is not itself an addrec in this loop.
5411       if (isLoopInvariant(Accum, L) ||
5412           (isa<SCEVAddRecExpr>(Accum) &&
5413            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5414         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5415 
5416         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5417           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5418             if (BO->IsNUW)
5419               Flags = setFlags(Flags, SCEV::FlagNUW);
5420             if (BO->IsNSW)
5421               Flags = setFlags(Flags, SCEV::FlagNSW);
5422           }
5423         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5424           // If the increment is an inbounds GEP, then we know the address
5425           // space cannot be wrapped around. We cannot make any guarantee
5426           // about signed or unsigned overflow because pointers are
5427           // unsigned but we may have a negative index from the base
5428           // pointer. We can guarantee that no unsigned wrap occurs if the
5429           // indices form a positive value.
5430           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5431             Flags = setFlags(Flags, SCEV::FlagNW);
5432 
5433             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5434             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5435               Flags = setFlags(Flags, SCEV::FlagNUW);
5436           }
5437 
5438           // We cannot transfer nuw and nsw flags from subtraction
5439           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5440           // for instance.
5441         }
5442 
5443         const SCEV *StartVal = getSCEV(StartValueV);
5444         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5445 
5446         // Okay, for the entire analysis of this edge we assumed the PHI
5447         // to be symbolic.  We now need to go back and purge all of the
5448         // entries for the scalars that use the symbolic expression.
5449         forgetSymbolicName(PN, SymbolicName);
5450         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5451 
5452         // We can add Flags to the post-inc expression only if we
5453         // know that it is *undefined behavior* for BEValueV to
5454         // overflow.
5455         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5456           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5457             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5458 
5459         return PHISCEV;
5460       }
5461     }
5462   } else {
5463     // Otherwise, this could be a loop like this:
5464     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5465     // In this case, j = {1,+,1}  and BEValue is j.
5466     // Because the other in-value of i (0) fits the evolution of BEValue
5467     // i really is an addrec evolution.
5468     //
5469     // We can generalize this saying that i is the shifted value of BEValue
5470     // by one iteration:
5471     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5472     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5473     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5474     if (Shifted != getCouldNotCompute() &&
5475         Start != getCouldNotCompute()) {
5476       const SCEV *StartVal = getSCEV(StartValueV);
5477       if (Start == StartVal) {
5478         // Okay, for the entire analysis of this edge we assumed the PHI
5479         // to be symbolic.  We now need to go back and purge all of the
5480         // entries for the scalars that use the symbolic expression.
5481         forgetSymbolicName(PN, SymbolicName);
5482         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5483         return Shifted;
5484       }
5485     }
5486   }
5487 
5488   // Remove the temporary PHI node SCEV that has been inserted while intending
5489   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5490   // as it will prevent later (possibly simpler) SCEV expressions to be added
5491   // to the ValueExprMap.
5492   eraseValueFromMap(PN);
5493 
5494   return nullptr;
5495 }
5496 
5497 // Checks if the SCEV S is available at BB.  S is considered available at BB
5498 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)5499 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5500                                BasicBlock *BB) {
5501   struct CheckAvailable {
5502     bool TraversalDone = false;
5503     bool Available = true;
5504 
5505     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5506     BasicBlock *BB = nullptr;
5507     DominatorTree &DT;
5508 
5509     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5510       : L(L), BB(BB), DT(DT) {}
5511 
5512     bool setUnavailable() {
5513       TraversalDone = true;
5514       Available = false;
5515       return false;
5516     }
5517 
5518     bool follow(const SCEV *S) {
5519       switch (S->getSCEVType()) {
5520       case scConstant:
5521       case scPtrToInt:
5522       case scTruncate:
5523       case scZeroExtend:
5524       case scSignExtend:
5525       case scAddExpr:
5526       case scMulExpr:
5527       case scUMaxExpr:
5528       case scSMaxExpr:
5529       case scUMinExpr:
5530       case scSMinExpr:
5531         // These expressions are available if their operand(s) is/are.
5532         return true;
5533 
5534       case scAddRecExpr: {
5535         // We allow add recurrences that are on the loop BB is in, or some
5536         // outer loop.  This guarantees availability because the value of the
5537         // add recurrence at BB is simply the "current" value of the induction
5538         // variable.  We can relax this in the future; for instance an add
5539         // recurrence on a sibling dominating loop is also available at BB.
5540         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5541         if (L && (ARLoop == L || ARLoop->contains(L)))
5542           return true;
5543 
5544         return setUnavailable();
5545       }
5546 
5547       case scUnknown: {
5548         // For SCEVUnknown, we check for simple dominance.
5549         const auto *SU = cast<SCEVUnknown>(S);
5550         Value *V = SU->getValue();
5551 
5552         if (isa<Argument>(V))
5553           return false;
5554 
5555         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5556           return false;
5557 
5558         return setUnavailable();
5559       }
5560 
5561       case scUDivExpr:
5562       case scCouldNotCompute:
5563         // We do not try to smart about these at all.
5564         return setUnavailable();
5565       }
5566       llvm_unreachable("Unknown SCEV kind!");
5567     }
5568 
5569     bool isDone() { return TraversalDone; }
5570   };
5571 
5572   CheckAvailable CA(L, BB, DT);
5573   SCEVTraversal<CheckAvailable> ST(CA);
5574 
5575   ST.visitAll(S);
5576   return CA.Available;
5577 }
5578 
5579 // Try to match a control flow sequence that branches out at BI and merges back
5580 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5581 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5582 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5583                           Value *&C, Value *&LHS, Value *&RHS) {
5584   C = BI->getCondition();
5585 
5586   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5587   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5588 
5589   if (!LeftEdge.isSingleEdge())
5590     return false;
5591 
5592   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5593 
5594   Use &LeftUse = Merge->getOperandUse(0);
5595   Use &RightUse = Merge->getOperandUse(1);
5596 
5597   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5598     LHS = LeftUse;
5599     RHS = RightUse;
5600     return true;
5601   }
5602 
5603   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5604     LHS = RightUse;
5605     RHS = LeftUse;
5606     return true;
5607   }
5608 
5609   return false;
5610 }
5611 
createNodeFromSelectLikePHI(PHINode * PN)5612 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5613   auto IsReachable =
5614       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5615   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5616     const Loop *L = LI.getLoopFor(PN->getParent());
5617 
5618     // We don't want to break LCSSA, even in a SCEV expression tree.
5619     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5620       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5621         return nullptr;
5622 
5623     // Try to match
5624     //
5625     //  br %cond, label %left, label %right
5626     // left:
5627     //  br label %merge
5628     // right:
5629     //  br label %merge
5630     // merge:
5631     //  V = phi [ %x, %left ], [ %y, %right ]
5632     //
5633     // as "select %cond, %x, %y"
5634 
5635     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5636     assert(IDom && "At least the entry block should dominate PN");
5637 
5638     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5639     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5640 
5641     if (BI && BI->isConditional() &&
5642         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5643         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5644         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5645       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5646   }
5647 
5648   return nullptr;
5649 }
5650 
createNodeForPHI(PHINode * PN)5651 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5652   if (const SCEV *S = createAddRecFromPHI(PN))
5653     return S;
5654 
5655   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5656     return S;
5657 
5658   // If the PHI has a single incoming value, follow that value, unless the
5659   // PHI's incoming blocks are in a different loop, in which case doing so
5660   // risks breaking LCSSA form. Instcombine would normally zap these, but
5661   // it doesn't have DominatorTree information, so it may miss cases.
5662   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5663     if (LI.replacementPreservesLCSSAForm(PN, V))
5664       return getSCEV(V);
5665 
5666   // If it's not a loop phi, we can't handle it yet.
5667   return getUnknown(PN);
5668 }
5669 
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5670 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5671                                                       Value *Cond,
5672                                                       Value *TrueVal,
5673                                                       Value *FalseVal) {
5674   // Handle "constant" branch or select. This can occur for instance when a
5675   // loop pass transforms an inner loop and moves on to process the outer loop.
5676   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5677     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5678 
5679   // Try to match some simple smax or umax patterns.
5680   auto *ICI = dyn_cast<ICmpInst>(Cond);
5681   if (!ICI)
5682     return getUnknown(I);
5683 
5684   Value *LHS = ICI->getOperand(0);
5685   Value *RHS = ICI->getOperand(1);
5686 
5687   switch (ICI->getPredicate()) {
5688   case ICmpInst::ICMP_SLT:
5689   case ICmpInst::ICMP_SLE:
5690   case ICmpInst::ICMP_ULT:
5691   case ICmpInst::ICMP_ULE:
5692     std::swap(LHS, RHS);
5693     LLVM_FALLTHROUGH;
5694   case ICmpInst::ICMP_SGT:
5695   case ICmpInst::ICMP_SGE:
5696   case ICmpInst::ICMP_UGT:
5697   case ICmpInst::ICMP_UGE:
5698     // a > b ? a+x : b+x  ->  max(a, b)+x
5699     // a > b ? b+x : a+x  ->  min(a, b)+x
5700     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5701       bool Signed = ICI->isSigned();
5702       const SCEV *LA = getSCEV(TrueVal);
5703       const SCEV *RA = getSCEV(FalseVal);
5704       const SCEV *LS = getSCEV(LHS);
5705       const SCEV *RS = getSCEV(RHS);
5706       if (LA->getType()->isPointerTy()) {
5707         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5708         // Need to make sure we can't produce weird expressions involving
5709         // negated pointers.
5710         if (LA == LS && RA == RS)
5711           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5712         if (LA == RS && RA == LS)
5713           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5714       }
5715       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5716         if (Op->getType()->isPointerTy()) {
5717           Op = getLosslessPtrToIntExpr(Op);
5718           if (isa<SCEVCouldNotCompute>(Op))
5719             return Op;
5720         }
5721         if (Signed)
5722           Op = getNoopOrSignExtend(Op, I->getType());
5723         else
5724           Op = getNoopOrZeroExtend(Op, I->getType());
5725         return Op;
5726       };
5727       LS = CoerceOperand(LS);
5728       RS = CoerceOperand(RS);
5729       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5730         break;
5731       const SCEV *LDiff = getMinusSCEV(LA, LS);
5732       const SCEV *RDiff = getMinusSCEV(RA, RS);
5733       if (LDiff == RDiff)
5734         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5735                           LDiff);
5736       LDiff = getMinusSCEV(LA, RS);
5737       RDiff = getMinusSCEV(RA, LS);
5738       if (LDiff == RDiff)
5739         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5740                           LDiff);
5741     }
5742     break;
5743   case ICmpInst::ICMP_NE:
5744     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5745     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5746         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5747       const SCEV *One = getOne(I->getType());
5748       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5749       const SCEV *LA = getSCEV(TrueVal);
5750       const SCEV *RA = getSCEV(FalseVal);
5751       const SCEV *LDiff = getMinusSCEV(LA, LS);
5752       const SCEV *RDiff = getMinusSCEV(RA, One);
5753       if (LDiff == RDiff)
5754         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5755     }
5756     break;
5757   case ICmpInst::ICMP_EQ:
5758     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5759     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5760         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5761       const SCEV *One = getOne(I->getType());
5762       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5763       const SCEV *LA = getSCEV(TrueVal);
5764       const SCEV *RA = getSCEV(FalseVal);
5765       const SCEV *LDiff = getMinusSCEV(LA, One);
5766       const SCEV *RDiff = getMinusSCEV(RA, LS);
5767       if (LDiff == RDiff)
5768         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5769     }
5770     break;
5771   default:
5772     break;
5773   }
5774 
5775   return getUnknown(I);
5776 }
5777 
5778 /// Expand GEP instructions into add and multiply operations. This allows them
5779 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5780 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5781   // Don't attempt to analyze GEPs over unsized objects.
5782   if (!GEP->getSourceElementType()->isSized())
5783     return getUnknown(GEP);
5784 
5785   SmallVector<const SCEV *, 4> IndexExprs;
5786   for (Value *Index : GEP->indices())
5787     IndexExprs.push_back(getSCEV(Index));
5788   return getGEPExpr(GEP, IndexExprs);
5789 }
5790 
GetMinTrailingZerosImpl(const SCEV * S)5791 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5792   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5793     return C->getAPInt().countTrailingZeros();
5794 
5795   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5796     return GetMinTrailingZeros(I->getOperand());
5797 
5798   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5799     return std::min(GetMinTrailingZeros(T->getOperand()),
5800                     (uint32_t)getTypeSizeInBits(T->getType()));
5801 
5802   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5803     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5804     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5805                ? getTypeSizeInBits(E->getType())
5806                : OpRes;
5807   }
5808 
5809   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5810     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5811     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5812                ? getTypeSizeInBits(E->getType())
5813                : OpRes;
5814   }
5815 
5816   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5817     // The result is the min of all operands results.
5818     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5819     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5820       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5821     return MinOpRes;
5822   }
5823 
5824   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5825     // The result is the sum of all operands results.
5826     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5827     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5828     for (unsigned i = 1, e = M->getNumOperands();
5829          SumOpRes != BitWidth && i != e; ++i)
5830       SumOpRes =
5831           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5832     return SumOpRes;
5833   }
5834 
5835   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5836     // The result is the min of all operands results.
5837     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5838     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5839       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5840     return MinOpRes;
5841   }
5842 
5843   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5844     // The result is the min of all operands results.
5845     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5846     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5847       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5848     return MinOpRes;
5849   }
5850 
5851   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5852     // The result is the min of all operands results.
5853     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5854     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5855       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5856     return MinOpRes;
5857   }
5858 
5859   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5860     // For a SCEVUnknown, ask ValueTracking.
5861     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5862     return Known.countMinTrailingZeros();
5863   }
5864 
5865   // SCEVUDivExpr
5866   return 0;
5867 }
5868 
GetMinTrailingZeros(const SCEV * S)5869 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5870   auto I = MinTrailingZerosCache.find(S);
5871   if (I != MinTrailingZerosCache.end())
5872     return I->second;
5873 
5874   uint32_t Result = GetMinTrailingZerosImpl(S);
5875   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5876   assert(InsertPair.second && "Should insert a new key");
5877   return InsertPair.first->second;
5878 }
5879 
5880 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5881 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5882   if (Instruction *I = dyn_cast<Instruction>(V))
5883     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5884       return getConstantRangeFromMetadata(*MD);
5885 
5886   return None;
5887 }
5888 
setNoWrapFlags(SCEVAddRecExpr * AddRec,SCEV::NoWrapFlags Flags)5889 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5890                                      SCEV::NoWrapFlags Flags) {
5891   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5892     AddRec->setNoWrapFlags(Flags);
5893     UnsignedRanges.erase(AddRec);
5894     SignedRanges.erase(AddRec);
5895   }
5896 }
5897 
5898 ConstantRange ScalarEvolution::
getRangeForUnknownRecurrence(const SCEVUnknown * U)5899 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5900   const DataLayout &DL = getDataLayout();
5901 
5902   unsigned BitWidth = getTypeSizeInBits(U->getType());
5903   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5904 
5905   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5906   // use information about the trip count to improve our available range.  Note
5907   // that the trip count independent cases are already handled by known bits.
5908   // WARNING: The definition of recurrence used here is subtly different than
5909   // the one used by AddRec (and thus most of this file).  Step is allowed to
5910   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5911   // and other addrecs in the same loop (for non-affine addrecs).  The code
5912   // below intentionally handles the case where step is not loop invariant.
5913   auto *P = dyn_cast<PHINode>(U->getValue());
5914   if (!P)
5915     return FullSet;
5916 
5917   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5918   // even the values that are not available in these blocks may come from them,
5919   // and this leads to false-positive recurrence test.
5920   for (auto *Pred : predecessors(P->getParent()))
5921     if (!DT.isReachableFromEntry(Pred))
5922       return FullSet;
5923 
5924   BinaryOperator *BO;
5925   Value *Start, *Step;
5926   if (!matchSimpleRecurrence(P, BO, Start, Step))
5927     return FullSet;
5928 
5929   // If we found a recurrence in reachable code, we must be in a loop. Note
5930   // that BO might be in some subloop of L, and that's completely okay.
5931   auto *L = LI.getLoopFor(P->getParent());
5932   assert(L && L->getHeader() == P->getParent());
5933   if (!L->contains(BO->getParent()))
5934     // NOTE: This bailout should be an assert instead.  However, asserting
5935     // the condition here exposes a case where LoopFusion is querying SCEV
5936     // with malformed loop information during the midst of the transform.
5937     // There doesn't appear to be an obvious fix, so for the moment bailout
5938     // until the caller issue can be fixed.  PR49566 tracks the bug.
5939     return FullSet;
5940 
5941   // TODO: Extend to other opcodes such as mul, and div
5942   switch (BO->getOpcode()) {
5943   default:
5944     return FullSet;
5945   case Instruction::AShr:
5946   case Instruction::LShr:
5947   case Instruction::Shl:
5948     break;
5949   };
5950 
5951   if (BO->getOperand(0) != P)
5952     // TODO: Handle the power function forms some day.
5953     return FullSet;
5954 
5955   unsigned TC = getSmallConstantMaxTripCount(L);
5956   if (!TC || TC >= BitWidth)
5957     return FullSet;
5958 
5959   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5960   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5961   assert(KnownStart.getBitWidth() == BitWidth &&
5962          KnownStep.getBitWidth() == BitWidth);
5963 
5964   // Compute total shift amount, being careful of overflow and bitwidths.
5965   auto MaxShiftAmt = KnownStep.getMaxValue();
5966   APInt TCAP(BitWidth, TC-1);
5967   bool Overflow = false;
5968   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5969   if (Overflow)
5970     return FullSet;
5971 
5972   switch (BO->getOpcode()) {
5973   default:
5974     llvm_unreachable("filtered out above");
5975   case Instruction::AShr: {
5976     // For each ashr, three cases:
5977     //   shift = 0 => unchanged value
5978     //   saturation => 0 or -1
5979     //   other => a value closer to zero (of the same sign)
5980     // Thus, the end value is closer to zero than the start.
5981     auto KnownEnd = KnownBits::ashr(KnownStart,
5982                                     KnownBits::makeConstant(TotalShift));
5983     if (KnownStart.isNonNegative())
5984       // Analogous to lshr (simply not yet canonicalized)
5985       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5986                                         KnownStart.getMaxValue() + 1);
5987     if (KnownStart.isNegative())
5988       // End >=u Start && End <=s Start
5989       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5990                                         KnownEnd.getMaxValue() + 1);
5991     break;
5992   }
5993   case Instruction::LShr: {
5994     // For each lshr, three cases:
5995     //   shift = 0 => unchanged value
5996     //   saturation => 0
5997     //   other => a smaller positive number
5998     // Thus, the low end of the unsigned range is the last value produced.
5999     auto KnownEnd = KnownBits::lshr(KnownStart,
6000                                     KnownBits::makeConstant(TotalShift));
6001     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6002                                       KnownStart.getMaxValue() + 1);
6003   }
6004   case Instruction::Shl: {
6005     // Iff no bits are shifted out, value increases on every shift.
6006     auto KnownEnd = KnownBits::shl(KnownStart,
6007                                    KnownBits::makeConstant(TotalShift));
6008     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6009       return ConstantRange(KnownStart.getMinValue(),
6010                            KnownEnd.getMaxValue() + 1);
6011     break;
6012   }
6013   };
6014   return FullSet;
6015 }
6016 
6017 /// Determine the range for a particular SCEV.  If SignHint is
6018 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6019 /// with a "cleaner" unsigned (resp. signed) representation.
6020 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)6021 ScalarEvolution::getRangeRef(const SCEV *S,
6022                              ScalarEvolution::RangeSignHint SignHint) {
6023   DenseMap<const SCEV *, ConstantRange> &Cache =
6024       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6025                                                        : SignedRanges;
6026   ConstantRange::PreferredRangeType RangeType =
6027       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6028           ? ConstantRange::Unsigned : ConstantRange::Signed;
6029 
6030   // See if we've computed this range already.
6031   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6032   if (I != Cache.end())
6033     return I->second;
6034 
6035   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6036     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6037 
6038   unsigned BitWidth = getTypeSizeInBits(S->getType());
6039   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6040   using OBO = OverflowingBinaryOperator;
6041 
6042   // If the value has known zeros, the maximum value will have those known zeros
6043   // as well.
6044   uint32_t TZ = GetMinTrailingZeros(S);
6045   if (TZ != 0) {
6046     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6047       ConservativeResult =
6048           ConstantRange(APInt::getMinValue(BitWidth),
6049                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6050     else
6051       ConservativeResult = ConstantRange(
6052           APInt::getSignedMinValue(BitWidth),
6053           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6054   }
6055 
6056   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6057     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6058     unsigned WrapType = OBO::AnyWrap;
6059     if (Add->hasNoSignedWrap())
6060       WrapType |= OBO::NoSignedWrap;
6061     if (Add->hasNoUnsignedWrap())
6062       WrapType |= OBO::NoUnsignedWrap;
6063     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6064       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6065                           WrapType, RangeType);
6066     return setRange(Add, SignHint,
6067                     ConservativeResult.intersectWith(X, RangeType));
6068   }
6069 
6070   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6071     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6072     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6073       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6074     return setRange(Mul, SignHint,
6075                     ConservativeResult.intersectWith(X, RangeType));
6076   }
6077 
6078   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6079     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6080     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6081       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6082     return setRange(SMax, SignHint,
6083                     ConservativeResult.intersectWith(X, RangeType));
6084   }
6085 
6086   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6087     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6088     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6089       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6090     return setRange(UMax, SignHint,
6091                     ConservativeResult.intersectWith(X, RangeType));
6092   }
6093 
6094   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6095     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6096     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6097       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6098     return setRange(SMin, SignHint,
6099                     ConservativeResult.intersectWith(X, RangeType));
6100   }
6101 
6102   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6103     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6104     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6105       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6106     return setRange(UMin, SignHint,
6107                     ConservativeResult.intersectWith(X, RangeType));
6108   }
6109 
6110   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6111     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6112     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6113     return setRange(UDiv, SignHint,
6114                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6115   }
6116 
6117   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6118     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6119     return setRange(ZExt, SignHint,
6120                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6121                                                      RangeType));
6122   }
6123 
6124   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6125     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6126     return setRange(SExt, SignHint,
6127                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6128                                                      RangeType));
6129   }
6130 
6131   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6132     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6133     return setRange(PtrToInt, SignHint, X);
6134   }
6135 
6136   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6137     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6138     return setRange(Trunc, SignHint,
6139                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6140                                                      RangeType));
6141   }
6142 
6143   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6144     // If there's no unsigned wrap, the value will never be less than its
6145     // initial value.
6146     if (AddRec->hasNoUnsignedWrap()) {
6147       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6148       if (!UnsignedMinValue.isZero())
6149         ConservativeResult = ConservativeResult.intersectWith(
6150             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6151     }
6152 
6153     // If there's no signed wrap, and all the operands except initial value have
6154     // the same sign or zero, the value won't ever be:
6155     // 1: smaller than initial value if operands are non negative,
6156     // 2: bigger than initial value if operands are non positive.
6157     // For both cases, value can not cross signed min/max boundary.
6158     if (AddRec->hasNoSignedWrap()) {
6159       bool AllNonNeg = true;
6160       bool AllNonPos = true;
6161       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6162         if (!isKnownNonNegative(AddRec->getOperand(i)))
6163           AllNonNeg = false;
6164         if (!isKnownNonPositive(AddRec->getOperand(i)))
6165           AllNonPos = false;
6166       }
6167       if (AllNonNeg)
6168         ConservativeResult = ConservativeResult.intersectWith(
6169             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6170                                        APInt::getSignedMinValue(BitWidth)),
6171             RangeType);
6172       else if (AllNonPos)
6173         ConservativeResult = ConservativeResult.intersectWith(
6174             ConstantRange::getNonEmpty(
6175                 APInt::getSignedMinValue(BitWidth),
6176                 getSignedRangeMax(AddRec->getStart()) + 1),
6177             RangeType);
6178     }
6179 
6180     // TODO: non-affine addrec
6181     if (AddRec->isAffine()) {
6182       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6183       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6184           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6185         auto RangeFromAffine = getRangeForAffineAR(
6186             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6187             BitWidth);
6188         ConservativeResult =
6189             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6190 
6191         auto RangeFromFactoring = getRangeViaFactoring(
6192             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6193             BitWidth);
6194         ConservativeResult =
6195             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6196       }
6197 
6198       // Now try symbolic BE count and more powerful methods.
6199       if (UseExpensiveRangeSharpening) {
6200         const SCEV *SymbolicMaxBECount =
6201             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6202         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6203             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6204             AddRec->hasNoSelfWrap()) {
6205           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6206               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6207           ConservativeResult =
6208               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6209         }
6210       }
6211     }
6212 
6213     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6214   }
6215 
6216   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6217 
6218     // Check if the IR explicitly contains !range metadata.
6219     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6220     if (MDRange.hasValue())
6221       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6222                                                             RangeType);
6223 
6224     // Use facts about recurrences in the underlying IR.  Note that add
6225     // recurrences are AddRecExprs and thus don't hit this path.  This
6226     // primarily handles shift recurrences.
6227     auto CR = getRangeForUnknownRecurrence(U);
6228     ConservativeResult = ConservativeResult.intersectWith(CR);
6229 
6230     // See if ValueTracking can give us a useful range.
6231     const DataLayout &DL = getDataLayout();
6232     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6233     if (Known.getBitWidth() != BitWidth)
6234       Known = Known.zextOrTrunc(BitWidth);
6235 
6236     // ValueTracking may be able to compute a tighter result for the number of
6237     // sign bits than for the value of those sign bits.
6238     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6239     if (U->getType()->isPointerTy()) {
6240       // If the pointer size is larger than the index size type, this can cause
6241       // NS to be larger than BitWidth. So compensate for this.
6242       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6243       int ptrIdxDiff = ptrSize - BitWidth;
6244       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6245         NS -= ptrIdxDiff;
6246     }
6247 
6248     if (NS > 1) {
6249       // If we know any of the sign bits, we know all of the sign bits.
6250       if (!Known.Zero.getHiBits(NS).isZero())
6251         Known.Zero.setHighBits(NS);
6252       if (!Known.One.getHiBits(NS).isZero())
6253         Known.One.setHighBits(NS);
6254     }
6255 
6256     if (Known.getMinValue() != Known.getMaxValue() + 1)
6257       ConservativeResult = ConservativeResult.intersectWith(
6258           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6259           RangeType);
6260     if (NS > 1)
6261       ConservativeResult = ConservativeResult.intersectWith(
6262           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6263                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6264           RangeType);
6265 
6266     // A range of Phi is a subset of union of all ranges of its input.
6267     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6268       // Make sure that we do not run over cycled Phis.
6269       if (PendingPhiRanges.insert(Phi).second) {
6270         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6271         for (auto &Op : Phi->operands()) {
6272           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6273           RangeFromOps = RangeFromOps.unionWith(OpRange);
6274           // No point to continue if we already have a full set.
6275           if (RangeFromOps.isFullSet())
6276             break;
6277         }
6278         ConservativeResult =
6279             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6280         bool Erased = PendingPhiRanges.erase(Phi);
6281         assert(Erased && "Failed to erase Phi properly?");
6282         (void) Erased;
6283       }
6284     }
6285 
6286     return setRange(U, SignHint, std::move(ConservativeResult));
6287   }
6288 
6289   return setRange(S, SignHint, std::move(ConservativeResult));
6290 }
6291 
6292 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6293 // values that the expression can take. Initially, the expression has a value
6294 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6295 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)6296 static ConstantRange getRangeForAffineARHelper(APInt Step,
6297                                                const ConstantRange &StartRange,
6298                                                const APInt &MaxBECount,
6299                                                unsigned BitWidth, bool Signed) {
6300   // If either Step or MaxBECount is 0, then the expression won't change, and we
6301   // just need to return the initial range.
6302   if (Step == 0 || MaxBECount == 0)
6303     return StartRange;
6304 
6305   // If we don't know anything about the initial value (i.e. StartRange is
6306   // FullRange), then we don't know anything about the final range either.
6307   // Return FullRange.
6308   if (StartRange.isFullSet())
6309     return ConstantRange::getFull(BitWidth);
6310 
6311   // If Step is signed and negative, then we use its absolute value, but we also
6312   // note that we're moving in the opposite direction.
6313   bool Descending = Signed && Step.isNegative();
6314 
6315   if (Signed)
6316     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6317     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6318     // This equations hold true due to the well-defined wrap-around behavior of
6319     // APInt.
6320     Step = Step.abs();
6321 
6322   // Check if Offset is more than full span of BitWidth. If it is, the
6323   // expression is guaranteed to overflow.
6324   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6325     return ConstantRange::getFull(BitWidth);
6326 
6327   // Offset is by how much the expression can change. Checks above guarantee no
6328   // overflow here.
6329   APInt Offset = Step * MaxBECount;
6330 
6331   // Minimum value of the final range will match the minimal value of StartRange
6332   // if the expression is increasing and will be decreased by Offset otherwise.
6333   // Maximum value of the final range will match the maximal value of StartRange
6334   // if the expression is decreasing and will be increased by Offset otherwise.
6335   APInt StartLower = StartRange.getLower();
6336   APInt StartUpper = StartRange.getUpper() - 1;
6337   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6338                                    : (StartUpper + std::move(Offset));
6339 
6340   // It's possible that the new minimum/maximum value will fall into the initial
6341   // range (due to wrap around). This means that the expression can take any
6342   // value in this bitwidth, and we have to return full range.
6343   if (StartRange.contains(MovedBoundary))
6344     return ConstantRange::getFull(BitWidth);
6345 
6346   APInt NewLower =
6347       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6348   APInt NewUpper =
6349       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6350   NewUpper += 1;
6351 
6352   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6353   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6354 }
6355 
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)6356 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6357                                                    const SCEV *Step,
6358                                                    const SCEV *MaxBECount,
6359                                                    unsigned BitWidth) {
6360   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6361          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6362          "Precondition!");
6363 
6364   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6365   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6366 
6367   // First, consider step signed.
6368   ConstantRange StartSRange = getSignedRange(Start);
6369   ConstantRange StepSRange = getSignedRange(Step);
6370 
6371   // If Step can be both positive and negative, we need to find ranges for the
6372   // maximum absolute step values in both directions and union them.
6373   ConstantRange SR =
6374       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6375                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6376   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6377                                               StartSRange, MaxBECountValue,
6378                                               BitWidth, /* Signed = */ true));
6379 
6380   // Next, consider step unsigned.
6381   ConstantRange UR = getRangeForAffineARHelper(
6382       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6383       MaxBECountValue, BitWidth, /* Signed = */ false);
6384 
6385   // Finally, intersect signed and unsigned ranges.
6386   return SR.intersectWith(UR, ConstantRange::Smallest);
6387 }
6388 
getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr * AddRec,const SCEV * MaxBECount,unsigned BitWidth,ScalarEvolution::RangeSignHint SignHint)6389 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6390     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6391     ScalarEvolution::RangeSignHint SignHint) {
6392   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6393   assert(AddRec->hasNoSelfWrap() &&
6394          "This only works for non-self-wrapping AddRecs!");
6395   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6396   const SCEV *Step = AddRec->getStepRecurrence(*this);
6397   // Only deal with constant step to save compile time.
6398   if (!isa<SCEVConstant>(Step))
6399     return ConstantRange::getFull(BitWidth);
6400   // Let's make sure that we can prove that we do not self-wrap during
6401   // MaxBECount iterations. We need this because MaxBECount is a maximum
6402   // iteration count estimate, and we might infer nw from some exit for which we
6403   // do not know max exit count (or any other side reasoning).
6404   // TODO: Turn into assert at some point.
6405   if (getTypeSizeInBits(MaxBECount->getType()) >
6406       getTypeSizeInBits(AddRec->getType()))
6407     return ConstantRange::getFull(BitWidth);
6408   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6409   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6410   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6411   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6412   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6413                                          MaxItersWithoutWrap))
6414     return ConstantRange::getFull(BitWidth);
6415 
6416   ICmpInst::Predicate LEPred =
6417       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6418   ICmpInst::Predicate GEPred =
6419       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6420   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6421 
6422   // We know that there is no self-wrap. Let's take Start and End values and
6423   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6424   // the iteration. They either lie inside the range [Min(Start, End),
6425   // Max(Start, End)] or outside it:
6426   //
6427   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6428   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6429   //
6430   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6431   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6432   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6433   // Start <= End and step is positive, or Start >= End and step is negative.
6434   const SCEV *Start = AddRec->getStart();
6435   ConstantRange StartRange = getRangeRef(Start, SignHint);
6436   ConstantRange EndRange = getRangeRef(End, SignHint);
6437   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6438   // If they already cover full iteration space, we will know nothing useful
6439   // even if we prove what we want to prove.
6440   if (RangeBetween.isFullSet())
6441     return RangeBetween;
6442   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6443   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6444                                : RangeBetween.isWrappedSet();
6445   if (IsWrappedSet)
6446     return ConstantRange::getFull(BitWidth);
6447 
6448   if (isKnownPositive(Step) &&
6449       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6450     return RangeBetween;
6451   else if (isKnownNegative(Step) &&
6452            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6453     return RangeBetween;
6454   return ConstantRange::getFull(BitWidth);
6455 }
6456 
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)6457 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6458                                                     const SCEV *Step,
6459                                                     const SCEV *MaxBECount,
6460                                                     unsigned BitWidth) {
6461   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6462   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6463 
6464   struct SelectPattern {
6465     Value *Condition = nullptr;
6466     APInt TrueValue;
6467     APInt FalseValue;
6468 
6469     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6470                            const SCEV *S) {
6471       Optional<unsigned> CastOp;
6472       APInt Offset(BitWidth, 0);
6473 
6474       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6475              "Should be!");
6476 
6477       // Peel off a constant offset:
6478       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6479         // In the future we could consider being smarter here and handle
6480         // {Start+Step,+,Step} too.
6481         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6482           return;
6483 
6484         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6485         S = SA->getOperand(1);
6486       }
6487 
6488       // Peel off a cast operation
6489       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6490         CastOp = SCast->getSCEVType();
6491         S = SCast->getOperand();
6492       }
6493 
6494       using namespace llvm::PatternMatch;
6495 
6496       auto *SU = dyn_cast<SCEVUnknown>(S);
6497       const APInt *TrueVal, *FalseVal;
6498       if (!SU ||
6499           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6500                                           m_APInt(FalseVal)))) {
6501         Condition = nullptr;
6502         return;
6503       }
6504 
6505       TrueValue = *TrueVal;
6506       FalseValue = *FalseVal;
6507 
6508       // Re-apply the cast we peeled off earlier
6509       if (CastOp.hasValue())
6510         switch (*CastOp) {
6511         default:
6512           llvm_unreachable("Unknown SCEV cast type!");
6513 
6514         case scTruncate:
6515           TrueValue = TrueValue.trunc(BitWidth);
6516           FalseValue = FalseValue.trunc(BitWidth);
6517           break;
6518         case scZeroExtend:
6519           TrueValue = TrueValue.zext(BitWidth);
6520           FalseValue = FalseValue.zext(BitWidth);
6521           break;
6522         case scSignExtend:
6523           TrueValue = TrueValue.sext(BitWidth);
6524           FalseValue = FalseValue.sext(BitWidth);
6525           break;
6526         }
6527 
6528       // Re-apply the constant offset we peeled off earlier
6529       TrueValue += Offset;
6530       FalseValue += Offset;
6531     }
6532 
6533     bool isRecognized() { return Condition != nullptr; }
6534   };
6535 
6536   SelectPattern StartPattern(*this, BitWidth, Start);
6537   if (!StartPattern.isRecognized())
6538     return ConstantRange::getFull(BitWidth);
6539 
6540   SelectPattern StepPattern(*this, BitWidth, Step);
6541   if (!StepPattern.isRecognized())
6542     return ConstantRange::getFull(BitWidth);
6543 
6544   if (StartPattern.Condition != StepPattern.Condition) {
6545     // We don't handle this case today; but we could, by considering four
6546     // possibilities below instead of two. I'm not sure if there are cases where
6547     // that will help over what getRange already does, though.
6548     return ConstantRange::getFull(BitWidth);
6549   }
6550 
6551   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6552   // construct arbitrary general SCEV expressions here.  This function is called
6553   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6554   // say) can end up caching a suboptimal value.
6555 
6556   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6557   // C2352 and C2512 (otherwise it isn't needed).
6558 
6559   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6560   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6561   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6562   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6563 
6564   ConstantRange TrueRange =
6565       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6566   ConstantRange FalseRange =
6567       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6568 
6569   return TrueRange.unionWith(FalseRange);
6570 }
6571 
getNoWrapFlagsFromUB(const Value * V)6572 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6573   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6574   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6575 
6576   // Return early if there are no flags to propagate to the SCEV.
6577   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6578   if (BinOp->hasNoUnsignedWrap())
6579     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6580   if (BinOp->hasNoSignedWrap())
6581     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6582   if (Flags == SCEV::FlagAnyWrap)
6583     return SCEV::FlagAnyWrap;
6584 
6585   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6586 }
6587 
6588 const Instruction *
getNonTrivialDefiningScopeBound(const SCEV * S)6589 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6590   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6591     return &*AddRec->getLoop()->getHeader()->begin();
6592   if (auto *U = dyn_cast<SCEVUnknown>(S))
6593     if (auto *I = dyn_cast<Instruction>(U->getValue()))
6594       return I;
6595   return nullptr;
6596 }
6597 
6598 const Instruction *
getDefiningScopeBound(ArrayRef<const SCEV * > Ops)6599 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
6600   // Do a bounded search of the def relation of the requested SCEVs.
6601   SmallSet<const SCEV *, 16> Visited;
6602   SmallVector<const SCEV *> Worklist;
6603   auto pushOp = [&](const SCEV *S) {
6604     if (!Visited.insert(S).second)
6605       return;
6606     // Threshold of 30 here is arbitrary.
6607     if (Visited.size() > 30)
6608       return;
6609     Worklist.push_back(S);
6610   };
6611 
6612   for (auto *S : Ops)
6613     pushOp(S);
6614 
6615   const Instruction *Bound = nullptr;
6616   while (!Worklist.empty()) {
6617     auto *S = Worklist.pop_back_val();
6618     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
6619       if (!Bound || DT.dominates(Bound, DefI))
6620         Bound = DefI;
6621     } else if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6622       for (auto *Op : S2->operands())
6623         pushOp(Op);
6624     else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6625       for (auto *Op : S2->operands())
6626         pushOp(Op);
6627     else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6628       for (auto *Op : S2->operands())
6629         pushOp(Op);
6630   }
6631   return Bound ? Bound : &*F.getEntryBlock().begin();
6632 }
6633 
isGuaranteedToTransferExecutionTo(const Instruction * A,const Instruction * B)6634 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
6635                                                         const Instruction *B) {
6636   if (A->getParent() == B->getParent() &&
6637       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6638                                                  B->getIterator()))
6639     return true;
6640 
6641   auto *BLoop = LI.getLoopFor(B->getParent());
6642   if (BLoop && BLoop->getHeader() == B->getParent() &&
6643       BLoop->getLoopPreheader() == A->getParent() &&
6644       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6645                                                  A->getParent()->end()) &&
6646       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
6647                                                  B->getIterator()))
6648     return true;
6649   return false;
6650 }
6651 
6652 
isSCEVExprNeverPoison(const Instruction * I)6653 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6654   // Only proceed if we can prove that I does not yield poison.
6655   if (!programUndefinedIfPoison(I))
6656     return false;
6657 
6658   // At this point we know that if I is executed, then it does not wrap
6659   // according to at least one of NSW or NUW. If I is not executed, then we do
6660   // not know if the calculation that I represents would wrap. Multiple
6661   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6662   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6663   // derived from other instructions that map to the same SCEV. We cannot make
6664   // that guarantee for cases where I is not executed. So we need to find a
6665   // upper bound on the defining scope for the SCEV, and prove that I is
6666   // executed every time we enter that scope.  When the bounding scope is a
6667   // loop (the common case), this is equivalent to proving I executes on every
6668   // iteration of that loop.
6669   SmallVector<const SCEV *> SCEVOps;
6670   for (const Use &Op : I->operands()) {
6671     // I could be an extractvalue from a call to an overflow intrinsic.
6672     // TODO: We can do better here in some cases.
6673     if (isSCEVable(Op->getType()))
6674       SCEVOps.push_back(getSCEV(Op));
6675   }
6676   auto *DefI = getDefiningScopeBound(SCEVOps);
6677   return isGuaranteedToTransferExecutionTo(DefI, I);
6678 }
6679 
isAddRecNeverPoison(const Instruction * I,const Loop * L)6680 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6681   // If we know that \c I can never be poison period, then that's enough.
6682   if (isSCEVExprNeverPoison(I))
6683     return true;
6684 
6685   // For an add recurrence specifically, we assume that infinite loops without
6686   // side effects are undefined behavior, and then reason as follows:
6687   //
6688   // If the add recurrence is poison in any iteration, it is poison on all
6689   // future iterations (since incrementing poison yields poison). If the result
6690   // of the add recurrence is fed into the loop latch condition and the loop
6691   // does not contain any throws or exiting blocks other than the latch, we now
6692   // have the ability to "choose" whether the backedge is taken or not (by
6693   // choosing a sufficiently evil value for the poison feeding into the branch)
6694   // for every iteration including and after the one in which \p I first became
6695   // poison.  There are two possibilities (let's call the iteration in which \p
6696   // I first became poison as K):
6697   //
6698   //  1. In the set of iterations including and after K, the loop body executes
6699   //     no side effects.  In this case executing the backege an infinte number
6700   //     of times will yield undefined behavior.
6701   //
6702   //  2. In the set of iterations including and after K, the loop body executes
6703   //     at least one side effect.  In this case, that specific instance of side
6704   //     effect is control dependent on poison, which also yields undefined
6705   //     behavior.
6706 
6707   auto *ExitingBB = L->getExitingBlock();
6708   auto *LatchBB = L->getLoopLatch();
6709   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6710     return false;
6711 
6712   SmallPtrSet<const Instruction *, 16> Pushed;
6713   SmallVector<const Instruction *, 8> PoisonStack;
6714 
6715   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6716   // things that are known to be poison under that assumption go on the
6717   // PoisonStack.
6718   Pushed.insert(I);
6719   PoisonStack.push_back(I);
6720 
6721   bool LatchControlDependentOnPoison = false;
6722   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6723     const Instruction *Poison = PoisonStack.pop_back_val();
6724 
6725     for (auto *PoisonUser : Poison->users()) {
6726       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6727         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6728           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6729       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6730         assert(BI->isConditional() && "Only possibility!");
6731         if (BI->getParent() == LatchBB) {
6732           LatchControlDependentOnPoison = true;
6733           break;
6734         }
6735       }
6736     }
6737   }
6738 
6739   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6740 }
6741 
6742 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)6743 ScalarEvolution::getLoopProperties(const Loop *L) {
6744   using LoopProperties = ScalarEvolution::LoopProperties;
6745 
6746   auto Itr = LoopPropertiesCache.find(L);
6747   if (Itr == LoopPropertiesCache.end()) {
6748     auto HasSideEffects = [](Instruction *I) {
6749       if (auto *SI = dyn_cast<StoreInst>(I))
6750         return !SI->isSimple();
6751 
6752       return I->mayThrow() || I->mayWriteToMemory();
6753     };
6754 
6755     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6756                          /*HasNoSideEffects*/ true};
6757 
6758     for (auto *BB : L->getBlocks())
6759       for (auto &I : *BB) {
6760         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6761           LP.HasNoAbnormalExits = false;
6762         if (HasSideEffects(&I))
6763           LP.HasNoSideEffects = false;
6764         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6765           break; // We're already as pessimistic as we can get.
6766       }
6767 
6768     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6769     assert(InsertPair.second && "We just checked!");
6770     Itr = InsertPair.first;
6771   }
6772 
6773   return Itr->second;
6774 }
6775 
loopIsFiniteByAssumption(const Loop * L)6776 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6777   // A mustprogress loop without side effects must be finite.
6778   // TODO: The check used here is very conservative.  It's only *specific*
6779   // side effects which are well defined in infinite loops.
6780   return isMustProgress(L) && loopHasNoSideEffects(L);
6781 }
6782 
createSCEV(Value * V)6783 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6784   if (!isSCEVable(V->getType()))
6785     return getUnknown(V);
6786 
6787   if (Instruction *I = dyn_cast<Instruction>(V)) {
6788     // Don't attempt to analyze instructions in blocks that aren't
6789     // reachable. Such instructions don't matter, and they aren't required
6790     // to obey basic rules for definitions dominating uses which this
6791     // analysis depends on.
6792     if (!DT.isReachableFromEntry(I->getParent()))
6793       return getUnknown(UndefValue::get(V->getType()));
6794   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6795     return getConstant(CI);
6796   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6797     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6798   else if (!isa<ConstantExpr>(V))
6799     return getUnknown(V);
6800 
6801   Operator *U = cast<Operator>(V);
6802   if (auto BO = MatchBinaryOp(U, DT)) {
6803     switch (BO->Opcode) {
6804     case Instruction::Add: {
6805       // The simple thing to do would be to just call getSCEV on both operands
6806       // and call getAddExpr with the result. However if we're looking at a
6807       // bunch of things all added together, this can be quite inefficient,
6808       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6809       // Instead, gather up all the operands and make a single getAddExpr call.
6810       // LLVM IR canonical form means we need only traverse the left operands.
6811       SmallVector<const SCEV *, 4> AddOps;
6812       do {
6813         if (BO->Op) {
6814           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6815             AddOps.push_back(OpSCEV);
6816             break;
6817           }
6818 
6819           // If a NUW or NSW flag can be applied to the SCEV for this
6820           // addition, then compute the SCEV for this addition by itself
6821           // with a separate call to getAddExpr. We need to do that
6822           // instead of pushing the operands of the addition onto AddOps,
6823           // since the flags are only known to apply to this particular
6824           // addition - they may not apply to other additions that can be
6825           // formed with operands from AddOps.
6826           const SCEV *RHS = getSCEV(BO->RHS);
6827           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6828           if (Flags != SCEV::FlagAnyWrap) {
6829             const SCEV *LHS = getSCEV(BO->LHS);
6830             if (BO->Opcode == Instruction::Sub)
6831               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6832             else
6833               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6834             break;
6835           }
6836         }
6837 
6838         if (BO->Opcode == Instruction::Sub)
6839           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6840         else
6841           AddOps.push_back(getSCEV(BO->RHS));
6842 
6843         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6844         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6845                        NewBO->Opcode != Instruction::Sub)) {
6846           AddOps.push_back(getSCEV(BO->LHS));
6847           break;
6848         }
6849         BO = NewBO;
6850       } while (true);
6851 
6852       return getAddExpr(AddOps);
6853     }
6854 
6855     case Instruction::Mul: {
6856       SmallVector<const SCEV *, 4> MulOps;
6857       do {
6858         if (BO->Op) {
6859           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6860             MulOps.push_back(OpSCEV);
6861             break;
6862           }
6863 
6864           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6865           if (Flags != SCEV::FlagAnyWrap) {
6866             MulOps.push_back(
6867                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6868             break;
6869           }
6870         }
6871 
6872         MulOps.push_back(getSCEV(BO->RHS));
6873         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6874         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6875           MulOps.push_back(getSCEV(BO->LHS));
6876           break;
6877         }
6878         BO = NewBO;
6879       } while (true);
6880 
6881       return getMulExpr(MulOps);
6882     }
6883     case Instruction::UDiv:
6884       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6885     case Instruction::URem:
6886       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6887     case Instruction::Sub: {
6888       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6889       if (BO->Op)
6890         Flags = getNoWrapFlagsFromUB(BO->Op);
6891       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6892     }
6893     case Instruction::And:
6894       // For an expression like x&255 that merely masks off the high bits,
6895       // use zext(trunc(x)) as the SCEV expression.
6896       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6897         if (CI->isZero())
6898           return getSCEV(BO->RHS);
6899         if (CI->isMinusOne())
6900           return getSCEV(BO->LHS);
6901         const APInt &A = CI->getValue();
6902 
6903         // Instcombine's ShrinkDemandedConstant may strip bits out of
6904         // constants, obscuring what would otherwise be a low-bits mask.
6905         // Use computeKnownBits to compute what ShrinkDemandedConstant
6906         // knew about to reconstruct a low-bits mask value.
6907         unsigned LZ = A.countLeadingZeros();
6908         unsigned TZ = A.countTrailingZeros();
6909         unsigned BitWidth = A.getBitWidth();
6910         KnownBits Known(BitWidth);
6911         computeKnownBits(BO->LHS, Known, getDataLayout(),
6912                          0, &AC, nullptr, &DT);
6913 
6914         APInt EffectiveMask =
6915             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6916         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6917           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6918           const SCEV *LHS = getSCEV(BO->LHS);
6919           const SCEV *ShiftedLHS = nullptr;
6920           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6921             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6922               // For an expression like (x * 8) & 8, simplify the multiply.
6923               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6924               unsigned GCD = std::min(MulZeros, TZ);
6925               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6926               SmallVector<const SCEV*, 4> MulOps;
6927               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6928               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6929               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6930               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6931             }
6932           }
6933           if (!ShiftedLHS)
6934             ShiftedLHS = getUDivExpr(LHS, MulCount);
6935           return getMulExpr(
6936               getZeroExtendExpr(
6937                   getTruncateExpr(ShiftedLHS,
6938                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6939                   BO->LHS->getType()),
6940               MulCount);
6941         }
6942       }
6943       break;
6944 
6945     case Instruction::Or:
6946       // If the RHS of the Or is a constant, we may have something like:
6947       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6948       // optimizations will transparently handle this case.
6949       //
6950       // In order for this transformation to be safe, the LHS must be of the
6951       // form X*(2^n) and the Or constant must be less than 2^n.
6952       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6953         const SCEV *LHS = getSCEV(BO->LHS);
6954         const APInt &CIVal = CI->getValue();
6955         if (GetMinTrailingZeros(LHS) >=
6956             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6957           // Build a plain add SCEV.
6958           return getAddExpr(LHS, getSCEV(CI),
6959                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6960         }
6961       }
6962       break;
6963 
6964     case Instruction::Xor:
6965       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6966         // If the RHS of xor is -1, then this is a not operation.
6967         if (CI->isMinusOne())
6968           return getNotSCEV(getSCEV(BO->LHS));
6969 
6970         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6971         // This is a variant of the check for xor with -1, and it handles
6972         // the case where instcombine has trimmed non-demanded bits out
6973         // of an xor with -1.
6974         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6975           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6976             if (LBO->getOpcode() == Instruction::And &&
6977                 LCI->getValue() == CI->getValue())
6978               if (const SCEVZeroExtendExpr *Z =
6979                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6980                 Type *UTy = BO->LHS->getType();
6981                 const SCEV *Z0 = Z->getOperand();
6982                 Type *Z0Ty = Z0->getType();
6983                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6984 
6985                 // If C is a low-bits mask, the zero extend is serving to
6986                 // mask off the high bits. Complement the operand and
6987                 // re-apply the zext.
6988                 if (CI->getValue().isMask(Z0TySize))
6989                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6990 
6991                 // If C is a single bit, it may be in the sign-bit position
6992                 // before the zero-extend. In this case, represent the xor
6993                 // using an add, which is equivalent, and re-apply the zext.
6994                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6995                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6996                     Trunc.isSignMask())
6997                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6998                                            UTy);
6999               }
7000       }
7001       break;
7002 
7003     case Instruction::Shl:
7004       // Turn shift left of a constant amount into a multiply.
7005       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7006         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7007 
7008         // If the shift count is not less than the bitwidth, the result of
7009         // the shift is undefined. Don't try to analyze it, because the
7010         // resolution chosen here may differ from the resolution chosen in
7011         // other parts of the compiler.
7012         if (SA->getValue().uge(BitWidth))
7013           break;
7014 
7015         // We can safely preserve the nuw flag in all cases. It's also safe to
7016         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7017         // requires special handling. It can be preserved as long as we're not
7018         // left shifting by bitwidth - 1.
7019         auto Flags = SCEV::FlagAnyWrap;
7020         if (BO->Op) {
7021           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7022           if ((MulFlags & SCEV::FlagNSW) &&
7023               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7024             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7025           if (MulFlags & SCEV::FlagNUW)
7026             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7027         }
7028 
7029         Constant *X = ConstantInt::get(
7030             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7031         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
7032       }
7033       break;
7034 
7035     case Instruction::AShr: {
7036       // AShr X, C, where C is a constant.
7037       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7038       if (!CI)
7039         break;
7040 
7041       Type *OuterTy = BO->LHS->getType();
7042       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7043       // If the shift count is not less than the bitwidth, the result of
7044       // the shift is undefined. Don't try to analyze it, because the
7045       // resolution chosen here may differ from the resolution chosen in
7046       // other parts of the compiler.
7047       if (CI->getValue().uge(BitWidth))
7048         break;
7049 
7050       if (CI->isZero())
7051         return getSCEV(BO->LHS); // shift by zero --> noop
7052 
7053       uint64_t AShrAmt = CI->getZExtValue();
7054       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7055 
7056       Operator *L = dyn_cast<Operator>(BO->LHS);
7057       if (L && L->getOpcode() == Instruction::Shl) {
7058         // X = Shl A, n
7059         // Y = AShr X, m
7060         // Both n and m are constant.
7061 
7062         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7063         if (L->getOperand(1) == BO->RHS)
7064           // For a two-shift sext-inreg, i.e. n = m,
7065           // use sext(trunc(x)) as the SCEV expression.
7066           return getSignExtendExpr(
7067               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7068 
7069         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7070         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7071           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7072           if (ShlAmt > AShrAmt) {
7073             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7074             // expression. We already checked that ShlAmt < BitWidth, so
7075             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7076             // ShlAmt - AShrAmt < Amt.
7077             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7078                                             ShlAmt - AShrAmt);
7079             return getSignExtendExpr(
7080                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7081                 getConstant(Mul)), OuterTy);
7082           }
7083         }
7084       }
7085       break;
7086     }
7087     }
7088   }
7089 
7090   switch (U->getOpcode()) {
7091   case Instruction::Trunc:
7092     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7093 
7094   case Instruction::ZExt:
7095     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7096 
7097   case Instruction::SExt:
7098     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7099       // The NSW flag of a subtract does not always survive the conversion to
7100       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7101       // more likely to preserve NSW and allow later AddRec optimisations.
7102       //
7103       // NOTE: This is effectively duplicating this logic from getSignExtend:
7104       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7105       // but by that point the NSW information has potentially been lost.
7106       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7107         Type *Ty = U->getType();
7108         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7109         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7110         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7111       }
7112     }
7113     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7114 
7115   case Instruction::BitCast:
7116     // BitCasts are no-op casts so we just eliminate the cast.
7117     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7118       return getSCEV(U->getOperand(0));
7119     break;
7120 
7121   case Instruction::PtrToInt: {
7122     // Pointer to integer cast is straight-forward, so do model it.
7123     const SCEV *Op = getSCEV(U->getOperand(0));
7124     Type *DstIntTy = U->getType();
7125     // But only if effective SCEV (integer) type is wide enough to represent
7126     // all possible pointer values.
7127     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7128     if (isa<SCEVCouldNotCompute>(IntOp))
7129       return getUnknown(V);
7130     return IntOp;
7131   }
7132   case Instruction::IntToPtr:
7133     // Just don't deal with inttoptr casts.
7134     return getUnknown(V);
7135 
7136   case Instruction::SDiv:
7137     // If both operands are non-negative, this is just an udiv.
7138     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7139         isKnownNonNegative(getSCEV(U->getOperand(1))))
7140       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7141     break;
7142 
7143   case Instruction::SRem:
7144     // If both operands are non-negative, this is just an urem.
7145     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7146         isKnownNonNegative(getSCEV(U->getOperand(1))))
7147       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7148     break;
7149 
7150   case Instruction::GetElementPtr:
7151     return createNodeForGEP(cast<GEPOperator>(U));
7152 
7153   case Instruction::PHI:
7154     return createNodeForPHI(cast<PHINode>(U));
7155 
7156   case Instruction::Select:
7157     // U can also be a select constant expr, which let fall through.  Since
7158     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7159     // constant expressions cannot have instructions as operands, we'd have
7160     // returned getUnknown for a select constant expressions anyway.
7161     if (isa<Instruction>(U))
7162       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7163                                       U->getOperand(1), U->getOperand(2));
7164     break;
7165 
7166   case Instruction::Call:
7167   case Instruction::Invoke:
7168     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7169       return getSCEV(RV);
7170 
7171     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7172       switch (II->getIntrinsicID()) {
7173       case Intrinsic::abs:
7174         return getAbsExpr(
7175             getSCEV(II->getArgOperand(0)),
7176             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7177       case Intrinsic::umax:
7178         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7179                            getSCEV(II->getArgOperand(1)));
7180       case Intrinsic::umin:
7181         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7182                            getSCEV(II->getArgOperand(1)));
7183       case Intrinsic::smax:
7184         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7185                            getSCEV(II->getArgOperand(1)));
7186       case Intrinsic::smin:
7187         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7188                            getSCEV(II->getArgOperand(1)));
7189       case Intrinsic::usub_sat: {
7190         const SCEV *X = getSCEV(II->getArgOperand(0));
7191         const SCEV *Y = getSCEV(II->getArgOperand(1));
7192         const SCEV *ClampedY = getUMinExpr(X, Y);
7193         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7194       }
7195       case Intrinsic::uadd_sat: {
7196         const SCEV *X = getSCEV(II->getArgOperand(0));
7197         const SCEV *Y = getSCEV(II->getArgOperand(1));
7198         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7199         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7200       }
7201       case Intrinsic::start_loop_iterations:
7202         // A start_loop_iterations is just equivalent to the first operand for
7203         // SCEV purposes.
7204         return getSCEV(II->getArgOperand(0));
7205       default:
7206         break;
7207       }
7208     }
7209     break;
7210   }
7211 
7212   return getUnknown(V);
7213 }
7214 
7215 //===----------------------------------------------------------------------===//
7216 //                   Iteration Count Computation Code
7217 //
7218 
getTripCountFromExitCount(const SCEV * ExitCount,bool Extend)7219 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7220                                                        bool Extend) {
7221   if (isa<SCEVCouldNotCompute>(ExitCount))
7222     return getCouldNotCompute();
7223 
7224   auto *ExitCountType = ExitCount->getType();
7225   assert(ExitCountType->isIntegerTy());
7226 
7227   if (!Extend)
7228     return getAddExpr(ExitCount, getOne(ExitCountType));
7229 
7230   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7231                                     1 + ExitCountType->getScalarSizeInBits());
7232   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7233                     getOne(WiderType));
7234 }
7235 
getConstantTripCount(const SCEVConstant * ExitCount)7236 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7237   if (!ExitCount)
7238     return 0;
7239 
7240   ConstantInt *ExitConst = ExitCount->getValue();
7241 
7242   // Guard against huge trip counts.
7243   if (ExitConst->getValue().getActiveBits() > 32)
7244     return 0;
7245 
7246   // In case of integer overflow, this returns 0, which is correct.
7247   return ((unsigned)ExitConst->getZExtValue()) + 1;
7248 }
7249 
getSmallConstantTripCount(const Loop * L)7250 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7251   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7252   return getConstantTripCount(ExitCount);
7253 }
7254 
7255 unsigned
getSmallConstantTripCount(const Loop * L,const BasicBlock * ExitingBlock)7256 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7257                                            const BasicBlock *ExitingBlock) {
7258   assert(ExitingBlock && "Must pass a non-null exiting block!");
7259   assert(L->isLoopExiting(ExitingBlock) &&
7260          "Exiting block must actually branch out of the loop!");
7261   const SCEVConstant *ExitCount =
7262       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7263   return getConstantTripCount(ExitCount);
7264 }
7265 
getSmallConstantMaxTripCount(const Loop * L)7266 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7267   const auto *MaxExitCount =
7268       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7269   return getConstantTripCount(MaxExitCount);
7270 }
7271 
getSmallConstantTripMultiple(const Loop * L)7272 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7273   SmallVector<BasicBlock *, 8> ExitingBlocks;
7274   L->getExitingBlocks(ExitingBlocks);
7275 
7276   Optional<unsigned> Res = None;
7277   for (auto *ExitingBB : ExitingBlocks) {
7278     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7279     if (!Res)
7280       Res = Multiple;
7281     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7282   }
7283   return Res.getValueOr(1);
7284 }
7285 
getSmallConstantTripMultiple(const Loop * L,const SCEV * ExitCount)7286 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7287                                                        const SCEV *ExitCount) {
7288   if (ExitCount == getCouldNotCompute())
7289     return 1;
7290 
7291   // Get the trip count
7292   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7293 
7294   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7295   if (!TC)
7296     // Attempt to factor more general cases. Returns the greatest power of
7297     // two divisor. If overflow happens, the trip count expression is still
7298     // divisible by the greatest power of 2 divisor returned.
7299     return 1U << std::min((uint32_t)31,
7300                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7301 
7302   ConstantInt *Result = TC->getValue();
7303 
7304   // Guard against huge trip counts (this requires checking
7305   // for zero to handle the case where the trip count == -1 and the
7306   // addition wraps).
7307   if (!Result || Result->getValue().getActiveBits() > 32 ||
7308       Result->getValue().getActiveBits() == 0)
7309     return 1;
7310 
7311   return (unsigned)Result->getZExtValue();
7312 }
7313 
7314 /// Returns the largest constant divisor of the trip count of this loop as a
7315 /// normal unsigned value, if possible. This means that the actual trip count is
7316 /// always a multiple of the returned value (don't forget the trip count could
7317 /// very well be zero as well!).
7318 ///
7319 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7320 /// multiple of a constant (which is also the case if the trip count is simply
7321 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7322 /// if the trip count is very large (>= 2^32).
7323 ///
7324 /// As explained in the comments for getSmallConstantTripCount, this assumes
7325 /// that control exits the loop via ExitingBlock.
7326 unsigned
getSmallConstantTripMultiple(const Loop * L,const BasicBlock * ExitingBlock)7327 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7328                                               const BasicBlock *ExitingBlock) {
7329   assert(ExitingBlock && "Must pass a non-null exiting block!");
7330   assert(L->isLoopExiting(ExitingBlock) &&
7331          "Exiting block must actually branch out of the loop!");
7332   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7333   return getSmallConstantTripMultiple(L, ExitCount);
7334 }
7335 
getExitCount(const Loop * L,const BasicBlock * ExitingBlock,ExitCountKind Kind)7336 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7337                                           const BasicBlock *ExitingBlock,
7338                                           ExitCountKind Kind) {
7339   switch (Kind) {
7340   case Exact:
7341   case SymbolicMaximum:
7342     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7343   case ConstantMaximum:
7344     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7345   };
7346   llvm_unreachable("Invalid ExitCountKind!");
7347 }
7348 
7349 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)7350 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7351                                                  SCEVUnionPredicate &Preds) {
7352   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7353 }
7354 
getBackedgeTakenCount(const Loop * L,ExitCountKind Kind)7355 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7356                                                    ExitCountKind Kind) {
7357   switch (Kind) {
7358   case Exact:
7359     return getBackedgeTakenInfo(L).getExact(L, this);
7360   case ConstantMaximum:
7361     return getBackedgeTakenInfo(L).getConstantMax(this);
7362   case SymbolicMaximum:
7363     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7364   };
7365   llvm_unreachable("Invalid ExitCountKind!");
7366 }
7367 
isBackedgeTakenCountMaxOrZero(const Loop * L)7368 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7369   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7370 }
7371 
7372 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7373 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)7374 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7375   BasicBlock *Header = L->getHeader();
7376 
7377   // Push all Loop-header PHIs onto the Worklist stack.
7378   for (PHINode &PN : Header->phis())
7379     Worklist.push_back(&PN);
7380 }
7381 
7382 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)7383 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7384   auto &BTI = getBackedgeTakenInfo(L);
7385   if (BTI.hasFullInfo())
7386     return BTI;
7387 
7388   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7389 
7390   if (!Pair.second)
7391     return Pair.first->second;
7392 
7393   BackedgeTakenInfo Result =
7394       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7395 
7396   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7397 }
7398 
7399 ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)7400 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7401   // Initially insert an invalid entry for this loop. If the insertion
7402   // succeeds, proceed to actually compute a backedge-taken count and
7403   // update the value. The temporary CouldNotCompute value tells SCEV
7404   // code elsewhere that it shouldn't attempt to request a new
7405   // backedge-taken count, which could result in infinite recursion.
7406   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7407       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7408   if (!Pair.second)
7409     return Pair.first->second;
7410 
7411   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7412   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7413   // must be cleared in this scope.
7414   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7415 
7416   // In product build, there are no usage of statistic.
7417   (void)NumTripCountsComputed;
7418   (void)NumTripCountsNotComputed;
7419 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7420   const SCEV *BEExact = Result.getExact(L, this);
7421   if (BEExact != getCouldNotCompute()) {
7422     assert(isLoopInvariant(BEExact, L) &&
7423            isLoopInvariant(Result.getConstantMax(this), L) &&
7424            "Computed backedge-taken count isn't loop invariant for loop!");
7425     ++NumTripCountsComputed;
7426   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7427              isa<PHINode>(L->getHeader()->begin())) {
7428     // Only count loops that have phi nodes as not being computable.
7429     ++NumTripCountsNotComputed;
7430   }
7431 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7432 
7433   // Now that we know more about the trip count for this loop, forget any
7434   // existing SCEV values for PHI nodes in this loop since they are only
7435   // conservative estimates made without the benefit of trip count
7436   // information. This is similar to the code in forgetLoop, except that
7437   // it handles SCEVUnknown PHI nodes specially.
7438   if (Result.hasAnyInfo()) {
7439     SmallVector<Instruction *, 16> Worklist;
7440     PushLoopPHIs(L, Worklist);
7441 
7442     SmallPtrSet<Instruction *, 8> Discovered;
7443     while (!Worklist.empty()) {
7444       Instruction *I = Worklist.pop_back_val();
7445 
7446       ValueExprMapType::iterator It =
7447         ValueExprMap.find_as(static_cast<Value *>(I));
7448       if (It != ValueExprMap.end()) {
7449         const SCEV *Old = It->second;
7450 
7451         // SCEVUnknown for a PHI either means that it has an unrecognized
7452         // structure, or it's a PHI that's in the progress of being computed
7453         // by createNodeForPHI.  In the former case, additional loop trip
7454         // count information isn't going to change anything. In the later
7455         // case, createNodeForPHI will perform the necessary updates on its
7456         // own when it gets to that point.
7457         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7458           eraseValueFromMap(It->first);
7459           forgetMemoizedResults(Old);
7460         }
7461         if (PHINode *PN = dyn_cast<PHINode>(I))
7462           ConstantEvolutionLoopExitValue.erase(PN);
7463       }
7464 
7465       // Since we don't need to invalidate anything for correctness and we're
7466       // only invalidating to make SCEV's results more precise, we get to stop
7467       // early to avoid invalidating too much.  This is especially important in
7468       // cases like:
7469       //
7470       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7471       // loop0:
7472       //   %pn0 = phi
7473       //   ...
7474       // loop1:
7475       //   %pn1 = phi
7476       //   ...
7477       //
7478       // where both loop0 and loop1's backedge taken count uses the SCEV
7479       // expression for %v.  If we don't have the early stop below then in cases
7480       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7481       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7482       // count for loop1, effectively nullifying SCEV's trip count cache.
7483       for (auto *U : I->users())
7484         if (auto *I = dyn_cast<Instruction>(U)) {
7485           auto *LoopForUser = LI.getLoopFor(I->getParent());
7486           if (LoopForUser && L->contains(LoopForUser) &&
7487               Discovered.insert(I).second)
7488             Worklist.push_back(I);
7489         }
7490     }
7491   }
7492 
7493   // Re-lookup the insert position, since the call to
7494   // computeBackedgeTakenCount above could result in a
7495   // recusive call to getBackedgeTakenInfo (on a different
7496   // loop), which would invalidate the iterator computed
7497   // earlier.
7498   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7499 }
7500 
forgetAllLoops()7501 void ScalarEvolution::forgetAllLoops() {
7502   // This method is intended to forget all info about loops. It should
7503   // invalidate caches as if the following happened:
7504   // - The trip counts of all loops have changed arbitrarily
7505   // - Every llvm::Value has been updated in place to produce a different
7506   // result.
7507   BackedgeTakenCounts.clear();
7508   PredicatedBackedgeTakenCounts.clear();
7509   LoopPropertiesCache.clear();
7510   ConstantEvolutionLoopExitValue.clear();
7511   ValueExprMap.clear();
7512   ValuesAtScopes.clear();
7513   LoopDispositions.clear();
7514   BlockDispositions.clear();
7515   UnsignedRanges.clear();
7516   SignedRanges.clear();
7517   ExprValueMap.clear();
7518   HasRecMap.clear();
7519   MinTrailingZerosCache.clear();
7520   PredicatedSCEVRewrites.clear();
7521 }
7522 
forgetLoop(const Loop * L)7523 void ScalarEvolution::forgetLoop(const Loop *L) {
7524   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7525   SmallVector<Instruction *, 32> Worklist;
7526   SmallPtrSet<Instruction *, 16> Visited;
7527 
7528   // Iterate over all the loops and sub-loops to drop SCEV information.
7529   while (!LoopWorklist.empty()) {
7530     auto *CurrL = LoopWorklist.pop_back_val();
7531 
7532     // Drop any stored trip count value.
7533     BackedgeTakenCounts.erase(CurrL);
7534     PredicatedBackedgeTakenCounts.erase(CurrL);
7535 
7536     // Drop information about predicated SCEV rewrites for this loop.
7537     for (auto I = PredicatedSCEVRewrites.begin();
7538          I != PredicatedSCEVRewrites.end();) {
7539       std::pair<const SCEV *, const Loop *> Entry = I->first;
7540       if (Entry.second == CurrL)
7541         PredicatedSCEVRewrites.erase(I++);
7542       else
7543         ++I;
7544     }
7545 
7546     auto LoopUsersItr = LoopUsers.find(CurrL);
7547     if (LoopUsersItr != LoopUsers.end()) {
7548       for (auto *S : LoopUsersItr->second)
7549         forgetMemoizedResults(S);
7550       LoopUsers.erase(LoopUsersItr);
7551     }
7552 
7553     // Drop information about expressions based on loop-header PHIs.
7554     PushLoopPHIs(CurrL, Worklist);
7555 
7556     while (!Worklist.empty()) {
7557       Instruction *I = Worklist.pop_back_val();
7558       if (!Visited.insert(I).second)
7559         continue;
7560 
7561       ValueExprMapType::iterator It =
7562           ValueExprMap.find_as(static_cast<Value *>(I));
7563       if (It != ValueExprMap.end()) {
7564         eraseValueFromMap(It->first);
7565         forgetMemoizedResults(It->second);
7566         if (PHINode *PN = dyn_cast<PHINode>(I))
7567           ConstantEvolutionLoopExitValue.erase(PN);
7568       }
7569 
7570       PushDefUseChildren(I, Worklist);
7571     }
7572 
7573     LoopPropertiesCache.erase(CurrL);
7574     // Forget all contained loops too, to avoid dangling entries in the
7575     // ValuesAtScopes map.
7576     LoopWorklist.append(CurrL->begin(), CurrL->end());
7577   }
7578 }
7579 
forgetTopmostLoop(const Loop * L)7580 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7581   while (Loop *Parent = L->getParentLoop())
7582     L = Parent;
7583   forgetLoop(L);
7584 }
7585 
forgetValue(Value * V)7586 void ScalarEvolution::forgetValue(Value *V) {
7587   Instruction *I = dyn_cast<Instruction>(V);
7588   if (!I) return;
7589 
7590   // Drop information about expressions based on loop-header PHIs.
7591   SmallVector<Instruction *, 16> Worklist;
7592   Worklist.push_back(I);
7593 
7594   SmallPtrSet<Instruction *, 8> Visited;
7595   while (!Worklist.empty()) {
7596     I = Worklist.pop_back_val();
7597     if (!Visited.insert(I).second)
7598       continue;
7599 
7600     ValueExprMapType::iterator It =
7601       ValueExprMap.find_as(static_cast<Value *>(I));
7602     if (It != ValueExprMap.end()) {
7603       eraseValueFromMap(It->first);
7604       forgetMemoizedResults(It->second);
7605       if (PHINode *PN = dyn_cast<PHINode>(I))
7606         ConstantEvolutionLoopExitValue.erase(PN);
7607     }
7608 
7609     PushDefUseChildren(I, Worklist);
7610   }
7611 }
7612 
forgetLoopDispositions(const Loop * L)7613 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7614   LoopDispositions.clear();
7615 }
7616 
7617 /// Get the exact loop backedge taken count considering all loop exits. A
7618 /// computable result can only be returned for loops with all exiting blocks
7619 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7620 /// is never skipped. This is a valid assumption as long as the loop exits via
7621 /// that test. For precise results, it is the caller's responsibility to specify
7622 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7623 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const7624 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7625                                              SCEVUnionPredicate *Preds) const {
7626   // If any exits were not computable, the loop is not computable.
7627   if (!isComplete() || ExitNotTaken.empty())
7628     return SE->getCouldNotCompute();
7629 
7630   const BasicBlock *Latch = L->getLoopLatch();
7631   // All exiting blocks we have collected must dominate the only backedge.
7632   if (!Latch)
7633     return SE->getCouldNotCompute();
7634 
7635   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7636   // count is simply a minimum out of all these calculated exit counts.
7637   SmallVector<const SCEV *, 2> Ops;
7638   for (auto &ENT : ExitNotTaken) {
7639     const SCEV *BECount = ENT.ExactNotTaken;
7640     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7641     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7642            "We should only have known counts for exiting blocks that dominate "
7643            "latch!");
7644 
7645     Ops.push_back(BECount);
7646 
7647     if (Preds && !ENT.hasAlwaysTruePredicate())
7648       Preds->add(ENT.Predicate.get());
7649 
7650     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7651            "Predicate should be always true!");
7652   }
7653 
7654   return SE->getUMinFromMismatchedTypes(Ops);
7655 }
7656 
7657 /// Get the exact not taken count for this loop exit.
7658 const SCEV *
getExact(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7659 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7660                                              ScalarEvolution *SE) const {
7661   for (auto &ENT : ExitNotTaken)
7662     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7663       return ENT.ExactNotTaken;
7664 
7665   return SE->getCouldNotCompute();
7666 }
7667 
getConstantMax(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7668 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7669     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7670   for (auto &ENT : ExitNotTaken)
7671     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7672       return ENT.MaxNotTaken;
7673 
7674   return SE->getCouldNotCompute();
7675 }
7676 
7677 /// getConstantMax - Get the constant max backedge taken count for the loop.
7678 const SCEV *
getConstantMax(ScalarEvolution * SE) const7679 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7680   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7681     return !ENT.hasAlwaysTruePredicate();
7682   };
7683 
7684   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7685     return SE->getCouldNotCompute();
7686 
7687   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7688           isa<SCEVConstant>(getConstantMax())) &&
7689          "No point in having a non-constant max backedge taken count!");
7690   return getConstantMax();
7691 }
7692 
7693 const SCEV *
getSymbolicMax(const Loop * L,ScalarEvolution * SE)7694 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7695                                                    ScalarEvolution *SE) {
7696   if (!SymbolicMax)
7697     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7698   return SymbolicMax;
7699 }
7700 
isConstantMaxOrZero(ScalarEvolution * SE) const7701 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7702     ScalarEvolution *SE) const {
7703   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7704     return !ENT.hasAlwaysTruePredicate();
7705   };
7706   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7707 }
7708 
hasOperand(const SCEV * S) const7709 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7710   return Operands.contains(S);
7711 }
7712 
ExitLimit(const SCEV * E)7713 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7714     : ExitLimit(E, E, false, None) {
7715 }
7716 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)7717 ScalarEvolution::ExitLimit::ExitLimit(
7718     const SCEV *E, const SCEV *M, bool MaxOrZero,
7719     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7720     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7721   // If we prove the max count is zero, so is the symbolic bound.  This happens
7722   // in practice due to differences in a) how context sensitive we've chosen
7723   // to be and b) how we reason about bounds impied by UB.
7724   if (MaxNotTaken->isZero())
7725     ExactNotTaken = MaxNotTaken;
7726 
7727   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7728           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7729          "Exact is not allowed to be less precise than Max");
7730   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7731           isa<SCEVConstant>(MaxNotTaken)) &&
7732          "No point in having a non-constant max backedge taken count!");
7733   for (auto *PredSet : PredSetList)
7734     for (auto *P : *PredSet)
7735       addPredicate(P);
7736   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7737          "Backedge count should be int");
7738   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7739          "Max backedge count should be int");
7740 }
7741 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)7742 ScalarEvolution::ExitLimit::ExitLimit(
7743     const SCEV *E, const SCEV *M, bool MaxOrZero,
7744     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7745     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7746 }
7747 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)7748 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7749                                       bool MaxOrZero)
7750     : ExitLimit(E, M, MaxOrZero, None) {
7751 }
7752 
7753 class SCEVRecordOperands {
7754   SmallPtrSetImpl<const SCEV *> &Operands;
7755 
7756 public:
SCEVRecordOperands(SmallPtrSetImpl<const SCEV * > & Operands)7757   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7758     : Operands(Operands) {}
follow(const SCEV * S)7759   bool follow(const SCEV *S) {
7760     Operands.insert(S);
7761     return true;
7762   }
isDone()7763   bool isDone() { return false; }
7764 };
7765 
7766 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7767 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,bool IsComplete,const SCEV * ConstantMax,bool MaxOrZero)7768 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7769     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7770     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7771     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7772   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7773 
7774   ExitNotTaken.reserve(ExitCounts.size());
7775   std::transform(
7776       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7777       [&](const EdgeExitInfo &EEI) {
7778         BasicBlock *ExitBB = EEI.first;
7779         const ExitLimit &EL = EEI.second;
7780         if (EL.Predicates.empty())
7781           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7782                                   nullptr);
7783 
7784         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7785         for (auto *Pred : EL.Predicates)
7786           Predicate->add(Pred);
7787 
7788         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7789                                 std::move(Predicate));
7790       });
7791   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7792           isa<SCEVConstant>(ConstantMax)) &&
7793          "No point in having a non-constant max backedge taken count!");
7794 
7795   SCEVRecordOperands RecordOperands(Operands);
7796   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7797   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7798     ST.visitAll(ConstantMax);
7799   for (auto &ENT : ExitNotTaken)
7800     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7801       ST.visitAll(ENT.ExactNotTaken);
7802 }
7803 
7804 /// Compute the number of times the backedge of the specified loop will execute.
7805 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)7806 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7807                                            bool AllowPredicates) {
7808   SmallVector<BasicBlock *, 8> ExitingBlocks;
7809   L->getExitingBlocks(ExitingBlocks);
7810 
7811   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7812 
7813   SmallVector<EdgeExitInfo, 4> ExitCounts;
7814   bool CouldComputeBECount = true;
7815   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7816   const SCEV *MustExitMaxBECount = nullptr;
7817   const SCEV *MayExitMaxBECount = nullptr;
7818   bool MustExitMaxOrZero = false;
7819 
7820   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7821   // and compute maxBECount.
7822   // Do a union of all the predicates here.
7823   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7824     BasicBlock *ExitBB = ExitingBlocks[i];
7825 
7826     // We canonicalize untaken exits to br (constant), ignore them so that
7827     // proving an exit untaken doesn't negatively impact our ability to reason
7828     // about the loop as whole.
7829     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7830       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7831         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7832         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7833           continue;
7834       }
7835 
7836     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7837 
7838     assert((AllowPredicates || EL.Predicates.empty()) &&
7839            "Predicated exit limit when predicates are not allowed!");
7840 
7841     // 1. For each exit that can be computed, add an entry to ExitCounts.
7842     // CouldComputeBECount is true only if all exits can be computed.
7843     if (EL.ExactNotTaken == getCouldNotCompute())
7844       // We couldn't compute an exact value for this exit, so
7845       // we won't be able to compute an exact value for the loop.
7846       CouldComputeBECount = false;
7847     else
7848       ExitCounts.emplace_back(ExitBB, EL);
7849 
7850     // 2. Derive the loop's MaxBECount from each exit's max number of
7851     // non-exiting iterations. Partition the loop exits into two kinds:
7852     // LoopMustExits and LoopMayExits.
7853     //
7854     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7855     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7856     // MaxBECount is the minimum EL.MaxNotTaken of computable
7857     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7858     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7859     // computable EL.MaxNotTaken.
7860     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7861         DT.dominates(ExitBB, Latch)) {
7862       if (!MustExitMaxBECount) {
7863         MustExitMaxBECount = EL.MaxNotTaken;
7864         MustExitMaxOrZero = EL.MaxOrZero;
7865       } else {
7866         MustExitMaxBECount =
7867             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7868       }
7869     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7870       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7871         MayExitMaxBECount = EL.MaxNotTaken;
7872       else {
7873         MayExitMaxBECount =
7874             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7875       }
7876     }
7877   }
7878   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7879     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7880   // The loop backedge will be taken the maximum or zero times if there's
7881   // a single exit that must be taken the maximum or zero times.
7882   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7883   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7884                            MaxBECount, MaxOrZero);
7885 }
7886 
7887 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)7888 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7889                                       bool AllowPredicates) {
7890   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7891   // If our exiting block does not dominate the latch, then its connection with
7892   // loop's exit limit may be far from trivial.
7893   const BasicBlock *Latch = L->getLoopLatch();
7894   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7895     return getCouldNotCompute();
7896 
7897   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7898   Instruction *Term = ExitingBlock->getTerminator();
7899   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7900     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7901     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7902     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7903            "It should have one successor in loop and one exit block!");
7904     // Proceed to the next level to examine the exit condition expression.
7905     return computeExitLimitFromCond(
7906         L, BI->getCondition(), ExitIfTrue,
7907         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7908   }
7909 
7910   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7911     // For switch, make sure that there is a single exit from the loop.
7912     BasicBlock *Exit = nullptr;
7913     for (auto *SBB : successors(ExitingBlock))
7914       if (!L->contains(SBB)) {
7915         if (Exit) // Multiple exit successors.
7916           return getCouldNotCompute();
7917         Exit = SBB;
7918       }
7919     assert(Exit && "Exiting block must have at least one exit");
7920     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7921                                                 /*ControlsExit=*/IsOnlyExit);
7922   }
7923 
7924   return getCouldNotCompute();
7925 }
7926 
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7927 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7928     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7929     bool ControlsExit, bool AllowPredicates) {
7930   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7931   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7932                                         ControlsExit, AllowPredicates);
7933 }
7934 
7935 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7936 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7937                                       bool ExitIfTrue, bool ControlsExit,
7938                                       bool AllowPredicates) {
7939   (void)this->L;
7940   (void)this->ExitIfTrue;
7941   (void)this->AllowPredicates;
7942 
7943   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7944          this->AllowPredicates == AllowPredicates &&
7945          "Variance in assumed invariant key components!");
7946   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7947   if (Itr == TripCountMap.end())
7948     return None;
7949   return Itr->second;
7950 }
7951 
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7952 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7953                                              bool ExitIfTrue,
7954                                              bool ControlsExit,
7955                                              bool AllowPredicates,
7956                                              const ExitLimit &EL) {
7957   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7958          this->AllowPredicates == AllowPredicates &&
7959          "Variance in assumed invariant key components!");
7960 
7961   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7962   assert(InsertResult.second && "Expected successful insertion!");
7963   (void)InsertResult;
7964   (void)ExitIfTrue;
7965 }
7966 
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7967 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7968     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7969     bool ControlsExit, bool AllowPredicates) {
7970 
7971   if (auto MaybeEL =
7972           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7973     return *MaybeEL;
7974 
7975   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7976                                               ControlsExit, AllowPredicates);
7977   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7978   return EL;
7979 }
7980 
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7981 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7982     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7983     bool ControlsExit, bool AllowPredicates) {
7984   // Handle BinOp conditions (And, Or).
7985   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7986           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7987     return *LimitFromBinOp;
7988 
7989   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7990   // Proceed to the next level to examine the icmp.
7991   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7992     ExitLimit EL =
7993         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7994     if (EL.hasFullInfo() || !AllowPredicates)
7995       return EL;
7996 
7997     // Try again, but use SCEV predicates this time.
7998     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7999                                     /*AllowPredicates=*/true);
8000   }
8001 
8002   // Check for a constant condition. These are normally stripped out by
8003   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8004   // preserve the CFG and is temporarily leaving constant conditions
8005   // in place.
8006   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8007     if (ExitIfTrue == !CI->getZExtValue())
8008       // The backedge is always taken.
8009       return getCouldNotCompute();
8010     else
8011       // The backedge is never taken.
8012       return getZero(CI->getType());
8013   }
8014 
8015   // If it's not an integer or pointer comparison then compute it the hard way.
8016   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8017 }
8018 
8019 Optional<ScalarEvolution::ExitLimit>
computeExitLimitFromCondFromBinOp(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)8020 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8021     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8022     bool ControlsExit, bool AllowPredicates) {
8023   // Check if the controlling expression for this loop is an And or Or.
8024   Value *Op0, *Op1;
8025   bool IsAnd = false;
8026   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8027     IsAnd = true;
8028   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8029     IsAnd = false;
8030   else
8031     return None;
8032 
8033   // EitherMayExit is true in these two cases:
8034   //   br (and Op0 Op1), loop, exit
8035   //   br (or  Op0 Op1), exit, loop
8036   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8037   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8038                                                  ControlsExit && !EitherMayExit,
8039                                                  AllowPredicates);
8040   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8041                                                  ControlsExit && !EitherMayExit,
8042                                                  AllowPredicates);
8043 
8044   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8045   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8046   if (isa<ConstantInt>(Op1))
8047     return Op1 == NeutralElement ? EL0 : EL1;
8048   if (isa<ConstantInt>(Op0))
8049     return Op0 == NeutralElement ? EL1 : EL0;
8050 
8051   const SCEV *BECount = getCouldNotCompute();
8052   const SCEV *MaxBECount = getCouldNotCompute();
8053   if (EitherMayExit) {
8054     // Both conditions must be same for the loop to continue executing.
8055     // Choose the less conservative count.
8056     // If ExitCond is a short-circuit form (select), using
8057     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
8058     // To see the detailed examples, please see
8059     // test/Analysis/ScalarEvolution/exit-count-select.ll
8060     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
8061     if (!PoisonSafe)
8062       // Even if ExitCond is select, we can safely derive BECount using both
8063       // EL0 and EL1 in these cases:
8064       // (1) EL0.ExactNotTaken is non-zero
8065       // (2) EL1.ExactNotTaken is non-poison
8066       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
8067       //     it cannot be umin(0, ..))
8068       // The PoisonSafe assignment below is simplified and the assertion after
8069       // BECount calculation fully guarantees the condition (3).
8070       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
8071                    isa<SCEVConstant>(EL1.ExactNotTaken);
8072     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8073         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
8074       BECount =
8075           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
8076 
8077       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8078       // it should have been simplified to zero (see the condition (3) above)
8079       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8080              BECount->isZero());
8081     }
8082     if (EL0.MaxNotTaken == getCouldNotCompute())
8083       MaxBECount = EL1.MaxNotTaken;
8084     else if (EL1.MaxNotTaken == getCouldNotCompute())
8085       MaxBECount = EL0.MaxNotTaken;
8086     else
8087       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8088   } else {
8089     // Both conditions must be same at the same time for the loop to exit.
8090     // For now, be conservative.
8091     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8092       BECount = EL0.ExactNotTaken;
8093   }
8094 
8095   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8096   // to be more aggressive when computing BECount than when computing
8097   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8098   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8099   // to not.
8100   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8101       !isa<SCEVCouldNotCompute>(BECount))
8102     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8103 
8104   return ExitLimit(BECount, MaxBECount, false,
8105                    { &EL0.Predicates, &EL1.Predicates });
8106 }
8107 
8108 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)8109 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8110                                           ICmpInst *ExitCond,
8111                                           bool ExitIfTrue,
8112                                           bool ControlsExit,
8113                                           bool AllowPredicates) {
8114   // If the condition was exit on true, convert the condition to exit on false
8115   ICmpInst::Predicate Pred;
8116   if (!ExitIfTrue)
8117     Pred = ExitCond->getPredicate();
8118   else
8119     Pred = ExitCond->getInversePredicate();
8120   const ICmpInst::Predicate OriginalPred = Pred;
8121 
8122   // Handle common loops like: for (X = "string"; *X; ++X)
8123   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8124     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8125       ExitLimit ItCnt =
8126         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8127       if (ItCnt.hasAnyInfo())
8128         return ItCnt;
8129     }
8130 
8131   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8132   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8133 
8134   // Try to evaluate any dependencies out of the loop.
8135   LHS = getSCEVAtScope(LHS, L);
8136   RHS = getSCEVAtScope(RHS, L);
8137 
8138   // At this point, we would like to compute how many iterations of the
8139   // loop the predicate will return true for these inputs.
8140   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8141     // If there is a loop-invariant, force it into the RHS.
8142     std::swap(LHS, RHS);
8143     Pred = ICmpInst::getSwappedPredicate(Pred);
8144   }
8145 
8146   // Simplify the operands before analyzing them.
8147   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8148 
8149   // If we have a comparison of a chrec against a constant, try to use value
8150   // ranges to answer this query.
8151   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8152     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8153       if (AddRec->getLoop() == L) {
8154         // Form the constant range.
8155         ConstantRange CompRange =
8156             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8157 
8158         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8159         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8160       }
8161 
8162   switch (Pred) {
8163   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8164     // Convert to: while (X-Y != 0)
8165     if (LHS->getType()->isPointerTy()) {
8166       LHS = getLosslessPtrToIntExpr(LHS);
8167       if (isa<SCEVCouldNotCompute>(LHS))
8168         return LHS;
8169     }
8170     if (RHS->getType()->isPointerTy()) {
8171       RHS = getLosslessPtrToIntExpr(RHS);
8172       if (isa<SCEVCouldNotCompute>(RHS))
8173         return RHS;
8174     }
8175     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8176                                 AllowPredicates);
8177     if (EL.hasAnyInfo()) return EL;
8178     break;
8179   }
8180   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8181     // Convert to: while (X-Y == 0)
8182     if (LHS->getType()->isPointerTy()) {
8183       LHS = getLosslessPtrToIntExpr(LHS);
8184       if (isa<SCEVCouldNotCompute>(LHS))
8185         return LHS;
8186     }
8187     if (RHS->getType()->isPointerTy()) {
8188       RHS = getLosslessPtrToIntExpr(RHS);
8189       if (isa<SCEVCouldNotCompute>(RHS))
8190         return RHS;
8191     }
8192     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8193     if (EL.hasAnyInfo()) return EL;
8194     break;
8195   }
8196   case ICmpInst::ICMP_SLT:
8197   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8198     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8199     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8200                                     AllowPredicates);
8201     if (EL.hasAnyInfo()) return EL;
8202     break;
8203   }
8204   case ICmpInst::ICMP_SGT:
8205   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8206     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8207     ExitLimit EL =
8208         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8209                             AllowPredicates);
8210     if (EL.hasAnyInfo()) return EL;
8211     break;
8212   }
8213   default:
8214     break;
8215   }
8216 
8217   auto *ExhaustiveCount =
8218       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8219 
8220   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8221     return ExhaustiveCount;
8222 
8223   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8224                                       ExitCond->getOperand(1), L, OriginalPred);
8225 }
8226 
8227 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)8228 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8229                                                       SwitchInst *Switch,
8230                                                       BasicBlock *ExitingBlock,
8231                                                       bool ControlsExit) {
8232   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8233 
8234   // Give up if the exit is the default dest of a switch.
8235   if (Switch->getDefaultDest() == ExitingBlock)
8236     return getCouldNotCompute();
8237 
8238   assert(L->contains(Switch->getDefaultDest()) &&
8239          "Default case must not exit the loop!");
8240   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8241   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8242 
8243   // while (X != Y) --> while (X-Y != 0)
8244   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8245   if (EL.hasAnyInfo())
8246     return EL;
8247 
8248   return getCouldNotCompute();
8249 }
8250 
8251 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)8252 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8253                                 ScalarEvolution &SE) {
8254   const SCEV *InVal = SE.getConstant(C);
8255   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8256   assert(isa<SCEVConstant>(Val) &&
8257          "Evaluation of SCEV at constant didn't fold correctly?");
8258   return cast<SCEVConstant>(Val)->getValue();
8259 }
8260 
8261 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8262 /// compute the backedge execution count.
8263 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)8264 ScalarEvolution::computeLoadConstantCompareExitLimit(
8265   LoadInst *LI,
8266   Constant *RHS,
8267   const Loop *L,
8268   ICmpInst::Predicate predicate) {
8269   if (LI->isVolatile()) return getCouldNotCompute();
8270 
8271   // Check to see if the loaded pointer is a getelementptr of a global.
8272   // TODO: Use SCEV instead of manually grubbing with GEPs.
8273   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8274   if (!GEP) return getCouldNotCompute();
8275 
8276   // Make sure that it is really a constant global we are gepping, with an
8277   // initializer, and make sure the first IDX is really 0.
8278   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8279   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8280       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8281       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8282     return getCouldNotCompute();
8283 
8284   // Okay, we allow one non-constant index into the GEP instruction.
8285   Value *VarIdx = nullptr;
8286   std::vector<Constant*> Indexes;
8287   unsigned VarIdxNum = 0;
8288   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8289     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8290       Indexes.push_back(CI);
8291     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8292       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8293       VarIdx = GEP->getOperand(i);
8294       VarIdxNum = i-2;
8295       Indexes.push_back(nullptr);
8296     }
8297 
8298   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8299   if (!VarIdx)
8300     return getCouldNotCompute();
8301 
8302   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8303   // Check to see if X is a loop variant variable value now.
8304   const SCEV *Idx = getSCEV(VarIdx);
8305   Idx = getSCEVAtScope(Idx, L);
8306 
8307   // We can only recognize very limited forms of loop index expressions, in
8308   // particular, only affine AddRec's like {C1,+,C2}<L>.
8309   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8310   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8311       isLoopInvariant(IdxExpr, L) ||
8312       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8313       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8314     return getCouldNotCompute();
8315 
8316   unsigned MaxSteps = MaxBruteForceIterations;
8317   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8318     ConstantInt *ItCst = ConstantInt::get(
8319                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8320     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8321 
8322     // Form the GEP offset.
8323     Indexes[VarIdxNum] = Val;
8324 
8325     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8326                                                          Indexes);
8327     if (!Result) break;  // Cannot compute!
8328 
8329     // Evaluate the condition for this iteration.
8330     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8331     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8332     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8333       ++NumArrayLenItCounts;
8334       return getConstant(ItCst);   // Found terminating iteration!
8335     }
8336   }
8337   return getCouldNotCompute();
8338 }
8339 
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)8340 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8341     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8342   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8343   if (!RHS)
8344     return getCouldNotCompute();
8345 
8346   const BasicBlock *Latch = L->getLoopLatch();
8347   if (!Latch)
8348     return getCouldNotCompute();
8349 
8350   const BasicBlock *Predecessor = L->getLoopPredecessor();
8351   if (!Predecessor)
8352     return getCouldNotCompute();
8353 
8354   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8355   // Return LHS in OutLHS and shift_opt in OutOpCode.
8356   auto MatchPositiveShift =
8357       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8358 
8359     using namespace PatternMatch;
8360 
8361     ConstantInt *ShiftAmt;
8362     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8363       OutOpCode = Instruction::LShr;
8364     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8365       OutOpCode = Instruction::AShr;
8366     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8367       OutOpCode = Instruction::Shl;
8368     else
8369       return false;
8370 
8371     return ShiftAmt->getValue().isStrictlyPositive();
8372   };
8373 
8374   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8375   //
8376   // loop:
8377   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8378   //   %iv.shifted = lshr i32 %iv, <positive constant>
8379   //
8380   // Return true on a successful match.  Return the corresponding PHI node (%iv
8381   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8382   auto MatchShiftRecurrence =
8383       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8384     Optional<Instruction::BinaryOps> PostShiftOpCode;
8385 
8386     {
8387       Instruction::BinaryOps OpC;
8388       Value *V;
8389 
8390       // If we encounter a shift instruction, "peel off" the shift operation,
8391       // and remember that we did so.  Later when we inspect %iv's backedge
8392       // value, we will make sure that the backedge value uses the same
8393       // operation.
8394       //
8395       // Note: the peeled shift operation does not have to be the same
8396       // instruction as the one feeding into the PHI's backedge value.  We only
8397       // really care about it being the same *kind* of shift instruction --
8398       // that's all that is required for our later inferences to hold.
8399       if (MatchPositiveShift(LHS, V, OpC)) {
8400         PostShiftOpCode = OpC;
8401         LHS = V;
8402       }
8403     }
8404 
8405     PNOut = dyn_cast<PHINode>(LHS);
8406     if (!PNOut || PNOut->getParent() != L->getHeader())
8407       return false;
8408 
8409     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8410     Value *OpLHS;
8411 
8412     return
8413         // The backedge value for the PHI node must be a shift by a positive
8414         // amount
8415         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8416 
8417         // of the PHI node itself
8418         OpLHS == PNOut &&
8419 
8420         // and the kind of shift should be match the kind of shift we peeled
8421         // off, if any.
8422         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8423   };
8424 
8425   PHINode *PN;
8426   Instruction::BinaryOps OpCode;
8427   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8428     return getCouldNotCompute();
8429 
8430   const DataLayout &DL = getDataLayout();
8431 
8432   // The key rationale for this optimization is that for some kinds of shift
8433   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8434   // within a finite number of iterations.  If the condition guarding the
8435   // backedge (in the sense that the backedge is taken if the condition is true)
8436   // is false for the value the shift recurrence stabilizes to, then we know
8437   // that the backedge is taken only a finite number of times.
8438 
8439   ConstantInt *StableValue = nullptr;
8440   switch (OpCode) {
8441   default:
8442     llvm_unreachable("Impossible case!");
8443 
8444   case Instruction::AShr: {
8445     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8446     // bitwidth(K) iterations.
8447     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8448     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8449                                        Predecessor->getTerminator(), &DT);
8450     auto *Ty = cast<IntegerType>(RHS->getType());
8451     if (Known.isNonNegative())
8452       StableValue = ConstantInt::get(Ty, 0);
8453     else if (Known.isNegative())
8454       StableValue = ConstantInt::get(Ty, -1, true);
8455     else
8456       return getCouldNotCompute();
8457 
8458     break;
8459   }
8460   case Instruction::LShr:
8461   case Instruction::Shl:
8462     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8463     // stabilize to 0 in at most bitwidth(K) iterations.
8464     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8465     break;
8466   }
8467 
8468   auto *Result =
8469       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8470   assert(Result->getType()->isIntegerTy(1) &&
8471          "Otherwise cannot be an operand to a branch instruction");
8472 
8473   if (Result->isZeroValue()) {
8474     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8475     const SCEV *UpperBound =
8476         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8477     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8478   }
8479 
8480   return getCouldNotCompute();
8481 }
8482 
8483 /// Return true if we can constant fold an instruction of the specified type,
8484 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)8485 static bool CanConstantFold(const Instruction *I) {
8486   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8487       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8488       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8489     return true;
8490 
8491   if (const CallInst *CI = dyn_cast<CallInst>(I))
8492     if (const Function *F = CI->getCalledFunction())
8493       return canConstantFoldCallTo(CI, F);
8494   return false;
8495 }
8496 
8497 /// Determine whether this instruction can constant evolve within this loop
8498 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)8499 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8500   // An instruction outside of the loop can't be derived from a loop PHI.
8501   if (!L->contains(I)) return false;
8502 
8503   if (isa<PHINode>(I)) {
8504     // We don't currently keep track of the control flow needed to evaluate
8505     // PHIs, so we cannot handle PHIs inside of loops.
8506     return L->getHeader() == I->getParent();
8507   }
8508 
8509   // If we won't be able to constant fold this expression even if the operands
8510   // are constants, bail early.
8511   return CanConstantFold(I);
8512 }
8513 
8514 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8515 /// recursing through each instruction operand until reaching a loop header phi.
8516 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)8517 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8518                                DenseMap<Instruction *, PHINode *> &PHIMap,
8519                                unsigned Depth) {
8520   if (Depth > MaxConstantEvolvingDepth)
8521     return nullptr;
8522 
8523   // Otherwise, we can evaluate this instruction if all of its operands are
8524   // constant or derived from a PHI node themselves.
8525   PHINode *PHI = nullptr;
8526   for (Value *Op : UseInst->operands()) {
8527     if (isa<Constant>(Op)) continue;
8528 
8529     Instruction *OpInst = dyn_cast<Instruction>(Op);
8530     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8531 
8532     PHINode *P = dyn_cast<PHINode>(OpInst);
8533     if (!P)
8534       // If this operand is already visited, reuse the prior result.
8535       // We may have P != PHI if this is the deepest point at which the
8536       // inconsistent paths meet.
8537       P = PHIMap.lookup(OpInst);
8538     if (!P) {
8539       // Recurse and memoize the results, whether a phi is found or not.
8540       // This recursive call invalidates pointers into PHIMap.
8541       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8542       PHIMap[OpInst] = P;
8543     }
8544     if (!P)
8545       return nullptr;  // Not evolving from PHI
8546     if (PHI && PHI != P)
8547       return nullptr;  // Evolving from multiple different PHIs.
8548     PHI = P;
8549   }
8550   // This is a expression evolving from a constant PHI!
8551   return PHI;
8552 }
8553 
8554 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8555 /// in the loop that V is derived from.  We allow arbitrary operations along the
8556 /// way, but the operands of an operation must either be constants or a value
8557 /// derived from a constant PHI.  If this expression does not fit with these
8558 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)8559 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8560   Instruction *I = dyn_cast<Instruction>(V);
8561   if (!I || !canConstantEvolve(I, L)) return nullptr;
8562 
8563   if (PHINode *PN = dyn_cast<PHINode>(I))
8564     return PN;
8565 
8566   // Record non-constant instructions contained by the loop.
8567   DenseMap<Instruction *, PHINode *> PHIMap;
8568   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8569 }
8570 
8571 /// EvaluateExpression - Given an expression that passes the
8572 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8573 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8574 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)8575 static Constant *EvaluateExpression(Value *V, const Loop *L,
8576                                     DenseMap<Instruction *, Constant *> &Vals,
8577                                     const DataLayout &DL,
8578                                     const TargetLibraryInfo *TLI) {
8579   // Convenient constant check, but redundant for recursive calls.
8580   if (Constant *C = dyn_cast<Constant>(V)) return C;
8581   Instruction *I = dyn_cast<Instruction>(V);
8582   if (!I) return nullptr;
8583 
8584   if (Constant *C = Vals.lookup(I)) return C;
8585 
8586   // An instruction inside the loop depends on a value outside the loop that we
8587   // weren't given a mapping for, or a value such as a call inside the loop.
8588   if (!canConstantEvolve(I, L)) return nullptr;
8589 
8590   // An unmapped PHI can be due to a branch or another loop inside this loop,
8591   // or due to this not being the initial iteration through a loop where we
8592   // couldn't compute the evolution of this particular PHI last time.
8593   if (isa<PHINode>(I)) return nullptr;
8594 
8595   std::vector<Constant*> Operands(I->getNumOperands());
8596 
8597   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8598     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8599     if (!Operand) {
8600       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8601       if (!Operands[i]) return nullptr;
8602       continue;
8603     }
8604     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8605     Vals[Operand] = C;
8606     if (!C) return nullptr;
8607     Operands[i] = C;
8608   }
8609 
8610   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8611     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8612                                            Operands[1], DL, TLI);
8613   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8614     if (!LI->isVolatile())
8615       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8616   }
8617   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8618 }
8619 
8620 
8621 // If every incoming value to PN except the one for BB is a specific Constant,
8622 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)8623 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8624   Constant *IncomingVal = nullptr;
8625 
8626   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8627     if (PN->getIncomingBlock(i) == BB)
8628       continue;
8629 
8630     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8631     if (!CurrentVal)
8632       return nullptr;
8633 
8634     if (IncomingVal != CurrentVal) {
8635       if (IncomingVal)
8636         return nullptr;
8637       IncomingVal = CurrentVal;
8638     }
8639   }
8640 
8641   return IncomingVal;
8642 }
8643 
8644 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8645 /// in the header of its containing loop, we know the loop executes a
8646 /// constant number of times, and the PHI node is just a recurrence
8647 /// involving constants, fold it.
8648 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)8649 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8650                                                    const APInt &BEs,
8651                                                    const Loop *L) {
8652   auto I = ConstantEvolutionLoopExitValue.find(PN);
8653   if (I != ConstantEvolutionLoopExitValue.end())
8654     return I->second;
8655 
8656   if (BEs.ugt(MaxBruteForceIterations))
8657     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8658 
8659   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8660 
8661   DenseMap<Instruction *, Constant *> CurrentIterVals;
8662   BasicBlock *Header = L->getHeader();
8663   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8664 
8665   BasicBlock *Latch = L->getLoopLatch();
8666   if (!Latch)
8667     return nullptr;
8668 
8669   for (PHINode &PHI : Header->phis()) {
8670     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8671       CurrentIterVals[&PHI] = StartCST;
8672   }
8673   if (!CurrentIterVals.count(PN))
8674     return RetVal = nullptr;
8675 
8676   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8677 
8678   // Execute the loop symbolically to determine the exit value.
8679   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8680          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8681 
8682   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8683   unsigned IterationNum = 0;
8684   const DataLayout &DL = getDataLayout();
8685   for (; ; ++IterationNum) {
8686     if (IterationNum == NumIterations)
8687       return RetVal = CurrentIterVals[PN];  // Got exit value!
8688 
8689     // Compute the value of the PHIs for the next iteration.
8690     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8691     DenseMap<Instruction *, Constant *> NextIterVals;
8692     Constant *NextPHI =
8693         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8694     if (!NextPHI)
8695       return nullptr;        // Couldn't evaluate!
8696     NextIterVals[PN] = NextPHI;
8697 
8698     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8699 
8700     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8701     // cease to be able to evaluate one of them or if they stop evolving,
8702     // because that doesn't necessarily prevent us from computing PN.
8703     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8704     for (const auto &I : CurrentIterVals) {
8705       PHINode *PHI = dyn_cast<PHINode>(I.first);
8706       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8707       PHIsToCompute.emplace_back(PHI, I.second);
8708     }
8709     // We use two distinct loops because EvaluateExpression may invalidate any
8710     // iterators into CurrentIterVals.
8711     for (const auto &I : PHIsToCompute) {
8712       PHINode *PHI = I.first;
8713       Constant *&NextPHI = NextIterVals[PHI];
8714       if (!NextPHI) {   // Not already computed.
8715         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8716         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8717       }
8718       if (NextPHI != I.second)
8719         StoppedEvolving = false;
8720     }
8721 
8722     // If all entries in CurrentIterVals == NextIterVals then we can stop
8723     // iterating, the loop can't continue to change.
8724     if (StoppedEvolving)
8725       return RetVal = CurrentIterVals[PN];
8726 
8727     CurrentIterVals.swap(NextIterVals);
8728   }
8729 }
8730 
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)8731 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8732                                                           Value *Cond,
8733                                                           bool ExitWhen) {
8734   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8735   if (!PN) return getCouldNotCompute();
8736 
8737   // If the loop is canonicalized, the PHI will have exactly two entries.
8738   // That's the only form we support here.
8739   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8740 
8741   DenseMap<Instruction *, Constant *> CurrentIterVals;
8742   BasicBlock *Header = L->getHeader();
8743   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8744 
8745   BasicBlock *Latch = L->getLoopLatch();
8746   assert(Latch && "Should follow from NumIncomingValues == 2!");
8747 
8748   for (PHINode &PHI : Header->phis()) {
8749     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8750       CurrentIterVals[&PHI] = StartCST;
8751   }
8752   if (!CurrentIterVals.count(PN))
8753     return getCouldNotCompute();
8754 
8755   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8756   // the loop symbolically to determine when the condition gets a value of
8757   // "ExitWhen".
8758   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8759   const DataLayout &DL = getDataLayout();
8760   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8761     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8762         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8763 
8764     // Couldn't symbolically evaluate.
8765     if (!CondVal) return getCouldNotCompute();
8766 
8767     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8768       ++NumBruteForceTripCountsComputed;
8769       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8770     }
8771 
8772     // Update all the PHI nodes for the next iteration.
8773     DenseMap<Instruction *, Constant *> NextIterVals;
8774 
8775     // Create a list of which PHIs we need to compute. We want to do this before
8776     // calling EvaluateExpression on them because that may invalidate iterators
8777     // into CurrentIterVals.
8778     SmallVector<PHINode *, 8> PHIsToCompute;
8779     for (const auto &I : CurrentIterVals) {
8780       PHINode *PHI = dyn_cast<PHINode>(I.first);
8781       if (!PHI || PHI->getParent() != Header) continue;
8782       PHIsToCompute.push_back(PHI);
8783     }
8784     for (PHINode *PHI : PHIsToCompute) {
8785       Constant *&NextPHI = NextIterVals[PHI];
8786       if (NextPHI) continue;    // Already computed!
8787 
8788       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8789       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8790     }
8791     CurrentIterVals.swap(NextIterVals);
8792   }
8793 
8794   // Too many iterations were needed to evaluate.
8795   return getCouldNotCompute();
8796 }
8797 
getSCEVAtScope(const SCEV * V,const Loop * L)8798 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8799   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8800       ValuesAtScopes[V];
8801   // Check to see if we've folded this expression at this loop before.
8802   for (auto &LS : Values)
8803     if (LS.first == L)
8804       return LS.second ? LS.second : V;
8805 
8806   Values.emplace_back(L, nullptr);
8807 
8808   // Otherwise compute it.
8809   const SCEV *C = computeSCEVAtScope(V, L);
8810   for (auto &LS : reverse(ValuesAtScopes[V]))
8811     if (LS.first == L) {
8812       LS.second = C;
8813       break;
8814     }
8815   return C;
8816 }
8817 
8818 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8819 /// will return Constants for objects which aren't represented by a
8820 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8821 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)8822 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8823   switch (V->getSCEVType()) {
8824   case scCouldNotCompute:
8825   case scAddRecExpr:
8826     return nullptr;
8827   case scConstant:
8828     return cast<SCEVConstant>(V)->getValue();
8829   case scUnknown:
8830     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8831   case scSignExtend: {
8832     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8833     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8834       return ConstantExpr::getSExt(CastOp, SS->getType());
8835     return nullptr;
8836   }
8837   case scZeroExtend: {
8838     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8839     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8840       return ConstantExpr::getZExt(CastOp, SZ->getType());
8841     return nullptr;
8842   }
8843   case scPtrToInt: {
8844     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8845     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8846       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8847 
8848     return nullptr;
8849   }
8850   case scTruncate: {
8851     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8852     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8853       return ConstantExpr::getTrunc(CastOp, ST->getType());
8854     return nullptr;
8855   }
8856   case scAddExpr: {
8857     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8858     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8859       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8860         unsigned AS = PTy->getAddressSpace();
8861         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8862         C = ConstantExpr::getBitCast(C, DestPtrTy);
8863       }
8864       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8865         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8866         if (!C2)
8867           return nullptr;
8868 
8869         // First pointer!
8870         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8871           unsigned AS = C2->getType()->getPointerAddressSpace();
8872           std::swap(C, C2);
8873           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8874           // The offsets have been converted to bytes.  We can add bytes to an
8875           // i8* by GEP with the byte count in the first index.
8876           C = ConstantExpr::getBitCast(C, DestPtrTy);
8877         }
8878 
8879         // Don't bother trying to sum two pointers. We probably can't
8880         // statically compute a load that results from it anyway.
8881         if (C2->getType()->isPointerTy())
8882           return nullptr;
8883 
8884         if (C->getType()->isPointerTy()) {
8885           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8886                                              C, C2);
8887         } else {
8888           C = ConstantExpr::getAdd(C, C2);
8889         }
8890       }
8891       return C;
8892     }
8893     return nullptr;
8894   }
8895   case scMulExpr: {
8896     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8897     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8898       // Don't bother with pointers at all.
8899       if (C->getType()->isPointerTy())
8900         return nullptr;
8901       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8902         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8903         if (!C2 || C2->getType()->isPointerTy())
8904           return nullptr;
8905         C = ConstantExpr::getMul(C, C2);
8906       }
8907       return C;
8908     }
8909     return nullptr;
8910   }
8911   case scUDivExpr: {
8912     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8913     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8914       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8915         if (LHS->getType() == RHS->getType())
8916           return ConstantExpr::getUDiv(LHS, RHS);
8917     return nullptr;
8918   }
8919   case scSMaxExpr:
8920   case scUMaxExpr:
8921   case scSMinExpr:
8922   case scUMinExpr:
8923     return nullptr; // TODO: smax, umax, smin, umax.
8924   }
8925   llvm_unreachable("Unknown SCEV kind!");
8926 }
8927 
computeSCEVAtScope(const SCEV * V,const Loop * L)8928 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8929   if (isa<SCEVConstant>(V)) return V;
8930 
8931   // If this instruction is evolved from a constant-evolving PHI, compute the
8932   // exit value from the loop without using SCEVs.
8933   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8934     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8935       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8936         const Loop *CurrLoop = this->LI[I->getParent()];
8937         // Looking for loop exit value.
8938         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8939             PN->getParent() == CurrLoop->getHeader()) {
8940           // Okay, there is no closed form solution for the PHI node.  Check
8941           // to see if the loop that contains it has a known backedge-taken
8942           // count.  If so, we may be able to force computation of the exit
8943           // value.
8944           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8945           // This trivial case can show up in some degenerate cases where
8946           // the incoming IR has not yet been fully simplified.
8947           if (BackedgeTakenCount->isZero()) {
8948             Value *InitValue = nullptr;
8949             bool MultipleInitValues = false;
8950             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8951               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8952                 if (!InitValue)
8953                   InitValue = PN->getIncomingValue(i);
8954                 else if (InitValue != PN->getIncomingValue(i)) {
8955                   MultipleInitValues = true;
8956                   break;
8957                 }
8958               }
8959             }
8960             if (!MultipleInitValues && InitValue)
8961               return getSCEV(InitValue);
8962           }
8963           // Do we have a loop invariant value flowing around the backedge
8964           // for a loop which must execute the backedge?
8965           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8966               isKnownPositive(BackedgeTakenCount) &&
8967               PN->getNumIncomingValues() == 2) {
8968 
8969             unsigned InLoopPred =
8970                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8971             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8972             if (CurrLoop->isLoopInvariant(BackedgeVal))
8973               return getSCEV(BackedgeVal);
8974           }
8975           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8976             // Okay, we know how many times the containing loop executes.  If
8977             // this is a constant evolving PHI node, get the final value at
8978             // the specified iteration number.
8979             Constant *RV = getConstantEvolutionLoopExitValue(
8980                 PN, BTCC->getAPInt(), CurrLoop);
8981             if (RV) return getSCEV(RV);
8982           }
8983         }
8984 
8985         // If there is a single-input Phi, evaluate it at our scope. If we can
8986         // prove that this replacement does not break LCSSA form, use new value.
8987         if (PN->getNumOperands() == 1) {
8988           const SCEV *Input = getSCEV(PN->getOperand(0));
8989           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8990           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8991           // for the simplest case just support constants.
8992           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8993         }
8994       }
8995 
8996       // Okay, this is an expression that we cannot symbolically evaluate
8997       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8998       // the arguments into constants, and if so, try to constant propagate the
8999       // result.  This is particularly useful for computing loop exit values.
9000       if (CanConstantFold(I)) {
9001         SmallVector<Constant *, 4> Operands;
9002         bool MadeImprovement = false;
9003         for (Value *Op : I->operands()) {
9004           if (Constant *C = dyn_cast<Constant>(Op)) {
9005             Operands.push_back(C);
9006             continue;
9007           }
9008 
9009           // If any of the operands is non-constant and if they are
9010           // non-integer and non-pointer, don't even try to analyze them
9011           // with scev techniques.
9012           if (!isSCEVable(Op->getType()))
9013             return V;
9014 
9015           const SCEV *OrigV = getSCEV(Op);
9016           const SCEV *OpV = getSCEVAtScope(OrigV, L);
9017           MadeImprovement |= OrigV != OpV;
9018 
9019           Constant *C = BuildConstantFromSCEV(OpV);
9020           if (!C) return V;
9021           if (C->getType() != Op->getType())
9022             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9023                                                               Op->getType(),
9024                                                               false),
9025                                       C, Op->getType());
9026           Operands.push_back(C);
9027         }
9028 
9029         // Check to see if getSCEVAtScope actually made an improvement.
9030         if (MadeImprovement) {
9031           Constant *C = nullptr;
9032           const DataLayout &DL = getDataLayout();
9033           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
9034             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9035                                                 Operands[1], DL, &TLI);
9036           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
9037             if (!Load->isVolatile())
9038               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
9039                                                DL);
9040           } else
9041             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9042           if (!C) return V;
9043           return getSCEV(C);
9044         }
9045       }
9046     }
9047 
9048     // This is some other type of SCEVUnknown, just return it.
9049     return V;
9050   }
9051 
9052   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
9053     // Avoid performing the look-up in the common case where the specified
9054     // expression has no loop-variant portions.
9055     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9056       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9057       if (OpAtScope != Comm->getOperand(i)) {
9058         // Okay, at least one of these operands is loop variant but might be
9059         // foldable.  Build a new instance of the folded commutative expression.
9060         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9061                                             Comm->op_begin()+i);
9062         NewOps.push_back(OpAtScope);
9063 
9064         for (++i; i != e; ++i) {
9065           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9066           NewOps.push_back(OpAtScope);
9067         }
9068         if (isa<SCEVAddExpr>(Comm))
9069           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9070         if (isa<SCEVMulExpr>(Comm))
9071           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9072         if (isa<SCEVMinMaxExpr>(Comm))
9073           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9074         llvm_unreachable("Unknown commutative SCEV type!");
9075       }
9076     }
9077     // If we got here, all operands are loop invariant.
9078     return Comm;
9079   }
9080 
9081   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9082     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9083     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9084     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9085       return Div;   // must be loop invariant
9086     return getUDivExpr(LHS, RHS);
9087   }
9088 
9089   // If this is a loop recurrence for a loop that does not contain L, then we
9090   // are dealing with the final value computed by the loop.
9091   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9092     // First, attempt to evaluate each operand.
9093     // Avoid performing the look-up in the common case where the specified
9094     // expression has no loop-variant portions.
9095     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9096       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9097       if (OpAtScope == AddRec->getOperand(i))
9098         continue;
9099 
9100       // Okay, at least one of these operands is loop variant but might be
9101       // foldable.  Build a new instance of the folded commutative expression.
9102       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9103                                           AddRec->op_begin()+i);
9104       NewOps.push_back(OpAtScope);
9105       for (++i; i != e; ++i)
9106         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9107 
9108       const SCEV *FoldedRec =
9109         getAddRecExpr(NewOps, AddRec->getLoop(),
9110                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9111       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9112       // The addrec may be folded to a nonrecurrence, for example, if the
9113       // induction variable is multiplied by zero after constant folding. Go
9114       // ahead and return the folded value.
9115       if (!AddRec)
9116         return FoldedRec;
9117       break;
9118     }
9119 
9120     // If the scope is outside the addrec's loop, evaluate it by using the
9121     // loop exit value of the addrec.
9122     if (!AddRec->getLoop()->contains(L)) {
9123       // To evaluate this recurrence, we need to know how many times the AddRec
9124       // loop iterates.  Compute this now.
9125       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9126       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9127 
9128       // Then, evaluate the AddRec.
9129       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9130     }
9131 
9132     return AddRec;
9133   }
9134 
9135   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9136     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9137     if (Op == Cast->getOperand())
9138       return Cast;  // must be loop invariant
9139     return getZeroExtendExpr(Op, Cast->getType());
9140   }
9141 
9142   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9143     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9144     if (Op == Cast->getOperand())
9145       return Cast;  // must be loop invariant
9146     return getSignExtendExpr(Op, Cast->getType());
9147   }
9148 
9149   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9150     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9151     if (Op == Cast->getOperand())
9152       return Cast;  // must be loop invariant
9153     return getTruncateExpr(Op, Cast->getType());
9154   }
9155 
9156   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9157     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9158     if (Op == Cast->getOperand())
9159       return Cast; // must be loop invariant
9160     return getPtrToIntExpr(Op, Cast->getType());
9161   }
9162 
9163   llvm_unreachable("Unknown SCEV type!");
9164 }
9165 
getSCEVAtScope(Value * V,const Loop * L)9166 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9167   return getSCEVAtScope(getSCEV(V), L);
9168 }
9169 
stripInjectiveFunctions(const SCEV * S) const9170 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9171   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9172     return stripInjectiveFunctions(ZExt->getOperand());
9173   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9174     return stripInjectiveFunctions(SExt->getOperand());
9175   return S;
9176 }
9177 
9178 /// Finds the minimum unsigned root of the following equation:
9179 ///
9180 ///     A * X = B (mod N)
9181 ///
9182 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9183 /// A and B isn't important.
9184 ///
9185 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)9186 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9187                                                ScalarEvolution &SE) {
9188   uint32_t BW = A.getBitWidth();
9189   assert(BW == SE.getTypeSizeInBits(B->getType()));
9190   assert(A != 0 && "A must be non-zero.");
9191 
9192   // 1. D = gcd(A, N)
9193   //
9194   // The gcd of A and N may have only one prime factor: 2. The number of
9195   // trailing zeros in A is its multiplicity
9196   uint32_t Mult2 = A.countTrailingZeros();
9197   // D = 2^Mult2
9198 
9199   // 2. Check if B is divisible by D.
9200   //
9201   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9202   // is not less than multiplicity of this prime factor for D.
9203   if (SE.GetMinTrailingZeros(B) < Mult2)
9204     return SE.getCouldNotCompute();
9205 
9206   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9207   // modulo (N / D).
9208   //
9209   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9210   // (N / D) in general. The inverse itself always fits into BW bits, though,
9211   // so we immediately truncate it.
9212   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9213   APInt Mod(BW + 1, 0);
9214   Mod.setBit(BW - Mult2);  // Mod = N / D
9215   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9216 
9217   // 4. Compute the minimum unsigned root of the equation:
9218   // I * (B / D) mod (N / D)
9219   // To simplify the computation, we factor out the divide by D:
9220   // (I * B mod N) / D
9221   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9222   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9223 }
9224 
9225 /// For a given quadratic addrec, generate coefficients of the corresponding
9226 /// quadratic equation, multiplied by a common value to ensure that they are
9227 /// integers.
9228 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9229 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9230 /// were multiplied by, and BitWidth is the bit width of the original addrec
9231 /// coefficients.
9232 /// This function returns None if the addrec coefficients are not compile-
9233 /// time constants.
9234 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr * AddRec)9235 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9236   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9237   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9238   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9239   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9240   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9241                     << *AddRec << '\n');
9242 
9243   // We currently can only solve this if the coefficients are constants.
9244   if (!LC || !MC || !NC) {
9245     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9246     return None;
9247   }
9248 
9249   APInt L = LC->getAPInt();
9250   APInt M = MC->getAPInt();
9251   APInt N = NC->getAPInt();
9252   assert(!N.isZero() && "This is not a quadratic addrec");
9253 
9254   unsigned BitWidth = LC->getAPInt().getBitWidth();
9255   unsigned NewWidth = BitWidth + 1;
9256   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9257                     << BitWidth << '\n');
9258   // The sign-extension (as opposed to a zero-extension) here matches the
9259   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9260   N = N.sext(NewWidth);
9261   M = M.sext(NewWidth);
9262   L = L.sext(NewWidth);
9263 
9264   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9265   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9266   //   L+M, L+2M+N, L+3M+3N, ...
9267   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9268   //
9269   // The equation Acc = 0 is then
9270   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9271   // In a quadratic form it becomes:
9272   //   N n^2 + (2M-N) n + 2L = 0.
9273 
9274   APInt A = N;
9275   APInt B = 2 * M - A;
9276   APInt C = 2 * L;
9277   APInt T = APInt(NewWidth, 2);
9278   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9279                     << "x + " << C << ", coeff bw: " << NewWidth
9280                     << ", multiplied by " << T << '\n');
9281   return std::make_tuple(A, B, C, T, BitWidth);
9282 }
9283 
9284 /// Helper function to compare optional APInts:
9285 /// (a) if X and Y both exist, return min(X, Y),
9286 /// (b) if neither X nor Y exist, return None,
9287 /// (c) if exactly one of X and Y exists, return that value.
MinOptional(Optional<APInt> X,Optional<APInt> Y)9288 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9289   if (X.hasValue() && Y.hasValue()) {
9290     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9291     APInt XW = X->sextOrSelf(W);
9292     APInt YW = Y->sextOrSelf(W);
9293     return XW.slt(YW) ? *X : *Y;
9294   }
9295   if (!X.hasValue() && !Y.hasValue())
9296     return None;
9297   return X.hasValue() ? *X : *Y;
9298 }
9299 
9300 /// Helper function to truncate an optional APInt to a given BitWidth.
9301 /// When solving addrec-related equations, it is preferable to return a value
9302 /// that has the same bit width as the original addrec's coefficients. If the
9303 /// solution fits in the original bit width, truncate it (except for i1).
9304 /// Returning a value of a different bit width may inhibit some optimizations.
9305 ///
9306 /// In general, a solution to a quadratic equation generated from an addrec
9307 /// may require BW+1 bits, where BW is the bit width of the addrec's
9308 /// coefficients. The reason is that the coefficients of the quadratic
9309 /// equation are BW+1 bits wide (to avoid truncation when converting from
9310 /// the addrec to the equation).
TruncIfPossible(Optional<APInt> X,unsigned BitWidth)9311 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9312   if (!X.hasValue())
9313     return None;
9314   unsigned W = X->getBitWidth();
9315   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9316     return X->trunc(BitWidth);
9317   return X;
9318 }
9319 
9320 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9321 /// iterations. The values L, M, N are assumed to be signed, and they
9322 /// should all have the same bit widths.
9323 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9324 /// where BW is the bit width of the addrec's coefficients.
9325 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9326 /// returned as such, otherwise the bit width of the returned value may
9327 /// be greater than BW.
9328 ///
9329 /// This function returns None if
9330 /// (a) the addrec coefficients are not constant, or
9331 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9332 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9333 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9334 static Optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)9335 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9336   APInt A, B, C, M;
9337   unsigned BitWidth;
9338   auto T = GetQuadraticEquation(AddRec);
9339   if (!T.hasValue())
9340     return None;
9341 
9342   std::tie(A, B, C, M, BitWidth) = *T;
9343   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9344   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9345   if (!X.hasValue())
9346     return None;
9347 
9348   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9349   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9350   if (!V->isZero())
9351     return None;
9352 
9353   return TruncIfPossible(X, BitWidth);
9354 }
9355 
9356 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9357 /// iterations. The values M, N are assumed to be signed, and they
9358 /// should all have the same bit widths.
9359 /// Find the least n such that c(n) does not belong to the given range,
9360 /// while c(n-1) does.
9361 ///
9362 /// This function returns None if
9363 /// (a) the addrec coefficients are not constant, or
9364 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9365 ///     bounds of the range.
9366 static Optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr * AddRec,const ConstantRange & Range,ScalarEvolution & SE)9367 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9368                           const ConstantRange &Range, ScalarEvolution &SE) {
9369   assert(AddRec->getOperand(0)->isZero() &&
9370          "Starting value of addrec should be 0");
9371   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9372                     << Range << ", addrec " << *AddRec << '\n');
9373   // This case is handled in getNumIterationsInRange. Here we can assume that
9374   // we start in the range.
9375   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9376          "Addrec's initial value should be in range");
9377 
9378   APInt A, B, C, M;
9379   unsigned BitWidth;
9380   auto T = GetQuadraticEquation(AddRec);
9381   if (!T.hasValue())
9382     return None;
9383 
9384   // Be careful about the return value: there can be two reasons for not
9385   // returning an actual number. First, if no solutions to the equations
9386   // were found, and second, if the solutions don't leave the given range.
9387   // The first case means that the actual solution is "unknown", the second
9388   // means that it's known, but not valid. If the solution is unknown, we
9389   // cannot make any conclusions.
9390   // Return a pair: the optional solution and a flag indicating if the
9391   // solution was found.
9392   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9393     // Solve for signed overflow and unsigned overflow, pick the lower
9394     // solution.
9395     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9396                       << Bound << " (before multiplying by " << M << ")\n");
9397     Bound *= M; // The quadratic equation multiplier.
9398 
9399     Optional<APInt> SO = None;
9400     if (BitWidth > 1) {
9401       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9402                            "signed overflow\n");
9403       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9404     }
9405     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9406                          "unsigned overflow\n");
9407     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9408                                                               BitWidth+1);
9409 
9410     auto LeavesRange = [&] (const APInt &X) {
9411       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9412       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9413       if (Range.contains(V0->getValue()))
9414         return false;
9415       // X should be at least 1, so X-1 is non-negative.
9416       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9417       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9418       if (Range.contains(V1->getValue()))
9419         return true;
9420       return false;
9421     };
9422 
9423     // If SolveQuadraticEquationWrap returns None, it means that there can
9424     // be a solution, but the function failed to find it. We cannot treat it
9425     // as "no solution".
9426     if (!SO.hasValue() || !UO.hasValue())
9427       return { None, false };
9428 
9429     // Check the smaller value first to see if it leaves the range.
9430     // At this point, both SO and UO must have values.
9431     Optional<APInt> Min = MinOptional(SO, UO);
9432     if (LeavesRange(*Min))
9433       return { Min, true };
9434     Optional<APInt> Max = Min == SO ? UO : SO;
9435     if (LeavesRange(*Max))
9436       return { Max, true };
9437 
9438     // Solutions were found, but were eliminated, hence the "true".
9439     return { None, true };
9440   };
9441 
9442   std::tie(A, B, C, M, BitWidth) = *T;
9443   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9444   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9445   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9446   auto SL = SolveForBoundary(Lower);
9447   auto SU = SolveForBoundary(Upper);
9448   // If any of the solutions was unknown, no meaninigful conclusions can
9449   // be made.
9450   if (!SL.second || !SU.second)
9451     return None;
9452 
9453   // Claim: The correct solution is not some value between Min and Max.
9454   //
9455   // Justification: Assuming that Min and Max are different values, one of
9456   // them is when the first signed overflow happens, the other is when the
9457   // first unsigned overflow happens. Crossing the range boundary is only
9458   // possible via an overflow (treating 0 as a special case of it, modeling
9459   // an overflow as crossing k*2^W for some k).
9460   //
9461   // The interesting case here is when Min was eliminated as an invalid
9462   // solution, but Max was not. The argument is that if there was another
9463   // overflow between Min and Max, it would also have been eliminated if
9464   // it was considered.
9465   //
9466   // For a given boundary, it is possible to have two overflows of the same
9467   // type (signed/unsigned) without having the other type in between: this
9468   // can happen when the vertex of the parabola is between the iterations
9469   // corresponding to the overflows. This is only possible when the two
9470   // overflows cross k*2^W for the same k. In such case, if the second one
9471   // left the range (and was the first one to do so), the first overflow
9472   // would have to enter the range, which would mean that either we had left
9473   // the range before or that we started outside of it. Both of these cases
9474   // are contradictions.
9475   //
9476   // Claim: In the case where SolveForBoundary returns None, the correct
9477   // solution is not some value between the Max for this boundary and the
9478   // Min of the other boundary.
9479   //
9480   // Justification: Assume that we had such Max_A and Min_B corresponding
9481   // to range boundaries A and B and such that Max_A < Min_B. If there was
9482   // a solution between Max_A and Min_B, it would have to be caused by an
9483   // overflow corresponding to either A or B. It cannot correspond to B,
9484   // since Min_B is the first occurrence of such an overflow. If it
9485   // corresponded to A, it would have to be either a signed or an unsigned
9486   // overflow that is larger than both eliminated overflows for A. But
9487   // between the eliminated overflows and this overflow, the values would
9488   // cover the entire value space, thus crossing the other boundary, which
9489   // is a contradiction.
9490 
9491   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9492 }
9493 
9494 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)9495 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9496                               bool AllowPredicates) {
9497 
9498   // This is only used for loops with a "x != y" exit test. The exit condition
9499   // is now expressed as a single expression, V = x-y. So the exit test is
9500   // effectively V != 0.  We know and take advantage of the fact that this
9501   // expression only being used in a comparison by zero context.
9502 
9503   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9504   // If the value is a constant
9505   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9506     // If the value is already zero, the branch will execute zero times.
9507     if (C->getValue()->isZero()) return C;
9508     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9509   }
9510 
9511   const SCEVAddRecExpr *AddRec =
9512       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9513 
9514   if (!AddRec && AllowPredicates)
9515     // Try to make this an AddRec using runtime tests, in the first X
9516     // iterations of this loop, where X is the SCEV expression found by the
9517     // algorithm below.
9518     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9519 
9520   if (!AddRec || AddRec->getLoop() != L)
9521     return getCouldNotCompute();
9522 
9523   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9524   // the quadratic equation to solve it.
9525   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9526     // We can only use this value if the chrec ends up with an exact zero
9527     // value at this index.  When solving for "X*X != 5", for example, we
9528     // should not accept a root of 2.
9529     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9530       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9531       return ExitLimit(R, R, false, Predicates);
9532     }
9533     return getCouldNotCompute();
9534   }
9535 
9536   // Otherwise we can only handle this if it is affine.
9537   if (!AddRec->isAffine())
9538     return getCouldNotCompute();
9539 
9540   // If this is an affine expression, the execution count of this branch is
9541   // the minimum unsigned root of the following equation:
9542   //
9543   //     Start + Step*N = 0 (mod 2^BW)
9544   //
9545   // equivalent to:
9546   //
9547   //             Step*N = -Start (mod 2^BW)
9548   //
9549   // where BW is the common bit width of Start and Step.
9550 
9551   // Get the initial value for the loop.
9552   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9553   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9554 
9555   // For now we handle only constant steps.
9556   //
9557   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9558   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9559   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9560   // We have not yet seen any such cases.
9561   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9562   if (!StepC || StepC->getValue()->isZero())
9563     return getCouldNotCompute();
9564 
9565   // For positive steps (counting up until unsigned overflow):
9566   //   N = -Start/Step (as unsigned)
9567   // For negative steps (counting down to zero):
9568   //   N = Start/-Step
9569   // First compute the unsigned distance from zero in the direction of Step.
9570   bool CountDown = StepC->getAPInt().isNegative();
9571   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9572 
9573   // Handle unitary steps, which cannot wraparound.
9574   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9575   //   N = Distance (as unsigned)
9576   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9577     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9578     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9579     if (MaxBECountBase.ult(MaxBECount))
9580       MaxBECount = MaxBECountBase;
9581 
9582     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9583     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9584     // case, and see if we can improve the bound.
9585     //
9586     // Explicitly handling this here is necessary because getUnsignedRange
9587     // isn't context-sensitive; it doesn't know that we only care about the
9588     // range inside the loop.
9589     const SCEV *Zero = getZero(Distance->getType());
9590     const SCEV *One = getOne(Distance->getType());
9591     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9592     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9593       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9594       // as "unsigned_max(Distance + 1) - 1".
9595       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9596       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9597     }
9598     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9599   }
9600 
9601   // If the condition controls loop exit (the loop exits only if the expression
9602   // is true) and the addition is no-wrap we can use unsigned divide to
9603   // compute the backedge count.  In this case, the step may not divide the
9604   // distance, but we don't care because if the condition is "missed" the loop
9605   // will have undefined behavior due to wrapping.
9606   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9607       loopHasNoAbnormalExits(AddRec->getLoop())) {
9608     const SCEV *Exact =
9609         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9610     const SCEV *Max = getCouldNotCompute();
9611     if (Exact != getCouldNotCompute()) {
9612       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9613       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9614       if (BaseMaxInt.ult(MaxInt))
9615         Max = getConstant(BaseMaxInt);
9616       else
9617         Max = getConstant(MaxInt);
9618     }
9619     return ExitLimit(Exact, Max, false, Predicates);
9620   }
9621 
9622   // Solve the general equation.
9623   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9624                                                getNegativeSCEV(Start), *this);
9625   const SCEV *M = E == getCouldNotCompute()
9626                       ? E
9627                       : getConstant(getUnsignedRangeMax(E));
9628   return ExitLimit(E, M, false, Predicates);
9629 }
9630 
9631 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)9632 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9633   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9634   // handle them yet except for the trivial case.  This could be expanded in the
9635   // future as needed.
9636 
9637   // If the value is a constant, check to see if it is known to be non-zero
9638   // already.  If so, the backedge will execute zero times.
9639   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9640     if (!C->getValue()->isZero())
9641       return getZero(C->getType());
9642     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9643   }
9644 
9645   // We could implement others, but I really doubt anyone writes loops like
9646   // this, and if they did, they would already be constant folded.
9647   return getCouldNotCompute();
9648 }
9649 
9650 std::pair<const BasicBlock *, const BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(const BasicBlock * BB) const9651 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9652     const {
9653   // If the block has a unique predecessor, then there is no path from the
9654   // predecessor to the block that does not go through the direct edge
9655   // from the predecessor to the block.
9656   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9657     return {Pred, BB};
9658 
9659   // A loop's header is defined to be a block that dominates the loop.
9660   // If the header has a unique predecessor outside the loop, it must be
9661   // a block that has exactly one successor that can reach the loop.
9662   if (const Loop *L = LI.getLoopFor(BB))
9663     return {L->getLoopPredecessor(), L->getHeader()};
9664 
9665   return {nullptr, nullptr};
9666 }
9667 
9668 /// SCEV structural equivalence is usually sufficient for testing whether two
9669 /// expressions are equal, however for the purposes of looking for a condition
9670 /// guarding a loop, it can be useful to be a little more general, since a
9671 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)9672 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9673   // Quick check to see if they are the same SCEV.
9674   if (A == B) return true;
9675 
9676   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9677     // Not all instructions that are "identical" compute the same value.  For
9678     // instance, two distinct alloca instructions allocating the same type are
9679     // identical and do not read memory; but compute distinct values.
9680     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9681   };
9682 
9683   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9684   // two different instructions with the same value. Check for this case.
9685   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9686     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9687       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9688         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9689           if (ComputesEqualValues(AI, BI))
9690             return true;
9691 
9692   // Otherwise assume they may have a different value.
9693   return false;
9694 }
9695 
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)9696 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9697                                            const SCEV *&LHS, const SCEV *&RHS,
9698                                            unsigned Depth) {
9699   bool Changed = false;
9700   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9701   // '0 != 0'.
9702   auto TrivialCase = [&](bool TriviallyTrue) {
9703     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9704     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9705     return true;
9706   };
9707   // If we hit the max recursion limit bail out.
9708   if (Depth >= 3)
9709     return false;
9710 
9711   // Canonicalize a constant to the right side.
9712   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9713     // Check for both operands constant.
9714     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9715       if (ConstantExpr::getICmp(Pred,
9716                                 LHSC->getValue(),
9717                                 RHSC->getValue())->isNullValue())
9718         return TrivialCase(false);
9719       else
9720         return TrivialCase(true);
9721     }
9722     // Otherwise swap the operands to put the constant on the right.
9723     std::swap(LHS, RHS);
9724     Pred = ICmpInst::getSwappedPredicate(Pred);
9725     Changed = true;
9726   }
9727 
9728   // If we're comparing an addrec with a value which is loop-invariant in the
9729   // addrec's loop, put the addrec on the left. Also make a dominance check,
9730   // as both operands could be addrecs loop-invariant in each other's loop.
9731   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9732     const Loop *L = AR->getLoop();
9733     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9734       std::swap(LHS, RHS);
9735       Pred = ICmpInst::getSwappedPredicate(Pred);
9736       Changed = true;
9737     }
9738   }
9739 
9740   // If there's a constant operand, canonicalize comparisons with boundary
9741   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9742   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9743     const APInt &RA = RC->getAPInt();
9744 
9745     bool SimplifiedByConstantRange = false;
9746 
9747     if (!ICmpInst::isEquality(Pred)) {
9748       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9749       if (ExactCR.isFullSet())
9750         return TrivialCase(true);
9751       else if (ExactCR.isEmptySet())
9752         return TrivialCase(false);
9753 
9754       APInt NewRHS;
9755       CmpInst::Predicate NewPred;
9756       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9757           ICmpInst::isEquality(NewPred)) {
9758         // We were able to convert an inequality to an equality.
9759         Pred = NewPred;
9760         RHS = getConstant(NewRHS);
9761         Changed = SimplifiedByConstantRange = true;
9762       }
9763     }
9764 
9765     if (!SimplifiedByConstantRange) {
9766       switch (Pred) {
9767       default:
9768         break;
9769       case ICmpInst::ICMP_EQ:
9770       case ICmpInst::ICMP_NE:
9771         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9772         if (!RA)
9773           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9774             if (const SCEVMulExpr *ME =
9775                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9776               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9777                   ME->getOperand(0)->isAllOnesValue()) {
9778                 RHS = AE->getOperand(1);
9779                 LHS = ME->getOperand(1);
9780                 Changed = true;
9781               }
9782         break;
9783 
9784 
9785         // The "Should have been caught earlier!" messages refer to the fact
9786         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9787         // should have fired on the corresponding cases, and canonicalized the
9788         // check to trivial case.
9789 
9790       case ICmpInst::ICMP_UGE:
9791         assert(!RA.isMinValue() && "Should have been caught earlier!");
9792         Pred = ICmpInst::ICMP_UGT;
9793         RHS = getConstant(RA - 1);
9794         Changed = true;
9795         break;
9796       case ICmpInst::ICMP_ULE:
9797         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9798         Pred = ICmpInst::ICMP_ULT;
9799         RHS = getConstant(RA + 1);
9800         Changed = true;
9801         break;
9802       case ICmpInst::ICMP_SGE:
9803         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9804         Pred = ICmpInst::ICMP_SGT;
9805         RHS = getConstant(RA - 1);
9806         Changed = true;
9807         break;
9808       case ICmpInst::ICMP_SLE:
9809         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9810         Pred = ICmpInst::ICMP_SLT;
9811         RHS = getConstant(RA + 1);
9812         Changed = true;
9813         break;
9814       }
9815     }
9816   }
9817 
9818   // Check for obvious equality.
9819   if (HasSameValue(LHS, RHS)) {
9820     if (ICmpInst::isTrueWhenEqual(Pred))
9821       return TrivialCase(true);
9822     if (ICmpInst::isFalseWhenEqual(Pred))
9823       return TrivialCase(false);
9824   }
9825 
9826   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9827   // adding or subtracting 1 from one of the operands.
9828   switch (Pred) {
9829   case ICmpInst::ICMP_SLE:
9830     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9831       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9832                        SCEV::FlagNSW);
9833       Pred = ICmpInst::ICMP_SLT;
9834       Changed = true;
9835     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9836       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9837                        SCEV::FlagNSW);
9838       Pred = ICmpInst::ICMP_SLT;
9839       Changed = true;
9840     }
9841     break;
9842   case ICmpInst::ICMP_SGE:
9843     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9844       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9845                        SCEV::FlagNSW);
9846       Pred = ICmpInst::ICMP_SGT;
9847       Changed = true;
9848     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9849       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9850                        SCEV::FlagNSW);
9851       Pred = ICmpInst::ICMP_SGT;
9852       Changed = true;
9853     }
9854     break;
9855   case ICmpInst::ICMP_ULE:
9856     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9857       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9858                        SCEV::FlagNUW);
9859       Pred = ICmpInst::ICMP_ULT;
9860       Changed = true;
9861     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9862       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9863       Pred = ICmpInst::ICMP_ULT;
9864       Changed = true;
9865     }
9866     break;
9867   case ICmpInst::ICMP_UGE:
9868     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9869       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9870       Pred = ICmpInst::ICMP_UGT;
9871       Changed = true;
9872     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9873       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9874                        SCEV::FlagNUW);
9875       Pred = ICmpInst::ICMP_UGT;
9876       Changed = true;
9877     }
9878     break;
9879   default:
9880     break;
9881   }
9882 
9883   // TODO: More simplifications are possible here.
9884 
9885   // Recursively simplify until we either hit a recursion limit or nothing
9886   // changes.
9887   if (Changed)
9888     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9889 
9890   return Changed;
9891 }
9892 
isKnownNegative(const SCEV * S)9893 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9894   return getSignedRangeMax(S).isNegative();
9895 }
9896 
isKnownPositive(const SCEV * S)9897 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9898   return getSignedRangeMin(S).isStrictlyPositive();
9899 }
9900 
isKnownNonNegative(const SCEV * S)9901 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9902   return !getSignedRangeMin(S).isNegative();
9903 }
9904 
isKnownNonPositive(const SCEV * S)9905 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9906   return !getSignedRangeMax(S).isStrictlyPositive();
9907 }
9908 
isKnownNonZero(const SCEV * S)9909 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9910   return getUnsignedRangeMin(S) != 0;
9911 }
9912 
9913 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)9914 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9915   // Compute SCEV on entry of loop L.
9916   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9917   if (Start == getCouldNotCompute())
9918     return { Start, Start };
9919   // Compute post increment SCEV for loop L.
9920   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9921   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9922   return { Start, PostInc };
9923 }
9924 
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9925 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9926                                           const SCEV *LHS, const SCEV *RHS) {
9927   // First collect all loops.
9928   SmallPtrSet<const Loop *, 8> LoopsUsed;
9929   getUsedLoops(LHS, LoopsUsed);
9930   getUsedLoops(RHS, LoopsUsed);
9931 
9932   if (LoopsUsed.empty())
9933     return false;
9934 
9935   // Domination relationship must be a linear order on collected loops.
9936 #ifndef NDEBUG
9937   for (auto *L1 : LoopsUsed)
9938     for (auto *L2 : LoopsUsed)
9939       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9940               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9941              "Domination relationship is not a linear order");
9942 #endif
9943 
9944   const Loop *MDL =
9945       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9946                         [&](const Loop *L1, const Loop *L2) {
9947          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9948        });
9949 
9950   // Get init and post increment value for LHS.
9951   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9952   // if LHS contains unknown non-invariant SCEV then bail out.
9953   if (SplitLHS.first == getCouldNotCompute())
9954     return false;
9955   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9956   // Get init and post increment value for RHS.
9957   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9958   // if RHS contains unknown non-invariant SCEV then bail out.
9959   if (SplitRHS.first == getCouldNotCompute())
9960     return false;
9961   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9962   // It is possible that init SCEV contains an invariant load but it does
9963   // not dominate MDL and is not available at MDL loop entry, so we should
9964   // check it here.
9965   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9966       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9967     return false;
9968 
9969   // It seems backedge guard check is faster than entry one so in some cases
9970   // it can speed up whole estimation by short circuit
9971   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9972                                      SplitRHS.second) &&
9973          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9974 }
9975 
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9976 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9977                                        const SCEV *LHS, const SCEV *RHS) {
9978   // Canonicalize the inputs first.
9979   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9980 
9981   if (isKnownViaInduction(Pred, LHS, RHS))
9982     return true;
9983 
9984   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9985     return true;
9986 
9987   // Otherwise see what can be done with some simple reasoning.
9988   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9989 }
9990 
evaluatePredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9991 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9992                                                   const SCEV *LHS,
9993                                                   const SCEV *RHS) {
9994   if (isKnownPredicate(Pred, LHS, RHS))
9995     return true;
9996   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9997     return false;
9998   return None;
9999 }
10000 
isKnownPredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * CtxI)10001 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10002                                          const SCEV *LHS, const SCEV *RHS,
10003                                          const Instruction *CtxI) {
10004   // TODO: Analyze guards and assumes from Context's block.
10005   return isKnownPredicate(Pred, LHS, RHS) ||
10006          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10007 }
10008 
evaluatePredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * CtxI)10009 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10010                                                     const SCEV *LHS,
10011                                                     const SCEV *RHS,
10012                                                     const Instruction *CtxI) {
10013   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10014   if (KnownWithoutContext)
10015     return KnownWithoutContext;
10016 
10017   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10018     return true;
10019   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10020                                           ICmpInst::getInversePredicate(Pred),
10021                                           LHS, RHS))
10022     return false;
10023   return None;
10024 }
10025 
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)10026 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10027                                               const SCEVAddRecExpr *LHS,
10028                                               const SCEV *RHS) {
10029   const Loop *L = LHS->getLoop();
10030   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10031          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10032 }
10033 
10034 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateType(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)10035 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10036                                            ICmpInst::Predicate Pred) {
10037   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10038 
10039 #ifndef NDEBUG
10040   // Verify an invariant: inverting the predicate should turn a monotonically
10041   // increasing change to a monotonically decreasing one, and vice versa.
10042   if (Result) {
10043     auto ResultSwapped =
10044         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10045 
10046     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
10047     assert(ResultSwapped.getValue() != Result.getValue() &&
10048            "monotonicity should flip as we flip the predicate");
10049   }
10050 #endif
10051 
10052   return Result;
10053 }
10054 
10055 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateTypeImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)10056 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10057                                                ICmpInst::Predicate Pred) {
10058   // A zero step value for LHS means the induction variable is essentially a
10059   // loop invariant value. We don't really depend on the predicate actually
10060   // flipping from false to true (for increasing predicates, and the other way
10061   // around for decreasing predicates), all we care about is that *if* the
10062   // predicate changes then it only changes from false to true.
10063   //
10064   // A zero step value in itself is not very useful, but there may be places
10065   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10066   // as general as possible.
10067 
10068   // Only handle LE/LT/GE/GT predicates.
10069   if (!ICmpInst::isRelational(Pred))
10070     return None;
10071 
10072   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10073   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10074          "Should be greater or less!");
10075 
10076   // Check that AR does not wrap.
10077   if (ICmpInst::isUnsigned(Pred)) {
10078     if (!LHS->hasNoUnsignedWrap())
10079       return None;
10080     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10081   } else {
10082     assert(ICmpInst::isSigned(Pred) &&
10083            "Relational predicate is either signed or unsigned!");
10084     if (!LHS->hasNoSignedWrap())
10085       return None;
10086 
10087     const SCEV *Step = LHS->getStepRecurrence(*this);
10088 
10089     if (isKnownNonNegative(Step))
10090       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10091 
10092     if (isKnownNonPositive(Step))
10093       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10094 
10095     return None;
10096   }
10097 }
10098 
10099 Optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L)10100 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10101                                            const SCEV *LHS, const SCEV *RHS,
10102                                            const Loop *L) {
10103 
10104   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10105   if (!isLoopInvariant(RHS, L)) {
10106     if (!isLoopInvariant(LHS, L))
10107       return None;
10108 
10109     std::swap(LHS, RHS);
10110     Pred = ICmpInst::getSwappedPredicate(Pred);
10111   }
10112 
10113   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10114   if (!ArLHS || ArLHS->getLoop() != L)
10115     return None;
10116 
10117   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10118   if (!MonotonicType)
10119     return None;
10120   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10121   // true as the loop iterates, and the backedge is control dependent on
10122   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10123   //
10124   //   * if the predicate was false in the first iteration then the predicate
10125   //     is never evaluated again, since the loop exits without taking the
10126   //     backedge.
10127   //   * if the predicate was true in the first iteration then it will
10128   //     continue to be true for all future iterations since it is
10129   //     monotonically increasing.
10130   //
10131   // For both the above possibilities, we can replace the loop varying
10132   // predicate with its value on the first iteration of the loop (which is
10133   // loop invariant).
10134   //
10135   // A similar reasoning applies for a monotonically decreasing predicate, by
10136   // replacing true with false and false with true in the above two bullets.
10137   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10138   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10139 
10140   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10141     return None;
10142 
10143   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10144 }
10145 
10146 Optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,const Instruction * CtxI,const SCEV * MaxIter)10147 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10148     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10149     const Instruction *CtxI, const SCEV *MaxIter) {
10150   // Try to prove the following set of facts:
10151   // - The predicate is monotonic in the iteration space.
10152   // - If the check does not fail on the 1st iteration:
10153   //   - No overflow will happen during first MaxIter iterations;
10154   //   - It will not fail on the MaxIter'th iteration.
10155   // If the check does fail on the 1st iteration, we leave the loop and no
10156   // other checks matter.
10157 
10158   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10159   if (!isLoopInvariant(RHS, L)) {
10160     if (!isLoopInvariant(LHS, L))
10161       return None;
10162 
10163     std::swap(LHS, RHS);
10164     Pred = ICmpInst::getSwappedPredicate(Pred);
10165   }
10166 
10167   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10168   if (!AR || AR->getLoop() != L)
10169     return None;
10170 
10171   // The predicate must be relational (i.e. <, <=, >=, >).
10172   if (!ICmpInst::isRelational(Pred))
10173     return None;
10174 
10175   // TODO: Support steps other than +/- 1.
10176   const SCEV *Step = AR->getStepRecurrence(*this);
10177   auto *One = getOne(Step->getType());
10178   auto *MinusOne = getNegativeSCEV(One);
10179   if (Step != One && Step != MinusOne)
10180     return None;
10181 
10182   // Type mismatch here means that MaxIter is potentially larger than max
10183   // unsigned value in start type, which mean we cannot prove no wrap for the
10184   // indvar.
10185   if (AR->getType() != MaxIter->getType())
10186     return None;
10187 
10188   // Value of IV on suggested last iteration.
10189   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10190   // Does it still meet the requirement?
10191   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10192     return None;
10193   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10194   // not exceed max unsigned value of this type), this effectively proves
10195   // that there is no wrap during the iteration. To prove that there is no
10196   // signed/unsigned wrap, we need to check that
10197   // Start <= Last for step = 1 or Start >= Last for step = -1.
10198   ICmpInst::Predicate NoOverflowPred =
10199       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10200   if (Step == MinusOne)
10201     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10202   const SCEV *Start = AR->getStart();
10203   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10204     return None;
10205 
10206   // Everything is fine.
10207   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10208 }
10209 
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10210 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10211     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10212   if (HasSameValue(LHS, RHS))
10213     return ICmpInst::isTrueWhenEqual(Pred);
10214 
10215   // This code is split out from isKnownPredicate because it is called from
10216   // within isLoopEntryGuardedByCond.
10217 
10218   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10219                          const ConstantRange &RangeRHS) {
10220     return RangeLHS.icmp(Pred, RangeRHS);
10221   };
10222 
10223   // The check at the top of the function catches the case where the values are
10224   // known to be equal.
10225   if (Pred == CmpInst::ICMP_EQ)
10226     return false;
10227 
10228   if (Pred == CmpInst::ICMP_NE) {
10229     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10230         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10231       return true;
10232     auto *Diff = getMinusSCEV(LHS, RHS);
10233     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10234   }
10235 
10236   if (CmpInst::isSigned(Pred))
10237     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10238 
10239   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10240 }
10241 
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10242 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10243                                                     const SCEV *LHS,
10244                                                     const SCEV *RHS) {
10245   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10246   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10247   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10248   // OutC1 and OutC2.
10249   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10250                                       APInt &OutC1, APInt &OutC2,
10251                                       SCEV::NoWrapFlags ExpectedFlags) {
10252     const SCEV *XNonConstOp, *XConstOp;
10253     const SCEV *YNonConstOp, *YConstOp;
10254     SCEV::NoWrapFlags XFlagsPresent;
10255     SCEV::NoWrapFlags YFlagsPresent;
10256 
10257     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10258       XConstOp = getZero(X->getType());
10259       XNonConstOp = X;
10260       XFlagsPresent = ExpectedFlags;
10261     }
10262     if (!isa<SCEVConstant>(XConstOp) ||
10263         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10264       return false;
10265 
10266     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10267       YConstOp = getZero(Y->getType());
10268       YNonConstOp = Y;
10269       YFlagsPresent = ExpectedFlags;
10270     }
10271 
10272     if (!isa<SCEVConstant>(YConstOp) ||
10273         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10274       return false;
10275 
10276     if (YNonConstOp != XNonConstOp)
10277       return false;
10278 
10279     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10280     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10281 
10282     return true;
10283   };
10284 
10285   APInt C1;
10286   APInt C2;
10287 
10288   switch (Pred) {
10289   default:
10290     break;
10291 
10292   case ICmpInst::ICMP_SGE:
10293     std::swap(LHS, RHS);
10294     LLVM_FALLTHROUGH;
10295   case ICmpInst::ICMP_SLE:
10296     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10297     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10298       return true;
10299 
10300     break;
10301 
10302   case ICmpInst::ICMP_SGT:
10303     std::swap(LHS, RHS);
10304     LLVM_FALLTHROUGH;
10305   case ICmpInst::ICMP_SLT:
10306     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10307     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10308       return true;
10309 
10310     break;
10311 
10312   case ICmpInst::ICMP_UGE:
10313     std::swap(LHS, RHS);
10314     LLVM_FALLTHROUGH;
10315   case ICmpInst::ICMP_ULE:
10316     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10317     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10318       return true;
10319 
10320     break;
10321 
10322   case ICmpInst::ICMP_UGT:
10323     std::swap(LHS, RHS);
10324     LLVM_FALLTHROUGH;
10325   case ICmpInst::ICMP_ULT:
10326     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10327     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10328       return true;
10329     break;
10330   }
10331 
10332   return false;
10333 }
10334 
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10335 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10336                                                    const SCEV *LHS,
10337                                                    const SCEV *RHS) {
10338   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10339     return false;
10340 
10341   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10342   // the stack can result in exponential time complexity.
10343   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10344 
10345   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10346   //
10347   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10348   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10349   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10350   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10351   // use isKnownPredicate later if needed.
10352   return isKnownNonNegative(RHS) &&
10353          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10354          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10355 }
10356 
isImpliedViaGuard(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10357 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10358                                         ICmpInst::Predicate Pred,
10359                                         const SCEV *LHS, const SCEV *RHS) {
10360   // No need to even try if we know the module has no guards.
10361   if (!HasGuards)
10362     return false;
10363 
10364   return any_of(*BB, [&](const Instruction &I) {
10365     using namespace llvm::PatternMatch;
10366 
10367     Value *Condition;
10368     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10369                          m_Value(Condition))) &&
10370            isImpliedCond(Pred, LHS, RHS, Condition, false);
10371   });
10372 }
10373 
10374 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10375 /// protected by a conditional between LHS and RHS.  This is used to
10376 /// to eliminate casts.
10377 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10378 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10379                                              ICmpInst::Predicate Pred,
10380                                              const SCEV *LHS, const SCEV *RHS) {
10381   // Interpret a null as meaning no loop, where there is obviously no guard
10382   // (interprocedural conditions notwithstanding).
10383   if (!L) return true;
10384 
10385   if (VerifyIR)
10386     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10387            "This cannot be done on broken IR!");
10388 
10389 
10390   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10391     return true;
10392 
10393   BasicBlock *Latch = L->getLoopLatch();
10394   if (!Latch)
10395     return false;
10396 
10397   BranchInst *LoopContinuePredicate =
10398     dyn_cast<BranchInst>(Latch->getTerminator());
10399   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10400       isImpliedCond(Pred, LHS, RHS,
10401                     LoopContinuePredicate->getCondition(),
10402                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10403     return true;
10404 
10405   // We don't want more than one activation of the following loops on the stack
10406   // -- that can lead to O(n!) time complexity.
10407   if (WalkingBEDominatingConds)
10408     return false;
10409 
10410   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10411 
10412   // See if we can exploit a trip count to prove the predicate.
10413   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10414   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10415   if (LatchBECount != getCouldNotCompute()) {
10416     // We know that Latch branches back to the loop header exactly
10417     // LatchBECount times.  This means the backdege condition at Latch is
10418     // equivalent to  "{0,+,1} u< LatchBECount".
10419     Type *Ty = LatchBECount->getType();
10420     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10421     const SCEV *LoopCounter =
10422       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10423     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10424                       LatchBECount))
10425       return true;
10426   }
10427 
10428   // Check conditions due to any @llvm.assume intrinsics.
10429   for (auto &AssumeVH : AC.assumptions()) {
10430     if (!AssumeVH)
10431       continue;
10432     auto *CI = cast<CallInst>(AssumeVH);
10433     if (!DT.dominates(CI, Latch->getTerminator()))
10434       continue;
10435 
10436     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10437       return true;
10438   }
10439 
10440   // If the loop is not reachable from the entry block, we risk running into an
10441   // infinite loop as we walk up into the dom tree.  These loops do not matter
10442   // anyway, so we just return a conservative answer when we see them.
10443   if (!DT.isReachableFromEntry(L->getHeader()))
10444     return false;
10445 
10446   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10447     return true;
10448 
10449   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10450        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10451     assert(DTN && "should reach the loop header before reaching the root!");
10452 
10453     BasicBlock *BB = DTN->getBlock();
10454     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10455       return true;
10456 
10457     BasicBlock *PBB = BB->getSinglePredecessor();
10458     if (!PBB)
10459       continue;
10460 
10461     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10462     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10463       continue;
10464 
10465     Value *Condition = ContinuePredicate->getCondition();
10466 
10467     // If we have an edge `E` within the loop body that dominates the only
10468     // latch, the condition guarding `E` also guards the backedge.  This
10469     // reasoning works only for loops with a single latch.
10470 
10471     BasicBlockEdge DominatingEdge(PBB, BB);
10472     if (DominatingEdge.isSingleEdge()) {
10473       // We're constructively (and conservatively) enumerating edges within the
10474       // loop body that dominate the latch.  The dominator tree better agree
10475       // with us on this:
10476       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10477 
10478       if (isImpliedCond(Pred, LHS, RHS, Condition,
10479                         BB != ContinuePredicate->getSuccessor(0)))
10480         return true;
10481     }
10482   }
10483 
10484   return false;
10485 }
10486 
isBasicBlockEntryGuardedByCond(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10487 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10488                                                      ICmpInst::Predicate Pred,
10489                                                      const SCEV *LHS,
10490                                                      const SCEV *RHS) {
10491   if (VerifyIR)
10492     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10493            "This cannot be done on broken IR!");
10494 
10495   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10496   // the facts (a >= b && a != b) separately. A typical situation is when the
10497   // non-strict comparison is known from ranges and non-equality is known from
10498   // dominating predicates. If we are proving strict comparison, we always try
10499   // to prove non-equality and non-strict comparison separately.
10500   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10501   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10502   bool ProvedNonStrictComparison = false;
10503   bool ProvedNonEquality = false;
10504 
10505   auto SplitAndProve =
10506     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10507     if (!ProvedNonStrictComparison)
10508       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10509     if (!ProvedNonEquality)
10510       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10511     if (ProvedNonStrictComparison && ProvedNonEquality)
10512       return true;
10513     return false;
10514   };
10515 
10516   if (ProvingStrictComparison) {
10517     auto ProofFn = [&](ICmpInst::Predicate P) {
10518       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10519     };
10520     if (SplitAndProve(ProofFn))
10521       return true;
10522   }
10523 
10524   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10525   auto ProveViaGuard = [&](const BasicBlock *Block) {
10526     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10527       return true;
10528     if (ProvingStrictComparison) {
10529       auto ProofFn = [&](ICmpInst::Predicate P) {
10530         return isImpliedViaGuard(Block, P, LHS, RHS);
10531       };
10532       if (SplitAndProve(ProofFn))
10533         return true;
10534     }
10535     return false;
10536   };
10537 
10538   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10539   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10540     const Instruction *CtxI = &BB->front();
10541     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10542       return true;
10543     if (ProvingStrictComparison) {
10544       auto ProofFn = [&](ICmpInst::Predicate P) {
10545         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10546       };
10547       if (SplitAndProve(ProofFn))
10548         return true;
10549     }
10550     return false;
10551   };
10552 
10553   // Starting at the block's predecessor, climb up the predecessor chain, as long
10554   // as there are predecessors that can be found that have unique successors
10555   // leading to the original block.
10556   const Loop *ContainingLoop = LI.getLoopFor(BB);
10557   const BasicBlock *PredBB;
10558   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10559     PredBB = ContainingLoop->getLoopPredecessor();
10560   else
10561     PredBB = BB->getSinglePredecessor();
10562   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10563        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10564     if (ProveViaGuard(Pair.first))
10565       return true;
10566 
10567     const BranchInst *LoopEntryPredicate =
10568         dyn_cast<BranchInst>(Pair.first->getTerminator());
10569     if (!LoopEntryPredicate ||
10570         LoopEntryPredicate->isUnconditional())
10571       continue;
10572 
10573     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10574                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10575       return true;
10576   }
10577 
10578   // Check conditions due to any @llvm.assume intrinsics.
10579   for (auto &AssumeVH : AC.assumptions()) {
10580     if (!AssumeVH)
10581       continue;
10582     auto *CI = cast<CallInst>(AssumeVH);
10583     if (!DT.dominates(CI, BB))
10584       continue;
10585 
10586     if (ProveViaCond(CI->getArgOperand(0), false))
10587       return true;
10588   }
10589 
10590   return false;
10591 }
10592 
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10593 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10594                                                ICmpInst::Predicate Pred,
10595                                                const SCEV *LHS,
10596                                                const SCEV *RHS) {
10597   // Interpret a null as meaning no loop, where there is obviously no guard
10598   // (interprocedural conditions notwithstanding).
10599   if (!L)
10600     return false;
10601 
10602   // Both LHS and RHS must be available at loop entry.
10603   assert(isAvailableAtLoopEntry(LHS, L) &&
10604          "LHS is not available at Loop Entry");
10605   assert(isAvailableAtLoopEntry(RHS, L) &&
10606          "RHS is not available at Loop Entry");
10607 
10608   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10609     return true;
10610 
10611   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10612 }
10613 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Value * FoundCondValue,bool Inverse,const Instruction * CtxI)10614 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10615                                     const SCEV *RHS,
10616                                     const Value *FoundCondValue, bool Inverse,
10617                                     const Instruction *CtxI) {
10618   // False conditions implies anything. Do not bother analyzing it further.
10619   if (FoundCondValue ==
10620       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10621     return true;
10622 
10623   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10624     return false;
10625 
10626   auto ClearOnExit =
10627       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10628 
10629   // Recursively handle And and Or conditions.
10630   const Value *Op0, *Op1;
10631   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10632     if (!Inverse)
10633       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10634              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10635   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10636     if (Inverse)
10637       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10638              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10639   }
10640 
10641   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10642   if (!ICI) return false;
10643 
10644   // Now that we found a conditional branch that dominates the loop or controls
10645   // the loop latch. Check to see if it is the comparison we are looking for.
10646   ICmpInst::Predicate FoundPred;
10647   if (Inverse)
10648     FoundPred = ICI->getInversePredicate();
10649   else
10650     FoundPred = ICI->getPredicate();
10651 
10652   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10653   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10654 
10655   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10656 }
10657 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)10658 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10659                                     const SCEV *RHS,
10660                                     ICmpInst::Predicate FoundPred,
10661                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10662                                     const Instruction *CtxI) {
10663   // Balance the types.
10664   if (getTypeSizeInBits(LHS->getType()) <
10665       getTypeSizeInBits(FoundLHS->getType())) {
10666     // For unsigned and equality predicates, try to prove that both found
10667     // operands fit into narrow unsigned range. If so, try to prove facts in
10668     // narrow types.
10669     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10670       auto *NarrowType = LHS->getType();
10671       auto *WideType = FoundLHS->getType();
10672       auto BitWidth = getTypeSizeInBits(NarrowType);
10673       const SCEV *MaxValue = getZeroExtendExpr(
10674           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10675       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10676           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10677         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10678         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10679         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10680                                        TruncFoundRHS, CtxI))
10681           return true;
10682       }
10683     }
10684 
10685     if (LHS->getType()->isPointerTy())
10686       return false;
10687     if (CmpInst::isSigned(Pred)) {
10688       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10689       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10690     } else {
10691       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10692       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10693     }
10694   } else if (getTypeSizeInBits(LHS->getType()) >
10695       getTypeSizeInBits(FoundLHS->getType())) {
10696     if (FoundLHS->getType()->isPointerTy())
10697       return false;
10698     if (CmpInst::isSigned(FoundPred)) {
10699       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10700       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10701     } else {
10702       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10703       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10704     }
10705   }
10706   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10707                                     FoundRHS, CtxI);
10708 }
10709 
isImpliedCondBalancedTypes(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)10710 bool ScalarEvolution::isImpliedCondBalancedTypes(
10711     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10712     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10713     const Instruction *CtxI) {
10714   assert(getTypeSizeInBits(LHS->getType()) ==
10715              getTypeSizeInBits(FoundLHS->getType()) &&
10716          "Types should be balanced!");
10717   // Canonicalize the query to match the way instcombine will have
10718   // canonicalized the comparison.
10719   if (SimplifyICmpOperands(Pred, LHS, RHS))
10720     if (LHS == RHS)
10721       return CmpInst::isTrueWhenEqual(Pred);
10722   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10723     if (FoundLHS == FoundRHS)
10724       return CmpInst::isFalseWhenEqual(FoundPred);
10725 
10726   // Check to see if we can make the LHS or RHS match.
10727   if (LHS == FoundRHS || RHS == FoundLHS) {
10728     if (isa<SCEVConstant>(RHS)) {
10729       std::swap(FoundLHS, FoundRHS);
10730       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10731     } else {
10732       std::swap(LHS, RHS);
10733       Pred = ICmpInst::getSwappedPredicate(Pred);
10734     }
10735   }
10736 
10737   // Check whether the found predicate is the same as the desired predicate.
10738   if (FoundPred == Pred)
10739     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10740 
10741   // Check whether swapping the found predicate makes it the same as the
10742   // desired predicate.
10743   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10744     // We can write the implication
10745     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10746     // using one of the following ways:
10747     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10748     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10749     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10750     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10751     // Forms 1. and 2. require swapping the operands of one condition. Don't
10752     // do this if it would break canonical constant/addrec ordering.
10753     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10754       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10755                                    CtxI);
10756     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10757       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
10758 
10759     // There's no clear preference between forms 3. and 4., try both.  Avoid
10760     // forming getNotSCEV of pointer values as the resulting subtract is
10761     // not legal.
10762     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
10763         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10764                               FoundLHS, FoundRHS, CtxI))
10765       return true;
10766 
10767     if (!FoundLHS->getType()->isPointerTy() &&
10768         !FoundRHS->getType()->isPointerTy() &&
10769         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10770                               getNotSCEV(FoundRHS), CtxI))
10771       return true;
10772 
10773     return false;
10774   }
10775 
10776   // Unsigned comparison is the same as signed comparison when both the operands
10777   // are non-negative or negative.
10778   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
10779                                    CmpInst::Predicate P2) {
10780     assert(P1 != P2 && "Handled earlier!");
10781     return CmpInst::isRelational(P2) &&
10782            P1 == CmpInst::getFlippedSignednessPredicate(P2);
10783   };
10784   if (IsSignFlippedPredicate(Pred, FoundPred) &&
10785       ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
10786        (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))))
10787     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10788 
10789   // Check if we can make progress by sharpening ranges.
10790   if (FoundPred == ICmpInst::ICMP_NE &&
10791       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10792 
10793     const SCEVConstant *C = nullptr;
10794     const SCEV *V = nullptr;
10795 
10796     if (isa<SCEVConstant>(FoundLHS)) {
10797       C = cast<SCEVConstant>(FoundLHS);
10798       V = FoundRHS;
10799     } else {
10800       C = cast<SCEVConstant>(FoundRHS);
10801       V = FoundLHS;
10802     }
10803 
10804     // The guarding predicate tells us that C != V. If the known range
10805     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10806     // range we consider has to correspond to same signedness as the
10807     // predicate we're interested in folding.
10808 
10809     APInt Min = ICmpInst::isSigned(Pred) ?
10810         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10811 
10812     if (Min == C->getAPInt()) {
10813       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10814       // This is true even if (Min + 1) wraps around -- in case of
10815       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10816 
10817       APInt SharperMin = Min + 1;
10818 
10819       switch (Pred) {
10820         case ICmpInst::ICMP_SGE:
10821         case ICmpInst::ICMP_UGE:
10822           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10823           // RHS, we're done.
10824           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10825                                     CtxI))
10826             return true;
10827           LLVM_FALLTHROUGH;
10828 
10829         case ICmpInst::ICMP_SGT:
10830         case ICmpInst::ICMP_UGT:
10831           // We know from the range information that (V `Pred` Min ||
10832           // V == Min).  We know from the guarding condition that !(V
10833           // == Min).  This gives us
10834           //
10835           //       V `Pred` Min || V == Min && !(V == Min)
10836           //   =>  V `Pred` Min
10837           //
10838           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10839 
10840           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
10841             return true;
10842           break;
10843 
10844         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10845         case ICmpInst::ICMP_SLE:
10846         case ICmpInst::ICMP_ULE:
10847           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10848                                     LHS, V, getConstant(SharperMin), CtxI))
10849             return true;
10850           LLVM_FALLTHROUGH;
10851 
10852         case ICmpInst::ICMP_SLT:
10853         case ICmpInst::ICMP_ULT:
10854           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10855                                     LHS, V, getConstant(Min), CtxI))
10856             return true;
10857           break;
10858 
10859         default:
10860           // No change
10861           break;
10862       }
10863     }
10864   }
10865 
10866   // Check whether the actual condition is beyond sufficient.
10867   if (FoundPred == ICmpInst::ICMP_EQ)
10868     if (ICmpInst::isTrueWhenEqual(Pred))
10869       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10870         return true;
10871   if (Pred == ICmpInst::ICMP_NE)
10872     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10873       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10874         return true;
10875 
10876   // Otherwise assume the worst.
10877   return false;
10878 }
10879 
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)10880 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10881                                      const SCEV *&L, const SCEV *&R,
10882                                      SCEV::NoWrapFlags &Flags) {
10883   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10884   if (!AE || AE->getNumOperands() != 2)
10885     return false;
10886 
10887   L = AE->getOperand(0);
10888   R = AE->getOperand(1);
10889   Flags = AE->getNoWrapFlags();
10890   return true;
10891 }
10892 
computeConstantDifference(const SCEV * More,const SCEV * Less)10893 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10894                                                            const SCEV *Less) {
10895   // We avoid subtracting expressions here because this function is usually
10896   // fairly deep in the call stack (i.e. is called many times).
10897 
10898   // X - X = 0.
10899   if (More == Less)
10900     return APInt(getTypeSizeInBits(More->getType()), 0);
10901 
10902   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10903     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10904     const auto *MAR = cast<SCEVAddRecExpr>(More);
10905 
10906     if (LAR->getLoop() != MAR->getLoop())
10907       return None;
10908 
10909     // We look at affine expressions only; not for correctness but to keep
10910     // getStepRecurrence cheap.
10911     if (!LAR->isAffine() || !MAR->isAffine())
10912       return None;
10913 
10914     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10915       return None;
10916 
10917     Less = LAR->getStart();
10918     More = MAR->getStart();
10919 
10920     // fall through
10921   }
10922 
10923   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10924     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10925     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10926     return M - L;
10927   }
10928 
10929   SCEV::NoWrapFlags Flags;
10930   const SCEV *LLess = nullptr, *RLess = nullptr;
10931   const SCEV *LMore = nullptr, *RMore = nullptr;
10932   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10933   // Compare (X + C1) vs X.
10934   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10935     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10936       if (RLess == More)
10937         return -(C1->getAPInt());
10938 
10939   // Compare X vs (X + C2).
10940   if (splitBinaryAdd(More, LMore, RMore, Flags))
10941     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10942       if (RMore == Less)
10943         return C2->getAPInt();
10944 
10945   // Compare (X + C1) vs (X + C2).
10946   if (C1 && C2 && RLess == RMore)
10947     return C2->getAPInt() - C1->getAPInt();
10948 
10949   return None;
10950 }
10951 
isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)10952 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10953     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10954     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
10955   // Try to recognize the following pattern:
10956   //
10957   //   FoundRHS = ...
10958   // ...
10959   // loop:
10960   //   FoundLHS = {Start,+,W}
10961   // context_bb: // Basic block from the same loop
10962   //   known(Pred, FoundLHS, FoundRHS)
10963   //
10964   // If some predicate is known in the context of a loop, it is also known on
10965   // each iteration of this loop, including the first iteration. Therefore, in
10966   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10967   // prove the original pred using this fact.
10968   if (!CtxI)
10969     return false;
10970   const BasicBlock *ContextBB = CtxI->getParent();
10971   // Make sure AR varies in the context block.
10972   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10973     const Loop *L = AR->getLoop();
10974     // Make sure that context belongs to the loop and executes on 1st iteration
10975     // (if it ever executes at all).
10976     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10977       return false;
10978     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10979       return false;
10980     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10981   }
10982 
10983   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10984     const Loop *L = AR->getLoop();
10985     // Make sure that context belongs to the loop and executes on 1st iteration
10986     // (if it ever executes at all).
10987     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10988       return false;
10989     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10990       return false;
10991     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10992   }
10993 
10994   return false;
10995 }
10996 
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10997 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10998     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10999     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11000   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11001     return false;
11002 
11003   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11004   if (!AddRecLHS)
11005     return false;
11006 
11007   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11008   if (!AddRecFoundLHS)
11009     return false;
11010 
11011   // We'd like to let SCEV reason about control dependencies, so we constrain
11012   // both the inequalities to be about add recurrences on the same loop.  This
11013   // way we can use isLoopEntryGuardedByCond later.
11014 
11015   const Loop *L = AddRecFoundLHS->getLoop();
11016   if (L != AddRecLHS->getLoop())
11017     return false;
11018 
11019   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11020   //
11021   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11022   //                                                                  ... (2)
11023   //
11024   // Informal proof for (2), assuming (1) [*]:
11025   //
11026   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11027   //
11028   // Then
11029   //
11030   //       FoundLHS s< FoundRHS s< INT_MIN - C
11031   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11032   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11033   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11034   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11035   // <=>  FoundLHS + C s< FoundRHS + C
11036   //
11037   // [*]: (1) can be proved by ruling out overflow.
11038   //
11039   // [**]: This can be proved by analyzing all the four possibilities:
11040   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11041   //    (A s>= 0, B s>= 0).
11042   //
11043   // Note:
11044   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11045   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11046   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11047   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11048   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11049   // C)".
11050 
11051   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11052   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11053   if (!LDiff || !RDiff || *LDiff != *RDiff)
11054     return false;
11055 
11056   if (LDiff->isMinValue())
11057     return true;
11058 
11059   APInt FoundRHSLimit;
11060 
11061   if (Pred == CmpInst::ICMP_ULT) {
11062     FoundRHSLimit = -(*RDiff);
11063   } else {
11064     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11065     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11066   }
11067 
11068   // Try to prove (1) or (2), as needed.
11069   return isAvailableAtLoopEntry(FoundRHS, L) &&
11070          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11071                                   getConstant(FoundRHSLimit));
11072 }
11073 
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)11074 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11075                                         const SCEV *LHS, const SCEV *RHS,
11076                                         const SCEV *FoundLHS,
11077                                         const SCEV *FoundRHS, unsigned Depth) {
11078   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11079 
11080   auto ClearOnExit = make_scope_exit([&]() {
11081     if (LPhi) {
11082       bool Erased = PendingMerges.erase(LPhi);
11083       assert(Erased && "Failed to erase LPhi!");
11084       (void)Erased;
11085     }
11086     if (RPhi) {
11087       bool Erased = PendingMerges.erase(RPhi);
11088       assert(Erased && "Failed to erase RPhi!");
11089       (void)Erased;
11090     }
11091   });
11092 
11093   // Find respective Phis and check that they are not being pending.
11094   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11095     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11096       if (!PendingMerges.insert(Phi).second)
11097         return false;
11098       LPhi = Phi;
11099     }
11100   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11101     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11102       // If we detect a loop of Phi nodes being processed by this method, for
11103       // example:
11104       //
11105       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11106       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11107       //
11108       // we don't want to deal with a case that complex, so return conservative
11109       // answer false.
11110       if (!PendingMerges.insert(Phi).second)
11111         return false;
11112       RPhi = Phi;
11113     }
11114 
11115   // If none of LHS, RHS is a Phi, nothing to do here.
11116   if (!LPhi && !RPhi)
11117     return false;
11118 
11119   // If there is a SCEVUnknown Phi we are interested in, make it left.
11120   if (!LPhi) {
11121     std::swap(LHS, RHS);
11122     std::swap(FoundLHS, FoundRHS);
11123     std::swap(LPhi, RPhi);
11124     Pred = ICmpInst::getSwappedPredicate(Pred);
11125   }
11126 
11127   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11128   const BasicBlock *LBB = LPhi->getParent();
11129   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11130 
11131   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11132     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11133            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11134            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11135   };
11136 
11137   if (RPhi && RPhi->getParent() == LBB) {
11138     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11139     // If we compare two Phis from the same block, and for each entry block
11140     // the predicate is true for incoming values from this block, then the
11141     // predicate is also true for the Phis.
11142     for (const BasicBlock *IncBB : predecessors(LBB)) {
11143       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11144       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11145       if (!ProvedEasily(L, R))
11146         return false;
11147     }
11148   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11149     // Case two: RHS is also a Phi from the same basic block, and it is an
11150     // AddRec. It means that there is a loop which has both AddRec and Unknown
11151     // PHIs, for it we can compare incoming values of AddRec from above the loop
11152     // and latch with their respective incoming values of LPhi.
11153     // TODO: Generalize to handle loops with many inputs in a header.
11154     if (LPhi->getNumIncomingValues() != 2) return false;
11155 
11156     auto *RLoop = RAR->getLoop();
11157     auto *Predecessor = RLoop->getLoopPredecessor();
11158     assert(Predecessor && "Loop with AddRec with no predecessor?");
11159     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11160     if (!ProvedEasily(L1, RAR->getStart()))
11161       return false;
11162     auto *Latch = RLoop->getLoopLatch();
11163     assert(Latch && "Loop with AddRec with no latch?");
11164     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11165     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11166       return false;
11167   } else {
11168     // In all other cases go over inputs of LHS and compare each of them to RHS,
11169     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11170     // At this point RHS is either a non-Phi, or it is a Phi from some block
11171     // different from LBB.
11172     for (const BasicBlock *IncBB : predecessors(LBB)) {
11173       // Check that RHS is available in this block.
11174       if (!dominates(RHS, IncBB))
11175         return false;
11176       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11177       // Make sure L does not refer to a value from a potentially previous
11178       // iteration of a loop.
11179       if (!properlyDominates(L, IncBB))
11180         return false;
11181       if (!ProvedEasily(L, RHS))
11182         return false;
11183     }
11184   }
11185   return true;
11186 }
11187 
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)11188 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11189                                             const SCEV *LHS, const SCEV *RHS,
11190                                             const SCEV *FoundLHS,
11191                                             const SCEV *FoundRHS,
11192                                             const Instruction *CtxI) {
11193   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11194     return true;
11195 
11196   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11197     return true;
11198 
11199   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11200                                           CtxI))
11201     return true;
11202 
11203   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11204                                      FoundLHS, FoundRHS);
11205 }
11206 
11207 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11208 template <typename MinMaxExprType>
IsMinMaxConsistingOf(const SCEV * MaybeMinMaxExpr,const SCEV * Candidate)11209 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11210                                  const SCEV *Candidate) {
11211   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11212   if (!MinMaxExpr)
11213     return false;
11214 
11215   return is_contained(MinMaxExpr->operands(), Candidate);
11216 }
11217 
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11218 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11219                                            ICmpInst::Predicate Pred,
11220                                            const SCEV *LHS, const SCEV *RHS) {
11221   // If both sides are affine addrecs for the same loop, with equal
11222   // steps, and we know the recurrences don't wrap, then we only
11223   // need to check the predicate on the starting values.
11224 
11225   if (!ICmpInst::isRelational(Pred))
11226     return false;
11227 
11228   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11229   if (!LAR)
11230     return false;
11231   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11232   if (!RAR)
11233     return false;
11234   if (LAR->getLoop() != RAR->getLoop())
11235     return false;
11236   if (!LAR->isAffine() || !RAR->isAffine())
11237     return false;
11238 
11239   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11240     return false;
11241 
11242   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11243                          SCEV::FlagNSW : SCEV::FlagNUW;
11244   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11245     return false;
11246 
11247   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11248 }
11249 
11250 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11251 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11252 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11253                                         ICmpInst::Predicate Pred,
11254                                         const SCEV *LHS, const SCEV *RHS) {
11255   switch (Pred) {
11256   default:
11257     return false;
11258 
11259   case ICmpInst::ICMP_SGE:
11260     std::swap(LHS, RHS);
11261     LLVM_FALLTHROUGH;
11262   case ICmpInst::ICMP_SLE:
11263     return
11264         // min(A, ...) <= A
11265         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11266         // A <= max(A, ...)
11267         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11268 
11269   case ICmpInst::ICMP_UGE:
11270     std::swap(LHS, RHS);
11271     LLVM_FALLTHROUGH;
11272   case ICmpInst::ICMP_ULE:
11273     return
11274         // min(A, ...) <= A
11275         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11276         // A <= max(A, ...)
11277         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11278   }
11279 
11280   llvm_unreachable("covered switch fell through?!");
11281 }
11282 
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)11283 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11284                                              const SCEV *LHS, const SCEV *RHS,
11285                                              const SCEV *FoundLHS,
11286                                              const SCEV *FoundRHS,
11287                                              unsigned Depth) {
11288   assert(getTypeSizeInBits(LHS->getType()) ==
11289              getTypeSizeInBits(RHS->getType()) &&
11290          "LHS and RHS have different sizes?");
11291   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11292              getTypeSizeInBits(FoundRHS->getType()) &&
11293          "FoundLHS and FoundRHS have different sizes?");
11294   // We want to avoid hurting the compile time with analysis of too big trees.
11295   if (Depth > MaxSCEVOperationsImplicationDepth)
11296     return false;
11297 
11298   // We only want to work with GT comparison so far.
11299   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11300     Pred = CmpInst::getSwappedPredicate(Pred);
11301     std::swap(LHS, RHS);
11302     std::swap(FoundLHS, FoundRHS);
11303   }
11304 
11305   // For unsigned, try to reduce it to corresponding signed comparison.
11306   if (Pred == ICmpInst::ICMP_UGT)
11307     // We can replace unsigned predicate with its signed counterpart if all
11308     // involved values are non-negative.
11309     // TODO: We could have better support for unsigned.
11310     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11311       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11312       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11313       // use this fact to prove that LHS and RHS are non-negative.
11314       const SCEV *MinusOne = getMinusOne(LHS->getType());
11315       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11316                                 FoundRHS) &&
11317           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11318                                 FoundRHS))
11319         Pred = ICmpInst::ICMP_SGT;
11320     }
11321 
11322   if (Pred != ICmpInst::ICMP_SGT)
11323     return false;
11324 
11325   auto GetOpFromSExt = [&](const SCEV *S) {
11326     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11327       return Ext->getOperand();
11328     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11329     // the constant in some cases.
11330     return S;
11331   };
11332 
11333   // Acquire values from extensions.
11334   auto *OrigLHS = LHS;
11335   auto *OrigFoundLHS = FoundLHS;
11336   LHS = GetOpFromSExt(LHS);
11337   FoundLHS = GetOpFromSExt(FoundLHS);
11338 
11339   // Is the SGT predicate can be proved trivially or using the found context.
11340   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11341     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11342            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11343                                   FoundRHS, Depth + 1);
11344   };
11345 
11346   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11347     // We want to avoid creation of any new non-constant SCEV. Since we are
11348     // going to compare the operands to RHS, we should be certain that we don't
11349     // need any size extensions for this. So let's decline all cases when the
11350     // sizes of types of LHS and RHS do not match.
11351     // TODO: Maybe try to get RHS from sext to catch more cases?
11352     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11353       return false;
11354 
11355     // Should not overflow.
11356     if (!LHSAddExpr->hasNoSignedWrap())
11357       return false;
11358 
11359     auto *LL = LHSAddExpr->getOperand(0);
11360     auto *LR = LHSAddExpr->getOperand(1);
11361     auto *MinusOne = getMinusOne(RHS->getType());
11362 
11363     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11364     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11365       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11366     };
11367     // Try to prove the following rule:
11368     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11369     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11370     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11371       return true;
11372   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11373     Value *LL, *LR;
11374     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11375 
11376     using namespace llvm::PatternMatch;
11377 
11378     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11379       // Rules for division.
11380       // We are going to perform some comparisons with Denominator and its
11381       // derivative expressions. In general case, creating a SCEV for it may
11382       // lead to a complex analysis of the entire graph, and in particular it
11383       // can request trip count recalculation for the same loop. This would
11384       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11385       // this, we only want to create SCEVs that are constants in this section.
11386       // So we bail if Denominator is not a constant.
11387       if (!isa<ConstantInt>(LR))
11388         return false;
11389 
11390       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11391 
11392       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11393       // then a SCEV for the numerator already exists and matches with FoundLHS.
11394       auto *Numerator = getExistingSCEV(LL);
11395       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11396         return false;
11397 
11398       // Make sure that the numerator matches with FoundLHS and the denominator
11399       // is positive.
11400       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11401         return false;
11402 
11403       auto *DTy = Denominator->getType();
11404       auto *FRHSTy = FoundRHS->getType();
11405       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11406         // One of types is a pointer and another one is not. We cannot extend
11407         // them properly to a wider type, so let us just reject this case.
11408         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11409         // to avoid this check.
11410         return false;
11411 
11412       // Given that:
11413       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11414       auto *WTy = getWiderType(DTy, FRHSTy);
11415       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11416       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11417 
11418       // Try to prove the following rule:
11419       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11420       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11421       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11422       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11423       if (isKnownNonPositive(RHS) &&
11424           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11425         return true;
11426 
11427       // Try to prove the following rule:
11428       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11429       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11430       // If we divide it by Denominator > 2, then:
11431       // 1. If FoundLHS is negative, then the result is 0.
11432       // 2. If FoundLHS is non-negative, then the result is non-negative.
11433       // Anyways, the result is non-negative.
11434       auto *MinusOne = getMinusOne(WTy);
11435       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11436       if (isKnownNegative(RHS) &&
11437           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11438         return true;
11439     }
11440   }
11441 
11442   // If our expression contained SCEVUnknown Phis, and we split it down and now
11443   // need to prove something for them, try to prove the predicate for every
11444   // possible incoming values of those Phis.
11445   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11446     return true;
11447 
11448   return false;
11449 }
11450 
isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11451 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11452                                         const SCEV *LHS, const SCEV *RHS) {
11453   // zext x u<= sext x, sext x s<= zext x
11454   switch (Pred) {
11455   case ICmpInst::ICMP_SGE:
11456     std::swap(LHS, RHS);
11457     LLVM_FALLTHROUGH;
11458   case ICmpInst::ICMP_SLE: {
11459     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11460     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11461     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11462     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11463       return true;
11464     break;
11465   }
11466   case ICmpInst::ICMP_UGE:
11467     std::swap(LHS, RHS);
11468     LLVM_FALLTHROUGH;
11469   case ICmpInst::ICMP_ULE: {
11470     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11471     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11472     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11473     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11474       return true;
11475     break;
11476   }
11477   default:
11478     break;
11479   };
11480   return false;
11481 }
11482 
11483 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11484 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11485                                            const SCEV *LHS, const SCEV *RHS) {
11486   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11487          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11488          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11489          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11490          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11491 }
11492 
11493 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)11494 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11495                                              const SCEV *LHS, const SCEV *RHS,
11496                                              const SCEV *FoundLHS,
11497                                              const SCEV *FoundRHS) {
11498   switch (Pred) {
11499   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11500   case ICmpInst::ICMP_EQ:
11501   case ICmpInst::ICMP_NE:
11502     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11503       return true;
11504     break;
11505   case ICmpInst::ICMP_SLT:
11506   case ICmpInst::ICMP_SLE:
11507     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11508         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11509       return true;
11510     break;
11511   case ICmpInst::ICMP_SGT:
11512   case ICmpInst::ICMP_SGE:
11513     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11514         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11515       return true;
11516     break;
11517   case ICmpInst::ICMP_ULT:
11518   case ICmpInst::ICMP_ULE:
11519     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11520         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11521       return true;
11522     break;
11523   case ICmpInst::ICMP_UGT:
11524   case ICmpInst::ICMP_UGE:
11525     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11526         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11527       return true;
11528     break;
11529   }
11530 
11531   // Maybe it can be proved via operations?
11532   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11533     return true;
11534 
11535   return false;
11536 }
11537 
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)11538 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11539                                                      const SCEV *LHS,
11540                                                      const SCEV *RHS,
11541                                                      const SCEV *FoundLHS,
11542                                                      const SCEV *FoundRHS) {
11543   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11544     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11545     // reduce the compile time impact of this optimization.
11546     return false;
11547 
11548   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11549   if (!Addend)
11550     return false;
11551 
11552   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11553 
11554   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11555   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11556   ConstantRange FoundLHSRange =
11557       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11558 
11559   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11560   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11561 
11562   // We can also compute the range of values for `LHS` that satisfy the
11563   // consequent, "`LHS` `Pred` `RHS`":
11564   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11565   // The antecedent implies the consequent if every value of `LHS` that
11566   // satisfies the antecedent also satisfies the consequent.
11567   return LHSRange.icmp(Pred, ConstRHS);
11568 }
11569 
canIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned)11570 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11571                                         bool IsSigned) {
11572   assert(isKnownPositive(Stride) && "Positive stride expected!");
11573 
11574   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11575   const SCEV *One = getOne(Stride->getType());
11576 
11577   if (IsSigned) {
11578     APInt MaxRHS = getSignedRangeMax(RHS);
11579     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11580     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11581 
11582     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11583     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11584   }
11585 
11586   APInt MaxRHS = getUnsignedRangeMax(RHS);
11587   APInt MaxValue = APInt::getMaxValue(BitWidth);
11588   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11589 
11590   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11591   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11592 }
11593 
canIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned)11594 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11595                                         bool IsSigned) {
11596 
11597   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11598   const SCEV *One = getOne(Stride->getType());
11599 
11600   if (IsSigned) {
11601     APInt MinRHS = getSignedRangeMin(RHS);
11602     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11603     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11604 
11605     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11606     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11607   }
11608 
11609   APInt MinRHS = getUnsignedRangeMin(RHS);
11610   APInt MinValue = APInt::getMinValue(BitWidth);
11611   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11612 
11613   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11614   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11615 }
11616 
getUDivCeilSCEV(const SCEV * N,const SCEV * D)11617 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11618   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11619   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11620   // expression fixes the case of N=0.
11621   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11622   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11623   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11624 }
11625 
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)11626 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11627                                                     const SCEV *Stride,
11628                                                     const SCEV *End,
11629                                                     unsigned BitWidth,
11630                                                     bool IsSigned) {
11631   // The logic in this function assumes we can represent a positive stride.
11632   // If we can't, the backedge-taken count must be zero.
11633   if (IsSigned && BitWidth == 1)
11634     return getZero(Stride->getType());
11635 
11636   // This code has only been closely audited for negative strides in the
11637   // unsigned comparison case, it may be correct for signed comparison, but
11638   // that needs to be established.
11639   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11640          "Stride is expected strictly positive for signed case!");
11641 
11642   // Calculate the maximum backedge count based on the range of values
11643   // permitted by Start, End, and Stride.
11644   APInt MinStart =
11645       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11646 
11647   APInt MinStride =
11648       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11649 
11650   // We assume either the stride is positive, or the backedge-taken count
11651   // is zero. So force StrideForMaxBECount to be at least one.
11652   APInt One(BitWidth, 1);
11653   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11654                                        : APIntOps::umax(One, MinStride);
11655 
11656   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11657                             : APInt::getMaxValue(BitWidth);
11658   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11659 
11660   // Although End can be a MAX expression we estimate MaxEnd considering only
11661   // the case End = RHS of the loop termination condition. This is safe because
11662   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11663   // taken count.
11664   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11665                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11666 
11667   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11668   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11669                     : APIntOps::umax(MaxEnd, MinStart);
11670 
11671   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11672                          getConstant(StrideForMaxBECount) /* Step */);
11673 }
11674 
11675 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)11676 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11677                                   const Loop *L, bool IsSigned,
11678                                   bool ControlsExit, bool AllowPredicates) {
11679   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11680 
11681   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11682   bool PredicatedIV = false;
11683 
11684   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11685     // Can we prove this loop *must* be UB if overflow of IV occurs?
11686     // Reasoning goes as follows:
11687     // * Suppose the IV did self wrap.
11688     // * If Stride evenly divides the iteration space, then once wrap
11689     //   occurs, the loop must revisit the same values.
11690     // * We know that RHS is invariant, and that none of those values
11691     //   caused this exit to be taken previously.  Thus, this exit is
11692     //   dynamically dead.
11693     // * If this is the sole exit, then a dead exit implies the loop
11694     //   must be infinite if there are no abnormal exits.
11695     // * If the loop were infinite, then it must either not be mustprogress
11696     //   or have side effects. Otherwise, it must be UB.
11697     // * It can't (by assumption), be UB so we have contradicted our
11698     //   premise and can conclude the IV did not in fact self-wrap.
11699     if (!isLoopInvariant(RHS, L))
11700       return false;
11701 
11702     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11703     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11704       return false;
11705 
11706     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11707       return false;
11708 
11709     return loopIsFiniteByAssumption(L);
11710   };
11711 
11712   if (!IV) {
11713     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11714       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11715       if (AR && AR->getLoop() == L && AR->isAffine()) {
11716         auto Flags = AR->getNoWrapFlags();
11717         if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) {
11718           Flags = setFlags(Flags, SCEV::FlagNW);
11719 
11720           SmallVector<const SCEV*> Operands{AR->operands()};
11721           Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
11722 
11723           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11724         }
11725         if (AR->hasNoUnsignedWrap()) {
11726           // Emulate what getZeroExtendExpr would have done during construction
11727           // if we'd been able to infer the fact just above at that time.
11728           const SCEV *Step = AR->getStepRecurrence(*this);
11729           Type *Ty = ZExt->getType();
11730           auto *S = getAddRecExpr(
11731             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11732             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11733           IV = dyn_cast<SCEVAddRecExpr>(S);
11734         }
11735       }
11736     }
11737   }
11738 
11739 
11740   if (!IV && AllowPredicates) {
11741     // Try to make this an AddRec using runtime tests, in the first X
11742     // iterations of this loop, where X is the SCEV expression found by the
11743     // algorithm below.
11744     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11745     PredicatedIV = true;
11746   }
11747 
11748   // Avoid weird loops
11749   if (!IV || IV->getLoop() != L || !IV->isAffine())
11750     return getCouldNotCompute();
11751 
11752   // A precondition of this method is that the condition being analyzed
11753   // reaches an exiting branch which dominates the latch.  Given that, we can
11754   // assume that an increment which violates the nowrap specification and
11755   // produces poison must cause undefined behavior when the resulting poison
11756   // value is branched upon and thus we can conclude that the backedge is
11757   // taken no more often than would be required to produce that poison value.
11758   // Note that a well defined loop can exit on the iteration which violates
11759   // the nowrap specification if there is another exit (either explicit or
11760   // implicit/exceptional) which causes the loop to execute before the
11761   // exiting instruction we're analyzing would trigger UB.
11762   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11763   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11764   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11765 
11766   const SCEV *Stride = IV->getStepRecurrence(*this);
11767 
11768   bool PositiveStride = isKnownPositive(Stride);
11769 
11770   // Avoid negative or zero stride values.
11771   if (!PositiveStride) {
11772     // We can compute the correct backedge taken count for loops with unknown
11773     // strides if we can prove that the loop is not an infinite loop with side
11774     // effects. Here's the loop structure we are trying to handle -
11775     //
11776     // i = start
11777     // do {
11778     //   A[i] = i;
11779     //   i += s;
11780     // } while (i < end);
11781     //
11782     // The backedge taken count for such loops is evaluated as -
11783     // (max(end, start + stride) - start - 1) /u stride
11784     //
11785     // The additional preconditions that we need to check to prove correctness
11786     // of the above formula is as follows -
11787     //
11788     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11789     //    NoWrap flag).
11790     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11791     //    no side effects within the loop)
11792     // c) loop has a single static exit (with no abnormal exits)
11793     //
11794     // Precondition a) implies that if the stride is negative, this is a single
11795     // trip loop. The backedge taken count formula reduces to zero in this case.
11796     //
11797     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11798     // then a zero stride means the backedge can't be taken without executing
11799     // undefined behavior.
11800     //
11801     // The positive stride case is the same as isKnownPositive(Stride) returning
11802     // true (original behavior of the function).
11803     //
11804     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
11805         !loopHasNoAbnormalExits(L))
11806       return getCouldNotCompute();
11807 
11808     // This bailout is protecting the logic in computeMaxBECountForLT which
11809     // has not yet been sufficiently auditted or tested with negative strides.
11810     // We used to filter out all known-non-positive cases here, we're in the
11811     // process of being less restrictive bit by bit.
11812     if (IsSigned && isKnownNonPositive(Stride))
11813       return getCouldNotCompute();
11814 
11815     if (!isKnownNonZero(Stride)) {
11816       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11817       // if it might eventually be greater than start and if so, on which
11818       // iteration.  We can't even produce a useful upper bound.
11819       if (!isLoopInvariant(RHS, L))
11820         return getCouldNotCompute();
11821 
11822       // We allow a potentially zero stride, but we need to divide by stride
11823       // below.  Since the loop can't be infinite and this check must control
11824       // the sole exit, we can infer the exit must be taken on the first
11825       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11826       // we know the numerator in the divides below must be zero, so we can
11827       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11828       // and produce the right result.
11829       // FIXME: Handle the case where Stride is poison?
11830       auto wouldZeroStrideBeUB = [&]() {
11831         // Proof by contradiction.  Suppose the stride were zero.  If we can
11832         // prove that the backedge *is* taken on the first iteration, then since
11833         // we know this condition controls the sole exit, we must have an
11834         // infinite loop.  We can't have a (well defined) infinite loop per
11835         // check just above.
11836         // Note: The (Start - Stride) term is used to get the start' term from
11837         // (start' + stride,+,stride). Remember that we only care about the
11838         // result of this expression when stride == 0 at runtime.
11839         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11840         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11841       };
11842       if (!wouldZeroStrideBeUB()) {
11843         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11844       }
11845     }
11846   } else if (!Stride->isOne() && !NoWrap) {
11847     auto isUBOnWrap = [&]() {
11848       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11849       // follows trivially from the fact that every (un)signed-wrapped, but
11850       // not self-wrapped value must be LT than the last value before
11851       // (un)signed wrap.  Since we know that last value didn't exit, nor
11852       // will any smaller one.
11853       return canAssumeNoSelfWrap(IV);
11854     };
11855 
11856     // Avoid proven overflow cases: this will ensure that the backedge taken
11857     // count will not generate any unsigned overflow. Relaxed no-overflow
11858     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11859     // undefined behaviors like the case of C language.
11860     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11861       return getCouldNotCompute();
11862   }
11863 
11864   // On all paths just preceeding, we established the following invariant:
11865   //   IV can be assumed not to overflow up to and including the exiting
11866   //   iteration.  We proved this in one of two ways:
11867   //   1) We can show overflow doesn't occur before the exiting iteration
11868   //      1a) canIVOverflowOnLT, and b) step of one
11869   //   2) We can show that if overflow occurs, the loop must execute UB
11870   //      before any possible exit.
11871   // Note that we have not yet proved RHS invariant (in general).
11872 
11873   const SCEV *Start = IV->getStart();
11874 
11875   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11876   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
11877   // Use integer-typed versions for actual computation; we can't subtract
11878   // pointers in general.
11879   const SCEV *OrigStart = Start;
11880   const SCEV *OrigRHS = RHS;
11881   if (Start->getType()->isPointerTy()) {
11882     Start = getLosslessPtrToIntExpr(Start);
11883     if (isa<SCEVCouldNotCompute>(Start))
11884       return Start;
11885   }
11886   if (RHS->getType()->isPointerTy()) {
11887     RHS = getLosslessPtrToIntExpr(RHS);
11888     if (isa<SCEVCouldNotCompute>(RHS))
11889       return RHS;
11890   }
11891 
11892   // When the RHS is not invariant, we do not know the end bound of the loop and
11893   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11894   // calculate the MaxBECount, given the start, stride and max value for the end
11895   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11896   // checked above).
11897   if (!isLoopInvariant(RHS, L)) {
11898     const SCEV *MaxBECount = computeMaxBECountForLT(
11899         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11900     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11901                      false /*MaxOrZero*/, Predicates);
11902   }
11903 
11904   // We use the expression (max(End,Start)-Start)/Stride to describe the
11905   // backedge count, as if the backedge is taken at least once max(End,Start)
11906   // is End and so the result is as above, and if not max(End,Start) is Start
11907   // so we get a backedge count of zero.
11908   const SCEV *BECount = nullptr;
11909   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
11910   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
11911   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
11912   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
11913   // Can we prove (max(RHS,Start) > Start - Stride?
11914   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
11915       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
11916     // In this case, we can use a refined formula for computing backedge taken
11917     // count.  The general formula remains:
11918     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11919     // We want to use the alternate formula:
11920     //   "((End - 1) - (Start - Stride)) /u Stride"
11921     // Let's do a quick case analysis to show these are equivalent under
11922     // our precondition that max(RHS,Start) > Start - Stride.
11923     // * For RHS <= Start, the backedge-taken count must be zero.
11924     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11925     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11926     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11927     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11928     //     this to the stride of 1 case.
11929     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11930     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11931     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11932     //   "((RHS - (Start - Stride) - 1) /u Stride".
11933     //   Our preconditions trivially imply no overflow in that form.
11934     const SCEV *MinusOne = getMinusOne(Stride->getType());
11935     const SCEV *Numerator =
11936         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
11937     BECount = getUDivExpr(Numerator, Stride);
11938   }
11939 
11940   const SCEV *BECountIfBackedgeTaken = nullptr;
11941   if (!BECount) {
11942     auto canProveRHSGreaterThanEqualStart = [&]() {
11943       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11944       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11945         return true;
11946 
11947       // (RHS > Start - 1) implies RHS >= Start.
11948       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11949       //   "Start - 1" doesn't overflow.
11950       // * For signed comparison, if Start - 1 does overflow, it's equal
11951       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11952       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11953       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11954       //
11955       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11956       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11957       auto *StartMinusOne = getAddExpr(OrigStart,
11958                                        getMinusOne(OrigStart->getType()));
11959       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11960     };
11961 
11962     // If we know that RHS >= Start in the context of loop, then we know that
11963     // max(RHS, Start) = RHS at this point.
11964     const SCEV *End;
11965     if (canProveRHSGreaterThanEqualStart()) {
11966       End = RHS;
11967     } else {
11968       // If RHS < Start, the backedge will be taken zero times.  So in
11969       // general, we can write the backedge-taken count as:
11970       //
11971       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11972       //
11973       // We convert it to the following to make it more convenient for SCEV:
11974       //
11975       //     ceil(max(RHS, Start) - Start) / Stride
11976       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11977 
11978       // See what would happen if we assume the backedge is taken. This is
11979       // used to compute MaxBECount.
11980       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11981     }
11982 
11983     // At this point, we know:
11984     //
11985     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11986     // 2. The index variable doesn't overflow.
11987     //
11988     // Therefore, we know N exists such that
11989     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11990     // doesn't overflow.
11991     //
11992     // Using this information, try to prove whether the addition in
11993     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11994     const SCEV *One = getOne(Stride->getType());
11995     bool MayAddOverflow = [&] {
11996       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11997         if (StrideC->getAPInt().isPowerOf2()) {
11998           // Suppose Stride is a power of two, and Start/End are unsigned
11999           // integers.  Let UMAX be the largest representable unsigned
12000           // integer.
12001           //
12002           // By the preconditions of this function, we know
12003           // "(Start + Stride * N) >= End", and this doesn't overflow.
12004           // As a formula:
12005           //
12006           //   End <= (Start + Stride * N) <= UMAX
12007           //
12008           // Subtracting Start from all the terms:
12009           //
12010           //   End - Start <= Stride * N <= UMAX - Start
12011           //
12012           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12013           //
12014           //   End - Start <= Stride * N <= UMAX
12015           //
12016           // Stride * N is a multiple of Stride. Therefore,
12017           //
12018           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12019           //
12020           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12021           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12022           //
12023           //   End - Start <= Stride * N <= UMAX - Stride - 1
12024           //
12025           // Dropping the middle term:
12026           //
12027           //   End - Start <= UMAX - Stride - 1
12028           //
12029           // Adding Stride - 1 to both sides:
12030           //
12031           //   (End - Start) + (Stride - 1) <= UMAX
12032           //
12033           // In other words, the addition doesn't have unsigned overflow.
12034           //
12035           // A similar proof works if we treat Start/End as signed values.
12036           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12037           // use signed max instead of unsigned max. Note that we're trying
12038           // to prove a lack of unsigned overflow in either case.
12039           return false;
12040         }
12041       }
12042       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12043         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12044         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12045         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12046         //
12047         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12048         return false;
12049       }
12050       return true;
12051     }();
12052 
12053     const SCEV *Delta = getMinusSCEV(End, Start);
12054     if (!MayAddOverflow) {
12055       // floor((D + (S - 1)) / S)
12056       // We prefer this formulation if it's legal because it's fewer operations.
12057       BECount =
12058           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12059     } else {
12060       BECount = getUDivCeilSCEV(Delta, Stride);
12061     }
12062   }
12063 
12064   const SCEV *MaxBECount;
12065   bool MaxOrZero = false;
12066   if (isa<SCEVConstant>(BECount)) {
12067     MaxBECount = BECount;
12068   } else if (BECountIfBackedgeTaken &&
12069              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12070     // If we know exactly how many times the backedge will be taken if it's
12071     // taken at least once, then the backedge count will either be that or
12072     // zero.
12073     MaxBECount = BECountIfBackedgeTaken;
12074     MaxOrZero = true;
12075   } else {
12076     MaxBECount = computeMaxBECountForLT(
12077         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12078   }
12079 
12080   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12081       !isa<SCEVCouldNotCompute>(BECount))
12082     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12083 
12084   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12085 }
12086 
12087 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)12088 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12089                                      const Loop *L, bool IsSigned,
12090                                      bool ControlsExit, bool AllowPredicates) {
12091   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12092   // We handle only IV > Invariant
12093   if (!isLoopInvariant(RHS, L))
12094     return getCouldNotCompute();
12095 
12096   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12097   if (!IV && AllowPredicates)
12098     // Try to make this an AddRec using runtime tests, in the first X
12099     // iterations of this loop, where X is the SCEV expression found by the
12100     // algorithm below.
12101     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12102 
12103   // Avoid weird loops
12104   if (!IV || IV->getLoop() != L || !IV->isAffine())
12105     return getCouldNotCompute();
12106 
12107   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12108   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12109   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12110 
12111   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12112 
12113   // Avoid negative or zero stride values
12114   if (!isKnownPositive(Stride))
12115     return getCouldNotCompute();
12116 
12117   // Avoid proven overflow cases: this will ensure that the backedge taken count
12118   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12119   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12120   // behaviors like the case of C language.
12121   if (!Stride->isOne() && !NoWrap)
12122     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12123       return getCouldNotCompute();
12124 
12125   const SCEV *Start = IV->getStart();
12126   const SCEV *End = RHS;
12127   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12128     // If we know that Start >= RHS in the context of loop, then we know that
12129     // min(RHS, Start) = RHS at this point.
12130     if (isLoopEntryGuardedByCond(
12131             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12132       End = RHS;
12133     else
12134       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12135   }
12136 
12137   if (Start->getType()->isPointerTy()) {
12138     Start = getLosslessPtrToIntExpr(Start);
12139     if (isa<SCEVCouldNotCompute>(Start))
12140       return Start;
12141   }
12142   if (End->getType()->isPointerTy()) {
12143     End = getLosslessPtrToIntExpr(End);
12144     if (isa<SCEVCouldNotCompute>(End))
12145       return End;
12146   }
12147 
12148   // Compute ((Start - End) + (Stride - 1)) / Stride.
12149   // FIXME: This can overflow. Holding off on fixing this for now;
12150   // howManyGreaterThans will hopefully be gone soon.
12151   const SCEV *One = getOne(Stride->getType());
12152   const SCEV *BECount = getUDivExpr(
12153       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12154 
12155   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12156                             : getUnsignedRangeMax(Start);
12157 
12158   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12159                              : getUnsignedRangeMin(Stride);
12160 
12161   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12162   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12163                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12164 
12165   // Although End can be a MIN expression we estimate MinEnd considering only
12166   // the case End = RHS. This is safe because in the other case (Start - End)
12167   // is zero, leading to a zero maximum backedge taken count.
12168   APInt MinEnd =
12169     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12170              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12171 
12172   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12173                                ? BECount
12174                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12175                                                  getConstant(MinStride));
12176 
12177   if (isa<SCEVCouldNotCompute>(MaxBECount))
12178     MaxBECount = BECount;
12179 
12180   return ExitLimit(BECount, MaxBECount, false, Predicates);
12181 }
12182 
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const12183 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12184                                                     ScalarEvolution &SE) const {
12185   if (Range.isFullSet())  // Infinite loop.
12186     return SE.getCouldNotCompute();
12187 
12188   // If the start is a non-zero constant, shift the range to simplify things.
12189   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12190     if (!SC->getValue()->isZero()) {
12191       SmallVector<const SCEV *, 4> Operands(operands());
12192       Operands[0] = SE.getZero(SC->getType());
12193       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12194                                              getNoWrapFlags(FlagNW));
12195       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12196         return ShiftedAddRec->getNumIterationsInRange(
12197             Range.subtract(SC->getAPInt()), SE);
12198       // This is strange and shouldn't happen.
12199       return SE.getCouldNotCompute();
12200     }
12201 
12202   // The only time we can solve this is when we have all constant indices.
12203   // Otherwise, we cannot determine the overflow conditions.
12204   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12205     return SE.getCouldNotCompute();
12206 
12207   // Okay at this point we know that all elements of the chrec are constants and
12208   // that the start element is zero.
12209 
12210   // First check to see if the range contains zero.  If not, the first
12211   // iteration exits.
12212   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12213   if (!Range.contains(APInt(BitWidth, 0)))
12214     return SE.getZero(getType());
12215 
12216   if (isAffine()) {
12217     // If this is an affine expression then we have this situation:
12218     //   Solve {0,+,A} in Range  ===  Ax in Range
12219 
12220     // We know that zero is in the range.  If A is positive then we know that
12221     // the upper value of the range must be the first possible exit value.
12222     // If A is negative then the lower of the range is the last possible loop
12223     // value.  Also note that we already checked for a full range.
12224     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12225     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12226 
12227     // The exit value should be (End+A)/A.
12228     APInt ExitVal = (End + A).udiv(A);
12229     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12230 
12231     // Evaluate at the exit value.  If we really did fall out of the valid
12232     // range, then we computed our trip count, otherwise wrap around or other
12233     // things must have happened.
12234     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12235     if (Range.contains(Val->getValue()))
12236       return SE.getCouldNotCompute();  // Something strange happened
12237 
12238     // Ensure that the previous value is in the range.  This is a sanity check.
12239     assert(Range.contains(
12240            EvaluateConstantChrecAtConstant(this,
12241            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12242            "Linear scev computation is off in a bad way!");
12243     return SE.getConstant(ExitValue);
12244   }
12245 
12246   if (isQuadratic()) {
12247     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12248       return SE.getConstant(S.getValue());
12249   }
12250 
12251   return SE.getCouldNotCompute();
12252 }
12253 
12254 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const12255 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12256   assert(getNumOperands() > 1 && "AddRec with zero step?");
12257   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12258   // but in this case we cannot guarantee that the value returned will be an
12259   // AddRec because SCEV does not have a fixed point where it stops
12260   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12261   // may happen if we reach arithmetic depth limit while simplifying. So we
12262   // construct the returned value explicitly.
12263   SmallVector<const SCEV *, 3> Ops;
12264   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12265   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12266   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12267     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12268   // We know that the last operand is not a constant zero (otherwise it would
12269   // have been popped out earlier). This guarantees us that if the result has
12270   // the same last operand, then it will also not be popped out, meaning that
12271   // the returned value will be an AddRec.
12272   const SCEV *Last = getOperand(getNumOperands() - 1);
12273   assert(!Last->isZero() && "Recurrency with zero step?");
12274   Ops.push_back(Last);
12275   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12276                                                SCEV::FlagAnyWrap));
12277 }
12278 
12279 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)12280 static inline bool containsUndefs(const SCEV *S) {
12281   return SCEVExprContains(S, [](const SCEV *S) {
12282     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12283       return isa<UndefValue>(SU->getValue());
12284     return false;
12285   });
12286 }
12287 
12288 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)12289 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12290   Type *Ty;
12291   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12292     Ty = Store->getValueOperand()->getType();
12293   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12294     Ty = Load->getType();
12295   else
12296     return nullptr;
12297 
12298   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12299   return getSizeOfExpr(ETy, Ty);
12300 }
12301 
12302 //===----------------------------------------------------------------------===//
12303 //                   SCEVCallbackVH Class Implementation
12304 //===----------------------------------------------------------------------===//
12305 
deleted()12306 void ScalarEvolution::SCEVCallbackVH::deleted() {
12307   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12308   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12309     SE->ConstantEvolutionLoopExitValue.erase(PN);
12310   SE->eraseValueFromMap(getValPtr());
12311   // this now dangles!
12312 }
12313 
allUsesReplacedWith(Value * V)12314 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12315   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12316 
12317   // Forget all the expressions associated with users of the old value,
12318   // so that future queries will recompute the expressions using the new
12319   // value.
12320   Value *Old = getValPtr();
12321   SmallVector<User *, 16> Worklist(Old->users());
12322   SmallPtrSet<User *, 8> Visited;
12323   while (!Worklist.empty()) {
12324     User *U = Worklist.pop_back_val();
12325     // Deleting the Old value will cause this to dangle. Postpone
12326     // that until everything else is done.
12327     if (U == Old)
12328       continue;
12329     if (!Visited.insert(U).second)
12330       continue;
12331     if (PHINode *PN = dyn_cast<PHINode>(U))
12332       SE->ConstantEvolutionLoopExitValue.erase(PN);
12333     SE->eraseValueFromMap(U);
12334     llvm::append_range(Worklist, U->users());
12335   }
12336   // Delete the Old value.
12337   if (PHINode *PN = dyn_cast<PHINode>(Old))
12338     SE->ConstantEvolutionLoopExitValue.erase(PN);
12339   SE->eraseValueFromMap(Old);
12340   // this now dangles!
12341 }
12342 
SCEVCallbackVH(Value * V,ScalarEvolution * se)12343 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12344   : CallbackVH(V), SE(se) {}
12345 
12346 //===----------------------------------------------------------------------===//
12347 //                   ScalarEvolution Class Implementation
12348 //===----------------------------------------------------------------------===//
12349 
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)12350 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12351                                  AssumptionCache &AC, DominatorTree &DT,
12352                                  LoopInfo &LI)
12353     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12354       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12355       LoopDispositions(64), BlockDispositions(64) {
12356   // To use guards for proving predicates, we need to scan every instruction in
12357   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12358   // time if the IR does not actually contain any calls to
12359   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12360   //
12361   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12362   // to _add_ guards to the module when there weren't any before, and wants
12363   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12364   // efficient in lieu of being smart in that rather obscure case.
12365 
12366   auto *GuardDecl = F.getParent()->getFunction(
12367       Intrinsic::getName(Intrinsic::experimental_guard));
12368   HasGuards = GuardDecl && !GuardDecl->use_empty();
12369 }
12370 
ScalarEvolution(ScalarEvolution && Arg)12371 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12372     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12373       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12374       ValueExprMap(std::move(Arg.ValueExprMap)),
12375       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12376       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12377       PendingMerges(std::move(Arg.PendingMerges)),
12378       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12379       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12380       PredicatedBackedgeTakenCounts(
12381           std::move(Arg.PredicatedBackedgeTakenCounts)),
12382       ConstantEvolutionLoopExitValue(
12383           std::move(Arg.ConstantEvolutionLoopExitValue)),
12384       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12385       LoopDispositions(std::move(Arg.LoopDispositions)),
12386       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12387       BlockDispositions(std::move(Arg.BlockDispositions)),
12388       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12389       SignedRanges(std::move(Arg.SignedRanges)),
12390       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12391       UniquePreds(std::move(Arg.UniquePreds)),
12392       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12393       LoopUsers(std::move(Arg.LoopUsers)),
12394       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12395       FirstUnknown(Arg.FirstUnknown) {
12396   Arg.FirstUnknown = nullptr;
12397 }
12398 
~ScalarEvolution()12399 ScalarEvolution::~ScalarEvolution() {
12400   // Iterate through all the SCEVUnknown instances and call their
12401   // destructors, so that they release their references to their values.
12402   for (SCEVUnknown *U = FirstUnknown; U;) {
12403     SCEVUnknown *Tmp = U;
12404     U = U->Next;
12405     Tmp->~SCEVUnknown();
12406   }
12407   FirstUnknown = nullptr;
12408 
12409   ExprValueMap.clear();
12410   ValueExprMap.clear();
12411   HasRecMap.clear();
12412   BackedgeTakenCounts.clear();
12413   PredicatedBackedgeTakenCounts.clear();
12414 
12415   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12416   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12417   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12418   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12419   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12420 }
12421 
hasLoopInvariantBackedgeTakenCount(const Loop * L)12422 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12423   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12424 }
12425 
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)12426 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12427                           const Loop *L) {
12428   // Print all inner loops first
12429   for (Loop *I : *L)
12430     PrintLoopInfo(OS, SE, I);
12431 
12432   OS << "Loop ";
12433   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12434   OS << ": ";
12435 
12436   SmallVector<BasicBlock *, 8> ExitingBlocks;
12437   L->getExitingBlocks(ExitingBlocks);
12438   if (ExitingBlocks.size() != 1)
12439     OS << "<multiple exits> ";
12440 
12441   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12442     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12443   else
12444     OS << "Unpredictable backedge-taken count.\n";
12445 
12446   if (ExitingBlocks.size() > 1)
12447     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12448       OS << "  exit count for " << ExitingBlock->getName() << ": "
12449          << *SE->getExitCount(L, ExitingBlock) << "\n";
12450     }
12451 
12452   OS << "Loop ";
12453   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12454   OS << ": ";
12455 
12456   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12457     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12458     if (SE->isBackedgeTakenCountMaxOrZero(L))
12459       OS << ", actual taken count either this or zero.";
12460   } else {
12461     OS << "Unpredictable max backedge-taken count. ";
12462   }
12463 
12464   OS << "\n"
12465         "Loop ";
12466   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12467   OS << ": ";
12468 
12469   SCEVUnionPredicate Pred;
12470   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12471   if (!isa<SCEVCouldNotCompute>(PBT)) {
12472     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12473     OS << " Predicates:\n";
12474     Pred.print(OS, 4);
12475   } else {
12476     OS << "Unpredictable predicated backedge-taken count. ";
12477   }
12478   OS << "\n";
12479 
12480   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12481     OS << "Loop ";
12482     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12483     OS << ": ";
12484     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12485   }
12486 }
12487 
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)12488 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12489   switch (LD) {
12490   case ScalarEvolution::LoopVariant:
12491     return "Variant";
12492   case ScalarEvolution::LoopInvariant:
12493     return "Invariant";
12494   case ScalarEvolution::LoopComputable:
12495     return "Computable";
12496   }
12497   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12498 }
12499 
print(raw_ostream & OS) const12500 void ScalarEvolution::print(raw_ostream &OS) const {
12501   // ScalarEvolution's implementation of the print method is to print
12502   // out SCEV values of all instructions that are interesting. Doing
12503   // this potentially causes it to create new SCEV objects though,
12504   // which technically conflicts with the const qualifier. This isn't
12505   // observable from outside the class though, so casting away the
12506   // const isn't dangerous.
12507   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12508 
12509   if (ClassifyExpressions) {
12510     OS << "Classifying expressions for: ";
12511     F.printAsOperand(OS, /*PrintType=*/false);
12512     OS << "\n";
12513     for (Instruction &I : instructions(F))
12514       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12515         OS << I << '\n';
12516         OS << "  -->  ";
12517         const SCEV *SV = SE.getSCEV(&I);
12518         SV->print(OS);
12519         if (!isa<SCEVCouldNotCompute>(SV)) {
12520           OS << " U: ";
12521           SE.getUnsignedRange(SV).print(OS);
12522           OS << " S: ";
12523           SE.getSignedRange(SV).print(OS);
12524         }
12525 
12526         const Loop *L = LI.getLoopFor(I.getParent());
12527 
12528         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12529         if (AtUse != SV) {
12530           OS << "  -->  ";
12531           AtUse->print(OS);
12532           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12533             OS << " U: ";
12534             SE.getUnsignedRange(AtUse).print(OS);
12535             OS << " S: ";
12536             SE.getSignedRange(AtUse).print(OS);
12537           }
12538         }
12539 
12540         if (L) {
12541           OS << "\t\t" "Exits: ";
12542           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12543           if (!SE.isLoopInvariant(ExitValue, L)) {
12544             OS << "<<Unknown>>";
12545           } else {
12546             OS << *ExitValue;
12547           }
12548 
12549           bool First = true;
12550           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12551             if (First) {
12552               OS << "\t\t" "LoopDispositions: { ";
12553               First = false;
12554             } else {
12555               OS << ", ";
12556             }
12557 
12558             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12559             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12560           }
12561 
12562           for (auto *InnerL : depth_first(L)) {
12563             if (InnerL == L)
12564               continue;
12565             if (First) {
12566               OS << "\t\t" "LoopDispositions: { ";
12567               First = false;
12568             } else {
12569               OS << ", ";
12570             }
12571 
12572             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12573             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12574           }
12575 
12576           OS << " }";
12577         }
12578 
12579         OS << "\n";
12580       }
12581   }
12582 
12583   OS << "Determining loop execution counts for: ";
12584   F.printAsOperand(OS, /*PrintType=*/false);
12585   OS << "\n";
12586   for (Loop *I : LI)
12587     PrintLoopInfo(OS, &SE, I);
12588 }
12589 
12590 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)12591 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12592   auto &Values = LoopDispositions[S];
12593   for (auto &V : Values) {
12594     if (V.getPointer() == L)
12595       return V.getInt();
12596   }
12597   Values.emplace_back(L, LoopVariant);
12598   LoopDisposition D = computeLoopDisposition(S, L);
12599   auto &Values2 = LoopDispositions[S];
12600   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12601     if (V.getPointer() == L) {
12602       V.setInt(D);
12603       break;
12604     }
12605   }
12606   return D;
12607 }
12608 
12609 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)12610 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12611   switch (S->getSCEVType()) {
12612   case scConstant:
12613     return LoopInvariant;
12614   case scPtrToInt:
12615   case scTruncate:
12616   case scZeroExtend:
12617   case scSignExtend:
12618     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12619   case scAddRecExpr: {
12620     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12621 
12622     // If L is the addrec's loop, it's computable.
12623     if (AR->getLoop() == L)
12624       return LoopComputable;
12625 
12626     // Add recurrences are never invariant in the function-body (null loop).
12627     if (!L)
12628       return LoopVariant;
12629 
12630     // Everything that is not defined at loop entry is variant.
12631     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12632       return LoopVariant;
12633     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12634            " dominate the contained loop's header?");
12635 
12636     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12637     if (AR->getLoop()->contains(L))
12638       return LoopInvariant;
12639 
12640     // This recurrence is variant w.r.t. L if any of its operands
12641     // are variant.
12642     for (auto *Op : AR->operands())
12643       if (!isLoopInvariant(Op, L))
12644         return LoopVariant;
12645 
12646     // Otherwise it's loop-invariant.
12647     return LoopInvariant;
12648   }
12649   case scAddExpr:
12650   case scMulExpr:
12651   case scUMaxExpr:
12652   case scSMaxExpr:
12653   case scUMinExpr:
12654   case scSMinExpr: {
12655     bool HasVarying = false;
12656     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12657       LoopDisposition D = getLoopDisposition(Op, L);
12658       if (D == LoopVariant)
12659         return LoopVariant;
12660       if (D == LoopComputable)
12661         HasVarying = true;
12662     }
12663     return HasVarying ? LoopComputable : LoopInvariant;
12664   }
12665   case scUDivExpr: {
12666     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12667     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12668     if (LD == LoopVariant)
12669       return LoopVariant;
12670     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12671     if (RD == LoopVariant)
12672       return LoopVariant;
12673     return (LD == LoopInvariant && RD == LoopInvariant) ?
12674            LoopInvariant : LoopComputable;
12675   }
12676   case scUnknown:
12677     // All non-instruction values are loop invariant.  All instructions are loop
12678     // invariant if they are not contained in the specified loop.
12679     // Instructions are never considered invariant in the function body
12680     // (null loop) because they are defined within the "loop".
12681     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12682       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12683     return LoopInvariant;
12684   case scCouldNotCompute:
12685     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12686   }
12687   llvm_unreachable("Unknown SCEV kind!");
12688 }
12689 
isLoopInvariant(const SCEV * S,const Loop * L)12690 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12691   return getLoopDisposition(S, L) == LoopInvariant;
12692 }
12693 
hasComputableLoopEvolution(const SCEV * S,const Loop * L)12694 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12695   return getLoopDisposition(S, L) == LoopComputable;
12696 }
12697 
12698 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)12699 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12700   auto &Values = BlockDispositions[S];
12701   for (auto &V : Values) {
12702     if (V.getPointer() == BB)
12703       return V.getInt();
12704   }
12705   Values.emplace_back(BB, DoesNotDominateBlock);
12706   BlockDisposition D = computeBlockDisposition(S, BB);
12707   auto &Values2 = BlockDispositions[S];
12708   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12709     if (V.getPointer() == BB) {
12710       V.setInt(D);
12711       break;
12712     }
12713   }
12714   return D;
12715 }
12716 
12717 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)12718 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12719   switch (S->getSCEVType()) {
12720   case scConstant:
12721     return ProperlyDominatesBlock;
12722   case scPtrToInt:
12723   case scTruncate:
12724   case scZeroExtend:
12725   case scSignExtend:
12726     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12727   case scAddRecExpr: {
12728     // This uses a "dominates" query instead of "properly dominates" query
12729     // to test for proper dominance too, because the instruction which
12730     // produces the addrec's value is a PHI, and a PHI effectively properly
12731     // dominates its entire containing block.
12732     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12733     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12734       return DoesNotDominateBlock;
12735 
12736     // Fall through into SCEVNAryExpr handling.
12737     LLVM_FALLTHROUGH;
12738   }
12739   case scAddExpr:
12740   case scMulExpr:
12741   case scUMaxExpr:
12742   case scSMaxExpr:
12743   case scUMinExpr:
12744   case scSMinExpr: {
12745     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12746     bool Proper = true;
12747     for (const SCEV *NAryOp : NAry->operands()) {
12748       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12749       if (D == DoesNotDominateBlock)
12750         return DoesNotDominateBlock;
12751       if (D == DominatesBlock)
12752         Proper = false;
12753     }
12754     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12755   }
12756   case scUDivExpr: {
12757     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12758     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12759     BlockDisposition LD = getBlockDisposition(LHS, BB);
12760     if (LD == DoesNotDominateBlock)
12761       return DoesNotDominateBlock;
12762     BlockDisposition RD = getBlockDisposition(RHS, BB);
12763     if (RD == DoesNotDominateBlock)
12764       return DoesNotDominateBlock;
12765     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12766       ProperlyDominatesBlock : DominatesBlock;
12767   }
12768   case scUnknown:
12769     if (Instruction *I =
12770           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12771       if (I->getParent() == BB)
12772         return DominatesBlock;
12773       if (DT.properlyDominates(I->getParent(), BB))
12774         return ProperlyDominatesBlock;
12775       return DoesNotDominateBlock;
12776     }
12777     return ProperlyDominatesBlock;
12778   case scCouldNotCompute:
12779     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12780   }
12781   llvm_unreachable("Unknown SCEV kind!");
12782 }
12783 
dominates(const SCEV * S,const BasicBlock * BB)12784 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12785   return getBlockDisposition(S, BB) >= DominatesBlock;
12786 }
12787 
properlyDominates(const SCEV * S,const BasicBlock * BB)12788 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12789   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12790 }
12791 
hasOperand(const SCEV * S,const SCEV * Op) const12792 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12793   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12794 }
12795 
12796 void
forgetMemoizedResults(const SCEV * S)12797 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12798   ValuesAtScopes.erase(S);
12799   LoopDispositions.erase(S);
12800   BlockDispositions.erase(S);
12801   UnsignedRanges.erase(S);
12802   SignedRanges.erase(S);
12803   ExprValueMap.erase(S);
12804   HasRecMap.erase(S);
12805   MinTrailingZerosCache.erase(S);
12806 
12807   for (auto I = PredicatedSCEVRewrites.begin();
12808        I != PredicatedSCEVRewrites.end();) {
12809     std::pair<const SCEV *, const Loop *> Entry = I->first;
12810     if (Entry.first == S)
12811       PredicatedSCEVRewrites.erase(I++);
12812     else
12813       ++I;
12814   }
12815 
12816   auto RemoveSCEVFromBackedgeMap =
12817       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12818         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12819           BackedgeTakenInfo &BEInfo = I->second;
12820           if (BEInfo.hasOperand(S))
12821             Map.erase(I++);
12822           else
12823             ++I;
12824         }
12825       };
12826 
12827   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12828   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12829 }
12830 
12831 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)12832 ScalarEvolution::getUsedLoops(const SCEV *S,
12833                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12834   struct FindUsedLoops {
12835     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12836         : LoopsUsed(LoopsUsed) {}
12837     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12838     bool follow(const SCEV *S) {
12839       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12840         LoopsUsed.insert(AR->getLoop());
12841       return true;
12842     }
12843 
12844     bool isDone() const { return false; }
12845   };
12846 
12847   FindUsedLoops F(LoopsUsed);
12848   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12849 }
12850 
addToLoopUseLists(const SCEV * S)12851 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12852   SmallPtrSet<const Loop *, 8> LoopsUsed;
12853   getUsedLoops(S, LoopsUsed);
12854   for (auto *L : LoopsUsed)
12855     LoopUsers[L].push_back(S);
12856 }
12857 
verify() const12858 void ScalarEvolution::verify() const {
12859   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12860   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12861 
12862   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12863 
12864   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12865   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12866     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12867 
12868     const SCEV *visitConstant(const SCEVConstant *Constant) {
12869       return SE.getConstant(Constant->getAPInt());
12870     }
12871 
12872     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12873       return SE.getUnknown(Expr->getValue());
12874     }
12875 
12876     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12877       return SE.getCouldNotCompute();
12878     }
12879   };
12880 
12881   SCEVMapper SCM(SE2);
12882 
12883   while (!LoopStack.empty()) {
12884     auto *L = LoopStack.pop_back_val();
12885     llvm::append_range(LoopStack, *L);
12886 
12887     auto *CurBECount = SCM.visit(
12888         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12889     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12890 
12891     if (CurBECount == SE2.getCouldNotCompute() ||
12892         NewBECount == SE2.getCouldNotCompute()) {
12893       // NB! This situation is legal, but is very suspicious -- whatever pass
12894       // change the loop to make a trip count go from could not compute to
12895       // computable or vice-versa *should have* invalidated SCEV.  However, we
12896       // choose not to assert here (for now) since we don't want false
12897       // positives.
12898       continue;
12899     }
12900 
12901     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12902       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12903       // not propagate undef aggressively).  This means we can (and do) fail
12904       // verification in cases where a transform makes the trip count of a loop
12905       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12906       // both cases the loop iterates "undef" times, but SCEV thinks we
12907       // increased the trip count of the loop by 1 incorrectly.
12908       continue;
12909     }
12910 
12911     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12912         SE.getTypeSizeInBits(NewBECount->getType()))
12913       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12914     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12915              SE.getTypeSizeInBits(NewBECount->getType()))
12916       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12917 
12918     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12919 
12920     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12921     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12922       dbgs() << "Trip Count for " << *L << " Changed!\n";
12923       dbgs() << "Old: " << *CurBECount << "\n";
12924       dbgs() << "New: " << *NewBECount << "\n";
12925       dbgs() << "Delta: " << *Delta << "\n";
12926       std::abort();
12927     }
12928   }
12929 
12930   // Collect all valid loops currently in LoopInfo.
12931   SmallPtrSet<Loop *, 32> ValidLoops;
12932   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12933   while (!Worklist.empty()) {
12934     Loop *L = Worklist.pop_back_val();
12935     if (ValidLoops.contains(L))
12936       continue;
12937     ValidLoops.insert(L);
12938     Worklist.append(L->begin(), L->end());
12939   }
12940   // Check for SCEV expressions referencing invalid/deleted loops.
12941   for (auto &KV : ValueExprMap) {
12942     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12943     if (!AR)
12944       continue;
12945     assert(ValidLoops.contains(AR->getLoop()) &&
12946            "AddRec references invalid loop");
12947   }
12948 }
12949 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)12950 bool ScalarEvolution::invalidate(
12951     Function &F, const PreservedAnalyses &PA,
12952     FunctionAnalysisManager::Invalidator &Inv) {
12953   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12954   // of its dependencies is invalidated.
12955   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12956   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12957          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12958          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12959          Inv.invalidate<LoopAnalysis>(F, PA);
12960 }
12961 
12962 AnalysisKey ScalarEvolutionAnalysis::Key;
12963 
run(Function & F,FunctionAnalysisManager & AM)12964 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12965                                              FunctionAnalysisManager &AM) {
12966   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12967                          AM.getResult<AssumptionAnalysis>(F),
12968                          AM.getResult<DominatorTreeAnalysis>(F),
12969                          AM.getResult<LoopAnalysis>(F));
12970 }
12971 
12972 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12973 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12974   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12975   return PreservedAnalyses::all();
12976 }
12977 
12978 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12979 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12980   // For compatibility with opt's -analyze feature under legacy pass manager
12981   // which was not ported to NPM. This keeps tests using
12982   // update_analyze_test_checks.py working.
12983   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12984      << F.getName() << "':\n";
12985   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12986   return PreservedAnalyses::all();
12987 }
12988 
12989 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12990                       "Scalar Evolution Analysis", false, true)
12991 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12992 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12993 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12994 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12995 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12996                     "Scalar Evolution Analysis", false, true)
12997 
12998 char ScalarEvolutionWrapperPass::ID = 0;
12999 
ScalarEvolutionWrapperPass()13000 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13001   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13002 }
13003 
runOnFunction(Function & F)13004 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13005   SE.reset(new ScalarEvolution(
13006       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13007       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13008       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13009       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13010   return false;
13011 }
13012 
releaseMemory()13013 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13014 
print(raw_ostream & OS,const Module *) const13015 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13016   SE->print(OS);
13017 }
13018 
verifyAnalysis() const13019 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13020   if (!VerifySCEV)
13021     return;
13022 
13023   SE->verify();
13024 }
13025 
getAnalysisUsage(AnalysisUsage & AU) const13026 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13027   AU.setPreservesAll();
13028   AU.addRequiredTransitive<AssumptionCacheTracker>();
13029   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13030   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13031   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13032 }
13033 
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)13034 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13035                                                         const SCEV *RHS) {
13036   FoldingSetNodeID ID;
13037   assert(LHS->getType() == RHS->getType() &&
13038          "Type mismatch between LHS and RHS");
13039   // Unique this node based on the arguments
13040   ID.AddInteger(SCEVPredicate::P_Equal);
13041   ID.AddPointer(LHS);
13042   ID.AddPointer(RHS);
13043   void *IP = nullptr;
13044   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13045     return S;
13046   SCEVEqualPredicate *Eq = new (SCEVAllocator)
13047       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13048   UniquePreds.InsertNode(Eq, IP);
13049   return Eq;
13050 }
13051 
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)13052 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13053     const SCEVAddRecExpr *AR,
13054     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13055   FoldingSetNodeID ID;
13056   // Unique this node based on the arguments
13057   ID.AddInteger(SCEVPredicate::P_Wrap);
13058   ID.AddPointer(AR);
13059   ID.AddInteger(AddedFlags);
13060   void *IP = nullptr;
13061   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13062     return S;
13063   auto *OF = new (SCEVAllocator)
13064       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13065   UniquePreds.InsertNode(OF, IP);
13066   return OF;
13067 }
13068 
13069 namespace {
13070 
13071 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13072 public:
13073 
13074   /// Rewrites \p S in the context of a loop L and the SCEV predication
13075   /// infrastructure.
13076   ///
13077   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13078   /// equivalences present in \p Pred.
13079   ///
13080   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13081   /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)13082   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13083                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13084                              SCEVUnionPredicate *Pred) {
13085     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13086     return Rewriter.visit(S);
13087   }
13088 
visitUnknown(const SCEVUnknown * Expr)13089   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13090     if (Pred) {
13091       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13092       for (auto *Pred : ExprPreds)
13093         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13094           if (IPred->getLHS() == Expr)
13095             return IPred->getRHS();
13096     }
13097     return convertToAddRecWithPreds(Expr);
13098   }
13099 
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)13100   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13101     const SCEV *Operand = visit(Expr->getOperand());
13102     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13103     if (AR && AR->getLoop() == L && AR->isAffine()) {
13104       // This couldn't be folded because the operand didn't have the nuw
13105       // flag. Add the nusw flag as an assumption that we could make.
13106       const SCEV *Step = AR->getStepRecurrence(SE);
13107       Type *Ty = Expr->getType();
13108       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13109         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13110                                 SE.getSignExtendExpr(Step, Ty), L,
13111                                 AR->getNoWrapFlags());
13112     }
13113     return SE.getZeroExtendExpr(Operand, Expr->getType());
13114   }
13115 
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)13116   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13117     const SCEV *Operand = visit(Expr->getOperand());
13118     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13119     if (AR && AR->getLoop() == L && AR->isAffine()) {
13120       // This couldn't be folded because the operand didn't have the nsw
13121       // flag. Add the nssw flag as an assumption that we could make.
13122       const SCEV *Step = AR->getStepRecurrence(SE);
13123       Type *Ty = Expr->getType();
13124       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13125         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13126                                 SE.getSignExtendExpr(Step, Ty), L,
13127                                 AR->getNoWrapFlags());
13128     }
13129     return SE.getSignExtendExpr(Operand, Expr->getType());
13130   }
13131 
13132 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)13133   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13134                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13135                         SCEVUnionPredicate *Pred)
13136       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13137 
addOverflowAssumption(const SCEVPredicate * P)13138   bool addOverflowAssumption(const SCEVPredicate *P) {
13139     if (!NewPreds) {
13140       // Check if we've already made this assumption.
13141       return Pred && Pred->implies(P);
13142     }
13143     NewPreds->insert(P);
13144     return true;
13145   }
13146 
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)13147   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13148                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13149     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13150     return addOverflowAssumption(A);
13151   }
13152 
13153   // If \p Expr represents a PHINode, we try to see if it can be represented
13154   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13155   // to add this predicate as a runtime overflow check, we return the AddRec.
13156   // If \p Expr does not meet these conditions (is not a PHI node, or we
13157   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13158   // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)13159   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13160     if (!isa<PHINode>(Expr->getValue()))
13161       return Expr;
13162     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13163     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13164     if (!PredicatedRewrite)
13165       return Expr;
13166     for (auto *P : PredicatedRewrite->second){
13167       // Wrap predicates from outer loops are not supported.
13168       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13169         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13170         if (L != AR->getLoop())
13171           return Expr;
13172       }
13173       if (!addOverflowAssumption(P))
13174         return Expr;
13175     }
13176     return PredicatedRewrite->first;
13177   }
13178 
13179   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13180   SCEVUnionPredicate *Pred;
13181   const Loop *L;
13182 };
13183 
13184 } // end anonymous namespace
13185 
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)13186 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13187                                                    SCEVUnionPredicate &Preds) {
13188   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13189 }
13190 
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)13191 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13192     const SCEV *S, const Loop *L,
13193     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13194   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13195   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13196   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13197 
13198   if (!AddRec)
13199     return nullptr;
13200 
13201   // Since the transformation was successful, we can now transfer the SCEV
13202   // predicates.
13203   for (auto *P : TransformPreds)
13204     Preds.insert(P);
13205 
13206   return AddRec;
13207 }
13208 
13209 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)13210 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13211                              SCEVPredicateKind Kind)
13212     : FastID(ID), Kind(Kind) {}
13213 
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)13214 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13215                                        const SCEV *LHS, const SCEV *RHS)
13216     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13217   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13218   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13219 }
13220 
implies(const SCEVPredicate * N) const13221 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13222   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13223 
13224   if (!Op)
13225     return false;
13226 
13227   return Op->LHS == LHS && Op->RHS == RHS;
13228 }
13229 
isAlwaysTrue() const13230 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13231 
getExpr() const13232 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13233 
print(raw_ostream & OS,unsigned Depth) const13234 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13235   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13236 }
13237 
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)13238 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13239                                      const SCEVAddRecExpr *AR,
13240                                      IncrementWrapFlags Flags)
13241     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13242 
getExpr() const13243 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13244 
implies(const SCEVPredicate * N) const13245 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13246   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13247 
13248   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13249 }
13250 
isAlwaysTrue() const13251 bool SCEVWrapPredicate::isAlwaysTrue() const {
13252   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13253   IncrementWrapFlags IFlags = Flags;
13254 
13255   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13256     IFlags = clearFlags(IFlags, IncrementNSSW);
13257 
13258   return IFlags == IncrementAnyWrap;
13259 }
13260 
print(raw_ostream & OS,unsigned Depth) const13261 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13262   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13263   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13264     OS << "<nusw>";
13265   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13266     OS << "<nssw>";
13267   OS << "\n";
13268 }
13269 
13270 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)13271 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13272                                    ScalarEvolution &SE) {
13273   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13274   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13275 
13276   // We can safely transfer the NSW flag as NSSW.
13277   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13278     ImpliedFlags = IncrementNSSW;
13279 
13280   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13281     // If the increment is positive, the SCEV NUW flag will also imply the
13282     // WrapPredicate NUSW flag.
13283     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13284       if (Step->getValue()->getValue().isNonNegative())
13285         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13286   }
13287 
13288   return ImpliedFlags;
13289 }
13290 
13291 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()13292 SCEVUnionPredicate::SCEVUnionPredicate()
13293     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13294 
isAlwaysTrue() const13295 bool SCEVUnionPredicate::isAlwaysTrue() const {
13296   return all_of(Preds,
13297                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13298 }
13299 
13300 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)13301 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13302   auto I = SCEVToPreds.find(Expr);
13303   if (I == SCEVToPreds.end())
13304     return ArrayRef<const SCEVPredicate *>();
13305   return I->second;
13306 }
13307 
implies(const SCEVPredicate * N) const13308 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13309   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13310     return all_of(Set->Preds,
13311                   [this](const SCEVPredicate *I) { return this->implies(I); });
13312 
13313   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13314   if (ScevPredsIt == SCEVToPreds.end())
13315     return false;
13316   auto &SCEVPreds = ScevPredsIt->second;
13317 
13318   return any_of(SCEVPreds,
13319                 [N](const SCEVPredicate *I) { return I->implies(N); });
13320 }
13321 
getExpr() const13322 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13323 
print(raw_ostream & OS,unsigned Depth) const13324 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13325   for (auto Pred : Preds)
13326     Pred->print(OS, Depth);
13327 }
13328 
add(const SCEVPredicate * N)13329 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13330   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13331     for (auto Pred : Set->Preds)
13332       add(Pred);
13333     return;
13334   }
13335 
13336   if (implies(N))
13337     return;
13338 
13339   const SCEV *Key = N->getExpr();
13340   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13341                 " associated expression!");
13342 
13343   SCEVToPreds[Key].push_back(N);
13344   Preds.push_back(N);
13345 }
13346 
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)13347 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13348                                                      Loop &L)
13349     : SE(SE), L(L) {}
13350 
getSCEV(Value * V)13351 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13352   const SCEV *Expr = SE.getSCEV(V);
13353   RewriteEntry &Entry = RewriteMap[Expr];
13354 
13355   // If we already have an entry and the version matches, return it.
13356   if (Entry.second && Generation == Entry.first)
13357     return Entry.second;
13358 
13359   // We found an entry but it's stale. Rewrite the stale entry
13360   // according to the current predicate.
13361   if (Entry.second)
13362     Expr = Entry.second;
13363 
13364   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13365   Entry = {Generation, NewSCEV};
13366 
13367   return NewSCEV;
13368 }
13369 
getBackedgeTakenCount()13370 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13371   if (!BackedgeCount) {
13372     SCEVUnionPredicate BackedgePred;
13373     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13374     addPredicate(BackedgePred);
13375   }
13376   return BackedgeCount;
13377 }
13378 
addPredicate(const SCEVPredicate & Pred)13379 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13380   if (Preds.implies(&Pred))
13381     return;
13382   Preds.add(&Pred);
13383   updateGeneration();
13384 }
13385 
getUnionPredicate() const13386 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13387   return Preds;
13388 }
13389 
updateGeneration()13390 void PredicatedScalarEvolution::updateGeneration() {
13391   // If the generation number wrapped recompute everything.
13392   if (++Generation == 0) {
13393     for (auto &II : RewriteMap) {
13394       const SCEV *Rewritten = II.second.second;
13395       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13396     }
13397   }
13398 }
13399 
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)13400 void PredicatedScalarEvolution::setNoOverflow(
13401     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13402   const SCEV *Expr = getSCEV(V);
13403   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13404 
13405   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13406 
13407   // Clear the statically implied flags.
13408   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13409   addPredicate(*SE.getWrapPredicate(AR, Flags));
13410 
13411   auto II = FlagsMap.insert({V, Flags});
13412   if (!II.second)
13413     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13414 }
13415 
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)13416 bool PredicatedScalarEvolution::hasNoOverflow(
13417     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13418   const SCEV *Expr = getSCEV(V);
13419   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13420 
13421   Flags = SCEVWrapPredicate::clearFlags(
13422       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13423 
13424   auto II = FlagsMap.find(V);
13425 
13426   if (II != FlagsMap.end())
13427     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13428 
13429   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13430 }
13431 
getAsAddRec(Value * V)13432 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13433   const SCEV *Expr = this->getSCEV(V);
13434   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13435   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13436 
13437   if (!New)
13438     return nullptr;
13439 
13440   for (auto *P : NewPreds)
13441     Preds.add(P);
13442 
13443   updateGeneration();
13444   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13445   return New;
13446 }
13447 
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)13448 PredicatedScalarEvolution::PredicatedScalarEvolution(
13449     const PredicatedScalarEvolution &Init)
13450     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13451       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13452   for (auto I : Init.FlagsMap)
13453     FlagsMap.insert(I);
13454 }
13455 
print(raw_ostream & OS,unsigned Depth) const13456 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13457   // For each block.
13458   for (auto *BB : L.getBlocks())
13459     for (auto &I : *BB) {
13460       if (!SE.isSCEVable(I.getType()))
13461         continue;
13462 
13463       auto *Expr = SE.getSCEV(&I);
13464       auto II = RewriteMap.find(Expr);
13465 
13466       if (II == RewriteMap.end())
13467         continue;
13468 
13469       // Don't print things that are not interesting.
13470       if (II->second.second == Expr)
13471         continue;
13472 
13473       OS.indent(Depth) << "[PSE]" << I << ":\n";
13474       OS.indent(Depth + 2) << *Expr << "\n";
13475       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13476     }
13477 }
13478 
13479 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13480 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13481 // for URem with constant power-of-2 second operands.
13482 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13483 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)13484 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13485                                 const SCEV *&RHS) {
13486   // Try to match 'zext (trunc A to iB) to iY', which is used
13487   // for URem with constant power-of-2 second operands. Make sure the size of
13488   // the operand A matches the size of the whole expressions.
13489   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13490     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13491       LHS = Trunc->getOperand();
13492       // Bail out if the type of the LHS is larger than the type of the
13493       // expression for now.
13494       if (getTypeSizeInBits(LHS->getType()) >
13495           getTypeSizeInBits(Expr->getType()))
13496         return false;
13497       if (LHS->getType() != Expr->getType())
13498         LHS = getZeroExtendExpr(LHS, Expr->getType());
13499       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13500                         << getTypeSizeInBits(Trunc->getType()));
13501       return true;
13502     }
13503   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13504   if (Add == nullptr || Add->getNumOperands() != 2)
13505     return false;
13506 
13507   const SCEV *A = Add->getOperand(1);
13508   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13509 
13510   if (Mul == nullptr)
13511     return false;
13512 
13513   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13514     // (SomeExpr + (-(SomeExpr / B) * B)).
13515     if (Expr == getURemExpr(A, B)) {
13516       LHS = A;
13517       RHS = B;
13518       return true;
13519     }
13520     return false;
13521   };
13522 
13523   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13524   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13525     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13526            MatchURemWithDivisor(Mul->getOperand(2));
13527 
13528   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13529   if (Mul->getNumOperands() == 2)
13530     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13531            MatchURemWithDivisor(Mul->getOperand(0)) ||
13532            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13533            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13534   return false;
13535 }
13536 
13537 const SCEV *
computeSymbolicMaxBackedgeTakenCount(const Loop * L)13538 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13539   SmallVector<BasicBlock*, 16> ExitingBlocks;
13540   L->getExitingBlocks(ExitingBlocks);
13541 
13542   // Form an expression for the maximum exit count possible for this loop. We
13543   // merge the max and exact information to approximate a version of
13544   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13545   SmallVector<const SCEV*, 4> ExitCounts;
13546   for (BasicBlock *ExitingBB : ExitingBlocks) {
13547     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13548     if (isa<SCEVCouldNotCompute>(ExitCount))
13549       ExitCount = getExitCount(L, ExitingBB,
13550                                   ScalarEvolution::ConstantMaximum);
13551     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13552       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13553              "We should only have known counts for exiting blocks that "
13554              "dominate latch!");
13555       ExitCounts.push_back(ExitCount);
13556     }
13557   }
13558   if (ExitCounts.empty())
13559     return getCouldNotCompute();
13560   return getUMinFromMismatchedTypes(ExitCounts);
13561 }
13562 
13563 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13564 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13565 /// we cannot guarantee that the replacement is loop invariant in the loop of
13566 /// the AddRec.
13567 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13568   ValueToSCEVMapTy &Map;
13569 
13570 public:
SCEVLoopGuardRewriter(ScalarEvolution & SE,ValueToSCEVMapTy & M)13571   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13572       : SCEVRewriteVisitor(SE), Map(M) {}
13573 
visitAddRecExpr(const SCEVAddRecExpr * Expr)13574   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13575 
visitUnknown(const SCEVUnknown * Expr)13576   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13577     auto I = Map.find(Expr->getValue());
13578     if (I == Map.end())
13579       return Expr;
13580     return I->second;
13581   }
13582 };
13583 
applyLoopGuards(const SCEV * Expr,const Loop * L)13584 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13585   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13586                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13587     // WARNING: It is generally unsound to apply any wrap flags to the proposed
13588     // replacement SCEV which isn't directly implied by the structure of that
13589     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
13590     // legal.  See the scoping rules for flags in the header to understand why.
13591 
13592     // If we have LHS == 0, check if LHS is computing a property of some unknown
13593     // SCEV %v which we can rewrite %v to express explicitly.
13594     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13595     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13596         RHSC->getValue()->isNullValue()) {
13597       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13598       // explicitly express that.
13599       const SCEV *URemLHS = nullptr;
13600       const SCEV *URemRHS = nullptr;
13601       if (matchURem(LHS, URemLHS, URemRHS)) {
13602         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13603           Value *V = LHSUnknown->getValue();
13604           RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
13605           return;
13606         }
13607       }
13608     }
13609 
13610     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13611       std::swap(LHS, RHS);
13612       Predicate = CmpInst::getSwappedPredicate(Predicate);
13613     }
13614 
13615     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13616     // create this form when combining two checks of the form (X u< C2 + C1) and
13617     // (X >=u C1).
13618     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13619       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13620       if (!AddExpr || AddExpr->getNumOperands() != 2)
13621         return false;
13622 
13623       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13624       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13625       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13626       if (!C1 || !C2 || !LHSUnknown)
13627         return false;
13628 
13629       auto ExactRegion =
13630           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13631               .sub(C1->getAPInt());
13632 
13633       // Bail out, unless we have a non-wrapping, monotonic range.
13634       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13635         return false;
13636       auto I = RewriteMap.find(LHSUnknown->getValue());
13637       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13638       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13639           getConstant(ExactRegion.getUnsignedMin()),
13640           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13641       return true;
13642     };
13643     if (MatchRangeCheckIdiom())
13644       return;
13645 
13646     // For now, limit to conditions that provide information about unknown
13647     // expressions. RHS also cannot contain add recurrences.
13648     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13649     if (!LHSUnknown || containsAddRecurrence(RHS))
13650       return;
13651 
13652     // Check whether LHS has already been rewritten. In that case we want to
13653     // chain further rewrites onto the already rewritten value.
13654     auto I = RewriteMap.find(LHSUnknown->getValue());
13655     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13656     const SCEV *RewrittenRHS = nullptr;
13657     switch (Predicate) {
13658     case CmpInst::ICMP_ULT:
13659       RewrittenRHS =
13660           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13661       break;
13662     case CmpInst::ICMP_SLT:
13663       RewrittenRHS =
13664           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13665       break;
13666     case CmpInst::ICMP_ULE:
13667       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13668       break;
13669     case CmpInst::ICMP_SLE:
13670       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13671       break;
13672     case CmpInst::ICMP_UGT:
13673       RewrittenRHS =
13674           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13675       break;
13676     case CmpInst::ICMP_SGT:
13677       RewrittenRHS =
13678           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13679       break;
13680     case CmpInst::ICMP_UGE:
13681       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13682       break;
13683     case CmpInst::ICMP_SGE:
13684       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13685       break;
13686     case CmpInst::ICMP_EQ:
13687       if (isa<SCEVConstant>(RHS))
13688         RewrittenRHS = RHS;
13689       break;
13690     case CmpInst::ICMP_NE:
13691       if (isa<SCEVConstant>(RHS) &&
13692           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13693         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13694       break;
13695     default:
13696       break;
13697     }
13698 
13699     if (RewrittenRHS)
13700       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
13701   };
13702   // Starting at the loop predecessor, climb up the predecessor chain, as long
13703   // as there are predecessors that can be found that have unique successors
13704   // leading to the original header.
13705   // TODO: share this logic with isLoopEntryGuardedByCond.
13706   ValueToSCEVMapTy RewriteMap;
13707   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13708            L->getLoopPredecessor(), L->getHeader());
13709        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13710 
13711     const BranchInst *LoopEntryPredicate =
13712         dyn_cast<BranchInst>(Pair.first->getTerminator());
13713     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13714       continue;
13715 
13716     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13717     SmallVector<Value *, 8> Worklist;
13718     SmallPtrSet<Value *, 8> Visited;
13719     Worklist.push_back(LoopEntryPredicate->getCondition());
13720     while (!Worklist.empty()) {
13721       Value *Cond = Worklist.pop_back_val();
13722       if (!Visited.insert(Cond).second)
13723         continue;
13724 
13725       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13726         auto Predicate =
13727             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13728         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13729                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13730         continue;
13731       }
13732 
13733       Value *L, *R;
13734       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13735                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13736         Worklist.push_back(L);
13737         Worklist.push_back(R);
13738       }
13739     }
13740   }
13741 
13742   // Also collect information from assumptions dominating the loop.
13743   for (auto &AssumeVH : AC.assumptions()) {
13744     if (!AssumeVH)
13745       continue;
13746     auto *AssumeI = cast<CallInst>(AssumeVH);
13747     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13748     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13749       continue;
13750     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13751                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13752   }
13753 
13754   if (RewriteMap.empty())
13755     return Expr;
13756   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13757   return Rewriter.visit(Expr);
13758 }
13759