1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "riscv-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
RISCVTargetLowering(const TargetMachine & TM,const RISCVSubtarget & STI)47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
48                                          const RISCVSubtarget &STI)
49     : TargetLowering(TM), Subtarget(STI) {
50 
51   if (Subtarget.isRV32E())
52     report_fatal_error("Codegen not yet implemented for RV32E");
53 
54   RISCVABI::ABI ABI = Subtarget.getTargetABI();
55   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
56 
57   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
58       !Subtarget.hasStdExtF()) {
59     errs() << "Hard-float 'f' ABI can't be used for a target that "
60                 "doesn't support the F instruction set extension (ignoring "
61                           "target-abi)\n";
62     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
63   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
64              !Subtarget.hasStdExtD()) {
65     errs() << "Hard-float 'd' ABI can't be used for a target that "
66               "doesn't support the D instruction set extension (ignoring "
67               "target-abi)\n";
68     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
69   }
70 
71   switch (ABI) {
72   default:
73     report_fatal_error("Don't know how to lower this ABI");
74   case RISCVABI::ABI_ILP32:
75   case RISCVABI::ABI_ILP32F:
76   case RISCVABI::ABI_ILP32D:
77   case RISCVABI::ABI_LP64:
78   case RISCVABI::ABI_LP64F:
79   case RISCVABI::ABI_LP64D:
80     break;
81   }
82 
83   MVT XLenVT = Subtarget.getXLenVT();
84 
85   // Set up the register classes.
86   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
87 
88   if (Subtarget.hasStdExtZfh())
89     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
90   if (Subtarget.hasStdExtF())
91     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
92   if (Subtarget.hasStdExtD())
93     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
94 
95   static const MVT::SimpleValueType BoolVecVTs[] = {
96       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
97       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
98   static const MVT::SimpleValueType IntVecVTs[] = {
99       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
100       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
101       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
102       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
103       MVT::nxv4i64, MVT::nxv8i64};
104   static const MVT::SimpleValueType F16VecVTs[] = {
105       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
106       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
107   static const MVT::SimpleValueType F32VecVTs[] = {
108       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
109   static const MVT::SimpleValueType F64VecVTs[] = {
110       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
111 
112   if (Subtarget.hasStdExtV()) {
113     auto addRegClassForRVV = [this](MVT VT) {
114       unsigned Size = VT.getSizeInBits().getKnownMinValue();
115       assert(Size <= 512 && isPowerOf2_32(Size));
116       const TargetRegisterClass *RC;
117       if (Size <= 64)
118         RC = &RISCV::VRRegClass;
119       else if (Size == 128)
120         RC = &RISCV::VRM2RegClass;
121       else if (Size == 256)
122         RC = &RISCV::VRM4RegClass;
123       else
124         RC = &RISCV::VRM8RegClass;
125 
126       addRegisterClass(VT, RC);
127     };
128 
129     for (MVT VT : BoolVecVTs)
130       addRegClassForRVV(VT);
131     for (MVT VT : IntVecVTs)
132       addRegClassForRVV(VT);
133 
134     if (Subtarget.hasStdExtZfh())
135       for (MVT VT : F16VecVTs)
136         addRegClassForRVV(VT);
137 
138     if (Subtarget.hasStdExtF())
139       for (MVT VT : F32VecVTs)
140         addRegClassForRVV(VT);
141 
142     if (Subtarget.hasStdExtD())
143       for (MVT VT : F64VecVTs)
144         addRegClassForRVV(VT);
145 
146     if (Subtarget.useRVVForFixedLengthVectors()) {
147       auto addRegClassForFixedVectors = [this](MVT VT) {
148         MVT ContainerVT = getContainerForFixedLengthVector(VT);
149         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
150         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
151         addRegisterClass(VT, TRI.getRegClass(RCID));
152       };
153       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
154         if (useRVVForFixedLengthVectorVT(VT))
155           addRegClassForFixedVectors(VT);
156 
157       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
158         if (useRVVForFixedLengthVectorVT(VT))
159           addRegClassForFixedVectors(VT);
160     }
161   }
162 
163   // Compute derived properties from the register classes.
164   computeRegisterProperties(STI.getRegisterInfo());
165 
166   setStackPointerRegisterToSaveRestore(RISCV::X2);
167 
168   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
169     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
170 
171   // TODO: add all necessary setOperationAction calls.
172   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
173 
174   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
175   setOperationAction(ISD::BR_CC, XLenVT, Expand);
176   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
177   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
178 
179   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
180   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
181 
182   setOperationAction(ISD::VASTART, MVT::Other, Custom);
183   setOperationAction(ISD::VAARG, MVT::Other, Expand);
184   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
185   setOperationAction(ISD::VAEND, MVT::Other, Expand);
186 
187   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188   if (!Subtarget.hasStdExtZbb()) {
189     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
190     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
191   }
192 
193   if (Subtarget.is64Bit()) {
194     setOperationAction(ISD::ADD, MVT::i32, Custom);
195     setOperationAction(ISD::SUB, MVT::i32, Custom);
196     setOperationAction(ISD::SHL, MVT::i32, Custom);
197     setOperationAction(ISD::SRA, MVT::i32, Custom);
198     setOperationAction(ISD::SRL, MVT::i32, Custom);
199 
200     setOperationAction(ISD::UADDO, MVT::i32, Custom);
201     setOperationAction(ISD::USUBO, MVT::i32, Custom);
202     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
203     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
204   } else {
205     setLibcallName(RTLIB::SHL_I128, nullptr);
206     setLibcallName(RTLIB::SRL_I128, nullptr);
207     setLibcallName(RTLIB::SRA_I128, nullptr);
208     setLibcallName(RTLIB::MUL_I128, nullptr);
209     setLibcallName(RTLIB::MULO_I64, nullptr);
210   }
211 
212   if (!Subtarget.hasStdExtM()) {
213     setOperationAction(ISD::MUL, XLenVT, Expand);
214     setOperationAction(ISD::MULHS, XLenVT, Expand);
215     setOperationAction(ISD::MULHU, XLenVT, Expand);
216     setOperationAction(ISD::SDIV, XLenVT, Expand);
217     setOperationAction(ISD::UDIV, XLenVT, Expand);
218     setOperationAction(ISD::SREM, XLenVT, Expand);
219     setOperationAction(ISD::UREM, XLenVT, Expand);
220   } else {
221     if (Subtarget.is64Bit()) {
222       setOperationAction(ISD::MUL, MVT::i32, Custom);
223       setOperationAction(ISD::MUL, MVT::i128, Custom);
224 
225       setOperationAction(ISD::SDIV, MVT::i8, Custom);
226       setOperationAction(ISD::UDIV, MVT::i8, Custom);
227       setOperationAction(ISD::UREM, MVT::i8, Custom);
228       setOperationAction(ISD::SDIV, MVT::i16, Custom);
229       setOperationAction(ISD::UDIV, MVT::i16, Custom);
230       setOperationAction(ISD::UREM, MVT::i16, Custom);
231       setOperationAction(ISD::SDIV, MVT::i32, Custom);
232       setOperationAction(ISD::UDIV, MVT::i32, Custom);
233       setOperationAction(ISD::UREM, MVT::i32, Custom);
234     } else {
235       setOperationAction(ISD::MUL, MVT::i64, Custom);
236     }
237   }
238 
239   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
240   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
241   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
242   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
243 
244   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
245   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
246   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
247 
248   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
249     if (Subtarget.is64Bit()) {
250       setOperationAction(ISD::ROTL, MVT::i32, Custom);
251       setOperationAction(ISD::ROTR, MVT::i32, Custom);
252     }
253   } else {
254     setOperationAction(ISD::ROTL, XLenVT, Expand);
255     setOperationAction(ISD::ROTR, XLenVT, Expand);
256   }
257 
258   if (Subtarget.hasStdExtZbp()) {
259     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
260     // more combining.
261     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
262     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
263     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
264     // BSWAP i8 doesn't exist.
265     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
266     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
267 
268     if (Subtarget.is64Bit()) {
269       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
270       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
271     }
272   } else {
273     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
274     // pattern match it directly in isel.
275     setOperationAction(ISD::BSWAP, XLenVT,
276                        Subtarget.hasStdExtZbb() ? Legal : Expand);
277   }
278 
279   if (Subtarget.hasStdExtZbb()) {
280     setOperationAction(ISD::SMIN, XLenVT, Legal);
281     setOperationAction(ISD::SMAX, XLenVT, Legal);
282     setOperationAction(ISD::UMIN, XLenVT, Legal);
283     setOperationAction(ISD::UMAX, XLenVT, Legal);
284 
285     if (Subtarget.is64Bit()) {
286       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
287       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
288       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
289       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
290     }
291   } else {
292     setOperationAction(ISD::CTTZ, XLenVT, Expand);
293     setOperationAction(ISD::CTLZ, XLenVT, Expand);
294     setOperationAction(ISD::CTPOP, XLenVT, Expand);
295   }
296 
297   if (Subtarget.hasStdExtZbt()) {
298     setOperationAction(ISD::FSHL, XLenVT, Custom);
299     setOperationAction(ISD::FSHR, XLenVT, Custom);
300     setOperationAction(ISD::SELECT, XLenVT, Legal);
301 
302     if (Subtarget.is64Bit()) {
303       setOperationAction(ISD::FSHL, MVT::i32, Custom);
304       setOperationAction(ISD::FSHR, MVT::i32, Custom);
305     }
306   } else {
307     setOperationAction(ISD::SELECT, XLenVT, Custom);
308   }
309 
310   static const ISD::CondCode FPCCToExpand[] = {
311       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
312       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
313       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
314 
315   static const ISD::NodeType FPOpToExpand[] = {
316       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
317       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
318 
319   if (Subtarget.hasStdExtZfh())
320     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
321 
322   if (Subtarget.hasStdExtZfh()) {
323     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
324     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
325     setOperationAction(ISD::LRINT, MVT::f16, Legal);
326     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
327     setOperationAction(ISD::LROUND, MVT::f16, Legal);
328     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
329     for (auto CC : FPCCToExpand)
330       setCondCodeAction(CC, MVT::f16, Expand);
331     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
332     setOperationAction(ISD::SELECT, MVT::f16, Custom);
333     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
334     for (auto Op : FPOpToExpand)
335       setOperationAction(Op, MVT::f16, Expand);
336   }
337 
338   if (Subtarget.hasStdExtF()) {
339     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
340     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
341     setOperationAction(ISD::LRINT, MVT::f32, Legal);
342     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
343     setOperationAction(ISD::LROUND, MVT::f32, Legal);
344     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
345     for (auto CC : FPCCToExpand)
346       setCondCodeAction(CC, MVT::f32, Expand);
347     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
348     setOperationAction(ISD::SELECT, MVT::f32, Custom);
349     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
350     for (auto Op : FPOpToExpand)
351       setOperationAction(Op, MVT::f32, Expand);
352     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
353     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
354   }
355 
356   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
357     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
358 
359   if (Subtarget.hasStdExtD()) {
360     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
361     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
362     setOperationAction(ISD::LRINT, MVT::f64, Legal);
363     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
364     setOperationAction(ISD::LROUND, MVT::f64, Legal);
365     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
366     for (auto CC : FPCCToExpand)
367       setCondCodeAction(CC, MVT::f64, Expand);
368     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
369     setOperationAction(ISD::SELECT, MVT::f64, Custom);
370     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
371     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
372     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
373     for (auto Op : FPOpToExpand)
374       setOperationAction(Op, MVT::f64, Expand);
375     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
376     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
377   }
378 
379   if (Subtarget.is64Bit()) {
380     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
381     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
382     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
383     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
384   }
385 
386   if (Subtarget.hasStdExtF()) {
387     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
388     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
389 
390     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
391     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
392   }
393 
394   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
395   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
396   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
397   setOperationAction(ISD::JumpTable, XLenVT, Custom);
398 
399   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
400 
401   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402   // Unfortunately this can't be determined just from the ISA naming string.
403   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404                      Subtarget.is64Bit() ? Legal : Custom);
405 
406   setOperationAction(ISD::TRAP, MVT::Other, Legal);
407   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
408   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
409   if (Subtarget.is64Bit())
410     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
411 
412   if (Subtarget.hasStdExtA()) {
413     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
414     setMinCmpXchgSizeInBits(32);
415   } else {
416     setMaxAtomicSizeInBitsSupported(0);
417   }
418 
419   setBooleanContents(ZeroOrOneBooleanContent);
420 
421   if (Subtarget.hasStdExtV()) {
422     setBooleanVectorContents(ZeroOrOneBooleanContent);
423 
424     setOperationAction(ISD::VSCALE, XLenVT, Custom);
425 
426     // RVV intrinsics may have illegal operands.
427     // We also need to custom legalize vmv.x.s.
428     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
429     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
430     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
431     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
432     if (Subtarget.is64Bit()) {
433       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
434     } else {
435       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
436       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
437     }
438 
439     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
440     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
441 
442     static const unsigned IntegerVPOps[] = {
443         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
444         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
445         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
446         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
447         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
448         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
449         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN};
450 
451     static const unsigned FloatingPointVPOps[] = {
452         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
453         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
454         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX};
455 
456     if (!Subtarget.is64Bit()) {
457       // We must custom-lower certain vXi64 operations on RV32 due to the vector
458       // element type being illegal.
459       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
460       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
461 
462       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
463       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
464       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
465       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
466       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
467       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
468       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
469       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
470 
471       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
472       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
473       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
474       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
475       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
476       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
477       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
478       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
479     }
480 
481     for (MVT VT : BoolVecVTs) {
482       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
483 
484       // Mask VTs are custom-expanded into a series of standard nodes
485       setOperationAction(ISD::TRUNCATE, VT, Custom);
486       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
487       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
488       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
489 
490       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
491       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
492 
493       setOperationAction(ISD::SELECT, VT, Custom);
494       setOperationAction(ISD::SELECT_CC, VT, Expand);
495       setOperationAction(ISD::VSELECT, VT, Expand);
496 
497       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
498       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
499       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
500 
501       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
502       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
503       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
504 
505       // RVV has native int->float & float->int conversions where the
506       // element type sizes are within one power-of-two of each other. Any
507       // wider distances between type sizes have to be lowered as sequences
508       // which progressively narrow the gap in stages.
509       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
510       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
511       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
512       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
513 
514       // Expand all extending loads to types larger than this, and truncating
515       // stores from types larger than this.
516       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
517         setTruncStoreAction(OtherVT, VT, Expand);
518         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
519         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
520         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
521       }
522     }
523 
524     for (MVT VT : IntVecVTs) {
525       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
526       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
527 
528       setOperationAction(ISD::SMIN, VT, Legal);
529       setOperationAction(ISD::SMAX, VT, Legal);
530       setOperationAction(ISD::UMIN, VT, Legal);
531       setOperationAction(ISD::UMAX, VT, Legal);
532 
533       setOperationAction(ISD::ROTL, VT, Expand);
534       setOperationAction(ISD::ROTR, VT, Expand);
535 
536       // Custom-lower extensions and truncations from/to mask types.
537       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
538       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
539       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
540 
541       // RVV has native int->float & float->int conversions where the
542       // element type sizes are within one power-of-two of each other. Any
543       // wider distances between type sizes have to be lowered as sequences
544       // which progressively narrow the gap in stages.
545       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
546       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
547       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
548       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
549 
550       setOperationAction(ISD::SADDSAT, VT, Legal);
551       setOperationAction(ISD::UADDSAT, VT, Legal);
552       setOperationAction(ISD::SSUBSAT, VT, Legal);
553       setOperationAction(ISD::USUBSAT, VT, Legal);
554 
555       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
556       // nodes which truncate by one power of two at a time.
557       setOperationAction(ISD::TRUNCATE, VT, Custom);
558 
559       // Custom-lower insert/extract operations to simplify patterns.
560       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
561       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
562 
563       // Custom-lower reduction operations to set up the corresponding custom
564       // nodes' operands.
565       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
566       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
567       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
568       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
569       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
570       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
571       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
572       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
573 
574       for (unsigned VPOpc : IntegerVPOps)
575         setOperationAction(VPOpc, VT, Custom);
576 
577       setOperationAction(ISD::LOAD, VT, Custom);
578       setOperationAction(ISD::STORE, VT, Custom);
579 
580       setOperationAction(ISD::MLOAD, VT, Custom);
581       setOperationAction(ISD::MSTORE, VT, Custom);
582       setOperationAction(ISD::MGATHER, VT, Custom);
583       setOperationAction(ISD::MSCATTER, VT, Custom);
584 
585       setOperationAction(ISD::VP_LOAD, VT, Custom);
586       setOperationAction(ISD::VP_STORE, VT, Custom);
587       setOperationAction(ISD::VP_GATHER, VT, Custom);
588       setOperationAction(ISD::VP_SCATTER, VT, Custom);
589 
590       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
591       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
592       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
593 
594       setOperationAction(ISD::SELECT, VT, Custom);
595       setOperationAction(ISD::SELECT_CC, VT, Expand);
596 
597       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
598       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
599 
600       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
601         setTruncStoreAction(VT, OtherVT, Expand);
602         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
603         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
604         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
605       }
606     }
607 
608     // Expand various CCs to best match the RVV ISA, which natively supports UNE
609     // but no other unordered comparisons, and supports all ordered comparisons
610     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
611     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
612     // and we pattern-match those back to the "original", swapping operands once
613     // more. This way we catch both operations and both "vf" and "fv" forms with
614     // fewer patterns.
615     static const ISD::CondCode VFPCCToExpand[] = {
616         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
617         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
618         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
619     };
620 
621     // Sets common operation actions on RVV floating-point vector types.
622     const auto SetCommonVFPActions = [&](MVT VT) {
623       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
624       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
625       // sizes are within one power-of-two of each other. Therefore conversions
626       // between vXf16 and vXf64 must be lowered as sequences which convert via
627       // vXf32.
628       setOperationAction(ISD::FP_ROUND, VT, Custom);
629       setOperationAction(ISD::FP_EXTEND, VT, Custom);
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633       // Expand various condition codes (explained above).
634       for (auto CC : VFPCCToExpand)
635         setCondCodeAction(CC, VT, Expand);
636 
637       setOperationAction(ISD::FMINNUM, VT, Legal);
638       setOperationAction(ISD::FMAXNUM, VT, Legal);
639 
640       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
644 
645       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
646 
647       setOperationAction(ISD::LOAD, VT, Custom);
648       setOperationAction(ISD::STORE, VT, Custom);
649 
650       setOperationAction(ISD::MLOAD, VT, Custom);
651       setOperationAction(ISD::MSTORE, VT, Custom);
652       setOperationAction(ISD::MGATHER, VT, Custom);
653       setOperationAction(ISD::MSCATTER, VT, Custom);
654 
655       setOperationAction(ISD::VP_LOAD, VT, Custom);
656       setOperationAction(ISD::VP_STORE, VT, Custom);
657       setOperationAction(ISD::VP_GATHER, VT, Custom);
658       setOperationAction(ISD::VP_SCATTER, VT, Custom);
659 
660       setOperationAction(ISD::SELECT, VT, Custom);
661       setOperationAction(ISD::SELECT_CC, VT, Expand);
662 
663       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
664       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
665       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
666 
667       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
668 
669       for (unsigned VPOpc : FloatingPointVPOps)
670         setOperationAction(VPOpc, VT, Custom);
671     };
672 
673     // Sets common extload/truncstore actions on RVV floating-point vector
674     // types.
675     const auto SetCommonVFPExtLoadTruncStoreActions =
676         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
677           for (auto SmallVT : SmallerVTs) {
678             setTruncStoreAction(VT, SmallVT, Expand);
679             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
680           }
681         };
682 
683     if (Subtarget.hasStdExtZfh())
684       for (MVT VT : F16VecVTs)
685         SetCommonVFPActions(VT);
686 
687     for (MVT VT : F32VecVTs) {
688       if (Subtarget.hasStdExtF())
689         SetCommonVFPActions(VT);
690       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
691     }
692 
693     for (MVT VT : F64VecVTs) {
694       if (Subtarget.hasStdExtD())
695         SetCommonVFPActions(VT);
696       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
697       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
698     }
699 
700     if (Subtarget.useRVVForFixedLengthVectors()) {
701       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
702         if (!useRVVForFixedLengthVectorVT(VT))
703           continue;
704 
705         // By default everything must be expanded.
706         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
707           setOperationAction(Op, VT, Expand);
708         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
709           setTruncStoreAction(VT, OtherVT, Expand);
710           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
711           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
712           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
713         }
714 
715         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
716         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
717         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
718 
719         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
720         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
721 
722         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
723         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
724 
725         setOperationAction(ISD::LOAD, VT, Custom);
726         setOperationAction(ISD::STORE, VT, Custom);
727 
728         setOperationAction(ISD::SETCC, VT, Custom);
729 
730         setOperationAction(ISD::SELECT, VT, Custom);
731 
732         setOperationAction(ISD::TRUNCATE, VT, Custom);
733 
734         setOperationAction(ISD::BITCAST, VT, Custom);
735 
736         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
737         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
738         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
739 
740         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
741         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
742         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
743 
744         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
745         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
746         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
747         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
748 
749         // Operations below are different for between masks and other vectors.
750         if (VT.getVectorElementType() == MVT::i1) {
751           setOperationAction(ISD::AND, VT, Custom);
752           setOperationAction(ISD::OR, VT, Custom);
753           setOperationAction(ISD::XOR, VT, Custom);
754           continue;
755         }
756 
757         // Use SPLAT_VECTOR to prevent type legalization from destroying the
758         // splats when type legalizing i64 scalar on RV32.
759         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
760         // improvements first.
761         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
762           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
763           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
764         }
765 
766         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
767         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
768 
769         setOperationAction(ISD::MLOAD, VT, Custom);
770         setOperationAction(ISD::MSTORE, VT, Custom);
771         setOperationAction(ISD::MGATHER, VT, Custom);
772         setOperationAction(ISD::MSCATTER, VT, Custom);
773 
774         setOperationAction(ISD::VP_LOAD, VT, Custom);
775         setOperationAction(ISD::VP_STORE, VT, Custom);
776         setOperationAction(ISD::VP_GATHER, VT, Custom);
777         setOperationAction(ISD::VP_SCATTER, VT, Custom);
778 
779         setOperationAction(ISD::ADD, VT, Custom);
780         setOperationAction(ISD::MUL, VT, Custom);
781         setOperationAction(ISD::SUB, VT, Custom);
782         setOperationAction(ISD::AND, VT, Custom);
783         setOperationAction(ISD::OR, VT, Custom);
784         setOperationAction(ISD::XOR, VT, Custom);
785         setOperationAction(ISD::SDIV, VT, Custom);
786         setOperationAction(ISD::SREM, VT, Custom);
787         setOperationAction(ISD::UDIV, VT, Custom);
788         setOperationAction(ISD::UREM, VT, Custom);
789         setOperationAction(ISD::SHL, VT, Custom);
790         setOperationAction(ISD::SRA, VT, Custom);
791         setOperationAction(ISD::SRL, VT, Custom);
792 
793         setOperationAction(ISD::SMIN, VT, Custom);
794         setOperationAction(ISD::SMAX, VT, Custom);
795         setOperationAction(ISD::UMIN, VT, Custom);
796         setOperationAction(ISD::UMAX, VT, Custom);
797         setOperationAction(ISD::ABS,  VT, Custom);
798 
799         setOperationAction(ISD::MULHS, VT, Custom);
800         setOperationAction(ISD::MULHU, VT, Custom);
801 
802         setOperationAction(ISD::SADDSAT, VT, Custom);
803         setOperationAction(ISD::UADDSAT, VT, Custom);
804         setOperationAction(ISD::SSUBSAT, VT, Custom);
805         setOperationAction(ISD::USUBSAT, VT, Custom);
806 
807         setOperationAction(ISD::VSELECT, VT, Custom);
808         setOperationAction(ISD::SELECT_CC, VT, Expand);
809 
810         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
811         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
812         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
813 
814         // Custom-lower reduction operations to set up the corresponding custom
815         // nodes' operands.
816         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
817         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
818         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
819         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
820         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
821 
822         for (unsigned VPOpc : IntegerVPOps)
823           setOperationAction(VPOpc, VT, Custom);
824       }
825 
826       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
827         if (!useRVVForFixedLengthVectorVT(VT))
828           continue;
829 
830         // By default everything must be expanded.
831         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
832           setOperationAction(Op, VT, Expand);
833         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
834           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
835           setTruncStoreAction(VT, OtherVT, Expand);
836         }
837 
838         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
839         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
840         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
841 
842         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
843         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
844         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
845         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
846         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
847 
848         setOperationAction(ISD::LOAD, VT, Custom);
849         setOperationAction(ISD::STORE, VT, Custom);
850         setOperationAction(ISD::MLOAD, VT, Custom);
851         setOperationAction(ISD::MSTORE, VT, Custom);
852         setOperationAction(ISD::MGATHER, VT, Custom);
853         setOperationAction(ISD::MSCATTER, VT, Custom);
854 
855         setOperationAction(ISD::VP_LOAD, VT, Custom);
856         setOperationAction(ISD::VP_STORE, VT, Custom);
857         setOperationAction(ISD::VP_GATHER, VT, Custom);
858         setOperationAction(ISD::VP_SCATTER, VT, Custom);
859 
860         setOperationAction(ISD::FADD, VT, Custom);
861         setOperationAction(ISD::FSUB, VT, Custom);
862         setOperationAction(ISD::FMUL, VT, Custom);
863         setOperationAction(ISD::FDIV, VT, Custom);
864         setOperationAction(ISD::FNEG, VT, Custom);
865         setOperationAction(ISD::FABS, VT, Custom);
866         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
867         setOperationAction(ISD::FSQRT, VT, Custom);
868         setOperationAction(ISD::FMA, VT, Custom);
869         setOperationAction(ISD::FMINNUM, VT, Custom);
870         setOperationAction(ISD::FMAXNUM, VT, Custom);
871 
872         setOperationAction(ISD::FP_ROUND, VT, Custom);
873         setOperationAction(ISD::FP_EXTEND, VT, Custom);
874 
875         for (auto CC : VFPCCToExpand)
876           setCondCodeAction(CC, VT, Expand);
877 
878         setOperationAction(ISD::VSELECT, VT, Custom);
879         setOperationAction(ISD::SELECT, VT, Custom);
880         setOperationAction(ISD::SELECT_CC, VT, Expand);
881 
882         setOperationAction(ISD::BITCAST, VT, Custom);
883 
884         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
885         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
886         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
887         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
888 
889         for (unsigned VPOpc : FloatingPointVPOps)
890           setOperationAction(VPOpc, VT, Custom);
891       }
892 
893       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
894       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
895       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
896       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
897       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
898       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
899       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
900       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
901     }
902   }
903 
904   // Function alignments.
905   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
906   setMinFunctionAlignment(FunctionAlignment);
907   setPrefFunctionAlignment(FunctionAlignment);
908 
909   setMinimumJumpTableEntries(5);
910 
911   // Jumps are expensive, compared to logic
912   setJumpIsExpensive();
913 
914   // We can use any register for comparisons
915   setHasMultipleConditionRegisters();
916 
917   setTargetDAGCombine(ISD::ADD);
918   setTargetDAGCombine(ISD::SUB);
919   setTargetDAGCombine(ISD::AND);
920   setTargetDAGCombine(ISD::OR);
921   setTargetDAGCombine(ISD::XOR);
922   setTargetDAGCombine(ISD::ANY_EXTEND);
923   setTargetDAGCombine(ISD::ZERO_EXTEND);
924   if (Subtarget.hasStdExtV()) {
925     setTargetDAGCombine(ISD::FCOPYSIGN);
926     setTargetDAGCombine(ISD::MGATHER);
927     setTargetDAGCombine(ISD::MSCATTER);
928     setTargetDAGCombine(ISD::VP_GATHER);
929     setTargetDAGCombine(ISD::VP_SCATTER);
930     setTargetDAGCombine(ISD::SRA);
931     setTargetDAGCombine(ISD::SRL);
932     setTargetDAGCombine(ISD::SHL);
933     setTargetDAGCombine(ISD::STORE);
934   }
935 }
936 
getSetCCResultType(const DataLayout & DL,LLVMContext & Context,EVT VT) const937 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
938                                             LLVMContext &Context,
939                                             EVT VT) const {
940   if (!VT.isVector())
941     return getPointerTy(DL);
942   if (Subtarget.hasStdExtV() &&
943       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
944     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
945   return VT.changeVectorElementTypeToInteger();
946 }
947 
getVPExplicitVectorLengthTy() const948 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
949   return Subtarget.getXLenVT();
950 }
951 
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const952 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
953                                              const CallInst &I,
954                                              MachineFunction &MF,
955                                              unsigned Intrinsic) const {
956   auto &DL = I.getModule()->getDataLayout();
957   switch (Intrinsic) {
958   default:
959     return false;
960   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
961   case Intrinsic::riscv_masked_atomicrmw_add_i32:
962   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
963   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
964   case Intrinsic::riscv_masked_atomicrmw_max_i32:
965   case Intrinsic::riscv_masked_atomicrmw_min_i32:
966   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
967   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
968   case Intrinsic::riscv_masked_cmpxchg_i32: {
969     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
970     Info.opc = ISD::INTRINSIC_W_CHAIN;
971     Info.memVT = MVT::getVT(PtrTy->getElementType());
972     Info.ptrVal = I.getArgOperand(0);
973     Info.offset = 0;
974     Info.align = Align(4);
975     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
976                  MachineMemOperand::MOVolatile;
977     return true;
978   }
979   case Intrinsic::riscv_masked_strided_load:
980     Info.opc = ISD::INTRINSIC_W_CHAIN;
981     Info.ptrVal = I.getArgOperand(1);
982     Info.memVT = getValueType(DL, I.getType()->getScalarType());
983     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
984     Info.size = MemoryLocation::UnknownSize;
985     Info.flags |= MachineMemOperand::MOLoad;
986     return true;
987   case Intrinsic::riscv_masked_strided_store:
988     Info.opc = ISD::INTRINSIC_VOID;
989     Info.ptrVal = I.getArgOperand(1);
990     Info.memVT =
991         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
992     Info.align = Align(
993         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
994         8);
995     Info.size = MemoryLocation::UnknownSize;
996     Info.flags |= MachineMemOperand::MOStore;
997     return true;
998   }
999 }
1000 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1001 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1002                                                 const AddrMode &AM, Type *Ty,
1003                                                 unsigned AS,
1004                                                 Instruction *I) const {
1005   // No global is ever allowed as a base.
1006   if (AM.BaseGV)
1007     return false;
1008 
1009   // Require a 12-bit signed offset.
1010   if (!isInt<12>(AM.BaseOffs))
1011     return false;
1012 
1013   switch (AM.Scale) {
1014   case 0: // "r+i" or just "i", depending on HasBaseReg.
1015     break;
1016   case 1:
1017     if (!AM.HasBaseReg) // allow "r+i".
1018       break;
1019     return false; // disallow "r+r" or "r+r+i".
1020   default:
1021     return false;
1022   }
1023 
1024   return true;
1025 }
1026 
isLegalICmpImmediate(int64_t Imm) const1027 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1028   return isInt<12>(Imm);
1029 }
1030 
isLegalAddImmediate(int64_t Imm) const1031 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1032   return isInt<12>(Imm);
1033 }
1034 
1035 // On RV32, 64-bit integers are split into their high and low parts and held
1036 // in two different registers, so the trunc is free since the low register can
1037 // just be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const1038 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1039   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1040     return false;
1041   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1042   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1043   return (SrcBits == 64 && DestBits == 32);
1044 }
1045 
isTruncateFree(EVT SrcVT,EVT DstVT) const1046 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1047   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1048       !SrcVT.isInteger() || !DstVT.isInteger())
1049     return false;
1050   unsigned SrcBits = SrcVT.getSizeInBits();
1051   unsigned DestBits = DstVT.getSizeInBits();
1052   return (SrcBits == 64 && DestBits == 32);
1053 }
1054 
isZExtFree(SDValue Val,EVT VT2) const1055 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1056   // Zexts are free if they can be combined with a load.
1057   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1058     EVT MemVT = LD->getMemoryVT();
1059     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
1060          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
1061         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1062          LD->getExtensionType() == ISD::ZEXTLOAD))
1063       return true;
1064   }
1065 
1066   return TargetLowering::isZExtFree(Val, VT2);
1067 }
1068 
isSExtCheaperThanZExt(EVT SrcVT,EVT DstVT) const1069 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1070   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1071 }
1072 
isCheapToSpeculateCttz() const1073 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1074   return Subtarget.hasStdExtZbb();
1075 }
1076 
isCheapToSpeculateCtlz() const1077 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1078   return Subtarget.hasStdExtZbb();
1079 }
1080 
1081 /// Check if sinking \p I's operands to I's basic block is profitable, because
1082 /// the operands can be folded into a target instruction, e.g.
1083 /// splats of scalars can fold into vector instructions.
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops) const1084 bool RISCVTargetLowering::shouldSinkOperands(
1085     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1086   using namespace llvm::PatternMatch;
1087 
1088   if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV())
1089     return false;
1090 
1091   auto IsSinker = [&](Instruction *I, int Operand) {
1092     switch (I->getOpcode()) {
1093     case Instruction::Add:
1094     case Instruction::Sub:
1095     case Instruction::Mul:
1096     case Instruction::And:
1097     case Instruction::Or:
1098     case Instruction::Xor:
1099     case Instruction::FAdd:
1100     case Instruction::FSub:
1101     case Instruction::FMul:
1102     case Instruction::FDiv:
1103       return true;
1104     case Instruction::Shl:
1105     case Instruction::LShr:
1106     case Instruction::AShr:
1107       return Operand == 1;
1108     case Instruction::Call:
1109       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1110         switch (II->getIntrinsicID()) {
1111         case Intrinsic::fma:
1112           return Operand == 0 || Operand == 1;
1113         default:
1114           return false;
1115         }
1116       }
1117       return false;
1118     default:
1119       return false;
1120     }
1121   };
1122 
1123   for (auto OpIdx : enumerate(I->operands())) {
1124     if (!IsSinker(I, OpIdx.index()))
1125       continue;
1126 
1127     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1128     // Make sure we are not already sinking this operand
1129     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1130       continue;
1131 
1132     // We are looking for a splat that can be sunk.
1133     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1134                              m_Undef(), m_ZeroMask())))
1135       continue;
1136 
1137     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1138     // and vector registers
1139     for (Use &U : Op->uses()) {
1140       Instruction *Insn = cast<Instruction>(U.getUser());
1141       if (!IsSinker(Insn, U.getOperandNo()))
1142         return false;
1143     }
1144 
1145     Ops.push_back(&Op->getOperandUse(0));
1146     Ops.push_back(&OpIdx.value());
1147   }
1148   return true;
1149 }
1150 
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const1151 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1152                                        bool ForCodeSize) const {
1153   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1154     return false;
1155   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1156     return false;
1157   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1158     return false;
1159   if (Imm.isNegZero())
1160     return false;
1161   return Imm.isZero();
1162 }
1163 
hasBitPreservingFPLogic(EVT VT) const1164 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1165   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1166          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1167          (VT == MVT::f64 && Subtarget.hasStdExtD());
1168 }
1169 
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1170 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1171                                                       CallingConv::ID CC,
1172                                                       EVT VT) const {
1173   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1174   // end up using a GPR but that will be decided based on ABI.
1175   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1176     return MVT::f32;
1177 
1178   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1179 }
1180 
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1181 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1182                                                            CallingConv::ID CC,
1183                                                            EVT VT) const {
1184   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1185   // end up using a GPR but that will be decided based on ABI.
1186   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1187     return 1;
1188 
1189   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1190 }
1191 
1192 // Changes the condition code and swaps operands if necessary, so the SetCC
1193 // operation matches one of the comparisons supported directly by branches
1194 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1195 // with 1/-1.
translateSetCCForBranch(const SDLoc & DL,SDValue & LHS,SDValue & RHS,ISD::CondCode & CC,SelectionDAG & DAG)1196 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1197                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1198   // Convert X > -1 to X >= 0.
1199   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1200     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1201     CC = ISD::SETGE;
1202     return;
1203   }
1204   // Convert X < 1 to 0 >= X.
1205   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1206     RHS = LHS;
1207     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1208     CC = ISD::SETGE;
1209     return;
1210   }
1211 
1212   switch (CC) {
1213   default:
1214     break;
1215   case ISD::SETGT:
1216   case ISD::SETLE:
1217   case ISD::SETUGT:
1218   case ISD::SETULE:
1219     CC = ISD::getSetCCSwappedOperands(CC);
1220     std::swap(LHS, RHS);
1221     break;
1222   }
1223 }
1224 
getLMUL(MVT VT)1225 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1226   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1227   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1228   if (VT.getVectorElementType() == MVT::i1)
1229     KnownSize *= 8;
1230 
1231   switch (KnownSize) {
1232   default:
1233     llvm_unreachable("Invalid LMUL.");
1234   case 8:
1235     return RISCVII::VLMUL::LMUL_F8;
1236   case 16:
1237     return RISCVII::VLMUL::LMUL_F4;
1238   case 32:
1239     return RISCVII::VLMUL::LMUL_F2;
1240   case 64:
1241     return RISCVII::VLMUL::LMUL_1;
1242   case 128:
1243     return RISCVII::VLMUL::LMUL_2;
1244   case 256:
1245     return RISCVII::VLMUL::LMUL_4;
1246   case 512:
1247     return RISCVII::VLMUL::LMUL_8;
1248   }
1249 }
1250 
getRegClassIDForLMUL(RISCVII::VLMUL LMul)1251 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1252   switch (LMul) {
1253   default:
1254     llvm_unreachable("Invalid LMUL.");
1255   case RISCVII::VLMUL::LMUL_F8:
1256   case RISCVII::VLMUL::LMUL_F4:
1257   case RISCVII::VLMUL::LMUL_F2:
1258   case RISCVII::VLMUL::LMUL_1:
1259     return RISCV::VRRegClassID;
1260   case RISCVII::VLMUL::LMUL_2:
1261     return RISCV::VRM2RegClassID;
1262   case RISCVII::VLMUL::LMUL_4:
1263     return RISCV::VRM4RegClassID;
1264   case RISCVII::VLMUL::LMUL_8:
1265     return RISCV::VRM8RegClassID;
1266   }
1267 }
1268 
getSubregIndexByMVT(MVT VT,unsigned Index)1269 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1270   RISCVII::VLMUL LMUL = getLMUL(VT);
1271   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1272       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1273       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1274       LMUL == RISCVII::VLMUL::LMUL_1) {
1275     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1276                   "Unexpected subreg numbering");
1277     return RISCV::sub_vrm1_0 + Index;
1278   }
1279   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1280     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1281                   "Unexpected subreg numbering");
1282     return RISCV::sub_vrm2_0 + Index;
1283   }
1284   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1285     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1286                   "Unexpected subreg numbering");
1287     return RISCV::sub_vrm4_0 + Index;
1288   }
1289   llvm_unreachable("Invalid vector type.");
1290 }
1291 
getRegClassIDForVecVT(MVT VT)1292 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1293   if (VT.getVectorElementType() == MVT::i1)
1294     return RISCV::VRRegClassID;
1295   return getRegClassIDForLMUL(getLMUL(VT));
1296 }
1297 
1298 // Attempt to decompose a subvector insert/extract between VecVT and
1299 // SubVecVT via subregister indices. Returns the subregister index that
1300 // can perform the subvector insert/extract with the given element index, as
1301 // well as the index corresponding to any leftover subvectors that must be
1302 // further inserted/extracted within the register class for SubVecVT.
1303 std::pair<unsigned, unsigned>
decomposeSubvectorInsertExtractToSubRegs(MVT VecVT,MVT SubVecVT,unsigned InsertExtractIdx,const RISCVRegisterInfo * TRI)1304 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1305     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1306     const RISCVRegisterInfo *TRI) {
1307   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1308                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1309                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1310                 "Register classes not ordered");
1311   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1312   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1313   // Try to compose a subregister index that takes us from the incoming
1314   // LMUL>1 register class down to the outgoing one. At each step we half
1315   // the LMUL:
1316   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1317   // Note that this is not guaranteed to find a subregister index, such as
1318   // when we are extracting from one VR type to another.
1319   unsigned SubRegIdx = RISCV::NoSubRegister;
1320   for (const unsigned RCID :
1321        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1322     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1323       VecVT = VecVT.getHalfNumVectorElementsVT();
1324       bool IsHi =
1325           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1326       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1327                                             getSubregIndexByMVT(VecVT, IsHi));
1328       if (IsHi)
1329         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1330     }
1331   return {SubRegIdx, InsertExtractIdx};
1332 }
1333 
1334 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1335 // stores for those types.
mergeStoresAfterLegalization(EVT VT) const1336 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1337   return !Subtarget.useRVVForFixedLengthVectors() ||
1338          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1339 }
1340 
isLegalElementTypeForRVV(Type * ScalarTy) const1341 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1342   if (ScalarTy->isPointerTy())
1343     return true;
1344 
1345   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1346       ScalarTy->isIntegerTy(32) || ScalarTy->isIntegerTy(64))
1347     return true;
1348 
1349   if (ScalarTy->isHalfTy())
1350     return Subtarget.hasStdExtZfh();
1351   if (ScalarTy->isFloatTy())
1352     return Subtarget.hasStdExtF();
1353   if (ScalarTy->isDoubleTy())
1354     return Subtarget.hasStdExtD();
1355 
1356   return false;
1357 }
1358 
useRVVForFixedLengthVectorVT(MVT VT,const RISCVSubtarget & Subtarget)1359 static bool useRVVForFixedLengthVectorVT(MVT VT,
1360                                          const RISCVSubtarget &Subtarget) {
1361   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1362   if (!Subtarget.useRVVForFixedLengthVectors())
1363     return false;
1364 
1365   // We only support a set of vector types with a consistent maximum fixed size
1366   // across all supported vector element types to avoid legalization issues.
1367   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1368   // fixed-length vector type we support is 1024 bytes.
1369   if (VT.getFixedSizeInBits() > 1024 * 8)
1370     return false;
1371 
1372   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1373 
1374   MVT EltVT = VT.getVectorElementType();
1375 
1376   // Don't use RVV for vectors we cannot scalarize if required.
1377   switch (EltVT.SimpleTy) {
1378   // i1 is supported but has different rules.
1379   default:
1380     return false;
1381   case MVT::i1:
1382     // Masks can only use a single register.
1383     if (VT.getVectorNumElements() > MinVLen)
1384       return false;
1385     MinVLen /= 8;
1386     break;
1387   case MVT::i8:
1388   case MVT::i16:
1389   case MVT::i32:
1390   case MVT::i64:
1391     break;
1392   case MVT::f16:
1393     if (!Subtarget.hasStdExtZfh())
1394       return false;
1395     break;
1396   case MVT::f32:
1397     if (!Subtarget.hasStdExtF())
1398       return false;
1399     break;
1400   case MVT::f64:
1401     if (!Subtarget.hasStdExtD())
1402       return false;
1403     break;
1404   }
1405 
1406   // Reject elements larger than ELEN.
1407   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1408     return false;
1409 
1410   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1411   // Don't use RVV for types that don't fit.
1412   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1413     return false;
1414 
1415   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1416   // the base fixed length RVV support in place.
1417   if (!VT.isPow2VectorType())
1418     return false;
1419 
1420   return true;
1421 }
1422 
useRVVForFixedLengthVectorVT(MVT VT) const1423 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1424   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1425 }
1426 
1427 // Return the largest legal scalable vector type that matches VT's element type.
getContainerForFixedLengthVector(const TargetLowering & TLI,MVT VT,const RISCVSubtarget & Subtarget)1428 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1429                                             const RISCVSubtarget &Subtarget) {
1430   // This may be called before legal types are setup.
1431   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1432           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1433          "Expected legal fixed length vector!");
1434 
1435   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1436   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1437 
1438   MVT EltVT = VT.getVectorElementType();
1439   switch (EltVT.SimpleTy) {
1440   default:
1441     llvm_unreachable("unexpected element type for RVV container");
1442   case MVT::i1:
1443   case MVT::i8:
1444   case MVT::i16:
1445   case MVT::i32:
1446   case MVT::i64:
1447   case MVT::f16:
1448   case MVT::f32:
1449   case MVT::f64: {
1450     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1451     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1452     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1453     unsigned NumElts =
1454         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1455     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1456     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1457     return MVT::getScalableVectorVT(EltVT, NumElts);
1458   }
1459   }
1460 }
1461 
getContainerForFixedLengthVector(SelectionDAG & DAG,MVT VT,const RISCVSubtarget & Subtarget)1462 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1463                                             const RISCVSubtarget &Subtarget) {
1464   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1465                                           Subtarget);
1466 }
1467 
getContainerForFixedLengthVector(MVT VT) const1468 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1469   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1470 }
1471 
1472 // Grow V to consume an entire RVV register.
convertToScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1473 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1474                                        const RISCVSubtarget &Subtarget) {
1475   assert(VT.isScalableVector() &&
1476          "Expected to convert into a scalable vector!");
1477   assert(V.getValueType().isFixedLengthVector() &&
1478          "Expected a fixed length vector operand!");
1479   SDLoc DL(V);
1480   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1481   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1482 }
1483 
1484 // Shrink V so it's just big enough to maintain a VT's worth of data.
convertFromScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1485 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1486                                          const RISCVSubtarget &Subtarget) {
1487   assert(VT.isFixedLengthVector() &&
1488          "Expected to convert into a fixed length vector!");
1489   assert(V.getValueType().isScalableVector() &&
1490          "Expected a scalable vector operand!");
1491   SDLoc DL(V);
1492   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1493   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1494 }
1495 
1496 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1497 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1498 // the vector type that it is contained in.
1499 static std::pair<SDValue, SDValue>
getDefaultVLOps(MVT VecVT,MVT ContainerVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1500 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1501                 const RISCVSubtarget &Subtarget) {
1502   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1503   MVT XLenVT = Subtarget.getXLenVT();
1504   SDValue VL = VecVT.isFixedLengthVector()
1505                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1506                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1507   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1508   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1509   return {Mask, VL};
1510 }
1511 
1512 // As above but assuming the given type is a scalable vector type.
1513 static std::pair<SDValue, SDValue>
getDefaultScalableVLOps(MVT VecVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1514 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1515                         const RISCVSubtarget &Subtarget) {
1516   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1517   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1518 }
1519 
1520 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1521 // of either is (currently) supported. This can get us into an infinite loop
1522 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1523 // as a ..., etc.
1524 // Until either (or both) of these can reliably lower any node, reporting that
1525 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1526 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1527 // which is not desirable.
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const1528 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1529     EVT VT, unsigned DefinedValues) const {
1530   return false;
1531 }
1532 
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const1533 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1534   // Only splats are currently supported.
1535   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1536     return true;
1537 
1538   return false;
1539 }
1540 
lowerFP_TO_INT_SAT(SDValue Op,SelectionDAG & DAG)1541 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1542   // RISCV FP-to-int conversions saturate to the destination register size, but
1543   // don't produce 0 for nan. We can use a conversion instruction and fix the
1544   // nan case with a compare and a select.
1545   SDValue Src = Op.getOperand(0);
1546 
1547   EVT DstVT = Op.getValueType();
1548   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1549 
1550   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1551   unsigned Opc;
1552   if (SatVT == DstVT)
1553     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1554   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1555     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1556   else
1557     return SDValue();
1558   // FIXME: Support other SatVTs by clamping before or after the conversion.
1559 
1560   SDLoc DL(Op);
1561   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1562 
1563   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1564   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1565 }
1566 
lowerSPLAT_VECTOR(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1567 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1568                                  const RISCVSubtarget &Subtarget) {
1569   MVT VT = Op.getSimpleValueType();
1570   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1571 
1572   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1573 
1574   SDLoc DL(Op);
1575   SDValue Mask, VL;
1576   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1577 
1578   unsigned Opc =
1579       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1580   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1581   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1582 }
1583 
1584 struct VIDSequence {
1585   int64_t StepNumerator;
1586   unsigned StepDenominator;
1587   int64_t Addend;
1588 };
1589 
1590 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1591 // to the (non-zero) step S and start value X. This can be then lowered as the
1592 // RVV sequence (VID * S) + X, for example.
1593 // The step S is represented as an integer numerator divided by a positive
1594 // denominator. Note that the implementation currently only identifies
1595 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1596 // cannot detect 2/3, for example.
1597 // Note that this method will also match potentially unappealing index
1598 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1599 // determine whether this is worth generating code for.
isSimpleVIDSequence(SDValue Op)1600 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1601   unsigned NumElts = Op.getNumOperands();
1602   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1603   if (!Op.getValueType().isInteger())
1604     return None;
1605 
1606   Optional<unsigned> SeqStepDenom;
1607   Optional<int64_t> SeqStepNum, SeqAddend;
1608   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1609   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1610   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1611     // Assume undef elements match the sequence; we just have to be careful
1612     // when interpolating across them.
1613     if (Op.getOperand(Idx).isUndef())
1614       continue;
1615     // The BUILD_VECTOR must be all constants.
1616     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1617       return None;
1618 
1619     uint64_t Val = Op.getConstantOperandVal(Idx) &
1620                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1621 
1622     if (PrevElt) {
1623       // Calculate the step since the last non-undef element, and ensure
1624       // it's consistent across the entire sequence.
1625       unsigned IdxDiff = Idx - PrevElt->second;
1626       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1627 
1628       // A zero-value value difference means that we're somewhere in the middle
1629       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1630       // step change before evaluating the sequence.
1631       if (ValDiff != 0) {
1632         int64_t Remainder = ValDiff % IdxDiff;
1633         // Normalize the step if it's greater than 1.
1634         if (Remainder != ValDiff) {
1635           // The difference must cleanly divide the element span.
1636           if (Remainder != 0)
1637             return None;
1638           ValDiff /= IdxDiff;
1639           IdxDiff = 1;
1640         }
1641 
1642         if (!SeqStepNum)
1643           SeqStepNum = ValDiff;
1644         else if (ValDiff != SeqStepNum)
1645           return None;
1646 
1647         if (!SeqStepDenom)
1648           SeqStepDenom = IdxDiff;
1649         else if (IdxDiff != *SeqStepDenom)
1650           return None;
1651       }
1652     }
1653 
1654     // Record and/or check any addend.
1655     if (SeqStepNum && SeqStepDenom) {
1656       uint64_t ExpectedVal =
1657           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1658       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1659       if (!SeqAddend)
1660         SeqAddend = Addend;
1661       else if (SeqAddend != Addend)
1662         return None;
1663     }
1664 
1665     // Record this non-undef element for later.
1666     if (!PrevElt || PrevElt->first != Val)
1667       PrevElt = std::make_pair(Val, Idx);
1668   }
1669   // We need to have logged both a step and an addend for this to count as
1670   // a legal index sequence.
1671   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1672     return None;
1673 
1674   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1675 }
1676 
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1677 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1678                                  const RISCVSubtarget &Subtarget) {
1679   MVT VT = Op.getSimpleValueType();
1680   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1681 
1682   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1683 
1684   SDLoc DL(Op);
1685   SDValue Mask, VL;
1686   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1687 
1688   MVT XLenVT = Subtarget.getXLenVT();
1689   unsigned NumElts = Op.getNumOperands();
1690 
1691   if (VT.getVectorElementType() == MVT::i1) {
1692     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1693       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1694       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1695     }
1696 
1697     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1698       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1699       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1700     }
1701 
1702     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1703     // scalar integer chunks whose bit-width depends on the number of mask
1704     // bits and XLEN.
1705     // First, determine the most appropriate scalar integer type to use. This
1706     // is at most XLenVT, but may be shrunk to a smaller vector element type
1707     // according to the size of the final vector - use i8 chunks rather than
1708     // XLenVT if we're producing a v8i1. This results in more consistent
1709     // codegen across RV32 and RV64.
1710     unsigned NumViaIntegerBits =
1711         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1712     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1713       // If we have to use more than one INSERT_VECTOR_ELT then this
1714       // optimization is likely to increase code size; avoid peforming it in
1715       // such a case. We can use a load from a constant pool in this case.
1716       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1717         return SDValue();
1718       // Now we can create our integer vector type. Note that it may be larger
1719       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1720       MVT IntegerViaVecVT =
1721           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1722                            divideCeil(NumElts, NumViaIntegerBits));
1723 
1724       uint64_t Bits = 0;
1725       unsigned BitPos = 0, IntegerEltIdx = 0;
1726       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1727 
1728       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1729         // Once we accumulate enough bits to fill our scalar type, insert into
1730         // our vector and clear our accumulated data.
1731         if (I != 0 && I % NumViaIntegerBits == 0) {
1732           if (NumViaIntegerBits <= 32)
1733             Bits = SignExtend64(Bits, 32);
1734           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1735           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1736                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1737           Bits = 0;
1738           BitPos = 0;
1739           IntegerEltIdx++;
1740         }
1741         SDValue V = Op.getOperand(I);
1742         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1743         Bits |= ((uint64_t)BitValue << BitPos);
1744       }
1745 
1746       // Insert the (remaining) scalar value into position in our integer
1747       // vector type.
1748       if (NumViaIntegerBits <= 32)
1749         Bits = SignExtend64(Bits, 32);
1750       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1751       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1752                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1753 
1754       if (NumElts < NumViaIntegerBits) {
1755         // If we're producing a smaller vector than our minimum legal integer
1756         // type, bitcast to the equivalent (known-legal) mask type, and extract
1757         // our final mask.
1758         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1759         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1760         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1761                           DAG.getConstant(0, DL, XLenVT));
1762       } else {
1763         // Else we must have produced an integer type with the same size as the
1764         // mask type; bitcast for the final result.
1765         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1766         Vec = DAG.getBitcast(VT, Vec);
1767       }
1768 
1769       return Vec;
1770     }
1771 
1772     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1773     // vector type, we have a legal equivalently-sized i8 type, so we can use
1774     // that.
1775     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1776     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1777 
1778     SDValue WideVec;
1779     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1780       // For a splat, perform a scalar truncate before creating the wider
1781       // vector.
1782       assert(Splat.getValueType() == XLenVT &&
1783              "Unexpected type for i1 splat value");
1784       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1785                           DAG.getConstant(1, DL, XLenVT));
1786       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1787     } else {
1788       SmallVector<SDValue, 8> Ops(Op->op_values());
1789       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1790       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1791       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1792     }
1793 
1794     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1795   }
1796 
1797   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1798     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1799                                         : RISCVISD::VMV_V_X_VL;
1800     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1801     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1802   }
1803 
1804   // Try and match index sequences, which we can lower to the vid instruction
1805   // with optional modifications. An all-undef vector is matched by
1806   // getSplatValue, above.
1807   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1808     int64_t StepNumerator = SimpleVID->StepNumerator;
1809     unsigned StepDenominator = SimpleVID->StepDenominator;
1810     int64_t Addend = SimpleVID->Addend;
1811     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1812     // threshold since it's the immediate value many RVV instructions accept.
1813     if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) &&
1814         isInt<5>(Addend)) {
1815       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1816       // Convert right out of the scalable type so we can use standard ISD
1817       // nodes for the rest of the computation. If we used scalable types with
1818       // these, we'd lose the fixed-length vector info and generate worse
1819       // vsetvli code.
1820       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1821       assert(StepNumerator != 0 && "Invalid step");
1822       bool Negate = false;
1823       if (StepNumerator != 1) {
1824         int64_t SplatStepVal = StepNumerator;
1825         unsigned Opcode = ISD::MUL;
1826         if (isPowerOf2_64(std::abs(StepNumerator))) {
1827           Negate = StepNumerator < 0;
1828           Opcode = ISD::SHL;
1829           SplatStepVal = Log2_64(std::abs(StepNumerator));
1830         }
1831         SDValue SplatStep = DAG.getSplatVector(
1832             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1833         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1834       }
1835       if (StepDenominator != 1) {
1836         SDValue SplatStep = DAG.getSplatVector(
1837             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
1838         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
1839       }
1840       if (Addend != 0 || Negate) {
1841         SDValue SplatAddend =
1842             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1843         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1844       }
1845       return VID;
1846     }
1847   }
1848 
1849   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1850   // when re-interpreted as a vector with a larger element type. For example,
1851   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1852   // could be instead splat as
1853   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1854   // TODO: This optimization could also work on non-constant splats, but it
1855   // would require bit-manipulation instructions to construct the splat value.
1856   SmallVector<SDValue> Sequence;
1857   unsigned EltBitSize = VT.getScalarSizeInBits();
1858   const auto *BV = cast<BuildVectorSDNode>(Op);
1859   if (VT.isInteger() && EltBitSize < 64 &&
1860       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1861       BV->getRepeatedSequence(Sequence) &&
1862       (Sequence.size() * EltBitSize) <= 64) {
1863     unsigned SeqLen = Sequence.size();
1864     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1865     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1866     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1867             ViaIntVT == MVT::i64) &&
1868            "Unexpected sequence type");
1869 
1870     unsigned EltIdx = 0;
1871     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1872     uint64_t SplatValue = 0;
1873     // Construct the amalgamated value which can be splatted as this larger
1874     // vector type.
1875     for (const auto &SeqV : Sequence) {
1876       if (!SeqV.isUndef())
1877         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1878                        << (EltIdx * EltBitSize));
1879       EltIdx++;
1880     }
1881 
1882     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1883     // achieve better constant materializion.
1884     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1885       SplatValue = SignExtend64(SplatValue, 32);
1886 
1887     // Since we can't introduce illegal i64 types at this stage, we can only
1888     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1889     // way we can use RVV instructions to splat.
1890     assert((ViaIntVT.bitsLE(XLenVT) ||
1891             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1892            "Unexpected bitcast sequence");
1893     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1894       SDValue ViaVL =
1895           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1896       MVT ViaContainerVT =
1897           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1898       SDValue Splat =
1899           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1900                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1901       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1902       return DAG.getBitcast(VT, Splat);
1903     }
1904   }
1905 
1906   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1907   // which constitute a large proportion of the elements. In such cases we can
1908   // splat a vector with the dominant element and make up the shortfall with
1909   // INSERT_VECTOR_ELTs.
1910   // Note that this includes vectors of 2 elements by association. The
1911   // upper-most element is the "dominant" one, allowing us to use a splat to
1912   // "insert" the upper element, and an insert of the lower element at position
1913   // 0, which improves codegen.
1914   SDValue DominantValue;
1915   unsigned MostCommonCount = 0;
1916   DenseMap<SDValue, unsigned> ValueCounts;
1917   unsigned NumUndefElts =
1918       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1919 
1920   // Track the number of scalar loads we know we'd be inserting, estimated as
1921   // any non-zero floating-point constant. Other kinds of element are either
1922   // already in registers or are materialized on demand. The threshold at which
1923   // a vector load is more desirable than several scalar materializion and
1924   // vector-insertion instructions is not known.
1925   unsigned NumScalarLoads = 0;
1926 
1927   for (SDValue V : Op->op_values()) {
1928     if (V.isUndef())
1929       continue;
1930 
1931     ValueCounts.insert(std::make_pair(V, 0));
1932     unsigned &Count = ValueCounts[V];
1933 
1934     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
1935       NumScalarLoads += !CFP->isExactlyValue(+0.0);
1936 
1937     // Is this value dominant? In case of a tie, prefer the highest element as
1938     // it's cheaper to insert near the beginning of a vector than it is at the
1939     // end.
1940     if (++Count >= MostCommonCount) {
1941       DominantValue = V;
1942       MostCommonCount = Count;
1943     }
1944   }
1945 
1946   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1947   unsigned NumDefElts = NumElts - NumUndefElts;
1948   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1949 
1950   // Don't perform this optimization when optimizing for size, since
1951   // materializing elements and inserting them tends to cause code bloat.
1952   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
1953       ((MostCommonCount > DominantValueCountThreshold) ||
1954        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1955     // Start by splatting the most common element.
1956     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1957 
1958     DenseSet<SDValue> Processed{DominantValue};
1959     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1960     for (const auto &OpIdx : enumerate(Op->ops())) {
1961       const SDValue &V = OpIdx.value();
1962       if (V.isUndef() || !Processed.insert(V).second)
1963         continue;
1964       if (ValueCounts[V] == 1) {
1965         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1966                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1967       } else {
1968         // Blend in all instances of this value using a VSELECT, using a
1969         // mask where each bit signals whether that element is the one
1970         // we're after.
1971         SmallVector<SDValue> Ops;
1972         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1973           return DAG.getConstant(V == V1, DL, XLenVT);
1974         });
1975         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1976                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1977                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1978       }
1979     }
1980 
1981     return Vec;
1982   }
1983 
1984   return SDValue();
1985 }
1986 
splatPartsI64WithVL(const SDLoc & DL,MVT VT,SDValue Lo,SDValue Hi,SDValue VL,SelectionDAG & DAG)1987 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1988                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1989   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1990     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1991     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1992     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1993     // node in order to try and match RVV vector/scalar instructions.
1994     if ((LoC >> 31) == HiC)
1995       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1996   }
1997 
1998   // Fall back to a stack store and stride x0 vector load.
1999   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2000 }
2001 
2002 // Called by type legalization to handle splat of i64 on RV32.
2003 // FIXME: We can optimize this when the type has sign or zero bits in one
2004 // of the halves.
splatSplitI64WithVL(const SDLoc & DL,MVT VT,SDValue Scalar,SDValue VL,SelectionDAG & DAG)2005 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2006                                    SDValue VL, SelectionDAG &DAG) {
2007   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2008   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2009                            DAG.getConstant(0, DL, MVT::i32));
2010   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2011                            DAG.getConstant(1, DL, MVT::i32));
2012   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2013 }
2014 
2015 // This function lowers a splat of a scalar operand Splat with the vector
2016 // length VL. It ensures the final sequence is type legal, which is useful when
2017 // lowering a splat after type legalization.
lowerScalarSplat(SDValue Scalar,SDValue VL,MVT VT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2018 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2019                                 SelectionDAG &DAG,
2020                                 const RISCVSubtarget &Subtarget) {
2021   if (VT.isFloatingPoint())
2022     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2023 
2024   MVT XLenVT = Subtarget.getXLenVT();
2025 
2026   // Simplest case is that the operand needs to be promoted to XLenVT.
2027   if (Scalar.getValueType().bitsLE(XLenVT)) {
2028     // If the operand is a constant, sign extend to increase our chances
2029     // of being able to use a .vi instruction. ANY_EXTEND would become a
2030     // a zero extend and the simm5 check in isel would fail.
2031     // FIXME: Should we ignore the upper bits in isel instead?
2032     unsigned ExtOpc =
2033         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2034     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2035     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2036   }
2037 
2038   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2039          "Unexpected scalar for splat lowering!");
2040 
2041   // Otherwise use the more complicated splatting algorithm.
2042   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2043 }
2044 
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2045 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2046                                    const RISCVSubtarget &Subtarget) {
2047   SDValue V1 = Op.getOperand(0);
2048   SDValue V2 = Op.getOperand(1);
2049   SDLoc DL(Op);
2050   MVT XLenVT = Subtarget.getXLenVT();
2051   MVT VT = Op.getSimpleValueType();
2052   unsigned NumElts = VT.getVectorNumElements();
2053   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2054 
2055   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2056 
2057   SDValue TrueMask, VL;
2058   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2059 
2060   if (SVN->isSplat()) {
2061     const int Lane = SVN->getSplatIndex();
2062     if (Lane >= 0) {
2063       MVT SVT = VT.getVectorElementType();
2064 
2065       // Turn splatted vector load into a strided load with an X0 stride.
2066       SDValue V = V1;
2067       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2068       // with undef.
2069       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2070       int Offset = Lane;
2071       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2072         int OpElements =
2073             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2074         V = V.getOperand(Offset / OpElements);
2075         Offset %= OpElements;
2076       }
2077 
2078       // We need to ensure the load isn't atomic or volatile.
2079       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2080         auto *Ld = cast<LoadSDNode>(V);
2081         Offset *= SVT.getStoreSize();
2082         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2083                                                    TypeSize::Fixed(Offset), DL);
2084 
2085         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2086         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2087           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2088           SDValue IntID =
2089               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2090           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2091                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2092           SDValue NewLoad = DAG.getMemIntrinsicNode(
2093               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2094               DAG.getMachineFunction().getMachineMemOperand(
2095                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2096           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2097           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2098         }
2099 
2100         // Otherwise use a scalar load and splat. This will give the best
2101         // opportunity to fold a splat into the operation. ISel can turn it into
2102         // the x0 strided load if we aren't able to fold away the select.
2103         if (SVT.isFloatingPoint())
2104           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2105                           Ld->getPointerInfo().getWithOffset(Offset),
2106                           Ld->getOriginalAlign(),
2107                           Ld->getMemOperand()->getFlags());
2108         else
2109           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2110                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2111                              Ld->getOriginalAlign(),
2112                              Ld->getMemOperand()->getFlags());
2113         DAG.makeEquivalentMemoryOrdering(Ld, V);
2114 
2115         unsigned Opc =
2116             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2117         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2118         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2119       }
2120 
2121       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2122       assert(Lane < (int)NumElts && "Unexpected lane!");
2123       SDValue Gather =
2124           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2125                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2126       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2127     }
2128   }
2129 
2130   // Detect shuffles which can be re-expressed as vector selects; these are
2131   // shuffles in which each element in the destination is taken from an element
2132   // at the corresponding index in either source vectors.
2133   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2134     int MaskIndex = MaskIdx.value();
2135     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2136   });
2137 
2138   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2139 
2140   SmallVector<SDValue> MaskVals;
2141   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2142   // merged with a second vrgather.
2143   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2144 
2145   // By default we preserve the original operand order, and use a mask to
2146   // select LHS as true and RHS as false. However, since RVV vector selects may
2147   // feature splats but only on the LHS, we may choose to invert our mask and
2148   // instead select between RHS and LHS.
2149   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2150   bool InvertMask = IsSelect == SwapOps;
2151 
2152   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2153   // half.
2154   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2155 
2156   // Now construct the mask that will be used by the vselect or blended
2157   // vrgather operation. For vrgathers, construct the appropriate indices into
2158   // each vector.
2159   for (int MaskIndex : SVN->getMask()) {
2160     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2161     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2162     if (!IsSelect) {
2163       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2164       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2165                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2166                                      : DAG.getUNDEF(XLenVT));
2167       GatherIndicesRHS.push_back(
2168           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2169                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2170       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2171         ++LHSIndexCounts[MaskIndex];
2172       if (!IsLHSOrUndefIndex)
2173         ++RHSIndexCounts[MaskIndex - NumElts];
2174     }
2175   }
2176 
2177   if (SwapOps) {
2178     std::swap(V1, V2);
2179     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2180   }
2181 
2182   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2183   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2184   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2185 
2186   if (IsSelect)
2187     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2188 
2189   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2190     // On such a large vector we're unable to use i8 as the index type.
2191     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2192     // may involve vector splitting if we're already at LMUL=8, or our
2193     // user-supplied maximum fixed-length LMUL.
2194     return SDValue();
2195   }
2196 
2197   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2198   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2199   MVT IndexVT = VT.changeTypeToInteger();
2200   // Since we can't introduce illegal index types at this stage, use i16 and
2201   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2202   // than XLenVT.
2203   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2204     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2205     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2206   }
2207 
2208   MVT IndexContainerVT =
2209       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2210 
2211   SDValue Gather;
2212   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2213   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2214   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2215     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2216   } else {
2217     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2218     // If only one index is used, we can use a "splat" vrgather.
2219     // TODO: We can splat the most-common index and fix-up any stragglers, if
2220     // that's beneficial.
2221     if (LHSIndexCounts.size() == 1) {
2222       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2223       Gather =
2224           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2225                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2226     } else {
2227       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2228       LHSIndices =
2229           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2230 
2231       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2232                            TrueMask, VL);
2233     }
2234   }
2235 
2236   // If a second vector operand is used by this shuffle, blend it in with an
2237   // additional vrgather.
2238   if (!V2.isUndef()) {
2239     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2240     // If only one index is used, we can use a "splat" vrgather.
2241     // TODO: We can splat the most-common index and fix-up any stragglers, if
2242     // that's beneficial.
2243     if (RHSIndexCounts.size() == 1) {
2244       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2245       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2246                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2247     } else {
2248       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2249       RHSIndices =
2250           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2251       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2252                        VL);
2253     }
2254 
2255     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2256     SelectMask =
2257         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2258 
2259     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2260                          Gather, VL);
2261   }
2262 
2263   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2264 }
2265 
getRVVFPExtendOrRound(SDValue Op,MVT VT,MVT ContainerVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2266 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2267                                      SDLoc DL, SelectionDAG &DAG,
2268                                      const RISCVSubtarget &Subtarget) {
2269   if (VT.isScalableVector())
2270     return DAG.getFPExtendOrRound(Op, DL, VT);
2271   assert(VT.isFixedLengthVector() &&
2272          "Unexpected value type for RVV FP extend/round lowering");
2273   SDValue Mask, VL;
2274   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2275   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2276                         ? RISCVISD::FP_EXTEND_VL
2277                         : RISCVISD::FP_ROUND_VL;
2278   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2279 }
2280 
2281 // While RVV has alignment restrictions, we should always be able to load as a
2282 // legal equivalently-sized byte-typed vector instead. This method is
2283 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2284 // the load is already correctly-aligned, it returns SDValue().
expandUnalignedRVVLoad(SDValue Op,SelectionDAG & DAG) const2285 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2286                                                     SelectionDAG &DAG) const {
2287   auto *Load = cast<LoadSDNode>(Op);
2288   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2289 
2290   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2291                                      Load->getMemoryVT(),
2292                                      *Load->getMemOperand()))
2293     return SDValue();
2294 
2295   SDLoc DL(Op);
2296   MVT VT = Op.getSimpleValueType();
2297   unsigned EltSizeBits = VT.getScalarSizeInBits();
2298   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2299          "Unexpected unaligned RVV load type");
2300   MVT NewVT =
2301       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2302   assert(NewVT.isValid() &&
2303          "Expecting equally-sized RVV vector types to be legal");
2304   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2305                           Load->getPointerInfo(), Load->getOriginalAlign(),
2306                           Load->getMemOperand()->getFlags());
2307   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2308 }
2309 
2310 // While RVV has alignment restrictions, we should always be able to store as a
2311 // legal equivalently-sized byte-typed vector instead. This method is
2312 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2313 // returns SDValue() if the store is already correctly aligned.
expandUnalignedRVVStore(SDValue Op,SelectionDAG & DAG) const2314 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2315                                                      SelectionDAG &DAG) const {
2316   auto *Store = cast<StoreSDNode>(Op);
2317   assert(Store && Store->getValue().getValueType().isVector() &&
2318          "Expected vector store");
2319 
2320   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2321                                      Store->getMemoryVT(),
2322                                      *Store->getMemOperand()))
2323     return SDValue();
2324 
2325   SDLoc DL(Op);
2326   SDValue StoredVal = Store->getValue();
2327   MVT VT = StoredVal.getSimpleValueType();
2328   unsigned EltSizeBits = VT.getScalarSizeInBits();
2329   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2330          "Unexpected unaligned RVV store type");
2331   MVT NewVT =
2332       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2333   assert(NewVT.isValid() &&
2334          "Expecting equally-sized RVV vector types to be legal");
2335   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2336   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2337                       Store->getPointerInfo(), Store->getOriginalAlign(),
2338                       Store->getMemOperand()->getFlags());
2339 }
2340 
LowerOperation(SDValue Op,SelectionDAG & DAG) const2341 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2342                                             SelectionDAG &DAG) const {
2343   switch (Op.getOpcode()) {
2344   default:
2345     report_fatal_error("unimplemented operand");
2346   case ISD::GlobalAddress:
2347     return lowerGlobalAddress(Op, DAG);
2348   case ISD::BlockAddress:
2349     return lowerBlockAddress(Op, DAG);
2350   case ISD::ConstantPool:
2351     return lowerConstantPool(Op, DAG);
2352   case ISD::JumpTable:
2353     return lowerJumpTable(Op, DAG);
2354   case ISD::GlobalTLSAddress:
2355     return lowerGlobalTLSAddress(Op, DAG);
2356   case ISD::SELECT:
2357     return lowerSELECT(Op, DAG);
2358   case ISD::BRCOND:
2359     return lowerBRCOND(Op, DAG);
2360   case ISD::VASTART:
2361     return lowerVASTART(Op, DAG);
2362   case ISD::FRAMEADDR:
2363     return lowerFRAMEADDR(Op, DAG);
2364   case ISD::RETURNADDR:
2365     return lowerRETURNADDR(Op, DAG);
2366   case ISD::SHL_PARTS:
2367     return lowerShiftLeftParts(Op, DAG);
2368   case ISD::SRA_PARTS:
2369     return lowerShiftRightParts(Op, DAG, true);
2370   case ISD::SRL_PARTS:
2371     return lowerShiftRightParts(Op, DAG, false);
2372   case ISD::BITCAST: {
2373     SDLoc DL(Op);
2374     EVT VT = Op.getValueType();
2375     SDValue Op0 = Op.getOperand(0);
2376     EVT Op0VT = Op0.getValueType();
2377     MVT XLenVT = Subtarget.getXLenVT();
2378     if (VT.isFixedLengthVector()) {
2379       // We can handle fixed length vector bitcasts with a simple replacement
2380       // in isel.
2381       if (Op0VT.isFixedLengthVector())
2382         return Op;
2383       // When bitcasting from scalar to fixed-length vector, insert the scalar
2384       // into a one-element vector of the result type, and perform a vector
2385       // bitcast.
2386       if (!Op0VT.isVector()) {
2387         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2388         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2389                                               DAG.getUNDEF(BVT), Op0,
2390                                               DAG.getConstant(0, DL, XLenVT)));
2391       }
2392       return SDValue();
2393     }
2394     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2395     // thus: bitcast the vector to a one-element vector type whose element type
2396     // is the same as the result type, and extract the first element.
2397     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2398       LLVMContext &Context = *DAG.getContext();
2399       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
2400       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2401                          DAG.getConstant(0, DL, XLenVT));
2402     }
2403     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2404       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2405       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2406       return FPConv;
2407     }
2408     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2409         Subtarget.hasStdExtF()) {
2410       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2411       SDValue FPConv =
2412           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2413       return FPConv;
2414     }
2415     return SDValue();
2416   }
2417   case ISD::INTRINSIC_WO_CHAIN:
2418     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2419   case ISD::INTRINSIC_W_CHAIN:
2420     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2421   case ISD::INTRINSIC_VOID:
2422     return LowerINTRINSIC_VOID(Op, DAG);
2423   case ISD::BSWAP:
2424   case ISD::BITREVERSE: {
2425     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2426     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2427     MVT VT = Op.getSimpleValueType();
2428     SDLoc DL(Op);
2429     // Start with the maximum immediate value which is the bitwidth - 1.
2430     unsigned Imm = VT.getSizeInBits() - 1;
2431     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2432     if (Op.getOpcode() == ISD::BSWAP)
2433       Imm &= ~0x7U;
2434     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2435                        DAG.getConstant(Imm, DL, VT));
2436   }
2437   case ISD::FSHL:
2438   case ISD::FSHR: {
2439     MVT VT = Op.getSimpleValueType();
2440     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2441     SDLoc DL(Op);
2442     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2443       return Op;
2444     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2445     // use log(XLen) bits. Mask the shift amount accordingly.
2446     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2447     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2448                                 DAG.getConstant(ShAmtWidth, DL, VT));
2449     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2450     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2451   }
2452   case ISD::TRUNCATE: {
2453     SDLoc DL(Op);
2454     MVT VT = Op.getSimpleValueType();
2455     // Only custom-lower vector truncates
2456     if (!VT.isVector())
2457       return Op;
2458 
2459     // Truncates to mask types are handled differently
2460     if (VT.getVectorElementType() == MVT::i1)
2461       return lowerVectorMaskTrunc(Op, DAG);
2462 
2463     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2464     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2465     // truncate by one power of two at a time.
2466     MVT DstEltVT = VT.getVectorElementType();
2467 
2468     SDValue Src = Op.getOperand(0);
2469     MVT SrcVT = Src.getSimpleValueType();
2470     MVT SrcEltVT = SrcVT.getVectorElementType();
2471 
2472     assert(DstEltVT.bitsLT(SrcEltVT) &&
2473            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2474            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2475            "Unexpected vector truncate lowering");
2476 
2477     MVT ContainerVT = SrcVT;
2478     if (SrcVT.isFixedLengthVector()) {
2479       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2480       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2481     }
2482 
2483     SDValue Result = Src;
2484     SDValue Mask, VL;
2485     std::tie(Mask, VL) =
2486         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2487     LLVMContext &Context = *DAG.getContext();
2488     const ElementCount Count = ContainerVT.getVectorElementCount();
2489     do {
2490       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2491       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2492       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2493                            Mask, VL);
2494     } while (SrcEltVT != DstEltVT);
2495 
2496     if (SrcVT.isFixedLengthVector())
2497       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2498 
2499     return Result;
2500   }
2501   case ISD::ANY_EXTEND:
2502   case ISD::ZERO_EXTEND:
2503     if (Op.getOperand(0).getValueType().isVector() &&
2504         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2505       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2506     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2507   case ISD::SIGN_EXTEND:
2508     if (Op.getOperand(0).getValueType().isVector() &&
2509         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2510       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2511     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2512   case ISD::SPLAT_VECTOR_PARTS:
2513     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2514   case ISD::INSERT_VECTOR_ELT:
2515     return lowerINSERT_VECTOR_ELT(Op, DAG);
2516   case ISD::EXTRACT_VECTOR_ELT:
2517     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2518   case ISD::VSCALE: {
2519     MVT VT = Op.getSimpleValueType();
2520     SDLoc DL(Op);
2521     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2522     // We define our scalable vector types for lmul=1 to use a 64 bit known
2523     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2524     // vscale as VLENB / 8.
2525     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2526     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2527       // We assume VLENB is a multiple of 8. We manually choose the best shift
2528       // here because SimplifyDemandedBits isn't always able to simplify it.
2529       uint64_t Val = Op.getConstantOperandVal(0);
2530       if (isPowerOf2_64(Val)) {
2531         uint64_t Log2 = Log2_64(Val);
2532         if (Log2 < 3)
2533           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2534                              DAG.getConstant(3 - Log2, DL, VT));
2535         if (Log2 > 3)
2536           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2537                              DAG.getConstant(Log2 - 3, DL, VT));
2538         return VLENB;
2539       }
2540       // If the multiplier is a multiple of 8, scale it down to avoid needing
2541       // to shift the VLENB value.
2542       if ((Val % 8) == 0)
2543         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2544                            DAG.getConstant(Val / 8, DL, VT));
2545     }
2546 
2547     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2548                                  DAG.getConstant(3, DL, VT));
2549     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2550   }
2551   case ISD::FP_EXTEND: {
2552     // RVV can only do fp_extend to types double the size as the source. We
2553     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2554     // via f32.
2555     SDLoc DL(Op);
2556     MVT VT = Op.getSimpleValueType();
2557     SDValue Src = Op.getOperand(0);
2558     MVT SrcVT = Src.getSimpleValueType();
2559 
2560     // Prepare any fixed-length vector operands.
2561     MVT ContainerVT = VT;
2562     if (SrcVT.isFixedLengthVector()) {
2563       ContainerVT = getContainerForFixedLengthVector(VT);
2564       MVT SrcContainerVT =
2565           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2566       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2567     }
2568 
2569     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2570         SrcVT.getVectorElementType() != MVT::f16) {
2571       // For scalable vectors, we only need to close the gap between
2572       // vXf16->vXf64.
2573       if (!VT.isFixedLengthVector())
2574         return Op;
2575       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2576       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2577       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2578     }
2579 
2580     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2581     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2582     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2583         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2584 
2585     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2586                                            DL, DAG, Subtarget);
2587     if (VT.isFixedLengthVector())
2588       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2589     return Extend;
2590   }
2591   case ISD::FP_ROUND: {
2592     // RVV can only do fp_round to types half the size as the source. We
2593     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2594     // conversion instruction.
2595     SDLoc DL(Op);
2596     MVT VT = Op.getSimpleValueType();
2597     SDValue Src = Op.getOperand(0);
2598     MVT SrcVT = Src.getSimpleValueType();
2599 
2600     // Prepare any fixed-length vector operands.
2601     MVT ContainerVT = VT;
2602     if (VT.isFixedLengthVector()) {
2603       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2604       ContainerVT =
2605           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2606       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2607     }
2608 
2609     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2610         SrcVT.getVectorElementType() != MVT::f64) {
2611       // For scalable vectors, we only need to close the gap between
2612       // vXf64<->vXf16.
2613       if (!VT.isFixedLengthVector())
2614         return Op;
2615       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2616       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2617       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2618     }
2619 
2620     SDValue Mask, VL;
2621     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2622 
2623     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2624     SDValue IntermediateRound =
2625         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2626     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2627                                           DL, DAG, Subtarget);
2628 
2629     if (VT.isFixedLengthVector())
2630       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2631     return Round;
2632   }
2633   case ISD::FP_TO_SINT:
2634   case ISD::FP_TO_UINT:
2635   case ISD::SINT_TO_FP:
2636   case ISD::UINT_TO_FP: {
2637     // RVV can only do fp<->int conversions to types half/double the size as
2638     // the source. We custom-lower any conversions that do two hops into
2639     // sequences.
2640     MVT VT = Op.getSimpleValueType();
2641     if (!VT.isVector())
2642       return Op;
2643     SDLoc DL(Op);
2644     SDValue Src = Op.getOperand(0);
2645     MVT EltVT = VT.getVectorElementType();
2646     MVT SrcVT = Src.getSimpleValueType();
2647     MVT SrcEltVT = SrcVT.getVectorElementType();
2648     unsigned EltSize = EltVT.getSizeInBits();
2649     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2650     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2651            "Unexpected vector element types");
2652 
2653     bool IsInt2FP = SrcEltVT.isInteger();
2654     // Widening conversions
2655     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2656       if (IsInt2FP) {
2657         // Do a regular integer sign/zero extension then convert to float.
2658         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2659                                       VT.getVectorElementCount());
2660         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2661                                  ? ISD::ZERO_EXTEND
2662                                  : ISD::SIGN_EXTEND;
2663         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2664         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2665       }
2666       // FP2Int
2667       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2668       // Do one doubling fp_extend then complete the operation by converting
2669       // to int.
2670       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2671       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2672       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2673     }
2674 
2675     // Narrowing conversions
2676     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2677       if (IsInt2FP) {
2678         // One narrowing int_to_fp, then an fp_round.
2679         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2680         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2681         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2682         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2683       }
2684       // FP2Int
2685       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2686       // representable by the integer, the result is poison.
2687       MVT IVecVT =
2688           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2689                            VT.getVectorElementCount());
2690       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2691       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2692     }
2693 
2694     // Scalable vectors can exit here. Patterns will handle equally-sized
2695     // conversions halving/doubling ones.
2696     if (!VT.isFixedLengthVector())
2697       return Op;
2698 
2699     // For fixed-length vectors we lower to a custom "VL" node.
2700     unsigned RVVOpc = 0;
2701     switch (Op.getOpcode()) {
2702     default:
2703       llvm_unreachable("Impossible opcode");
2704     case ISD::FP_TO_SINT:
2705       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2706       break;
2707     case ISD::FP_TO_UINT:
2708       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2709       break;
2710     case ISD::SINT_TO_FP:
2711       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2712       break;
2713     case ISD::UINT_TO_FP:
2714       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2715       break;
2716     }
2717 
2718     MVT ContainerVT, SrcContainerVT;
2719     // Derive the reference container type from the larger vector type.
2720     if (SrcEltSize > EltSize) {
2721       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2722       ContainerVT =
2723           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2724     } else {
2725       ContainerVT = getContainerForFixedLengthVector(VT);
2726       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2727     }
2728 
2729     SDValue Mask, VL;
2730     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2731 
2732     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2733     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2734     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2735   }
2736   case ISD::FP_TO_SINT_SAT:
2737   case ISD::FP_TO_UINT_SAT:
2738     return lowerFP_TO_INT_SAT(Op, DAG);
2739   case ISD::VECREDUCE_ADD:
2740   case ISD::VECREDUCE_UMAX:
2741   case ISD::VECREDUCE_SMAX:
2742   case ISD::VECREDUCE_UMIN:
2743   case ISD::VECREDUCE_SMIN:
2744     return lowerVECREDUCE(Op, DAG);
2745   case ISD::VECREDUCE_AND:
2746   case ISD::VECREDUCE_OR:
2747   case ISD::VECREDUCE_XOR:
2748     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2749       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
2750     return lowerVECREDUCE(Op, DAG);
2751   case ISD::VECREDUCE_FADD:
2752   case ISD::VECREDUCE_SEQ_FADD:
2753   case ISD::VECREDUCE_FMIN:
2754   case ISD::VECREDUCE_FMAX:
2755     return lowerFPVECREDUCE(Op, DAG);
2756   case ISD::VP_REDUCE_ADD:
2757   case ISD::VP_REDUCE_UMAX:
2758   case ISD::VP_REDUCE_SMAX:
2759   case ISD::VP_REDUCE_UMIN:
2760   case ISD::VP_REDUCE_SMIN:
2761   case ISD::VP_REDUCE_FADD:
2762   case ISD::VP_REDUCE_SEQ_FADD:
2763   case ISD::VP_REDUCE_FMIN:
2764   case ISD::VP_REDUCE_FMAX:
2765     return lowerVPREDUCE(Op, DAG);
2766   case ISD::VP_REDUCE_AND:
2767   case ISD::VP_REDUCE_OR:
2768   case ISD::VP_REDUCE_XOR:
2769     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
2770       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
2771     return lowerVPREDUCE(Op, DAG);
2772   case ISD::INSERT_SUBVECTOR:
2773     return lowerINSERT_SUBVECTOR(Op, DAG);
2774   case ISD::EXTRACT_SUBVECTOR:
2775     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2776   case ISD::STEP_VECTOR:
2777     return lowerSTEP_VECTOR(Op, DAG);
2778   case ISD::VECTOR_REVERSE:
2779     return lowerVECTOR_REVERSE(Op, DAG);
2780   case ISD::BUILD_VECTOR:
2781     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2782   case ISD::SPLAT_VECTOR:
2783     if (Op.getValueType().getVectorElementType() == MVT::i1)
2784       return lowerVectorMaskSplat(Op, DAG);
2785     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2786   case ISD::VECTOR_SHUFFLE:
2787     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2788   case ISD::CONCAT_VECTORS: {
2789     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2790     // better than going through the stack, as the default expansion does.
2791     SDLoc DL(Op);
2792     MVT VT = Op.getSimpleValueType();
2793     unsigned NumOpElts =
2794         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2795     SDValue Vec = DAG.getUNDEF(VT);
2796     for (const auto &OpIdx : enumerate(Op->ops()))
2797       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2798                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2799     return Vec;
2800   }
2801   case ISD::LOAD:
2802     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2803       return V;
2804     if (Op.getValueType().isFixedLengthVector())
2805       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2806     return Op;
2807   case ISD::STORE:
2808     if (auto V = expandUnalignedRVVStore(Op, DAG))
2809       return V;
2810     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2811       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2812     return Op;
2813   case ISD::MLOAD:
2814   case ISD::VP_LOAD:
2815     return lowerMaskedLoad(Op, DAG);
2816   case ISD::MSTORE:
2817   case ISD::VP_STORE:
2818     return lowerMaskedStore(Op, DAG);
2819   case ISD::SETCC:
2820     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2821   case ISD::ADD:
2822     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2823   case ISD::SUB:
2824     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2825   case ISD::MUL:
2826     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2827   case ISD::MULHS:
2828     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2829   case ISD::MULHU:
2830     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2831   case ISD::AND:
2832     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2833                                               RISCVISD::AND_VL);
2834   case ISD::OR:
2835     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2836                                               RISCVISD::OR_VL);
2837   case ISD::XOR:
2838     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2839                                               RISCVISD::XOR_VL);
2840   case ISD::SDIV:
2841     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2842   case ISD::SREM:
2843     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2844   case ISD::UDIV:
2845     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2846   case ISD::UREM:
2847     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2848   case ISD::SHL:
2849   case ISD::SRA:
2850   case ISD::SRL:
2851     if (Op.getSimpleValueType().isFixedLengthVector())
2852       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2853     // This can be called for an i32 shift amount that needs to be promoted.
2854     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2855            "Unexpected custom legalisation");
2856     return SDValue();
2857   case ISD::SADDSAT:
2858     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2859   case ISD::UADDSAT:
2860     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2861   case ISD::SSUBSAT:
2862     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2863   case ISD::USUBSAT:
2864     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2865   case ISD::FADD:
2866     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2867   case ISD::FSUB:
2868     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2869   case ISD::FMUL:
2870     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2871   case ISD::FDIV:
2872     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2873   case ISD::FNEG:
2874     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2875   case ISD::FABS:
2876     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2877   case ISD::FSQRT:
2878     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2879   case ISD::FMA:
2880     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2881   case ISD::SMIN:
2882     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2883   case ISD::SMAX:
2884     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2885   case ISD::UMIN:
2886     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2887   case ISD::UMAX:
2888     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2889   case ISD::FMINNUM:
2890     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2891   case ISD::FMAXNUM:
2892     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2893   case ISD::ABS:
2894     return lowerABS(Op, DAG);
2895   case ISD::VSELECT:
2896     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2897   case ISD::FCOPYSIGN:
2898     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2899   case ISD::MGATHER:
2900   case ISD::VP_GATHER:
2901     return lowerMaskedGather(Op, DAG);
2902   case ISD::MSCATTER:
2903   case ISD::VP_SCATTER:
2904     return lowerMaskedScatter(Op, DAG);
2905   case ISD::FLT_ROUNDS_:
2906     return lowerGET_ROUNDING(Op, DAG);
2907   case ISD::SET_ROUNDING:
2908     return lowerSET_ROUNDING(Op, DAG);
2909   case ISD::VP_ADD:
2910     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2911   case ISD::VP_SUB:
2912     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2913   case ISD::VP_MUL:
2914     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2915   case ISD::VP_SDIV:
2916     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2917   case ISD::VP_UDIV:
2918     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2919   case ISD::VP_SREM:
2920     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2921   case ISD::VP_UREM:
2922     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2923   case ISD::VP_AND:
2924     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2925   case ISD::VP_OR:
2926     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2927   case ISD::VP_XOR:
2928     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2929   case ISD::VP_ASHR:
2930     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2931   case ISD::VP_LSHR:
2932     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2933   case ISD::VP_SHL:
2934     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2935   case ISD::VP_FADD:
2936     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
2937   case ISD::VP_FSUB:
2938     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
2939   case ISD::VP_FMUL:
2940     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
2941   case ISD::VP_FDIV:
2942     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
2943   }
2944 }
2945 
getTargetNode(GlobalAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2946 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2947                              SelectionDAG &DAG, unsigned Flags) {
2948   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2949 }
2950 
getTargetNode(BlockAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2951 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2952                              SelectionDAG &DAG, unsigned Flags) {
2953   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2954                                    Flags);
2955 }
2956 
getTargetNode(ConstantPoolSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2957 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2958                              SelectionDAG &DAG, unsigned Flags) {
2959   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2960                                    N->getOffset(), Flags);
2961 }
2962 
getTargetNode(JumpTableSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2963 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2964                              SelectionDAG &DAG, unsigned Flags) {
2965   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2966 }
2967 
2968 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,bool IsLocal) const2969 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2970                                      bool IsLocal) const {
2971   SDLoc DL(N);
2972   EVT Ty = getPointerTy(DAG.getDataLayout());
2973 
2974   if (isPositionIndependent()) {
2975     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2976     if (IsLocal)
2977       // Use PC-relative addressing to access the symbol. This generates the
2978       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2979       // %pcrel_lo(auipc)).
2980       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2981 
2982     // Use PC-relative addressing to access the GOT for this symbol, then load
2983     // the address from the GOT. This generates the pattern (PseudoLA sym),
2984     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2985     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2986   }
2987 
2988   switch (getTargetMachine().getCodeModel()) {
2989   default:
2990     report_fatal_error("Unsupported code model for lowering");
2991   case CodeModel::Small: {
2992     // Generate a sequence for accessing addresses within the first 2 GiB of
2993     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2994     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2995     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2996     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2997     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2998   }
2999   case CodeModel::Medium: {
3000     // Generate a sequence for accessing addresses within any 2GiB range within
3001     // the address space. This generates the pattern (PseudoLLA sym), which
3002     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3003     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3004     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3005   }
3006   }
3007 }
3008 
lowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3009 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3010                                                 SelectionDAG &DAG) const {
3011   SDLoc DL(Op);
3012   EVT Ty = Op.getValueType();
3013   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3014   int64_t Offset = N->getOffset();
3015   MVT XLenVT = Subtarget.getXLenVT();
3016 
3017   const GlobalValue *GV = N->getGlobal();
3018   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3019   SDValue Addr = getAddr(N, DAG, IsLocal);
3020 
3021   // In order to maximise the opportunity for common subexpression elimination,
3022   // emit a separate ADD node for the global address offset instead of folding
3023   // it in the global address node. Later peephole optimisations may choose to
3024   // fold it back in when profitable.
3025   if (Offset != 0)
3026     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3027                        DAG.getConstant(Offset, DL, XLenVT));
3028   return Addr;
3029 }
3030 
lowerBlockAddress(SDValue Op,SelectionDAG & DAG) const3031 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3032                                                SelectionDAG &DAG) const {
3033   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3034 
3035   return getAddr(N, DAG);
3036 }
3037 
lowerConstantPool(SDValue Op,SelectionDAG & DAG) const3038 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3039                                                SelectionDAG &DAG) const {
3040   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3041 
3042   return getAddr(N, DAG);
3043 }
3044 
lowerJumpTable(SDValue Op,SelectionDAG & DAG) const3045 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3046                                             SelectionDAG &DAG) const {
3047   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3048 
3049   return getAddr(N, DAG);
3050 }
3051 
getStaticTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG,bool UseGOT) const3052 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3053                                               SelectionDAG &DAG,
3054                                               bool UseGOT) const {
3055   SDLoc DL(N);
3056   EVT Ty = getPointerTy(DAG.getDataLayout());
3057   const GlobalValue *GV = N->getGlobal();
3058   MVT XLenVT = Subtarget.getXLenVT();
3059 
3060   if (UseGOT) {
3061     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3062     // load the address from the GOT and add the thread pointer. This generates
3063     // the pattern (PseudoLA_TLS_IE sym), which expands to
3064     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3065     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3066     SDValue Load =
3067         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3068 
3069     // Add the thread pointer.
3070     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3071     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3072   }
3073 
3074   // Generate a sequence for accessing the address relative to the thread
3075   // pointer, with the appropriate adjustment for the thread pointer offset.
3076   // This generates the pattern
3077   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3078   SDValue AddrHi =
3079       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3080   SDValue AddrAdd =
3081       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3082   SDValue AddrLo =
3083       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3084 
3085   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3086   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3087   SDValue MNAdd = SDValue(
3088       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3089       0);
3090   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3091 }
3092 
getDynamicTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG) const3093 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3094                                                SelectionDAG &DAG) const {
3095   SDLoc DL(N);
3096   EVT Ty = getPointerTy(DAG.getDataLayout());
3097   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3098   const GlobalValue *GV = N->getGlobal();
3099 
3100   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3101   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3102   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3103   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3104   SDValue Load =
3105       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3106 
3107   // Prepare argument list to generate call.
3108   ArgListTy Args;
3109   ArgListEntry Entry;
3110   Entry.Node = Load;
3111   Entry.Ty = CallTy;
3112   Args.push_back(Entry);
3113 
3114   // Setup call to __tls_get_addr.
3115   TargetLowering::CallLoweringInfo CLI(DAG);
3116   CLI.setDebugLoc(DL)
3117       .setChain(DAG.getEntryNode())
3118       .setLibCallee(CallingConv::C, CallTy,
3119                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3120                     std::move(Args));
3121 
3122   return LowerCallTo(CLI).first;
3123 }
3124 
lowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3125 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3126                                                    SelectionDAG &DAG) const {
3127   SDLoc DL(Op);
3128   EVT Ty = Op.getValueType();
3129   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3130   int64_t Offset = N->getOffset();
3131   MVT XLenVT = Subtarget.getXLenVT();
3132 
3133   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3134 
3135   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3136       CallingConv::GHC)
3137     report_fatal_error("In GHC calling convention TLS is not supported");
3138 
3139   SDValue Addr;
3140   switch (Model) {
3141   case TLSModel::LocalExec:
3142     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3143     break;
3144   case TLSModel::InitialExec:
3145     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3146     break;
3147   case TLSModel::LocalDynamic:
3148   case TLSModel::GeneralDynamic:
3149     Addr = getDynamicTLSAddr(N, DAG);
3150     break;
3151   }
3152 
3153   // In order to maximise the opportunity for common subexpression elimination,
3154   // emit a separate ADD node for the global address offset instead of folding
3155   // it in the global address node. Later peephole optimisations may choose to
3156   // fold it back in when profitable.
3157   if (Offset != 0)
3158     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3159                        DAG.getConstant(Offset, DL, XLenVT));
3160   return Addr;
3161 }
3162 
lowerSELECT(SDValue Op,SelectionDAG & DAG) const3163 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3164   SDValue CondV = Op.getOperand(0);
3165   SDValue TrueV = Op.getOperand(1);
3166   SDValue FalseV = Op.getOperand(2);
3167   SDLoc DL(Op);
3168   MVT VT = Op.getSimpleValueType();
3169   MVT XLenVT = Subtarget.getXLenVT();
3170 
3171   // Lower vector SELECTs to VSELECTs by splatting the condition.
3172   if (VT.isVector()) {
3173     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3174     SDValue CondSplat = VT.isScalableVector()
3175                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3176                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3177     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3178   }
3179 
3180   // If the result type is XLenVT and CondV is the output of a SETCC node
3181   // which also operated on XLenVT inputs, then merge the SETCC node into the
3182   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3183   // compare+branch instructions. i.e.:
3184   // (select (setcc lhs, rhs, cc), truev, falsev)
3185   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3186   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3187       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3188     SDValue LHS = CondV.getOperand(0);
3189     SDValue RHS = CondV.getOperand(1);
3190     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3191     ISD::CondCode CCVal = CC->get();
3192 
3193     // Special case for a select of 2 constants that have a diffence of 1.
3194     // Normally this is done by DAGCombine, but if the select is introduced by
3195     // type legalization or op legalization, we miss it. Restricting to SETLT
3196     // case for now because that is what signed saturating add/sub need.
3197     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3198     // but we would probably want to swap the true/false values if the condition
3199     // is SETGE/SETLE to avoid an XORI.
3200     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3201         CCVal == ISD::SETLT) {
3202       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3203       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3204       if (TrueVal - 1 == FalseVal)
3205         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3206       if (TrueVal + 1 == FalseVal)
3207         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3208     }
3209 
3210     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3211 
3212     SDValue TargetCC = DAG.getCondCode(CCVal);
3213     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3214     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3215   }
3216 
3217   // Otherwise:
3218   // (select condv, truev, falsev)
3219   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3220   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3221   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3222 
3223   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3224 
3225   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3226 }
3227 
lowerBRCOND(SDValue Op,SelectionDAG & DAG) const3228 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3229   SDValue CondV = Op.getOperand(1);
3230   SDLoc DL(Op);
3231   MVT XLenVT = Subtarget.getXLenVT();
3232 
3233   if (CondV.getOpcode() == ISD::SETCC &&
3234       CondV.getOperand(0).getValueType() == XLenVT) {
3235     SDValue LHS = CondV.getOperand(0);
3236     SDValue RHS = CondV.getOperand(1);
3237     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3238 
3239     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3240 
3241     SDValue TargetCC = DAG.getCondCode(CCVal);
3242     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3243                        LHS, RHS, TargetCC, Op.getOperand(2));
3244   }
3245 
3246   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3247                      CondV, DAG.getConstant(0, DL, XLenVT),
3248                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3249 }
3250 
lowerVASTART(SDValue Op,SelectionDAG & DAG) const3251 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3252   MachineFunction &MF = DAG.getMachineFunction();
3253   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3254 
3255   SDLoc DL(Op);
3256   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3257                                  getPointerTy(MF.getDataLayout()));
3258 
3259   // vastart just stores the address of the VarArgsFrameIndex slot into the
3260   // memory location argument.
3261   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3262   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3263                       MachinePointerInfo(SV));
3264 }
3265 
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3266 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3267                                             SelectionDAG &DAG) const {
3268   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3269   MachineFunction &MF = DAG.getMachineFunction();
3270   MachineFrameInfo &MFI = MF.getFrameInfo();
3271   MFI.setFrameAddressIsTaken(true);
3272   Register FrameReg = RI.getFrameRegister(MF);
3273   int XLenInBytes = Subtarget.getXLen() / 8;
3274 
3275   EVT VT = Op.getValueType();
3276   SDLoc DL(Op);
3277   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3278   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3279   while (Depth--) {
3280     int Offset = -(XLenInBytes * 2);
3281     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3282                               DAG.getIntPtrConstant(Offset, DL));
3283     FrameAddr =
3284         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3285   }
3286   return FrameAddr;
3287 }
3288 
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3289 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3290                                              SelectionDAG &DAG) const {
3291   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3292   MachineFunction &MF = DAG.getMachineFunction();
3293   MachineFrameInfo &MFI = MF.getFrameInfo();
3294   MFI.setReturnAddressIsTaken(true);
3295   MVT XLenVT = Subtarget.getXLenVT();
3296   int XLenInBytes = Subtarget.getXLen() / 8;
3297 
3298   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3299     return SDValue();
3300 
3301   EVT VT = Op.getValueType();
3302   SDLoc DL(Op);
3303   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3304   if (Depth) {
3305     int Off = -XLenInBytes;
3306     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3307     SDValue Offset = DAG.getConstant(Off, DL, VT);
3308     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3309                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3310                        MachinePointerInfo());
3311   }
3312 
3313   // Return the value of the return address register, marking it an implicit
3314   // live-in.
3315   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3316   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3317 }
3318 
lowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const3319 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3320                                                  SelectionDAG &DAG) const {
3321   SDLoc DL(Op);
3322   SDValue Lo = Op.getOperand(0);
3323   SDValue Hi = Op.getOperand(1);
3324   SDValue Shamt = Op.getOperand(2);
3325   EVT VT = Lo.getValueType();
3326 
3327   // if Shamt-XLEN < 0: // Shamt < XLEN
3328   //   Lo = Lo << Shamt
3329   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3330   // else:
3331   //   Lo = 0
3332   //   Hi = Lo << (Shamt-XLEN)
3333 
3334   SDValue Zero = DAG.getConstant(0, DL, VT);
3335   SDValue One = DAG.getConstant(1, DL, VT);
3336   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3337   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3338   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3339   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3340 
3341   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3342   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3343   SDValue ShiftRightLo =
3344       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3345   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3346   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3347   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3348 
3349   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3350 
3351   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3352   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3353 
3354   SDValue Parts[2] = {Lo, Hi};
3355   return DAG.getMergeValues(Parts, DL);
3356 }
3357 
lowerShiftRightParts(SDValue Op,SelectionDAG & DAG,bool IsSRA) const3358 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3359                                                   bool IsSRA) const {
3360   SDLoc DL(Op);
3361   SDValue Lo = Op.getOperand(0);
3362   SDValue Hi = Op.getOperand(1);
3363   SDValue Shamt = Op.getOperand(2);
3364   EVT VT = Lo.getValueType();
3365 
3366   // SRA expansion:
3367   //   if Shamt-XLEN < 0: // Shamt < XLEN
3368   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3369   //     Hi = Hi >>s Shamt
3370   //   else:
3371   //     Lo = Hi >>s (Shamt-XLEN);
3372   //     Hi = Hi >>s (XLEN-1)
3373   //
3374   // SRL expansion:
3375   //   if Shamt-XLEN < 0: // Shamt < XLEN
3376   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3377   //     Hi = Hi >>u Shamt
3378   //   else:
3379   //     Lo = Hi >>u (Shamt-XLEN);
3380   //     Hi = 0;
3381 
3382   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3383 
3384   SDValue Zero = DAG.getConstant(0, DL, VT);
3385   SDValue One = DAG.getConstant(1, DL, VT);
3386   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3387   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3388   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3389   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3390 
3391   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3392   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3393   SDValue ShiftLeftHi =
3394       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3395   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3396   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3397   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3398   SDValue HiFalse =
3399       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3400 
3401   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3402 
3403   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3404   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3405 
3406   SDValue Parts[2] = {Lo, Hi};
3407   return DAG.getMergeValues(Parts, DL);
3408 }
3409 
3410 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3411 // legal equivalently-sized i8 type, so we can use that as a go-between.
lowerVectorMaskSplat(SDValue Op,SelectionDAG & DAG) const3412 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3413                                                   SelectionDAG &DAG) const {
3414   SDLoc DL(Op);
3415   MVT VT = Op.getSimpleValueType();
3416   SDValue SplatVal = Op.getOperand(0);
3417   // All-zeros or all-ones splats are handled specially.
3418   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3419     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3420     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3421   }
3422   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3423     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3424     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3425   }
3426   MVT XLenVT = Subtarget.getXLenVT();
3427   assert(SplatVal.getValueType() == XLenVT &&
3428          "Unexpected type for i1 splat value");
3429   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3430   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3431                          DAG.getConstant(1, DL, XLenVT));
3432   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3433   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3434   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3435 }
3436 
3437 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3438 // illegal (currently only vXi64 RV32).
3439 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3440 // them to SPLAT_VECTOR_I64
lowerSPLAT_VECTOR_PARTS(SDValue Op,SelectionDAG & DAG) const3441 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3442                                                      SelectionDAG &DAG) const {
3443   SDLoc DL(Op);
3444   MVT VecVT = Op.getSimpleValueType();
3445   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3446          "Unexpected SPLAT_VECTOR_PARTS lowering");
3447 
3448   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3449   SDValue Lo = Op.getOperand(0);
3450   SDValue Hi = Op.getOperand(1);
3451 
3452   if (VecVT.isFixedLengthVector()) {
3453     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3454     SDLoc DL(Op);
3455     SDValue Mask, VL;
3456     std::tie(Mask, VL) =
3457         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3458 
3459     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3460     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3461   }
3462 
3463   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3464     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3465     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3466     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3467     // node in order to try and match RVV vector/scalar instructions.
3468     if ((LoC >> 31) == HiC)
3469       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3470   }
3471 
3472   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3473   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3474       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3475       Hi.getConstantOperandVal(1) == 31)
3476     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3477 
3478   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3479   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3480                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3481 }
3482 
3483 // Custom-lower extensions from mask vectors by using a vselect either with 1
3484 // for zero/any-extension or -1 for sign-extension:
3485 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3486 // Note that any-extension is lowered identically to zero-extension.
lowerVectorMaskExt(SDValue Op,SelectionDAG & DAG,int64_t ExtTrueVal) const3487 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3488                                                 int64_t ExtTrueVal) const {
3489   SDLoc DL(Op);
3490   MVT VecVT = Op.getSimpleValueType();
3491   SDValue Src = Op.getOperand(0);
3492   // Only custom-lower extensions from mask types
3493   assert(Src.getValueType().isVector() &&
3494          Src.getValueType().getVectorElementType() == MVT::i1);
3495 
3496   MVT XLenVT = Subtarget.getXLenVT();
3497   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3498   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3499 
3500   if (VecVT.isScalableVector()) {
3501     // Be careful not to introduce illegal scalar types at this stage, and be
3502     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3503     // illegal and must be expanded. Since we know that the constants are
3504     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3505     bool IsRV32E64 =
3506         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3507 
3508     if (!IsRV32E64) {
3509       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3510       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3511     } else {
3512       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3513       SplatTrueVal =
3514           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3515     }
3516 
3517     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3518   }
3519 
3520   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3521   MVT I1ContainerVT =
3522       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3523 
3524   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3525 
3526   SDValue Mask, VL;
3527   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3528 
3529   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3530   SplatTrueVal =
3531       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3532   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3533                                SplatTrueVal, SplatZero, VL);
3534 
3535   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3536 }
3537 
lowerFixedLengthVectorExtendToRVV(SDValue Op,SelectionDAG & DAG,unsigned ExtendOpc) const3538 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3539     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3540   MVT ExtVT = Op.getSimpleValueType();
3541   // Only custom-lower extensions from fixed-length vector types.
3542   if (!ExtVT.isFixedLengthVector())
3543     return Op;
3544   MVT VT = Op.getOperand(0).getSimpleValueType();
3545   // Grab the canonical container type for the extended type. Infer the smaller
3546   // type from that to ensure the same number of vector elements, as we know
3547   // the LMUL will be sufficient to hold the smaller type.
3548   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3549   // Get the extended container type manually to ensure the same number of
3550   // vector elements between source and dest.
3551   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3552                                      ContainerExtVT.getVectorElementCount());
3553 
3554   SDValue Op1 =
3555       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3556 
3557   SDLoc DL(Op);
3558   SDValue Mask, VL;
3559   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3560 
3561   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3562 
3563   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3564 }
3565 
3566 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3567 // setcc operation:
3568 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
lowerVectorMaskTrunc(SDValue Op,SelectionDAG & DAG) const3569 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3570                                                   SelectionDAG &DAG) const {
3571   SDLoc DL(Op);
3572   EVT MaskVT = Op.getValueType();
3573   // Only expect to custom-lower truncations to mask types
3574   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3575          "Unexpected type for vector mask lowering");
3576   SDValue Src = Op.getOperand(0);
3577   MVT VecVT = Src.getSimpleValueType();
3578 
3579   // If this is a fixed vector, we need to convert it to a scalable vector.
3580   MVT ContainerVT = VecVT;
3581   if (VecVT.isFixedLengthVector()) {
3582     ContainerVT = getContainerForFixedLengthVector(VecVT);
3583     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3584   }
3585 
3586   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3587   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3588 
3589   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3590   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3591 
3592   if (VecVT.isScalableVector()) {
3593     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3594     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3595   }
3596 
3597   SDValue Mask, VL;
3598   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3599 
3600   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3601   SDValue Trunc =
3602       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3603   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3604                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3605   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3606 }
3607 
3608 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3609 // first position of a vector, and that vector is slid up to the insert index.
3610 // By limiting the active vector length to index+1 and merging with the
3611 // original vector (with an undisturbed tail policy for elements >= VL), we
3612 // achieve the desired result of leaving all elements untouched except the one
3613 // at VL-1, which is replaced with the desired value.
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3614 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3615                                                     SelectionDAG &DAG) const {
3616   SDLoc DL(Op);
3617   MVT VecVT = Op.getSimpleValueType();
3618   SDValue Vec = Op.getOperand(0);
3619   SDValue Val = Op.getOperand(1);
3620   SDValue Idx = Op.getOperand(2);
3621 
3622   if (VecVT.getVectorElementType() == MVT::i1) {
3623     // FIXME: For now we just promote to an i8 vector and insert into that,
3624     // but this is probably not optimal.
3625     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3626     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3627     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3628     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3629   }
3630 
3631   MVT ContainerVT = VecVT;
3632   // If the operand is a fixed-length vector, convert to a scalable one.
3633   if (VecVT.isFixedLengthVector()) {
3634     ContainerVT = getContainerForFixedLengthVector(VecVT);
3635     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3636   }
3637 
3638   MVT XLenVT = Subtarget.getXLenVT();
3639 
3640   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3641   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3642   // Even i64-element vectors on RV32 can be lowered without scalar
3643   // legalization if the most-significant 32 bits of the value are not affected
3644   // by the sign-extension of the lower 32 bits.
3645   // TODO: We could also catch sign extensions of a 32-bit value.
3646   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3647     const auto *CVal = cast<ConstantSDNode>(Val);
3648     if (isInt<32>(CVal->getSExtValue())) {
3649       IsLegalInsert = true;
3650       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3651     }
3652   }
3653 
3654   SDValue Mask, VL;
3655   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3656 
3657   SDValue ValInVec;
3658 
3659   if (IsLegalInsert) {
3660     unsigned Opc =
3661         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3662     if (isNullConstant(Idx)) {
3663       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3664       if (!VecVT.isFixedLengthVector())
3665         return Vec;
3666       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3667     }
3668     ValInVec =
3669         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3670   } else {
3671     // On RV32, i64-element vectors must be specially handled to place the
3672     // value at element 0, by using two vslide1up instructions in sequence on
3673     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3674     // this.
3675     SDValue One = DAG.getConstant(1, DL, XLenVT);
3676     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3677     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3678     MVT I32ContainerVT =
3679         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3680     SDValue I32Mask =
3681         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3682     // Limit the active VL to two.
3683     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3684     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3685     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3686     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3687                            InsertI64VL);
3688     // First slide in the hi value, then the lo in underneath it.
3689     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3690                            ValHi, I32Mask, InsertI64VL);
3691     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3692                            ValLo, I32Mask, InsertI64VL);
3693     // Bitcast back to the right container type.
3694     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3695   }
3696 
3697   // Now that the value is in a vector, slide it into position.
3698   SDValue InsertVL =
3699       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3700   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3701                                 ValInVec, Idx, Mask, InsertVL);
3702   if (!VecVT.isFixedLengthVector())
3703     return Slideup;
3704   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3705 }
3706 
3707 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3708 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3709 // types this is done using VMV_X_S to allow us to glean information about the
3710 // sign bits of the result.
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3711 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3712                                                      SelectionDAG &DAG) const {
3713   SDLoc DL(Op);
3714   SDValue Idx = Op.getOperand(1);
3715   SDValue Vec = Op.getOperand(0);
3716   EVT EltVT = Op.getValueType();
3717   MVT VecVT = Vec.getSimpleValueType();
3718   MVT XLenVT = Subtarget.getXLenVT();
3719 
3720   if (VecVT.getVectorElementType() == MVT::i1) {
3721     // FIXME: For now we just promote to an i8 vector and extract from that,
3722     // but this is probably not optimal.
3723     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3724     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3725     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3726   }
3727 
3728   // If this is a fixed vector, we need to convert it to a scalable vector.
3729   MVT ContainerVT = VecVT;
3730   if (VecVT.isFixedLengthVector()) {
3731     ContainerVT = getContainerForFixedLengthVector(VecVT);
3732     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3733   }
3734 
3735   // If the index is 0, the vector is already in the right position.
3736   if (!isNullConstant(Idx)) {
3737     // Use a VL of 1 to avoid processing more elements than we need.
3738     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3739     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3740     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3741     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3742                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3743   }
3744 
3745   if (!EltVT.isInteger()) {
3746     // Floating-point extracts are handled in TableGen.
3747     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3748                        DAG.getConstant(0, DL, XLenVT));
3749   }
3750 
3751   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3752   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3753 }
3754 
3755 // Some RVV intrinsics may claim that they want an integer operand to be
3756 // promoted or expanded.
lowerVectorIntrinsicSplats(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)3757 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3758                                           const RISCVSubtarget &Subtarget) {
3759   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3760           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3761          "Unexpected opcode");
3762 
3763   if (!Subtarget.hasStdExtV())
3764     return SDValue();
3765 
3766   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3767   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3768   SDLoc DL(Op);
3769 
3770   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3771       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3772   if (!II || !II->SplatOperand)
3773     return SDValue();
3774 
3775   unsigned SplatOp = II->SplatOperand + HasChain;
3776   assert(SplatOp < Op.getNumOperands());
3777 
3778   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3779   SDValue &ScalarOp = Operands[SplatOp];
3780   MVT OpVT = ScalarOp.getSimpleValueType();
3781   MVT XLenVT = Subtarget.getXLenVT();
3782 
3783   // If this isn't a scalar, or its type is XLenVT we're done.
3784   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3785     return SDValue();
3786 
3787   // Simplest case is that the operand needs to be promoted to XLenVT.
3788   if (OpVT.bitsLT(XLenVT)) {
3789     // If the operand is a constant, sign extend to increase our chances
3790     // of being able to use a .vi instruction. ANY_EXTEND would become a
3791     // a zero extend and the simm5 check in isel would fail.
3792     // FIXME: Should we ignore the upper bits in isel instead?
3793     unsigned ExtOpc =
3794         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3795     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3796     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3797   }
3798 
3799   // Use the previous operand to get the vXi64 VT. The result might be a mask
3800   // VT for compares. Using the previous operand assumes that the previous
3801   // operand will never have a smaller element size than a scalar operand and
3802   // that a widening operation never uses SEW=64.
3803   // NOTE: If this fails the below assert, we can probably just find the
3804   // element count from any operand or result and use it to construct the VT.
3805   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3806   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3807 
3808   // The more complex case is when the scalar is larger than XLenVT.
3809   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3810          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3811 
3812   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3813   // on the instruction to sign-extend since SEW>XLEN.
3814   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3815     if (isInt<32>(CVal->getSExtValue())) {
3816       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3817       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3818     }
3819   }
3820 
3821   // We need to convert the scalar to a splat vector.
3822   // FIXME: Can we implicitly truncate the scalar if it is known to
3823   // be sign extended?
3824   // VL should be the last operand.
3825   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3826   assert(VL.getValueType() == XLenVT);
3827   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3828   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3829 }
3830 
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3831 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3832                                                      SelectionDAG &DAG) const {
3833   unsigned IntNo = Op.getConstantOperandVal(0);
3834   SDLoc DL(Op);
3835   MVT XLenVT = Subtarget.getXLenVT();
3836 
3837   switch (IntNo) {
3838   default:
3839     break; // Don't custom lower most intrinsics.
3840   case Intrinsic::thread_pointer: {
3841     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3842     return DAG.getRegister(RISCV::X4, PtrVT);
3843   }
3844   case Intrinsic::riscv_orc_b:
3845     // Lower to the GORCI encoding for orc.b.
3846     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3847                        DAG.getConstant(7, DL, XLenVT));
3848   case Intrinsic::riscv_grev:
3849   case Intrinsic::riscv_gorc: {
3850     unsigned Opc =
3851         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3852     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3853   }
3854   case Intrinsic::riscv_shfl:
3855   case Intrinsic::riscv_unshfl: {
3856     unsigned Opc =
3857         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3858     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3859   }
3860   case Intrinsic::riscv_bcompress:
3861   case Intrinsic::riscv_bdecompress: {
3862     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3863                                                        : RISCVISD::BDECOMPRESS;
3864     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3865   }
3866   case Intrinsic::riscv_vmv_x_s:
3867     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3868     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3869                        Op.getOperand(1));
3870   case Intrinsic::riscv_vmv_v_x:
3871     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3872                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3873   case Intrinsic::riscv_vfmv_v_f:
3874     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3875                        Op.getOperand(1), Op.getOperand(2));
3876   case Intrinsic::riscv_vmv_s_x: {
3877     SDValue Scalar = Op.getOperand(2);
3878 
3879     if (Scalar.getValueType().bitsLE(XLenVT)) {
3880       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3881       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3882                          Op.getOperand(1), Scalar, Op.getOperand(3));
3883     }
3884 
3885     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3886 
3887     // This is an i64 value that lives in two scalar registers. We have to
3888     // insert this in a convoluted way. First we build vXi64 splat containing
3889     // the/ two values that we assemble using some bit math. Next we'll use
3890     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3891     // to merge element 0 from our splat into the source vector.
3892     // FIXME: This is probably not the best way to do this, but it is
3893     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3894     // point.
3895     //   sw lo, (a0)
3896     //   sw hi, 4(a0)
3897     //   vlse vX, (a0)
3898     //
3899     //   vid.v      vVid
3900     //   vmseq.vx   mMask, vVid, 0
3901     //   vmerge.vvm vDest, vSrc, vVal, mMask
3902     MVT VT = Op.getSimpleValueType();
3903     SDValue Vec = Op.getOperand(1);
3904     SDValue VL = Op.getOperand(3);
3905 
3906     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3907     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3908                                       DAG.getConstant(0, DL, MVT::i32), VL);
3909 
3910     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3911     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3912     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3913     SDValue SelectCond =
3914         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3915                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3916     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3917                        Vec, VL);
3918   }
3919   case Intrinsic::riscv_vslide1up:
3920   case Intrinsic::riscv_vslide1down:
3921   case Intrinsic::riscv_vslide1up_mask:
3922   case Intrinsic::riscv_vslide1down_mask: {
3923     // We need to special case these when the scalar is larger than XLen.
3924     unsigned NumOps = Op.getNumOperands();
3925     bool IsMasked = NumOps == 7;
3926     unsigned OpOffset = IsMasked ? 1 : 0;
3927     SDValue Scalar = Op.getOperand(2 + OpOffset);
3928     if (Scalar.getValueType().bitsLE(XLenVT))
3929       break;
3930 
3931     // Splatting a sign extended constant is fine.
3932     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3933       if (isInt<32>(CVal->getSExtValue()))
3934         break;
3935 
3936     MVT VT = Op.getSimpleValueType();
3937     assert(VT.getVectorElementType() == MVT::i64 &&
3938            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3939 
3940     // Convert the vector source to the equivalent nxvXi32 vector.
3941     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3942     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3943 
3944     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3945                                    DAG.getConstant(0, DL, XLenVT));
3946     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3947                                    DAG.getConstant(1, DL, XLenVT));
3948 
3949     // Double the VL since we halved SEW.
3950     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
3951     SDValue I32VL =
3952         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3953 
3954     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3955     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3956 
3957     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3958     // instructions.
3959     if (IntNo == Intrinsic::riscv_vslide1up ||
3960         IntNo == Intrinsic::riscv_vslide1up_mask) {
3961       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3962                         I32Mask, I32VL);
3963       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3964                         I32Mask, I32VL);
3965     } else {
3966       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3967                         I32Mask, I32VL);
3968       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3969                         I32Mask, I32VL);
3970     }
3971 
3972     // Convert back to nxvXi64.
3973     Vec = DAG.getBitcast(VT, Vec);
3974 
3975     if (!IsMasked)
3976       return Vec;
3977 
3978     // Apply mask after the operation.
3979     SDValue Mask = Op.getOperand(NumOps - 3);
3980     SDValue MaskedOff = Op.getOperand(1);
3981     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3982   }
3983   }
3984 
3985   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3986 }
3987 
LowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3988 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3989                                                     SelectionDAG &DAG) const {
3990   unsigned IntNo = Op.getConstantOperandVal(1);
3991   switch (IntNo) {
3992   default:
3993     break;
3994   case Intrinsic::riscv_masked_strided_load: {
3995     SDLoc DL(Op);
3996     MVT XLenVT = Subtarget.getXLenVT();
3997 
3998     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
3999     // the selection of the masked intrinsics doesn't do this for us.
4000     SDValue Mask = Op.getOperand(5);
4001     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4002 
4003     MVT VT = Op->getSimpleValueType(0);
4004     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4005 
4006     SDValue PassThru = Op.getOperand(2);
4007     if (!IsUnmasked) {
4008       MVT MaskVT =
4009           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4010       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4011       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4012     }
4013 
4014     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4015 
4016     SDValue IntID = DAG.getTargetConstant(
4017         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4018         XLenVT);
4019 
4020     auto *Load = cast<MemIntrinsicSDNode>(Op);
4021     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4022     if (!IsUnmasked)
4023       Ops.push_back(PassThru);
4024     Ops.push_back(Op.getOperand(3)); // Ptr
4025     Ops.push_back(Op.getOperand(4)); // Stride
4026     if (!IsUnmasked)
4027       Ops.push_back(Mask);
4028     Ops.push_back(VL);
4029     if (!IsUnmasked) {
4030       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4031       Ops.push_back(Policy);
4032     }
4033 
4034     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4035     SDValue Result =
4036         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4037                                 Load->getMemoryVT(), Load->getMemOperand());
4038     SDValue Chain = Result.getValue(1);
4039     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4040     return DAG.getMergeValues({Result, Chain}, DL);
4041   }
4042   }
4043 
4044   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4045 }
4046 
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const4047 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4048                                                  SelectionDAG &DAG) const {
4049   unsigned IntNo = Op.getConstantOperandVal(1);
4050   switch (IntNo) {
4051   default:
4052     break;
4053   case Intrinsic::riscv_masked_strided_store: {
4054     SDLoc DL(Op);
4055     MVT XLenVT = Subtarget.getXLenVT();
4056 
4057     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4058     // the selection of the masked intrinsics doesn't do this for us.
4059     SDValue Mask = Op.getOperand(5);
4060     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4061 
4062     SDValue Val = Op.getOperand(2);
4063     MVT VT = Val.getSimpleValueType();
4064     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4065 
4066     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4067     if (!IsUnmasked) {
4068       MVT MaskVT =
4069           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4070       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4071     }
4072 
4073     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4074 
4075     SDValue IntID = DAG.getTargetConstant(
4076         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4077         XLenVT);
4078 
4079     auto *Store = cast<MemIntrinsicSDNode>(Op);
4080     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4081     Ops.push_back(Val);
4082     Ops.push_back(Op.getOperand(3)); // Ptr
4083     Ops.push_back(Op.getOperand(4)); // Stride
4084     if (!IsUnmasked)
4085       Ops.push_back(Mask);
4086     Ops.push_back(VL);
4087 
4088     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4089                                    Ops, Store->getMemoryVT(),
4090                                    Store->getMemOperand());
4091   }
4092   }
4093 
4094   return SDValue();
4095 }
4096 
getLMUL1VT(MVT VT)4097 static MVT getLMUL1VT(MVT VT) {
4098   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4099          "Unexpected vector MVT");
4100   return MVT::getScalableVectorVT(
4101       VT.getVectorElementType(),
4102       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4103 }
4104 
getRVVReductionOp(unsigned ISDOpcode)4105 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4106   switch (ISDOpcode) {
4107   default:
4108     llvm_unreachable("Unhandled reduction");
4109   case ISD::VECREDUCE_ADD:
4110     return RISCVISD::VECREDUCE_ADD_VL;
4111   case ISD::VECREDUCE_UMAX:
4112     return RISCVISD::VECREDUCE_UMAX_VL;
4113   case ISD::VECREDUCE_SMAX:
4114     return RISCVISD::VECREDUCE_SMAX_VL;
4115   case ISD::VECREDUCE_UMIN:
4116     return RISCVISD::VECREDUCE_UMIN_VL;
4117   case ISD::VECREDUCE_SMIN:
4118     return RISCVISD::VECREDUCE_SMIN_VL;
4119   case ISD::VECREDUCE_AND:
4120     return RISCVISD::VECREDUCE_AND_VL;
4121   case ISD::VECREDUCE_OR:
4122     return RISCVISD::VECREDUCE_OR_VL;
4123   case ISD::VECREDUCE_XOR:
4124     return RISCVISD::VECREDUCE_XOR_VL;
4125   }
4126 }
4127 
lowerVectorMaskVecReduction(SDValue Op,SelectionDAG & DAG,bool IsVP) const4128 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4129                                                          SelectionDAG &DAG,
4130                                                          bool IsVP) const {
4131   SDLoc DL(Op);
4132   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4133   MVT VecVT = Vec.getSimpleValueType();
4134   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4135           Op.getOpcode() == ISD::VECREDUCE_OR ||
4136           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4137           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4138           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4139           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4140          "Unexpected reduction lowering");
4141 
4142   MVT XLenVT = Subtarget.getXLenVT();
4143   assert(Op.getValueType() == XLenVT &&
4144          "Expected reduction output to be legalized to XLenVT");
4145 
4146   MVT ContainerVT = VecVT;
4147   if (VecVT.isFixedLengthVector()) {
4148     ContainerVT = getContainerForFixedLengthVector(VecVT);
4149     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4150   }
4151 
4152   SDValue Mask, VL;
4153   if (IsVP) {
4154     Mask = Op.getOperand(2);
4155     VL = Op.getOperand(3);
4156   } else {
4157     std::tie(Mask, VL) =
4158         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4159   }
4160 
4161   unsigned BaseOpc;
4162   ISD::CondCode CC;
4163   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4164 
4165   switch (Op.getOpcode()) {
4166   default:
4167     llvm_unreachable("Unhandled reduction");
4168   case ISD::VECREDUCE_AND:
4169   case ISD::VP_REDUCE_AND: {
4170     // vpopc ~x == 0
4171     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4172     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4173     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
4174     CC = ISD::SETEQ;
4175     BaseOpc = ISD::AND;
4176     break;
4177   }
4178   case ISD::VECREDUCE_OR:
4179   case ISD::VP_REDUCE_OR:
4180     // vpopc x != 0
4181     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
4182     CC = ISD::SETNE;
4183     BaseOpc = ISD::OR;
4184     break;
4185   case ISD::VECREDUCE_XOR:
4186   case ISD::VP_REDUCE_XOR: {
4187     // ((vpopc x) & 1) != 0
4188     SDValue One = DAG.getConstant(1, DL, XLenVT);
4189     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
4190     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4191     CC = ISD::SETNE;
4192     BaseOpc = ISD::XOR;
4193     break;
4194   }
4195   }
4196 
4197   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4198 
4199   if (!IsVP)
4200     return SetCC;
4201 
4202   // Now include the start value in the operation.
4203   // Note that we must return the start value when no elements are operated
4204   // upon. The vpopc instructions we've emitted in each case above will return
4205   // 0 for an inactive vector, and so we've already received the neutral value:
4206   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4207   // can simply include the start value.
4208   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4209 }
4210 
lowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const4211 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4212                                             SelectionDAG &DAG) const {
4213   SDLoc DL(Op);
4214   SDValue Vec = Op.getOperand(0);
4215   EVT VecEVT = Vec.getValueType();
4216 
4217   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4218 
4219   // Due to ordering in legalize types we may have a vector type that needs to
4220   // be split. Do that manually so we can get down to a legal type.
4221   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4222          TargetLowering::TypeSplitVector) {
4223     SDValue Lo, Hi;
4224     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4225     VecEVT = Lo.getValueType();
4226     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4227   }
4228 
4229   // TODO: The type may need to be widened rather than split. Or widened before
4230   // it can be split.
4231   if (!isTypeLegal(VecEVT))
4232     return SDValue();
4233 
4234   MVT VecVT = VecEVT.getSimpleVT();
4235   MVT VecEltVT = VecVT.getVectorElementType();
4236   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4237 
4238   MVT ContainerVT = VecVT;
4239   if (VecVT.isFixedLengthVector()) {
4240     ContainerVT = getContainerForFixedLengthVector(VecVT);
4241     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4242   }
4243 
4244   MVT M1VT = getLMUL1VT(ContainerVT);
4245 
4246   SDValue Mask, VL;
4247   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4248 
4249   // FIXME: This is a VLMAX splat which might be too large and can prevent
4250   // vsetvli removal.
4251   SDValue NeutralElem =
4252       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4253   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
4254   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4255                                   IdentitySplat, Mask, VL);
4256   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4257                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4258   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4259 }
4260 
4261 // Given a reduction op, this function returns the matching reduction opcode,
4262 // the vector SDValue and the scalar SDValue required to lower this to a
4263 // RISCVISD node.
4264 static std::tuple<unsigned, SDValue, SDValue>
getRVVFPReductionOpAndOperands(SDValue Op,SelectionDAG & DAG,EVT EltVT)4265 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4266   SDLoc DL(Op);
4267   auto Flags = Op->getFlags();
4268   unsigned Opcode = Op.getOpcode();
4269   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4270   switch (Opcode) {
4271   default:
4272     llvm_unreachable("Unhandled reduction");
4273   case ISD::VECREDUCE_FADD:
4274     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
4275                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4276   case ISD::VECREDUCE_SEQ_FADD:
4277     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4278                            Op.getOperand(0));
4279   case ISD::VECREDUCE_FMIN:
4280     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4281                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4282   case ISD::VECREDUCE_FMAX:
4283     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4284                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4285   }
4286 }
4287 
lowerFPVECREDUCE(SDValue Op,SelectionDAG & DAG) const4288 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4289                                               SelectionDAG &DAG) const {
4290   SDLoc DL(Op);
4291   MVT VecEltVT = Op.getSimpleValueType();
4292 
4293   unsigned RVVOpcode;
4294   SDValue VectorVal, ScalarVal;
4295   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4296       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4297   MVT VecVT = VectorVal.getSimpleValueType();
4298 
4299   MVT ContainerVT = VecVT;
4300   if (VecVT.isFixedLengthVector()) {
4301     ContainerVT = getContainerForFixedLengthVector(VecVT);
4302     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4303   }
4304 
4305   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4306 
4307   SDValue Mask, VL;
4308   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4309 
4310   // FIXME: This is a VLMAX splat which might be too large and can prevent
4311   // vsetvli removal.
4312   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
4313   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4314                                   VectorVal, ScalarSplat, Mask, VL);
4315   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4316                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4317 }
4318 
getRVVVPReductionOp(unsigned ISDOpcode)4319 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4320   switch (ISDOpcode) {
4321   default:
4322     llvm_unreachable("Unhandled reduction");
4323   case ISD::VP_REDUCE_ADD:
4324     return RISCVISD::VECREDUCE_ADD_VL;
4325   case ISD::VP_REDUCE_UMAX:
4326     return RISCVISD::VECREDUCE_UMAX_VL;
4327   case ISD::VP_REDUCE_SMAX:
4328     return RISCVISD::VECREDUCE_SMAX_VL;
4329   case ISD::VP_REDUCE_UMIN:
4330     return RISCVISD::VECREDUCE_UMIN_VL;
4331   case ISD::VP_REDUCE_SMIN:
4332     return RISCVISD::VECREDUCE_SMIN_VL;
4333   case ISD::VP_REDUCE_AND:
4334     return RISCVISD::VECREDUCE_AND_VL;
4335   case ISD::VP_REDUCE_OR:
4336     return RISCVISD::VECREDUCE_OR_VL;
4337   case ISD::VP_REDUCE_XOR:
4338     return RISCVISD::VECREDUCE_XOR_VL;
4339   case ISD::VP_REDUCE_FADD:
4340     return RISCVISD::VECREDUCE_FADD_VL;
4341   case ISD::VP_REDUCE_SEQ_FADD:
4342     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4343   case ISD::VP_REDUCE_FMAX:
4344     return RISCVISD::VECREDUCE_FMAX_VL;
4345   case ISD::VP_REDUCE_FMIN:
4346     return RISCVISD::VECREDUCE_FMIN_VL;
4347   }
4348 }
4349 
lowerVPREDUCE(SDValue Op,SelectionDAG & DAG) const4350 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4351                                            SelectionDAG &DAG) const {
4352   SDLoc DL(Op);
4353   SDValue Vec = Op.getOperand(1);
4354   EVT VecEVT = Vec.getValueType();
4355 
4356   // TODO: The type may need to be widened rather than split. Or widened before
4357   // it can be split.
4358   if (!isTypeLegal(VecEVT))
4359     return SDValue();
4360 
4361   MVT VecVT = VecEVT.getSimpleVT();
4362   MVT VecEltVT = VecVT.getVectorElementType();
4363   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4364 
4365   MVT ContainerVT = VecVT;
4366   if (VecVT.isFixedLengthVector()) {
4367     ContainerVT = getContainerForFixedLengthVector(VecVT);
4368     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4369   }
4370 
4371   SDValue VL = Op.getOperand(3);
4372   SDValue Mask = Op.getOperand(2);
4373 
4374   MVT M1VT = getLMUL1VT(ContainerVT);
4375   MVT XLenVT = Subtarget.getXLenVT();
4376   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4377 
4378   // FIXME: This is a VLMAX splat which might be too large and can prevent
4379   // vsetvli removal.
4380   SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0));
4381   SDValue Reduction =
4382       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4383   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4384                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4385   if (!VecVT.isInteger())
4386     return Elt0;
4387   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4388 }
4389 
lowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const4390 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4391                                                    SelectionDAG &DAG) const {
4392   SDValue Vec = Op.getOperand(0);
4393   SDValue SubVec = Op.getOperand(1);
4394   MVT VecVT = Vec.getSimpleValueType();
4395   MVT SubVecVT = SubVec.getSimpleValueType();
4396 
4397   SDLoc DL(Op);
4398   MVT XLenVT = Subtarget.getXLenVT();
4399   unsigned OrigIdx = Op.getConstantOperandVal(2);
4400   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4401 
4402   // We don't have the ability to slide mask vectors up indexed by their i1
4403   // elements; the smallest we can do is i8. Often we are able to bitcast to
4404   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4405   // into a scalable one, we might not necessarily have enough scalable
4406   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4407   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4408       (OrigIdx != 0 || !Vec.isUndef())) {
4409     if (VecVT.getVectorMinNumElements() >= 8 &&
4410         SubVecVT.getVectorMinNumElements() >= 8) {
4411       assert(OrigIdx % 8 == 0 && "Invalid index");
4412       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4413              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4414              "Unexpected mask vector lowering");
4415       OrigIdx /= 8;
4416       SubVecVT =
4417           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4418                            SubVecVT.isScalableVector());
4419       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4420                                VecVT.isScalableVector());
4421       Vec = DAG.getBitcast(VecVT, Vec);
4422       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4423     } else {
4424       // We can't slide this mask vector up indexed by its i1 elements.
4425       // This poses a problem when we wish to insert a scalable vector which
4426       // can't be re-expressed as a larger type. Just choose the slow path and
4427       // extend to a larger type, then truncate back down.
4428       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4429       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4430       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4431       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4432       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4433                         Op.getOperand(2));
4434       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4435       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4436     }
4437   }
4438 
4439   // If the subvector vector is a fixed-length type, we cannot use subregister
4440   // manipulation to simplify the codegen; we don't know which register of a
4441   // LMUL group contains the specific subvector as we only know the minimum
4442   // register size. Therefore we must slide the vector group up the full
4443   // amount.
4444   if (SubVecVT.isFixedLengthVector()) {
4445     if (OrigIdx == 0 && Vec.isUndef())
4446       return Op;
4447     MVT ContainerVT = VecVT;
4448     if (VecVT.isFixedLengthVector()) {
4449       ContainerVT = getContainerForFixedLengthVector(VecVT);
4450       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4451     }
4452     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4453                          DAG.getUNDEF(ContainerVT), SubVec,
4454                          DAG.getConstant(0, DL, XLenVT));
4455     SDValue Mask =
4456         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4457     // Set the vector length to only the number of elements we care about. Note
4458     // that for slideup this includes the offset.
4459     SDValue VL =
4460         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4461     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4462     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4463                                   SubVec, SlideupAmt, Mask, VL);
4464     if (VecVT.isFixedLengthVector())
4465       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4466     return DAG.getBitcast(Op.getValueType(), Slideup);
4467   }
4468 
4469   unsigned SubRegIdx, RemIdx;
4470   std::tie(SubRegIdx, RemIdx) =
4471       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4472           VecVT, SubVecVT, OrigIdx, TRI);
4473 
4474   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4475   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4476                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4477                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4478 
4479   // 1. If the Idx has been completely eliminated and this subvector's size is
4480   // a vector register or a multiple thereof, or the surrounding elements are
4481   // undef, then this is a subvector insert which naturally aligns to a vector
4482   // register. These can easily be handled using subregister manipulation.
4483   // 2. If the subvector is smaller than a vector register, then the insertion
4484   // must preserve the undisturbed elements of the register. We do this by
4485   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4486   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4487   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4488   // LMUL=1 type back into the larger vector (resolving to another subregister
4489   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4490   // to avoid allocating a large register group to hold our subvector.
4491   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4492     return Op;
4493 
4494   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4495   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4496   // (in our case undisturbed). This means we can set up a subvector insertion
4497   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4498   // size of the subvector.
4499   MVT InterSubVT = VecVT;
4500   SDValue AlignedExtract = Vec;
4501   unsigned AlignedIdx = OrigIdx - RemIdx;
4502   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4503     InterSubVT = getLMUL1VT(VecVT);
4504     // Extract a subvector equal to the nearest full vector register type. This
4505     // should resolve to a EXTRACT_SUBREG instruction.
4506     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4507                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4508   }
4509 
4510   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4511   // For scalable vectors this must be further multiplied by vscale.
4512   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4513 
4514   SDValue Mask, VL;
4515   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4516 
4517   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4518   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4519   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4520   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4521 
4522   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4523                        DAG.getUNDEF(InterSubVT), SubVec,
4524                        DAG.getConstant(0, DL, XLenVT));
4525 
4526   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4527                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4528 
4529   // If required, insert this subvector back into the correct vector register.
4530   // This should resolve to an INSERT_SUBREG instruction.
4531   if (VecVT.bitsGT(InterSubVT))
4532     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4533                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4534 
4535   // We might have bitcast from a mask type: cast back to the original type if
4536   // required.
4537   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4538 }
4539 
lowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const4540 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4541                                                     SelectionDAG &DAG) const {
4542   SDValue Vec = Op.getOperand(0);
4543   MVT SubVecVT = Op.getSimpleValueType();
4544   MVT VecVT = Vec.getSimpleValueType();
4545 
4546   SDLoc DL(Op);
4547   MVT XLenVT = Subtarget.getXLenVT();
4548   unsigned OrigIdx = Op.getConstantOperandVal(1);
4549   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4550 
4551   // We don't have the ability to slide mask vectors down indexed by their i1
4552   // elements; the smallest we can do is i8. Often we are able to bitcast to
4553   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4554   // from a scalable one, we might not necessarily have enough scalable
4555   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4556   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4557     if (VecVT.getVectorMinNumElements() >= 8 &&
4558         SubVecVT.getVectorMinNumElements() >= 8) {
4559       assert(OrigIdx % 8 == 0 && "Invalid index");
4560       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4561              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4562              "Unexpected mask vector lowering");
4563       OrigIdx /= 8;
4564       SubVecVT =
4565           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4566                            SubVecVT.isScalableVector());
4567       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4568                                VecVT.isScalableVector());
4569       Vec = DAG.getBitcast(VecVT, Vec);
4570     } else {
4571       // We can't slide this mask vector down, indexed by its i1 elements.
4572       // This poses a problem when we wish to extract a scalable vector which
4573       // can't be re-expressed as a larger type. Just choose the slow path and
4574       // extend to a larger type, then truncate back down.
4575       // TODO: We could probably improve this when extracting certain fixed
4576       // from fixed, where we can extract as i8 and shift the correct element
4577       // right to reach the desired subvector?
4578       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4579       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4580       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4581       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4582                         Op.getOperand(1));
4583       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4584       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4585     }
4586   }
4587 
4588   // If the subvector vector is a fixed-length type, we cannot use subregister
4589   // manipulation to simplify the codegen; we don't know which register of a
4590   // LMUL group contains the specific subvector as we only know the minimum
4591   // register size. Therefore we must slide the vector group down the full
4592   // amount.
4593   if (SubVecVT.isFixedLengthVector()) {
4594     // With an index of 0 this is a cast-like subvector, which can be performed
4595     // with subregister operations.
4596     if (OrigIdx == 0)
4597       return Op;
4598     MVT ContainerVT = VecVT;
4599     if (VecVT.isFixedLengthVector()) {
4600       ContainerVT = getContainerForFixedLengthVector(VecVT);
4601       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4602     }
4603     SDValue Mask =
4604         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4605     // Set the vector length to only the number of elements we care about. This
4606     // avoids sliding down elements we're going to discard straight away.
4607     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4608     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4609     SDValue Slidedown =
4610         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4611                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4612     // Now we can use a cast-like subvector extract to get the result.
4613     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4614                             DAG.getConstant(0, DL, XLenVT));
4615     return DAG.getBitcast(Op.getValueType(), Slidedown);
4616   }
4617 
4618   unsigned SubRegIdx, RemIdx;
4619   std::tie(SubRegIdx, RemIdx) =
4620       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4621           VecVT, SubVecVT, OrigIdx, TRI);
4622 
4623   // If the Idx has been completely eliminated then this is a subvector extract
4624   // which naturally aligns to a vector register. These can easily be handled
4625   // using subregister manipulation.
4626   if (RemIdx == 0)
4627     return Op;
4628 
4629   // Else we must shift our vector register directly to extract the subvector.
4630   // Do this using VSLIDEDOWN.
4631 
4632   // If the vector type is an LMUL-group type, extract a subvector equal to the
4633   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4634   // instruction.
4635   MVT InterSubVT = VecVT;
4636   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4637     InterSubVT = getLMUL1VT(VecVT);
4638     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4639                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4640   }
4641 
4642   // Slide this vector register down by the desired number of elements in order
4643   // to place the desired subvector starting at element 0.
4644   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4645   // For scalable vectors this must be further multiplied by vscale.
4646   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4647 
4648   SDValue Mask, VL;
4649   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4650   SDValue Slidedown =
4651       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4652                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4653 
4654   // Now the vector is in the right position, extract our final subvector. This
4655   // should resolve to a COPY.
4656   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4657                           DAG.getConstant(0, DL, XLenVT));
4658 
4659   // We might have bitcast from a mask type: cast back to the original type if
4660   // required.
4661   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4662 }
4663 
4664 // Lower step_vector to the vid instruction. Any non-identity step value must
4665 // be accounted for my manual expansion.
lowerSTEP_VECTOR(SDValue Op,SelectionDAG & DAG) const4666 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4667                                               SelectionDAG &DAG) const {
4668   SDLoc DL(Op);
4669   MVT VT = Op.getSimpleValueType();
4670   MVT XLenVT = Subtarget.getXLenVT();
4671   SDValue Mask, VL;
4672   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4673   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4674   uint64_t StepValImm = Op.getConstantOperandVal(0);
4675   if (StepValImm != 1) {
4676     if (isPowerOf2_64(StepValImm)) {
4677       SDValue StepVal =
4678           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4679                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4680       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4681     } else {
4682       SDValue StepVal = lowerScalarSplat(
4683           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4684           DL, DAG, Subtarget);
4685       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4686     }
4687   }
4688   return StepVec;
4689 }
4690 
4691 // Implement vector_reverse using vrgather.vv with indices determined by
4692 // subtracting the id of each element from (VLMAX-1). This will convert
4693 // the indices like so:
4694 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4695 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
lowerVECTOR_REVERSE(SDValue Op,SelectionDAG & DAG) const4696 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4697                                                  SelectionDAG &DAG) const {
4698   SDLoc DL(Op);
4699   MVT VecVT = Op.getSimpleValueType();
4700   unsigned EltSize = VecVT.getScalarSizeInBits();
4701   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4702 
4703   unsigned MaxVLMAX = 0;
4704   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4705   if (VectorBitsMax != 0)
4706     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4707 
4708   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4709   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4710 
4711   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4712   // to use vrgatherei16.vv.
4713   // TODO: It's also possible to use vrgatherei16.vv for other types to
4714   // decrease register width for the index calculation.
4715   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4716     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4717     // Reverse each half, then reassemble them in reverse order.
4718     // NOTE: It's also possible that after splitting that VLMAX no longer
4719     // requires vrgatherei16.vv.
4720     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4721       SDValue Lo, Hi;
4722       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4723       EVT LoVT, HiVT;
4724       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4725       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4726       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4727       // Reassemble the low and high pieces reversed.
4728       // FIXME: This is a CONCAT_VECTORS.
4729       SDValue Res =
4730           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4731                       DAG.getIntPtrConstant(0, DL));
4732       return DAG.getNode(
4733           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4734           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4735     }
4736 
4737     // Just promote the int type to i16 which will double the LMUL.
4738     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4739     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4740   }
4741 
4742   MVT XLenVT = Subtarget.getXLenVT();
4743   SDValue Mask, VL;
4744   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4745 
4746   // Calculate VLMAX-1 for the desired SEW.
4747   unsigned MinElts = VecVT.getVectorMinNumElements();
4748   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4749                               DAG.getConstant(MinElts, DL, XLenVT));
4750   SDValue VLMinus1 =
4751       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4752 
4753   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4754   bool IsRV32E64 =
4755       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4756   SDValue SplatVL;
4757   if (!IsRV32E64)
4758     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4759   else
4760     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4761 
4762   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4763   SDValue Indices =
4764       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4765 
4766   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4767 }
4768 
4769 SDValue
lowerFixedLengthVectorLoadToRVV(SDValue Op,SelectionDAG & DAG) const4770 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4771                                                      SelectionDAG &DAG) const {
4772   SDLoc DL(Op);
4773   auto *Load = cast<LoadSDNode>(Op);
4774 
4775   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4776                                         Load->getMemoryVT(),
4777                                         *Load->getMemOperand()) &&
4778          "Expecting a correctly-aligned load");
4779 
4780   MVT VT = Op.getSimpleValueType();
4781   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4782 
4783   SDValue VL =
4784       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4785 
4786   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4787   SDValue NewLoad = DAG.getMemIntrinsicNode(
4788       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4789       Load->getMemoryVT(), Load->getMemOperand());
4790 
4791   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4792   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4793 }
4794 
4795 SDValue
lowerFixedLengthVectorStoreToRVV(SDValue Op,SelectionDAG & DAG) const4796 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4797                                                       SelectionDAG &DAG) const {
4798   SDLoc DL(Op);
4799   auto *Store = cast<StoreSDNode>(Op);
4800 
4801   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4802                                         Store->getMemoryVT(),
4803                                         *Store->getMemOperand()) &&
4804          "Expecting a correctly-aligned store");
4805 
4806   SDValue StoreVal = Store->getValue();
4807   MVT VT = StoreVal.getSimpleValueType();
4808 
4809   // If the size less than a byte, we need to pad with zeros to make a byte.
4810   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4811     VT = MVT::v8i1;
4812     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4813                            DAG.getConstant(0, DL, VT), StoreVal,
4814                            DAG.getIntPtrConstant(0, DL));
4815   }
4816 
4817   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4818 
4819   SDValue VL =
4820       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4821 
4822   SDValue NewValue =
4823       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4824   return DAG.getMemIntrinsicNode(
4825       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4826       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4827       Store->getMemoryVT(), Store->getMemOperand());
4828 }
4829 
lowerMaskedLoad(SDValue Op,SelectionDAG & DAG) const4830 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
4831                                              SelectionDAG &DAG) const {
4832   SDLoc DL(Op);
4833   MVT VT = Op.getSimpleValueType();
4834 
4835   const auto *MemSD = cast<MemSDNode>(Op);
4836   EVT MemVT = MemSD->getMemoryVT();
4837   MachineMemOperand *MMO = MemSD->getMemOperand();
4838   SDValue Chain = MemSD->getChain();
4839   SDValue BasePtr = MemSD->getBasePtr();
4840 
4841   SDValue Mask, PassThru, VL;
4842   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
4843     Mask = VPLoad->getMask();
4844     PassThru = DAG.getUNDEF(VT);
4845     VL = VPLoad->getVectorLength();
4846   } else {
4847     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
4848     Mask = MLoad->getMask();
4849     PassThru = MLoad->getPassThru();
4850   }
4851 
4852   MVT XLenVT = Subtarget.getXLenVT();
4853 
4854   MVT ContainerVT = VT;
4855   if (VT.isFixedLengthVector()) {
4856     ContainerVT = getContainerForFixedLengthVector(VT);
4857     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4858 
4859     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4860     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4861   }
4862 
4863   if (!VL)
4864     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4865 
4866   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4867   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4868   SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4869   SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL, Policy};
4870   SDValue Result =
4871       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
4872   Chain = Result.getValue(1);
4873 
4874   if (VT.isFixedLengthVector())
4875     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4876 
4877   return DAG.getMergeValues({Result, Chain}, DL);
4878 }
4879 
lowerMaskedStore(SDValue Op,SelectionDAG & DAG) const4880 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
4881                                               SelectionDAG &DAG) const {
4882   SDLoc DL(Op);
4883 
4884   const auto *MemSD = cast<MemSDNode>(Op);
4885   EVT MemVT = MemSD->getMemoryVT();
4886   MachineMemOperand *MMO = MemSD->getMemOperand();
4887   SDValue Chain = MemSD->getChain();
4888   SDValue BasePtr = MemSD->getBasePtr();
4889   SDValue Val, Mask, VL;
4890 
4891   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
4892     Val = VPStore->getValue();
4893     Mask = VPStore->getMask();
4894     VL = VPStore->getVectorLength();
4895   } else {
4896     const auto *MStore = cast<MaskedStoreSDNode>(Op);
4897     Val = MStore->getValue();
4898     Mask = MStore->getMask();
4899   }
4900 
4901   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4902 
4903   MVT VT = Val.getSimpleValueType();
4904   MVT XLenVT = Subtarget.getXLenVT();
4905 
4906   MVT ContainerVT = VT;
4907   if (VT.isFixedLengthVector()) {
4908     ContainerVT = getContainerForFixedLengthVector(VT);
4909 
4910     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4911     if (!IsUnmasked) {
4912       MVT MaskVT =
4913           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4914       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4915     }
4916   }
4917 
4918   if (!VL)
4919     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4920 
4921   unsigned IntID =
4922       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
4923   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
4924   Ops.push_back(Val);
4925   Ops.push_back(BasePtr);
4926   if (!IsUnmasked)
4927     Ops.push_back(Mask);
4928   Ops.push_back(VL);
4929 
4930   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
4931                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
4932 }
4933 
4934 SDValue
lowerFixedLengthVectorSetccToRVV(SDValue Op,SelectionDAG & DAG) const4935 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4936                                                       SelectionDAG &DAG) const {
4937   MVT InVT = Op.getOperand(0).getSimpleValueType();
4938   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4939 
4940   MVT VT = Op.getSimpleValueType();
4941 
4942   SDValue Op1 =
4943       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4944   SDValue Op2 =
4945       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4946 
4947   SDLoc DL(Op);
4948   SDValue VL =
4949       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4950 
4951   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4952   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4953 
4954   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4955                             Op.getOperand(2), Mask, VL);
4956 
4957   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4958 }
4959 
lowerFixedLengthVectorLogicOpToRVV(SDValue Op,SelectionDAG & DAG,unsigned MaskOpc,unsigned VecOpc) const4960 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4961     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4962   MVT VT = Op.getSimpleValueType();
4963 
4964   if (VT.getVectorElementType() == MVT::i1)
4965     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4966 
4967   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4968 }
4969 
4970 SDValue
lowerFixedLengthVectorShiftToRVV(SDValue Op,SelectionDAG & DAG) const4971 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
4972                                                       SelectionDAG &DAG) const {
4973   unsigned Opc;
4974   switch (Op.getOpcode()) {
4975   default: llvm_unreachable("Unexpected opcode!");
4976   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
4977   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
4978   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
4979   }
4980 
4981   return lowerToScalableOp(Op, DAG, Opc);
4982 }
4983 
4984 // Lower vector ABS to smax(X, sub(0, X)).
lowerABS(SDValue Op,SelectionDAG & DAG) const4985 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4986   SDLoc DL(Op);
4987   MVT VT = Op.getSimpleValueType();
4988   SDValue X = Op.getOperand(0);
4989 
4990   assert(VT.isFixedLengthVector() && "Unexpected type");
4991 
4992   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4993   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4994 
4995   SDValue Mask, VL;
4996   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4997 
4998   SDValue SplatZero =
4999       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5000                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5001   SDValue NegX =
5002       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5003   SDValue Max =
5004       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5005 
5006   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5007 }
5008 
lowerFixedLengthVectorFCOPYSIGNToRVV(SDValue Op,SelectionDAG & DAG) const5009 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5010     SDValue Op, SelectionDAG &DAG) const {
5011   SDLoc DL(Op);
5012   MVT VT = Op.getSimpleValueType();
5013   SDValue Mag = Op.getOperand(0);
5014   SDValue Sign = Op.getOperand(1);
5015   assert(Mag.getValueType() == Sign.getValueType() &&
5016          "Can only handle COPYSIGN with matching types.");
5017 
5018   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5019   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5020   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5021 
5022   SDValue Mask, VL;
5023   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5024 
5025   SDValue CopySign =
5026       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5027 
5028   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5029 }
5030 
lowerFixedLengthVectorSelectToRVV(SDValue Op,SelectionDAG & DAG) const5031 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5032     SDValue Op, SelectionDAG &DAG) const {
5033   MVT VT = Op.getSimpleValueType();
5034   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5035 
5036   MVT I1ContainerVT =
5037       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5038 
5039   SDValue CC =
5040       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5041   SDValue Op1 =
5042       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5043   SDValue Op2 =
5044       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5045 
5046   SDLoc DL(Op);
5047   SDValue Mask, VL;
5048   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5049 
5050   SDValue Select =
5051       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5052 
5053   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5054 }
5055 
lowerToScalableOp(SDValue Op,SelectionDAG & DAG,unsigned NewOpc,bool HasMask) const5056 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5057                                                unsigned NewOpc,
5058                                                bool HasMask) const {
5059   MVT VT = Op.getSimpleValueType();
5060   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5061 
5062   // Create list of operands by converting existing ones to scalable types.
5063   SmallVector<SDValue, 6> Ops;
5064   for (const SDValue &V : Op->op_values()) {
5065     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5066 
5067     // Pass through non-vector operands.
5068     if (!V.getValueType().isVector()) {
5069       Ops.push_back(V);
5070       continue;
5071     }
5072 
5073     // "cast" fixed length vector to a scalable vector.
5074     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5075            "Only fixed length vectors are supported!");
5076     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5077   }
5078 
5079   SDLoc DL(Op);
5080   SDValue Mask, VL;
5081   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5082   if (HasMask)
5083     Ops.push_back(Mask);
5084   Ops.push_back(VL);
5085 
5086   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5087   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5088 }
5089 
5090 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5091 // * Operands of each node are assumed to be in the same order.
5092 // * The EVL operand is promoted from i32 to i64 on RV64.
5093 // * Fixed-length vectors are converted to their scalable-vector container
5094 //   types.
lowerVPOp(SDValue Op,SelectionDAG & DAG,unsigned RISCVISDOpc) const5095 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5096                                        unsigned RISCVISDOpc) const {
5097   SDLoc DL(Op);
5098   MVT VT = Op.getSimpleValueType();
5099   SmallVector<SDValue, 4> Ops;
5100 
5101   for (const auto &OpIdx : enumerate(Op->ops())) {
5102     SDValue V = OpIdx.value();
5103     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5104     // Pass through operands which aren't fixed-length vectors.
5105     if (!V.getValueType().isFixedLengthVector()) {
5106       Ops.push_back(V);
5107       continue;
5108     }
5109     // "cast" fixed length vector to a scalable vector.
5110     MVT OpVT = V.getSimpleValueType();
5111     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5112     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5113            "Only fixed length vectors are supported!");
5114     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5115   }
5116 
5117   if (!VT.isFixedLengthVector())
5118     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5119 
5120   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5121 
5122   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5123 
5124   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5125 }
5126 
5127 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5128 // matched to a RVV indexed load. The RVV indexed load instructions only
5129 // support the "unsigned unscaled" addressing mode; indices are implicitly
5130 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5131 // signed or scaled indexing is extended to the XLEN value type and scaled
5132 // accordingly.
lowerMaskedGather(SDValue Op,SelectionDAG & DAG) const5133 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5134                                                SelectionDAG &DAG) const {
5135   SDLoc DL(Op);
5136   MVT VT = Op.getSimpleValueType();
5137 
5138   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5139   EVT MemVT = MemSD->getMemoryVT();
5140   MachineMemOperand *MMO = MemSD->getMemOperand();
5141   SDValue Chain = MemSD->getChain();
5142   SDValue BasePtr = MemSD->getBasePtr();
5143 
5144   ISD::LoadExtType LoadExtType;
5145   SDValue Index, Mask, PassThru, VL;
5146 
5147   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5148     Index = VPGN->getIndex();
5149     Mask = VPGN->getMask();
5150     PassThru = DAG.getUNDEF(VT);
5151     VL = VPGN->getVectorLength();
5152     // VP doesn't support extending loads.
5153     LoadExtType = ISD::NON_EXTLOAD;
5154   } else {
5155     // Else it must be a MGATHER.
5156     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5157     Index = MGN->getIndex();
5158     Mask = MGN->getMask();
5159     PassThru = MGN->getPassThru();
5160     LoadExtType = MGN->getExtensionType();
5161   }
5162 
5163   MVT IndexVT = Index.getSimpleValueType();
5164   MVT XLenVT = Subtarget.getXLenVT();
5165 
5166   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5167          "Unexpected VTs!");
5168   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5169   // Targets have to explicitly opt-in for extending vector loads.
5170   assert(LoadExtType == ISD::NON_EXTLOAD &&
5171          "Unexpected extending MGATHER/VP_GATHER");
5172   (void)LoadExtType;
5173 
5174   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5175   // the selection of the masked intrinsics doesn't do this for us.
5176   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5177 
5178   MVT ContainerVT = VT;
5179   if (VT.isFixedLengthVector()) {
5180     // We need to use the larger of the result and index type to determine the
5181     // scalable type to use so we don't increase LMUL for any operand/result.
5182     if (VT.bitsGE(IndexVT)) {
5183       ContainerVT = getContainerForFixedLengthVector(VT);
5184       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5185                                  ContainerVT.getVectorElementCount());
5186     } else {
5187       IndexVT = getContainerForFixedLengthVector(IndexVT);
5188       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5189                                      IndexVT.getVectorElementCount());
5190     }
5191 
5192     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5193 
5194     if (!IsUnmasked) {
5195       MVT MaskVT =
5196           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5197       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5198       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5199     }
5200   }
5201 
5202   if (!VL)
5203     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5204 
5205   unsigned IntID =
5206       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5207   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5208   if (!IsUnmasked)
5209     Ops.push_back(PassThru);
5210   Ops.push_back(BasePtr);
5211   Ops.push_back(Index);
5212   if (!IsUnmasked)
5213     Ops.push_back(Mask);
5214   Ops.push_back(VL);
5215   if (!IsUnmasked)
5216     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5217 
5218   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5219   SDValue Result =
5220       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5221   Chain = Result.getValue(1);
5222 
5223   if (VT.isFixedLengthVector())
5224     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5225 
5226   return DAG.getMergeValues({Result, Chain}, DL);
5227 }
5228 
5229 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5230 // matched to a RVV indexed store. The RVV indexed store instructions only
5231 // support the "unsigned unscaled" addressing mode; indices are implicitly
5232 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5233 // signed or scaled indexing is extended to the XLEN value type and scaled
5234 // accordingly.
lowerMaskedScatter(SDValue Op,SelectionDAG & DAG) const5235 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5236                                                 SelectionDAG &DAG) const {
5237   SDLoc DL(Op);
5238   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5239   EVT MemVT = MemSD->getMemoryVT();
5240   MachineMemOperand *MMO = MemSD->getMemOperand();
5241   SDValue Chain = MemSD->getChain();
5242   SDValue BasePtr = MemSD->getBasePtr();
5243 
5244   bool IsTruncatingStore = false;
5245   SDValue Index, Mask, Val, VL;
5246 
5247   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5248     Index = VPSN->getIndex();
5249     Mask = VPSN->getMask();
5250     Val = VPSN->getValue();
5251     VL = VPSN->getVectorLength();
5252     // VP doesn't support truncating stores.
5253     IsTruncatingStore = false;
5254   } else {
5255     // Else it must be a MSCATTER.
5256     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5257     Index = MSN->getIndex();
5258     Mask = MSN->getMask();
5259     Val = MSN->getValue();
5260     IsTruncatingStore = MSN->isTruncatingStore();
5261   }
5262 
5263   MVT VT = Val.getSimpleValueType();
5264   MVT IndexVT = Index.getSimpleValueType();
5265   MVT XLenVT = Subtarget.getXLenVT();
5266 
5267   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5268          "Unexpected VTs!");
5269   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5270   // Targets have to explicitly opt-in for extending vector loads and
5271   // truncating vector stores.
5272   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5273   (void)IsTruncatingStore;
5274 
5275   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5276   // the selection of the masked intrinsics doesn't do this for us.
5277   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5278 
5279   MVT ContainerVT = VT;
5280   if (VT.isFixedLengthVector()) {
5281     // We need to use the larger of the value and index type to determine the
5282     // scalable type to use so we don't increase LMUL for any operand/result.
5283     if (VT.bitsGE(IndexVT)) {
5284       ContainerVT = getContainerForFixedLengthVector(VT);
5285       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5286                                  ContainerVT.getVectorElementCount());
5287     } else {
5288       IndexVT = getContainerForFixedLengthVector(IndexVT);
5289       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5290                                      IndexVT.getVectorElementCount());
5291     }
5292 
5293     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5294     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5295 
5296     if (!IsUnmasked) {
5297       MVT MaskVT =
5298           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5299       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5300     }
5301   }
5302 
5303   if (!VL)
5304     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5305 
5306   unsigned IntID =
5307       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5308   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5309   Ops.push_back(Val);
5310   Ops.push_back(BasePtr);
5311   Ops.push_back(Index);
5312   if (!IsUnmasked)
5313     Ops.push_back(Mask);
5314   Ops.push_back(VL);
5315 
5316   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5317                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5318 }
5319 
lowerGET_ROUNDING(SDValue Op,SelectionDAG & DAG) const5320 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5321                                                SelectionDAG &DAG) const {
5322   const MVT XLenVT = Subtarget.getXLenVT();
5323   SDLoc DL(Op);
5324   SDValue Chain = Op->getOperand(0);
5325   SDValue SysRegNo = DAG.getConstant(
5326       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5327   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5328   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5329 
5330   // Encoding used for rounding mode in RISCV differs from that used in
5331   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5332   // table, which consists of a sequence of 4-bit fields, each representing
5333   // corresponding FLT_ROUNDS mode.
5334   static const int Table =
5335       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5336       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5337       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5338       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5339       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5340 
5341   SDValue Shift =
5342       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5343   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5344                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5345   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5346                                DAG.getConstant(7, DL, XLenVT));
5347 
5348   return DAG.getMergeValues({Masked, Chain}, DL);
5349 }
5350 
lowerSET_ROUNDING(SDValue Op,SelectionDAG & DAG) const5351 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5352                                                SelectionDAG &DAG) const {
5353   const MVT XLenVT = Subtarget.getXLenVT();
5354   SDLoc DL(Op);
5355   SDValue Chain = Op->getOperand(0);
5356   SDValue RMValue = Op->getOperand(1);
5357   SDValue SysRegNo = DAG.getConstant(
5358       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5359 
5360   // Encoding used for rounding mode in RISCV differs from that used in
5361   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5362   // a table, which consists of a sequence of 4-bit fields, each representing
5363   // corresponding RISCV mode.
5364   static const unsigned Table =
5365       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5366       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5367       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5368       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5369       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5370 
5371   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5372                               DAG.getConstant(2, DL, XLenVT));
5373   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5374                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5375   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5376                         DAG.getConstant(0x7, DL, XLenVT));
5377   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5378                      RMValue);
5379 }
5380 
5381 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5382 // form of the given Opcode.
getRISCVWOpcode(unsigned Opcode)5383 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5384   switch (Opcode) {
5385   default:
5386     llvm_unreachable("Unexpected opcode");
5387   case ISD::SHL:
5388     return RISCVISD::SLLW;
5389   case ISD::SRA:
5390     return RISCVISD::SRAW;
5391   case ISD::SRL:
5392     return RISCVISD::SRLW;
5393   case ISD::SDIV:
5394     return RISCVISD::DIVW;
5395   case ISD::UDIV:
5396     return RISCVISD::DIVUW;
5397   case ISD::UREM:
5398     return RISCVISD::REMUW;
5399   case ISD::ROTL:
5400     return RISCVISD::ROLW;
5401   case ISD::ROTR:
5402     return RISCVISD::RORW;
5403   case RISCVISD::GREV:
5404     return RISCVISD::GREVW;
5405   case RISCVISD::GORC:
5406     return RISCVISD::GORCW;
5407   }
5408 }
5409 
5410 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5411 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5412 // otherwise be promoted to i64, making it difficult to select the
5413 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5414 // type i8/i16/i32 is lost.
customLegalizeToWOp(SDNode * N,SelectionDAG & DAG,unsigned ExtOpc=ISD::ANY_EXTEND)5415 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5416                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5417   SDLoc DL(N);
5418   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5419   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5420   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5421   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5422   // ReplaceNodeResults requires we maintain the same type for the return value.
5423   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5424 }
5425 
5426 // Converts the given 32-bit operation to a i64 operation with signed extension
5427 // semantic to reduce the signed extension instructions.
customLegalizeToWOpWithSExt(SDNode * N,SelectionDAG & DAG)5428 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5429   SDLoc DL(N);
5430   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5431   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5432   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5433   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5434                                DAG.getValueType(MVT::i32));
5435   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5436 }
5437 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5438 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5439                                              SmallVectorImpl<SDValue> &Results,
5440                                              SelectionDAG &DAG) const {
5441   SDLoc DL(N);
5442   switch (N->getOpcode()) {
5443   default:
5444     llvm_unreachable("Don't know how to custom type legalize this operation!");
5445   case ISD::STRICT_FP_TO_SINT:
5446   case ISD::STRICT_FP_TO_UINT:
5447   case ISD::FP_TO_SINT:
5448   case ISD::FP_TO_UINT: {
5449     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5450            "Unexpected custom legalisation");
5451     bool IsStrict = N->isStrictFPOpcode();
5452     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5453                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5454     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5455     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5456         TargetLowering::TypeSoftenFloat) {
5457       // FIXME: Support strict FP.
5458       if (IsStrict)
5459         return;
5460       if (!isTypeLegal(Op0.getValueType()))
5461         return;
5462       unsigned Opc =
5463           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
5464       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
5465       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5466       return;
5467     }
5468     // If the FP type needs to be softened, emit a library call using the 'si'
5469     // version. If we left it to default legalization we'd end up with 'di'. If
5470     // the FP type doesn't need to be softened just let generic type
5471     // legalization promote the result type.
5472     RTLIB::Libcall LC;
5473     if (IsSigned)
5474       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5475     else
5476       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5477     MakeLibCallOptions CallOptions;
5478     EVT OpVT = Op0.getValueType();
5479     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5480     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5481     SDValue Result;
5482     std::tie(Result, Chain) =
5483         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5484     Results.push_back(Result);
5485     if (IsStrict)
5486       Results.push_back(Chain);
5487     break;
5488   }
5489   case ISD::READCYCLECOUNTER: {
5490     assert(!Subtarget.is64Bit() &&
5491            "READCYCLECOUNTER only has custom type legalization on riscv32");
5492 
5493     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5494     SDValue RCW =
5495         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5496 
5497     Results.push_back(
5498         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5499     Results.push_back(RCW.getValue(2));
5500     break;
5501   }
5502   case ISD::MUL: {
5503     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5504     unsigned XLen = Subtarget.getXLen();
5505     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5506     if (Size > XLen) {
5507       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5508       SDValue LHS = N->getOperand(0);
5509       SDValue RHS = N->getOperand(1);
5510       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5511 
5512       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5513       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5514       // We need exactly one side to be unsigned.
5515       if (LHSIsU == RHSIsU)
5516         return;
5517 
5518       auto MakeMULPair = [&](SDValue S, SDValue U) {
5519         MVT XLenVT = Subtarget.getXLenVT();
5520         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5521         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5522         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5523         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5524         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5525       };
5526 
5527       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5528       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5529 
5530       // The other operand should be signed, but still prefer MULH when
5531       // possible.
5532       if (RHSIsU && LHSIsS && !RHSIsS)
5533         Results.push_back(MakeMULPair(LHS, RHS));
5534       else if (LHSIsU && RHSIsS && !LHSIsS)
5535         Results.push_back(MakeMULPair(RHS, LHS));
5536 
5537       return;
5538     }
5539     LLVM_FALLTHROUGH;
5540   }
5541   case ISD::ADD:
5542   case ISD::SUB:
5543     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5544            "Unexpected custom legalisation");
5545     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5546     break;
5547   case ISD::SHL:
5548   case ISD::SRA:
5549   case ISD::SRL:
5550     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5551            "Unexpected custom legalisation");
5552     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5553       Results.push_back(customLegalizeToWOp(N, DAG));
5554       break;
5555     }
5556 
5557     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5558     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5559     // shift amount.
5560     if (N->getOpcode() == ISD::SHL) {
5561       SDLoc DL(N);
5562       SDValue NewOp0 =
5563           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5564       SDValue NewOp1 =
5565           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5566       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5567       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5568                                    DAG.getValueType(MVT::i32));
5569       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5570     }
5571 
5572     break;
5573   case ISD::ROTL:
5574   case ISD::ROTR:
5575     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5576            "Unexpected custom legalisation");
5577     Results.push_back(customLegalizeToWOp(N, DAG));
5578     break;
5579   case ISD::CTTZ:
5580   case ISD::CTTZ_ZERO_UNDEF:
5581   case ISD::CTLZ:
5582   case ISD::CTLZ_ZERO_UNDEF: {
5583     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5584            "Unexpected custom legalisation");
5585 
5586     SDValue NewOp0 =
5587         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5588     bool IsCTZ =
5589         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5590     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5591     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5592     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5593     return;
5594   }
5595   case ISD::SDIV:
5596   case ISD::UDIV:
5597   case ISD::UREM: {
5598     MVT VT = N->getSimpleValueType(0);
5599     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5600            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5601            "Unexpected custom legalisation");
5602     // Don't promote division/remainder by constant since we should expand those
5603     // to multiply by magic constant.
5604     // FIXME: What if the expansion is disabled for minsize.
5605     if (N->getOperand(1).getOpcode() == ISD::Constant)
5606       return;
5607 
5608     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5609     // the upper 32 bits. For other types we need to sign or zero extend
5610     // based on the opcode.
5611     unsigned ExtOpc = ISD::ANY_EXTEND;
5612     if (VT != MVT::i32)
5613       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5614                                            : ISD::ZERO_EXTEND;
5615 
5616     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5617     break;
5618   }
5619   case ISD::UADDO:
5620   case ISD::USUBO: {
5621     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5622            "Unexpected custom legalisation");
5623     bool IsAdd = N->getOpcode() == ISD::UADDO;
5624     // Create an ADDW or SUBW.
5625     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5626     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5627     SDValue Res =
5628         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5629     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5630                       DAG.getValueType(MVT::i32));
5631 
5632     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5633     // Since the inputs are sign extended from i32, this is equivalent to
5634     // comparing the lower 32 bits.
5635     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5636     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5637                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5638 
5639     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5640     Results.push_back(Overflow);
5641     return;
5642   }
5643   case ISD::UADDSAT:
5644   case ISD::USUBSAT: {
5645     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5646            "Unexpected custom legalisation");
5647     if (Subtarget.hasStdExtZbb()) {
5648       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5649       // sign extend allows overflow of the lower 32 bits to be detected on
5650       // the promoted size.
5651       SDValue LHS =
5652           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5653       SDValue RHS =
5654           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5655       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5656       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5657       return;
5658     }
5659 
5660     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5661     // promotion for UADDO/USUBO.
5662     Results.push_back(expandAddSubSat(N, DAG));
5663     return;
5664   }
5665   case ISD::BITCAST: {
5666     EVT VT = N->getValueType(0);
5667     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5668     SDValue Op0 = N->getOperand(0);
5669     EVT Op0VT = Op0.getValueType();
5670     MVT XLenVT = Subtarget.getXLenVT();
5671     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5672       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5673       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5674     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5675                Subtarget.hasStdExtF()) {
5676       SDValue FPConv =
5677           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5678       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5679     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5680                isTypeLegal(Op0VT)) {
5681       // Custom-legalize bitcasts from fixed-length vector types to illegal
5682       // scalar types in order to improve codegen. Bitcast the vector to a
5683       // one-element vector type whose element type is the same as the result
5684       // type, and extract the first element.
5685       LLVMContext &Context = *DAG.getContext();
5686       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
5687       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5688                                     DAG.getConstant(0, DL, XLenVT)));
5689     }
5690     break;
5691   }
5692   case RISCVISD::GREV:
5693   case RISCVISD::GORC: {
5694     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5695            "Unexpected custom legalisation");
5696     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5697     // This is similar to customLegalizeToWOp, except that we pass the second
5698     // operand (a TargetConstant) straight through: it is already of type
5699     // XLenVT.
5700     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5701     SDValue NewOp0 =
5702         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5703     SDValue NewOp1 =
5704         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5705     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5706     // ReplaceNodeResults requires we maintain the same type for the return
5707     // value.
5708     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5709     break;
5710   }
5711   case RISCVISD::SHFL: {
5712     // There is no SHFLIW instruction, but we can just promote the operation.
5713     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5714            "Unexpected custom legalisation");
5715     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5716     SDValue NewOp0 =
5717         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5718     SDValue NewOp1 =
5719         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5720     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5721     // ReplaceNodeResults requires we maintain the same type for the return
5722     // value.
5723     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5724     break;
5725   }
5726   case ISD::BSWAP:
5727   case ISD::BITREVERSE: {
5728     MVT VT = N->getSimpleValueType(0);
5729     MVT XLenVT = Subtarget.getXLenVT();
5730     assert((VT == MVT::i8 || VT == MVT::i16 ||
5731             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5732            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5733     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5734     unsigned Imm = VT.getSizeInBits() - 1;
5735     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5736     if (N->getOpcode() == ISD::BSWAP)
5737       Imm &= ~0x7U;
5738     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5739     SDValue GREVI =
5740         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5741     // ReplaceNodeResults requires we maintain the same type for the return
5742     // value.
5743     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5744     break;
5745   }
5746   case ISD::FSHL:
5747   case ISD::FSHR: {
5748     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5749            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5750     SDValue NewOp0 =
5751         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5752     SDValue NewOp1 =
5753         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5754     SDValue NewOp2 =
5755         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5756     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5757     // Mask the shift amount to 5 bits.
5758     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5759                          DAG.getConstant(0x1f, DL, MVT::i64));
5760     unsigned Opc =
5761         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5762     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5763     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5764     break;
5765   }
5766   case ISD::EXTRACT_VECTOR_ELT: {
5767     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5768     // type is illegal (currently only vXi64 RV32).
5769     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5770     // transferred to the destination register. We issue two of these from the
5771     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5772     // first element.
5773     SDValue Vec = N->getOperand(0);
5774     SDValue Idx = N->getOperand(1);
5775 
5776     // The vector type hasn't been legalized yet so we can't issue target
5777     // specific nodes if it needs legalization.
5778     // FIXME: We would manually legalize if it's important.
5779     if (!isTypeLegal(Vec.getValueType()))
5780       return;
5781 
5782     MVT VecVT = Vec.getSimpleValueType();
5783 
5784     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5785            VecVT.getVectorElementType() == MVT::i64 &&
5786            "Unexpected EXTRACT_VECTOR_ELT legalization");
5787 
5788     // If this is a fixed vector, we need to convert it to a scalable vector.
5789     MVT ContainerVT = VecVT;
5790     if (VecVT.isFixedLengthVector()) {
5791       ContainerVT = getContainerForFixedLengthVector(VecVT);
5792       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5793     }
5794 
5795     MVT XLenVT = Subtarget.getXLenVT();
5796 
5797     // Use a VL of 1 to avoid processing more elements than we need.
5798     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5799     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5800     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5801 
5802     // Unless the index is known to be 0, we must slide the vector down to get
5803     // the desired element into index 0.
5804     if (!isNullConstant(Idx)) {
5805       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5806                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5807     }
5808 
5809     // Extract the lower XLEN bits of the correct vector element.
5810     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5811 
5812     // To extract the upper XLEN bits of the vector element, shift the first
5813     // element right by 32 bits and re-extract the lower XLEN bits.
5814     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5815                                      DAG.getConstant(32, DL, XLenVT), VL);
5816     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5817                                  ThirtyTwoV, Mask, VL);
5818 
5819     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5820 
5821     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5822     break;
5823   }
5824   case ISD::INTRINSIC_WO_CHAIN: {
5825     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5826     switch (IntNo) {
5827     default:
5828       llvm_unreachable(
5829           "Don't know how to custom type legalize this intrinsic!");
5830     case Intrinsic::riscv_orc_b: {
5831       // Lower to the GORCI encoding for orc.b with the operand extended.
5832       SDValue NewOp =
5833           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5834       // If Zbp is enabled, use GORCIW which will sign extend the result.
5835       unsigned Opc =
5836           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5837       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5838                                 DAG.getConstant(7, DL, MVT::i64));
5839       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5840       return;
5841     }
5842     case Intrinsic::riscv_grev:
5843     case Intrinsic::riscv_gorc: {
5844       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5845              "Unexpected custom legalisation");
5846       SDValue NewOp1 =
5847           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5848       SDValue NewOp2 =
5849           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5850       unsigned Opc =
5851           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5852       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5853       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5854       break;
5855     }
5856     case Intrinsic::riscv_shfl:
5857     case Intrinsic::riscv_unshfl: {
5858       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5859              "Unexpected custom legalisation");
5860       SDValue NewOp1 =
5861           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5862       SDValue NewOp2 =
5863           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5864       unsigned Opc =
5865           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5866       if (isa<ConstantSDNode>(N->getOperand(2))) {
5867         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5868                              DAG.getConstant(0xf, DL, MVT::i64));
5869         Opc =
5870             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5871       }
5872       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5873       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5874       break;
5875     }
5876     case Intrinsic::riscv_bcompress:
5877     case Intrinsic::riscv_bdecompress: {
5878       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5879              "Unexpected custom legalisation");
5880       SDValue NewOp1 =
5881           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5882       SDValue NewOp2 =
5883           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5884       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5885                          ? RISCVISD::BCOMPRESSW
5886                          : RISCVISD::BDECOMPRESSW;
5887       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5888       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5889       break;
5890     }
5891     case Intrinsic::riscv_vmv_x_s: {
5892       EVT VT = N->getValueType(0);
5893       MVT XLenVT = Subtarget.getXLenVT();
5894       if (VT.bitsLT(XLenVT)) {
5895         // Simple case just extract using vmv.x.s and truncate.
5896         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5897                                       Subtarget.getXLenVT(), N->getOperand(1));
5898         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5899         return;
5900       }
5901 
5902       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5903              "Unexpected custom legalization");
5904 
5905       // We need to do the move in two steps.
5906       SDValue Vec = N->getOperand(1);
5907       MVT VecVT = Vec.getSimpleValueType();
5908 
5909       // First extract the lower XLEN bits of the element.
5910       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5911 
5912       // To extract the upper XLEN bits of the vector element, shift the first
5913       // element right by 32 bits and re-extract the lower XLEN bits.
5914       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5915       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5916       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5917       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5918                                        DAG.getConstant(32, DL, XLenVT), VL);
5919       SDValue LShr32 =
5920           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5921       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5922 
5923       Results.push_back(
5924           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5925       break;
5926     }
5927     }
5928     break;
5929   }
5930   case ISD::VECREDUCE_ADD:
5931   case ISD::VECREDUCE_AND:
5932   case ISD::VECREDUCE_OR:
5933   case ISD::VECREDUCE_XOR:
5934   case ISD::VECREDUCE_SMAX:
5935   case ISD::VECREDUCE_UMAX:
5936   case ISD::VECREDUCE_SMIN:
5937   case ISD::VECREDUCE_UMIN:
5938     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5939       Results.push_back(V);
5940     break;
5941   case ISD::VP_REDUCE_ADD:
5942   case ISD::VP_REDUCE_AND:
5943   case ISD::VP_REDUCE_OR:
5944   case ISD::VP_REDUCE_XOR:
5945   case ISD::VP_REDUCE_SMAX:
5946   case ISD::VP_REDUCE_UMAX:
5947   case ISD::VP_REDUCE_SMIN:
5948   case ISD::VP_REDUCE_UMIN:
5949     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
5950       Results.push_back(V);
5951     break;
5952   case ISD::FLT_ROUNDS_: {
5953     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5954     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5955     Results.push_back(Res.getValue(0));
5956     Results.push_back(Res.getValue(1));
5957     break;
5958   }
5959   }
5960 }
5961 
5962 // A structure to hold one of the bit-manipulation patterns below. Together, a
5963 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5964 //   (or (and (shl x, 1), 0xAAAAAAAA),
5965 //       (and (srl x, 1), 0x55555555))
5966 struct RISCVBitmanipPat {
5967   SDValue Op;
5968   unsigned ShAmt;
5969   bool IsSHL;
5970 
formsPairWithRISCVBitmanipPat5971   bool formsPairWith(const RISCVBitmanipPat &Other) const {
5972     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5973   }
5974 };
5975 
5976 // Matches patterns of the form
5977 //   (and (shl x, C2), (C1 << C2))
5978 //   (and (srl x, C2), C1)
5979 //   (shl (and x, C1), C2)
5980 //   (srl (and x, (C1 << C2)), C2)
5981 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5982 // The expected masks for each shift amount are specified in BitmanipMasks where
5983 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5984 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5985 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5986 // XLen is 64.
5987 static Optional<RISCVBitmanipPat>
matchRISCVBitmanipPat(SDValue Op,ArrayRef<uint64_t> BitmanipMasks)5988 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5989   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5990          "Unexpected number of masks");
5991   Optional<uint64_t> Mask;
5992   // Optionally consume a mask around the shift operation.
5993   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5994     Mask = Op.getConstantOperandVal(1);
5995     Op = Op.getOperand(0);
5996   }
5997   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5998     return None;
5999   bool IsSHL = Op.getOpcode() == ISD::SHL;
6000 
6001   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6002     return None;
6003   uint64_t ShAmt = Op.getConstantOperandVal(1);
6004 
6005   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6006   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6007     return None;
6008   // If we don't have enough masks for 64 bit, then we must be trying to
6009   // match SHFL so we're only allowed to shift 1/4 of the width.
6010   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6011     return None;
6012 
6013   SDValue Src = Op.getOperand(0);
6014 
6015   // The expected mask is shifted left when the AND is found around SHL
6016   // patterns.
6017   //   ((x >> 1) & 0x55555555)
6018   //   ((x << 1) & 0xAAAAAAAA)
6019   bool SHLExpMask = IsSHL;
6020 
6021   if (!Mask) {
6022     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6023     // the mask is all ones: consume that now.
6024     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6025       Mask = Src.getConstantOperandVal(1);
6026       Src = Src.getOperand(0);
6027       // The expected mask is now in fact shifted left for SRL, so reverse the
6028       // decision.
6029       //   ((x & 0xAAAAAAAA) >> 1)
6030       //   ((x & 0x55555555) << 1)
6031       SHLExpMask = !SHLExpMask;
6032     } else {
6033       // Use a default shifted mask of all-ones if there's no AND, truncated
6034       // down to the expected width. This simplifies the logic later on.
6035       Mask = maskTrailingOnes<uint64_t>(Width);
6036       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6037     }
6038   }
6039 
6040   unsigned MaskIdx = Log2_32(ShAmt);
6041   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6042 
6043   if (SHLExpMask)
6044     ExpMask <<= ShAmt;
6045 
6046   if (Mask != ExpMask)
6047     return None;
6048 
6049   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6050 }
6051 
6052 // Matches any of the following bit-manipulation patterns:
6053 //   (and (shl x, 1), (0x55555555 << 1))
6054 //   (and (srl x, 1), 0x55555555)
6055 //   (shl (and x, 0x55555555), 1)
6056 //   (srl (and x, (0x55555555 << 1)), 1)
6057 // where the shift amount and mask may vary thus:
6058 //   [1]  = 0x55555555 / 0xAAAAAAAA
6059 //   [2]  = 0x33333333 / 0xCCCCCCCC
6060 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6061 //   [8]  = 0x00FF00FF / 0xFF00FF00
6062 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6063 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
matchGREVIPat(SDValue Op)6064 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6065   // These are the unshifted masks which we use to match bit-manipulation
6066   // patterns. They may be shifted left in certain circumstances.
6067   static const uint64_t BitmanipMasks[] = {
6068       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6069       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6070 
6071   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6072 }
6073 
6074 // Match the following pattern as a GREVI(W) operation
6075 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
combineORToGREV(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)6076 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6077                                const RISCVSubtarget &Subtarget) {
6078   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6079   EVT VT = Op.getValueType();
6080 
6081   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6082     auto LHS = matchGREVIPat(Op.getOperand(0));
6083     auto RHS = matchGREVIPat(Op.getOperand(1));
6084     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6085       SDLoc DL(Op);
6086       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6087                          DAG.getConstant(LHS->ShAmt, DL, VT));
6088     }
6089   }
6090   return SDValue();
6091 }
6092 
6093 // Matches any the following pattern as a GORCI(W) operation
6094 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6095 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6096 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6097 // Note that with the variant of 3.,
6098 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6099 // the inner pattern will first be matched as GREVI and then the outer
6100 // pattern will be matched to GORC via the first rule above.
6101 // 4.  (or (rotl/rotr x, bitwidth/2), x)
combineORToGORC(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)6102 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6103                                const RISCVSubtarget &Subtarget) {
6104   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6105   EVT VT = Op.getValueType();
6106 
6107   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6108     SDLoc DL(Op);
6109     SDValue Op0 = Op.getOperand(0);
6110     SDValue Op1 = Op.getOperand(1);
6111 
6112     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6113       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6114           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6115           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6116         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6117       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6118       if ((Reverse.getOpcode() == ISD::ROTL ||
6119            Reverse.getOpcode() == ISD::ROTR) &&
6120           Reverse.getOperand(0) == X &&
6121           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6122         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6123         if (RotAmt == (VT.getSizeInBits() / 2))
6124           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6125                              DAG.getConstant(RotAmt, DL, VT));
6126       }
6127       return SDValue();
6128     };
6129 
6130     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6131     if (SDValue V = MatchOROfReverse(Op0, Op1))
6132       return V;
6133     if (SDValue V = MatchOROfReverse(Op1, Op0))
6134       return V;
6135 
6136     // OR is commutable so canonicalize its OR operand to the left
6137     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6138       std::swap(Op0, Op1);
6139     if (Op0.getOpcode() != ISD::OR)
6140       return SDValue();
6141     SDValue OrOp0 = Op0.getOperand(0);
6142     SDValue OrOp1 = Op0.getOperand(1);
6143     auto LHS = matchGREVIPat(OrOp0);
6144     // OR is commutable so swap the operands and try again: x might have been
6145     // on the left
6146     if (!LHS) {
6147       std::swap(OrOp0, OrOp1);
6148       LHS = matchGREVIPat(OrOp0);
6149     }
6150     auto RHS = matchGREVIPat(Op1);
6151     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6152       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6153                          DAG.getConstant(LHS->ShAmt, DL, VT));
6154     }
6155   }
6156   return SDValue();
6157 }
6158 
6159 // Matches any of the following bit-manipulation patterns:
6160 //   (and (shl x, 1), (0x22222222 << 1))
6161 //   (and (srl x, 1), 0x22222222)
6162 //   (shl (and x, 0x22222222), 1)
6163 //   (srl (and x, (0x22222222 << 1)), 1)
6164 // where the shift amount and mask may vary thus:
6165 //   [1]  = 0x22222222 / 0x44444444
6166 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6167 //   [4]  = 0x00F000F0 / 0x0F000F00
6168 //   [8]  = 0x0000FF00 / 0x00FF0000
6169 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
matchSHFLPat(SDValue Op)6170 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6171   // These are the unshifted masks which we use to match bit-manipulation
6172   // patterns. They may be shifted left in certain circumstances.
6173   static const uint64_t BitmanipMasks[] = {
6174       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6175       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6176 
6177   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6178 }
6179 
6180 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
combineORToSHFL(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)6181 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6182                                const RISCVSubtarget &Subtarget) {
6183   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6184   EVT VT = Op.getValueType();
6185 
6186   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6187     return SDValue();
6188 
6189   SDValue Op0 = Op.getOperand(0);
6190   SDValue Op1 = Op.getOperand(1);
6191 
6192   // Or is commutable so canonicalize the second OR to the LHS.
6193   if (Op0.getOpcode() != ISD::OR)
6194     std::swap(Op0, Op1);
6195   if (Op0.getOpcode() != ISD::OR)
6196     return SDValue();
6197 
6198   // We found an inner OR, so our operands are the operands of the inner OR
6199   // and the other operand of the outer OR.
6200   SDValue A = Op0.getOperand(0);
6201   SDValue B = Op0.getOperand(1);
6202   SDValue C = Op1;
6203 
6204   auto Match1 = matchSHFLPat(A);
6205   auto Match2 = matchSHFLPat(B);
6206 
6207   // If neither matched, we failed.
6208   if (!Match1 && !Match2)
6209     return SDValue();
6210 
6211   // We had at least one match. if one failed, try the remaining C operand.
6212   if (!Match1) {
6213     std::swap(A, C);
6214     Match1 = matchSHFLPat(A);
6215     if (!Match1)
6216       return SDValue();
6217   } else if (!Match2) {
6218     std::swap(B, C);
6219     Match2 = matchSHFLPat(B);
6220     if (!Match2)
6221       return SDValue();
6222   }
6223   assert(Match1 && Match2);
6224 
6225   // Make sure our matches pair up.
6226   if (!Match1->formsPairWith(*Match2))
6227     return SDValue();
6228 
6229   // All the remains is to make sure C is an AND with the same input, that masks
6230   // out the bits that are being shuffled.
6231   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6232       C.getOperand(0) != Match1->Op)
6233     return SDValue();
6234 
6235   uint64_t Mask = C.getConstantOperandVal(1);
6236 
6237   static const uint64_t BitmanipMasks[] = {
6238       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6239       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6240   };
6241 
6242   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6243   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6244   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6245 
6246   if (Mask != ExpMask)
6247     return SDValue();
6248 
6249   SDLoc DL(Op);
6250   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6251                      DAG.getConstant(Match1->ShAmt, DL, VT));
6252 }
6253 
6254 // Optimize (add (shl x, c0), (shl y, c1)) ->
6255 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
transformAddShlImm(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)6256 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6257                                   const RISCVSubtarget &Subtarget) {
6258   // Perform this optimization only in the zba extension.
6259   if (!Subtarget.hasStdExtZba())
6260     return SDValue();
6261 
6262   // Skip for vector types and larger types.
6263   EVT VT = N->getValueType(0);
6264   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6265     return SDValue();
6266 
6267   // The two operand nodes must be SHL and have no other use.
6268   SDValue N0 = N->getOperand(0);
6269   SDValue N1 = N->getOperand(1);
6270   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6271       !N0->hasOneUse() || !N1->hasOneUse())
6272     return SDValue();
6273 
6274   // Check c0 and c1.
6275   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6276   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6277   if (!N0C || !N1C)
6278     return SDValue();
6279   int64_t C0 = N0C->getSExtValue();
6280   int64_t C1 = N1C->getSExtValue();
6281   if (C0 <= 0 || C1 <= 0)
6282     return SDValue();
6283 
6284   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6285   int64_t Bits = std::min(C0, C1);
6286   int64_t Diff = std::abs(C0 - C1);
6287   if (Diff != 1 && Diff != 2 && Diff != 3)
6288     return SDValue();
6289 
6290   // Build nodes.
6291   SDLoc DL(N);
6292   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6293   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6294   SDValue NA0 =
6295       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6296   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6297   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6298 }
6299 
6300 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6301 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6302 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6303 // not undo itself, but they are redundant.
combineGREVI_GORCI(SDNode * N,SelectionDAG & DAG)6304 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6305   SDValue Src = N->getOperand(0);
6306 
6307   if (Src.getOpcode() != N->getOpcode())
6308     return SDValue();
6309 
6310   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6311       !isa<ConstantSDNode>(Src.getOperand(1)))
6312     return SDValue();
6313 
6314   unsigned ShAmt1 = N->getConstantOperandVal(1);
6315   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6316   Src = Src.getOperand(0);
6317 
6318   unsigned CombinedShAmt;
6319   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6320     CombinedShAmt = ShAmt1 | ShAmt2;
6321   else
6322     CombinedShAmt = ShAmt1 ^ ShAmt2;
6323 
6324   if (CombinedShAmt == 0)
6325     return Src;
6326 
6327   SDLoc DL(N);
6328   return DAG.getNode(
6329       N->getOpcode(), DL, N->getValueType(0), Src,
6330       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6331 }
6332 
6333 // Combine a constant select operand into its use:
6334 //
6335 // (and (select cond, -1, c), x)
6336 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6337 // (or  (select cond, 0, c), x)
6338 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6339 // (xor (select cond, 0, c), x)
6340 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6341 // (add (select cond, 0, c), x)
6342 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6343 // (sub x, (select cond, 0, c))
6344 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,SelectionDAG & DAG,bool AllOnes)6345 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6346                                    SelectionDAG &DAG, bool AllOnes) {
6347   EVT VT = N->getValueType(0);
6348 
6349   // Skip vectors.
6350   if (VT.isVector())
6351     return SDValue();
6352 
6353   if ((Slct.getOpcode() != ISD::SELECT &&
6354        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6355       !Slct.hasOneUse())
6356     return SDValue();
6357 
6358   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6359     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6360   };
6361 
6362   bool SwapSelectOps;
6363   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6364   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6365   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6366   SDValue NonConstantVal;
6367   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6368     SwapSelectOps = false;
6369     NonConstantVal = FalseVal;
6370   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6371     SwapSelectOps = true;
6372     NonConstantVal = TrueVal;
6373   } else
6374     return SDValue();
6375 
6376   // Slct is now know to be the desired identity constant when CC is true.
6377   TrueVal = OtherOp;
6378   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6379   // Unless SwapSelectOps says the condition should be false.
6380   if (SwapSelectOps)
6381     std::swap(TrueVal, FalseVal);
6382 
6383   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6384     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6385                        {Slct.getOperand(0), Slct.getOperand(1),
6386                         Slct.getOperand(2), TrueVal, FalseVal});
6387 
6388   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6389                      {Slct.getOperand(0), TrueVal, FalseVal});
6390 }
6391 
6392 // Attempt combineSelectAndUse on each operand of a commutative operator N.
combineSelectAndUseCommutative(SDNode * N,SelectionDAG & DAG,bool AllOnes)6393 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6394                                               bool AllOnes) {
6395   SDValue N0 = N->getOperand(0);
6396   SDValue N1 = N->getOperand(1);
6397   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6398     return Result;
6399   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6400     return Result;
6401   return SDValue();
6402 }
6403 
6404 // Transform (add (mul x, c0), c1) ->
6405 //           (add (mul (add x, c1/c0), c0), c1%c0).
6406 // if c1/c0 and c1%c0 are simm12, while c1 is not.
6407 // Or transform (add (mul x, c0), c1) ->
6408 //              (mul (add x, c1/c0), c0).
6409 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
transformAddImmMulImm(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)6410 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6411                                      const RISCVSubtarget &Subtarget) {
6412   // Skip for vector types and larger types.
6413   EVT VT = N->getValueType(0);
6414   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6415     return SDValue();
6416   // The first operand node must be a MUL and has no other use.
6417   SDValue N0 = N->getOperand(0);
6418   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6419     return SDValue();
6420   // Check if c0 and c1 match above conditions.
6421   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6422   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6423   if (!N0C || !N1C)
6424     return SDValue();
6425   int64_t C0 = N0C->getSExtValue();
6426   int64_t C1 = N1C->getSExtValue();
6427   if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) ||
6428       !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0))
6429     return SDValue();
6430   // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed.
6431   if (isInt<12>(C0 * (C1 / C0)))
6432     return SDValue();
6433   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6434   SDLoc DL(N);
6435   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6436                              DAG.getConstant(C1 / C0, DL, VT));
6437   SDValue New1 =
6438       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6439   if ((C1 % C0) == 0)
6440     return New1;
6441   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT));
6442 }
6443 
performADDCombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)6444 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6445                                  const RISCVSubtarget &Subtarget) {
6446   // Transform (add (mul x, c0), c1) ->
6447   //           (add (mul (add x, c1/c0), c0), c1%c0).
6448   // if c1/c0 and c1%c0 are simm12, while c1 is not.
6449   // Or transform (add (mul x, c0), c1) ->
6450   //              (mul (add x, c1/c0), c0).
6451   // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6452   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6453     return V;
6454   // Fold (add (shl x, c0), (shl y, c1)) ->
6455   //      (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6456   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6457     return V;
6458   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6459   //      (select lhs, rhs, cc, x, (add x, y))
6460   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6461 }
6462 
performSUBCombine(SDNode * N,SelectionDAG & DAG)6463 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6464   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6465   //      (select lhs, rhs, cc, x, (sub x, y))
6466   SDValue N0 = N->getOperand(0);
6467   SDValue N1 = N->getOperand(1);
6468   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6469 }
6470 
performANDCombine(SDNode * N,SelectionDAG & DAG)6471 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6472   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6473   //      (select lhs, rhs, cc, x, (and x, y))
6474   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6475 }
6476 
performORCombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)6477 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6478                                 const RISCVSubtarget &Subtarget) {
6479   if (Subtarget.hasStdExtZbp()) {
6480     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6481       return GREV;
6482     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6483       return GORC;
6484     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6485       return SHFL;
6486   }
6487 
6488   // fold (or (select cond, 0, y), x) ->
6489   //      (select cond, x, (or x, y))
6490   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6491 }
6492 
performXORCombine(SDNode * N,SelectionDAG & DAG)6493 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6494   // fold (xor (select cond, 0, y), x) ->
6495   //      (select cond, x, (xor x, y))
6496   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6497 }
6498 
6499 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6500 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6501 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6502 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6503 // ADDW/SUBW/MULW.
performANY_EXTENDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)6504 static SDValue performANY_EXTENDCombine(SDNode *N,
6505                                         TargetLowering::DAGCombinerInfo &DCI,
6506                                         const RISCVSubtarget &Subtarget) {
6507   if (!Subtarget.is64Bit())
6508     return SDValue();
6509 
6510   SelectionDAG &DAG = DCI.DAG;
6511 
6512   SDValue Src = N->getOperand(0);
6513   EVT VT = N->getValueType(0);
6514   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6515     return SDValue();
6516 
6517   // The opcode must be one that can implicitly sign_extend.
6518   // FIXME: Additional opcodes.
6519   switch (Src.getOpcode()) {
6520   default:
6521     return SDValue();
6522   case ISD::MUL:
6523     if (!Subtarget.hasStdExtM())
6524       return SDValue();
6525     LLVM_FALLTHROUGH;
6526   case ISD::ADD:
6527   case ISD::SUB:
6528     break;
6529   }
6530 
6531   // Only handle cases where the result is used by a CopyToReg. That likely
6532   // means the value is a liveout of the basic block. This helps prevent
6533   // infinite combine loops like PR51206.
6534   if (none_of(N->uses(),
6535               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6536     return SDValue();
6537 
6538   SmallVector<SDNode *, 4> SetCCs;
6539   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6540                             UE = Src.getNode()->use_end();
6541        UI != UE; ++UI) {
6542     SDNode *User = *UI;
6543     if (User == N)
6544       continue;
6545     if (UI.getUse().getResNo() != Src.getResNo())
6546       continue;
6547     // All i32 setccs are legalized by sign extending operands.
6548     if (User->getOpcode() == ISD::SETCC) {
6549       SetCCs.push_back(User);
6550       continue;
6551     }
6552     // We don't know if we can extend this user.
6553     break;
6554   }
6555 
6556   // If we don't have any SetCCs, this isn't worthwhile.
6557   if (SetCCs.empty())
6558     return SDValue();
6559 
6560   SDLoc DL(N);
6561   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6562   DCI.CombineTo(N, SExt);
6563 
6564   // Promote all the setccs.
6565   for (SDNode *SetCC : SetCCs) {
6566     SmallVector<SDValue, 4> Ops;
6567 
6568     for (unsigned j = 0; j != 2; ++j) {
6569       SDValue SOp = SetCC->getOperand(j);
6570       if (SOp == Src)
6571         Ops.push_back(SExt);
6572       else
6573         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6574     }
6575 
6576     Ops.push_back(SetCC->getOperand(2));
6577     DCI.CombineTo(SetCC,
6578                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6579   }
6580   return SDValue(N, 0);
6581 }
6582 
6583 // Try to form VWMUL or VWMULU.
6584 // FIXME: Support VWMULSU.
combineMUL_VLToVWMUL(SDNode * N,SDValue Op0,SDValue Op1,SelectionDAG & DAG)6585 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6586                                     SelectionDAG &DAG) {
6587   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6588   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6589   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6590   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6591     return SDValue();
6592 
6593   SDValue Mask = N->getOperand(2);
6594   SDValue VL = N->getOperand(3);
6595 
6596   // Make sure the mask and VL match.
6597   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6598     return SDValue();
6599 
6600   MVT VT = N->getSimpleValueType(0);
6601 
6602   // Determine the narrow size for a widening multiply.
6603   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
6604   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
6605                                   VT.getVectorElementCount());
6606 
6607   SDLoc DL(N);
6608 
6609   // See if the other operand is the same opcode.
6610   if (Op0.getOpcode() == Op1.getOpcode()) {
6611     if (!Op1.hasOneUse())
6612       return SDValue();
6613 
6614     // Make sure the mask and VL match.
6615     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
6616       return SDValue();
6617 
6618     Op1 = Op1.getOperand(0);
6619   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
6620     // The operand is a splat of a scalar.
6621 
6622     // The VL must be the same.
6623     if (Op1.getOperand(1) != VL)
6624       return SDValue();
6625 
6626     // Get the scalar value.
6627     Op1 = Op1.getOperand(0);
6628 
6629     // See if have enough sign bits or zero bits in the scalar to use a
6630     // widening multiply by splatting to smaller element size.
6631     unsigned EltBits = VT.getScalarSizeInBits();
6632     unsigned ScalarBits = Op1.getValueSizeInBits();
6633     // Make sure we're getting all element bits from the scalar register.
6634     // FIXME: Support implicit sign extension of vmv.v.x?
6635     if (ScalarBits < EltBits)
6636       return SDValue();
6637 
6638     if (IsSignExt) {
6639       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
6640         return SDValue();
6641     } else {
6642       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
6643       if (!DAG.MaskedValueIsZero(Op1, Mask))
6644         return SDValue();
6645     }
6646 
6647     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
6648   } else
6649     return SDValue();
6650 
6651   Op0 = Op0.getOperand(0);
6652 
6653   // Re-introduce narrower extends if needed.
6654   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6655   if (Op0.getValueType() != NarrowVT)
6656     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6657   if (Op1.getValueType() != NarrowVT)
6658     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6659 
6660   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6661   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6662 }
6663 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const6664 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
6665                                                DAGCombinerInfo &DCI) const {
6666   SelectionDAG &DAG = DCI.DAG;
6667 
6668   // Helper to call SimplifyDemandedBits on an operand of N where only some low
6669   // bits are demanded. N will be added to the Worklist if it was not deleted.
6670   // Caller should return SDValue(N, 0) if this returns true.
6671   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
6672     SDValue Op = N->getOperand(OpNo);
6673     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
6674     if (!SimplifyDemandedBits(Op, Mask, DCI))
6675       return false;
6676 
6677     if (N->getOpcode() != ISD::DELETED_NODE)
6678       DCI.AddToWorklist(N);
6679     return true;
6680   };
6681 
6682   switch (N->getOpcode()) {
6683   default:
6684     break;
6685   case RISCVISD::SplitF64: {
6686     SDValue Op0 = N->getOperand(0);
6687     // If the input to SplitF64 is just BuildPairF64 then the operation is
6688     // redundant. Instead, use BuildPairF64's operands directly.
6689     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
6690       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
6691 
6692     SDLoc DL(N);
6693 
6694     // It's cheaper to materialise two 32-bit integers than to load a double
6695     // from the constant pool and transfer it to integer registers through the
6696     // stack.
6697     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
6698       APInt V = C->getValueAPF().bitcastToAPInt();
6699       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
6700       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
6701       return DCI.CombineTo(N, Lo, Hi);
6702     }
6703 
6704     // This is a target-specific version of a DAGCombine performed in
6705     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6706     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6707     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6708     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6709         !Op0.getNode()->hasOneUse())
6710       break;
6711     SDValue NewSplitF64 =
6712         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
6713                     Op0.getOperand(0));
6714     SDValue Lo = NewSplitF64.getValue(0);
6715     SDValue Hi = NewSplitF64.getValue(1);
6716     APInt SignBit = APInt::getSignMask(32);
6717     if (Op0.getOpcode() == ISD::FNEG) {
6718       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
6719                                   DAG.getConstant(SignBit, DL, MVT::i32));
6720       return DCI.CombineTo(N, Lo, NewHi);
6721     }
6722     assert(Op0.getOpcode() == ISD::FABS);
6723     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
6724                                 DAG.getConstant(~SignBit, DL, MVT::i32));
6725     return DCI.CombineTo(N, Lo, NewHi);
6726   }
6727   case RISCVISD::SLLW:
6728   case RISCVISD::SRAW:
6729   case RISCVISD::SRLW:
6730   case RISCVISD::ROLW:
6731   case RISCVISD::RORW: {
6732     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6733     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6734         SimplifyDemandedLowBitsHelper(1, 5))
6735       return SDValue(N, 0);
6736     break;
6737   }
6738   case RISCVISD::CLZW:
6739   case RISCVISD::CTZW: {
6740     // Only the lower 32 bits of the first operand are read
6741     if (SimplifyDemandedLowBitsHelper(0, 32))
6742       return SDValue(N, 0);
6743     break;
6744   }
6745   case RISCVISD::FSL:
6746   case RISCVISD::FSR: {
6747     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6748     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
6749     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6750     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
6751       return SDValue(N, 0);
6752     break;
6753   }
6754   case RISCVISD::FSLW:
6755   case RISCVISD::FSRW: {
6756     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6757     // read.
6758     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6759         SimplifyDemandedLowBitsHelper(1, 32) ||
6760         SimplifyDemandedLowBitsHelper(2, 6))
6761       return SDValue(N, 0);
6762     break;
6763   }
6764   case RISCVISD::GREV:
6765   case RISCVISD::GORC: {
6766     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6767     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6768     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6769     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
6770       return SDValue(N, 0);
6771 
6772     return combineGREVI_GORCI(N, DCI.DAG);
6773   }
6774   case RISCVISD::GREVW:
6775   case RISCVISD::GORCW: {
6776     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6777     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6778         SimplifyDemandedLowBitsHelper(1, 5))
6779       return SDValue(N, 0);
6780 
6781     return combineGREVI_GORCI(N, DCI.DAG);
6782   }
6783   case RISCVISD::SHFL:
6784   case RISCVISD::UNSHFL: {
6785     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6786     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6787     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6788     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
6789       return SDValue(N, 0);
6790 
6791     break;
6792   }
6793   case RISCVISD::SHFLW:
6794   case RISCVISD::UNSHFLW: {
6795     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6796     SDValue LHS = N->getOperand(0);
6797     SDValue RHS = N->getOperand(1);
6798     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6799     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6800     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6801         SimplifyDemandedLowBitsHelper(1, 4))
6802       return SDValue(N, 0);
6803 
6804     break;
6805   }
6806   case RISCVISD::BCOMPRESSW:
6807   case RISCVISD::BDECOMPRESSW: {
6808     // Only the lower 32 bits of LHS and RHS are read.
6809     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6810         SimplifyDemandedLowBitsHelper(1, 32))
6811       return SDValue(N, 0);
6812 
6813     break;
6814   }
6815   case RISCVISD::FMV_X_ANYEXTH:
6816   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6817     SDLoc DL(N);
6818     SDValue Op0 = N->getOperand(0);
6819     MVT VT = N->getSimpleValueType(0);
6820     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6821     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6822     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6823     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
6824          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
6825         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
6826          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
6827       assert(Op0.getOperand(0).getValueType() == VT &&
6828              "Unexpected value type!");
6829       return Op0.getOperand(0);
6830     }
6831 
6832     // This is a target-specific version of a DAGCombine performed in
6833     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6834     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6835     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6836     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6837         !Op0.getNode()->hasOneUse())
6838       break;
6839     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
6840     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
6841     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
6842     if (Op0.getOpcode() == ISD::FNEG)
6843       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
6844                          DAG.getConstant(SignBit, DL, VT));
6845 
6846     assert(Op0.getOpcode() == ISD::FABS);
6847     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
6848                        DAG.getConstant(~SignBit, DL, VT));
6849   }
6850   case ISD::ADD:
6851     return performADDCombine(N, DAG, Subtarget);
6852   case ISD::SUB:
6853     return performSUBCombine(N, DAG);
6854   case ISD::AND:
6855     return performANDCombine(N, DAG);
6856   case ISD::OR:
6857     return performORCombine(N, DAG, Subtarget);
6858   case ISD::XOR:
6859     return performXORCombine(N, DAG);
6860   case ISD::ANY_EXTEND:
6861     return performANY_EXTENDCombine(N, DCI, Subtarget);
6862   case ISD::ZERO_EXTEND:
6863     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6864     // type legalization. This is safe because fp_to_uint produces poison if
6865     // it overflows.
6866     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
6867         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
6868         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
6869       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
6870                          N->getOperand(0).getOperand(0));
6871     return SDValue();
6872   case RISCVISD::SELECT_CC: {
6873     // Transform
6874     SDValue LHS = N->getOperand(0);
6875     SDValue RHS = N->getOperand(1);
6876     SDValue TrueV = N->getOperand(3);
6877     SDValue FalseV = N->getOperand(4);
6878 
6879     // If the True and False values are the same, we don't need a select_cc.
6880     if (TrueV == FalseV)
6881       return TrueV;
6882 
6883     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
6884     if (!ISD::isIntEqualitySetCC(CCVal))
6885       break;
6886 
6887     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6888     //      (select_cc X, Y, lt, trueV, falseV)
6889     // Sometimes the setcc is introduced after select_cc has been formed.
6890     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6891         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6892       // If we're looking for eq 0 instead of ne 0, we need to invert the
6893       // condition.
6894       bool Invert = CCVal == ISD::SETEQ;
6895       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6896       if (Invert)
6897         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6898 
6899       SDLoc DL(N);
6900       RHS = LHS.getOperand(1);
6901       LHS = LHS.getOperand(0);
6902       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6903 
6904       SDValue TargetCC = DAG.getCondCode(CCVal);
6905       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
6906                          {LHS, RHS, TargetCC, TrueV, FalseV});
6907     }
6908 
6909     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6910     //      (select_cc X, Y, eq/ne, trueV, falseV)
6911     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6912       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
6913                          {LHS.getOperand(0), LHS.getOperand(1),
6914                           N->getOperand(2), TrueV, FalseV});
6915     // (select_cc X, 1, setne, trueV, falseV) ->
6916     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6917     // This can occur when legalizing some floating point comparisons.
6918     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6919     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6920       SDLoc DL(N);
6921       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6922       SDValue TargetCC = DAG.getCondCode(CCVal);
6923       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6924       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
6925                          {LHS, RHS, TargetCC, TrueV, FalseV});
6926     }
6927 
6928     break;
6929   }
6930   case RISCVISD::BR_CC: {
6931     SDValue LHS = N->getOperand(1);
6932     SDValue RHS = N->getOperand(2);
6933     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
6934     if (!ISD::isIntEqualitySetCC(CCVal))
6935       break;
6936 
6937     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
6938     //      (br_cc X, Y, lt, dest)
6939     // Sometimes the setcc is introduced after br_cc has been formed.
6940     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6941         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6942       // If we're looking for eq 0 instead of ne 0, we need to invert the
6943       // condition.
6944       bool Invert = CCVal == ISD::SETEQ;
6945       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6946       if (Invert)
6947         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6948 
6949       SDLoc DL(N);
6950       RHS = LHS.getOperand(1);
6951       LHS = LHS.getOperand(0);
6952       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6953 
6954       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6955                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
6956                          N->getOperand(4));
6957     }
6958 
6959     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
6960     //      (br_cc X, Y, eq/ne, trueV, falseV)
6961     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6962       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
6963                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
6964                          N->getOperand(3), N->getOperand(4));
6965 
6966     // (br_cc X, 1, setne, br_cc) ->
6967     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
6968     // This can occur when legalizing some floating point comparisons.
6969     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6970     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6971       SDLoc DL(N);
6972       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6973       SDValue TargetCC = DAG.getCondCode(CCVal);
6974       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6975       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6976                          N->getOperand(0), LHS, RHS, TargetCC,
6977                          N->getOperand(4));
6978     }
6979     break;
6980   }
6981   case ISD::FCOPYSIGN: {
6982     EVT VT = N->getValueType(0);
6983     if (!VT.isVector())
6984       break;
6985     // There is a form of VFSGNJ which injects the negated sign of its second
6986     // operand. Try and bubble any FNEG up after the extend/round to produce
6987     // this optimized pattern. Avoid modifying cases where FP_ROUND and
6988     // TRUNC=1.
6989     SDValue In2 = N->getOperand(1);
6990     // Avoid cases where the extend/round has multiple uses, as duplicating
6991     // those is typically more expensive than removing a fneg.
6992     if (!In2.hasOneUse())
6993       break;
6994     if (In2.getOpcode() != ISD::FP_EXTEND &&
6995         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
6996       break;
6997     In2 = In2.getOperand(0);
6998     if (In2.getOpcode() != ISD::FNEG)
6999       break;
7000     SDLoc DL(N);
7001     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7002     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7003                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7004   }
7005   case ISD::MGATHER:
7006   case ISD::MSCATTER:
7007   case ISD::VP_GATHER:
7008   case ISD::VP_SCATTER: {
7009     if (!DCI.isBeforeLegalize())
7010       break;
7011     SDValue Index, ScaleOp;
7012     bool IsIndexScaled = false;
7013     bool IsIndexSigned = false;
7014     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7015       Index = VPGSN->getIndex();
7016       ScaleOp = VPGSN->getScale();
7017       IsIndexScaled = VPGSN->isIndexScaled();
7018       IsIndexSigned = VPGSN->isIndexSigned();
7019     } else {
7020       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7021       Index = MGSN->getIndex();
7022       ScaleOp = MGSN->getScale();
7023       IsIndexScaled = MGSN->isIndexScaled();
7024       IsIndexSigned = MGSN->isIndexSigned();
7025     }
7026     EVT IndexVT = Index.getValueType();
7027     MVT XLenVT = Subtarget.getXLenVT();
7028     // RISCV indexed loads only support the "unsigned unscaled" addressing
7029     // mode, so anything else must be manually legalized.
7030     bool NeedsIdxLegalization =
7031         IsIndexScaled ||
7032         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7033     if (!NeedsIdxLegalization)
7034       break;
7035 
7036     SDLoc DL(N);
7037 
7038     // Any index legalization should first promote to XLenVT, so we don't lose
7039     // bits when scaling. This may create an illegal index type so we let
7040     // LLVM's legalization take care of the splitting.
7041     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7042     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7043       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7044       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7045                           DL, IndexVT, Index);
7046     }
7047 
7048     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7049     if (IsIndexScaled && Scale != 1) {
7050       // Manually scale the indices by the element size.
7051       // TODO: Sanitize the scale operand here?
7052       // TODO: For VP nodes, should we use VP_SHL here?
7053       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7054       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7055       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7056     }
7057 
7058     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7059     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7060       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7061                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7062                               VPGN->getScale(), VPGN->getMask(),
7063                               VPGN->getVectorLength()},
7064                              VPGN->getMemOperand(), NewIndexTy);
7065     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7066       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7067                               {VPSN->getChain(), VPSN->getValue(),
7068                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7069                                VPSN->getMask(), VPSN->getVectorLength()},
7070                               VPSN->getMemOperand(), NewIndexTy);
7071     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7072       return DAG.getMaskedGather(
7073           N->getVTList(), MGN->getMemoryVT(), DL,
7074           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7075            MGN->getBasePtr(), Index, MGN->getScale()},
7076           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7077     const auto *MSN = cast<MaskedScatterSDNode>(N);
7078     return DAG.getMaskedScatter(
7079         N->getVTList(), MSN->getMemoryVT(), DL,
7080         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7081          Index, MSN->getScale()},
7082         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7083   }
7084   case RISCVISD::SRA_VL:
7085   case RISCVISD::SRL_VL:
7086   case RISCVISD::SHL_VL: {
7087     SDValue ShAmt = N->getOperand(1);
7088     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7089       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7090       SDLoc DL(N);
7091       SDValue VL = N->getOperand(3);
7092       EVT VT = N->getValueType(0);
7093       ShAmt =
7094           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7095       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7096                          N->getOperand(2), N->getOperand(3));
7097     }
7098     break;
7099   }
7100   case ISD::SRA:
7101   case ISD::SRL:
7102   case ISD::SHL: {
7103     SDValue ShAmt = N->getOperand(1);
7104     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7105       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7106       SDLoc DL(N);
7107       EVT VT = N->getValueType(0);
7108       ShAmt =
7109           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7110       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7111     }
7112     break;
7113   }
7114   case RISCVISD::MUL_VL: {
7115     SDValue Op0 = N->getOperand(0);
7116     SDValue Op1 = N->getOperand(1);
7117     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7118       return V;
7119     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7120       return V;
7121     return SDValue();
7122   }
7123   case ISD::STORE: {
7124     auto *Store = cast<StoreSDNode>(N);
7125     SDValue Val = Store->getValue();
7126     // Combine store of vmv.x.s to vse with VL of 1.
7127     // FIXME: Support FP.
7128     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7129       SDValue Src = Val.getOperand(0);
7130       EVT VecVT = Src.getValueType();
7131       EVT MemVT = Store->getMemoryVT();
7132       // The memory VT and the element type must match.
7133       if (VecVT.getVectorElementType() == MemVT) {
7134         SDLoc DL(N);
7135         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7136         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7137                               DAG.getConstant(1, DL, MaskVT),
7138                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7139                               Store->getPointerInfo(),
7140                               Store->getOriginalAlign(),
7141                               Store->getMemOperand()->getFlags());
7142       }
7143     }
7144 
7145     break;
7146   }
7147   }
7148 
7149   return SDValue();
7150 }
7151 
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const7152 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7153     const SDNode *N, CombineLevel Level) const {
7154   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7155   // materialised in fewer instructions than `(OP _, c1)`:
7156   //
7157   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7158   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7159   SDValue N0 = N->getOperand(0);
7160   EVT Ty = N0.getValueType();
7161   if (Ty.isScalarInteger() &&
7162       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7163     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7164     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7165     if (C1 && C2) {
7166       const APInt &C1Int = C1->getAPIntValue();
7167       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7168 
7169       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7170       // and the combine should happen, to potentially allow further combines
7171       // later.
7172       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7173           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7174         return true;
7175 
7176       // We can materialise `c1` in an add immediate, so it's "free", and the
7177       // combine should be prevented.
7178       if (C1Int.getMinSignedBits() <= 64 &&
7179           isLegalAddImmediate(C1Int.getSExtValue()))
7180         return false;
7181 
7182       // Neither constant will fit into an immediate, so find materialisation
7183       // costs.
7184       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7185                                               Subtarget.getFeatureBits(),
7186                                               /*CompressionCost*/true);
7187       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7188           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7189           /*CompressionCost*/true);
7190 
7191       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7192       // combine should be prevented.
7193       if (C1Cost < ShiftedC1Cost)
7194         return false;
7195     }
7196   }
7197   return true;
7198 }
7199 
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const7200 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7201     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7202     TargetLoweringOpt &TLO) const {
7203   // Delay this optimization as late as possible.
7204   if (!TLO.LegalOps)
7205     return false;
7206 
7207   EVT VT = Op.getValueType();
7208   if (VT.isVector())
7209     return false;
7210 
7211   // Only handle AND for now.
7212   if (Op.getOpcode() != ISD::AND)
7213     return false;
7214 
7215   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7216   if (!C)
7217     return false;
7218 
7219   const APInt &Mask = C->getAPIntValue();
7220 
7221   // Clear all non-demanded bits initially.
7222   APInt ShrunkMask = Mask & DemandedBits;
7223 
7224   // Try to make a smaller immediate by setting undemanded bits.
7225 
7226   APInt ExpandedMask = Mask | ~DemandedBits;
7227 
7228   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7229     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7230   };
7231   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7232     if (NewMask == Mask)
7233       return true;
7234     SDLoc DL(Op);
7235     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7236     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7237     return TLO.CombineTo(Op, NewOp);
7238   };
7239 
7240   // If the shrunk mask fits in sign extended 12 bits, let the target
7241   // independent code apply it.
7242   if (ShrunkMask.isSignedIntN(12))
7243     return false;
7244 
7245   // Preserve (and X, 0xffff) when zext.h is supported.
7246   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7247     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7248     if (IsLegalMask(NewMask))
7249       return UseMask(NewMask);
7250   }
7251 
7252   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7253   if (VT == MVT::i64) {
7254     APInt NewMask = APInt(64, 0xffffffff);
7255     if (IsLegalMask(NewMask))
7256       return UseMask(NewMask);
7257   }
7258 
7259   // For the remaining optimizations, we need to be able to make a negative
7260   // number through a combination of mask and undemanded bits.
7261   if (!ExpandedMask.isNegative())
7262     return false;
7263 
7264   // What is the fewest number of bits we need to represent the negative number.
7265   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7266 
7267   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7268   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7269   APInt NewMask = ShrunkMask;
7270   if (MinSignedBits <= 12)
7271     NewMask.setBitsFrom(11);
7272   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7273     NewMask.setBitsFrom(31);
7274   else
7275     return false;
7276 
7277   // Sanity check that our new mask is a subset of the demanded mask.
7278   assert(IsLegalMask(NewMask));
7279   return UseMask(NewMask);
7280 }
7281 
computeGREV(APInt & Src,unsigned ShAmt)7282 static void computeGREV(APInt &Src, unsigned ShAmt) {
7283   ShAmt &= Src.getBitWidth() - 1;
7284   uint64_t x = Src.getZExtValue();
7285   if (ShAmt & 1)
7286     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7287   if (ShAmt & 2)
7288     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7289   if (ShAmt & 4)
7290     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7291   if (ShAmt & 8)
7292     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7293   if (ShAmt & 16)
7294     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7295   if (ShAmt & 32)
7296     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7297   Src = x;
7298 }
7299 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const7300 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7301                                                         KnownBits &Known,
7302                                                         const APInt &DemandedElts,
7303                                                         const SelectionDAG &DAG,
7304                                                         unsigned Depth) const {
7305   unsigned BitWidth = Known.getBitWidth();
7306   unsigned Opc = Op.getOpcode();
7307   assert((Opc >= ISD::BUILTIN_OP_END ||
7308           Opc == ISD::INTRINSIC_WO_CHAIN ||
7309           Opc == ISD::INTRINSIC_W_CHAIN ||
7310           Opc == ISD::INTRINSIC_VOID) &&
7311          "Should use MaskedValueIsZero if you don't know whether Op"
7312          " is a target node!");
7313 
7314   Known.resetAll();
7315   switch (Opc) {
7316   default: break;
7317   case RISCVISD::SELECT_CC: {
7318     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7319     // If we don't know any bits, early out.
7320     if (Known.isUnknown())
7321       break;
7322     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7323 
7324     // Only known if known in both the LHS and RHS.
7325     Known = KnownBits::commonBits(Known, Known2);
7326     break;
7327   }
7328   case RISCVISD::REMUW: {
7329     KnownBits Known2;
7330     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7331     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7332     // We only care about the lower 32 bits.
7333     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7334     // Restore the original width by sign extending.
7335     Known = Known.sext(BitWidth);
7336     break;
7337   }
7338   case RISCVISD::DIVUW: {
7339     KnownBits Known2;
7340     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7341     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7342     // We only care about the lower 32 bits.
7343     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7344     // Restore the original width by sign extending.
7345     Known = Known.sext(BitWidth);
7346     break;
7347   }
7348   case RISCVISD::CTZW: {
7349     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7350     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7351     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7352     Known.Zero.setBitsFrom(LowBits);
7353     break;
7354   }
7355   case RISCVISD::CLZW: {
7356     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7357     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7358     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7359     Known.Zero.setBitsFrom(LowBits);
7360     break;
7361   }
7362   case RISCVISD::GREV:
7363   case RISCVISD::GREVW: {
7364     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7365       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7366       if (Opc == RISCVISD::GREVW)
7367         Known = Known.trunc(32);
7368       unsigned ShAmt = C->getZExtValue();
7369       computeGREV(Known.Zero, ShAmt);
7370       computeGREV(Known.One, ShAmt);
7371       if (Opc == RISCVISD::GREVW)
7372         Known = Known.sext(BitWidth);
7373     }
7374     break;
7375   }
7376   case RISCVISD::READ_VLENB:
7377     // We assume VLENB is at least 16 bytes.
7378     Known.Zero.setLowBits(4);
7379     // We assume VLENB is no more than 65536 / 8 bytes.
7380     Known.Zero.setBitsFrom(14);
7381     break;
7382   case ISD::INTRINSIC_W_CHAIN: {
7383     unsigned IntNo = Op.getConstantOperandVal(1);
7384     switch (IntNo) {
7385     default:
7386       // We can't do anything for most intrinsics.
7387       break;
7388     case Intrinsic::riscv_vsetvli:
7389     case Intrinsic::riscv_vsetvlimax:
7390       // Assume that VL output is positive and would fit in an int32_t.
7391       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7392       if (BitWidth >= 32)
7393         Known.Zero.setBitsFrom(31);
7394       break;
7395     }
7396     break;
7397   }
7398   }
7399 }
7400 
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const7401 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7402     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7403     unsigned Depth) const {
7404   switch (Op.getOpcode()) {
7405   default:
7406     break;
7407   case RISCVISD::SELECT_CC: {
7408     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7409     if (Tmp == 1) return 1;  // Early out.
7410     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7411     return std::min(Tmp, Tmp2);
7412   }
7413   case RISCVISD::SLLW:
7414   case RISCVISD::SRAW:
7415   case RISCVISD::SRLW:
7416   case RISCVISD::DIVW:
7417   case RISCVISD::DIVUW:
7418   case RISCVISD::REMUW:
7419   case RISCVISD::ROLW:
7420   case RISCVISD::RORW:
7421   case RISCVISD::GREVW:
7422   case RISCVISD::GORCW:
7423   case RISCVISD::FSLW:
7424   case RISCVISD::FSRW:
7425   case RISCVISD::SHFLW:
7426   case RISCVISD::UNSHFLW:
7427   case RISCVISD::BCOMPRESSW:
7428   case RISCVISD::BDECOMPRESSW:
7429   case RISCVISD::FCVT_W_RTZ_RV64:
7430   case RISCVISD::FCVT_WU_RTZ_RV64:
7431     // TODO: As the result is sign-extended, this is conservatively correct. A
7432     // more precise answer could be calculated for SRAW depending on known
7433     // bits in the shift amount.
7434     return 33;
7435   case RISCVISD::SHFL:
7436   case RISCVISD::UNSHFL: {
7437     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7438     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7439     // will stay within the upper 32 bits. If there were more than 32 sign bits
7440     // before there will be at least 33 sign bits after.
7441     if (Op.getValueType() == MVT::i64 &&
7442         isa<ConstantSDNode>(Op.getOperand(1)) &&
7443         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7444       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7445       if (Tmp > 32)
7446         return 33;
7447     }
7448     break;
7449   }
7450   case RISCVISD::VMV_X_S:
7451     // The number of sign bits of the scalar result is computed by obtaining the
7452     // element type of the input vector operand, subtracting its width from the
7453     // XLEN, and then adding one (sign bit within the element type). If the
7454     // element type is wider than XLen, the least-significant XLEN bits are
7455     // taken.
7456     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7457       return 1;
7458     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7459   }
7460 
7461   return 1;
7462 }
7463 
emitReadCycleWidePseudo(MachineInstr & MI,MachineBasicBlock * BB)7464 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7465                                                   MachineBasicBlock *BB) {
7466   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7467 
7468   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7469   // Should the count have wrapped while it was being read, we need to try
7470   // again.
7471   // ...
7472   // read:
7473   // rdcycleh x3 # load high word of cycle
7474   // rdcycle  x2 # load low word of cycle
7475   // rdcycleh x4 # load high word of cycle
7476   // bne x3, x4, read # check if high word reads match, otherwise try again
7477   // ...
7478 
7479   MachineFunction &MF = *BB->getParent();
7480   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7481   MachineFunction::iterator It = ++BB->getIterator();
7482 
7483   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7484   MF.insert(It, LoopMBB);
7485 
7486   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7487   MF.insert(It, DoneMBB);
7488 
7489   // Transfer the remainder of BB and its successor edges to DoneMBB.
7490   DoneMBB->splice(DoneMBB->begin(), BB,
7491                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7492   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7493 
7494   BB->addSuccessor(LoopMBB);
7495 
7496   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7497   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7498   Register LoReg = MI.getOperand(0).getReg();
7499   Register HiReg = MI.getOperand(1).getReg();
7500   DebugLoc DL = MI.getDebugLoc();
7501 
7502   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7503   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7504       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7505       .addReg(RISCV::X0);
7506   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7507       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7508       .addReg(RISCV::X0);
7509   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7510       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7511       .addReg(RISCV::X0);
7512 
7513   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7514       .addReg(HiReg)
7515       .addReg(ReadAgainReg)
7516       .addMBB(LoopMBB);
7517 
7518   LoopMBB->addSuccessor(LoopMBB);
7519   LoopMBB->addSuccessor(DoneMBB);
7520 
7521   MI.eraseFromParent();
7522 
7523   return DoneMBB;
7524 }
7525 
emitSplitF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)7526 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
7527                                              MachineBasicBlock *BB) {
7528   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
7529 
7530   MachineFunction &MF = *BB->getParent();
7531   DebugLoc DL = MI.getDebugLoc();
7532   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7533   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7534   Register LoReg = MI.getOperand(0).getReg();
7535   Register HiReg = MI.getOperand(1).getReg();
7536   Register SrcReg = MI.getOperand(2).getReg();
7537   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
7538   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7539 
7540   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
7541                           RI);
7542   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7543   MachineMemOperand *MMOLo =
7544       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
7545   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7546       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
7547   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
7548       .addFrameIndex(FI)
7549       .addImm(0)
7550       .addMemOperand(MMOLo);
7551   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
7552       .addFrameIndex(FI)
7553       .addImm(4)
7554       .addMemOperand(MMOHi);
7555   MI.eraseFromParent(); // The pseudo instruction is gone now.
7556   return BB;
7557 }
7558 
emitBuildPairF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)7559 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
7560                                                  MachineBasicBlock *BB) {
7561   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
7562          "Unexpected instruction");
7563 
7564   MachineFunction &MF = *BB->getParent();
7565   DebugLoc DL = MI.getDebugLoc();
7566   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7567   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7568   Register DstReg = MI.getOperand(0).getReg();
7569   Register LoReg = MI.getOperand(1).getReg();
7570   Register HiReg = MI.getOperand(2).getReg();
7571   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
7572   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7573 
7574   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7575   MachineMemOperand *MMOLo =
7576       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
7577   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7578       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
7579   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7580       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
7581       .addFrameIndex(FI)
7582       .addImm(0)
7583       .addMemOperand(MMOLo);
7584   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7585       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
7586       .addFrameIndex(FI)
7587       .addImm(4)
7588       .addMemOperand(MMOHi);
7589   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
7590   MI.eraseFromParent(); // The pseudo instruction is gone now.
7591   return BB;
7592 }
7593 
isSelectPseudo(MachineInstr & MI)7594 static bool isSelectPseudo(MachineInstr &MI) {
7595   switch (MI.getOpcode()) {
7596   default:
7597     return false;
7598   case RISCV::Select_GPR_Using_CC_GPR:
7599   case RISCV::Select_FPR16_Using_CC_GPR:
7600   case RISCV::Select_FPR32_Using_CC_GPR:
7601   case RISCV::Select_FPR64_Using_CC_GPR:
7602     return true;
7603   }
7604 }
7605 
emitSelectPseudo(MachineInstr & MI,MachineBasicBlock * BB,const RISCVSubtarget & Subtarget)7606 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
7607                                            MachineBasicBlock *BB,
7608                                            const RISCVSubtarget &Subtarget) {
7609   // To "insert" Select_* instructions, we actually have to insert the triangle
7610   // control-flow pattern.  The incoming instructions know the destination vreg
7611   // to set, the condition code register to branch on, the true/false values to
7612   // select between, and the condcode to use to select the appropriate branch.
7613   //
7614   // We produce the following control flow:
7615   //     HeadMBB
7616   //     |  \
7617   //     |  IfFalseMBB
7618   //     | /
7619   //    TailMBB
7620   //
7621   // When we find a sequence of selects we attempt to optimize their emission
7622   // by sharing the control flow. Currently we only handle cases where we have
7623   // multiple selects with the exact same condition (same LHS, RHS and CC).
7624   // The selects may be interleaved with other instructions if the other
7625   // instructions meet some requirements we deem safe:
7626   // - They are debug instructions. Otherwise,
7627   // - They do not have side-effects, do not access memory and their inputs do
7628   //   not depend on the results of the select pseudo-instructions.
7629   // The TrueV/FalseV operands of the selects cannot depend on the result of
7630   // previous selects in the sequence.
7631   // These conditions could be further relaxed. See the X86 target for a
7632   // related approach and more information.
7633   Register LHS = MI.getOperand(1).getReg();
7634   Register RHS = MI.getOperand(2).getReg();
7635   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
7636 
7637   SmallVector<MachineInstr *, 4> SelectDebugValues;
7638   SmallSet<Register, 4> SelectDests;
7639   SelectDests.insert(MI.getOperand(0).getReg());
7640 
7641   MachineInstr *LastSelectPseudo = &MI;
7642 
7643   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
7644        SequenceMBBI != E; ++SequenceMBBI) {
7645     if (SequenceMBBI->isDebugInstr())
7646       continue;
7647     else if (isSelectPseudo(*SequenceMBBI)) {
7648       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
7649           SequenceMBBI->getOperand(2).getReg() != RHS ||
7650           SequenceMBBI->getOperand(3).getImm() != CC ||
7651           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
7652           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
7653         break;
7654       LastSelectPseudo = &*SequenceMBBI;
7655       SequenceMBBI->collectDebugValues(SelectDebugValues);
7656       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
7657     } else {
7658       if (SequenceMBBI->hasUnmodeledSideEffects() ||
7659           SequenceMBBI->mayLoadOrStore())
7660         break;
7661       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
7662             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7663           }))
7664         break;
7665     }
7666   }
7667 
7668   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
7669   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7670   DebugLoc DL = MI.getDebugLoc();
7671   MachineFunction::iterator I = ++BB->getIterator();
7672 
7673   MachineBasicBlock *HeadMBB = BB;
7674   MachineFunction *F = BB->getParent();
7675   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
7676   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
7677 
7678   F->insert(I, IfFalseMBB);
7679   F->insert(I, TailMBB);
7680 
7681   // Transfer debug instructions associated with the selects to TailMBB.
7682   for (MachineInstr *DebugInstr : SelectDebugValues) {
7683     TailMBB->push_back(DebugInstr->removeFromParent());
7684   }
7685 
7686   // Move all instructions after the sequence to TailMBB.
7687   TailMBB->splice(TailMBB->end(), HeadMBB,
7688                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
7689   // Update machine-CFG edges by transferring all successors of the current
7690   // block to the new block which will contain the Phi nodes for the selects.
7691   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
7692   // Set the successors for HeadMBB.
7693   HeadMBB->addSuccessor(IfFalseMBB);
7694   HeadMBB->addSuccessor(TailMBB);
7695 
7696   // Insert appropriate branch.
7697   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
7698     .addReg(LHS)
7699     .addReg(RHS)
7700     .addMBB(TailMBB);
7701 
7702   // IfFalseMBB just falls through to TailMBB.
7703   IfFalseMBB->addSuccessor(TailMBB);
7704 
7705   // Create PHIs for all of the select pseudo-instructions.
7706   auto SelectMBBI = MI.getIterator();
7707   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
7708   auto InsertionPoint = TailMBB->begin();
7709   while (SelectMBBI != SelectEnd) {
7710     auto Next = std::next(SelectMBBI);
7711     if (isSelectPseudo(*SelectMBBI)) {
7712       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
7713       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
7714               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
7715           .addReg(SelectMBBI->getOperand(4).getReg())
7716           .addMBB(HeadMBB)
7717           .addReg(SelectMBBI->getOperand(5).getReg())
7718           .addMBB(IfFalseMBB);
7719       SelectMBBI->eraseFromParent();
7720     }
7721     SelectMBBI = Next;
7722   }
7723 
7724   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7725   return TailMBB;
7726 }
7727 
7728 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const7729 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
7730                                                  MachineBasicBlock *BB) const {
7731   switch (MI.getOpcode()) {
7732   default:
7733     llvm_unreachable("Unexpected instr type to insert");
7734   case RISCV::ReadCycleWide:
7735     assert(!Subtarget.is64Bit() &&
7736            "ReadCycleWrite is only to be used on riscv32");
7737     return emitReadCycleWidePseudo(MI, BB);
7738   case RISCV::Select_GPR_Using_CC_GPR:
7739   case RISCV::Select_FPR16_Using_CC_GPR:
7740   case RISCV::Select_FPR32_Using_CC_GPR:
7741   case RISCV::Select_FPR64_Using_CC_GPR:
7742     return emitSelectPseudo(MI, BB, Subtarget);
7743   case RISCV::BuildPairF64Pseudo:
7744     return emitBuildPairF64Pseudo(MI, BB);
7745   case RISCV::SplitF64Pseudo:
7746     return emitSplitF64Pseudo(MI, BB);
7747   }
7748 }
7749 
7750 // Calling Convention Implementation.
7751 // The expectations for frontend ABI lowering vary from target to target.
7752 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7753 // details, but this is a longer term goal. For now, we simply try to keep the
7754 // role of the frontend as simple and well-defined as possible. The rules can
7755 // be summarised as:
7756 // * Never split up large scalar arguments. We handle them here.
7757 // * If a hardfloat calling convention is being used, and the struct may be
7758 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7759 // available, then pass as two separate arguments. If either the GPRs or FPRs
7760 // are exhausted, then pass according to the rule below.
7761 // * If a struct could never be passed in registers or directly in a stack
7762 // slot (as it is larger than 2*XLEN and the floating point rules don't
7763 // apply), then pass it using a pointer with the byval attribute.
7764 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7765 // word-sized array or a 2*XLEN scalar (depending on alignment).
7766 // * The frontend can determine whether a struct is returned by reference or
7767 // not based on its size and fields. If it will be returned by reference, the
7768 // frontend must modify the prototype so a pointer with the sret annotation is
7769 // passed as the first argument. This is not necessary for large scalar
7770 // returns.
7771 // * Struct return values and varargs should be coerced to structs containing
7772 // register-size fields in the same situations they would be for fixed
7773 // arguments.
7774 
7775 static const MCPhysReg ArgGPRs[] = {
7776   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
7777   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
7778 };
7779 static const MCPhysReg ArgFPR16s[] = {
7780   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
7781   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
7782 };
7783 static const MCPhysReg ArgFPR32s[] = {
7784   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
7785   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
7786 };
7787 static const MCPhysReg ArgFPR64s[] = {
7788   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
7789   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
7790 };
7791 // This is an interim calling convention and it may be changed in the future.
7792 static const MCPhysReg ArgVRs[] = {
7793     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7794     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7795     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7796 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7797                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7798                                      RISCV::V20M2, RISCV::V22M2};
7799 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7800                                      RISCV::V20M4};
7801 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7802 
7803 // Pass a 2*XLEN argument that has been split into two XLEN values through
7804 // registers or the stack as necessary.
CC_RISCVAssign2XLen(unsigned XLen,CCState & State,CCValAssign VA1,ISD::ArgFlagsTy ArgFlags1,unsigned ValNo2,MVT ValVT2,MVT LocVT2,ISD::ArgFlagsTy ArgFlags2)7805 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7806                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7807                                 MVT ValVT2, MVT LocVT2,
7808                                 ISD::ArgFlagsTy ArgFlags2) {
7809   unsigned XLenInBytes = XLen / 8;
7810   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7811     // At least one half can be passed via register.
7812     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7813                                      VA1.getLocVT(), CCValAssign::Full));
7814   } else {
7815     // Both halves must be passed on the stack, with proper alignment.
7816     Align StackAlign =
7817         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7818     State.addLoc(
7819         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7820                             State.AllocateStack(XLenInBytes, StackAlign),
7821                             VA1.getLocVT(), CCValAssign::Full));
7822     State.addLoc(CCValAssign::getMem(
7823         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7824         LocVT2, CCValAssign::Full));
7825     return false;
7826   }
7827 
7828   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7829     // The second half can also be passed via register.
7830     State.addLoc(
7831         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7832   } else {
7833     // The second half is passed via the stack, without additional alignment.
7834     State.addLoc(CCValAssign::getMem(
7835         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7836         LocVT2, CCValAssign::Full));
7837   }
7838 
7839   return false;
7840 }
7841 
allocateRVVReg(MVT ValVT,unsigned ValNo,Optional<unsigned> FirstMaskArgument,CCState & State,const RISCVTargetLowering & TLI)7842 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7843                                Optional<unsigned> FirstMaskArgument,
7844                                CCState &State, const RISCVTargetLowering &TLI) {
7845   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
7846   if (RC == &RISCV::VRRegClass) {
7847     // Assign the first mask argument to V0.
7848     // This is an interim calling convention and it may be changed in the
7849     // future.
7850     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
7851       return State.AllocateReg(RISCV::V0);
7852     return State.AllocateReg(ArgVRs);
7853   }
7854   if (RC == &RISCV::VRM2RegClass)
7855     return State.AllocateReg(ArgVRM2s);
7856   if (RC == &RISCV::VRM4RegClass)
7857     return State.AllocateReg(ArgVRM4s);
7858   if (RC == &RISCV::VRM8RegClass)
7859     return State.AllocateReg(ArgVRM8s);
7860   llvm_unreachable("Unhandled register class for ValueType");
7861 }
7862 
7863 // Implements the RISC-V calling convention. Returns true upon failure.
CC_RISCV(const DataLayout & DL,RISCVABI::ABI ABI,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy,const RISCVTargetLowering & TLI,Optional<unsigned> FirstMaskArgument)7864 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
7865                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
7866                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
7867                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
7868                      Optional<unsigned> FirstMaskArgument) {
7869   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
7870   assert(XLen == 32 || XLen == 64);
7871   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
7872 
7873   // Any return value split in to more than two values can't be returned
7874   // directly. Vectors are returned via the available vector registers.
7875   if (!LocVT.isVector() && IsRet && ValNo > 1)
7876     return true;
7877 
7878   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7879   // variadic argument, or if no F16/F32 argument registers are available.
7880   bool UseGPRForF16_F32 = true;
7881   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7882   // variadic argument, or if no F64 argument registers are available.
7883   bool UseGPRForF64 = true;
7884 
7885   switch (ABI) {
7886   default:
7887     llvm_unreachable("Unexpected ABI");
7888   case RISCVABI::ABI_ILP32:
7889   case RISCVABI::ABI_LP64:
7890     break;
7891   case RISCVABI::ABI_ILP32F:
7892   case RISCVABI::ABI_LP64F:
7893     UseGPRForF16_F32 = !IsFixed;
7894     break;
7895   case RISCVABI::ABI_ILP32D:
7896   case RISCVABI::ABI_LP64D:
7897     UseGPRForF16_F32 = !IsFixed;
7898     UseGPRForF64 = !IsFixed;
7899     break;
7900   }
7901 
7902   // FPR16, FPR32, and FPR64 alias each other.
7903   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
7904     UseGPRForF16_F32 = true;
7905     UseGPRForF64 = true;
7906   }
7907 
7908   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7909   // similar local variables rather than directly checking against the target
7910   // ABI.
7911 
7912   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
7913     LocVT = XLenVT;
7914     LocInfo = CCValAssign::BCvt;
7915   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
7916     LocVT = MVT::i64;
7917     LocInfo = CCValAssign::BCvt;
7918   }
7919 
7920   // If this is a variadic argument, the RISC-V calling convention requires
7921   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7922   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7923   // be used regardless of whether the original argument was split during
7924   // legalisation or not. The argument will not be passed by registers if the
7925   // original type is larger than 2*XLEN, so the register alignment rule does
7926   // not apply.
7927   unsigned TwoXLenInBytes = (2 * XLen) / 8;
7928   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
7929       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
7930     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
7931     // Skip 'odd' register if necessary.
7932     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
7933       State.AllocateReg(ArgGPRs);
7934   }
7935 
7936   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
7937   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
7938       State.getPendingArgFlags();
7939 
7940   assert(PendingLocs.size() == PendingArgFlags.size() &&
7941          "PendingLocs and PendingArgFlags out of sync");
7942 
7943   // Handle passing f64 on RV32D with a soft float ABI or when floating point
7944   // registers are exhausted.
7945   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
7946     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
7947            "Can't lower f64 if it is split");
7948     // Depending on available argument GPRS, f64 may be passed in a pair of
7949     // GPRs, split between a GPR and the stack, or passed completely on the
7950     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
7951     // cases.
7952     Register Reg = State.AllocateReg(ArgGPRs);
7953     LocVT = MVT::i32;
7954     if (!Reg) {
7955       unsigned StackOffset = State.AllocateStack(8, Align(8));
7956       State.addLoc(
7957           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7958       return false;
7959     }
7960     if (!State.AllocateReg(ArgGPRs))
7961       State.AllocateStack(4, Align(4));
7962     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7963     return false;
7964   }
7965 
7966   // Fixed-length vectors are located in the corresponding scalable-vector
7967   // container types.
7968   if (ValVT.isFixedLengthVector())
7969     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7970 
7971   // Split arguments might be passed indirectly, so keep track of the pending
7972   // values. Split vectors are passed via a mix of registers and indirectly, so
7973   // treat them as we would any other argument.
7974   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
7975     LocVT = XLenVT;
7976     LocInfo = CCValAssign::Indirect;
7977     PendingLocs.push_back(
7978         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
7979     PendingArgFlags.push_back(ArgFlags);
7980     if (!ArgFlags.isSplitEnd()) {
7981       return false;
7982     }
7983   }
7984 
7985   // If the split argument only had two elements, it should be passed directly
7986   // in registers or on the stack.
7987   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
7988       PendingLocs.size() <= 2) {
7989     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
7990     // Apply the normal calling convention rules to the first half of the
7991     // split argument.
7992     CCValAssign VA = PendingLocs[0];
7993     ISD::ArgFlagsTy AF = PendingArgFlags[0];
7994     PendingLocs.clear();
7995     PendingArgFlags.clear();
7996     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
7997                                ArgFlags);
7998   }
7999 
8000   // Allocate to a register if possible, or else a stack slot.
8001   Register Reg;
8002   unsigned StoreSizeBytes = XLen / 8;
8003   Align StackAlign = Align(XLen / 8);
8004 
8005   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8006     Reg = State.AllocateReg(ArgFPR16s);
8007   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8008     Reg = State.AllocateReg(ArgFPR32s);
8009   else if (ValVT == MVT::f64 && !UseGPRForF64)
8010     Reg = State.AllocateReg(ArgFPR64s);
8011   else if (ValVT.isVector()) {
8012     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8013     if (!Reg) {
8014       // For return values, the vector must be passed fully via registers or
8015       // via the stack.
8016       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8017       // but we're using all of them.
8018       if (IsRet)
8019         return true;
8020       // Try using a GPR to pass the address
8021       if ((Reg = State.AllocateReg(ArgGPRs))) {
8022         LocVT = XLenVT;
8023         LocInfo = CCValAssign::Indirect;
8024       } else if (ValVT.isScalableVector()) {
8025         report_fatal_error("Unable to pass scalable vector types on the stack");
8026       } else {
8027         // Pass fixed-length vectors on the stack.
8028         LocVT = ValVT;
8029         StoreSizeBytes = ValVT.getStoreSize();
8030         // Align vectors to their element sizes, being careful for vXi1
8031         // vectors.
8032         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8033       }
8034     }
8035   } else {
8036     Reg = State.AllocateReg(ArgGPRs);
8037   }
8038 
8039   unsigned StackOffset =
8040       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8041 
8042   // If we reach this point and PendingLocs is non-empty, we must be at the
8043   // end of a split argument that must be passed indirectly.
8044   if (!PendingLocs.empty()) {
8045     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8046     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8047 
8048     for (auto &It : PendingLocs) {
8049       if (Reg)
8050         It.convertToReg(Reg);
8051       else
8052         It.convertToMem(StackOffset);
8053       State.addLoc(It);
8054     }
8055     PendingLocs.clear();
8056     PendingArgFlags.clear();
8057     return false;
8058   }
8059 
8060   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8061           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
8062          "Expected an XLenVT or vector types at this stage");
8063 
8064   if (Reg) {
8065     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8066     return false;
8067   }
8068 
8069   // When a floating-point value is passed on the stack, no bit-conversion is
8070   // needed.
8071   if (ValVT.isFloatingPoint()) {
8072     LocVT = ValVT;
8073     LocInfo = CCValAssign::Full;
8074   }
8075   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8076   return false;
8077 }
8078 
8079 template <typename ArgTy>
preAssignMask(const ArgTy & Args)8080 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8081   for (const auto &ArgIdx : enumerate(Args)) {
8082     MVT ArgVT = ArgIdx.value().VT;
8083     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8084       return ArgIdx.index();
8085   }
8086   return None;
8087 }
8088 
analyzeInputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::InputArg> & Ins,bool IsRet,RISCVCCAssignFn Fn) const8089 void RISCVTargetLowering::analyzeInputArgs(
8090     MachineFunction &MF, CCState &CCInfo,
8091     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8092     RISCVCCAssignFn Fn) const {
8093   unsigned NumArgs = Ins.size();
8094   FunctionType *FType = MF.getFunction().getFunctionType();
8095 
8096   Optional<unsigned> FirstMaskArgument;
8097   if (Subtarget.hasStdExtV())
8098     FirstMaskArgument = preAssignMask(Ins);
8099 
8100   for (unsigned i = 0; i != NumArgs; ++i) {
8101     MVT ArgVT = Ins[i].VT;
8102     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8103 
8104     Type *ArgTy = nullptr;
8105     if (IsRet)
8106       ArgTy = FType->getReturnType();
8107     else if (Ins[i].isOrigArg())
8108       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8109 
8110     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8111     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8112            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8113            FirstMaskArgument)) {
8114       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8115                         << EVT(ArgVT).getEVTString() << '\n');
8116       llvm_unreachable(nullptr);
8117     }
8118   }
8119 }
8120 
analyzeOutputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::OutputArg> & Outs,bool IsRet,CallLoweringInfo * CLI,RISCVCCAssignFn Fn) const8121 void RISCVTargetLowering::analyzeOutputArgs(
8122     MachineFunction &MF, CCState &CCInfo,
8123     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8124     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8125   unsigned NumArgs = Outs.size();
8126 
8127   Optional<unsigned> FirstMaskArgument;
8128   if (Subtarget.hasStdExtV())
8129     FirstMaskArgument = preAssignMask(Outs);
8130 
8131   for (unsigned i = 0; i != NumArgs; i++) {
8132     MVT ArgVT = Outs[i].VT;
8133     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8134     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8135 
8136     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8137     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8138            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8139            FirstMaskArgument)) {
8140       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8141                         << EVT(ArgVT).getEVTString() << "\n");
8142       llvm_unreachable(nullptr);
8143     }
8144   }
8145 }
8146 
8147 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8148 // values.
convertLocVTToValVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)8149 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8150                                    const CCValAssign &VA, const SDLoc &DL,
8151                                    const RISCVSubtarget &Subtarget) {
8152   switch (VA.getLocInfo()) {
8153   default:
8154     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8155   case CCValAssign::Full:
8156     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8157       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8158     break;
8159   case CCValAssign::BCvt:
8160     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8161       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8162     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8163       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8164     else
8165       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8166     break;
8167   }
8168   return Val;
8169 }
8170 
8171 // The caller is responsible for loading the full value if the argument is
8172 // passed with CCValAssign::Indirect.
unpackFromRegLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL,const RISCVTargetLowering & TLI)8173 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8174                                 const CCValAssign &VA, const SDLoc &DL,
8175                                 const RISCVTargetLowering &TLI) {
8176   MachineFunction &MF = DAG.getMachineFunction();
8177   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8178   EVT LocVT = VA.getLocVT();
8179   SDValue Val;
8180   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8181   Register VReg = RegInfo.createVirtualRegister(RC);
8182   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8183   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8184 
8185   if (VA.getLocInfo() == CCValAssign::Indirect)
8186     return Val;
8187 
8188   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8189 }
8190 
convertValVTToLocVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)8191 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8192                                    const CCValAssign &VA, const SDLoc &DL,
8193                                    const RISCVSubtarget &Subtarget) {
8194   EVT LocVT = VA.getLocVT();
8195 
8196   switch (VA.getLocInfo()) {
8197   default:
8198     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8199   case CCValAssign::Full:
8200     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8201       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8202     break;
8203   case CCValAssign::BCvt:
8204     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8205       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8206     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8207       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8208     else
8209       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8210     break;
8211   }
8212   return Val;
8213 }
8214 
8215 // The caller is responsible for loading the full value if the argument is
8216 // passed with CCValAssign::Indirect.
unpackFromMemLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)8217 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8218                                 const CCValAssign &VA, const SDLoc &DL) {
8219   MachineFunction &MF = DAG.getMachineFunction();
8220   MachineFrameInfo &MFI = MF.getFrameInfo();
8221   EVT LocVT = VA.getLocVT();
8222   EVT ValVT = VA.getValVT();
8223   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8224   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8225                                  /*Immutable=*/true);
8226   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8227   SDValue Val;
8228 
8229   ISD::LoadExtType ExtType;
8230   switch (VA.getLocInfo()) {
8231   default:
8232     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8233   case CCValAssign::Full:
8234   case CCValAssign::Indirect:
8235   case CCValAssign::BCvt:
8236     ExtType = ISD::NON_EXTLOAD;
8237     break;
8238   }
8239   Val = DAG.getExtLoad(
8240       ExtType, DL, LocVT, Chain, FIN,
8241       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8242   return Val;
8243 }
8244 
unpackF64OnRV32DSoftABI(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)8245 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8246                                        const CCValAssign &VA, const SDLoc &DL) {
8247   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8248          "Unexpected VA");
8249   MachineFunction &MF = DAG.getMachineFunction();
8250   MachineFrameInfo &MFI = MF.getFrameInfo();
8251   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8252 
8253   if (VA.isMemLoc()) {
8254     // f64 is passed on the stack.
8255     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
8256     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8257     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8258                        MachinePointerInfo::getFixedStack(MF, FI));
8259   }
8260 
8261   assert(VA.isRegLoc() && "Expected register VA assignment");
8262 
8263   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8264   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8265   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8266   SDValue Hi;
8267   if (VA.getLocReg() == RISCV::X17) {
8268     // Second half of f64 is passed on the stack.
8269     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
8270     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8271     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8272                      MachinePointerInfo::getFixedStack(MF, FI));
8273   } else {
8274     // Second half of f64 is passed in another GPR.
8275     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8276     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8277     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8278   }
8279   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8280 }
8281 
8282 // FastCC has less than 1% performance improvement for some particular
8283 // benchmark. But theoretically, it may has benenfit for some cases.
CC_RISCV_FastCC(const DataLayout & DL,RISCVABI::ABI ABI,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy,const RISCVTargetLowering & TLI,Optional<unsigned> FirstMaskArgument)8284 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8285                             unsigned ValNo, MVT ValVT, MVT LocVT,
8286                             CCValAssign::LocInfo LocInfo,
8287                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8288                             bool IsFixed, bool IsRet, Type *OrigTy,
8289                             const RISCVTargetLowering &TLI,
8290                             Optional<unsigned> FirstMaskArgument) {
8291 
8292   // X5 and X6 might be used for save-restore libcall.
8293   static const MCPhysReg GPRList[] = {
8294       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8295       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8296       RISCV::X29, RISCV::X30, RISCV::X31};
8297 
8298   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8299     if (unsigned Reg = State.AllocateReg(GPRList)) {
8300       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8301       return false;
8302     }
8303   }
8304 
8305   if (LocVT == MVT::f16) {
8306     static const MCPhysReg FPR16List[] = {
8307         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8308         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8309         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8310         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8311     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8312       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8313       return false;
8314     }
8315   }
8316 
8317   if (LocVT == MVT::f32) {
8318     static const MCPhysReg FPR32List[] = {
8319         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8320         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8321         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8322         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8323     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8324       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8325       return false;
8326     }
8327   }
8328 
8329   if (LocVT == MVT::f64) {
8330     static const MCPhysReg FPR64List[] = {
8331         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8332         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8333         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8334         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8335     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8336       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8337       return false;
8338     }
8339   }
8340 
8341   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8342     unsigned Offset4 = State.AllocateStack(4, Align(4));
8343     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8344     return false;
8345   }
8346 
8347   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8348     unsigned Offset5 = State.AllocateStack(8, Align(8));
8349     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8350     return false;
8351   }
8352 
8353   if (LocVT.isVector()) {
8354     if (unsigned Reg =
8355             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8356       // Fixed-length vectors are located in the corresponding scalable-vector
8357       // container types.
8358       if (ValVT.isFixedLengthVector())
8359         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8360       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8361     } else {
8362       // Try and pass the address via a "fast" GPR.
8363       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8364         LocInfo = CCValAssign::Indirect;
8365         LocVT = TLI.getSubtarget().getXLenVT();
8366         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8367       } else if (ValVT.isFixedLengthVector()) {
8368         auto StackAlign =
8369             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8370         unsigned StackOffset =
8371             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8372         State.addLoc(
8373             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8374       } else {
8375         // Can't pass scalable vectors on the stack.
8376         return true;
8377       }
8378     }
8379 
8380     return false;
8381   }
8382 
8383   return true; // CC didn't match.
8384 }
8385 
CC_RISCV_GHC(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)8386 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8387                          CCValAssign::LocInfo LocInfo,
8388                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8389 
8390   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8391     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8392     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8393     static const MCPhysReg GPRList[] = {
8394         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8395         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8396     if (unsigned Reg = State.AllocateReg(GPRList)) {
8397       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8398       return false;
8399     }
8400   }
8401 
8402   if (LocVT == MVT::f32) {
8403     // Pass in STG registers: F1, ..., F6
8404     //                        fs0 ... fs5
8405     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8406                                           RISCV::F18_F, RISCV::F19_F,
8407                                           RISCV::F20_F, RISCV::F21_F};
8408     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8409       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8410       return false;
8411     }
8412   }
8413 
8414   if (LocVT == MVT::f64) {
8415     // Pass in STG registers: D1, ..., D6
8416     //                        fs6 ... fs11
8417     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8418                                           RISCV::F24_D, RISCV::F25_D,
8419                                           RISCV::F26_D, RISCV::F27_D};
8420     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8421       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8422       return false;
8423     }
8424   }
8425 
8426   report_fatal_error("No registers left in GHC calling convention");
8427   return true;
8428 }
8429 
8430 // Transform physical registers into virtual registers.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const8431 SDValue RISCVTargetLowering::LowerFormalArguments(
8432     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8433     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8434     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8435 
8436   MachineFunction &MF = DAG.getMachineFunction();
8437 
8438   switch (CallConv) {
8439   default:
8440     report_fatal_error("Unsupported calling convention");
8441   case CallingConv::C:
8442   case CallingConv::Fast:
8443     break;
8444   case CallingConv::GHC:
8445     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8446         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8447       report_fatal_error(
8448         "GHC calling convention requires the F and D instruction set extensions");
8449   }
8450 
8451   const Function &Func = MF.getFunction();
8452   if (Func.hasFnAttribute("interrupt")) {
8453     if (!Func.arg_empty())
8454       report_fatal_error(
8455         "Functions with the interrupt attribute cannot have arguments!");
8456 
8457     StringRef Kind =
8458       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8459 
8460     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
8461       report_fatal_error(
8462         "Function interrupt attribute argument not supported!");
8463   }
8464 
8465   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8466   MVT XLenVT = Subtarget.getXLenVT();
8467   unsigned XLenInBytes = Subtarget.getXLen() / 8;
8468   // Used with vargs to acumulate store chains.
8469   std::vector<SDValue> OutChains;
8470 
8471   // Assign locations to all of the incoming arguments.
8472   SmallVector<CCValAssign, 16> ArgLocs;
8473   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8474 
8475   if (CallConv == CallingConv::GHC)
8476     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
8477   else
8478     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
8479                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8480                                                    : CC_RISCV);
8481 
8482   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
8483     CCValAssign &VA = ArgLocs[i];
8484     SDValue ArgValue;
8485     // Passing f64 on RV32D with a soft float ABI must be handled as a special
8486     // case.
8487     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
8488       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
8489     else if (VA.isRegLoc())
8490       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
8491     else
8492       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
8493 
8494     if (VA.getLocInfo() == CCValAssign::Indirect) {
8495       // If the original argument was split and passed by reference (e.g. i128
8496       // on RV32), we need to load all parts of it here (using the same
8497       // address). Vectors may be partly split to registers and partly to the
8498       // stack, in which case the base address is partly offset and subsequent
8499       // stores are relative to that.
8500       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
8501                                    MachinePointerInfo()));
8502       unsigned ArgIndex = Ins[i].OrigArgIndex;
8503       unsigned ArgPartOffset = Ins[i].PartOffset;
8504       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8505       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
8506         CCValAssign &PartVA = ArgLocs[i + 1];
8507         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
8508         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8509         if (PartVA.getValVT().isScalableVector())
8510           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8511         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
8512         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
8513                                      MachinePointerInfo()));
8514         ++i;
8515       }
8516       continue;
8517     }
8518     InVals.push_back(ArgValue);
8519   }
8520 
8521   if (IsVarArg) {
8522     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
8523     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
8524     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
8525     MachineFrameInfo &MFI = MF.getFrameInfo();
8526     MachineRegisterInfo &RegInfo = MF.getRegInfo();
8527     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
8528 
8529     // Offset of the first variable argument from stack pointer, and size of
8530     // the vararg save area. For now, the varargs save area is either zero or
8531     // large enough to hold a0-a7.
8532     int VaArgOffset, VarArgsSaveSize;
8533 
8534     // If all registers are allocated, then all varargs must be passed on the
8535     // stack and we don't need to save any argregs.
8536     if (ArgRegs.size() == Idx) {
8537       VaArgOffset = CCInfo.getNextStackOffset();
8538       VarArgsSaveSize = 0;
8539     } else {
8540       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
8541       VaArgOffset = -VarArgsSaveSize;
8542     }
8543 
8544     // Record the frame index of the first variable argument
8545     // which is a value necessary to VASTART.
8546     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8547     RVFI->setVarArgsFrameIndex(FI);
8548 
8549     // If saving an odd number of registers then create an extra stack slot to
8550     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
8551     // offsets to even-numbered registered remain 2*XLEN-aligned.
8552     if (Idx % 2) {
8553       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
8554       VarArgsSaveSize += XLenInBytes;
8555     }
8556 
8557     // Copy the integer registers that may have been used for passing varargs
8558     // to the vararg save area.
8559     for (unsigned I = Idx; I < ArgRegs.size();
8560          ++I, VaArgOffset += XLenInBytes) {
8561       const Register Reg = RegInfo.createVirtualRegister(RC);
8562       RegInfo.addLiveIn(ArgRegs[I], Reg);
8563       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
8564       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8565       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8566       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
8567                                    MachinePointerInfo::getFixedStack(MF, FI));
8568       cast<StoreSDNode>(Store.getNode())
8569           ->getMemOperand()
8570           ->setValue((Value *)nullptr);
8571       OutChains.push_back(Store);
8572     }
8573     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
8574   }
8575 
8576   // All stores are grouped in one node to allow the matching between
8577   // the size of Ins and InVals. This only happens for vararg functions.
8578   if (!OutChains.empty()) {
8579     OutChains.push_back(Chain);
8580     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
8581   }
8582 
8583   return Chain;
8584 }
8585 
8586 /// isEligibleForTailCallOptimization - Check whether the call is eligible
8587 /// for tail call optimization.
8588 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
isEligibleForTailCallOptimization(CCState & CCInfo,CallLoweringInfo & CLI,MachineFunction & MF,const SmallVector<CCValAssign,16> & ArgLocs) const8589 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
8590     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
8591     const SmallVector<CCValAssign, 16> &ArgLocs) const {
8592 
8593   auto &Callee = CLI.Callee;
8594   auto CalleeCC = CLI.CallConv;
8595   auto &Outs = CLI.Outs;
8596   auto &Caller = MF.getFunction();
8597   auto CallerCC = Caller.getCallingConv();
8598 
8599   // Exception-handling functions need a special set of instructions to
8600   // indicate a return to the hardware. Tail-calling another function would
8601   // probably break this.
8602   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
8603   // should be expanded as new function attributes are introduced.
8604   if (Caller.hasFnAttribute("interrupt"))
8605     return false;
8606 
8607   // Do not tail call opt if the stack is used to pass parameters.
8608   if (CCInfo.getNextStackOffset() != 0)
8609     return false;
8610 
8611   // Do not tail call opt if any parameters need to be passed indirectly.
8612   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
8613   // passed indirectly. So the address of the value will be passed in a
8614   // register, or if not available, then the address is put on the stack. In
8615   // order to pass indirectly, space on the stack often needs to be allocated
8616   // in order to store the value. In this case the CCInfo.getNextStackOffset()
8617   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
8618   // are passed CCValAssign::Indirect.
8619   for (auto &VA : ArgLocs)
8620     if (VA.getLocInfo() == CCValAssign::Indirect)
8621       return false;
8622 
8623   // Do not tail call opt if either caller or callee uses struct return
8624   // semantics.
8625   auto IsCallerStructRet = Caller.hasStructRetAttr();
8626   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
8627   if (IsCallerStructRet || IsCalleeStructRet)
8628     return false;
8629 
8630   // Externally-defined functions with weak linkage should not be
8631   // tail-called. The behaviour of branch instructions in this situation (as
8632   // used for tail calls) is implementation-defined, so we cannot rely on the
8633   // linker replacing the tail call with a return.
8634   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
8635     const GlobalValue *GV = G->getGlobal();
8636     if (GV->hasExternalWeakLinkage())
8637       return false;
8638   }
8639 
8640   // The callee has to preserve all registers the caller needs to preserve.
8641   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
8642   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
8643   if (CalleeCC != CallerCC) {
8644     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
8645     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8646       return false;
8647   }
8648 
8649   // Byval parameters hand the function a pointer directly into the stack area
8650   // we want to reuse during a tail call. Working around this *is* possible
8651   // but less efficient and uglier in LowerCall.
8652   for (auto &Arg : Outs)
8653     if (Arg.Flags.isByVal())
8654       return false;
8655 
8656   return true;
8657 }
8658 
getPrefTypeAlign(EVT VT,SelectionDAG & DAG)8659 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
8660   return DAG.getDataLayout().getPrefTypeAlign(
8661       VT.getTypeForEVT(*DAG.getContext()));
8662 }
8663 
8664 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
8665 // and output parameter nodes.
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const8666 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
8667                                        SmallVectorImpl<SDValue> &InVals) const {
8668   SelectionDAG &DAG = CLI.DAG;
8669   SDLoc &DL = CLI.DL;
8670   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
8671   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
8672   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
8673   SDValue Chain = CLI.Chain;
8674   SDValue Callee = CLI.Callee;
8675   bool &IsTailCall = CLI.IsTailCall;
8676   CallingConv::ID CallConv = CLI.CallConv;
8677   bool IsVarArg = CLI.IsVarArg;
8678   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8679   MVT XLenVT = Subtarget.getXLenVT();
8680 
8681   MachineFunction &MF = DAG.getMachineFunction();
8682 
8683   // Analyze the operands of the call, assigning locations to each operand.
8684   SmallVector<CCValAssign, 16> ArgLocs;
8685   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8686 
8687   if (CallConv == CallingConv::GHC)
8688     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
8689   else
8690     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
8691                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8692                                                     : CC_RISCV);
8693 
8694   // Check if it's really possible to do a tail call.
8695   if (IsTailCall)
8696     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8697 
8698   if (IsTailCall)
8699     ++NumTailCalls;
8700   else if (CLI.CB && CLI.CB->isMustTailCall())
8701     report_fatal_error("failed to perform tail call elimination on a call "
8702                        "site marked musttail");
8703 
8704   // Get a count of how many bytes are to be pushed on the stack.
8705   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
8706 
8707   // Create local copies for byval args
8708   SmallVector<SDValue, 8> ByValArgs;
8709   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8710     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8711     if (!Flags.isByVal())
8712       continue;
8713 
8714     SDValue Arg = OutVals[i];
8715     unsigned Size = Flags.getByValSize();
8716     Align Alignment = Flags.getNonZeroByValAlign();
8717 
8718     int FI =
8719         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
8720     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8721     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
8722 
8723     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
8724                           /*IsVolatile=*/false,
8725                           /*AlwaysInline=*/false, IsTailCall,
8726                           MachinePointerInfo(), MachinePointerInfo());
8727     ByValArgs.push_back(FIPtr);
8728   }
8729 
8730   if (!IsTailCall)
8731     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
8732 
8733   // Copy argument values to their designated locations.
8734   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
8735   SmallVector<SDValue, 8> MemOpChains;
8736   SDValue StackPtr;
8737   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
8738     CCValAssign &VA = ArgLocs[i];
8739     SDValue ArgValue = OutVals[i];
8740     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8741 
8742     // Handle passing f64 on RV32D with a soft float ABI as a special case.
8743     bool IsF64OnRV32DSoftABI =
8744         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
8745     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
8746       SDValue SplitF64 = DAG.getNode(
8747           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
8748       SDValue Lo = SplitF64.getValue(0);
8749       SDValue Hi = SplitF64.getValue(1);
8750 
8751       Register RegLo = VA.getLocReg();
8752       RegsToPass.push_back(std::make_pair(RegLo, Lo));
8753 
8754       if (RegLo == RISCV::X17) {
8755         // Second half of f64 is passed on the stack.
8756         // Work out the address of the stack slot.
8757         if (!StackPtr.getNode())
8758           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8759         // Emit the store.
8760         MemOpChains.push_back(
8761             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
8762       } else {
8763         // Second half of f64 is passed in another GPR.
8764         assert(RegLo < RISCV::X31 && "Invalid register pair");
8765         Register RegHigh = RegLo + 1;
8766         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
8767       }
8768       continue;
8769     }
8770 
8771     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8772     // as any other MemLoc.
8773 
8774     // Promote the value if needed.
8775     // For now, only handle fully promoted and indirect arguments.
8776     if (VA.getLocInfo() == CCValAssign::Indirect) {
8777       // Store the argument in a stack slot and pass its address.
8778       Align StackAlign =
8779           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
8780                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
8781       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
8782       // If the original argument was split (e.g. i128), we need
8783       // to store the required parts of it here (and pass just one address).
8784       // Vectors may be partly split to registers and partly to the stack, in
8785       // which case the base address is partly offset and subsequent stores are
8786       // relative to that.
8787       unsigned ArgIndex = Outs[i].OrigArgIndex;
8788       unsigned ArgPartOffset = Outs[i].PartOffset;
8789       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8790       // Calculate the total size to store. We don't have access to what we're
8791       // actually storing other than performing the loop and collecting the
8792       // info.
8793       SmallVector<std::pair<SDValue, SDValue>> Parts;
8794       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8795         SDValue PartValue = OutVals[i + 1];
8796         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8797         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8798         EVT PartVT = PartValue.getValueType();
8799         if (PartVT.isScalableVector())
8800           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8801         StoredSize += PartVT.getStoreSize();
8802         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8803         Parts.push_back(std::make_pair(PartValue, Offset));
8804         ++i;
8805       }
8806       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8807       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8808       MemOpChains.push_back(
8809           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8810                        MachinePointerInfo::getFixedStack(MF, FI)));
8811       for (const auto &Part : Parts) {
8812         SDValue PartValue = Part.first;
8813         SDValue PartOffset = Part.second;
8814         SDValue Address =
8815             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8816         MemOpChains.push_back(
8817             DAG.getStore(Chain, DL, PartValue, Address,
8818                          MachinePointerInfo::getFixedStack(MF, FI)));
8819       }
8820       ArgValue = SpillSlot;
8821     } else {
8822       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8823     }
8824 
8825     // Use local copy if it is a byval arg.
8826     if (Flags.isByVal())
8827       ArgValue = ByValArgs[j++];
8828 
8829     if (VA.isRegLoc()) {
8830       // Queue up the argument copies and emit them at the end.
8831       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8832     } else {
8833       assert(VA.isMemLoc() && "Argument not register or memory");
8834       assert(!IsTailCall && "Tail call not allowed if stack is used "
8835                             "for passing parameters");
8836 
8837       // Work out the address of the stack slot.
8838       if (!StackPtr.getNode())
8839         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8840       SDValue Address =
8841           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8842                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8843 
8844       // Emit the store.
8845       MemOpChains.push_back(
8846           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
8847     }
8848   }
8849 
8850   // Join the stores, which are independent of one another.
8851   if (!MemOpChains.empty())
8852     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
8853 
8854   SDValue Glue;
8855 
8856   // Build a sequence of copy-to-reg nodes, chained and glued together.
8857   for (auto &Reg : RegsToPass) {
8858     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
8859     Glue = Chain.getValue(1);
8860   }
8861 
8862   // Validate that none of the argument registers have been marked as
8863   // reserved, if so report an error. Do the same for the return address if this
8864   // is not a tailcall.
8865   validateCCReservedRegs(RegsToPass, MF);
8866   if (!IsTailCall &&
8867       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
8868     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8869         MF.getFunction(),
8870         "Return address register required, but has been reserved."});
8871 
8872   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8873   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8874   // split it and then direct call can be matched by PseudoCALL.
8875   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
8876     const GlobalValue *GV = S->getGlobal();
8877 
8878     unsigned OpFlags = RISCVII::MO_CALL;
8879     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
8880       OpFlags = RISCVII::MO_PLT;
8881 
8882     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
8883   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
8884     unsigned OpFlags = RISCVII::MO_CALL;
8885 
8886     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
8887                                                  nullptr))
8888       OpFlags = RISCVII::MO_PLT;
8889 
8890     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
8891   }
8892 
8893   // The first call operand is the chain and the second is the target address.
8894   SmallVector<SDValue, 8> Ops;
8895   Ops.push_back(Chain);
8896   Ops.push_back(Callee);
8897 
8898   // Add argument registers to the end of the list so that they are
8899   // known live into the call.
8900   for (auto &Reg : RegsToPass)
8901     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
8902 
8903   if (!IsTailCall) {
8904     // Add a register mask operand representing the call-preserved registers.
8905     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
8906     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
8907     assert(Mask && "Missing call preserved mask for calling convention");
8908     Ops.push_back(DAG.getRegisterMask(Mask));
8909   }
8910 
8911   // Glue the call to the argument copies, if any.
8912   if (Glue.getNode())
8913     Ops.push_back(Glue);
8914 
8915   // Emit the call.
8916   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8917 
8918   if (IsTailCall) {
8919     MF.getFrameInfo().setHasTailCall();
8920     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
8921   }
8922 
8923   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
8924   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
8925   Glue = Chain.getValue(1);
8926 
8927   // Mark the end of the call, which is glued to the call itself.
8928   Chain = DAG.getCALLSEQ_END(Chain,
8929                              DAG.getConstant(NumBytes, DL, PtrVT, true),
8930                              DAG.getConstant(0, DL, PtrVT, true),
8931                              Glue, DL);
8932   Glue = Chain.getValue(1);
8933 
8934   // Assign locations to each value returned by this call.
8935   SmallVector<CCValAssign, 16> RVLocs;
8936   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
8937   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
8938 
8939   // Copy all of the result registers out of their specified physreg.
8940   for (auto &VA : RVLocs) {
8941     // Copy the value out
8942     SDValue RetValue =
8943         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
8944     // Glue the RetValue to the end of the call sequence
8945     Chain = RetValue.getValue(1);
8946     Glue = RetValue.getValue(2);
8947 
8948     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8949       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
8950       SDValue RetValue2 =
8951           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
8952       Chain = RetValue2.getValue(1);
8953       Glue = RetValue2.getValue(2);
8954       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
8955                              RetValue2);
8956     }
8957 
8958     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
8959 
8960     InVals.push_back(RetValue);
8961   }
8962 
8963   return Chain;
8964 }
8965 
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const8966 bool RISCVTargetLowering::CanLowerReturn(
8967     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
8968     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
8969   SmallVector<CCValAssign, 16> RVLocs;
8970   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8971 
8972   Optional<unsigned> FirstMaskArgument;
8973   if (Subtarget.hasStdExtV())
8974     FirstMaskArgument = preAssignMask(Outs);
8975 
8976   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8977     MVT VT = Outs[i].VT;
8978     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8979     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8980     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
8981                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
8982                  *this, FirstMaskArgument))
8983       return false;
8984   }
8985   return true;
8986 }
8987 
8988 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const8989 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
8990                                  bool IsVarArg,
8991                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
8992                                  const SmallVectorImpl<SDValue> &OutVals,
8993                                  const SDLoc &DL, SelectionDAG &DAG) const {
8994   const MachineFunction &MF = DAG.getMachineFunction();
8995   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8996 
8997   // Stores the assignment of the return value to a location.
8998   SmallVector<CCValAssign, 16> RVLocs;
8999 
9000   // Info about the registers and stack slot.
9001   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9002                  *DAG.getContext());
9003 
9004   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9005                     nullptr, CC_RISCV);
9006 
9007   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9008     report_fatal_error("GHC functions return void only");
9009 
9010   SDValue Glue;
9011   SmallVector<SDValue, 4> RetOps(1, Chain);
9012 
9013   // Copy the result values into the output registers.
9014   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9015     SDValue Val = OutVals[i];
9016     CCValAssign &VA = RVLocs[i];
9017     assert(VA.isRegLoc() && "Can only return in registers!");
9018 
9019     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9020       // Handle returning f64 on RV32D with a soft float ABI.
9021       assert(VA.isRegLoc() && "Expected return via registers");
9022       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9023                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9024       SDValue Lo = SplitF64.getValue(0);
9025       SDValue Hi = SplitF64.getValue(1);
9026       Register RegLo = VA.getLocReg();
9027       assert(RegLo < RISCV::X31 && "Invalid register pair");
9028       Register RegHi = RegLo + 1;
9029 
9030       if (STI.isRegisterReservedByUser(RegLo) ||
9031           STI.isRegisterReservedByUser(RegHi))
9032         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9033             MF.getFunction(),
9034             "Return value register required, but has been reserved."});
9035 
9036       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9037       Glue = Chain.getValue(1);
9038       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9039       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9040       Glue = Chain.getValue(1);
9041       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9042     } else {
9043       // Handle a 'normal' return.
9044       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9045       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9046 
9047       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9048         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9049             MF.getFunction(),
9050             "Return value register required, but has been reserved."});
9051 
9052       // Guarantee that all emitted copies are stuck together.
9053       Glue = Chain.getValue(1);
9054       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9055     }
9056   }
9057 
9058   RetOps[0] = Chain; // Update chain.
9059 
9060   // Add the glue node if we have it.
9061   if (Glue.getNode()) {
9062     RetOps.push_back(Glue);
9063   }
9064 
9065   unsigned RetOpc = RISCVISD::RET_FLAG;
9066   // Interrupt service routines use different return instructions.
9067   const Function &Func = DAG.getMachineFunction().getFunction();
9068   if (Func.hasFnAttribute("interrupt")) {
9069     if (!Func.getReturnType()->isVoidTy())
9070       report_fatal_error(
9071           "Functions with the interrupt attribute must have void return type!");
9072 
9073     MachineFunction &MF = DAG.getMachineFunction();
9074     StringRef Kind =
9075       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9076 
9077     if (Kind == "user")
9078       RetOpc = RISCVISD::URET_FLAG;
9079     else if (Kind == "supervisor")
9080       RetOpc = RISCVISD::SRET_FLAG;
9081     else
9082       RetOpc = RISCVISD::MRET_FLAG;
9083   }
9084 
9085   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9086 }
9087 
validateCCReservedRegs(const SmallVectorImpl<std::pair<llvm::Register,llvm::SDValue>> & Regs,MachineFunction & MF) const9088 void RISCVTargetLowering::validateCCReservedRegs(
9089     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9090     MachineFunction &MF) const {
9091   const Function &F = MF.getFunction();
9092   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9093 
9094   if (llvm::any_of(Regs, [&STI](auto Reg) {
9095         return STI.isRegisterReservedByUser(Reg.first);
9096       }))
9097     F.getContext().diagnose(DiagnosticInfoUnsupported{
9098         F, "Argument register required, but has been reserved."});
9099 }
9100 
mayBeEmittedAsTailCall(const CallInst * CI) const9101 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9102   return CI->isTailCall();
9103 }
9104 
getTargetNodeName(unsigned Opcode) const9105 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9106 #define NODE_NAME_CASE(NODE)                                                   \
9107   case RISCVISD::NODE:                                                         \
9108     return "RISCVISD::" #NODE;
9109   // clang-format off
9110   switch ((RISCVISD::NodeType)Opcode) {
9111   case RISCVISD::FIRST_NUMBER:
9112     break;
9113   NODE_NAME_CASE(RET_FLAG)
9114   NODE_NAME_CASE(URET_FLAG)
9115   NODE_NAME_CASE(SRET_FLAG)
9116   NODE_NAME_CASE(MRET_FLAG)
9117   NODE_NAME_CASE(CALL)
9118   NODE_NAME_CASE(SELECT_CC)
9119   NODE_NAME_CASE(BR_CC)
9120   NODE_NAME_CASE(BuildPairF64)
9121   NODE_NAME_CASE(SplitF64)
9122   NODE_NAME_CASE(TAIL)
9123   NODE_NAME_CASE(MULHSU)
9124   NODE_NAME_CASE(SLLW)
9125   NODE_NAME_CASE(SRAW)
9126   NODE_NAME_CASE(SRLW)
9127   NODE_NAME_CASE(DIVW)
9128   NODE_NAME_CASE(DIVUW)
9129   NODE_NAME_CASE(REMUW)
9130   NODE_NAME_CASE(ROLW)
9131   NODE_NAME_CASE(RORW)
9132   NODE_NAME_CASE(CLZW)
9133   NODE_NAME_CASE(CTZW)
9134   NODE_NAME_CASE(FSLW)
9135   NODE_NAME_CASE(FSRW)
9136   NODE_NAME_CASE(FSL)
9137   NODE_NAME_CASE(FSR)
9138   NODE_NAME_CASE(FMV_H_X)
9139   NODE_NAME_CASE(FMV_X_ANYEXTH)
9140   NODE_NAME_CASE(FMV_W_X_RV64)
9141   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9142   NODE_NAME_CASE(FCVT_X_RTZ)
9143   NODE_NAME_CASE(FCVT_XU_RTZ)
9144   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
9145   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
9146   NODE_NAME_CASE(READ_CYCLE_WIDE)
9147   NODE_NAME_CASE(GREV)
9148   NODE_NAME_CASE(GREVW)
9149   NODE_NAME_CASE(GORC)
9150   NODE_NAME_CASE(GORCW)
9151   NODE_NAME_CASE(SHFL)
9152   NODE_NAME_CASE(SHFLW)
9153   NODE_NAME_CASE(UNSHFL)
9154   NODE_NAME_CASE(UNSHFLW)
9155   NODE_NAME_CASE(BCOMPRESS)
9156   NODE_NAME_CASE(BCOMPRESSW)
9157   NODE_NAME_CASE(BDECOMPRESS)
9158   NODE_NAME_CASE(BDECOMPRESSW)
9159   NODE_NAME_CASE(VMV_V_X_VL)
9160   NODE_NAME_CASE(VFMV_V_F_VL)
9161   NODE_NAME_CASE(VMV_X_S)
9162   NODE_NAME_CASE(VMV_S_X_VL)
9163   NODE_NAME_CASE(VFMV_S_F_VL)
9164   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9165   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9166   NODE_NAME_CASE(READ_VLENB)
9167   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9168   NODE_NAME_CASE(VSLIDEUP_VL)
9169   NODE_NAME_CASE(VSLIDE1UP_VL)
9170   NODE_NAME_CASE(VSLIDEDOWN_VL)
9171   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9172   NODE_NAME_CASE(VID_VL)
9173   NODE_NAME_CASE(VFNCVT_ROD_VL)
9174   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9175   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9176   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9177   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9178   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9179   NODE_NAME_CASE(VECREDUCE_AND_VL)
9180   NODE_NAME_CASE(VECREDUCE_OR_VL)
9181   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9182   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9183   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9184   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9185   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9186   NODE_NAME_CASE(ADD_VL)
9187   NODE_NAME_CASE(AND_VL)
9188   NODE_NAME_CASE(MUL_VL)
9189   NODE_NAME_CASE(OR_VL)
9190   NODE_NAME_CASE(SDIV_VL)
9191   NODE_NAME_CASE(SHL_VL)
9192   NODE_NAME_CASE(SREM_VL)
9193   NODE_NAME_CASE(SRA_VL)
9194   NODE_NAME_CASE(SRL_VL)
9195   NODE_NAME_CASE(SUB_VL)
9196   NODE_NAME_CASE(UDIV_VL)
9197   NODE_NAME_CASE(UREM_VL)
9198   NODE_NAME_CASE(XOR_VL)
9199   NODE_NAME_CASE(SADDSAT_VL)
9200   NODE_NAME_CASE(UADDSAT_VL)
9201   NODE_NAME_CASE(SSUBSAT_VL)
9202   NODE_NAME_CASE(USUBSAT_VL)
9203   NODE_NAME_CASE(FADD_VL)
9204   NODE_NAME_CASE(FSUB_VL)
9205   NODE_NAME_CASE(FMUL_VL)
9206   NODE_NAME_CASE(FDIV_VL)
9207   NODE_NAME_CASE(FNEG_VL)
9208   NODE_NAME_CASE(FABS_VL)
9209   NODE_NAME_CASE(FSQRT_VL)
9210   NODE_NAME_CASE(FMA_VL)
9211   NODE_NAME_CASE(FCOPYSIGN_VL)
9212   NODE_NAME_CASE(SMIN_VL)
9213   NODE_NAME_CASE(SMAX_VL)
9214   NODE_NAME_CASE(UMIN_VL)
9215   NODE_NAME_CASE(UMAX_VL)
9216   NODE_NAME_CASE(FMINNUM_VL)
9217   NODE_NAME_CASE(FMAXNUM_VL)
9218   NODE_NAME_CASE(MULHS_VL)
9219   NODE_NAME_CASE(MULHU_VL)
9220   NODE_NAME_CASE(FP_TO_SINT_VL)
9221   NODE_NAME_CASE(FP_TO_UINT_VL)
9222   NODE_NAME_CASE(SINT_TO_FP_VL)
9223   NODE_NAME_CASE(UINT_TO_FP_VL)
9224   NODE_NAME_CASE(FP_EXTEND_VL)
9225   NODE_NAME_CASE(FP_ROUND_VL)
9226   NODE_NAME_CASE(VWMUL_VL)
9227   NODE_NAME_CASE(VWMULU_VL)
9228   NODE_NAME_CASE(SETCC_VL)
9229   NODE_NAME_CASE(VSELECT_VL)
9230   NODE_NAME_CASE(VMAND_VL)
9231   NODE_NAME_CASE(VMOR_VL)
9232   NODE_NAME_CASE(VMXOR_VL)
9233   NODE_NAME_CASE(VMCLR_VL)
9234   NODE_NAME_CASE(VMSET_VL)
9235   NODE_NAME_CASE(VRGATHER_VX_VL)
9236   NODE_NAME_CASE(VRGATHER_VV_VL)
9237   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9238   NODE_NAME_CASE(VSEXT_VL)
9239   NODE_NAME_CASE(VZEXT_VL)
9240   NODE_NAME_CASE(VPOPC_VL)
9241   NODE_NAME_CASE(VLE_VL)
9242   NODE_NAME_CASE(VSE_VL)
9243   NODE_NAME_CASE(READ_CSR)
9244   NODE_NAME_CASE(WRITE_CSR)
9245   NODE_NAME_CASE(SWAP_CSR)
9246   }
9247   // clang-format on
9248   return nullptr;
9249 #undef NODE_NAME_CASE
9250 }
9251 
9252 /// getConstraintType - Given a constraint letter, return the type of
9253 /// constraint it is for this target.
9254 RISCVTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const9255 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9256   if (Constraint.size() == 1) {
9257     switch (Constraint[0]) {
9258     default:
9259       break;
9260     case 'f':
9261       return C_RegisterClass;
9262     case 'I':
9263     case 'J':
9264     case 'K':
9265       return C_Immediate;
9266     case 'A':
9267       return C_Memory;
9268     case 'S': // A symbolic address
9269       return C_Other;
9270     }
9271   } else {
9272     if (Constraint == "vr" || Constraint == "vm")
9273       return C_RegisterClass;
9274   }
9275   return TargetLowering::getConstraintType(Constraint);
9276 }
9277 
9278 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const9279 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9280                                                   StringRef Constraint,
9281                                                   MVT VT) const {
9282   // First, see if this is a constraint that directly corresponds to a
9283   // RISCV register class.
9284   if (Constraint.size() == 1) {
9285     switch (Constraint[0]) {
9286     case 'r':
9287       return std::make_pair(0U, &RISCV::GPRRegClass);
9288     case 'f':
9289       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9290         return std::make_pair(0U, &RISCV::FPR16RegClass);
9291       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9292         return std::make_pair(0U, &RISCV::FPR32RegClass);
9293       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9294         return std::make_pair(0U, &RISCV::FPR64RegClass);
9295       break;
9296     default:
9297       break;
9298     }
9299   } else {
9300     if (Constraint == "vr") {
9301       for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9302                              &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9303         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9304           return std::make_pair(0U, RC);
9305       }
9306     } else if (Constraint == "vm") {
9307       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9308         return std::make_pair(0U, &RISCV::VMRegClass);
9309     }
9310   }
9311 
9312   // Clang will correctly decode the usage of register name aliases into their
9313   // official names. However, other frontends like `rustc` do not. This allows
9314   // users of these frontends to use the ABI names for registers in LLVM-style
9315   // register constraints.
9316   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9317                                .Case("{zero}", RISCV::X0)
9318                                .Case("{ra}", RISCV::X1)
9319                                .Case("{sp}", RISCV::X2)
9320                                .Case("{gp}", RISCV::X3)
9321                                .Case("{tp}", RISCV::X4)
9322                                .Case("{t0}", RISCV::X5)
9323                                .Case("{t1}", RISCV::X6)
9324                                .Case("{t2}", RISCV::X7)
9325                                .Cases("{s0}", "{fp}", RISCV::X8)
9326                                .Case("{s1}", RISCV::X9)
9327                                .Case("{a0}", RISCV::X10)
9328                                .Case("{a1}", RISCV::X11)
9329                                .Case("{a2}", RISCV::X12)
9330                                .Case("{a3}", RISCV::X13)
9331                                .Case("{a4}", RISCV::X14)
9332                                .Case("{a5}", RISCV::X15)
9333                                .Case("{a6}", RISCV::X16)
9334                                .Case("{a7}", RISCV::X17)
9335                                .Case("{s2}", RISCV::X18)
9336                                .Case("{s3}", RISCV::X19)
9337                                .Case("{s4}", RISCV::X20)
9338                                .Case("{s5}", RISCV::X21)
9339                                .Case("{s6}", RISCV::X22)
9340                                .Case("{s7}", RISCV::X23)
9341                                .Case("{s8}", RISCV::X24)
9342                                .Case("{s9}", RISCV::X25)
9343                                .Case("{s10}", RISCV::X26)
9344                                .Case("{s11}", RISCV::X27)
9345                                .Case("{t3}", RISCV::X28)
9346                                .Case("{t4}", RISCV::X29)
9347                                .Case("{t5}", RISCV::X30)
9348                                .Case("{t6}", RISCV::X31)
9349                                .Default(RISCV::NoRegister);
9350   if (XRegFromAlias != RISCV::NoRegister)
9351     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9352 
9353   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9354   // TableGen record rather than the AsmName to choose registers for InlineAsm
9355   // constraints, plus we want to match those names to the widest floating point
9356   // register type available, manually select floating point registers here.
9357   //
9358   // The second case is the ABI name of the register, so that frontends can also
9359   // use the ABI names in register constraint lists.
9360   if (Subtarget.hasStdExtF()) {
9361     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9362                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9363                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9364                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9365                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9366                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9367                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9368                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9369                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9370                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9371                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9372                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9373                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9374                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9375                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9376                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9377                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9378                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9379                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9380                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9381                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9382                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9383                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9384                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9385                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9386                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9387                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9388                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9389                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9390                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9391                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9392                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9393                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9394                         .Default(RISCV::NoRegister);
9395     if (FReg != RISCV::NoRegister) {
9396       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9397       if (Subtarget.hasStdExtD()) {
9398         unsigned RegNo = FReg - RISCV::F0_F;
9399         unsigned DReg = RISCV::F0_D + RegNo;
9400         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9401       }
9402       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9403     }
9404   }
9405 
9406   if (Subtarget.hasStdExtV()) {
9407     Register VReg = StringSwitch<Register>(Constraint.lower())
9408                         .Case("{v0}", RISCV::V0)
9409                         .Case("{v1}", RISCV::V1)
9410                         .Case("{v2}", RISCV::V2)
9411                         .Case("{v3}", RISCV::V3)
9412                         .Case("{v4}", RISCV::V4)
9413                         .Case("{v5}", RISCV::V5)
9414                         .Case("{v6}", RISCV::V6)
9415                         .Case("{v7}", RISCV::V7)
9416                         .Case("{v8}", RISCV::V8)
9417                         .Case("{v9}", RISCV::V9)
9418                         .Case("{v10}", RISCV::V10)
9419                         .Case("{v11}", RISCV::V11)
9420                         .Case("{v12}", RISCV::V12)
9421                         .Case("{v13}", RISCV::V13)
9422                         .Case("{v14}", RISCV::V14)
9423                         .Case("{v15}", RISCV::V15)
9424                         .Case("{v16}", RISCV::V16)
9425                         .Case("{v17}", RISCV::V17)
9426                         .Case("{v18}", RISCV::V18)
9427                         .Case("{v19}", RISCV::V19)
9428                         .Case("{v20}", RISCV::V20)
9429                         .Case("{v21}", RISCV::V21)
9430                         .Case("{v22}", RISCV::V22)
9431                         .Case("{v23}", RISCV::V23)
9432                         .Case("{v24}", RISCV::V24)
9433                         .Case("{v25}", RISCV::V25)
9434                         .Case("{v26}", RISCV::V26)
9435                         .Case("{v27}", RISCV::V27)
9436                         .Case("{v28}", RISCV::V28)
9437                         .Case("{v29}", RISCV::V29)
9438                         .Case("{v30}", RISCV::V30)
9439                         .Case("{v31}", RISCV::V31)
9440                         .Default(RISCV::NoRegister);
9441     if (VReg != RISCV::NoRegister) {
9442       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9443         return std::make_pair(VReg, &RISCV::VMRegClass);
9444       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9445         return std::make_pair(VReg, &RISCV::VRRegClass);
9446       for (const auto *RC :
9447            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9448         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9449           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9450           return std::make_pair(VReg, RC);
9451         }
9452       }
9453     }
9454   }
9455 
9456   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9457 }
9458 
9459 unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const9460 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
9461   // Currently only support length 1 constraints.
9462   if (ConstraintCode.size() == 1) {
9463     switch (ConstraintCode[0]) {
9464     case 'A':
9465       return InlineAsm::Constraint_A;
9466     default:
9467       break;
9468     }
9469   }
9470 
9471   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9472 }
9473 
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const9474 void RISCVTargetLowering::LowerAsmOperandForConstraint(
9475     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
9476     SelectionDAG &DAG) const {
9477   // Currently only support length 1 constraints.
9478   if (Constraint.length() == 1) {
9479     switch (Constraint[0]) {
9480     case 'I':
9481       // Validate & create a 12-bit signed immediate operand.
9482       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9483         uint64_t CVal = C->getSExtValue();
9484         if (isInt<12>(CVal))
9485           Ops.push_back(
9486               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9487       }
9488       return;
9489     case 'J':
9490       // Validate & create an integer zero operand.
9491       if (auto *C = dyn_cast<ConstantSDNode>(Op))
9492         if (C->getZExtValue() == 0)
9493           Ops.push_back(
9494               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
9495       return;
9496     case 'K':
9497       // Validate & create a 5-bit unsigned immediate operand.
9498       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9499         uint64_t CVal = C->getZExtValue();
9500         if (isUInt<5>(CVal))
9501           Ops.push_back(
9502               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9503       }
9504       return;
9505     case 'S':
9506       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9507         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
9508                                                  GA->getValueType(0)));
9509       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
9510         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
9511                                                 BA->getValueType(0)));
9512       }
9513       return;
9514     default:
9515       break;
9516     }
9517   }
9518   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9519 }
9520 
emitLeadingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const9521 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
9522                                                    Instruction *Inst,
9523                                                    AtomicOrdering Ord) const {
9524   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
9525     return Builder.CreateFence(Ord);
9526   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
9527     return Builder.CreateFence(AtomicOrdering::Release);
9528   return nullptr;
9529 }
9530 
emitTrailingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const9531 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
9532                                                     Instruction *Inst,
9533                                                     AtomicOrdering Ord) const {
9534   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
9535     return Builder.CreateFence(AtomicOrdering::Acquire);
9536   return nullptr;
9537 }
9538 
9539 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const9540 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9541   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
9542   // point operations can't be used in an lr/sc sequence without breaking the
9543   // forward-progress guarantee.
9544   if (AI->isFloatingPointOperation())
9545     return AtomicExpansionKind::CmpXChg;
9546 
9547   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9548   if (Size == 8 || Size == 16)
9549     return AtomicExpansionKind::MaskedIntrinsic;
9550   return AtomicExpansionKind::None;
9551 }
9552 
9553 static Intrinsic::ID
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen,AtomicRMWInst::BinOp BinOp)9554 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
9555   if (XLen == 32) {
9556     switch (BinOp) {
9557     default:
9558       llvm_unreachable("Unexpected AtomicRMW BinOp");
9559     case AtomicRMWInst::Xchg:
9560       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
9561     case AtomicRMWInst::Add:
9562       return Intrinsic::riscv_masked_atomicrmw_add_i32;
9563     case AtomicRMWInst::Sub:
9564       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
9565     case AtomicRMWInst::Nand:
9566       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
9567     case AtomicRMWInst::Max:
9568       return Intrinsic::riscv_masked_atomicrmw_max_i32;
9569     case AtomicRMWInst::Min:
9570       return Intrinsic::riscv_masked_atomicrmw_min_i32;
9571     case AtomicRMWInst::UMax:
9572       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
9573     case AtomicRMWInst::UMin:
9574       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
9575     }
9576   }
9577 
9578   if (XLen == 64) {
9579     switch (BinOp) {
9580     default:
9581       llvm_unreachable("Unexpected AtomicRMW BinOp");
9582     case AtomicRMWInst::Xchg:
9583       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
9584     case AtomicRMWInst::Add:
9585       return Intrinsic::riscv_masked_atomicrmw_add_i64;
9586     case AtomicRMWInst::Sub:
9587       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
9588     case AtomicRMWInst::Nand:
9589       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
9590     case AtomicRMWInst::Max:
9591       return Intrinsic::riscv_masked_atomicrmw_max_i64;
9592     case AtomicRMWInst::Min:
9593       return Intrinsic::riscv_masked_atomicrmw_min_i64;
9594     case AtomicRMWInst::UMax:
9595       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
9596     case AtomicRMWInst::UMin:
9597       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
9598     }
9599   }
9600 
9601   llvm_unreachable("Unexpected XLen\n");
9602 }
9603 
emitMaskedAtomicRMWIntrinsic(IRBuilderBase & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord) const9604 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
9605     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
9606     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
9607   unsigned XLen = Subtarget.getXLen();
9608   Value *Ordering =
9609       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
9610   Type *Tys[] = {AlignedAddr->getType()};
9611   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
9612       AI->getModule(),
9613       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
9614 
9615   if (XLen == 64) {
9616     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
9617     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9618     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9619   }
9620 
9621   Value *Result;
9622 
9623   // Must pass the shift amount needed to sign extend the loaded value prior
9624   // to performing a signed comparison for min/max. ShiftAmt is the number of
9625   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
9626   // is the number of bits to left+right shift the value in order to
9627   // sign-extend.
9628   if (AI->getOperation() == AtomicRMWInst::Min ||
9629       AI->getOperation() == AtomicRMWInst::Max) {
9630     const DataLayout &DL = AI->getModule()->getDataLayout();
9631     unsigned ValWidth =
9632         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
9633     Value *SextShamt =
9634         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
9635     Result = Builder.CreateCall(LrwOpScwLoop,
9636                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9637   } else {
9638     Result =
9639         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9640   }
9641 
9642   if (XLen == 64)
9643     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9644   return Result;
9645 }
9646 
9647 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * CI) const9648 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
9649     AtomicCmpXchgInst *CI) const {
9650   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
9651   if (Size == 8 || Size == 16)
9652     return AtomicExpansionKind::MaskedIntrinsic;
9653   return AtomicExpansionKind::None;
9654 }
9655 
emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord) const9656 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
9657     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
9658     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
9659   unsigned XLen = Subtarget.getXLen();
9660   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
9661   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
9662   if (XLen == 64) {
9663     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
9664     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
9665     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9666     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
9667   }
9668   Type *Tys[] = {AlignedAddr->getType()};
9669   Function *MaskedCmpXchg =
9670       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
9671   Value *Result = Builder.CreateCall(
9672       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
9673   if (XLen == 64)
9674     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9675   return Result;
9676 }
9677 
shouldRemoveExtendFromGSIndex(EVT VT) const9678 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
9679   return false;
9680 }
9681 
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const9682 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
9683                                                      EVT VT) const {
9684   VT = VT.getScalarType();
9685 
9686   if (!VT.isSimple())
9687     return false;
9688 
9689   switch (VT.getSimpleVT().SimpleTy) {
9690   case MVT::f16:
9691     return Subtarget.hasStdExtZfh();
9692   case MVT::f32:
9693     return Subtarget.hasStdExtF();
9694   case MVT::f64:
9695     return Subtarget.hasStdExtD();
9696   default:
9697     break;
9698   }
9699 
9700   return false;
9701 }
9702 
getExceptionPointerRegister(const Constant * PersonalityFn) const9703 Register RISCVTargetLowering::getExceptionPointerRegister(
9704     const Constant *PersonalityFn) const {
9705   return RISCV::X10;
9706 }
9707 
getExceptionSelectorRegister(const Constant * PersonalityFn) const9708 Register RISCVTargetLowering::getExceptionSelectorRegister(
9709     const Constant *PersonalityFn) const {
9710   return RISCV::X11;
9711 }
9712 
shouldExtendTypeInLibCall(EVT Type) const9713 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
9714   // Return false to suppress the unnecessary extensions if the LibCall
9715   // arguments or return value is f32 type for LP64 ABI.
9716   RISCVABI::ABI ABI = Subtarget.getTargetABI();
9717   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
9718     return false;
9719 
9720   return true;
9721 }
9722 
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned) const9723 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
9724   if (Subtarget.is64Bit() && Type == MVT::i32)
9725     return true;
9726 
9727   return IsSigned;
9728 }
9729 
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C) const9730 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
9731                                                  SDValue C) const {
9732   // Check integral scalar types.
9733   if (VT.isScalarInteger()) {
9734     // Omit the optimization if the sub target has the M extension and the data
9735     // size exceeds XLen.
9736     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
9737       return false;
9738     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
9739       // Break the MUL to a SLLI and an ADD/SUB.
9740       const APInt &Imm = ConstNode->getAPIntValue();
9741       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9742           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9743         return true;
9744       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9745       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
9746           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9747            (Imm - 8).isPowerOf2()))
9748         return true;
9749       // Omit the following optimization if the sub target has the M extension
9750       // and the data size >= XLen.
9751       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
9752         return false;
9753       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9754       // a pair of LUI/ADDI.
9755       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
9756         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
9757         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
9758             (1 - ImmS).isPowerOf2())
9759         return true;
9760       }
9761     }
9762   }
9763 
9764   return false;
9765 }
9766 
isMulAddWithConstProfitable(const SDValue & AddNode,const SDValue & ConstNode) const9767 bool RISCVTargetLowering::isMulAddWithConstProfitable(
9768     const SDValue &AddNode, const SDValue &ConstNode) const {
9769   // Let the DAGCombiner decide for vectors.
9770   EVT VT = AddNode.getValueType();
9771   if (VT.isVector())
9772     return true;
9773 
9774   // Let the DAGCombiner decide for larger types.
9775   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
9776     return true;
9777 
9778   // It is worse if c1 is simm12 while c1*c2 is not.
9779   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
9780   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
9781   const APInt &C1 = C1Node->getAPIntValue();
9782   const APInt &C2 = C2Node->getAPIntValue();
9783   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
9784     return false;
9785 
9786   // Default to true and let the DAGCombiner decide.
9787   return true;
9788 }
9789 
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const9790 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9791     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
9792     bool *Fast) const {
9793   if (!VT.isVector())
9794     return false;
9795 
9796   EVT ElemVT = VT.getVectorElementType();
9797   if (Alignment >= ElemVT.getStoreSize()) {
9798     if (Fast)
9799       *Fast = true;
9800     return true;
9801   }
9802 
9803   return false;
9804 }
9805 
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC) const9806 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9807     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
9808     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
9809   bool IsABIRegCopy = CC.hasValue();
9810   EVT ValueVT = Val.getValueType();
9811   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9812     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9813     // and cast to f32.
9814     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
9815     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
9816     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
9817                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
9818     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
9819     Parts[0] = Val;
9820     return true;
9821   }
9822 
9823   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9824     LLVMContext &Context = *DAG.getContext();
9825     EVT ValueEltVT = ValueVT.getVectorElementType();
9826     EVT PartEltVT = PartVT.getVectorElementType();
9827     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9828     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9829     if (PartVTBitSize % ValueVTBitSize == 0) {
9830       // If the element types are different, bitcast to the same element type of
9831       // PartVT first.
9832       if (ValueEltVT != PartEltVT) {
9833         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9834         assert(Count != 0 && "The number of element should not be zero.");
9835         EVT SameEltTypeVT =
9836             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9837         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9838       }
9839       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9840                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9841       Parts[0] = Val;
9842       return true;
9843     }
9844   }
9845   return false;
9846 }
9847 
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC) const9848 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
9849     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
9850     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
9851   bool IsABIRegCopy = CC.hasValue();
9852   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9853     SDValue Val = Parts[0];
9854 
9855     // Cast the f32 to i32, truncate to i16, and cast back to f16.
9856     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
9857     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
9858     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
9859     return Val;
9860   }
9861 
9862   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9863     LLVMContext &Context = *DAG.getContext();
9864     SDValue Val = Parts[0];
9865     EVT ValueEltVT = ValueVT.getVectorElementType();
9866     EVT PartEltVT = PartVT.getVectorElementType();
9867     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9868     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9869     if (PartVTBitSize % ValueVTBitSize == 0) {
9870       EVT SameEltTypeVT = ValueVT;
9871       // If the element types are different, convert it to the same element type
9872       // of PartVT.
9873       if (ValueEltVT != PartEltVT) {
9874         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9875         assert(Count != 0 && "The number of element should not be zero.");
9876         SameEltTypeVT =
9877             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9878       }
9879       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
9880                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9881       if (ValueEltVT != PartEltVT)
9882         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
9883       return Val;
9884     }
9885   }
9886   return SDValue();
9887 }
9888 
9889 #define GET_REGISTER_MATCHER
9890 #include "RISCVGenAsmMatcher.inc"
9891 
9892 Register
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const9893 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
9894                                        const MachineFunction &MF) const {
9895   Register Reg = MatchRegisterAltName(RegName);
9896   if (Reg == RISCV::NoRegister)
9897     Reg = MatchRegisterName(RegName);
9898   if (Reg == RISCV::NoRegister)
9899     report_fatal_error(
9900         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
9901   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9902   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
9903     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9904                              StringRef(RegName) + "\"."));
9905   return Reg;
9906 }
9907 
9908 namespace llvm {
9909 namespace RISCVVIntrinsicsTable {
9910 
9911 #define GET_RISCVVIntrinsicsTable_IMPL
9912 #include "RISCVGenSearchableTables.inc"
9913 
9914 } // namespace RISCVVIntrinsicsTable
9915 
9916 } // namespace llvm
9917