1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumeBundleQueries.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/CFG.h"
33 #include "llvm/Analysis/DomTreeUpdater.h"
34 #include "llvm/Analysis/GlobalsModRef.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/MemoryBuiltins.h"
38 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
42 #include "llvm/Analysis/PHITransAddr.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils.h"
76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/SSAUpdater.h"
80 #include "llvm/Transforms/Utils/VNCoercion.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace llvm::gvn;
88 using namespace llvm::VNCoercion;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "gvn"
92 
93 STATISTIC(NumGVNInstr, "Number of instructions deleted");
94 STATISTIC(NumGVNLoad, "Number of loads deleted");
95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
96 STATISTIC(NumGVNBlocks, "Number of blocks merged");
97 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
98 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
99 STATISTIC(NumPRELoad, "Number of loads PRE'd");
100 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
101 
102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
103           "Number of blocks speculated as available in "
104           "IsValueFullyAvailableInBlock(), max");
105 STATISTIC(MaxBBSpeculationCutoffReachedTimes,
106           "Number of times we we reached gvn-max-block-speculations cut-off "
107           "preventing further exploration");
108 
109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
112                                             cl::init(true));
113 static cl::opt<bool>
114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
115                                 cl::init(true));
116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
117 
118 static cl::opt<uint32_t> MaxNumDeps(
119     "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
120     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
121 
122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
123 static cl::opt<uint32_t> MaxBBSpeculations(
124     "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore,
125     cl::desc("Max number of blocks we're willing to speculate on (and recurse "
126              "into) when deducing if a value is fully available or not in GVN "
127              "(default = 600)"));
128 
129 struct llvm::GVN::Expression {
130   uint32_t opcode;
131   bool commutative = false;
132   Type *type = nullptr;
133   SmallVector<uint32_t, 4> varargs;
134 
Expressionllvm::GVN::Expression135   Expression(uint32_t o = ~2U) : opcode(o) {}
136 
operator ==llvm::GVN::Expression137   bool operator==(const Expression &other) const {
138     if (opcode != other.opcode)
139       return false;
140     if (opcode == ~0U || opcode == ~1U)
141       return true;
142     if (type != other.type)
143       return false;
144     if (varargs != other.varargs)
145       return false;
146     return true;
147   }
148 
hash_value(const Expression & Value)149   friend hash_code hash_value(const Expression &Value) {
150     return hash_combine(
151         Value.opcode, Value.type,
152         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
153   }
154 };
155 
156 namespace llvm {
157 
158 template <> struct DenseMapInfo<GVN::Expression> {
getEmptyKeyllvm::DenseMapInfo159   static inline GVN::Expression getEmptyKey() { return ~0U; }
getTombstoneKeyllvm::DenseMapInfo160   static inline GVN::Expression getTombstoneKey() { return ~1U; }
161 
getHashValuellvm::DenseMapInfo162   static unsigned getHashValue(const GVN::Expression &e) {
163     using llvm::hash_value;
164 
165     return static_cast<unsigned>(hash_value(e));
166   }
167 
isEqualllvm::DenseMapInfo168   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
169     return LHS == RHS;
170   }
171 };
172 
173 } // end namespace llvm
174 
175 /// Represents a particular available value that we know how to materialize.
176 /// Materialization of an AvailableValue never fails.  An AvailableValue is
177 /// implicitly associated with a rematerialization point which is the
178 /// location of the instruction from which it was formed.
179 struct llvm::gvn::AvailableValue {
180   enum ValType {
181     SimpleVal, // A simple offsetted value that is accessed.
182     LoadVal,   // A value produced by a load.
183     MemIntrin, // A memory intrinsic which is loaded from.
184     UndefVal   // A UndefValue representing a value from dead block (which
185                // is not yet physically removed from the CFG).
186   };
187 
188   /// V - The value that is live out of the block.
189   PointerIntPair<Value *, 2, ValType> Val;
190 
191   /// Offset - The byte offset in Val that is interesting for the load query.
192   unsigned Offset = 0;
193 
getllvm::gvn::AvailableValue194   static AvailableValue get(Value *V, unsigned Offset = 0) {
195     AvailableValue Res;
196     Res.Val.setPointer(V);
197     Res.Val.setInt(SimpleVal);
198     Res.Offset = Offset;
199     return Res;
200   }
201 
getMIllvm::gvn::AvailableValue202   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
203     AvailableValue Res;
204     Res.Val.setPointer(MI);
205     Res.Val.setInt(MemIntrin);
206     Res.Offset = Offset;
207     return Res;
208   }
209 
getLoadllvm::gvn::AvailableValue210   static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
211     AvailableValue Res;
212     Res.Val.setPointer(Load);
213     Res.Val.setInt(LoadVal);
214     Res.Offset = Offset;
215     return Res;
216   }
217 
getUndefllvm::gvn::AvailableValue218   static AvailableValue getUndef() {
219     AvailableValue Res;
220     Res.Val.setPointer(nullptr);
221     Res.Val.setInt(UndefVal);
222     Res.Offset = 0;
223     return Res;
224   }
225 
isSimpleValuellvm::gvn::AvailableValue226   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
isCoercedLoadValuellvm::gvn::AvailableValue227   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
isMemIntrinValuellvm::gvn::AvailableValue228   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
isUndefValuellvm::gvn::AvailableValue229   bool isUndefValue() const { return Val.getInt() == UndefVal; }
230 
getSimpleValuellvm::gvn::AvailableValue231   Value *getSimpleValue() const {
232     assert(isSimpleValue() && "Wrong accessor");
233     return Val.getPointer();
234   }
235 
getCoercedLoadValuellvm::gvn::AvailableValue236   LoadInst *getCoercedLoadValue() const {
237     assert(isCoercedLoadValue() && "Wrong accessor");
238     return cast<LoadInst>(Val.getPointer());
239   }
240 
getMemIntrinValuellvm::gvn::AvailableValue241   MemIntrinsic *getMemIntrinValue() const {
242     assert(isMemIntrinValue() && "Wrong accessor");
243     return cast<MemIntrinsic>(Val.getPointer());
244   }
245 
246   /// Emit code at the specified insertion point to adjust the value defined
247   /// here to the specified type. This handles various coercion cases.
248   Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
249                                   GVN &gvn) const;
250 };
251 
252 /// Represents an AvailableValue which can be rematerialized at the end of
253 /// the associated BasicBlock.
254 struct llvm::gvn::AvailableValueInBlock {
255   /// BB - The basic block in question.
256   BasicBlock *BB = nullptr;
257 
258   /// AV - The actual available value
259   AvailableValue AV;
260 
getllvm::gvn::AvailableValueInBlock261   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
262     AvailableValueInBlock Res;
263     Res.BB = BB;
264     Res.AV = std::move(AV);
265     return Res;
266   }
267 
getllvm::gvn::AvailableValueInBlock268   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
269                                    unsigned Offset = 0) {
270     return get(BB, AvailableValue::get(V, Offset));
271   }
272 
getUndefllvm::gvn::AvailableValueInBlock273   static AvailableValueInBlock getUndef(BasicBlock *BB) {
274     return get(BB, AvailableValue::getUndef());
275   }
276 
277   /// Emit code at the end of this block to adjust the value defined here to
278   /// the specified type. This handles various coercion cases.
MaterializeAdjustedValuellvm::gvn::AvailableValueInBlock279   Value *MaterializeAdjustedValue(LoadInst *Load, GVN &gvn) const {
280     return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
281   }
282 };
283 
284 //===----------------------------------------------------------------------===//
285 //                     ValueTable Internal Functions
286 //===----------------------------------------------------------------------===//
287 
createExpr(Instruction * I)288 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
289   Expression e;
290   e.type = I->getType();
291   e.opcode = I->getOpcode();
292   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
293     // gc.relocate is 'special' call: its second and third operands are
294     // not real values, but indices into statepoint's argument list.
295     // Use the refered to values for purposes of identity.
296     e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
297     e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
298     e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
299   } else {
300     for (Use &Op : I->operands())
301       e.varargs.push_back(lookupOrAdd(Op));
302   }
303   if (I->isCommutative()) {
304     // Ensure that commutative instructions that only differ by a permutation
305     // of their operands get the same value number by sorting the operand value
306     // numbers.  Since commutative operands are the 1st two operands it is more
307     // efficient to sort by hand rather than using, say, std::sort.
308     assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
309     if (e.varargs[0] > e.varargs[1])
310       std::swap(e.varargs[0], e.varargs[1]);
311     e.commutative = true;
312   }
313 
314   if (auto *C = dyn_cast<CmpInst>(I)) {
315     // Sort the operand value numbers so x<y and y>x get the same value number.
316     CmpInst::Predicate Predicate = C->getPredicate();
317     if (e.varargs[0] > e.varargs[1]) {
318       std::swap(e.varargs[0], e.varargs[1]);
319       Predicate = CmpInst::getSwappedPredicate(Predicate);
320     }
321     e.opcode = (C->getOpcode() << 8) | Predicate;
322     e.commutative = true;
323   } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
324     e.varargs.append(E->idx_begin(), E->idx_end());
325   } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
326     ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
327     e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
328   }
329 
330   return e;
331 }
332 
createCmpExpr(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)333 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
334                                                CmpInst::Predicate Predicate,
335                                                Value *LHS, Value *RHS) {
336   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
337          "Not a comparison!");
338   Expression e;
339   e.type = CmpInst::makeCmpResultType(LHS->getType());
340   e.varargs.push_back(lookupOrAdd(LHS));
341   e.varargs.push_back(lookupOrAdd(RHS));
342 
343   // Sort the operand value numbers so x<y and y>x get the same value number.
344   if (e.varargs[0] > e.varargs[1]) {
345     std::swap(e.varargs[0], e.varargs[1]);
346     Predicate = CmpInst::getSwappedPredicate(Predicate);
347   }
348   e.opcode = (Opcode << 8) | Predicate;
349   e.commutative = true;
350   return e;
351 }
352 
createExtractvalueExpr(ExtractValueInst * EI)353 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
354   assert(EI && "Not an ExtractValueInst?");
355   Expression e;
356   e.type = EI->getType();
357   e.opcode = 0;
358 
359   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
360   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
361     // EI is an extract from one of our with.overflow intrinsics. Synthesize
362     // a semantically equivalent expression instead of an extract value
363     // expression.
364     e.opcode = WO->getBinaryOp();
365     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
366     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
367     return e;
368   }
369 
370   // Not a recognised intrinsic. Fall back to producing an extract value
371   // expression.
372   e.opcode = EI->getOpcode();
373   for (Use &Op : EI->operands())
374     e.varargs.push_back(lookupOrAdd(Op));
375 
376   append_range(e.varargs, EI->indices());
377 
378   return e;
379 }
380 
381 //===----------------------------------------------------------------------===//
382 //                     ValueTable External Functions
383 //===----------------------------------------------------------------------===//
384 
385 GVN::ValueTable::ValueTable() = default;
386 GVN::ValueTable::ValueTable(const ValueTable &) = default;
387 GVN::ValueTable::ValueTable(ValueTable &&) = default;
388 GVN::ValueTable::~ValueTable() = default;
389 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default;
390 
391 /// add - Insert a value into the table with a specified value number.
add(Value * V,uint32_t num)392 void GVN::ValueTable::add(Value *V, uint32_t num) {
393   valueNumbering.insert(std::make_pair(V, num));
394   if (PHINode *PN = dyn_cast<PHINode>(V))
395     NumberingPhi[num] = PN;
396 }
397 
lookupOrAddCall(CallInst * C)398 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
399   if (AA->doesNotAccessMemory(C)) {
400     Expression exp = createExpr(C);
401     uint32_t e = assignExpNewValueNum(exp).first;
402     valueNumbering[C] = e;
403     return e;
404   } else if (MD && AA->onlyReadsMemory(C)) {
405     Expression exp = createExpr(C);
406     auto ValNum = assignExpNewValueNum(exp);
407     if (ValNum.second) {
408       valueNumbering[C] = ValNum.first;
409       return ValNum.first;
410     }
411 
412     MemDepResult local_dep = MD->getDependency(C);
413 
414     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
415       valueNumbering[C] =  nextValueNumber;
416       return nextValueNumber++;
417     }
418 
419     if (local_dep.isDef()) {
420       // For masked load/store intrinsics, the local_dep may actully be
421       // a normal load or store instruction.
422       CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
423 
424       if (!local_cdep || local_cdep->arg_size() != C->arg_size()) {
425         valueNumbering[C] = nextValueNumber;
426         return nextValueNumber++;
427       }
428 
429       for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
430         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
431         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
432         if (c_vn != cd_vn) {
433           valueNumbering[C] = nextValueNumber;
434           return nextValueNumber++;
435         }
436       }
437 
438       uint32_t v = lookupOrAdd(local_cdep);
439       valueNumbering[C] = v;
440       return v;
441     }
442 
443     // Non-local case.
444     const MemoryDependenceResults::NonLocalDepInfo &deps =
445         MD->getNonLocalCallDependency(C);
446     // FIXME: Move the checking logic to MemDep!
447     CallInst* cdep = nullptr;
448 
449     // Check to see if we have a single dominating call instruction that is
450     // identical to C.
451     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
452       const NonLocalDepEntry *I = &deps[i];
453       if (I->getResult().isNonLocal())
454         continue;
455 
456       // We don't handle non-definitions.  If we already have a call, reject
457       // instruction dependencies.
458       if (!I->getResult().isDef() || cdep != nullptr) {
459         cdep = nullptr;
460         break;
461       }
462 
463       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
464       // FIXME: All duplicated with non-local case.
465       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
466         cdep = NonLocalDepCall;
467         continue;
468       }
469 
470       cdep = nullptr;
471       break;
472     }
473 
474     if (!cdep) {
475       valueNumbering[C] = nextValueNumber;
476       return nextValueNumber++;
477     }
478 
479     if (cdep->arg_size() != C->arg_size()) {
480       valueNumbering[C] = nextValueNumber;
481       return nextValueNumber++;
482     }
483     for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
484       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
485       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
486       if (c_vn != cd_vn) {
487         valueNumbering[C] = nextValueNumber;
488         return nextValueNumber++;
489       }
490     }
491 
492     uint32_t v = lookupOrAdd(cdep);
493     valueNumbering[C] = v;
494     return v;
495   } else {
496     valueNumbering[C] = nextValueNumber;
497     return nextValueNumber++;
498   }
499 }
500 
501 /// Returns true if a value number exists for the specified value.
exists(Value * V) const502 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
503 
504 /// lookup_or_add - Returns the value number for the specified value, assigning
505 /// it a new number if it did not have one before.
lookupOrAdd(Value * V)506 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
507   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
508   if (VI != valueNumbering.end())
509     return VI->second;
510 
511   if (!isa<Instruction>(V)) {
512     valueNumbering[V] = nextValueNumber;
513     return nextValueNumber++;
514   }
515 
516   Instruction* I = cast<Instruction>(V);
517   Expression exp;
518   switch (I->getOpcode()) {
519     case Instruction::Call:
520       return lookupOrAddCall(cast<CallInst>(I));
521     case Instruction::FNeg:
522     case Instruction::Add:
523     case Instruction::FAdd:
524     case Instruction::Sub:
525     case Instruction::FSub:
526     case Instruction::Mul:
527     case Instruction::FMul:
528     case Instruction::UDiv:
529     case Instruction::SDiv:
530     case Instruction::FDiv:
531     case Instruction::URem:
532     case Instruction::SRem:
533     case Instruction::FRem:
534     case Instruction::Shl:
535     case Instruction::LShr:
536     case Instruction::AShr:
537     case Instruction::And:
538     case Instruction::Or:
539     case Instruction::Xor:
540     case Instruction::ICmp:
541     case Instruction::FCmp:
542     case Instruction::Trunc:
543     case Instruction::ZExt:
544     case Instruction::SExt:
545     case Instruction::FPToUI:
546     case Instruction::FPToSI:
547     case Instruction::UIToFP:
548     case Instruction::SIToFP:
549     case Instruction::FPTrunc:
550     case Instruction::FPExt:
551     case Instruction::PtrToInt:
552     case Instruction::IntToPtr:
553     case Instruction::AddrSpaceCast:
554     case Instruction::BitCast:
555     case Instruction::Select:
556     case Instruction::Freeze:
557     case Instruction::ExtractElement:
558     case Instruction::InsertElement:
559     case Instruction::ShuffleVector:
560     case Instruction::InsertValue:
561     case Instruction::GetElementPtr:
562       exp = createExpr(I);
563       break;
564     case Instruction::ExtractValue:
565       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
566       break;
567     case Instruction::PHI:
568       valueNumbering[V] = nextValueNumber;
569       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
570       return nextValueNumber++;
571     default:
572       valueNumbering[V] = nextValueNumber;
573       return nextValueNumber++;
574   }
575 
576   uint32_t e = assignExpNewValueNum(exp).first;
577   valueNumbering[V] = e;
578   return e;
579 }
580 
581 /// Returns the value number of the specified value. Fails if
582 /// the value has not yet been numbered.
lookup(Value * V,bool Verify) const583 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
584   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
585   if (Verify) {
586     assert(VI != valueNumbering.end() && "Value not numbered?");
587     return VI->second;
588   }
589   return (VI != valueNumbering.end()) ? VI->second : 0;
590 }
591 
592 /// Returns the value number of the given comparison,
593 /// assigning it a new number if it did not have one before.  Useful when
594 /// we deduced the result of a comparison, but don't immediately have an
595 /// instruction realizing that comparison to hand.
lookupOrAddCmp(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)596 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
597                                          CmpInst::Predicate Predicate,
598                                          Value *LHS, Value *RHS) {
599   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
600   return assignExpNewValueNum(exp).first;
601 }
602 
603 /// Remove all entries from the ValueTable.
clear()604 void GVN::ValueTable::clear() {
605   valueNumbering.clear();
606   expressionNumbering.clear();
607   NumberingPhi.clear();
608   PhiTranslateTable.clear();
609   nextValueNumber = 1;
610   Expressions.clear();
611   ExprIdx.clear();
612   nextExprNumber = 0;
613 }
614 
615 /// Remove a value from the value numbering.
erase(Value * V)616 void GVN::ValueTable::erase(Value *V) {
617   uint32_t Num = valueNumbering.lookup(V);
618   valueNumbering.erase(V);
619   // If V is PHINode, V <--> value number is an one-to-one mapping.
620   if (isa<PHINode>(V))
621     NumberingPhi.erase(Num);
622 }
623 
624 /// verifyRemoved - Verify that the value is removed from all internal data
625 /// structures.
verifyRemoved(const Value * V) const626 void GVN::ValueTable::verifyRemoved(const Value *V) const {
627   for (DenseMap<Value*, uint32_t>::const_iterator
628          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
629     assert(I->first != V && "Inst still occurs in value numbering map!");
630   }
631 }
632 
633 //===----------------------------------------------------------------------===//
634 //                                GVN Pass
635 //===----------------------------------------------------------------------===//
636 
isPREEnabled() const637 bool GVN::isPREEnabled() const {
638   return Options.AllowPRE.getValueOr(GVNEnablePRE);
639 }
640 
isLoadPREEnabled() const641 bool GVN::isLoadPREEnabled() const {
642   return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE);
643 }
644 
isLoadInLoopPREEnabled() const645 bool GVN::isLoadInLoopPREEnabled() const {
646   return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE);
647 }
648 
isLoadPRESplitBackedgeEnabled() const649 bool GVN::isLoadPRESplitBackedgeEnabled() const {
650   return Options.AllowLoadPRESplitBackedge.getValueOr(
651       GVNEnableSplitBackedgeInLoadPRE);
652 }
653 
isMemDepEnabled() const654 bool GVN::isMemDepEnabled() const {
655   return Options.AllowMemDep.getValueOr(GVNEnableMemDep);
656 }
657 
run(Function & F,FunctionAnalysisManager & AM)658 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
659   // FIXME: The order of evaluation of these 'getResult' calls is very
660   // significant! Re-ordering these variables will cause GVN when run alone to
661   // be less effective! We should fix memdep and basic-aa to not exhibit this
662   // behavior, but until then don't change the order here.
663   auto &AC = AM.getResult<AssumptionAnalysis>(F);
664   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
665   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
666   auto &AA = AM.getResult<AAManager>(F);
667   auto *MemDep =
668       isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
669   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
670   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
671   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
672   bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
673                          MSSA ? &MSSA->getMSSA() : nullptr);
674   if (!Changed)
675     return PreservedAnalyses::all();
676   PreservedAnalyses PA;
677   PA.preserve<DominatorTreeAnalysis>();
678   PA.preserve<TargetLibraryAnalysis>();
679   if (MSSA)
680     PA.preserve<MemorySSAAnalysis>();
681   if (LI)
682     PA.preserve<LoopAnalysis>();
683   return PA;
684 }
685 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)686 void GVN::printPipeline(
687     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
688   static_cast<PassInfoMixin<GVN> *>(this)->printPipeline(OS,
689                                                          MapClassName2PassName);
690 
691   OS << "<";
692   if (Options.AllowPRE != None)
693     OS << (Options.AllowPRE.getValue() ? "" : "no-") << "pre;";
694   if (Options.AllowLoadPRE != None)
695     OS << (Options.AllowLoadPRE.getValue() ? "" : "no-") << "load-pre;";
696   if (Options.AllowLoadPRESplitBackedge != None)
697     OS << (Options.AllowLoadPRESplitBackedge.getValue() ? "" : "no-")
698        << "split-backedge-load-pre;";
699   if (Options.AllowMemDep != None)
700     OS << (Options.AllowMemDep.getValue() ? "" : "no-") << "memdep";
701   OS << ">";
702 }
703 
704 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(DenseMap<uint32_t,Value * > & d) const705 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
706   errs() << "{\n";
707   for (auto &I : d) {
708     errs() << I.first << "\n";
709     I.second->dump();
710   }
711   errs() << "}\n";
712 }
713 #endif
714 
715 enum class AvailabilityState : char {
716   /// We know the block *is not* fully available. This is a fixpoint.
717   Unavailable = 0,
718   /// We know the block *is* fully available. This is a fixpoint.
719   Available = 1,
720   /// We do not know whether the block is fully available or not,
721   /// but we are currently speculating that it will be.
722   /// If it would have turned out that the block was, in fact, not fully
723   /// available, this would have been cleaned up into an Unavailable.
724   SpeculativelyAvailable = 2,
725 };
726 
727 /// Return true if we can prove that the value
728 /// we're analyzing is fully available in the specified block.  As we go, keep
729 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
730 /// map is actually a tri-state map with the following values:
731 ///   0) we know the block *is not* fully available.
732 ///   1) we know the block *is* fully available.
733 ///   2) we do not know whether the block is fully available or not, but we are
734 ///      currently speculating that it will be.
IsValueFullyAvailableInBlock(BasicBlock * BB,DenseMap<BasicBlock *,AvailabilityState> & FullyAvailableBlocks)735 static bool IsValueFullyAvailableInBlock(
736     BasicBlock *BB,
737     DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
738   SmallVector<BasicBlock *, 32> Worklist;
739   Optional<BasicBlock *> UnavailableBB;
740 
741   // The number of times we didn't find an entry for a block in a map and
742   // optimistically inserted an entry marking block as speculatively available.
743   unsigned NumNewNewSpeculativelyAvailableBBs = 0;
744 
745 #ifndef NDEBUG
746   SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
747   SmallVector<BasicBlock *, 32> AvailableBBs;
748 #endif
749 
750   Worklist.emplace_back(BB);
751   while (!Worklist.empty()) {
752     BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
753     // Optimistically assume that the block is Speculatively Available and check
754     // to see if we already know about this block in one lookup.
755     std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
756         FullyAvailableBlocks.try_emplace(
757             CurrBB, AvailabilityState::SpeculativelyAvailable);
758     AvailabilityState &State = IV.first->second;
759 
760     // Did the entry already exist for this block?
761     if (!IV.second) {
762       if (State == AvailabilityState::Unavailable) {
763         UnavailableBB = CurrBB;
764         break; // Backpropagate unavailability info.
765       }
766 
767 #ifndef NDEBUG
768       AvailableBBs.emplace_back(CurrBB);
769 #endif
770       continue; // Don't recurse further, but continue processing worklist.
771     }
772 
773     // No entry found for block.
774     ++NumNewNewSpeculativelyAvailableBBs;
775     bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
776 
777     // If we have exhausted our budget, mark this block as unavailable.
778     // Also, if this block has no predecessors, the value isn't live-in here.
779     if (OutOfBudget || pred_empty(CurrBB)) {
780       MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
781       State = AvailabilityState::Unavailable;
782       UnavailableBB = CurrBB;
783       break; // Backpropagate unavailability info.
784     }
785 
786     // Tentatively consider this block as speculatively available.
787 #ifndef NDEBUG
788     NewSpeculativelyAvailableBBs.insert(CurrBB);
789 #endif
790     // And further recurse into block's predecessors, in depth-first order!
791     Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
792   }
793 
794 #if LLVM_ENABLE_STATS
795   IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
796       NumNewNewSpeculativelyAvailableBBs);
797 #endif
798 
799   // If the block isn't marked as fixpoint yet
800   // (the Unavailable and Available states are fixpoints)
801   auto MarkAsFixpointAndEnqueueSuccessors =
802       [&](BasicBlock *BB, AvailabilityState FixpointState) {
803         auto It = FullyAvailableBlocks.find(BB);
804         if (It == FullyAvailableBlocks.end())
805           return; // Never queried this block, leave as-is.
806         switch (AvailabilityState &State = It->second) {
807         case AvailabilityState::Unavailable:
808         case AvailabilityState::Available:
809           return; // Don't backpropagate further, continue processing worklist.
810         case AvailabilityState::SpeculativelyAvailable: // Fix it!
811           State = FixpointState;
812 #ifndef NDEBUG
813           assert(NewSpeculativelyAvailableBBs.erase(BB) &&
814                  "Found a speculatively available successor leftover?");
815 #endif
816           // Queue successors for further processing.
817           Worklist.append(succ_begin(BB), succ_end(BB));
818           return;
819         }
820       };
821 
822   if (UnavailableBB) {
823     // Okay, we have encountered an unavailable block.
824     // Mark speculatively available blocks reachable from UnavailableBB as
825     // unavailable as well. Paths are terminated when they reach blocks not in
826     // FullyAvailableBlocks or they are not marked as speculatively available.
827     Worklist.clear();
828     Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
829     while (!Worklist.empty())
830       MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
831                                          AvailabilityState::Unavailable);
832   }
833 
834 #ifndef NDEBUG
835   Worklist.clear();
836   for (BasicBlock *AvailableBB : AvailableBBs)
837     Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
838   while (!Worklist.empty())
839     MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
840                                        AvailabilityState::Available);
841 
842   assert(NewSpeculativelyAvailableBBs.empty() &&
843          "Must have fixed all the new speculatively available blocks.");
844 #endif
845 
846   return !UnavailableBB;
847 }
848 
849 /// Given a set of loads specified by ValuesPerBlock,
850 /// construct SSA form, allowing us to eliminate Load.  This returns the value
851 /// that should be used at Load's definition site.
852 static Value *
ConstructSSAForLoadSet(LoadInst * Load,SmallVectorImpl<AvailableValueInBlock> & ValuesPerBlock,GVN & gvn)853 ConstructSSAForLoadSet(LoadInst *Load,
854                        SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
855                        GVN &gvn) {
856   // Check for the fully redundant, dominating load case.  In this case, we can
857   // just use the dominating value directly.
858   if (ValuesPerBlock.size() == 1 &&
859       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
860                                                Load->getParent())) {
861     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
862            "Dead BB dominate this block");
863     return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
864   }
865 
866   // Otherwise, we have to construct SSA form.
867   SmallVector<PHINode*, 8> NewPHIs;
868   SSAUpdater SSAUpdate(&NewPHIs);
869   SSAUpdate.Initialize(Load->getType(), Load->getName());
870 
871   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
872     BasicBlock *BB = AV.BB;
873 
874     if (AV.AV.isUndefValue())
875       continue;
876 
877     if (SSAUpdate.HasValueForBlock(BB))
878       continue;
879 
880     // If the value is the load that we will be eliminating, and the block it's
881     // available in is the block that the load is in, then don't add it as
882     // SSAUpdater will resolve the value to the relevant phi which may let it
883     // avoid phi construction entirely if there's actually only one value.
884     if (BB == Load->getParent() &&
885         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
886          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
887       continue;
888 
889     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
890   }
891 
892   // Perform PHI construction.
893   return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
894 }
895 
MaterializeAdjustedValue(LoadInst * Load,Instruction * InsertPt,GVN & gvn) const896 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
897                                                 Instruction *InsertPt,
898                                                 GVN &gvn) const {
899   Value *Res;
900   Type *LoadTy = Load->getType();
901   const DataLayout &DL = Load->getModule()->getDataLayout();
902   if (isSimpleValue()) {
903     Res = getSimpleValue();
904     if (Res->getType() != LoadTy) {
905       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
906 
907       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
908                         << "  " << *getSimpleValue() << '\n'
909                         << *Res << '\n'
910                         << "\n\n\n");
911     }
912   } else if (isCoercedLoadValue()) {
913     LoadInst *CoercedLoad = getCoercedLoadValue();
914     if (CoercedLoad->getType() == LoadTy && Offset == 0) {
915       Res = CoercedLoad;
916     } else {
917       Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
918       // We would like to use gvn.markInstructionForDeletion here, but we can't
919       // because the load is already memoized into the leader map table that GVN
920       // tracks.  It is potentially possible to remove the load from the table,
921       // but then there all of the operations based on it would need to be
922       // rehashed.  Just leave the dead load around.
923       gvn.getMemDep().removeInstruction(CoercedLoad);
924       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
925                         << "  " << *getCoercedLoadValue() << '\n'
926                         << *Res << '\n'
927                         << "\n\n\n");
928     }
929   } else if (isMemIntrinValue()) {
930     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
931                                  InsertPt, DL);
932     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
933                       << "  " << *getMemIntrinValue() << '\n'
934                       << *Res << '\n'
935                       << "\n\n\n");
936   } else {
937     llvm_unreachable("Should not materialize value from dead block");
938   }
939   assert(Res && "failed to materialize?");
940   return Res;
941 }
942 
isLifetimeStart(const Instruction * Inst)943 static bool isLifetimeStart(const Instruction *Inst) {
944   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
945     return II->getIntrinsicID() == Intrinsic::lifetime_start;
946   return false;
947 }
948 
949 /// Assuming To can be reached from both From and Between, does Between lie on
950 /// every path from From to To?
liesBetween(const Instruction * From,Instruction * Between,const Instruction * To,DominatorTree * DT)951 static bool liesBetween(const Instruction *From, Instruction *Between,
952                         const Instruction *To, DominatorTree *DT) {
953   if (From->getParent() == Between->getParent())
954     return DT->dominates(From, Between);
955   SmallSet<BasicBlock *, 1> Exclusion;
956   Exclusion.insert(Between->getParent());
957   return !isPotentiallyReachable(From, To, &Exclusion, DT);
958 }
959 
960 /// Try to locate the three instruction involved in a missed
961 /// load-elimination case that is due to an intervening store.
reportMayClobberedLoad(LoadInst * Load,MemDepResult DepInfo,DominatorTree * DT,OptimizationRemarkEmitter * ORE)962 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
963                                    DominatorTree *DT,
964                                    OptimizationRemarkEmitter *ORE) {
965   using namespace ore;
966 
967   User *OtherAccess = nullptr;
968 
969   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
970   R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
971     << setExtraArgs();
972 
973   for (auto *U : Load->getPointerOperand()->users()) {
974     if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
975         cast<Instruction>(U)->getFunction() == Load->getFunction() &&
976         DT->dominates(cast<Instruction>(U), Load)) {
977       // Use the most immediately dominating value
978       if (OtherAccess) {
979         if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U)))
980           OtherAccess = U;
981         else
982           assert(DT->dominates(cast<Instruction>(U),
983                                cast<Instruction>(OtherAccess)));
984       } else
985         OtherAccess = U;
986     }
987   }
988 
989   if (!OtherAccess) {
990     // There is no dominating use, check if we can find a closest non-dominating
991     // use that lies between any other potentially available use and Load.
992     for (auto *U : Load->getPointerOperand()->users()) {
993       if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
994           cast<Instruction>(U)->getFunction() == Load->getFunction() &&
995           isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) {
996         if (OtherAccess) {
997           if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U),
998                           Load, DT)) {
999             OtherAccess = U;
1000           } else if (!liesBetween(cast<Instruction>(U),
1001                                   cast<Instruction>(OtherAccess), Load, DT)) {
1002             // These uses are both partially available at Load were it not for
1003             // the clobber, but neither lies strictly after the other.
1004             OtherAccess = nullptr;
1005             break;
1006           } // else: keep current OtherAccess since it lies between U and Load
1007         } else {
1008           OtherAccess = U;
1009         }
1010       }
1011     }
1012   }
1013 
1014   if (OtherAccess)
1015     R << " in favor of " << NV("OtherAccess", OtherAccess);
1016 
1017   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
1018 
1019   ORE->emit(R);
1020 }
1021 
AnalyzeLoadAvailability(LoadInst * Load,MemDepResult DepInfo,Value * Address,AvailableValue & Res)1022 bool GVN::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
1023                                   Value *Address, AvailableValue &Res) {
1024   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
1025          "expected a local dependence");
1026   assert(Load->isUnordered() && "rules below are incorrect for ordered access");
1027 
1028   const DataLayout &DL = Load->getModule()->getDataLayout();
1029 
1030   Instruction *DepInst = DepInfo.getInst();
1031   if (DepInfo.isClobber()) {
1032     // If the dependence is to a store that writes to a superset of the bits
1033     // read by the load, we can extract the bits we need for the load from the
1034     // stored value.
1035     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1036       // Can't forward from non-atomic to atomic without violating memory model.
1037       if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
1038         int Offset =
1039             analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
1040         if (Offset != -1) {
1041           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
1042           return true;
1043         }
1044       }
1045     }
1046 
1047     // Check to see if we have something like this:
1048     //    load i32* P
1049     //    load i8* (P+1)
1050     // if we have this, replace the later with an extraction from the former.
1051     if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1052       // If this is a clobber and L is the first instruction in its block, then
1053       // we have the first instruction in the entry block.
1054       // Can't forward from non-atomic to atomic without violating memory model.
1055       if (DepLoad != Load && Address &&
1056           Load->isAtomic() <= DepLoad->isAtomic()) {
1057         Type *LoadType = Load->getType();
1058         int Offset = -1;
1059 
1060         // If MD reported clobber, check it was nested.
1061         if (DepInfo.isClobber() &&
1062             canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
1063           const auto ClobberOff = MD->getClobberOffset(DepLoad);
1064           // GVN has no deal with a negative offset.
1065           Offset = (ClobberOff == None || ClobberOff.getValue() < 0)
1066                        ? -1
1067                        : ClobberOff.getValue();
1068         }
1069         if (Offset == -1)
1070           Offset =
1071               analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
1072         if (Offset != -1) {
1073           Res = AvailableValue::getLoad(DepLoad, Offset);
1074           return true;
1075         }
1076       }
1077     }
1078 
1079     // If the clobbering value is a memset/memcpy/memmove, see if we can
1080     // forward a value on from it.
1081     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1082       if (Address && !Load->isAtomic()) {
1083         int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
1084                                                       DepMI, DL);
1085         if (Offset != -1) {
1086           Res = AvailableValue::getMI(DepMI, Offset);
1087           return true;
1088         }
1089       }
1090     }
1091     // Nothing known about this clobber, have to be conservative
1092     LLVM_DEBUG(
1093         // fast print dep, using operator<< on instruction is too slow.
1094         dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1095         dbgs() << " is clobbered by " << *DepInst << '\n';);
1096     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
1097       reportMayClobberedLoad(Load, DepInfo, DT, ORE);
1098 
1099     return false;
1100   }
1101   assert(DepInfo.isDef() && "follows from above");
1102 
1103   // Loading the allocation -> undef.
1104   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1105       isAlignedAllocLikeFn(DepInst, TLI) ||
1106       // Loading immediately after lifetime begin -> undef.
1107       isLifetimeStart(DepInst)) {
1108     Res = AvailableValue::get(UndefValue::get(Load->getType()));
1109     return true;
1110   }
1111 
1112   // Loading from calloc (which zero initializes memory) -> zero
1113   if (isCallocLikeFn(DepInst, TLI)) {
1114     Res = AvailableValue::get(Constant::getNullValue(Load->getType()));
1115     return true;
1116   }
1117 
1118   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1119     // Reject loads and stores that are to the same address but are of
1120     // different types if we have to. If the stored value is convertable to
1121     // the loaded value, we can reuse it.
1122     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
1123                                          DL))
1124       return false;
1125 
1126     // Can't forward from non-atomic to atomic without violating memory model.
1127     if (S->isAtomic() < Load->isAtomic())
1128       return false;
1129 
1130     Res = AvailableValue::get(S->getValueOperand());
1131     return true;
1132   }
1133 
1134   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1135     // If the types mismatch and we can't handle it, reject reuse of the load.
1136     // If the stored value is larger or equal to the loaded value, we can reuse
1137     // it.
1138     if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
1139       return false;
1140 
1141     // Can't forward from non-atomic to atomic without violating memory model.
1142     if (LD->isAtomic() < Load->isAtomic())
1143       return false;
1144 
1145     Res = AvailableValue::getLoad(LD);
1146     return true;
1147   }
1148 
1149   // Unknown def - must be conservative
1150   LLVM_DEBUG(
1151       // fast print dep, using operator<< on instruction is too slow.
1152       dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1153       dbgs() << " has unknown def " << *DepInst << '\n';);
1154   return false;
1155 }
1156 
AnalyzeLoadAvailability(LoadInst * Load,LoadDepVect & Deps,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1157 void GVN::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
1158                                   AvailValInBlkVect &ValuesPerBlock,
1159                                   UnavailBlkVect &UnavailableBlocks) {
1160   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1161   // where we have a value available in repl, also keep track of whether we see
1162   // dependencies that produce an unknown value for the load (such as a call
1163   // that could potentially clobber the load).
1164   unsigned NumDeps = Deps.size();
1165   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1166     BasicBlock *DepBB = Deps[i].getBB();
1167     MemDepResult DepInfo = Deps[i].getResult();
1168 
1169     if (DeadBlocks.count(DepBB)) {
1170       // Dead dependent mem-op disguise as a load evaluating the same value
1171       // as the load in question.
1172       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1173       continue;
1174     }
1175 
1176     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1177       UnavailableBlocks.push_back(DepBB);
1178       continue;
1179     }
1180 
1181     // The address being loaded in this non-local block may not be the same as
1182     // the pointer operand of the load if PHI translation occurs.  Make sure
1183     // to consider the right address.
1184     Value *Address = Deps[i].getAddress();
1185 
1186     AvailableValue AV;
1187     if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) {
1188       // subtlety: because we know this was a non-local dependency, we know
1189       // it's safe to materialize anywhere between the instruction within
1190       // DepInfo and the end of it's block.
1191       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1192                                                           std::move(AV)));
1193     } else {
1194       UnavailableBlocks.push_back(DepBB);
1195     }
1196   }
1197 
1198   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1199          "post condition violation");
1200 }
1201 
eliminatePartiallyRedundantLoad(LoadInst * Load,AvailValInBlkVect & ValuesPerBlock,MapVector<BasicBlock *,Value * > & AvailableLoads)1202 void GVN::eliminatePartiallyRedundantLoad(
1203     LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1204     MapVector<BasicBlock *, Value *> &AvailableLoads) {
1205   for (const auto &AvailableLoad : AvailableLoads) {
1206     BasicBlock *UnavailableBlock = AvailableLoad.first;
1207     Value *LoadPtr = AvailableLoad.second;
1208 
1209     auto *NewLoad =
1210         new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
1211                      Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
1212                      Load->getSyncScopeID(), UnavailableBlock->getTerminator());
1213     NewLoad->setDebugLoc(Load->getDebugLoc());
1214     if (MSSAU) {
1215       auto *MSSA = MSSAU->getMemorySSA();
1216       // Get the defining access of the original load or use the load if it is a
1217       // MemoryDef (e.g. because it is volatile). The inserted loads are
1218       // guaranteed to load from the same definition.
1219       auto *LoadAcc = MSSA->getMemoryAccess(Load);
1220       auto *DefiningAcc =
1221           isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess();
1222       auto *NewAccess = MSSAU->createMemoryAccessInBB(
1223           NewLoad, DefiningAcc, NewLoad->getParent(),
1224           MemorySSA::BeforeTerminator);
1225       if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1226         MSSAU->insertDef(NewDef, /*RenameUses=*/true);
1227       else
1228         MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
1229     }
1230 
1231     // Transfer the old load's AA tags to the new load.
1232     AAMDNodes Tags = Load->getAAMetadata();
1233     if (Tags)
1234       NewLoad->setAAMetadata(Tags);
1235 
1236     if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
1237       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1238     if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
1239       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1240     if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
1241       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1242     if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
1243       if (LI &&
1244           LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
1245         NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1246 
1247     // We do not propagate the old load's debug location, because the new
1248     // load now lives in a different BB, and we want to avoid a jumpy line
1249     // table.
1250     // FIXME: How do we retain source locations without causing poor debugging
1251     // behavior?
1252 
1253     // Add the newly created load.
1254     ValuesPerBlock.push_back(
1255         AvailableValueInBlock::get(UnavailableBlock, NewLoad));
1256     MD->invalidateCachedPointerInfo(LoadPtr);
1257     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1258   }
1259 
1260   // Perform PHI construction.
1261   Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1262   Load->replaceAllUsesWith(V);
1263   if (isa<PHINode>(V))
1264     V->takeName(Load);
1265   if (Instruction *I = dyn_cast<Instruction>(V))
1266     I->setDebugLoc(Load->getDebugLoc());
1267   if (V->getType()->isPtrOrPtrVectorTy())
1268     MD->invalidateCachedPointerInfo(V);
1269   markInstructionForDeletion(Load);
1270   ORE->emit([&]() {
1271     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
1272            << "load eliminated by PRE";
1273   });
1274 }
1275 
PerformLoadPRE(LoadInst * Load,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1276 bool GVN::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1277                          UnavailBlkVect &UnavailableBlocks) {
1278   // Okay, we have *some* definitions of the value.  This means that the value
1279   // is available in some of our (transitive) predecessors.  Lets think about
1280   // doing PRE of this load.  This will involve inserting a new load into the
1281   // predecessor when it's not available.  We could do this in general, but
1282   // prefer to not increase code size.  As such, we only do this when we know
1283   // that we only have to insert *one* load (which means we're basically moving
1284   // the load, not inserting a new one).
1285 
1286   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1287                                         UnavailableBlocks.end());
1288 
1289   // Let's find the first basic block with more than one predecessor.  Walk
1290   // backwards through predecessors if needed.
1291   BasicBlock *LoadBB = Load->getParent();
1292   BasicBlock *TmpBB = LoadBB;
1293 
1294   // Check that there is no implicit control flow instructions above our load in
1295   // its block. If there is an instruction that doesn't always pass the
1296   // execution to the following instruction, then moving through it may become
1297   // invalid. For example:
1298   //
1299   // int arr[LEN];
1300   // int index = ???;
1301   // ...
1302   // guard(0 <= index && index < LEN);
1303   // use(arr[index]);
1304   //
1305   // It is illegal to move the array access to any point above the guard,
1306   // because if the index is out of bounds we should deoptimize rather than
1307   // access the array.
1308   // Check that there is no guard in this block above our instruction.
1309   bool MustEnsureSafetyOfSpeculativeExecution =
1310       ICF->isDominatedByICFIFromSameBlock(Load);
1311 
1312   while (TmpBB->getSinglePredecessor()) {
1313     TmpBB = TmpBB->getSinglePredecessor();
1314     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1315       return false;
1316     if (Blockers.count(TmpBB))
1317       return false;
1318 
1319     // If any of these blocks has more than one successor (i.e. if the edge we
1320     // just traversed was critical), then there are other paths through this
1321     // block along which the load may not be anticipated.  Hoisting the load
1322     // above this block would be adding the load to execution paths along
1323     // which it was not previously executed.
1324     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1325       return false;
1326 
1327     // Check that there is no implicit control flow in a block above.
1328     MustEnsureSafetyOfSpeculativeExecution =
1329         MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
1330   }
1331 
1332   assert(TmpBB);
1333   LoadBB = TmpBB;
1334 
1335   // Check to see how many predecessors have the loaded value fully
1336   // available.
1337   MapVector<BasicBlock *, Value *> PredLoads;
1338   DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
1339   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1340     FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1341   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1342     FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1343 
1344   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1345   for (BasicBlock *Pred : predecessors(LoadBB)) {
1346     // If any predecessor block is an EH pad that does not allow non-PHI
1347     // instructions before the terminator, we can't PRE the load.
1348     if (Pred->getTerminator()->isEHPad()) {
1349       LLVM_DEBUG(
1350           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1351                  << Pred->getName() << "': " << *Load << '\n');
1352       return false;
1353     }
1354 
1355     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1356       continue;
1357     }
1358 
1359     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1360       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1361         LLVM_DEBUG(
1362             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1363                    << Pred->getName() << "': " << *Load << '\n');
1364         return false;
1365       }
1366 
1367       // FIXME: Can we support the fallthrough edge?
1368       if (isa<CallBrInst>(Pred->getTerminator())) {
1369         LLVM_DEBUG(
1370             dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1371                    << Pred->getName() << "': " << *Load << '\n');
1372         return false;
1373       }
1374 
1375       if (LoadBB->isEHPad()) {
1376         LLVM_DEBUG(
1377             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1378                    << Pred->getName() << "': " << *Load << '\n');
1379         return false;
1380       }
1381 
1382       // Do not split backedge as it will break the canonical loop form.
1383       if (!isLoadPRESplitBackedgeEnabled())
1384         if (DT->dominates(LoadBB, Pred)) {
1385           LLVM_DEBUG(
1386               dbgs()
1387               << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1388               << Pred->getName() << "': " << *Load << '\n');
1389           return false;
1390         }
1391 
1392       CriticalEdgePred.push_back(Pred);
1393     } else {
1394       // Only add the predecessors that will not be split for now.
1395       PredLoads[Pred] = nullptr;
1396     }
1397   }
1398 
1399   // Decide whether PRE is profitable for this load.
1400   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1401   assert(NumUnavailablePreds != 0 &&
1402          "Fully available value should already be eliminated!");
1403 
1404   // If this load is unavailable in multiple predecessors, reject it.
1405   // FIXME: If we could restructure the CFG, we could make a common pred with
1406   // all the preds that don't have an available Load and insert a new load into
1407   // that one block.
1408   if (NumUnavailablePreds != 1)
1409       return false;
1410 
1411   // Now we know where we will insert load. We must ensure that it is safe
1412   // to speculatively execute the load at that points.
1413   if (MustEnsureSafetyOfSpeculativeExecution) {
1414     if (CriticalEdgePred.size())
1415       if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT))
1416         return false;
1417     for (auto &PL : PredLoads)
1418       if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT))
1419         return false;
1420   }
1421 
1422   // Split critical edges, and update the unavailable predecessors accordingly.
1423   for (BasicBlock *OrigPred : CriticalEdgePred) {
1424     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1425     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1426     PredLoads[NewPred] = nullptr;
1427     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1428                       << LoadBB->getName() << '\n');
1429   }
1430 
1431   // Check if the load can safely be moved to all the unavailable predecessors.
1432   bool CanDoPRE = true;
1433   const DataLayout &DL = Load->getModule()->getDataLayout();
1434   SmallVector<Instruction*, 8> NewInsts;
1435   for (auto &PredLoad : PredLoads) {
1436     BasicBlock *UnavailablePred = PredLoad.first;
1437 
1438     // Do PHI translation to get its value in the predecessor if necessary.  The
1439     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1440     // We do the translation for each edge we skipped by going from Load's block
1441     // to LoadBB, otherwise we might miss pieces needing translation.
1442 
1443     // If all preds have a single successor, then we know it is safe to insert
1444     // the load on the pred (?!?), so we can insert code to materialize the
1445     // pointer if it is not available.
1446     Value *LoadPtr = Load->getPointerOperand();
1447     BasicBlock *Cur = Load->getParent();
1448     while (Cur != LoadBB) {
1449       PHITransAddr Address(LoadPtr, DL, AC);
1450       LoadPtr = Address.PHITranslateWithInsertion(
1451           Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1452       if (!LoadPtr) {
1453         CanDoPRE = false;
1454         break;
1455       }
1456       Cur = Cur->getSinglePredecessor();
1457     }
1458 
1459     if (LoadPtr) {
1460       PHITransAddr Address(LoadPtr, DL, AC);
1461       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1462                                                   NewInsts);
1463     }
1464     // If we couldn't find or insert a computation of this phi translated value,
1465     // we fail PRE.
1466     if (!LoadPtr) {
1467       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1468                         << *Load->getPointerOperand() << "\n");
1469       CanDoPRE = false;
1470       break;
1471     }
1472 
1473     PredLoad.second = LoadPtr;
1474   }
1475 
1476   if (!CanDoPRE) {
1477     while (!NewInsts.empty()) {
1478       // Erase instructions generated by the failed PHI translation before
1479       // trying to number them. PHI translation might insert instructions
1480       // in basic blocks other than the current one, and we delete them
1481       // directly, as markInstructionForDeletion only allows removing from the
1482       // current basic block.
1483       NewInsts.pop_back_val()->eraseFromParent();
1484     }
1485     // HINT: Don't revert the edge-splitting as following transformation may
1486     // also need to split these critical edges.
1487     return !CriticalEdgePred.empty();
1488   }
1489 
1490   // Okay, we can eliminate this load by inserting a reload in the predecessor
1491   // and using PHI construction to get the value in the other predecessors, do
1492   // it.
1493   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
1494   LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
1495                                            << " INSTS: " << *NewInsts.back()
1496                                            << '\n');
1497 
1498   // Assign value numbers to the new instructions.
1499   for (Instruction *I : NewInsts) {
1500     // Instructions that have been inserted in predecessor(s) to materialize
1501     // the load address do not retain their original debug locations. Doing
1502     // so could lead to confusing (but correct) source attributions.
1503     I->updateLocationAfterHoist();
1504 
1505     // FIXME: We really _ought_ to insert these value numbers into their
1506     // parent's availability map.  However, in doing so, we risk getting into
1507     // ordering issues.  If a block hasn't been processed yet, we would be
1508     // marking a value as AVAIL-IN, which isn't what we intend.
1509     VN.lookupOrAdd(I);
1510   }
1511 
1512   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads);
1513   ++NumPRELoad;
1514   return true;
1515 }
1516 
performLoopLoadPRE(LoadInst * Load,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1517 bool GVN::performLoopLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1518                              UnavailBlkVect &UnavailableBlocks) {
1519   if (!LI)
1520     return false;
1521 
1522   const Loop *L = LI->getLoopFor(Load->getParent());
1523   // TODO: Generalize to other loop blocks that dominate the latch.
1524   if (!L || L->getHeader() != Load->getParent())
1525     return false;
1526 
1527   BasicBlock *Preheader = L->getLoopPreheader();
1528   BasicBlock *Latch = L->getLoopLatch();
1529   if (!Preheader || !Latch)
1530     return false;
1531 
1532   Value *LoadPtr = Load->getPointerOperand();
1533   // Must be available in preheader.
1534   if (!L->isLoopInvariant(LoadPtr))
1535     return false;
1536 
1537   // We plan to hoist the load to preheader without introducing a new fault.
1538   // In order to do it, we need to prove that we cannot side-exit the loop
1539   // once loop header is first entered before execution of the load.
1540   if (ICF->isDominatedByICFIFromSameBlock(Load))
1541     return false;
1542 
1543   BasicBlock *LoopBlock = nullptr;
1544   for (auto *Blocker : UnavailableBlocks) {
1545     // Blockers from outside the loop are handled in preheader.
1546     if (!L->contains(Blocker))
1547       continue;
1548 
1549     // Only allow one loop block. Loop header is not less frequently executed
1550     // than each loop block, and likely it is much more frequently executed. But
1551     // in case of multiple loop blocks, we need extra information (such as block
1552     // frequency info) to understand whether it is profitable to PRE into
1553     // multiple loop blocks.
1554     if (LoopBlock)
1555       return false;
1556 
1557     // Do not sink into inner loops. This may be non-profitable.
1558     if (L != LI->getLoopFor(Blocker))
1559       return false;
1560 
1561     // Blocks that dominate the latch execute on every single iteration, maybe
1562     // except the last one. So PREing into these blocks doesn't make much sense
1563     // in most cases. But the blocks that do not necessarily execute on each
1564     // iteration are sometimes much colder than the header, and this is when
1565     // PRE is potentially profitable.
1566     if (DT->dominates(Blocker, Latch))
1567       return false;
1568 
1569     // Make sure that the terminator itself doesn't clobber.
1570     if (Blocker->getTerminator()->mayWriteToMemory())
1571       return false;
1572 
1573     LoopBlock = Blocker;
1574   }
1575 
1576   if (!LoopBlock)
1577     return false;
1578 
1579   // Make sure the memory at this pointer cannot be freed, therefore we can
1580   // safely reload from it after clobber.
1581   if (LoadPtr->canBeFreed())
1582     return false;
1583 
1584   // TODO: Support critical edge splitting if blocker has more than 1 successor.
1585   MapVector<BasicBlock *, Value *> AvailableLoads;
1586   AvailableLoads[LoopBlock] = LoadPtr;
1587   AvailableLoads[Preheader] = LoadPtr;
1588 
1589   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
1590   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads);
1591   ++NumPRELoopLoad;
1592   return true;
1593 }
1594 
reportLoadElim(LoadInst * Load,Value * AvailableValue,OptimizationRemarkEmitter * ORE)1595 static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
1596                            OptimizationRemarkEmitter *ORE) {
1597   using namespace ore;
1598 
1599   ORE->emit([&]() {
1600     return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
1601            << "load of type " << NV("Type", Load->getType()) << " eliminated"
1602            << setExtraArgs() << " in favor of "
1603            << NV("InfavorOfValue", AvailableValue);
1604   });
1605 }
1606 
1607 /// Attempt to eliminate a load whose dependencies are
1608 /// non-local by performing PHI construction.
processNonLocalLoad(LoadInst * Load)1609 bool GVN::processNonLocalLoad(LoadInst *Load) {
1610   // non-local speculations are not allowed under asan.
1611   if (Load->getParent()->getParent()->hasFnAttribute(
1612           Attribute::SanitizeAddress) ||
1613       Load->getParent()->getParent()->hasFnAttribute(
1614           Attribute::SanitizeHWAddress))
1615     return false;
1616 
1617   // Step 1: Find the non-local dependencies of the load.
1618   LoadDepVect Deps;
1619   MD->getNonLocalPointerDependency(Load, Deps);
1620 
1621   // If we had to process more than one hundred blocks to find the
1622   // dependencies, this load isn't worth worrying about.  Optimizing
1623   // it will be too expensive.
1624   unsigned NumDeps = Deps.size();
1625   if (NumDeps > MaxNumDeps)
1626     return false;
1627 
1628   // If we had a phi translation failure, we'll have a single entry which is a
1629   // clobber in the current block.  Reject this early.
1630   if (NumDeps == 1 &&
1631       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1632     LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
1633                dbgs() << " has unknown dependencies\n";);
1634     return false;
1635   }
1636 
1637   bool Changed = false;
1638   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1639   if (GetElementPtrInst *GEP =
1640           dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
1641     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1642                                         OE = GEP->idx_end();
1643          OI != OE; ++OI)
1644       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1645         Changed |= performScalarPRE(I);
1646   }
1647 
1648   // Step 2: Analyze the availability of the load
1649   AvailValInBlkVect ValuesPerBlock;
1650   UnavailBlkVect UnavailableBlocks;
1651   AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1652 
1653   // If we have no predecessors that produce a known value for this load, exit
1654   // early.
1655   if (ValuesPerBlock.empty())
1656     return Changed;
1657 
1658   // Step 3: Eliminate fully redundancy.
1659   //
1660   // If all of the instructions we depend on produce a known value for this
1661   // load, then it is fully redundant and we can use PHI insertion to compute
1662   // its value.  Insert PHIs and remove the fully redundant value now.
1663   if (UnavailableBlocks.empty()) {
1664     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
1665 
1666     // Perform PHI construction.
1667     Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1668     Load->replaceAllUsesWith(V);
1669 
1670     if (isa<PHINode>(V))
1671       V->takeName(Load);
1672     if (Instruction *I = dyn_cast<Instruction>(V))
1673       // If instruction I has debug info, then we should not update it.
1674       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1675       // to propagate Load's DebugLoc because Load may not post-dominate I.
1676       if (Load->getDebugLoc() && Load->getParent() == I->getParent())
1677         I->setDebugLoc(Load->getDebugLoc());
1678     if (V->getType()->isPtrOrPtrVectorTy())
1679       MD->invalidateCachedPointerInfo(V);
1680     markInstructionForDeletion(Load);
1681     ++NumGVNLoad;
1682     reportLoadElim(Load, V, ORE);
1683     return true;
1684   }
1685 
1686   // Step 4: Eliminate partial redundancy.
1687   if (!isPREEnabled() || !isLoadPREEnabled())
1688     return Changed;
1689   if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent()))
1690     return Changed;
1691 
1692   if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1693       PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
1694     return true;
1695 
1696   return Changed;
1697 }
1698 
impliesEquivalanceIfTrue(CmpInst * Cmp)1699 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1700   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1701     return true;
1702 
1703   // Floating point comparisons can be equal, but not equivalent.  Cases:
1704   // NaNs for unordered operators
1705   // +0.0 vs 0.0 for all operators
1706   if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1707       (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1708        Cmp->getFastMathFlags().noNaNs())) {
1709       Value *LHS = Cmp->getOperand(0);
1710       Value *RHS = Cmp->getOperand(1);
1711       // If we can prove either side non-zero, then equality must imply
1712       // equivalence.
1713       // FIXME: We should do this optimization if 'no signed zeros' is
1714       // applicable via an instruction-level fast-math-flag or some other
1715       // indicator that relaxed FP semantics are being used.
1716       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1717         return true;
1718       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1719         return true;;
1720       // TODO: Handle vector floating point constants
1721   }
1722   return false;
1723 }
1724 
impliesEquivalanceIfFalse(CmpInst * Cmp)1725 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1726   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1727     return true;
1728 
1729   // Floating point comparisons can be equal, but not equivelent.  Cases:
1730   // NaNs for unordered operators
1731   // +0.0 vs 0.0 for all operators
1732   if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1733        Cmp->getFastMathFlags().noNaNs()) ||
1734       Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1735       Value *LHS = Cmp->getOperand(0);
1736       Value *RHS = Cmp->getOperand(1);
1737       // If we can prove either side non-zero, then equality must imply
1738       // equivalence.
1739       // FIXME: We should do this optimization if 'no signed zeros' is
1740       // applicable via an instruction-level fast-math-flag or some other
1741       // indicator that relaxed FP semantics are being used.
1742       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1743         return true;
1744       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1745         return true;;
1746       // TODO: Handle vector floating point constants
1747   }
1748   return false;
1749 }
1750 
1751 
hasUsersIn(Value * V,BasicBlock * BB)1752 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1753   for (User *U : V->users())
1754     if (isa<Instruction>(U) &&
1755         cast<Instruction>(U)->getParent() == BB)
1756       return true;
1757   return false;
1758 }
1759 
processAssumeIntrinsic(AssumeInst * IntrinsicI)1760 bool GVN::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
1761   Value *V = IntrinsicI->getArgOperand(0);
1762 
1763   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1764     if (Cond->isZero()) {
1765       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1766       // Insert a new store to null instruction before the load to indicate that
1767       // this code is not reachable.  FIXME: We could insert unreachable
1768       // instruction directly because we can modify the CFG.
1769       auto *NewS = new StoreInst(UndefValue::get(Int8Ty),
1770                                  Constant::getNullValue(Int8Ty->getPointerTo()),
1771                                  IntrinsicI);
1772       if (MSSAU) {
1773         const MemoryUseOrDef *FirstNonDom = nullptr;
1774         const auto *AL =
1775             MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
1776 
1777         // If there are accesses in the current basic block, find the first one
1778         // that does not come before NewS. The new memory access is inserted
1779         // after the found access or before the terminator if no such access is
1780         // found.
1781         if (AL) {
1782           for (auto &Acc : *AL) {
1783             if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
1784               if (!Current->getMemoryInst()->comesBefore(NewS)) {
1785                 FirstNonDom = Current;
1786                 break;
1787               }
1788           }
1789         }
1790 
1791         // This added store is to null, so it will never executed and we can
1792         // just use the LiveOnEntry def as defining access.
1793         auto *NewDef =
1794             FirstNonDom ? MSSAU->createMemoryAccessBefore(
1795                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1796                               const_cast<MemoryUseOrDef *>(FirstNonDom))
1797                         : MSSAU->createMemoryAccessInBB(
1798                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1799                               NewS->getParent(), MemorySSA::BeforeTerminator);
1800 
1801         MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
1802       }
1803     }
1804     if (isAssumeWithEmptyBundle(*IntrinsicI))
1805       markInstructionForDeletion(IntrinsicI);
1806     return false;
1807   } else if (isa<Constant>(V)) {
1808     // If it's not false, and constant, it must evaluate to true. This means our
1809     // assume is assume(true), and thus, pointless, and we don't want to do
1810     // anything more here.
1811     return false;
1812   }
1813 
1814   Constant *True = ConstantInt::getTrue(V->getContext());
1815   bool Changed = false;
1816 
1817   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1818     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1819 
1820     // This property is only true in dominated successors, propagateEquality
1821     // will check dominance for us.
1822     Changed |= propagateEquality(V, True, Edge, false);
1823   }
1824 
1825   // We can replace assume value with true, which covers cases like this:
1826   // call void @llvm.assume(i1 %cmp)
1827   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1828   ReplaceOperandsWithMap[V] = True;
1829 
1830   // Similarly, after assume(!NotV) we know that NotV == false.
1831   Value *NotV;
1832   if (match(V, m_Not(m_Value(NotV))))
1833     ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
1834 
1835   // If we find an equality fact, canonicalize all dominated uses in this block
1836   // to one of the two values.  We heuristically choice the "oldest" of the
1837   // two where age is determined by value number. (Note that propagateEquality
1838   // above handles the cross block case.)
1839   //
1840   // Key case to cover are:
1841   // 1)
1842   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1843   // call void @llvm.assume(i1 %cmp)
1844   // ret float %0 ; will change it to ret float 3.000000e+00
1845   // 2)
1846   // %load = load float, float* %addr
1847   // %cmp = fcmp oeq float %load, %0
1848   // call void @llvm.assume(i1 %cmp)
1849   // ret float %load ; will change it to ret float %0
1850   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1851     if (impliesEquivalanceIfTrue(CmpI)) {
1852       Value *CmpLHS = CmpI->getOperand(0);
1853       Value *CmpRHS = CmpI->getOperand(1);
1854       // Heuristically pick the better replacement -- the choice of heuristic
1855       // isn't terribly important here, but the fact we canonicalize on some
1856       // replacement is for exposing other simplifications.
1857       // TODO: pull this out as a helper function and reuse w/existing
1858       // (slightly different) logic.
1859       if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1860         std::swap(CmpLHS, CmpRHS);
1861       if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1862         std::swap(CmpLHS, CmpRHS);
1863       if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1864           (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1865         // Move the 'oldest' value to the right-hand side, using the value
1866         // number as a proxy for age.
1867         uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1868         uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1869         if (LVN < RVN)
1870           std::swap(CmpLHS, CmpRHS);
1871       }
1872 
1873       // Handle degenerate case where we either haven't pruned a dead path or a
1874       // removed a trivial assume yet.
1875       if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1876         return Changed;
1877 
1878       LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
1879                  << *CmpLHS << " with "
1880                  << *CmpRHS << " in block "
1881                  << IntrinsicI->getParent()->getName() << "\n");
1882 
1883 
1884       // Setup the replacement map - this handles uses within the same block
1885       if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
1886         ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
1887 
1888       // NOTE: The non-block local cases are handled by the call to
1889       // propagateEquality above; this block is just about handling the block
1890       // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
1891       // isn't duplicated for the block local case, can we share it somehow?
1892     }
1893   }
1894   return Changed;
1895 }
1896 
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)1897 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1898   patchReplacementInstruction(I, Repl);
1899   I->replaceAllUsesWith(Repl);
1900 }
1901 
1902 /// Attempt to eliminate a load, first by eliminating it
1903 /// locally, and then attempting non-local elimination if that fails.
processLoad(LoadInst * L)1904 bool GVN::processLoad(LoadInst *L) {
1905   if (!MD)
1906     return false;
1907 
1908   // This code hasn't been audited for ordered or volatile memory access
1909   if (!L->isUnordered())
1910     return false;
1911 
1912   if (L->use_empty()) {
1913     markInstructionForDeletion(L);
1914     return true;
1915   }
1916 
1917   // ... to a pointer that has been loaded from before...
1918   MemDepResult Dep = MD->getDependency(L);
1919 
1920   // If it is defined in another block, try harder.
1921   if (Dep.isNonLocal())
1922     return processNonLocalLoad(L);
1923 
1924   // Only handle the local case below
1925   if (!Dep.isDef() && !Dep.isClobber()) {
1926     // This might be a NonFuncLocal or an Unknown
1927     LLVM_DEBUG(
1928         // fast print dep, using operator<< on instruction is too slow.
1929         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1930         dbgs() << " has unknown dependence\n";);
1931     return false;
1932   }
1933 
1934   AvailableValue AV;
1935   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1936     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1937 
1938     // Replace the load!
1939     patchAndReplaceAllUsesWith(L, AvailableValue);
1940     markInstructionForDeletion(L);
1941     if (MSSAU)
1942       MSSAU->removeMemoryAccess(L);
1943     ++NumGVNLoad;
1944     reportLoadElim(L, AvailableValue, ORE);
1945     // Tell MDA to reexamine the reused pointer since we might have more
1946     // information after forwarding it.
1947     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1948       MD->invalidateCachedPointerInfo(AvailableValue);
1949     return true;
1950   }
1951 
1952   return false;
1953 }
1954 
1955 /// Return a pair the first field showing the value number of \p Exp and the
1956 /// second field showing whether it is a value number newly created.
1957 std::pair<uint32_t, bool>
assignExpNewValueNum(Expression & Exp)1958 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1959   uint32_t &e = expressionNumbering[Exp];
1960   bool CreateNewValNum = !e;
1961   if (CreateNewValNum) {
1962     Expressions.push_back(Exp);
1963     if (ExprIdx.size() < nextValueNumber + 1)
1964       ExprIdx.resize(nextValueNumber * 2);
1965     e = nextValueNumber;
1966     ExprIdx[nextValueNumber++] = nextExprNumber++;
1967   }
1968   return {e, CreateNewValNum};
1969 }
1970 
1971 /// Return whether all the values related with the same \p num are
1972 /// defined in \p BB.
areAllValsInBB(uint32_t Num,const BasicBlock * BB,GVN & Gvn)1973 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1974                                      GVN &Gvn) {
1975   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1976   while (Vals && Vals->BB == BB)
1977     Vals = Vals->Next;
1978   return !Vals;
1979 }
1980 
1981 /// Wrap phiTranslateImpl to provide caching functionality.
phiTranslate(const BasicBlock * Pred,const BasicBlock * PhiBlock,uint32_t Num,GVN & Gvn)1982 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1983                                        const BasicBlock *PhiBlock, uint32_t Num,
1984                                        GVN &Gvn) {
1985   auto FindRes = PhiTranslateTable.find({Num, Pred});
1986   if (FindRes != PhiTranslateTable.end())
1987     return FindRes->second;
1988   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1989   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1990   return NewNum;
1991 }
1992 
1993 // Return true if the value number \p Num and NewNum have equal value.
1994 // Return false if the result is unknown.
areCallValsEqual(uint32_t Num,uint32_t NewNum,const BasicBlock * Pred,const BasicBlock * PhiBlock,GVN & Gvn)1995 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1996                                        const BasicBlock *Pred,
1997                                        const BasicBlock *PhiBlock, GVN &Gvn) {
1998   CallInst *Call = nullptr;
1999   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2000   while (Vals) {
2001     Call = dyn_cast<CallInst>(Vals->Val);
2002     if (Call && Call->getParent() == PhiBlock)
2003       break;
2004     Vals = Vals->Next;
2005   }
2006 
2007   if (AA->doesNotAccessMemory(Call))
2008     return true;
2009 
2010   if (!MD || !AA->onlyReadsMemory(Call))
2011     return false;
2012 
2013   MemDepResult local_dep = MD->getDependency(Call);
2014   if (!local_dep.isNonLocal())
2015     return false;
2016 
2017   const MemoryDependenceResults::NonLocalDepInfo &deps =
2018       MD->getNonLocalCallDependency(Call);
2019 
2020   // Check to see if the Call has no function local clobber.
2021   for (const NonLocalDepEntry &D : deps) {
2022     if (D.getResult().isNonFuncLocal())
2023       return true;
2024   }
2025   return false;
2026 }
2027 
2028 /// Translate value number \p Num using phis, so that it has the values of
2029 /// the phis in BB.
phiTranslateImpl(const BasicBlock * Pred,const BasicBlock * PhiBlock,uint32_t Num,GVN & Gvn)2030 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
2031                                            const BasicBlock *PhiBlock,
2032                                            uint32_t Num, GVN &Gvn) {
2033   if (PHINode *PN = NumberingPhi[Num]) {
2034     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2035       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2036         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
2037           return TransVal;
2038     }
2039     return Num;
2040   }
2041 
2042   // If there is any value related with Num is defined in a BB other than
2043   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
2044   // a backedge. We can do an early exit in that case to save compile time.
2045   if (!areAllValsInBB(Num, PhiBlock, Gvn))
2046     return Num;
2047 
2048   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2049     return Num;
2050   Expression Exp = Expressions[ExprIdx[Num]];
2051 
2052   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
2053     // For InsertValue and ExtractValue, some varargs are index numbers
2054     // instead of value numbers. Those index numbers should not be
2055     // translated.
2056     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
2057         (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
2058         (i > 1 && Exp.opcode == Instruction::ShuffleVector))
2059       continue;
2060     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
2061   }
2062 
2063   if (Exp.commutative) {
2064     assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
2065     if (Exp.varargs[0] > Exp.varargs[1]) {
2066       std::swap(Exp.varargs[0], Exp.varargs[1]);
2067       uint32_t Opcode = Exp.opcode >> 8;
2068       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2069         Exp.opcode = (Opcode << 8) |
2070                      CmpInst::getSwappedPredicate(
2071                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
2072     }
2073   }
2074 
2075   if (uint32_t NewNum = expressionNumbering[Exp]) {
2076     if (Exp.opcode == Instruction::Call && NewNum != Num)
2077       return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2078     return NewNum;
2079   }
2080   return Num;
2081 }
2082 
2083 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
2084 /// again.
eraseTranslateCacheEntry(uint32_t Num,const BasicBlock & CurrBlock)2085 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
2086                                                const BasicBlock &CurrBlock) {
2087   for (const BasicBlock *Pred : predecessors(&CurrBlock))
2088     PhiTranslateTable.erase({Num, Pred});
2089 }
2090 
2091 // In order to find a leader for a given value number at a
2092 // specific basic block, we first obtain the list of all Values for that number,
2093 // and then scan the list to find one whose block dominates the block in
2094 // question.  This is fast because dominator tree queries consist of only
2095 // a few comparisons of DFS numbers.
findLeader(const BasicBlock * BB,uint32_t num)2096 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2097   LeaderTableEntry Vals = LeaderTable[num];
2098   if (!Vals.Val) return nullptr;
2099 
2100   Value *Val = nullptr;
2101   if (DT->dominates(Vals.BB, BB)) {
2102     Val = Vals.Val;
2103     if (isa<Constant>(Val)) return Val;
2104   }
2105 
2106   LeaderTableEntry* Next = Vals.Next;
2107   while (Next) {
2108     if (DT->dominates(Next->BB, BB)) {
2109       if (isa<Constant>(Next->Val)) return Next->Val;
2110       if (!Val) Val = Next->Val;
2111     }
2112 
2113     Next = Next->Next;
2114   }
2115 
2116   return Val;
2117 }
2118 
2119 /// There is an edge from 'Src' to 'Dst'.  Return
2120 /// true if every path from the entry block to 'Dst' passes via this edge.  In
2121 /// particular 'Dst' must not be reachable via another edge from 'Src'.
isOnlyReachableViaThisEdge(const BasicBlockEdge & E,DominatorTree * DT)2122 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2123                                        DominatorTree *DT) {
2124   // While in theory it is interesting to consider the case in which Dst has
2125   // more than one predecessor, because Dst might be part of a loop which is
2126   // only reachable from Src, in practice it is pointless since at the time
2127   // GVN runs all such loops have preheaders, which means that Dst will have
2128   // been changed to have only one predecessor, namely Src.
2129   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2130   assert((!Pred || Pred == E.getStart()) &&
2131          "No edge between these basic blocks!");
2132   return Pred != nullptr;
2133 }
2134 
assignBlockRPONumber(Function & F)2135 void GVN::assignBlockRPONumber(Function &F) {
2136   BlockRPONumber.clear();
2137   uint32_t NextBlockNumber = 1;
2138   ReversePostOrderTraversal<Function *> RPOT(&F);
2139   for (BasicBlock *BB : RPOT)
2140     BlockRPONumber[BB] = NextBlockNumber++;
2141   InvalidBlockRPONumbers = false;
2142 }
2143 
replaceOperandsForInBlockEquality(Instruction * Instr) const2144 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
2145   bool Changed = false;
2146   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2147     Value *Operand = Instr->getOperand(OpNum);
2148     auto it = ReplaceOperandsWithMap.find(Operand);
2149     if (it != ReplaceOperandsWithMap.end()) {
2150       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
2151                         << *it->second << " in instruction " << *Instr << '\n');
2152       Instr->setOperand(OpNum, it->second);
2153       Changed = true;
2154     }
2155   }
2156   return Changed;
2157 }
2158 
2159 /// The given values are known to be equal in every block
2160 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2161 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
2162 /// If DominatesByEdge is false, then it means that we will propagate the RHS
2163 /// value starting from the end of Root.Start.
propagateEquality(Value * LHS,Value * RHS,const BasicBlockEdge & Root,bool DominatesByEdge)2164 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
2165                             bool DominatesByEdge) {
2166   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2167   Worklist.push_back(std::make_pair(LHS, RHS));
2168   bool Changed = false;
2169   // For speed, compute a conservative fast approximation to
2170   // DT->dominates(Root, Root.getEnd());
2171   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2172 
2173   while (!Worklist.empty()) {
2174     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2175     LHS = Item.first; RHS = Item.second;
2176 
2177     if (LHS == RHS)
2178       continue;
2179     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2180 
2181     // Don't try to propagate equalities between constants.
2182     if (isa<Constant>(LHS) && isa<Constant>(RHS))
2183       continue;
2184 
2185     // Prefer a constant on the right-hand side, or an Argument if no constants.
2186     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2187       std::swap(LHS, RHS);
2188     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2189 
2190     // If there is no obvious reason to prefer the left-hand side over the
2191     // right-hand side, ensure the longest lived term is on the right-hand side,
2192     // so the shortest lived term will be replaced by the longest lived.
2193     // This tends to expose more simplifications.
2194     uint32_t LVN = VN.lookupOrAdd(LHS);
2195     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2196         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2197       // Move the 'oldest' value to the right-hand side, using the value number
2198       // as a proxy for age.
2199       uint32_t RVN = VN.lookupOrAdd(RHS);
2200       if (LVN < RVN) {
2201         std::swap(LHS, RHS);
2202         LVN = RVN;
2203       }
2204     }
2205 
2206     // If value numbering later sees that an instruction in the scope is equal
2207     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2208     // the invariant that instructions only occur in the leader table for their
2209     // own value number (this is used by removeFromLeaderTable), do not do this
2210     // if RHS is an instruction (if an instruction in the scope is morphed into
2211     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2212     // using the leader table is about compiling faster, not optimizing better).
2213     // The leader table only tracks basic blocks, not edges. Only add to if we
2214     // have the simple case where the edge dominates the end.
2215     if (RootDominatesEnd && !isa<Instruction>(RHS))
2216       addToLeaderTable(LVN, RHS, Root.getEnd());
2217 
2218     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2219     // LHS always has at least one use that is not dominated by Root, this will
2220     // never do anything if LHS has only one use.
2221     if (!LHS->hasOneUse()) {
2222       unsigned NumReplacements =
2223           DominatesByEdge
2224               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2225               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
2226 
2227       Changed |= NumReplacements > 0;
2228       NumGVNEqProp += NumReplacements;
2229       // Cached information for anything that uses LHS will be invalid.
2230       if (MD)
2231         MD->invalidateCachedPointerInfo(LHS);
2232     }
2233 
2234     // Now try to deduce additional equalities from this one. For example, if
2235     // the known equality was "(A != B)" == "false" then it follows that A and B
2236     // are equal in the scope. Only boolean equalities with an explicit true or
2237     // false RHS are currently supported.
2238     if (!RHS->getType()->isIntegerTy(1))
2239       // Not a boolean equality - bail out.
2240       continue;
2241     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2242     if (!CI)
2243       // RHS neither 'true' nor 'false' - bail out.
2244       continue;
2245     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2246     bool isKnownTrue = CI->isMinusOne();
2247     bool isKnownFalse = !isKnownTrue;
2248 
2249     // If "A && B" is known true then both A and B are known true.  If "A || B"
2250     // is known false then both A and B are known false.
2251     Value *A, *B;
2252     if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
2253         (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
2254       Worklist.push_back(std::make_pair(A, RHS));
2255       Worklist.push_back(std::make_pair(B, RHS));
2256       continue;
2257     }
2258 
2259     // If we are propagating an equality like "(A == B)" == "true" then also
2260     // propagate the equality A == B.  When propagating a comparison such as
2261     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2262     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2263       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2264 
2265       // If "A == B" is known true, or "A != B" is known false, then replace
2266       // A with B everywhere in the scope.  For floating point operations, we
2267       // have to be careful since equality does not always imply equivalance.
2268       if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
2269           (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
2270         Worklist.push_back(std::make_pair(Op0, Op1));
2271 
2272       // If "A >= B" is known true, replace "A < B" with false everywhere.
2273       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2274       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2275       // Since we don't have the instruction "A < B" immediately to hand, work
2276       // out the value number that it would have and use that to find an
2277       // appropriate instruction (if any).
2278       uint32_t NextNum = VN.getNextUnusedValueNumber();
2279       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2280       // If the number we were assigned was brand new then there is no point in
2281       // looking for an instruction realizing it: there cannot be one!
2282       if (Num < NextNum) {
2283         Value *NotCmp = findLeader(Root.getEnd(), Num);
2284         if (NotCmp && isa<Instruction>(NotCmp)) {
2285           unsigned NumReplacements =
2286               DominatesByEdge
2287                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2288                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2289                                              Root.getStart());
2290           Changed |= NumReplacements > 0;
2291           NumGVNEqProp += NumReplacements;
2292           // Cached information for anything that uses NotCmp will be invalid.
2293           if (MD)
2294             MD->invalidateCachedPointerInfo(NotCmp);
2295         }
2296       }
2297       // Ensure that any instruction in scope that gets the "A < B" value number
2298       // is replaced with false.
2299       // The leader table only tracks basic blocks, not edges. Only add to if we
2300       // have the simple case where the edge dominates the end.
2301       if (RootDominatesEnd)
2302         addToLeaderTable(Num, NotVal, Root.getEnd());
2303 
2304       continue;
2305     }
2306   }
2307 
2308   return Changed;
2309 }
2310 
2311 /// When calculating availability, handle an instruction
2312 /// by inserting it into the appropriate sets
processInstruction(Instruction * I)2313 bool GVN::processInstruction(Instruction *I) {
2314   // Ignore dbg info intrinsics.
2315   if (isa<DbgInfoIntrinsic>(I))
2316     return false;
2317 
2318   // If the instruction can be easily simplified then do so now in preference
2319   // to value numbering it.  Value numbering often exposes redundancies, for
2320   // example if it determines that %y is equal to %x then the instruction
2321   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2322   const DataLayout &DL = I->getModule()->getDataLayout();
2323   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
2324     bool Changed = false;
2325     if (!I->use_empty()) {
2326       // Simplification can cause a special instruction to become not special.
2327       // For example, devirtualization to a willreturn function.
2328       ICF->removeUsersOf(I);
2329       I->replaceAllUsesWith(V);
2330       Changed = true;
2331     }
2332     if (isInstructionTriviallyDead(I, TLI)) {
2333       markInstructionForDeletion(I);
2334       Changed = true;
2335     }
2336     if (Changed) {
2337       if (MD && V->getType()->isPtrOrPtrVectorTy())
2338         MD->invalidateCachedPointerInfo(V);
2339       ++NumGVNSimpl;
2340       return true;
2341     }
2342   }
2343 
2344   if (auto *Assume = dyn_cast<AssumeInst>(I))
2345     return processAssumeIntrinsic(Assume);
2346 
2347   if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
2348     if (processLoad(Load))
2349       return true;
2350 
2351     unsigned Num = VN.lookupOrAdd(Load);
2352     addToLeaderTable(Num, Load, Load->getParent());
2353     return false;
2354   }
2355 
2356   // For conditional branches, we can perform simple conditional propagation on
2357   // the condition value itself.
2358   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2359     if (!BI->isConditional())
2360       return false;
2361 
2362     if (isa<Constant>(BI->getCondition()))
2363       return processFoldableCondBr(BI);
2364 
2365     Value *BranchCond = BI->getCondition();
2366     BasicBlock *TrueSucc = BI->getSuccessor(0);
2367     BasicBlock *FalseSucc = BI->getSuccessor(1);
2368     // Avoid multiple edges early.
2369     if (TrueSucc == FalseSucc)
2370       return false;
2371 
2372     BasicBlock *Parent = BI->getParent();
2373     bool Changed = false;
2374 
2375     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2376     BasicBlockEdge TrueE(Parent, TrueSucc);
2377     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2378 
2379     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2380     BasicBlockEdge FalseE(Parent, FalseSucc);
2381     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2382 
2383     return Changed;
2384   }
2385 
2386   // For switches, propagate the case values into the case destinations.
2387   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2388     Value *SwitchCond = SI->getCondition();
2389     BasicBlock *Parent = SI->getParent();
2390     bool Changed = false;
2391 
2392     // Remember how many outgoing edges there are to every successor.
2393     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2394     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2395       ++SwitchEdges[SI->getSuccessor(i)];
2396 
2397     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2398          i != e; ++i) {
2399       BasicBlock *Dst = i->getCaseSuccessor();
2400       // If there is only a single edge, propagate the case value into it.
2401       if (SwitchEdges.lookup(Dst) == 1) {
2402         BasicBlockEdge E(Parent, Dst);
2403         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2404       }
2405     }
2406     return Changed;
2407   }
2408 
2409   // Instructions with void type don't return a value, so there's
2410   // no point in trying to find redundancies in them.
2411   if (I->getType()->isVoidTy())
2412     return false;
2413 
2414   uint32_t NextNum = VN.getNextUnusedValueNumber();
2415   unsigned Num = VN.lookupOrAdd(I);
2416 
2417   // Allocations are always uniquely numbered, so we can save time and memory
2418   // by fast failing them.
2419   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2420     addToLeaderTable(Num, I, I->getParent());
2421     return false;
2422   }
2423 
2424   // If the number we were assigned was a brand new VN, then we don't
2425   // need to do a lookup to see if the number already exists
2426   // somewhere in the domtree: it can't!
2427   if (Num >= NextNum) {
2428     addToLeaderTable(Num, I, I->getParent());
2429     return false;
2430   }
2431 
2432   // Perform fast-path value-number based elimination of values inherited from
2433   // dominators.
2434   Value *Repl = findLeader(I->getParent(), Num);
2435   if (!Repl) {
2436     // Failure, just remember this instance for future use.
2437     addToLeaderTable(Num, I, I->getParent());
2438     return false;
2439   } else if (Repl == I) {
2440     // If I was the result of a shortcut PRE, it might already be in the table
2441     // and the best replacement for itself. Nothing to do.
2442     return false;
2443   }
2444 
2445   // Remove it!
2446   patchAndReplaceAllUsesWith(I, Repl);
2447   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2448     MD->invalidateCachedPointerInfo(Repl);
2449   markInstructionForDeletion(I);
2450   return true;
2451 }
2452 
2453 /// runOnFunction - This is the main transformation entry point for a function.
runImpl(Function & F,AssumptionCache & RunAC,DominatorTree & RunDT,const TargetLibraryInfo & RunTLI,AAResults & RunAA,MemoryDependenceResults * RunMD,LoopInfo * LI,OptimizationRemarkEmitter * RunORE,MemorySSA * MSSA)2454 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2455                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2456                   MemoryDependenceResults *RunMD, LoopInfo *LI,
2457                   OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
2458   AC = &RunAC;
2459   DT = &RunDT;
2460   VN.setDomTree(DT);
2461   TLI = &RunTLI;
2462   VN.setAliasAnalysis(&RunAA);
2463   MD = RunMD;
2464   ImplicitControlFlowTracking ImplicitCFT;
2465   ICF = &ImplicitCFT;
2466   this->LI = LI;
2467   VN.setMemDep(MD);
2468   ORE = RunORE;
2469   InvalidBlockRPONumbers = true;
2470   MemorySSAUpdater Updater(MSSA);
2471   MSSAU = MSSA ? &Updater : nullptr;
2472 
2473   bool Changed = false;
2474   bool ShouldContinue = true;
2475 
2476   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2477   // Merge unconditional branches, allowing PRE to catch more
2478   // optimization opportunities.
2479   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
2480     bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD);
2481     if (removedBlock)
2482       ++NumGVNBlocks;
2483 
2484     Changed |= removedBlock;
2485   }
2486 
2487   unsigned Iteration = 0;
2488   while (ShouldContinue) {
2489     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2490     ShouldContinue = iterateOnFunction(F);
2491     Changed |= ShouldContinue;
2492     ++Iteration;
2493   }
2494 
2495   if (isPREEnabled()) {
2496     // Fabricate val-num for dead-code in order to suppress assertion in
2497     // performPRE().
2498     assignValNumForDeadCode();
2499     bool PREChanged = true;
2500     while (PREChanged) {
2501       PREChanged = performPRE(F);
2502       Changed |= PREChanged;
2503     }
2504   }
2505 
2506   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2507   // computations into blocks where they become fully redundant.  Note that
2508   // we can't do this until PRE's critical edge splitting updates memdep.
2509   // Actually, when this happens, we should just fully integrate PRE into GVN.
2510 
2511   cleanupGlobalSets();
2512   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2513   // iteration.
2514   DeadBlocks.clear();
2515 
2516   if (MSSA && VerifyMemorySSA)
2517     MSSA->verifyMemorySSA();
2518 
2519   return Changed;
2520 }
2521 
processBlock(BasicBlock * BB)2522 bool GVN::processBlock(BasicBlock *BB) {
2523   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2524   // (and incrementing BI before processing an instruction).
2525   assert(InstrsToErase.empty() &&
2526          "We expect InstrsToErase to be empty across iterations");
2527   if (DeadBlocks.count(BB))
2528     return false;
2529 
2530   // Clearing map before every BB because it can be used only for single BB.
2531   ReplaceOperandsWithMap.clear();
2532   bool ChangedFunction = false;
2533 
2534   // Since we may not have visited the input blocks of the phis, we can't
2535   // use our normal hash approach for phis.  Instead, simply look for
2536   // obvious duplicates.  The first pass of GVN will tend to create
2537   // identical phis, and the second or later passes can eliminate them.
2538   ChangedFunction |= EliminateDuplicatePHINodes(BB);
2539 
2540   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2541        BI != BE;) {
2542     if (!ReplaceOperandsWithMap.empty())
2543       ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2544     ChangedFunction |= processInstruction(&*BI);
2545 
2546     if (InstrsToErase.empty()) {
2547       ++BI;
2548       continue;
2549     }
2550 
2551     // If we need some instructions deleted, do it now.
2552     NumGVNInstr += InstrsToErase.size();
2553 
2554     // Avoid iterator invalidation.
2555     bool AtStart = BI == BB->begin();
2556     if (!AtStart)
2557       --BI;
2558 
2559     for (auto *I : InstrsToErase) {
2560       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2561       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2562       salvageKnowledge(I, AC);
2563       salvageDebugInfo(*I);
2564       if (MD) MD->removeInstruction(I);
2565       if (MSSAU)
2566         MSSAU->removeMemoryAccess(I);
2567       LLVM_DEBUG(verifyRemoved(I));
2568       ICF->removeInstruction(I);
2569       I->eraseFromParent();
2570     }
2571     InstrsToErase.clear();
2572 
2573     if (AtStart)
2574       BI = BB->begin();
2575     else
2576       ++BI;
2577   }
2578 
2579   return ChangedFunction;
2580 }
2581 
2582 // Instantiate an expression in a predecessor that lacked it.
performScalarPREInsertion(Instruction * Instr,BasicBlock * Pred,BasicBlock * Curr,unsigned int ValNo)2583 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2584                                     BasicBlock *Curr, unsigned int ValNo) {
2585   // Because we are going top-down through the block, all value numbers
2586   // will be available in the predecessor by the time we need them.  Any
2587   // that weren't originally present will have been instantiated earlier
2588   // in this loop.
2589   bool success = true;
2590   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2591     Value *Op = Instr->getOperand(i);
2592     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2593       continue;
2594     // This could be a newly inserted instruction, in which case, we won't
2595     // find a value number, and should give up before we hurt ourselves.
2596     // FIXME: Rewrite the infrastructure to let it easier to value number
2597     // and process newly inserted instructions.
2598     if (!VN.exists(Op)) {
2599       success = false;
2600       break;
2601     }
2602     uint32_t TValNo =
2603         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2604     if (Value *V = findLeader(Pred, TValNo)) {
2605       Instr->setOperand(i, V);
2606     } else {
2607       success = false;
2608       break;
2609     }
2610   }
2611 
2612   // Fail out if we encounter an operand that is not available in
2613   // the PRE predecessor.  This is typically because of loads which
2614   // are not value numbered precisely.
2615   if (!success)
2616     return false;
2617 
2618   Instr->insertBefore(Pred->getTerminator());
2619   Instr->setName(Instr->getName() + ".pre");
2620   Instr->setDebugLoc(Instr->getDebugLoc());
2621 
2622   ICF->insertInstructionTo(Instr, Pred);
2623 
2624   unsigned Num = VN.lookupOrAdd(Instr);
2625   VN.add(Instr, Num);
2626 
2627   // Update the availability map to include the new instruction.
2628   addToLeaderTable(Num, Instr, Pred);
2629   return true;
2630 }
2631 
performScalarPRE(Instruction * CurInst)2632 bool GVN::performScalarPRE(Instruction *CurInst) {
2633   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2634       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2635       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2636       isa<DbgInfoIntrinsic>(CurInst))
2637     return false;
2638 
2639   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2640   // sinking the compare again, and it would force the code generator to
2641   // move the i1 from processor flags or predicate registers into a general
2642   // purpose register.
2643   if (isa<CmpInst>(CurInst))
2644     return false;
2645 
2646   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2647   // sinking the addressing mode computation back to its uses. Extending the
2648   // GEP's live range increases the register pressure, and therefore it can
2649   // introduce unnecessary spills.
2650   //
2651   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2652   // to the load by moving it to the predecessor block if necessary.
2653   if (isa<GetElementPtrInst>(CurInst))
2654     return false;
2655 
2656   if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
2657     // We don't currently value number ANY inline asm calls.
2658     if (CallB->isInlineAsm())
2659       return false;
2660     // Don't do PRE on convergent calls.
2661     if (CallB->isConvergent())
2662       return false;
2663   }
2664 
2665   uint32_t ValNo = VN.lookup(CurInst);
2666 
2667   // Look for the predecessors for PRE opportunities.  We're
2668   // only trying to solve the basic diamond case, where
2669   // a value is computed in the successor and one predecessor,
2670   // but not the other.  We also explicitly disallow cases
2671   // where the successor is its own predecessor, because they're
2672   // more complicated to get right.
2673   unsigned NumWith = 0;
2674   unsigned NumWithout = 0;
2675   BasicBlock *PREPred = nullptr;
2676   BasicBlock *CurrentBlock = CurInst->getParent();
2677 
2678   // Update the RPO numbers for this function.
2679   if (InvalidBlockRPONumbers)
2680     assignBlockRPONumber(*CurrentBlock->getParent());
2681 
2682   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2683   for (BasicBlock *P : predecessors(CurrentBlock)) {
2684     // We're not interested in PRE where blocks with predecessors that are
2685     // not reachable.
2686     if (!DT->isReachableFromEntry(P)) {
2687       NumWithout = 2;
2688       break;
2689     }
2690     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2691     // when CurInst has operand defined in CurrentBlock (so it may be defined
2692     // by phi in the loop header).
2693     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2694            "Invalid BlockRPONumber map.");
2695     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2696         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2697           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2698             return Inst->getParent() == CurrentBlock;
2699           return false;
2700         })) {
2701       NumWithout = 2;
2702       break;
2703     }
2704 
2705     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2706     Value *predV = findLeader(P, TValNo);
2707     if (!predV) {
2708       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2709       PREPred = P;
2710       ++NumWithout;
2711     } else if (predV == CurInst) {
2712       /* CurInst dominates this predecessor. */
2713       NumWithout = 2;
2714       break;
2715     } else {
2716       predMap.push_back(std::make_pair(predV, P));
2717       ++NumWith;
2718     }
2719   }
2720 
2721   // Don't do PRE when it might increase code size, i.e. when
2722   // we would need to insert instructions in more than one pred.
2723   if (NumWithout > 1 || NumWith == 0)
2724     return false;
2725 
2726   // We may have a case where all predecessors have the instruction,
2727   // and we just need to insert a phi node. Otherwise, perform
2728   // insertion.
2729   Instruction *PREInstr = nullptr;
2730 
2731   if (NumWithout != 0) {
2732     if (!isSafeToSpeculativelyExecute(CurInst)) {
2733       // It is only valid to insert a new instruction if the current instruction
2734       // is always executed. An instruction with implicit control flow could
2735       // prevent us from doing it. If we cannot speculate the execution, then
2736       // PRE should be prohibited.
2737       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2738         return false;
2739     }
2740 
2741     // Don't do PRE across indirect branch.
2742     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2743       return false;
2744 
2745     // Don't do PRE across callbr.
2746     // FIXME: Can we do this across the fallthrough edge?
2747     if (isa<CallBrInst>(PREPred->getTerminator()))
2748       return false;
2749 
2750     // We can't do PRE safely on a critical edge, so instead we schedule
2751     // the edge to be split and perform the PRE the next time we iterate
2752     // on the function.
2753     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2754     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2755       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2756       return false;
2757     }
2758     // We need to insert somewhere, so let's give it a shot
2759     PREInstr = CurInst->clone();
2760     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2761       // If we failed insertion, make sure we remove the instruction.
2762       LLVM_DEBUG(verifyRemoved(PREInstr));
2763       PREInstr->deleteValue();
2764       return false;
2765     }
2766   }
2767 
2768   // Either we should have filled in the PRE instruction, or we should
2769   // not have needed insertions.
2770   assert(PREInstr != nullptr || NumWithout == 0);
2771 
2772   ++NumGVNPRE;
2773 
2774   // Create a PHI to make the value available in this block.
2775   PHINode *Phi =
2776       PHINode::Create(CurInst->getType(), predMap.size(),
2777                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2778   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2779     if (Value *V = predMap[i].first) {
2780       // If we use an existing value in this phi, we have to patch the original
2781       // value because the phi will be used to replace a later value.
2782       patchReplacementInstruction(CurInst, V);
2783       Phi->addIncoming(V, predMap[i].second);
2784     } else
2785       Phi->addIncoming(PREInstr, PREPred);
2786   }
2787 
2788   VN.add(Phi, ValNo);
2789   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2790   // be changed, so erase the related stale entries in phi translate cache.
2791   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2792   addToLeaderTable(ValNo, Phi, CurrentBlock);
2793   Phi->setDebugLoc(CurInst->getDebugLoc());
2794   CurInst->replaceAllUsesWith(Phi);
2795   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2796     MD->invalidateCachedPointerInfo(Phi);
2797   VN.erase(CurInst);
2798   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2799 
2800   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2801   if (MD)
2802     MD->removeInstruction(CurInst);
2803   if (MSSAU)
2804     MSSAU->removeMemoryAccess(CurInst);
2805   LLVM_DEBUG(verifyRemoved(CurInst));
2806   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2807   // some assertion failures.
2808   ICF->removeInstruction(CurInst);
2809   CurInst->eraseFromParent();
2810   ++NumGVNInstr;
2811 
2812   return true;
2813 }
2814 
2815 /// Perform a purely local form of PRE that looks for diamond
2816 /// control flow patterns and attempts to perform simple PRE at the join point.
performPRE(Function & F)2817 bool GVN::performPRE(Function &F) {
2818   bool Changed = false;
2819   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2820     // Nothing to PRE in the entry block.
2821     if (CurrentBlock == &F.getEntryBlock())
2822       continue;
2823 
2824     // Don't perform PRE on an EH pad.
2825     if (CurrentBlock->isEHPad())
2826       continue;
2827 
2828     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2829                               BE = CurrentBlock->end();
2830          BI != BE;) {
2831       Instruction *CurInst = &*BI++;
2832       Changed |= performScalarPRE(CurInst);
2833     }
2834   }
2835 
2836   if (splitCriticalEdges())
2837     Changed = true;
2838 
2839   return Changed;
2840 }
2841 
2842 /// Split the critical edge connecting the given two blocks, and return
2843 /// the block inserted to the critical edge.
splitCriticalEdges(BasicBlock * Pred,BasicBlock * Succ)2844 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2845   // GVN does not require loop-simplify, do not try to preserve it if it is not
2846   // possible.
2847   BasicBlock *BB = SplitCriticalEdge(
2848       Pred, Succ,
2849       CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
2850   if (BB) {
2851     if (MD)
2852       MD->invalidateCachedPredecessors();
2853     InvalidBlockRPONumbers = true;
2854   }
2855   return BB;
2856 }
2857 
2858 /// Split critical edges found during the previous
2859 /// iteration that may enable further optimization.
splitCriticalEdges()2860 bool GVN::splitCriticalEdges() {
2861   if (toSplit.empty())
2862     return false;
2863 
2864   bool Changed = false;
2865   do {
2866     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2867     Changed |= SplitCriticalEdge(Edge.first, Edge.second,
2868                                  CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
2869                nullptr;
2870   } while (!toSplit.empty());
2871   if (Changed) {
2872     if (MD)
2873       MD->invalidateCachedPredecessors();
2874     InvalidBlockRPONumbers = true;
2875   }
2876   return Changed;
2877 }
2878 
2879 /// Executes one iteration of GVN
iterateOnFunction(Function & F)2880 bool GVN::iterateOnFunction(Function &F) {
2881   cleanupGlobalSets();
2882 
2883   // Top-down walk of the dominator tree
2884   bool Changed = false;
2885   // Needed for value numbering with phi construction to work.
2886   // RPOT walks the graph in its constructor and will not be invalidated during
2887   // processBlock.
2888   ReversePostOrderTraversal<Function *> RPOT(&F);
2889 
2890   for (BasicBlock *BB : RPOT)
2891     Changed |= processBlock(BB);
2892 
2893   return Changed;
2894 }
2895 
cleanupGlobalSets()2896 void GVN::cleanupGlobalSets() {
2897   VN.clear();
2898   LeaderTable.clear();
2899   BlockRPONumber.clear();
2900   TableAllocator.Reset();
2901   ICF->clear();
2902   InvalidBlockRPONumbers = true;
2903 }
2904 
2905 /// Verify that the specified instruction does not occur in our
2906 /// internal data structures.
verifyRemoved(const Instruction * Inst) const2907 void GVN::verifyRemoved(const Instruction *Inst) const {
2908   VN.verifyRemoved(Inst);
2909 
2910   // Walk through the value number scope to make sure the instruction isn't
2911   // ferreted away in it.
2912   for (const auto &I : LeaderTable) {
2913     const LeaderTableEntry *Node = &I.second;
2914     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2915 
2916     while (Node->Next) {
2917       Node = Node->Next;
2918       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2919     }
2920   }
2921 }
2922 
2923 /// BB is declared dead, which implied other blocks become dead as well. This
2924 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2925 /// live successors, update their phi nodes by replacing the operands
2926 /// corresponding to dead blocks with UndefVal.
addDeadBlock(BasicBlock * BB)2927 void GVN::addDeadBlock(BasicBlock *BB) {
2928   SmallVector<BasicBlock *, 4> NewDead;
2929   SmallSetVector<BasicBlock *, 4> DF;
2930 
2931   NewDead.push_back(BB);
2932   while (!NewDead.empty()) {
2933     BasicBlock *D = NewDead.pop_back_val();
2934     if (DeadBlocks.count(D))
2935       continue;
2936 
2937     // All blocks dominated by D are dead.
2938     SmallVector<BasicBlock *, 8> Dom;
2939     DT->getDescendants(D, Dom);
2940     DeadBlocks.insert(Dom.begin(), Dom.end());
2941 
2942     // Figure out the dominance-frontier(D).
2943     for (BasicBlock *B : Dom) {
2944       for (BasicBlock *S : successors(B)) {
2945         if (DeadBlocks.count(S))
2946           continue;
2947 
2948         bool AllPredDead = true;
2949         for (BasicBlock *P : predecessors(S))
2950           if (!DeadBlocks.count(P)) {
2951             AllPredDead = false;
2952             break;
2953           }
2954 
2955         if (!AllPredDead) {
2956           // S could be proved dead later on. That is why we don't update phi
2957           // operands at this moment.
2958           DF.insert(S);
2959         } else {
2960           // While S is not dominated by D, it is dead by now. This could take
2961           // place if S already have a dead predecessor before D is declared
2962           // dead.
2963           NewDead.push_back(S);
2964         }
2965       }
2966     }
2967   }
2968 
2969   // For the dead blocks' live successors, update their phi nodes by replacing
2970   // the operands corresponding to dead blocks with UndefVal.
2971   for (BasicBlock *B : DF) {
2972     if (DeadBlocks.count(B))
2973       continue;
2974 
2975     // First, split the critical edges. This might also create additional blocks
2976     // to preserve LoopSimplify form and adjust edges accordingly.
2977     SmallVector<BasicBlock *, 4> Preds(predecessors(B));
2978     for (BasicBlock *P : Preds) {
2979       if (!DeadBlocks.count(P))
2980         continue;
2981 
2982       if (llvm::is_contained(successors(P), B) &&
2983           isCriticalEdge(P->getTerminator(), B)) {
2984         if (BasicBlock *S = splitCriticalEdges(P, B))
2985           DeadBlocks.insert(P = S);
2986       }
2987     }
2988 
2989     // Now undef the incoming values from the dead predecessors.
2990     for (BasicBlock *P : predecessors(B)) {
2991       if (!DeadBlocks.count(P))
2992         continue;
2993       for (PHINode &Phi : B->phis()) {
2994         Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
2995         if (MD)
2996           MD->invalidateCachedPointerInfo(&Phi);
2997       }
2998     }
2999   }
3000 }
3001 
3002 // If the given branch is recognized as a foldable branch (i.e. conditional
3003 // branch with constant condition), it will perform following analyses and
3004 // transformation.
3005 //  1) If the dead out-coming edge is a critical-edge, split it. Let
3006 //     R be the target of the dead out-coming edge.
3007 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
3008 //     edge. The result of this step will be {X| X is dominated by R}
3009 //  2) Identify those blocks which haves at least one dead predecessor. The
3010 //     result of this step will be dominance-frontier(R).
3011 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
3012 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
3013 //
3014 // Return true iff *NEW* dead code are found.
processFoldableCondBr(BranchInst * BI)3015 bool GVN::processFoldableCondBr(BranchInst *BI) {
3016   if (!BI || BI->isUnconditional())
3017     return false;
3018 
3019   // If a branch has two identical successors, we cannot declare either dead.
3020   if (BI->getSuccessor(0) == BI->getSuccessor(1))
3021     return false;
3022 
3023   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
3024   if (!Cond)
3025     return false;
3026 
3027   BasicBlock *DeadRoot =
3028       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
3029   if (DeadBlocks.count(DeadRoot))
3030     return false;
3031 
3032   if (!DeadRoot->getSinglePredecessor())
3033     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
3034 
3035   addDeadBlock(DeadRoot);
3036   return true;
3037 }
3038 
3039 // performPRE() will trigger assert if it comes across an instruction without
3040 // associated val-num. As it normally has far more live instructions than dead
3041 // instructions, it makes more sense just to "fabricate" a val-number for the
3042 // dead code than checking if instruction involved is dead or not.
assignValNumForDeadCode()3043 void GVN::assignValNumForDeadCode() {
3044   for (BasicBlock *BB : DeadBlocks) {
3045     for (Instruction &Inst : *BB) {
3046       unsigned ValNum = VN.lookupOrAdd(&Inst);
3047       addToLeaderTable(ValNum, &Inst, BB);
3048     }
3049   }
3050 }
3051 
3052 class llvm::gvn::GVNLegacyPass : public FunctionPass {
3053 public:
3054   static char ID; // Pass identification, replacement for typeid
3055 
GVNLegacyPass(bool NoMemDepAnalysis=!GVNEnableMemDep)3056   explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
3057       : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
3058     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3059   }
3060 
runOnFunction(Function & F)3061   bool runOnFunction(Function &F) override {
3062     if (skipFunction(F))
3063       return false;
3064 
3065     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3066 
3067     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3068     return Impl.runImpl(
3069         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3070         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3071         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
3072         getAnalysis<AAResultsWrapperPass>().getAAResults(),
3073         Impl.isMemDepEnabled()
3074             ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3075             : nullptr,
3076         LIWP ? &LIWP->getLoopInfo() : nullptr,
3077         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3078         MSSAWP ? &MSSAWP->getMSSA() : nullptr);
3079   }
3080 
getAnalysisUsage(AnalysisUsage & AU) const3081   void getAnalysisUsage(AnalysisUsage &AU) const override {
3082     AU.addRequired<AssumptionCacheTracker>();
3083     AU.addRequired<DominatorTreeWrapperPass>();
3084     AU.addRequired<TargetLibraryInfoWrapperPass>();
3085     AU.addRequired<LoopInfoWrapperPass>();
3086     if (Impl.isMemDepEnabled())
3087       AU.addRequired<MemoryDependenceWrapperPass>();
3088     AU.addRequired<AAResultsWrapperPass>();
3089     AU.addPreserved<DominatorTreeWrapperPass>();
3090     AU.addPreserved<GlobalsAAWrapperPass>();
3091     AU.addPreserved<TargetLibraryInfoWrapperPass>();
3092     AU.addPreserved<LoopInfoWrapperPass>();
3093     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3094     AU.addPreserved<MemorySSAWrapperPass>();
3095   }
3096 
3097 private:
3098   GVN Impl;
3099 };
3100 
3101 char GVNLegacyPass::ID = 0;
3102 
3103 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3104 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3105 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
3106 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3107 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3108 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3109 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3110 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3111 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3112 
3113 // The public interface to this file...
3114 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
3115   return new GVNLegacyPass(NoMemDepAnalysis);
3116 }
3117